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ABSTRACT
Background The majority of coeliac disease (CD)
patients are not being properly diagnosed and therefore
remain untreated, leading to a greater risk of developing
CD-associated complications. The major genetic risk
heterodimer, HLA-DQ2 and DQ8, is already used
clinically to help exclude disease. However,
approximately 40% of the population carry these alleles
and the majority never develop CD.
Objective We explored whether CD risk prediction can
be improved by adding non-HLA-susceptible variants to
common HLA testing.
Design We developed an average weighted genetic risk
score with 10, 26 and 57 single nucleotide
polymorphisms (SNP) in 2675 cases and 2815 controls
and assessed the improvement in risk prediction provided
by the non-HLA SNP. Moreover, we assessed the
transferability of the genetic risk model with 26 non-HLA
variants to a nested case–control population (n=1709)
and a prospective cohort (n=1245) and then tested how
well this model predicted CD outcome for 985
independent individuals.
Results Adding 57 non-HLA variants to HLA testing
showed a statistically significant improvement compared
to scores from models based on HLA only, HLA plus 10
SNP and HLA plus 26 SNP. With 57 non-HLA variants,
the area under the receiver operator characteristic curve
reached 0.854 compared to 0.823 for HLA only, and
11.1% of individuals were reclassified to a more
accurate risk group. We show that the risk model with
HLA plus 26 SNP is useful in independent populations.
Conclusions Predicting risk with 57 additional
non-HLA variants improved the identification of potential
CD patients. This demonstrates a possible role for
combined HLA and non-HLA genetic testing in
diagnostic work for CD.

INTRODUCTION
Coeliac disease (CD) is a chronic immune-mediated
enteropathy triggered by exposure to dietary gluten
in genetically predisposed individuals.1 Screening
studies have revealed increased occurrence in some
countries, with a prevalence ranging from 0.3% to
3%, always with the majority of cases being previ-
ously undiagnosed.2–7 Age at onset ranges from

infancy to late adulthood, and clinical presentation
can be highly variable, from impaired growth, diar-
rhoea and abdominal pain to presentations such as
iron-deficiency, anaemia and decreased bone
density.8–10 Family members of CD patients and
those with another immune-mediated disease are at
higher risk of developing CD. As symptoms of CD
can be subtle or insidious, current recommenda-
tions are to screen such at-risk groups with periodic
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Significance of this study

What is already known on this subject?
▸ HLA-DQ2 and DQ8 provide the highest genetic

risk for CD. However, these genes are present
in about 40% of the population, and only a
subset will develop disease. Therefore,
screening for HLA-DQ2 and DQ8 alleles is
helpful only to identify those at extremely low
risk for CD.

▸ Current recommendations are to perform
periodic screening of certain high-risk groups
for CD, such as first-degree relatives and those
with type 1 diabetes. However, the degree of
risk is not uniform among all of these groups.

▸ Current methods of genetic testing are
inadequate at effectively identifying individuals
from the general population at significantly
greater risk for CD who may require periodic
serological screening for CD.

What are the new findings?
▸ Increases in the number of variants associated

with CD have helped refine and improve the
genetic risk model.

▸ Using HLA variants, 57 non-HLA variants,
gender and population origin have improved
the discriminatory power with the AUC of the
ROC curve reaching 84%.

▸ Combining HLA and 57 non-HLA variants
improved the classification of 11% of
individuals to more accurate categories.
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serological testing. The serological antibodies used as markers
for CD have a relatively high sensitivity and specificity, and in
most cases a small bowel biopsy revealing enteropathy is neces-
sary to confirm the diagnosis of villous atrophy.11

The importance of genetic testing was highlighted in the
revised guidelines for the diagnosis of CD recently proposed by
the European Society of Paediatric Gastroenterology,
Hepatology and Nutrition.12 They recommend typing for
HLA-DQ2 and HLA-DQ8 in symptomatic children with high
clinical suspicion of CD, but without confirmatory biopsy, to
add strength to the diagnosis, as well as to those with an uncer-
tain diagnosis of CD or to those belonging to risk groups, to
exclude further testing for CD. These HLA heterodimers are
known to be the major genetic risk factors for CD and have a
negative predictive value of almost 100%, but the positive pre-
dictive value is poor, as approximately 40% of the population
carry one or both of these alleles.13 In the past few years, two
genome-wide association studies (GWAS) and one fine-mapping
project have identified up to 57 non-HLA single-nucleotide
polymorphisms (SNP) that contribute to CD susceptibility.14–17

To date, approximately 54% of the genetics of CD can be
explained by HLA plus the 57 non-HLA SNP compared to 40%

by HLA alone.18 In 2009, we published a genetic risk model for
CD using HLA and the 10 non-HLA risk variants resulting
from the first GWAS.19 We showed that by using this model, the
identification of individuals at high risk of developing CD could
be markedly improved. Now, with many more associated loci
known for CD, our aim was to test if the genetic risk model
could be improved by adding the new variants, assess how well
it transfers to other cohorts, and evaluate how well it can be
used in clinical practice.

MATERIALS AND METHODS
Study populations
Our study included four groups (table 1): (1) a discovery set of
2675 CD cases and 2822 healthy controls in which we calcu-
lated the OR for each SNP after having identified the mode of
inheritance; (2) a derivation set of 2675 cases and 2815 controls
in which we created the risk model; (3) two sets for validating
the risk model, which included a 1709 nested case–control
population (validation set 1), and a prospective cohort of 1244
individuals (validation set 2); and (4) a test set of 985 independ-
ent individuals on whom we applied the risk model.

The discovery and derivation case–control samples were pre-
viously included in our CD meta-analysis and incorporated
cohorts from The Netherlands, Italy, Poland, Spain and the
UK.17 To prevent over-fitting of the model, we randomly
selected 50% of the cases and controls to form a discovery
dataset in which we calculated the OR, while the other half
became the derivation set to create the risk model (table 1). The
samples were evenly distributed across the different populations,
except for the UK cohort, from which we randomly selected
700 cases and 1000 controls to obtain sample sizes equal to the
other populations.

The first validation set included cases and matched controls
from a Swedish cross-sectional CD screening of 12-year-old chil-
dren. Most of these children were born in 1993 or 1997.5 20 21

Together the two cohorts contain 306 CD patients for whom
DNA was available. Gender-matched controls (1403 individuals)
were randomly selected among those with normal levels of CD
markers belonging to the corresponding cohort. As there was no
difference between the frequencies of SNP in the two cohorts,
we treated the 1993 and 1997 cohorts as one collection in our
analysis.

Significance of this study

How might it impact on clinical practice in the
foreseeable future?
▸ Although we only screen individuals with a ‘known’ risk for

CD (because they belong to an ‘at-risk’ group, the majority
of cases of CD comes from individuals who have permissive
HLA in the general population. The ability to identify an
individual at ‘extreme’ risk for CD could make the current
serological screening strategy more effective by personalising
the approach in the general population. This is a first step
towards the application of genetic testing for CD in the
clinical setting and/or on a population level.

▸ Genetic testing for CD may assist in the early detection of
individuals at risk of CD, ie, those with a first-degree relative
with CD and those with autoimmune diseases showing
comorbidity with CD.

Table 1 The different datasets included in this study: a discovery set for single SNP OR calculation, a derivation set to create the risk models,
two validation sets to validate the risk model, and a test set to evaluate the model in clinical practice

Cohorts

Discovery set:
case–control

Derivation set:
case–control

Validation set 1:
nested case–control

Validation set 2:
prospective

Test set:
case–control

Cases Controls Cases Controls Cases Controls CDA No CDA Cases Controls

Italy 695 635 693 635 99 219
The Netherlands 535 586 535 583 61 175
Poland 235 270 236 269 50 67
Spain 1 242 171 242 170 34 122
Spain 2 268 160 269 159 33 125
UK 700 1000 700 999
Sweden 306 1403
Non-Hispanic white American 70 1174
Sub-total 2675 2822 2675 2815 306 1403 70 1174 277 708
Total 5497 5490 1709 1244 985

CDA, coeliac disease autoimmunity; SNP, single-nucleotide polymorphism.
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The second validation set included 1244 non-Hispanic, white
American children from a prospective population-based cohort
from Denver, Colorado, USA; they are being followed from
birth for the development of transglutaminase auto-antibodies
and CD (the DAISY study).22

The test set included 985 parents of high-risk CD children
(those with a first-degree relative with CD) from The
Netherlands, Italy, Poland and Spain, which were collected as
part of the PreventCD project.21

Each dataset was collected for different purposes by different
investigators and are independent of each other. All subjects had
self-reported Caucasian ancestry and have been described else-
where.17 20–22 CD patients in the discovery, derivation and test
sets had a biopsy-confirmed diagnosis. In validation 1 set, CD
diagnosis required villous atrophy or intraepithelial lymphocyto-
sis in combination with the presence of HLA-DQ2 or
HLA-DQ8, as well as symptoms or signs supporting the diagno-
sis. In validation 2 set, CD was defined as having a very high
and persistent level of transglutaminase auto-antibodies or con-
firmed by biopsy, so we refer to this group as having CD
autoimmunity.23

Genotyping
Individuals homozygous for HLA-DQ2.5 or HLA-DQ2.5/
DQ2.2 genotypes have an increased CD risk compared to those
homozygous for HLA-DQ2.2 or DQ8, or heterozygous for
HLA-DQ2.5, DQ2.2 or DQ8, while individuals with no-DQ2/
DQ8 have practically no risk for CD.19 24–26 To predict whether
an individual has 0, 1 or 2 HLA-DQ2 and/or DQ8 alleles, we
genotyped six tagging SNP.27 We then categorised the indivi-
duals into three risk groups: low-risk (coded 0) if they were
HLA-DQ2/DQ8 negative (ie, neither HLA-DQ2.5, DQ2.2 nor
DQ8), high-risk (coded 2) for those homozygous for
HLA-DQ2.5 or HLA-DQ2.5/DQ2.2, and intermediate risk
(coded 1) for all other combinations.19

To assess if the new susceptibility variants improve risk pre-
diction, we compared three genetic risk scores (GRS) calculated
using: (1) 10 non-HLA SNP from the first GWAS and its
follow-up;14 15 (2) 26 non-HLA SNP from the second GWAS;16

and (3) 57 non-HLA SNP from the fine-mapping project17 (see
supplementary table 1, available online only). All these SNP
were reported at genome-wide significance (p<5×10−8) in each
study.

For the discovery and derivation sets, genotype data were
acquired as part of our fine-mapping project using Immunochip,
a custom-made platform from Illumina.28 A stringent quality
control check was performed on these samples.17 Samples in
validation sets 1 and 2, and in the test sets were genotyped on
Illumina 48-plex VeraCode technology for the 26 SNP identified
in the second GWAS only and the six HLA tagging SNP, follow-
ing Illumina’s protocol. Genotyping data analysis and clustering
was performed in GenomeStudio. Genotype clusters were
manually investigated and adjusted if necessary. All plates
included one duplicate sample and one positive control. One
SNP, corresponding to IL18RAP locus (imm_2_102429801),
was not present on VeraCode, so we used a perfect proxy
(rs917997, r2=1, D0=1) (see supplementary table 1, available
online only).

Statistical analysis
Using the derivation cohort, we coded each SNP genotype as 0
for the non-risk homozygous, 1 for the heterozygous, and 2 for
the homozygous risk, then determined the type of inheritance
mode by analysing the genotypes as categorical variables in

logistic regression and adjusting for HLA group, gender and
population origin. Comparing the Akaike information criterion
(AIC) from each model, we saw no major differences between
the inheritance models and therefore used the log-additive
model, which was the best-fit model for most SNP.

In order to account for a difference in risk contribution from
each SNP, we used a weighted method and calculated an average
GRS for each individual. First, we multiplied the β-coefficients
in supplementary table 1 (available online only) by the number
of risk alleles (0, 1, 2) for each SNP per individual, took the
sum across 10, 26 or 57 non-HLA SNP, and then divided the
total by the number of alleles included in the model to obtain
an average weighted GRS per allele. Only individuals with a
defined HLA genotype and with more than 95% of genotypes
available were included in the analysis. We used an averaged
GRS per allele in order to be able to compare GRS from differ-
ent datasets with different numbers of SNP that passed the
quality control. Then, the GRS were categorised in quintiles of
the control population. The controls in validation set 1 were
healthy individuals who had a negative screening result for CD;
we used both cases and controls to calculate the quintiles. For
validation set 2, we had genotype data from 986 non-Hispanic
white American individuals from the general population, which
we used to calculate the quintiles. In each validation set, we esti-
mated the risk for each category of the GRS in a logistic regres-
sion using the third quintile (p40–p60) as a reference group
adjusting for HLA group, gender and population origin.

To evaluate the overall discrimination of our genetic model,
we calculated the area under the receiver operator characteristic
(ROC) area under the curve (AUC) for HLA only and combin-
ing HLA and the GRS. We also calculated the net reclassification
improvement (NRI) and the integrated discrimination improve-
ment (IDI). A two-tailed p value less than 0.05 indicated statis-
tical significance. All analyses were performed using PLINK
v1.07, the R package PredictABEL, and SPSS V.16.0.29 30

RESULTS
Figure 1 shows the distribution of HLA and the three GRS in
the large derivation set of 2675 CD cases and 2815 controls.
The mean in cases is shifted towards a higher GRS in all three
models compared to the mean in controls, showing a clear sep-
aration of distribution between the two groups. We divided par-
ticipants into five categories defined as quintiles of the control
populations to make it easier to interpret the results of an
average weighted GRS (the third quintile was considered the ref-
erence category). The OR increases with increasing risk score
for all three GRS models (see supplementary figure 1, available
online only). The GRS_57 performs better than GRS_26 and
GRS_10 mainly in the top quintile (p80–p100). Individuals in
the top quintile of GRS_57 had a 2.5 times higher risk (95% CI
2.1 to 3.0) than those with a mean GRS, and a 7.2 times higher
risk (95% CI 5.7 to 9.2) than those in the bottom quintile.

Figure 2 shows the ROC curves for HLA only, HLA plus
GRS_10, HLA plus GRS_26 and HLA plus GRS_57. The AUC
estimates were improved with an increasing number of suscepti-
bility variants used in the model. Combining HLA with 57
non-HLA SNP showed the best discrimination, with an AUC
reaching 0.854. The improvement between the HLA-only
model and the models with HLA plus GRS was statistically
highly significant (p=0.0001).

To confirm that adding non-HLA risk variants improved risk
prediction, we tested the ability of the combined HLA and GRS
models to reclassify individuals into predefined risk groups
based on HLA testing only. The individuals could be grouped
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into three categories: low (predicted risk <25%), intermediate
(25–75%) and high-risk (>75%), thus we used the same
cut-offs to classify individuals using the models with HLA plus
GRS (figure 3). Among the 1590 cases that have intermediate
risk based on their HLA only (derivation set), 241 (15.1%) indi-
viduals were moved into the high-risk category (>75%) when
their GRS with 57 variants was added (table 2). Similarly, 25
(18.2%) of the 137 controls first classified as high risk (>75%)
were moved to the intermediate-risk category and 212 of 1373
intermediate-risk controls (15.4%) were moved to the low-risk
category (<25%). NRI and IDI were statistically significant for
all models. Even when we used 20% and 80%, or 30% and
70% as cut-offs, the NRI and IDI were still significant. The
model with 57 SNP performed best by reclassifying 11.1% of
the individuals into a more accurate risk group, while GRS_26
reclassified 7.1% and GRS_10 reclassified 4.1%.

To assess if such a genetic risk model is applicable to other
populations, we tested the GRS with 26 SNP in two nested
case–control studies from Sweden (validation set 1) and in a

prospective cohort from the USA (validation set 2), both of
which had not been assessed in previous gene discoveries.

In the Swedish study, the mean of GRS_26 in controls of
0.068 (SD 0.0099) was statistically different from the mean of
cases (0.071, SD 0.0097) (independent sample two-tailed t
test=1.28×10−5). Based on HLA genotypes, we first categorised
the individuals into three groups and identified only one CD
case in the low-risk group (no HLA-DQ2/DQ8), indicating the
high negative predictive value of HLA typing to exclude CD
risk. We further focused our test on those individuals positive
for DQ2 and/or DQ8 (n=1035). The predicted risk based on
HLA only ranged from 23.57% to 27.74% for the intermediate
HLA group, and 60.95% to 66.02% for the high-risk HLA
group. Using the lowest ranges as a cut-off for reclassification,
31% (215/695) of the controls in the intermediate group (23–
60%) were moved to the low-risk group (<23%). The NRI of
HLA-only versus HLA plus GRS_26 was 0.116 (95% CI 0.051
to 0.180; p=0.00042), while IDI was 0.013 (95% CI 0.006 to
0.020; p=0.0004) (data not shown).

Figure 1 Distribution of HLA group and average risk scores of the genetic risk score (GRS)_10, GRS_26 and GRS_57 models in 2675 cases and
2815 controls. GRS_10, GRS_26 and GRS_57 show a clear separation of distribution between cases and controls with the mean (SD) in cases (0.103
(0.020), 0.071 (0.009), 0.069 (0.006), respectively) being statistically different to the mean (SD) in controls (0.095 (0.020), 0.067 (0.009), 0.066
(0.006), respectively) (p=2.71×10−45, 3.41×10−67, 3.2×10−111, respectively (independent sample two-tailed t test)).
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In the prospective cohort (validation set 2), we categorised
individuals based on quintiles calculated from a general popula-
tion cohort and used the lowest quintile (p0–p20) as a reference
group. Based on HLA, there were no CD autoimmunity cases in
the lowest group and our analysis continued with 1116 indivi-
duals who were DQ2 and/or DQ8 positive. Using the Cox pro-
portional hazard model adjusted for gender, recruitment group
and HLA, we observed an increase in HR with increasing risk
score category (see supplementary figure 2, available online
only). Although this was not statistically significant, it showed a
trend of association, with the top group having a HR of 1.8
(95% CI 0.81 to 3.98) compared to individuals in the lowest
quintile.

To test how well this risk profiling can be used in clinical prac-
tice, we calculated a predicted risk for 985 independent indivi-
duals (test set) before unravelling their status using the OR
calculated in validation set 1 (see supplementary table 2, available
online only). We then grouped the individuals into the risk cat-
egories defined earlier. After checking the CD status of indivi-
duals, we compared their classification from using only HLA in
the model to using HLA plus GRS_26. Combining HLA and 26
non-HLA variants in the model led to 14.6% of the individuals
being reclassified into more appropriate categories (table 3).

DISCUSSION
We demonstrate that combining HLA and non-HLA variants
increases the diagnostic accuracy of genetic testing for CD.
Previously, we showed better classification with a simple count
model of 10 non-HLA variants.19 Now we have further devel-
oped this model by including up to 57 non-HLA SNP and com-
paring four genetic risk models for CD including gender and
population origin. We used a weighted GRS to account for the
differences in OR of each allele. All three GRS were associated
with CD in our case–control derivation set, with individuals in

the top quintile having 1.68, 2.00 and 2.50 times higher risk of
CD compared to those in the middle quintile. Individuals in the
bottom quintiles had 0.54, 0.44 and 0.45 times less risk of
developing CD than someone with a mean GRS from the
general population.

Adding non-HLA variants to the HLA prediction improved
not only the discriminatory power as assessed by the ROC
curves, but also the reclassification of individuals into more
accurate risk categories with the increase in NRI and IDI.
Compared to other genetically complex diseases such as mul-
tiple sclerosis and type 2 diabetes, in which AUC only reached
0.769 and 0.74, respectively, our GRS in CD performs
well.31 32 Our best AUC reached 0.854 for the GRS_57 model.
This is in the same range as the Framingham risk score for cor-
onary heart disease (AUC∼0.8), which is clinically useful.33

Moreover, our risk model appears to be applicable to clinical
practice and transferable to other populations, being specifically
useful in individuals positive for HLA-DQ2 and/or DQ8.

The ability to identify subgroups of those at ‘extreme’ risk or
lower risk for CD will enable more accurate classifications of
research subjects in clinical trials. For example, PreventCD is an
ongoing intervention study that will evaluate whether the con-
trolled introduction of small quantities of gluten between the
age of 4 and 6 months can prevent the occurrence of CD in
children carrying HLA-DQ2 and/or DQ8. However, many chil-
dren in the study will never develop CD, as they do not carry
the other risk factors required. This means that larger numbers
of individuals are needed to test the potential treatment
adequately.21 The enhanced risk modelling will help classify
individuals into higher and lower risk groups more accurately,
by using both HLA and non-HLA genetic signatures, thereby
permitting a more efficient study design and analysis in the
future.

From a clinical perspective, there are several at-risk groups
of individuals who will require periodic serological screening
for CD throughout their lifetime. It has been argued, although
not universally recommended, that HLA testing could be done
first to identify carriers of HLA-DQ2 and/or DQ8 and then to
perform repeated serological testing only in those individuals
in the future (although the risk of developing CD is not equal
for HLA-DQ2 and HLA-DQ8 carriers). From a cost perspec-
tive, this might be an efficient strategy as genotyping is rela-
tively cheap and only needs to be done once, whereas
serological testing is more expensive and needs to be repeated
frequently. Excluding individuals who do not carry the genetic
risk for developing CD from serological testing would reduce
the cost and burden of repeated invasive testing. The age at
which serological screening in an at-risk child should begin,
how frequently to test, and when to perform intestinal biopsy
are all issues that are still under discussion. The added value of
non-HLA genetic factors is that they may allow us to stratify
the population better into those in need of repeated serology
screening, as HLA testing alone would still include some 30%
of the population. Using only the presence or absence of HLA
as a screening tool to help in the diagnosis of CD has a positive
predictive value of 94%, but a sensitivity of 35%. However, by
using our model, which combines different HLA risk variants
with non-HLA risk variants, to classify individuals into a high-
risk group decreases the positive predictive value to 57%, but
increases the sensitivity to 63%. Thus, including non-HLA risk
factors suggests that we can reclassify 14.6% of the population
into more accurate risk categories, which might help to make a
better selection of those who need closer follow-up and repeti-
tive antibody testing.

Figure 2 Receiver operator characteristic (ROC) curves and area under
the curve (AUC) for the HLA-only model (AUC=0.823; 95% CI 0.812 to
0.834), and combined HLA plus GRS_10 (AUC=0.837; 95% CI 0.827 to
0.848), HLA plus GRS_26 (AUC=0.843; 95% CI 0.832 to 0.853) and
HLA plus GRS_57 (AUC=0.854; 95% CI 0.844 to 0.864) models.
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Figure 3 Plot of predicted risk using HLA-only model versus HLA and genetic risk score (GRS) models showing how individuals can be shifted
from one risk group to another. The GRS_57 model shows the largest number of individuals who were reclassified. All models were adjusted for
gender and five-population origin. The black vertical line defines the three groups based on HLA (low <25%, intermediate 25–75%, high >75%),
while the blue dashed line is the 25% predicted risk and the red dashed line is the 75% predicted risk based on HLA plus non-HLA variants.

Table 2 Reclassification table of individuals of predicted risk using HLA-only versus combined HLA and GRS_10, GRS_26 and GRS_57 (low risk
<25%, intermediate risk 25–75%, high risk >75%)

HLA only

HLA and GRS_10 HLA and GRS_26 HLA and GRS_57

<25% 25–75% >75% Reclassified% <25% 25–75% >75% Reclassified% <25% 25–75% >75% Reclassified%

<25%
Total 1419 0 0 0 1419 0 0 0 1419 0 0 0
Cases 114 0 0 0 114 0 0 0 114 0 0 0
Controls 1305 0 0 0 1305 0 0 0 1305 0 0 0

25–75%
Total 64 2710 189 0.09 104 2562 297 0.14 261 2389 313 0.19
Cases 12 1444 134 0.09 16 1354 220 0.15 49 1300 241 0.18
Controls 52 1266 55 0.08 88 1208 77 0.12 212 1089 72 0.21

>75%
Total 0 39 1069 0.04 0 81 1027 0.07 0 77 1031 0.07
Cases 0 24 947 0.02 0 52 919 0.05 0 52 919 0.05
Controls 0 15 122 0.11 0 29 108 0.21 0 25 112 0.18

NRI (95% CI) 0.041 (0.029 to 0.053); p=0.0001 0.071 (0.055 to 0.087); p=0.0001 0.111 (0.093–0.129); p=0.0001
IDI (95% CI) 0.021 (0.018 to 0.025); p=0.0001 0.031 (0.027 to 0.036); p=0.0001 0.054 (0.048–0.060); p=0.0001

GRS, genetic risk score; IDI, integrated discrimination improvement; NRI, net reclassification index.
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