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Abstract

Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred
populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits
such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus,
phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern
ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent
(IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G.C (p.G755R) mutation at the PLB1
gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance
(P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367
controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1
with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.261026). Finally, we performed
deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive
dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for
SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full
spectrum of genetic risk in the PLB1 genetic locus are warranted.
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Introduction

Rheumatoid arthritis (RA [MIM 180300]) is a chronic

autoimmune disease with destruction of synovial joints affecting

up to 1% of the population worldwide [1]. RA is a heritable

disease, and recent genome-wide association studies (GWAS) and

related approaches have identified more than 50 RA susceptibility

loci [2–4]. However, as is true for most complex traits, a

substantial proportion of genetic heritability of RA remains

unexplained [5,6]. Simulated data based on GWAS [6] and

empirical data from direct sequencing [7] indicate that a mixture

of common, low-frequency and rare variants contribute to risk of

RA. Indeed, there are now examples of several gene loci that

harbor multiple RA risk alleles (from common to rare) [7]. These

data suggest that other gene loci also contain multiple RA risk

alleles, and integrating deep-sequencing data with dense genotyp-

ing data in large patient collections may be a useful strategy to

uncover new RA risk loci.

Whole-exome sequencing and identity-by-descent (IBD) map-

ping of ancestral haplotypes is emerging as a powerful approach to

identify rare causal mutations in families with highly penetrant

forms of disease [8,9]. In some instances, the same genes that

harbor rare mutations that cause disease in families also harbor

other risk variants that influence risk of the same or related

diseases in outbred populations [10]. Jordan et al. identified causal

mutations in CARD14 through the exome sequencing study of a

pedigree affected with a Mendelian form of psoriasis [11], and

they also reported both rare and common risk variants of CARD14

in the general psoriasis case-control cohort [12]. Furthermore, a

recent GWAS meta-analysis validated CARD14 as a psoriasis risk

locus [13]. Al-Mayouf et al. identified a loss-of-function variant in

DNASE1L3 responsible for a familial form of systemic lupus

erythematosus (SLE) [14]. DNASE1L3 was also identified as a gene

in an SLE risk locus from GWAS [15]. Contributions of the

variants in the maturity-onset diabetes of the young (MODY)

genes on type 2 diabetes susceptibility, or the familial hypercho-

lesterolemia (FH) genes on cardiovascular diseases are also well

known [16,17].

There are few previous reports of highly penetrant forms of

familial RA [18]. Here, we report a consanguineous pedigree with

a Mendelian form of RA. Through the integration of IBD

mapping and whole-exome sequencing, we identify a rare

mutation associated with risk of RA in the phospholipase B1

(PLB1) gene at chromosome 2p23. Our study also demonstrates

significant contributions of coding and non-coding variants in

PLB1 on the risk of RA in an outbred population of European

ancestry.

Results

The consanguineous pedigree with a Mendelian form of
RA

We report a newly identified, 4-generation, consanguineous

pedigree from the Middle East in which 8 of 49 individuals are

affected with RA (Figure 1, Figure 2, and Table S1). No other

family members were found. Each affected case has symmetrical

polyarthritis and is positive for anti-citrullinated protein antibodies

(ACPA), a key component of the RA classification criteria related

Whole-Exome Sequencing for Familial RA
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to higher disease severity [19]. The proportion of affected cases in

the pedigree members (16.3%) was much higher than the

population prevalence of RA in the Middle East (,1%). The

average age of onset (35.4 years) was also younger compared to

those observed in the general European or Middle East

populations [1,20]. Together, these observations suggested con-

tribution of pedigree-specific risk factors of RA not explained by

known genetic or environmental factors, including HLA-DRB1

shared epitope (SE) alleles (odds ratio [OR] = 2.47 in the Syrian

population [20]). Among the living unaffected subjects of the

pedigree, one subject was strongly positive for ACPA ($60 units;

Table S1). Considering the high specificity of ACPA to RA

(.95%) and that ACPA can be found in RA case sera over 10

years prior to the diagnosis of the disease [19,21], we classified this

one ACPA-positive unaffected subject into the ‘‘affected’’ case

group. (We note that results from the IBD mapping and the

validation genotyping did not change substantially when we

excluded this ACPA-positive unaffected subject from the analysis.)

Whole-genome SNP genotyping and IBD mapping
We anchored our overall study design (Figure 1) based on a

model in which a rare mutation was responsible for RA risk in the

consanguineous family. Based on the segregation of RA (Figure 2),

we initially posited an autosomal recessive mode of inheritance

(Figure 1A). Among the 24 family members available to study (5

ACPA-positive RA cases, 1 ACPA-positive unaffected subject, and

18 ACPA-negative unaffected subjects), we used GWAS data to

conduct homozygosity mapping. However, we did not observe any

IBD regions shared among all 5 ACPA-positive RA cases and 1

ACPA-positive unaffected subject. This result suggested that a

different genetic model (e.g., autosomal dominant mode with

incomplete penetrance) may be responsible for RA risk in this

family.

To search for a genetic mutation that may confer risk of RA

under a different mode of inheritance, we developed and applied a

newly investigated non-parametric linkage analysis (Figure 3A).

This method, which is based on the ‘‘SNP streak’’ approach to

assess homogeneity of the adjacent SNP genotypes on the ancestral

haplotype [22,23], is applicable to any type of inheritance mode

without prior estimation of mutation penetrance. We further

extended the method to utilize genotype information from

unaffected pedigree members as well as affected cases. The

principle of our method is that affected cases should carry at least

one copy of the mutation which resides on a single ancestral

haplotype in IBD, but never homozygous for the non-mutated

allele [22,23]. Therefore, genetic markers adjacent to the causal

mutation lose homozygous genotypes for at least one of the alleles

(Figure 3A). We used genome-wide SNP data to search the

regional IBD stretches that lose one or both homozygous

genotypes in affected cases, which serve as candidate regions

harboring causal rare mutations. Our method identified 14 IBD

stretches spanning 115.9 Mbp (3.7% of human genome) shared in

at least one copy of the haplotype among 5 RA cases and 1 ACPA-

positive unaffected subject (Figure 3B left panel and Table S2).

To further narrow the number of critical regions as well as the

size of each region, we applied our IBD mapping method to use

GWAS data in ACPA-negative unaffected subjects to test the

presence of each of the 14 IBD stretches. We hypothesized that the

Figure 1. Description of the study design. Our study consists of analysis on three sources of data: (1) rare risk variant detection in the
consanguineous pedigree with Mendelian form of RA (A–C), (2) regional association analysis using RA GWAS meta-analysis of European populations
(D), and (3) target deep exon sequencing of the European RA case-control cohort (E). (A) We conducted IBD mapping of the pedigree using genome-
wide SNP genotype data. (B) Whole-exome sequencing was performed for the 4 affected RA cases of the pedigree. (C) By integrating the results of
IBD mapping and whole-exome sequencing, and subsequently conducting the validation assay, we identified a non-synonymous mutation of PLB1
associated with RA segregation. (D) We evaluated the regional association of the PLB1 locus using RA GWAS meta-analysis including 8,875 RA cases
and 29,367 controls. (E) Deep exon sequencing of PLB1 and gene-based rare variant test was conducted for 1,088 RA cases and 1,088 controls.
doi:10.1371/journal.pone.0087645.g001

Whole-Exome Sequencing for Familial RA
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IBD region containing a causal mutation in this family would be

shared by a smaller number of the ACPA-negative unaffected

subjects compared to the other IBD regions not containing the

mutation. We confined the IBD regions by consecutively

restricting the number of the ACPA-negative unaffected subjects

harboring the IBD region (see detailed process in Table S2). By

this approach, we narrowed the mapped IBD regions into a single

stretch with 2.4 Mb length (0.08% of the genome) at 2p23 (from

27.2–29.5 Mb), which was shared among 5 RA cases and 1

ACPA-positive unaffected subject but #6 of 18 ACPA-negative

unaffected subjects (Figure 3B right panel). We note that the

probability to observe at least one IBD region in #6 of 18

unaffected subjects was not significant in this pedigree (permuta-

tion P = 0.38).

Variant filtering in the whole-exome sequencing and
overlap with the IBD stretches

To identify the causal mutation in the 2.4 Mb region at 2p23

(which contains 56 protein-coding genes), we performed whole

exome sequencing in 4 of the ACPA-positive RA cases (Figure 1B).

We did not sequence the rest of one ACPA-positive RA case, since

genomic DNA of this subject was not available at the time of

sequencing. After whole-exome sequencing, read alignment, and

variant calling, we isolated 65,524 variants genome-wide, with

average depth of 6290.1 and Ti/Tv ratio of 2.74. On average,

94.0% of the targeted regions (,45 Mbp) yielded $10X coverage.

Genotype concordance rates of the identified variants commonly

included in the whole-genome SNP genotyping results were as

high as 99.56% (range = 99.47% to 99.61% for each sample).

Within the 2.4 Mb critical region on 2p23, we identified 168

variants with 99.4% coverage of coding exons at $10X coverage.

We did not find any copy number variant (CNV) shared among

RA cases in this region.

We applied stringent filtering criteria to select for rare

pathogenic variants present in this family but not in any public

database with non-reference allele frequency $0.01 (dbSNP v132,

1000 Genomes Project Phase I data [24], and NHLBI Grand

Opportunity Exome Sequencing Project [ESP] 5400 [25]). Of the

168 protein-coding variants within the critical region on 2p23,

only one variant was identified by our filtering approach, a

missense mutation in the phospholipase B1 (PLB1) gene (Figure 3B

right panel). For completeness, we also evaluated the other 13 IBD

stretches shared in at least one copy among all 5 RA cases and 1

ACPA-positive unaffected subject, and found one additional

missense single-nucleotide variant (SNV) and 1 insertion-deletion

(Indel) included in the IBD stretches (Table 1). While we

considered all 3 variants to be possibly causal in this family, we

considered the one missense mutation in the IBD stretch at 2p23

to be the most promising candidate causal mutation. A full list of

the filtered variants from whole exome sequencing is provided in

Table S3.

RA risk mutation of PLB1 in the consanguineous pedigree
To technically confirm the variants identified by whole exome-

sequencing, and also to evaluate the segregation pattern of the

variants in this family (with an emphasis on the 2p23 variant), we

genotyped each of the 3 candidate variants in all available 22

family members (Figure 1C). As expected based on the initial

Figure 2. The consanguineous pedigree with Mendelian form of RA. The consanguineous pedigree consists of 49 individuals from 4
generations. The pedigree included 8 individuals affected with RA (colored in black) and 1 ACPA-positive unaffected subject subject (colored in gray).
Four RA cases for whom whole-exome sequencing was conducted were indicated with asterisks. Genotypes of the identified PLB1 p.G755R mutation
was indicated by the combination of ‘‘+’’ (mutated allele) and ‘‘-’’ (reference allele).
doi:10.1371/journal.pone.0087645.g002

Whole-Exome Sequencing for Familial RA
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GWAS data and IBD mapping, we found that only the PLB1

missense mutation co-segregated with RA in the pedigree without

Mendelian error. The mutation was observed in all the 5 ACPA-

positive RA cases and 1 ACPA-positive unaffected subject while

only 6 of 16 ACPA-negative unaffected subjects inherited the

PLB1 mutation (P = 0.009; Figure 2 and Table 1). None of the

family members was homozygous for this mutation. These

observations are consistent with a dominant inheritance mode

with a penetrance of 0.50.

PLB1 consists of 58 exons (NM_153021), and the mutation was

identified at exon 33 (c.2263G.C [p.G755R]; Figure 4). This

mutation was highly conserved (GERP score [26] = 4.02), and

Figure 3. IBD mapping of the pedigree with RA. (A) We investigated the novel non-parametric linkage analysis method which enabled the IBD
mapping for the disease with any types of inheritance modes. Affected cases should carry one or two copy of the mutation which resides on a single
ancestral haplotype in IBD, thus, SNPs adjacent to the causal mutation lose homozygous genotypes for at least one of the alleles. Our method
searched the regional IBD stretches where SNP genotypes of the affected cases followed this rule, and then imputed presence or absence of the
ancestral haplotype in the other unaffected subjects separately. (B) Results of the IBD mapping in the consanguineous pedigree with RA. Mapped IBD
stretches are indicated as the bands colored in red. As the pedigree members used for the IBD mapping increased (left panel; 5 RA cases and 1 ACPA-
positive unaffected subject, right panel; all available subjects), IBD stretches narrowed down (see detailed process in Table S2). Candidate causal SNVs
and Indels obtained after whole-genome exome sequencing were indicated as the triangles colored in blue and orange, respectively. The variants
included and not included in the IBD stretches of each stages are indicated with filled and non-filled colors. Finally, only one SNV at 2p23 was
included in the defined IBD stretch (right panel).
doi:10.1371/journal.pone.0087645.g003

Whole-Exome Sequencing for Familial RA
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predicted to be ‘‘tolerated’’ by SIFT [27] but ‘‘probably

damaging’’ by PolyPhen-2.0 [28]. This mutation was not

registered at any of the databases (dbSNP v132, 1000 Genomes

Phase I [24], or ESP5400 [25]), and not present in the result of

deep exon sequencing of PLB1 in the European RA case-control

cohort (see below).

GWAS meta-analysis of the PLB1 locus and RA risk of non-
coding variants

To provide additional support for the role of PLB1 in risk of RA,

we evaluated common (minor allele frequency [MAF] .5%) and

low-frequency variants (MAF 1–5%) near the PLB1 gene locus in

an outbred population of European ancestry (Figure 1D). We used

a GWAS of 8,875 seropositive RA cases and 29,367 controls from

11 studies (Table S4). Five of the GWAS datasets were previously

unpublished (3,427 cases and 6,837 controls from ReAct, Dutch,

anti-TNF response to therapy collection [ACR-REF], COR-

RONA, and Vanderbilt) [29–33], which increased the power of

our published dataset (Figure 4 and Table 2) [2,4,7]. We observed

no evidence of systematic bias genome-wide (inflation factor

lGC = 1.034; Table S4). We applied genotype imputation using

the 1000 Genome Project reference panel [24], and assessed the

PLB1 locus with a set of densely fine-mapped SNPs (919 SNPs for

650 kbp of PLB1; average SNP interval = 0.27 kbp). We consid-

ered a value of P,9.061024 as statistically significant based on

permutation analysis of all SNPs in the region.

The most strongly-associated signal was observed at a low-

frequency intronic SNP in PLB1, rs116018341 (MAF = 0.041,

OR = 1.18, P = 5.161024; Figure 4B upper panel), which

surpassed our permutation-based threshold of significance. To

determine if additional variants also contributed to risk of RA, we

performed forward-type step-wise logistic regression analysis. We

found evidence for a second, independent association of a low-

frequency PLB1 intronic SNP, rs116541814 (MAF = 0.020,

OR = 1.34, P = 6.561024; Figure 4B lower panel). After condi-

tioning on these two variants, no significant regional association

was observed (P.0.01 for all remaining SNPs).

We built haplotypes containing these two SNPs to test a

combined genetic model. The common haplotype including either

of the risk alleles for these 2 SNPs demonstrated a significant

association with RA risk (MAF = 0.062, OR = 1.21,

P = 3.261026). These two intronic SNPs were not in linkage

disequilibrium (LD) with any of the protein-coding variants of

PLB1 (r2,0.3 for common variants [MAF $0.05] and r2,0.1 for

low-frequency or rare variants [MAF,0.05]), suggesting that

observed RA risk was primarily derived from non-coding variants

of PLB1.

In order to assess the functional contribution of the non-coding

variants, we evaluated overlap of the RA risk SNPs with

trimethylation of histone H3 at lysine 4 (H3K4me3) peak of

primary CD4+ regulatory T cells (Treg cells). The H3K4me3 mark

is particularly informative for cell-type specific overlap with trait-

associated variants, and RA risk variants showed significant

enrichment in Treg primary cells [34]. The RA risk SNP of

rs116018341 (and the SNPs in absolute LD with it; r2 = 1.00), was

within one of the H3K4me3 peaks of Treg primary cells

(P = 0.043), while the other risk SNP, rs116541814, was not

(Figure 4C). In a search of public eQTL databases (eQTL Browser

and Blood eQTL Browser [35], see URL), we found no evidence

that either SNP (or SNPs in LD with them, r2.0.8) influenced

PLB1 gene expression.

Deep exon sequencing of PLB1 and RA risk of protein-
coding variants

Finally, we sequenced the coding exons of PLB1 to search for

independent rare variants that may contribute to risk of RA in an

outbred population of European ancestry (Figure 1E). Deep exon

sequencing was performed in 1,088 RA cases and 1,088

genetically-matched controls from the European populations, as

a part of the Pharmacogenomics Research Network (PGRN)

sequencing project [Diogo D. et al. Manuscript in preparation].

Overall, 96% of the targeted regions were sequenced with $20X

coverage. We obtained 102 coding variants (i.e. variants annotated

as synonymous, missense, or nonsense) in PLB1, of which 92 had

MAF,0.01 in controls.

To test for significance, we applied gene-based tests (the burden

test, variable threshold test [36], frequency-weighted test [37], C-

alpha test [38], and sequence kernel association test [SKAT] [39])

for all rare coding variants with MAF,0.01 (Table 3 and Table

S5). We observed suggestive enrichment of rare variants in the

protein-coding region of PLB1 (P = 0.049 for C-alpha test [38],

and P = 0.055 for SKAT [39]). Both of these gene-based tests

allow for opposite directional effects of the variants (two-sided test).

In contrast, the gene-based tests which assume same directionality

of effects of the variants (one-sided test) did not show significant

results (P.0.30 for the burden test, variable threshold test [36],

and frequency-weighted test [37]). Association signals in two-sided

tests were more apparent for synonymous variants (n = 30,

P,0.022), but not significant for non-synonymous variants

(n = 62, P.0.30).

Discussion

Three lines of evidence suggest that coding and non-coding

alleles at PLB1 contribute to risk of RA. First, IBD mapping and

Table 1. Results of the validation assay for candidate variants derived from exome sequencing.

Allele Possession of the variant in family members

Genea Chr Position (bp)b Ref/Alt Amino acid change
5 RA cases and 1 ACPA+
unaffected subject

16 ACPA- unaffected
subjects Pc

PLB1 2 28,816,563 G/C G755R 6/6 6/16 0.0090

ANKRD58 X 118,893,513 G/A G295S 6/6 9/16 0.087

AMOT X 112,022,297 C/CAGG P1028PL 6/6 14/16 0.74

aGenes of which variants were shared among 5 RA cases and 1 ACPA+ unaffected subject are indicated.
bBased on NCBI Build 37/hg19.
cMid-P value of Fisher’s exact test for RA cases and unaffected subjects are indicated.
RA; rheumatoid arthritis, ACPA; anti-citrullinated protein antibodies.
doi:10.1371/journal.pone.0087645.t001
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Figure 4. Association of the PLB1 locus in RA GWAS meta-analysis. (A) Coding regions of PLB1 and p.G755R mutation identified in the
consanguineous RA pedigree. PLB1 consists of 58 exons (NM_153021), and p.G755R (c.2263G.C) mutation was located at exon 33 (the black
triangle). (B) Regional association of PLB1 in RA GWAS meta-analysis including 8,875 RA cases and 29,367 controls from the European populations.
Upper panel showed the results of nominal association, and the lower panel showed the results of conditional analysis with rs116018341, the top SNP
in the nominal associations. The red diamond-shaped dots represent P-values of the SNPs in the GWAS meta-analysis, and the intensity of the red
color in the dots represents the r2 value with the most significantly associated SNP. Stepwise logistic regression analysis demonstrated multiple
independent signals driven by non-coding variants. (C) H3K4me3 peak of Treg primary cells in the PLB1 locus. Non-coding RA risk SNP of rs116018341
overlapped with one of the H3K4me3 peaks as the SNP located in the most vicinity of the peak summit (a vertical dashed red line).
doi:10.1371/journal.pone.0087645.g004

Table 2. Results of the GWAS meta-analysis of European RA case-control cohorts in the PLB1 locus.

A1 Freq.

rsID Chr
Position
(bp)a A1/A2

RA cases
(n = 8,875)

Controls
(n = 29,367) OR (95%CI) P

rs116018341 2 28,848,761 A/C 0.045 0.041 1.18 (1.07–1.29) 5.161024

rs116541814b 2 28,877,974 A/G 0.022 0.020 1.34 (1.13–1.59) 6.561024

rs116018341-rs116541814 haplotypec 2 - AG or CA/CG 0.067 0.062 1.21 (1.12–1.32) 3.261026

aBased on NCBI Build 37/hg19.
bConditioned with rs116018341.
cAA risk haplotype was not observed in the imputation reference panel.
RA; rheumatoid arthritis, ACPA; anti-citrullinated protein antibodies.
doi:10.1371/journal.pone.0087645.t002
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whole-exome sequencing of a consanguineous Mendelian pedigree

from the Middle East identified a rare non-synonymous mutation

in PLB1 (p.G755R). The mutation co-segregated with RA in

dominant inheritance with incomplete penetrance but significant

relative risk (P = 0.009). Second, large-scale RA GWAS meta-

analysis in Europeans identified two independent non-coding

variants near PLB1, which constitute a common risk haplotype

associated with risk of RA (P = 3.261026). Third, targeted exon

sequencing of PLB1 in Europeans demonstrated suggestive

association of rare coding variants with risk of RA (P,0.05).

Together, contributions of rare, low-frequency, and common

alleles of PLB1 observed in inbred and outbred populations of

different ancestry provide supportive evidence that PLB1 is a RA

risk gene.

Identification of rare causal variants that contribute to complex

disease etiology is an important issue in human genetics. Given the

expected effect size of rare variants, extremely large sample sizes

are required to identify disease-associated rare variants in studies

of complex traits in outbred populations alone [40]. Alternatively,

assessment of rare causal mutations in pedigrees with Mendelian

forms of common disease, and validation of the identified gene in

the outbred patient populations, could be an efficient approach.

Our study provides support for this approach in RA, thereby

complementing findings from previous studies in other diseases

[10–17].

PLB1 is an enzyme that has both phospholipase A1 and A2

enzymatic activities. The PLB1 protein contains 3 GDSL-like

lipase (acylhydrolase) domains (Figure S1) [41,42]. The p.G755R

mutation identified in the consanguineous RA pedigree was

located within the second GDSL-like lipase domain (amino acid

positions 741 to 1015). GDSL-like lipase domain has essential

biological roles of PLB1 protein as lysophopholipase [42], and

localizations of the RA risk variant on it might imply their

functional impact on the enzymatic activity of PLB1.

The functional etiology of PLB1 in human disease pathogenesis

has not been well investigated. There exist a few reports suggesting

contribution of PLB1 and other phospholipase family genes on

human autoimmune disease. The PLB1 locus has suggestive

evidence as a type 1 diabetes risk locus (P,1026 for the SNP

located 70 kbp upstream of PLB1) [43]. Duan et al. reported that

expression of PLB1 is upregulated in peripheral blood mononu-

clear cells (PBMCs) of patients with ankylosing spondylitis (an

autoimmune disease that shares clinical features with RA)

compared to healthy controls [44]. Recently, whole-exome

sequencing analysis on a pedigree with a dominantly inherited

immunodeficiency and autoimmunity identified a causal mutation

in a gene related to PLB1, the phospholipase Cc2 (PLCG2) gene

[45]. Further studies assessing functional impacts of the PLB1

mutations on RA pathogenesis are required.

Beyond the novel finding of PLB1 as a candidate RA risk gene,

our study developed and applied novel statistical methodologies.

We developed a non-parametric linkage analysis method that

enables IBD mapping in a pedigree with any mode of inheritance.

Our method utilized genotype information of both affected and

unaffected subjects without requiring prior estimation of pene-

trance. Due to its simple nature, our method is applicable to

pedigrees with complex structure, in which classical parametric

linkage methods have difficulty in handling inheritance vectors.

While exome-sequencing has demonstrated success in pedigrees

with typical Mendelian inheritance and complete penetrance,

additional approaches, such as we describe, are required for more

complex patterns of disease segregation [8].

There are important limitations of our study. First, our search

for rare mutations was performed in a single pedigree and not

validated in other pedigrees. While we identified independent

PLB1 alleles associated with risk of RA in an outbred European

population using a large-scaled GWAS meta-analysis, it would not

directly support the risk of PLB1 p.G755R mutation on RA. As

additional families with familial forms of RA (or related conditions)

are identified, it will be important to apply similar unbiased

approaches to search for mutations in PLB1 or PLB1-like genes.

Second, no single genetic variant achieved a genome-wide level of

significance in the GWAS meta-analysis and targeted sequencing

in outbred populations. However, whether the same conservative

significance thresholds should be applied to our study design is a

matter of debate. While we found genetic evidence across the three

stages of our study, future genetic studies are required to confirm

that PLB1 alleles definitively contribute to risk of RA. Especially,

considering the recent studies reporting that large sample size

would be necessary for rare variants analysis in the complex

diseases [46], additional accumulation of the subjects in PLB1

target exon sequencing would be desirable. Finally, we did not

perform any functional studies of the variants we identified. Future

functional studies will be important to determine if these are gain-

of-function or loss-of-function alleles.

In conclusion, our study demonstrates significant contributions

of rare, low-frequency, and common alleles of PLB1 to risk of RA

by coordinately assessing a consanguineous pedigree with RA and

outbred RA cases-control cohorts. We also introduced novel

statistical methodologies to assess rare variants in complex

pedigrees with uncertain patterns of inheritance. Our study should

contribute to our understanding of the causal variants in the

pathogenesis of complex diseases.

Materials and Methods

Ethics statement
Our study was approved by the Institutional Review Board of

Brigham & Women’s Hospital and Tishreen Hospital. All the

enrolled subjects provided written informed consent for the

participation of the study. For the patients from Syria, written

informed consent was provided in Arabic and the study was

approved by the Syrian Ministry of Health. Blood samples were

collected according to protocols approved by local institutional

review boards.

Samples
We report a 4-generation, consanguineous pedigree in which 8

of 49 individuals are affected with RA (Figure 2 and Table S1).

The pedigree members were recruited by a board-certified

rheumatologist from Tishreen Hospital, Damascus, Syria. All

Table 3. Results of rare variant tests for PLB1 coding variants
in the European RA case-control cohort.

Association analysis

One-sided test Two-sided test

No. variantsa BURDEN VT FRQWGT CALPHA SKAT

92 0.33 0.64 0.60 0.049 0.055

aLow-frequency rare coding variant (MAF#0.01) obtained from deep
sequencing of 1,088 RA cases and 1,088 controls were selected.
RA; rheumatoid arthritis, ACPA; anti-citrullinated protein antibodies.
BURDEN; burden test, VT; variable threshold test, FRQWGT; frequency-weighted
test, CALPHA; C-alpha test, SKAT; sequence kernel association test.
doi:10.1371/journal.pone.0087645.t003
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RA cases fulfilled the revised criteria of the American Rheumatism

Association for RA [47]. ACPA titer was determined by by direct

assay using QUANTA LiteTM CCP3 IgG ELISA (INOVA

Diagnostics, San Diego, CA). In this study, we enrolled 24 living

pedigree members including 5 affected cases (II:12, III:3, III:17,

IV:5, IV:9), 1 ACPA-positive unaffected subject (III:2), and 18

ACPA-negative unaffected subjects (II:5, II:6, III:1, III:4, III:5,

III:6, III:9, III:11, III:12, III:13, III:14, III:19, III:20, IV:1, IV:2,

IV:3, IV:4, IV:7; Figure 2).

For the case-control association analysis of RA in the European

populations, we studied 8,875 RA cases and 29,367 matched

controls for GWAS meta-analysis (Table S4). Six GWAS data has

been previously published [2]; additional five GWAS datasets are

previously unpublished [29,32,33], as described in more detail

below. The 1,088 RA cases and 1,088 matched controls for exon

sequencing of PLB1 represent a subset of patients with GWAS

data (Table S4). All the subjects were confirmed to be of European

origins using both self-reported ethnicities and the results of

principal component analysis (PCA). Part of the subjects in the

GWAS and exon sequencing were included in previous studies

with detailed descriptions of the cohorts [2,4,7,29,32,33]. There

was an overlap of the RA cases involved in the GWAS meta-

analysis and exon sequencing (n = 342).

Whole-genome SNP genotyping and quality control of
the consanguineous pedigree with RA

Whole-genome SNP genotyping was conducted for all the

available 24 pedigree members using Illumina HumanOmniEx-

press Genotyping BeadChip (Illumina, San Diego, CA; Figure 1A).

We applied call-rate cutoff thresholds of $0.98 for samples and

0.99$ for SNPs, and filtered out subjects with excess heterozy-

gosity. We used GWAS data to confirm the relationships among

all pedigree members using ‘‘–genome’’ option implemented in

PLINK v1.07. We excluded monomorphic SNPs in the genotyped

pedigree members.

IBD mapping of the consanguineous pedigree with RA
To find the region harboring the ancestral haplotype that co-

segregates with affected cases, we conducted IBD mapping of the

consanguineous pedigree using whole-genome SNP genotyping

data (Figure 1A). After applying LD pruning of the SNPs with

r2$0.9 using LD information obtained from HapMap Phase II

CEU subjects, we applied homozygosity mapping of the affected

RA cases and the ACPA-positive unaffected subject using ‘‘–

homozyg’’ option implemented in PLINK v1.07, a classical non-

parametric linkage analysis assuming a recessive mode of disease

inheritance [48].

We developed a novel IBD mapping method which extends

homozygosity mapping to include any type of inheritance mode.

This method, which is based on the ‘‘SNP streak’’ approach to

assess homogeneity of the adjacent SNP genotypes on the ancestral

haplotype [22,23], is applicable without prior estimation of

inheritance mode and mutation penetrance. Our method uses

genome-wide SNP data to search the regional IBD stretches that

lose one or both homozygous genotypes in affected cases using a

sliding window approach (Figure 3A). The window spanning

1 Mbp bin was defined as IBD when all the SNP genotypes in this

bin followed the rule mentioned above with exception of no more

than 1 SNP, and the IBD stretch was defined when the IBD

window continued beyond $2 Mbp length.

We further extended the method to utilize genotype data from

unaffected pedigree members as well as affected cases. Within the

identified IBD stretches shared among affected cases, our method

is able to impute presence or absence of the ancestral haplotype in

the other unaffected subjects, by checking whether IBD stretch

remains or not after inclusion of each of the unaffected subjects

separately. We assessed significance of the probability to observe

the IBD stretch shared among 5 ACPA-positive RA cases and 1

ACPA-positive unaffected subject while only 6 of 16 ACPA-

negative unaffected subjects by a permutation procedure (610,000

iterations). For each of the iteration steps, we randomly selected 6

members from the pedigree as ‘‘affected’’ subjects, and assessed

whether at least one of the IBD stretches observed among these 6

‘‘affected’’ subjects were observed in #6/18 of the other

‘‘unaffected’’ subjects. JavaTM software for this novel IBD

mapping method is available at http://plaza.umin.ac.jp/

,yokada/datasource/software.htm.

We did not apply parametric linkage analysis methods for SNP

genotype data such as Merlin [49], since the software did not work

properly due to the complex pedigree structure including multiple

loops.

Whole-exome sequencing of the RA cases in the
consanguineous pedigree

To search for the causal risk mutation in the pedigree, we

performed whole-exome sequencing for 4 affected RA cases in the

pedigree (II:12, III:3, III:17, IV:9; Figure 1B). DNA library

preparation and target exome capture were conducted using the

Agilent SureSelect All Exon kit v2 (Agilent Technologies, Santa

Clara, CA), which covers 44.9 Mbp of human exon regions.

Sequencing was run on Illumina HiSeq2000 (Illumina, San Diego,

CA) at the Broad Institute of MIT and Harvard (Cambridge, MA).

Sequencing reads were aligned to the Human Reference Genome

(UCSC hg19) using Burrows-Wheeler Aligner (BWA) algorithm

[50]. Sequence read filtering and variant calling was done using

the GATK pipeline as described elsewhere [51,52], and snpEff

was used for variant annotation [53]. Calling of CNV was

conducted by using the ExomeDepth software version 0.9.7 [54].

Whole-exome sequencing data of the pedigree is available to other

researchers upon request.

Filtering of the identified variants was conducted according to

the following processes: (i) variants likely to be pathogenic

(missense, nonsense, frameshift Indels, or splice-site acceptor/

donor); (ii) variants not registered in the databases (dbSNP v132,

1000 Genomes Project Phase I data [24], and ESP5400 [25]) with

non-reference allele frequency $0.01; (iii) for Indels, ones not

located 65 bp of known variants; and (iv) variants of which $1

non-reference alleles were observed in all the exome sequenced 4

RA cases.

Validation iPLEXTM assay of the exome-driven variants
To efficiently validate the results of whole-exome sequencing,

we selected the 3 candidate causal variants that were included in

the IBD stretches defined using SNP genotype data from 5 ACPA-

positive RA cases and 1 ACPA-positive unaffected subject

(Figure 1C). We conducted iPLEXTM validation assay (Montréal,

Canada) for these selected variants using the available 22 pedigree

members except for the 2 ACPA-negative unaffected subjects

(IV:3 and IV:4), due to genomic DNA degradation. Relative risk

of each validated variant was evaluated using mid-P value of

Fisher’s exact test, which has more unbiased type I error and

higher statistical power compared to original Fisher’s exact test

[55]. JavaTM software for mid-P value of Fisher’s exact test is

available at http://plaza.umin.ac.jp/,yokada/datasource/

software.htm.
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Association analysis of the PLB1 locus using European RA
GWAS meta-analysis

To evaluate RA genetic risk of the PLB1 locus in the general

populations, we referred to the results of the currently conducted

RA GWAS meta-analysis of the European populations enrolling

8,875 RA cases and 29,367 controls from 11 studies (Figure 1D

and Table S4). Five new unpublished GWAS datasets (n = 3,427

cases and 6,837 controls) from ReAct [29], Dutch (including

AMC, BeSt, LUMC, and DREAM) [29], anti-TNF response to

therapy collection (ACR-REF: BRAGGSS, BRAGGSS2, ERA,

KI, and TEAR) [29-31], the Consortium of Rheumatology

Researchers of North America (CORRONA) [32], and Vander-

bilt RA case-control cohorts [33] were included along with 6

previously published GWAS datasets (n = 5,448 cases and 22,530

controls) [2,29]. All GWAS data was filtered using the same

criteria as described elsewhere [2–4], including sample and SNP

call-rate cutoffs, exclusion of closely-related or outlier subjects, and

MAF and Hardy-Weinberg equilibrium cutoffs for SNPs.

After applying QC criteria to each GWAS, whole-genome

genotype imputation was performed by minimac [56] using 1000

Genome Project Phase I (a) European data as a reference [24]. We

excluded imputed SNPs with MAF,0.005 or imputation score of

Rsq,0.5 from each GWAS. Associations of the SNPs with RA

were evaluated by logistic regression models assuming additive

effects of the allele dosages, including top 5 principal components

as covariates using mach2dat v1.0.16 (see URL). Meta-analysis

was performed for the SNPs available in $50% of the studies, by

an inverse-variance method assuming a fixed-effects model on the

effect sizes of the alleles dosages using the JavaTM source code

implemented by the authors [57]. Double genomic control (GC)

correction was carried out using the inflation factor (lGC) obtained

from the results of each GWAS and the GWAS meta-analysis.

The regional significance threshold was determined by a

permutation procedure (permutation P = 0.05 with 610,000

iterations). Case-control phenotype labels were shuffled for each

GWAS dataset separately, and the distribution of the smallest P-

values of the SNPs from respective iteration steps was evaluated.

Conditional analysis was conducted by consecutively including the

allele dosages of the top-associated SNPs in the PLB1 locus as

covariates in a forward-type stepwise logistic regression approach

until no significant regional association was observed after

conditioning (a= 0.01). Haplotype analysis was conducted by

incorporating estimated haplotype dosages consisting of the two

non-coding SNPs in PLB1 (rs116018341 and rs116541814) as

independent variables, as described elsewhere [58].

We obtained chromatin immunoprecipitation followed by

sequencing (ChIP-seq) assay peaks of H3K4me3 from NIH

Roadmap Epigenomics Mapping Consortium [59], and assessed

overlap of the SNPs in the PLB1 locus with H3K4me3 peaks in

primary Treg cells, as described elsewhere [60]. Peak overlap

enrichment of the SNPs (and SNPs in absolute LD with it;

r2 = 1.00) were compared to the neighboring SNPs (62 Mbp). We

physically slid H3K4me3 peak positions by 100 bp bins within

62 Mbp regions of the SNPs, and assessed overlap with

H3K4me3 peaks for each sliding step. Significance of overlap in

the original peak positions was evaluated by one-sided exact test

assuming enrichment of overlap.

Deep exon sequencing of PLB1 in European RA case-
control cohort

To evaluate contribution of PLB1 protein-coding variants on

the risk of general RA cases, we conducted deep exon sequencing

of PLB1 using genetically matched 1,088 RA cases and 1,088

controls from the European populations (Figure 1E and Table S4).

These subjects were collected as a part of the PGRN sequencing

project, as described elsewhere [Diogo D. et al. Manuscript in

preparation]. All subjects were determined as European ancestry

based on PCA conducted along with HapMap Phase III samples

as reference populations. RA cases and controls were matched

based on the Euclidean distances in all case-control pairs along 10

eigenvalue-weighted PCs. DNA library preparation and target

exon capture was conducted using NimbleGen Sequence Capture

technology (Roche NimbleGen, Madison, WI), along with another

,850 genes related to autoimmune diseases as a part of the PGRN

sequencing project. Sequencing was run on Illumina HiSeq2000

(Illumina, San Diego, CA) at the Genome Institute at Washington

University in St. Louis. Sequencing reads were aligned to the

Human Reference Genome (UCSC hg19) using the BWA

algorithm [50], and duplicated reads were excluded using Picard

(see URL). Sequence read filtering and variant calling was done

using SAMtools v1.16 and VarScan v2.2.9 [61,62]. Variants were

annotated based on PLB1 transcript (NM_153021) using ANNO-

VAR [63]. We selected rare protein-coding variants of PLB1

(MAF,0.01) and evaluated gene-based association signal on RA

risk by sets of widely-used rare variants tests, including the burden

test, variable threshold test [36], frequency-weighted test [37], C-

alpha test [38], and SKAT [39], using PLINKQ-SEQ (with

6100,000 iterations) and SKAT [39] software. PLB1 protein

domains were obtained from the Pfam protein families database

for UniProt entry Q6P1J6 [41]. Deep exon sequencing data of

PLB1 is available to other researchers upon request.

Web resources
The URLs for data presented herein are as follows:

JavaTM software for the IBD mapping and mid-P value of

Fisher’s exact test, http://plaza.umin.ac.jp/,yokada/datasource/

software.htm

Online Mendelian Inheritance in Man (OMIM), http://omim.

org/

PLINK, http://pngu.mgh.harvard.edu/,purcell/plink/

GATK, http://www.broadinstitute.org/gatk/

dbSNP, http://www.ncbi.nlm.nih.gov/snp/

1000 Genomes Project, http://www.1000genomes.org/

NHLBI Grand Opportunity Exome Sequencing Project,

https://esp.gs.washington.edu/drupal/

minimac, http://genome.sph.umich.edu/wiki/Minimac

mach2dat, http://www.sph.umich.edu/csg/abecasis/MACH/

index.html

NIH Roadmap Epigenomics Mapping Consortium, http://

www.roadmapepigenomics.org/

Picard, http://picard.sourceforge.net/index.shtml

Annovar, http://www.openbioinformatics.org/annovar/

ExomeDepth, http://cran.r-project.org/web/packages/Exome

Depth/index.html

PLINK-SEQ, http://atgu.mgh.harvard.edu/plinkseq/

SKAT, http://www.hsph.harvard.edu/skat/

Pfam protein families database, http://pfam.sanger.ac.uk/

eQTL Browser, http://eqtl.uchicago.edu/Home.html

Blood eQTL Browser, http://genenetwork.nl/bloodeqtlbrowser/

Supporting Information

Figure S1 Protein structure of PLB1 and RA risk
variant. PLB1 protein has three GDSL-like lipase domains

which have essential biological roles in lysophopholipase activity of

the protein. The second GDSL-like lipase domain included
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p.G755R mutation identified in the consanguineous RA pedigree

(the black triangle).

(TIF)

Table S1 Characteristics of RA cases and a ACPA-
positive unaffected subject in the consanguineous ped-
igree with RA.

(DOCX)

Table S2 Results of IBD mapping for the consanguin-
eous pedigree with RA.

(DOCX)

Table S3 A list of the filtered variants from whole
exome sequencing.

(DOCX)

Table S4 Characteristics of the subjects in European
RA case-control cohorts.

(DOCX)

Table S5 Rare variants obtained from deep exon
sequencing of PLB1 in the European RA case-control
cohort.
(DOCX)
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