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Understanding how ensembles of neurons represent and transmit information in the
patterns of their joint spiking activity is a fundamental question in computational
neuroscience. At present, analyses of spiking activity from neuronal ensembles are
limited because multivariate point process (MPP) models cannot represent simultaneous
occurrences of spike events at an arbitrarily small time resolution. Solo recently reported
a simultaneous-event multivariate point process (SEMPP) model to correct this key
limitation. In this paper, we show how Solo’s discrete-time formulation of the SEMPP
model can be efficiently fit to ensemble neural spiking activity using a multinomial
generalized linear model (mGLM). Unlike existing approximate procedures for fitting the
discrete-time SEMPP model, the mGLM is an exact algorithm. The MPP time-rescaling
theorem can be used to assess model goodness-of-fit. We also derive a new marked
point-process (MkPP) representation of the SEMPP model that leads to new thinning and
time-rescaling algorithms for simulating an SEMPP stochastic process. These algorithms
are much simpler than multivariate extensions of algorithms for simulating a univariate
point process, and could not be arrived at without the MkPP representation. We illustrate
the versatility of the SEMPP model by analyzing neural spiking activity from pairs of
simultaneously-recorded rat thalamic neurons stimulated by periodic whisker deflections,
and by simulating SEMPP data. In the data analysis example, the SEMPP model
demonstrates that whisker motion significantly modulates simultaneous spiking activity
at the 1 ms time scale and that the stimulus effect is more than one order of magnitude
greater for simultaneous activity compared with non-simultaneous activity. Together, the
mGLM, the MPP time-rescaling theorem and the MkPP representation of the SEMPP
model offer a theoretically sound, practical tool for measuring joint spiking propensity in a
neuronal ensemble.

Keywords: multivariate point-process, simultaneous events, multinomial GLM, thalamic synchrony

INTRODUCTION
The study of how neurons represent and transmit information in
the patterns of their ensemble spiking activity has been greatly
facilitated in the last 17 years by the technical capability to mea-
sure simultaneously multiple single neuron activity using mul-
tiple electrode recording techniques (Wilson and McNaughton,
1993; Maynard et al., 1997). For this reason, the development of
statistical methods to characterize ensemble spiking activity is an
active field of neuroscience research (Brown et al., 2004; Grün,
2009).

Several histogram-based methods have been used to ana-
lyze ensemble neural spiking activity. These include the
cross-correlogram (Brody, 1999), the cross-intensity func-
tion (Brillinger et al., 1976) and the joint peristimulus time his-
togram (Gerstein and Perkel, 1969). An appeal of these methods
is that, as discrete approximations to well-known statistics used

to analyze continuous-valued processes, they are easy to under-
stand and to compute. However, like all histogram methods,
large sample theory is required to justify this approach (Klemelä,
2009). Furthermore, these methods only measure the association
between pairs of neurons and the fundamental assumption of
stationarity that underlies their construction can be hard to jus-
tify given that neural spiking activity is often highly plastic and
adaptive.

Algorithms to detect precise patterns of spike timing are
another method of measuring associations among neural spike
trains (Grün et al., 2002; Gütig et al., 2002; Pipa and Grün,
2002; Grün, 2009). The appeal of these methods is that they offer
a way to evaluate higher-order neural interactions in ensemble
spiking activity beyond pairwise comparisons. These methods
require the user to specify the complexity of the pattern to be
analyzed and assume that, at least approximately, neural systems
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use repeatedly the same patterns to represent and transmit infor-
mation. Frequency domain estimates of coherence which also
require a stationarity assumption (Brillinger, 1992; Mitra and
Bokil, 2008) and gravity clustering, a high-dimensional graphi-
cal technique, Lindsey and Gerstein (2006) have also been used
to analyze joint spiking activity. A common paradigm in neu-
rophysiology is to apply a stimulus and to observe the response
of the neural ensemble. The methods cited thus far have lim-
ited ability to relate the effects of the stimulus to the ensemble
response.

Likelihood methods using either an information-
geometric (Nakahara and Amari, 2002; Amari and Nakahara,
2006; Shimazaki et al., 2012) or a point-process (Ogata, 1981;
Chornoboy et al., 1988; Okatan et al., 2005) representation
provide an alternative parametric model-based approach to
analyzing ensemble neural spiking activity. Likelihood methods
can relate the ensemble activity to any relevant covariates. When
the parametric model accurately describes the data, these analyses
have important optimality properties. However, this approach
has an important shortcoming that is especially relevant for
analysis of coincident spiking activity. At an arbitrarily small time
scale these methods do not allow simultaneous spiking (Ogata,
1981; Karr, 1991; Daley and Vere-Jones, 2003). Current analysis
of spiking activity from neuronal ensembles circumvent this lim-
itation by either assuming neurons are independent conditioned
on history, or simply ignoring simultaneous events. Ventura
et al. (2005) developed a likelihood procedure to overcome
this limitation for analyzing a pair of neurons. In Kass et al.
(2011), Kass et al. extend Ventura’s approach to multiple neu-
rons. Solo recently reported a simultaneous-event multivariate
point process (SEMPP) model to correct this key limitation in
general (Solo, 2007).

In this paper, we propose a multinomial generalized linear
model (mGLM) of a discrete-time formulation of the SEMPP,
which can be efficiently fit to ensemble neural spiking activity,
and derive a new marked point-process (MkPP) representation
of the SEMPP model. We focus on the important, non-trivial,
algorithmic implications and properties of the mGLM and the
MkPP representation. Existing procedures for fitting a GLM to
discrete-time SEMPP data (Chornoboy et al., 1988; Okatan et al.,
2005) are approximate ones which, conditioned on history, fit
separate GLMs to each component of the SEMPP. In contrast,
the mGLM algorithm is an exact procedure which fits a joint
model to the discrete-time SEMPP data. We use the multivariate
point process (MPP) time-rescaling theorem (Daley and Vere-
Jones, 2003; Vere-Jones and Schoenberg, 2004) to assess model
goodness-of-fit. The MkPP representation and its implications
are not trivial consequences of the treatment in Solo (2007).
In particular, it leads to new thinning and time-rescaling algo-
rithms for efficiently simulating an SEMPP stochastic process.
These algorithms are much simpler than those based on obvious
extensions to SEMPPs of algorithms for simulating a univariate
point-process (Brown et al., 2002). We illustrate the new SEMPP
model representation by analyzing neural spiking activity from
pairs of simultaneously-recorded rat thalamic neurons stimu-
lated by periodic whisker deflections and by simulating SEMPP
data.

METHODS
In this section, we develop the theory behind our algorithms for
handling simultaneous events in MPP. We propose a statistical
model, based on generalized linear models, to analyze simulta-
neous recordings from pairs of thalamic neurons. Unlike existing
procedures, the algorithm for fitting this mGLM estimates the
parameters of interest jointly, using the discrete-time multivari-
ate SEMPP data. We also introduce a new MkPP representation
of SEMPP data and highlight its implications for simulation of
such data.

THEORY
Simultaneous-event multivariate point processes
In Solo (2007), Solo lays out a theoretical SEMPP model. In
order to develop our algorithms, we review the essential fea-
tures of Solo’s model. We also show how one can derive the joint
probability density function (PDF) of an SEMPP in discrete and
continuous time using straightforward heuristic arguments.

We consider an observation interval (0, T] and, for t ∈ (0, T],
let N(t) = (N1(t), N2(t), . . . , NC(t))′ be a C-variate point-
process defined as Nc(t) = ∫ t

0 dNc(u), where dNc(t) is the indi-
cator function which is 1 if there is an event at time t and 0
otherwise, for c = 1, . . . , C. Nc(t) counts the number of events
for component c in the interval (0, t]. We assume that each com-
ponent c has a conditional intensity function (CIF) defined as

λc(t|Ht) = lim
� → 0

P[Nc(t + �) − Nc(t) = 1|Ht]
�

, (1)

where Ht is the history of the C-variate point process up to time t.
Let dN(t) = (dN1(t), dN2(t), . . . , dNC(t))′ be the vector of indi-
cator functions dNc(t) at time t. We may treat dN(t) as a C-bit
binary number. Therefore, there are 2C possible outcomes of
dN(t) at any t. C of these outcomes have only one non-zero bit
[that is, only one event in one component of dN(t)] and 2C−C−1
have two or more non-zero bits. That is, there is an event at
time t in at least two components of dN(t). The last outcome is
dN(t) = (0, . . . , 0)′.

We define N(t) as a SEMPP if, at any time t, dN(t) has at least
two non-zero bits. That is, events are observed simultaneously in
at least two of the components of N(t). The special case in which,
at any t, dN(t) can only take as values one of the C outcomes
for which only one of the bits of dN(t) is non-zero is the MPP
defined by Daley and Vere-Jones (2003). The joint probability
density of N(t) in this special case is given by the Jacod likelihood
function (Ogata, 1981; Karr, 1991; Daley and Vere-Jones, 2003).

The disjoint and marked point process representations
To derive the joint probability density function of an SEMPP,
we develop, in a fashion similar to Solo (2007), an alternative
representation of N(t). Let M = 2C be the number of possible
outcomes of dN(t) at t. We define a new M − 1-variate point
process N∗(t) = (N∗

1 (t), N∗
2 (t), . . . , N∗

M − 1(t))′ of disjoint out-
comes of N(t). That is, each component of N∗(t) is a counting
process for one and only one of the 2C−1 outcomes of dN(t) (pat-
terns of C bits) that have at least one non-zero bit. For any t, the
vector dN∗(t) = (dN∗

1 (t), . . . , dN∗
M − 1(t))′ is a M−1-bit binary
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number with at most one non-zero bit. The non-zero element
of dN∗(t) (if any) is an indicator of the pattern dN(t) of C bits
which occurs at t. dN∗(t) = (0, . . . , 0)′ corresponds to dN(t) =
(0, . . . , 0)′. We define the CIF of N∗

m(t) as

λ∗
m(t|Ht) = lim

� → 0

P
[
N∗

m(t + �) − N∗
m(t) = 1|Ht

]
�

, (2)

where the counting process is N∗
m(t) = ∫ t

0 dN∗
m(u). We term

N∗(t) the disjoint process or representation.
One simple way to map from dN(t) to dN∗(t) is to treat the

former as a C-bit binary number, reverse the order of its bits,
and convert the resulting binary number to a decimal number. We
use this decimal number as the index of the non-zero component
of dN∗(t). The inverse map proceeds by finding the index of the
non-zero entry of dN∗(t), expressing this index as a C-bit binary
number, and reversing the order of the bits to obtain dN(t). This
one-to-one map is described in detail in Supplemental Material 1
for the arbitrary C-variate case. Table 1 illustrates this one-to-
one map for the case C = 3 and M = 8. In this example, N(t)
is related to N∗(t) by

N1(t) = N∗
1 (t) + N∗

3 (t) + N∗
5 (t) + N∗

7 (t) (3)

N2(t) = N∗
2 (t) + N∗

3 (t) + N∗
6 (t) + N∗

7 (t) (4)

N3(t) = N∗
4 (t) + N∗

5 (t) + N∗
6 (t) + N∗

7 (t). (5)

The CIFs of N(t) are related to those of N∗(t) in a similar manner.
If we let 0 < t1 < t2 < · · · < tL ≤ T denote the times in the

observation interval (0, T] at which dN(t) has at least one non-
zero bit, then we can express the disjoint process N∗(t) as a MkPP
{(t�, dN∗(t�)}L

�= 1. At t�, at least one of the bits of dN(t) is non-
zero. The non-zero bit of dN∗(t�) then indicates, through the map
described in Supplemental Material 1, exactly which of the M−1
patterns of C bits (outcomes of dN(t) other than (0, . . . , 0)′)
occurred at t�. At any other t, dN(t) = (0, . . . , 0)′. We term the
unmarked process {t�}L

�= 1 the ground point process (Daley and
Vere-Jones, 2003) and denote by dNg(t) the indicator function
that is 1 at t�, � = 1, . . . , L and zero at any other t. The ground
point process defines the times of occurrence of any pattern of
C bits (outcomes of dN(t)) that are not all zero. For each m, the
times at which dN∗

m(t) is non-zero define the times of occurrence
of one specific pattern of C bits that are not all zero. It follows that
the counting process and the CIF of the ground point process are

Table 1 | Map from dN(t) to dN*(t), C = 3, M = 8.

dN(t) m dN*(t)

(1,0,0) 1 (1,0,0,0,0,0,0)

(0,1,0) 2 (0,1,0,0,0,0,0)

(1,1,0) 3 (0,0,1,0,0,0,0)

(0,0,1) 4 (0,0,0,1,0,0,0)

(1,0,1) 5 (0,0,0,0,1,0,0)

(0,1,1) 6 (0,0,0,0,0,1,0)

(1,1,1) 7 (0,0,0,0,0,0,1)

respectively

Ng(t) =
M − 1∑
m = 1

N∗
m(t) (6)

λ∗
g (t|Ht) =

M − 1∑
m = 1

λ∗
m(t|Ht). (7)

The probability of the marks is given by the multinomial proba-
bility mass function

P[dN∗
m(t) = 1|dNg(t) = 1, Ht] = λ∗

m(t|Ht)

λ∗
g (t|Ht)

, (8)

for m = 1, . . . , M−1. The derivation of Equations (7, 8) are in
Supplemental Material 1, on the Frontiers website. The MkPP
representation provides an efficient description of N(t). The
probability of an event occurring in (0, T] is governed by the CIF
λ∗

g (t|Ht) of the ground point process. When an event is observed
in dNg(t), the marks are drawn from an M−1-dimensional
history-dependent multinomial distribution (Equation 8) to pro-
duce the corresponding event in N∗(t), or equivalently N(t).

Three algorithmically-useful forms of the joint probability density
function
We give three forms of the joint PDF of an SEMPP. The deriva-
tions for these PDFs follow from simple heuristic arguments,
which we detail in Supplemental Material 1. Here, we focus on
the algorithmic importance of these forms.

First, we give the joint PDF on an SEMPP in discrete-time,
which is the basis for the mGLM algorithm used in Data Analysis.
Then, we give the continuous PDF of the disjoint representation,
from which a multivariate analog of the time-rescaling theorem
and a Kolmogorov–Smirnov (KS) test for goodness-of-fit assess-
ment can be deduced (Brown et al., 2002; Daley and Vere-Jones,
2003). Lastly, we express the continuous PDF in terms of the
MkPP representation. This latter form leads to simple algorithms
for simulating an SEMPP stochastic process.

We define the discrete-time representations of N(t) and N∗(t)
in Supplemental Material 1. In this notation, �N∗ is the I × M−1
matrix of discretized outcomes of dN∗(t) for the observation
interval (0, T]. Each column �N∗

i of �N∗, where i is the discrete-
time index, is a realization from a multinomial trial with M
outcomes (roll of an M-sided die). The probability mass function
of �N∗ can be written as the product of conditional M-nomial
trials:

P[�N∗] =
I∏

i = 1

M − 1∏
m = 1

(
λ∗

m[i|Hi]�
)�N∗

m,i

·
(

1 − λ∗
g [i|Hi]�

)1 − �Ng,i + o(�L). (9)

We can obtain the continuous-time joint PDF p
[
N∗

(0,T]
]

of the
disjoint process N∗(t) by relating it to the discrete-time joint PDF
and then taking limits. This leads to p

[
N∗

(0,T]
]

being expressed
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as the product of M−1 continuous-time univariate point process
PDFs

p
[
N∗

(0,T]
] =

M − 1∏
m = 1

exp

{∫ T

0
log λ∗

m(t|Ht)dN∗
m(t)

}

·exp

{
−
∫ T

0
λ∗

m(t|Ht)dt

}
. (10)

The PDF p
[
N∗

(0,T]
]

can also be written in terms of the MkPP
representation as

p
[
N∗

(0,T]
] =

L∏
�= 1

M − 1∏
m = 1

(
λ∗

m(t�|Ht� )

λ∗
g (t�|Ht� )

)dN∗
m(t�)

·λ∗
g

(
t�|Ht�

)dNg (t�) exp

{
−
∫ T

0
λ∗

g (t|Ht)dt

}
. (11)

We use the discrete-time representation (Equation 9) to form
the mGLM (Fahrmeir and Tutz, 2001) to analyze the joint spik-
ing activity of a pair of thalamic neurons in Data Analysis.
Existing procedures for fitting a GLM to discrete-time SEMPP
data (Chornoboy et al., 1988; Okatan et al., 2005) are approximate
ones which, conditioned on history, fit separate GLMs to each
component of the disjoint representation of the SEMPP. In con-
trast, the mGLM algorithm is an exact procedure which jointly
estimates the parameters of the model using the multivariate
discrete-time SEMPP data.

The continuous-time PDF of the disjoint representation
(Equation 10) is the form derived by Solo (2007). If we let N∗(t)
be the MPP defined by restricting dN∗(t) to the C components
which are indicators for the outcomes for which only one bit of
dN(t) is non-zero (that is, if we disregard simultaneous occur-
rence of events), then Equation (10) gives the joint PDF of the
MPP defined by the Jacod likelihood which has no simultaneous
events (Chornoboy et al., 1988; Karr, 1991; Okatan et al., 2005).
The case M = 2 corresponds to the joint PDF of a univariate
point process (Truccolo et al., 2005). N∗(t) is an M−1-variate
MPP because it is composed of the disjoint events of dN(t).
Therefore, by Proposition 7.4.VI in Daley and Vere-Jones (2003),
it can be transformed into an M−1-variate point process with
independent unit-rate Poisson processes as its components. This
observation, applied to Equation (10), allows us to create a mul-
tivariate extension of the KS plots to assess goodness-of-fit of
SEMPP models fit to simultaneous neural spiking activity.

Finally, Equation (11) makes explicit the formulation of the
joint PDF of an SEMPP as an MkPP. The PDF of Equation (11)
follows from the observation that, in any small time inter-
val �, the SEMPP is a multinomial model with 2C possible
outcomes (Equation 9, M = 2C). A multinomial model with 2C

outcomes can be written as the product of a binomial proba-
bility model and a conditional multinomial probability model
with 2C−1 outcomes. The binomial probability model defines the
ground process and the conditional multinomial process defines
the marked process. The CIF of the ground point process is
given in Equation (7) and the mark process is defined by the

history-dependent M−1-dimensional multinomial distribution
in Equation (8). The intuition behind the MkPP representa-
tion, as well as its implications, should not be dismissed as a
trivial consequences of the treatment in Solo (2007). An impor-
tant consequence of the MkPP representation is that it can be
combined with either a thinning algorithm or the univariate
time-rescaling theorem (Brown et al., 2002) to yield highly effi-
cient simulation algorithms for SEMPP models. As we shall see,
these algorithms are much simpler than those based on obvious
extensions to SEMPPs of algorithms for simulating a univariate
point-process (Brown et al., 2002). Indeed, the simulation algo-
rithms which use the MkPP representation make simulation of
SEMPP data almost as simple as simulation of a univariate point
process.

Details of the derivations for Equations (9–11) are in
Supplemental Material 1. The derivation for Equation (10) fol-
lows from simple heuristic arguments used previously in Truccolo
et al. (2005) for univariate point processes and in Solo (2007) for
SEMPPs. The key idea is to start with a discrete-time form, as in
Equation (9), and then take limits.

Simulating simultaneous-event multivariate point processes
For univariate point processes, an important consequence of
the time-rescaling theorem is that it leads to an algorithm for
simulating univariate point-process data (Brown et al., 2002).
The time-rescaling theorem for MPPs also leads to an algorithm
for simulating SEMPP data, which we describe below. In the
absence of history dependence of the CIFs, this algorithm is
a trivial extension of the one for simulating a point process
using the univariate time-rescaling theorem (Brown et al.,
2002). For reasons detailed below, this algorithm, which uses
the disjoint representation, becomes unwieldy in the more
interesting case where the CIFs depend on the history of the
SEMPP. In contrast, using the MkPP representation leads to two
algorithms (also described below), which make the task of sim-
ulating SEMPP data almost as simple as simulating a univariate
point process.

Algorithm 1 (Multivariate time-rescaling):

1. Set t0 = 0, � = 1, �m = 1 ∀ m ∈ {1, . . . , M − 1}.
2. ∀ m, draw τ�m an exponential random variable with mean 1.
3. ∀ m, find t�m as the solution to:

τ�m = ∫ t�m
t�m − 1

λ∗
m(t|Ht)dt.

Let m+ = arg minm t�m , t� = t�m+ .
4. If t� > T, then stop the algorithm, else
5. If m = m+, set dN∗

m+(t�) = 1, �m = �m + 1 and draw τ�m an
exponential random variable with mean 1.

6. If m �= m+, �m does not change, set
τ�m = τ�m − ∫ t�

t�m − 1
λ∗

m(t|Ht)dt,
t�m − 1 = t�,
dN∗

m(t�) = 0,
7. dN(t�) is obtained from dN∗(t�) using the map described in

Supplemental Material 1.
8. � = � + 1.
9. Go back to 3.
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Although Algorithm 1 is not easy to parse, we describe the
intuition behind it, which follows from the time-rescaling theo-
rem for MPPs. Step 2 of the algorithm prescribes that we should
first generate independent exponential random variables with
mean 1, one for each component of the disjoint representation
of the SEMPP. Then, for each component, we find in Step 3 the
times at which the area under each CIF integrates to the value pre-
scribed by the exponential draws. If the CIFs did not depend on
history, it would be sufficient to repeat these two steps, until we’ve
simulated the SEMPP data up to a given time T. In other words,
without dependence of the CIFs on history, one can simulate an
SEMPP by separate simulation of multiple univariate point pro-
cesses. Intuitively, this is because the integration of the CIFs in
Step 3 of Algorithm 1 become decoupled when there is no his-
tory dependence, that is, no component of the SEMPP needs to
update its own history based on events that occur in the other
components. However, in the more interesting case when the CIFs
depend on history, Step 3 of Algorithm 1 becomes problematic:
integration of the CIFs must be carried out in parallel because
whenever an event occurs in one component, all processes must
update their history accordingly. Moreover, only the process for
which an event occurs must perform a new exponential 1 draw
(Step 5). All other processes keep computing the area under their
CIF until it reaches the value prescribed by their exponential 1
draw (Step 6).

Simply put, when the CIFs depend on history, Step 3 of
Algorithm 1 leads to an undesirable amount of bookkeeping,
which grows with the number of component of the SEMPP.

Algorithm 1 should be contrasted with one which uses the
MkPP representation. In this algorithm, we simulate events from
the ground process (which is a univariate point process) using
the univariate time-rescaling theorem, e.g., as in Brown et al.
(2002). When an event occurs in the ground process, we roll
an M−1-sided die to decide to which component of the dis-
joint process this event should be assigned. The key feature of
this algorithm, which makes it simpler and more elegant than
Algorithm 1, is that we must perform only one uniform draw
at each step. The components of the SEMPP only interact with
each other, through the mark pmf, when an event occurs in the
ground process. This makes all of the bookkeeping of Algorithm 1
unnecessary.

The following algorithm for simulating an SEMPP based
on the MkPP representation is an extension of the thinning
simulation algorithm for MPP models developed by Ogata
(1981).

Algorithm 2 (Thinning): Suppose there exists λ such that
λ∗

g (t|Ht) ≤ λ for all t ∈ (0, T]:

1. Simulate observations 0 < t1 < t2 · · · < tK ≤ T from a
Poisson point process with rate λ.

2. Set k = 1.
3. while k ≤ K

a. Draw uk from the uniform distribution on (0,1)

b. if
λ∗

g (tk|Htk )

λ
≥ uk

i. Draw mk from the (M−1)-dimensional multino-

mial distribution with probabilities
λ∗

m(tk|Htk )

λ∗
g (tk|Htk )

, m =
{1, . . . , M−1}

ii. set dN∗
mk

(tk) = 1 and dN∗
m(tk) = 0 for all m �= mk

c. else, set dN∗
m(tk) = 0 for all m ∈ {1, . . . , M − 1}

d. dN(tk) is obtained from dN∗(tk) as in Supplemental
Material 1

e. k = k + 1.

An alternative form of Algorithm 2 is given in Supplemental
Material 1. We can also simulate data from an SEMPP model
using an algorithm based on the univariate time-rescaling
theorem (Brown et al., 2002) as follows:

Algorithm 3 (Time-rescaling): Given an interval (0, T]

1. Set t0 = 0 and � = 1.
2. Draw u� from the uniform distribution on (0,1).
3. Find t� as the solution to: log(u�) = ∫ t�

t�−1
λ∗

g (t|Ht)dt.
4. If t� > T, then stop, else
5. Draw m� from the (M-1)-dimensional multinomial distribu-

tion with probabilities
λ∗

m(t�|Ht� )

λ∗
g (t�|Ht� )

, m = {1, . . . , M−1}.
6. set dN∗

m�
(t�) = 1 and dN∗

m(t�) = 0 for all m �= m�.
7. dN(t�) is obtained from dN∗(t�) as in Supplemental

Material 1.
8. � = � + 1.
9. Go back to 2.

DATA ANALYSIS
To illustrate our model, we analyze simultaneously-recorded spik-
ing activity data from pairs of neurons in the rat thalamus. The
experiments were previously described in detail in Temereanca
et al. (2008).

Experiment
Simultaneous single unit activity from pairs of thalamic neu-
rons was recorded with two electrodes placed in the same electro
physiologically-identified barreloid of the rat ventral posterome-
dial nucleus. For the neurons analyzed here, spiking activity was
recorded from the pairs in response to whisker deflections at
50 mm/s administered at 8 Hz for a period of 2000 ms. A delay
period of 500 ms preceded and followed each stimulus period. For
each neuronal pair, the responses were recorded across 50 trials.
We divided the 50 trials into a training set and a test set by ran-
domly choosing 1 of every sequence of 3 trials and assigning it to
the training set (17 trials). The remaining trials were assigned to
the test set (33 trials).

The standard raster plots show that the stimulus (Figure 1A)
induces strong modulation of the neural spiking in the training
set (Figure 1B) and in the test set (Figure 1C). Our approach
suggests an alternative raster plot which shows more clearly
the simultaneous spiking activity of the pairs. Our new raster
plots of the three components of �N∗ (Figure 2) show more
clearly the effects of the stimulus (Figure 2A) on the training set
(Figure 2B) and the test set (Figure 2C). The �N∗

3,i component

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 6 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ba et al. Simultaneous-event multivariate point-process models

FIGURE 1 | Standard raster plots of the spiking activity of each

neuron in a representative pair in response to a periodic whisker

deflection of velocity v = 50 mm/s. (A) Stimulus: periodic whisker
deflection, (B) 17 trials of training data, (C) 33 trials of test data. The
standard raster plots show that the stimulus induces strong modulation
of the neural spiking in both the training and in the test sets. These
standard raster plots do not clearly show the effect of the stimulus on
joint spiking.

of �N∗ shows the joint spiking activity of the two neurons
in response to the stimulus. This is the component that analy-
ses based on the Jacod likelihood point-process models would
simply ignore. For our analyses, we have C = 2, M = 4 and
� = 1 ms.

Statistical model
We assume that the data are a sample from a bivariate SEMPP,
whose discrete-time likelihood can be written as a product of
conditional four-nomial trials. If we let

log

[
λ∗

m[i|Hi]�
1 − λ∗

g [i|Hi]�

]
= βm,0 +

J − 1∑
j = 0

β
(0)
m,jsi − j

+
2∑

c = 1

Kc∑
k = 1

β
(c)
m,k�Nc,i−k (12)

then our model becomes an mGLM with four-nomial obser-
vations and logit link (Fahrmeir and Tutz, 2001). The model
expresses the log odds of each outcome with respect to �Ng,i =
(0, . . . , 0)′ outcome as the convolution of the stimulus s with
a finite length kernel {β(0)

m,j}J − 1
j = 0 , and the history of �N1 and

�N2, respectively with finite length kernels {β(1)
m,k}K1

k = 1 and

{β(2)
m,k}K2

k = 1. Estimation is performed by maximizing the discrete-
time likelihood [Equation (9) re-arranged as in Equation (S28),
Supplemental Material 2] of the data under the model in

Equation (12). We select J, K1 and K2 using Akaike’s informa-
tion criterion (AIC) and assess goodness-of-fit using the time-
rescaling theorem to construct KS plots (Brown et al., 2002). In
Supplemental Material 1, we state the multivariate time-rescaling
theorem (Proposition 7.4.VI in Daley and Vere-Jones, 2003) and
describe how to construct the KS plots we use to assess goodness
of fit.

Assessing independence
It is not hard to show that the components of a bivariate Bernoulli
random vector are independent if and only if they are uncor-
related. In each discrete-time bin, the model of Equation (12)
results in an estimate of a joint pmf, conditioned on history.
Therefore, we can assess the time-varying dependence between
the neurons in a pair using the (conditional) covariance in each
time bin.

Algorithms for fitting GLMs to SEMPP data
The goal of algorithms for fitting a model to discrete-time SEMPP
data is to estimate the time and/history-dependent CIFs of the
components of the SEMPP model. Conventional approaches
are approximate ones which, given history, separately estimate
the CIFs of each of the components of the SEMPP model. In
the mGLM framework, one jointly estimates the CIFs of the
components of the SEMPP model, thereby preserving the true
discrete-time nature of the data.

More specifically, conventional approaches (Chornoboy et al.,
1988; Okatan et al., 2005) fit a GLM to the discrete-time
SEMPP data by first discretizing the continuous likelihood of
Equation (10), to obtain the approximate discrete-time likeli-
hood of Equation (S15), Supplemental Material 1. In effect, these
approaches are similar to that of Berman and Turner (1992) in
the univariate case. The resulting approximate discrete-time like-
lihood is the product of discrete-time univariate point process
likelihoods. Then, using algorithms available in standard scien-
tific computing packages, separate univariate Poisson GLMs are
fit to the data.

In contrast, our mGLM algorithm uses the exact discrete-time
likelihood of Equation (9), thus treating the multivariate SEMPP
data as samples of conditional multinomial trials. The mGLM
algorithm jointly fits multiple components to the data. This allows
us to simultaneously estimate the time and/or history-dependent
CIFs of the components of the SEMPP. This approach is differ-
ent from conventional ones which assume that the components of
the SEMPP are independent conditioned on history. The impact
of independence conditoned on history is that it allows for fitting
of separate univariate point-process models to the components of
the SEMPP. The degree of conditional independence depends on
how much history is allowed in process (e.g., 10, 20, 50).

Both approaches perform maximum likelihood estimation
using Newton’s method. One can recover the conventional
approach of fitting separate GLMs to the components of the
discrete-time SEMPP data by assuming that certain terms in
the Hessian of the exact discrete-time likelihood are o(�). The
Hessian of the exact discrete-time likelihood [after substitut-
ing Supplemental Material 2 Equation (S30) in (S28)] involves
the multinomial covariance matrix, the entries of which are of
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FIGURE 2 | New raster plots of non-simultaneous (“10” and “01,”

Columns 1 and 2) and simultaneous (“11,” Column 3) spiking events for

the neuron pair in Figure 1. Each column corresponds to one of the
components of �N∗. (A) Stimulus, (B) 17 trials of training data, (C) 33 trials

of test data. The new raster plots of the three components show clearly the
effects of the stimulus on non-simultaneous and simultaneous spiking
activity. The �N∗

3,i component of �N∗ shows that the joint spiking activity of
the two neurons in response to the stimulus is pronounced.

the form λ∗
m�δm,m′ − λ∗

m� · λ∗
m′�, where δm,m′ = 1, if m = m′

and 0 otherwise, m, m′ = 1, . . . , M − 1. If we assume that the
λ∗

m� · λ∗
m′� component is o(�), the Hessian of the mGLM

becomes block-diagonal. Then, each block corresponds to the
Hessian matrix for the parameters of one of the components of the
SEMPP. The block-diagonal structure of the Hessian implies that
the parameters for each component can be estimated separately,
as conventional approaches do.

This approximate equivalence between the multinomial GLM
and multiple separate univariate Poisson GLMs extends the
equivalence developed in Truccolo et al. (2005) between univari-
ate Poisson and Bernoulli GLMs.

As we’ll see below, conventional approaches are simpler and
typically faster than the mGLM, due to their parallel nature.
However, they require the CIF of the ground process to be uni-
formly small. This is an assumption that may be plausible in
some cases but is hard to justify for all data from neurophysiology
experiments, particularly those that use explicit stimuli such as
the data from the whisking experiment (Temereanca et al., 2008),
a small subset of which we analyze below.

An alternate SEMPP model and algorithm
Kass et al. fit separate GLMs to each component of the discrete-
time representation of N(t). Then, they quantify the amount
of excess simultaneous events that is observed beyond what is
expected under independence (Kass et al., 2011). The mGLM
algorithm results in a time-varying assessment of dependence,
conditioned on history. In the case of Kass et al., the depen-
dence structure is summarized using several scalar statistics. In
that sense, the mGLM algorithm results in a finer characterization
of the dependence structure of the components of the SEMPP.

In the case of a bivariate SEMPP, this dependence structure is
fully-summarized by the covariance between its components. The
mGLM algorithm gives a time-varying estimate of this covariance
as function of the relevant covariates, as well as history.

RESULTS
STIMULUS-INDUCED INCREASES IN JOINT FIRING
To select the optimal model order of our model (Equation 12),
we considered values for J, K1, and K2 ranging from 2 to 50 ms, in
1 ms increments. We used the results of preliminary GLM anal-
yses on each neuron separately to reduce the dimension of the
search space. The optimal orders obtained were J = 5, K1 = 37,
and K2 = 14.

We found that reducing J to a value as low as J = 2 did not
affect the goodness-of-fit, as measured by the number of points
outside of the 95% confidence bounds in the KS plots. Therefore,
the results we report here are for J = 2, K1 = 37, and K2 = 14.

The KS plots show that the model fits both the training
(Figure 3A) and test data (Figure 3B) well. The good KS per-
formance on each of the components of �N∗ demonstrates the
model’s accurate description of the joint process. The perfor-
mance on the test data demonstrates the strong predictive power
of the model.

The analysis indicates that there is a high propensity for simul-
taneous firing due to the stimulus. This is reflected by the stimulus
modulation of the simultaneous-spiking event (“11”) (Figure 4A,
Column 2), which is defined by

sm11[i] = exp

⎧⎨
⎩

J − 1∑
j = 0

β
(0)
3,j si − j

⎫⎬
⎭ (13)
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FIGURE 3 | Goodness-of-fit assessment by KS plots based on the

time-rescaling theorem. (A) Time-rescaling performance on the training
data. (B) Time-rescaling performance on the test data. In both cases, the
parallel red lines correspond to the 95% confidence bounds. The KS plots
show that the model fits both the training and test data well. The good KS
performance on each of the components of �N∗ demonstrates the model’s
accurate description of the joint process. The performance on the test data
demonstrates the strong predictive power of the model.

This is a unitless quantity which represents, at a ms time scale,
the amount by which the stimulus increases the probability of a
simultaneous event. Similarly, we can define the quantities

sm01[i] = exp

⎧⎨
⎩

J − 1∑
j = 0

β
(0)
2,j si − j

⎫⎬
⎭ (14)

and

sm10[i] = exp

⎧⎨
⎩

J − 1∑
j = 0

β
(0)
1,j si − j

⎫⎬
⎭ , (15)

which represent the stimulus modulation of the “01” and “10”
events, respectively. As Figure 4A, Column 1 suggests, there is also
a modulation of the spiking activity in response to the stimulus
for the non-simultaneous events (“10” and “01”). However, the
maximum stimulus effect for the simultaneous spiking (≈1200)
is one order of magnitude stronger than the maximum effect for
the non-simultaneous spiking (≈90).

From our analysis, we can compute a time-varying estimate of
the CIFs for each of the 17 trials used for training, and hence of
the covariance between the neurons for each of these trials. For
a bivariate binary process, the covariance fully summarizes the
dependence between its components. For visualization purposes,
we average the CIF estimates across trials and use these averages
to obtain a trial-averaged covariance estimate. Using the trial-
averaged covariance estimate, as well as the trial-averaged CIFs,
we compute a trial-averaged correlation coefficient estimate as
follows:

FIGURE 4 | Stimulus modulation of non-simultaneous (“10” and “01”)

and simultaneous (“11”) events, over a single stimulus period. The
stimulus modulation of an event is the amount by which the stimulus
increases the probability of that event. (A) Left: Stimulus modulation of the
non-simultaneous events,

(
exp

{∑J − 1
j = 0 β

(0)

m,j si − j

}
, m = 1, 2

)
. Right:

Stimulus modulation of the simultaneous event,
(
exp

{∑J − 1
j = 0 β

(0)

3,j si − j

})
.

(B) Stimulus over a single period. The figure shows that the maximum
amount by which the stimulus increases the probability of joint spiking is
one order of magnitude greater than that by which the stimulus increases
the probability of non-simultaneous spiking. Thus, simultaneous spiking can
be attributed for the most part to the administration of the stimulus.

ρ[i] = λ∗
3[i|Hi]� − λ1[i|Hi]� · λ2[i|Hi]�√

λ1[i|Hi]�(1 − λ1[i|Hi]�)λ2[i|Hi]�(1 − λ2[i|Hi]�)
.

(16)

Since the stimulus is periodic in the interval between 500 and
2500 ms (with period 125 ms), we average our estimate of the
across-trial correlation coefficient over the 16 stimulus cycles. The
result is displayed in Figure 5A. The figure demonstrates that the
stimulus changes the correlation structure, hence the dependence,
between the neurons in the pair at the ms time scale. In particu-
lar, changes in the correlation coefficient mirror changes in the
stimulus. For this pair, the rising cycle of the stimulus increases
the correlation beyond baseline and then decreases it, while the
falling cycle makes the neurons uncorrelated, before returning to
baseline.

Despite the strong stimulus modulation of simultaneous fir-
ing, there is a smaller number of simultaneous occurrences than
non-simultaneous occurrences (Figure 2). The intrinsic dynam-
ics of Neuron 1 and Neuron 2 (Figure S8C, Columns 2 and 3)
limit their high propensity to fire simultaneously. Indeed, in these
supplemental figures (available in Supplemental Material 3 on
the Frontiers website), the first few coefficients corresponding
to the effect of Neurons 1 and 2 on the probability of simul-
taneous firing are negative for both neurons. This means that
if both neurons have just fired, their probability of simultane-
ous firing within the next 1–3 ms decreases significantly. On the
other hand, for non-simultaneous events, only one of the set of
first few coefficients mentioned above is negative. This explains
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FIGURE 5 | Time-varying assessment of the correlation between the

pair of neurons in Figure 1. (A) Estimate of the correlation coefficient, (B)

stimulus over a single period. The figure demonstrates that the stimulus
changes the correlation structure, hence the dependence, between the
neurons in the pair at the ms time scale. For this pair, the rising cycle of the
stimulus increases the correlation beyond baseline and then decreases it,
while the falling cycle makes the uncorrelated, before returning to baseline.

why we observe a greater number of non-simultaneous than
simultaneous occurrences.

Although some of the 95% confidence intervals for the indi-
vidual parameters (Figure S8) overlap with zero, these small
coefficients contribute significantly to the descriptive (Figure 3A)
and predictive (Figure 3B) power of the model. Results of analysis
of a different pair of neurons are in Figures S9–S14 (Supplemental
Material 3), which can be found on the Frontiers website.

SIMULATED NEURAL SPIKING DATA
We use the time-rescaling algorithm (Algorithm 3) to simulate
simultaneous spiking activity from three thalamic neurons in
response to periodic whisker deflections of velocity 50 mm/s. We
model the CIFs of the neurons as in Equation (12) to simulate 33
trials of the experiment described above. For these simulations,
we chose J = 2, K1 = 2, K2 = 2, and K3 = 2. Figure S15 shows
the standard raster plots of the simulated data. There is strong
modulation of the activity of each of the neurons by the stimu-
lus. Figure 6 shows the raster plots of each of the seven disjoint
components of �N∗. As the figure indicates, the parameters of
the model were chosen so that the stimulus strongly modulates
simultaneous occurrences from the pairs Neuron 1 and Neuron
2, Neuron 2 and Neuron 3, as well as simultaneous occurrences
from the triple.

COMPARING mGLM AND SEPARATE UNIVARIATE GLMs
We used the data from (Figure 1) to compare the mGLM algo-
rithm to the approximate algorithm which fits separate univariate
Bernoulli GLMs to each of the components of the disjoint repre-
sentation (Figure 2).

The mGLM, as well as algorithms for fitting univariate
Bernoulli GLM, can be implemented using Newton’s method.

Each Newton step corresponds to a high-structured linear sys-
tem, which is typically solved using the QR-decomposition. Our
experience with neural data sets shows that using linear conju-
gate gradient (CG) instead can significantly speed up computa-
tion (Komarek and Moor, 2005; Ba, 2011). This can be mainly
attributed to the sparse patterns of design matrices that arise
from neural data sets. Therefore, our comparisons use CG-based
implementations of the algorithms for fitting the mGLM and the
univariate Bernoulli GLM. The CG algorithm requires a tolerance
to which the linear system is solved, as well as a maximum num-
ber of iterations to perform. We set the tolerance to 10−10, and
the number of CG iterations to the maximum possible, which is
the dimension of the linear system. Each CG iteration is initialized
using the parameters of the previous Newton update. We use the
same values of J, K1, and K2 as in Data Analysis to fit the models.

Figure 7 plots the deviance of each of the algorithms as a func-
tion of time elapsed from the beginning of the algorithm to the
end of a Newton iteration. For GLMs, the deviance generalizes
the idea of mean-squared error for linear models: minimizing the
deviance is equivalent to maximizing the likelihood. The algo-
rithms which fits separate GLMs is parallel in nature. Therefore,
to compute the time elapsed until the end of the kth Newton itera-
tion, we use the maximum (across all separate components) of the
time elapsed until the end of each component’s kth iteration. The
figure shows that the mGLM algorithm achieves a smaller value of
the deviance (larger value of the likelihood), but is slower to con-
verge. That is, the mGLM required ≈5 s to reach the value of the
deviance that the algorithm which fits separate GLMs converged
to in ≈2 s.

DISCUSSION
mGLM: A VERSATILE PARADIGM FOR ENCODING ANALYSES OF
ENSEMBLE NEURAL ACTIVITY
We have presented a new algorithmic framework for the analysis
of ensemble neural spiking activity based on the joint probability
density of a MPP with simultaneous events. We have developed
an equivalent MkPP representation of this joint density which,
together with the previously-described continuous and discrete-
time representations (Solo, 2007), provide a principled way to
conduct model-based data analyses and simulation studies of
ensemble neural activity that offer several advantages over current
analyses approaches.

Likelihood-based analyses
The discrete-time SEMPP representation provides an effi-
cient means of performing likelihood analyses of multiple
simultaneously-recorded neurons using an mGLM algorithm
for model fitting (Fahrmeir and Tutz, 2001) and the disjoint
representation (Equation 10) (Solo, 2007) allows us to assess
goodness-of-fit using the time-rescaling theorem. The mGLM
algorithm is a multivariate extension of the GLM algorithm used
to fit univariate point process models to single neural spike
trains (Paninski, 2004; Truccolo et al., 2005). Unlike existing
approaches to fitting a GLM to SEMPP data, the mGLM jointly
estimates the CIFs of the component of the SEMPP, and achieves
a larger value of the likelihood (Figure 7). The algorithm which
fits separate components achieves coefficient estimates which are
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FIGURE 6 | New raster plots of non-simultaneous (“100,” “010,” and

“001”) and simultaneous (“110,” “011,” “101,” and “111”) spiking events

for the three simulated neurons of in Figure S15. (A) Stimulus (same as in
Figures 1A, 2A). (B) Non-simultaneous events, from left to right, “100,”
“010,” and “001.” (C) Simultaneous events from pairs of neurons, from left to
right, “110,” “011,” and “101.” (D) Simultaneous event from the three neurons
(“111”). The new raster plots of the three components show clearly the

effects of the stimulus on non-simultaneous and simultaneous spiking. The
�N∗

4,i and �N∗
5,i components of �N∗ show that the joint spiking activity of

the pairs consisting of Neurons 1 and 2 on the one hand, and Neurons 2 and
3 on the other hand is pronounced. The �N∗

7,i component of �N∗ shows that
the joint spiking activity of the three neurons is also pronounced. The
information in these raster plots about the joint spiking activity of neurons
could not be gathered from Figure S15.

very close to the ones of the mGLM algorithm, for the non-
simultaneous components (“10” and “01”), but less so for the
simultaneous component (“11” event) (data not shown). Our
intuition tells us that the coefficients of the simultaneous “11”
event are underestimated due to few number of events (Figure 2),
coupled with the fact that the separate fitting procedure, unlike
the mGLM algorithm, does not use second-order correlation
information between its components.

Assessing goodness-of-fit
The goodness-of-fit analysis (Figure 3) uses the MPP time-
rescaling theorem (Daley and Vere-Jones, 2003; Vere-Jones and
Schoenberg, 2004) and is a multivariate extension of the one-
dimensional time-rescaling theorem used to assess goodness-of-
fit for univariate point process models (Brown et al., 2002). Once
adequate goodness-of-fit is established, our inference framework
is likelihood-based. Therefore, it uses the Fisher information
to compute parameter standard errors and confidence intervals
(Figures S8, S14), and established procedures such as AIC and
BIC to perform model selection. Our approach also carries all the
optimality properties of the likelihood framework.

Analyzing an arbitrary number of neurons
Our paradigm applies to multiple neurons and is therefore more
general than the common bivariate histogram methods (Gerstein
and Perkel, 1969; Brillinger et al., 1976; Brody, 1999). It also

obviates the stationarity assumption required by histogram meth-
ods (Gerstein and Perkel, 1969; Brillinger et al., 1976; Brody,
1999). Unlike the Jacod likelihood (Chornoboy et al., 1988; Karr,
1991; Okatan et al., 2005), the SEMPP model allows simultaneous
events at an arbitrarily small time-scale. Although we only applied
our techniques to simultaneous recordings from pairs of neurons,
our approach characterizes in each small time interval of length
� the probability of all 2C−1 patterns of spiking activity from C
neurons. For this reason, our approach offers a key improvement
over pattern analysis algorithms (Grün et al., 2002; Gütig et al.,
2002; Pipa and Grün, 2002; Grün, 2009) because it analyzes in a
likelihood framework all of the patterns defined by the recording
resolution �.

Simulating ensemble neural activity
The MkPP representation also gave a new thinning and a
new time-rescaling algorithm for simulating simultaneous neu-
ral spiking activity in continuous time (Figures 6, S15). This
makes it possible to use the same modeling approach for data
analysis and for simulation studies. The MkPP representation fol-
lows from the observation that, in any small time interval �,
the SEMPP is a multinomial model with 2C possible outcomes.
A multinomial model with 2C outcomes can be written as the
product of a binomial probability model and a conditional multi-
nomial probability model with 2C−1 outcomes. The binomial
probability model defines the ground process and the conditional
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FIGURE 7 | Fitting mGLM model as opposed to Separate Univariate

GLMs. For the example in Data Analysis, the mGLM algorithm achieves a
smaller value of the deviance (larger value of the likelihood), but is slower
than the algorithm which fits separate univariate GLMs. Comparison of the
coefficient estimates would reveal that the latter algorithm underestimates
the coefficients corresponding to the simultaneous “11” event.

multinomial process defines the marked process. The simu-
lation algorithms from the MkPP representation (Algorithms
2 and 3) are simpler than one based on the time-rescaling
theorem for MPPs (Algorithm 1), which uses the disjoint
representation.

JOINT ENCODING OF WHISKER MOTION BY TWO PAIRS OF THALAMIC
NEURONS
Our analysis of the joint spiking activity of the pair of thala-
mic neurons in response to whisker stimulation reveals the types
of new insights that could be learned from the SEMPP model.
It suggests a new raster plot to assess simultaneity (Figure 2,
Column 3). The key finding of our model analysis that is not
apparent from this new raster plot is that the stimulus modulation
of the joint spiking activity is more than one order of magni-
tude greater than its modulation of either of the unpaired spiking
activity (Figure 4). These estimates of the stimulus modulation
are model-based spike-triggered averages (Simoncelli et al., 2004).
Our analysis also reveals that changes in the correlation struc-
ture, and hence the dependence structure, between the neurons
in a pair mirror changes in the stimulus (Figures 5, S13). These
brief analyses suggest that our approach could offer new insights
into the importance of joint spiking activity for understanding
representations of stimuli in ensemble neural spiking activity.

To our knowledge, these examples constitute the first practical
demonstrations of the versatility of the SEMPP model for analysis
and simulation of jointly-recorded neural spiking activity.

FUTURE DIRECTIONS AND IMPLICATIONS OF THE mGLM MODEL
The new SEMPP model and analysis suggests several important
future extensions of this work.

Implications of mGLM for joint encoding of whisker motion by pairs
of thalamic neurons
The pair of neurons analyzed here, as well as the pair in
Figures S9–S14, are from a set of 17 pairs of thalamic neurons
simultaneously recorded during stimulation by three different
whisker velocities (Temereanca et al., 2008). In a future report,
we will present our findings on the analysis of the complete data
set using the SEMPP model fit with the mGLM algorithm.

Applications of mGLM to assessment of functional connectivity
By substituting the SEMPP likelihood for the Jacod likelihood,
our methods suggest a new approach to analyzing functional con-
nectivity in neuronal ensembles (Okatan et al., 2005), that may
give a more accurate assessment of the extent to which it is mod-
ulated by the intrinsic dynamics of the neurons and/or external
stimuli (Truccolo et al., 2009).

Decoding analyses of sensory representations and prediction of
whisker motion
Thalamic neurons use their firing patterns to form a represen-
tation of the sensory information conveyed by whisker deflec-
tions (Temereanca et al., 2008). We constructed a highly accurate
model of this sensory representation by applying the mGLM
to simultaneous recordings from pairs of thalamic neurons in
response to periodic whisker deflections. Encoding models fit
using mGLM are arguabyly superior to existing approaches
because of their ability to capture the effect of stimuli (e.g.,
whisker motion) on the simultaneous-spiking activity of neurons.
As witnessed by our analyses of the thalamic data, this effect can
be quite substantial. In such scenarios, when the effect of sen-
sory stimuli on simultaneous spiking is pronounced, using the
mGLM as an encoding model can result in superior decoding per-
formance. For the thalamic data analyzed here, we believe that
the ability to predict whisker motion using an encoding model
fit using mGLM, and a carefully-designed decoding algorithm
using the SEMPP likelihood (Ba, 2011), will be superior com-
pared to the case when one uses the convential GLM (Paninski,
2004; Truccolo et al., 2005) for encoding and the Jacod likeli-
hood (Eden et al., 2004) for decoding. Indeed, our SEMPP model
also suggests a new approach to designing point-process filters
for ensemble neural spike train decoding and adaptive filtering
studies of neural plasticity (Brown et al., 1998, 2001). These new
algorithms based on the disjoint representation make explicit use
of simultaneous events. The computational complexity of fitting
the SEMPP model increases exponentially with the number of
neurons. Therefore, the design of more efficient model-fitting
algorithms must be an important focus of future work.

Simultaneous spiking at smaller time scales
The impact of using smaller time scales (�), rather than the
conventional 1 ms time scale, is an important question that
we hope to address in future work. The mGLM and conven-
tioal GLM (Paninski, 2004; Truccolo et al., 2005) are based
on discrete-time approximations of the continuous-time likeli-
hood of an SEMPP and univariate point-process, respectively.
In recent work (Citi et al., 2013), we have introduced a novel
discrete-time approximation to the continuous-time likelihood of
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a point-process that is significantly more accurate than that used
in the conventional GLM (Paninski, 2004; Truccolo et al., 2005).
We have demonstrated that the approximation used in the con-
ventional GLM can require time scales that are up to one order
of magnituded smaller (10 μ s as opposed to 1 ms) to achieve
the same goodness-of-fit as our new approximation (Citi et al.,
2013). The improvement comes from explicitly accounting for the
refractory period of neurons in the new approximation. It is not
hard to extend this formulation to the mGLM. We believe this
formulation provides a better ground for assessing the impact of
smaller time scales on the mGLM analyses.
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