Exploring the Connectome - Petascale Volume Visualization of Microscopy Data Streams

Johanna Beyer, Markus Hadwiger, Ali Awami, Won-Ki Jeong, Bobby Kasthuri, Jeff Lichtman, Hanspeter Pfister

Abstract— Recent advances in high-resolution microscopy allow neuroscientists to acquire volume data of neural tissue of extreme size. However, the tremendous resolution and the high complexity of neural structures present big challenges to storage, processing and visualization at interactive rates. We present a system for interactive exploration of petascale volumes resulting from high-throughput electron microscopy data streams. Our system can handle multiple volumes, and also supports the concurrent visualization of high-resolution segmentation data. We employ a visualization-driven system design that allows us to restrict most computations to a small sub-set of the data, using a multi-resolution virtual memory architecture for better scalability than previous approaches and handling of incomplete data. We illustrate the real-world use of our system for a mouse cortex volume of roughly one teravoxel in size, where several hundred neurites as well as synapses have been segmented and labeled.

Index Terms—petascale volume exploration, segmented data, high-resolution microscopy, high-throughput imaging, neuroscience.

1 INTRODUCTION

Reconstructing the human connectome is one of the major scientific endeavors of the 21st century. Connectomics aims to reconstruct and map the human brain’s neural circuits, made up by billions of neurons and their interconnections, i.e., synapses. By deciphering this network and its inherent pathways scientists hope to gain an understanding of how the brain functions, and how pathologies like Alzheimer’s disease or autism develop or can be treated.

However, the immense complexity of the mammalian connectome and the huge amount of imaging data that needs to be acquired, stored and, most importantly, processed, present a big challenge for neuroscientists. Finding the connectome of the C. elegans worm, consisting of a mere 300 neurons and their 7000 connections, took over a dozen years to complete [11]. Only recent advances in high-throughput and high-resolution microscopic imaging have made it possible to start tackling the mammalian connectome (e.g., the connectome of a mouse) by allowing to acquire petabytes of volume data with great speed and to reconstruct detailed neural connections.

Modern microscopes and electron microscopes (EM) can produce volumes of scanned brain tissue with a slice thickness of 25-50 nm and a pixel resolution of 3-5 nm [2], as compared to 200 nm per pixel in optical microscopes. This resolution is necessary in order to be able to trace detailed neural connections at the resolution level of individual synapses. However, with these new acquisition techniques the bottleneck of connectomics research has moved almost entirely to processing and analyzing the scanned data sets.

To demonstrate the huge scale of these data, imagine we want to create an EM scan of 1 mm3 of brain tissue. This would already result in a volume of one petabyte in size and scanning the data with a throughput of roughly 10 Mpixels/s [2] would require an acquisition time of several years. Currently, a high-throughput acquisition process has to continuously stream data over months or even years, which has a huge impact on the way the produced data has to be stored, processed and visualized. In this new data-driven era, any pre-processing algorithm, e.g., computing a multi-resolution hierarchy of the data, registration, segmentation, and the visualization itself, needs to be able to handle incomplete data - data that have not been completely scanned yet.

Reconstructing the synaptic connections between neurons is mainly achieved by laborious manual segmentation, combined with semi- or fully automatic segmentation approaches [8]. However, interactive 3D visualization of the scanned volume, visual proof-reading of the segmentation, and 3D navigation inside the volume are vital in understanding the data and must be optimized for handling large-scale EM data volumes. For example, pre-processing the data into a hierarchical representation as it is usually done for interactive visualization of large volumes incurs an unacceptably large gap between acquisition and visualization. Therefore, it is necessary to develop novel visualization paradigms and systems in order to facilitate the interactive exploration and analysis of large-scale microscopy data streams.

In this context we have developed a flexible and scalable volume processing and visualization framework with the following main design criteria: The system is scalable to petascale data, can deal with incomplete data, and is integrated into the neuroscience workflow. Additionally, it supports the following visualization-related features which are vital for connectomics research: 1) compact and efficient data storage and retrieval; 2) on-the-fly 3D data construction; 3) interactive 3D visualization of microscopy data streams; 4) integration of segmentation information; and 5) interactive labeling of synapses - the actual connections between individual neurons.

2 PREVIOUS WORK (SIDEBAR)

Our system is related to a large collection of prior work, and we only highlight the most important connections here.

Seung [11] gives a very good introduction to connectomics and its recent developments, including advances in high-resolution and high-throughput electron microscopy imaging. The work of Bock et al. [2] is an example of how EM circuit reconstruction and the resulting network work graph of connected neurons can help in finding a relationship between structure and function of a brain area.

The system described in this paper is in part based on previous work on visualization of neuroscience data sets [7] and peta-scale volume rendering [6]. Jeong et al. [7] describe two systems for interactive exploration and analysis of electron microscopy images. Their focus is on manual and semi-automatic tracing of neurons and on-the-fly edge-detection for improved rendering of neural processes. Hadwiger et al. [6] introduce volume rendering for extremely large EM data, focused on a multi-resolution virtual memory architecture and on-the-fly construction of volume blocks. Beyer et al. [1] have introduced a general system for rendering multiple volumes in addition to segmentation.
data and presented it in the context of neurosurgical applications. They have implemented a bricked memory handling scheme to handle large data, however the system does not support multi-resolution volume data.

Our visualization stage uses GPU volume ray-casting [9], which has become the most common approach for GPU volume rendering. A main constraint for GPU-based approaches is the limited GPU memory size. In order to accommodate large volumes, out-of-core and multi-resolution volume rendering approaches have been developed, often based on hierarchical octree brick schemes [10]. These approaches work by partitioning the data into smaller sub-bricks and computing a multi-resolution hierarchy (e.g., octree) of the data in a preprocess. During rendering, only the active working set of these bricks (e.g., all bricks inside the view frustum) have to be downloaded to the GPU, thereby alleviating GPU memory restrictions. However, all previous multi-resolution volume renderers require the multi-resolution hierarchy to be built in a preprocess, which is not feasible for our scenario of dynamically streaming image data. A preprocessing step is also required by all previous systems that support streaming of volume data for progressive rendering, such as the ViSUS system [12]. Gobetti et al. [5] were among the first to publish a method for single-pass GPU octree ray-casting where octree traversal is performed on the GPU. The Gigavoxel [4] system also performs explicit octree traversal on the GPU by using the kd-restart algorithm. However, this requires holding the entire path from every leaf to the root in GPU memory, and can result in large numbers of updates per frame. Our system avoids all the drawbacks of explicit octree traversal by using a virtual memory-based approach that allows to access the requested resolution directly, without having to traverse lower resolution data hierarchy levels. Much research has been devoted to volume rendering on large supercomputers [3]. This is especially useful in the context of in-situ visualization of large-scale simulations, where the visualization is computed on the same machine as the data, avoiding the need to move large data. However, this is not a feasible approach for microscopy data. Our data streams do not originate from large-scale simulations, but from acquisition setups that are not directly connected to a supercomputer. Our system streams data to the GPU-based visualization, but only as required by actual visibility.

3 PETASCALE EM VISUALIZATION FRAMEWORK

Our volume processing and visualization framework consists of two main parts. The data-driven pipeline, which starts with the actual image acquisition, data storage and 2D mipmap generation, and the visualization-driven part, for visualization and 3D block construction. Figure 1 depicts an overview of our system. In the following we will explain the function of each individual module and their interconnection.

Data generation starts on the left side of Figure 1 and propagates from left to right. In a wider sense this also includes more complex pre-processing tasks like registration or segmentation. The majority of our system is visualization-driven by the actual visibility of small 3D blocks on screen during ray-casting, as displayed on the right side of Figure 1. We operate in virtual volume space. This virtual volume space is the reference space of our volume and corresponds to the extents of the 3D tissue block that is being imaged by the electron microscope. If, during ray-casting, the renderer detects that some data block is missing, it issues a request for that data block. This request is handled by the volume construction stage and subsequently the newly constructed block is downloaded into GPU memory. We have paid special attention to a modular design in order to be able to integrate possible future changes such as new data modalities or novel pre-processing algorithms.

3.1 Acquisition Pipeline

Figure 2 depicts our image acquisition pipeline. It starts with taking a tiny sample of a mouse or rat brain and solidifying it using an epoxy
and 3D. However, no image data are changed by registration and our external registration process to reflect image tile alignment both in 2D and 3D. The meta data includes magnification, position and orientation of the tile (which we store in an alignment matrix) and current microscope settings.

3.2 Raw Tile Processing
This module is responsible for processing new EM tiles as soon as they arrive from the microscope. This stage works completely automatically; it constantly polls if new tiles have arrived in the acquisition archive, and stores the data in the visualization archive. Figure 2 depicts the raw tile processing stage and the visualization archive in the context of the entire acquisition pipeline. Raw tile processing comprises construction of a 2D mipmap for each tile emitted by the EM and subdivision of each mipmap level into smaller sub-tiles. We chose a sub-tile size of 128 × 128 for optimized disk access and disk storage. Additionally, smaller sub-tiles can be handled more efficiently in the resampling phase of the volume construction stage (see Section 3.4). Sub-tiles are optionally compressed using JPEG at 2 bpp and stored in the visualization archive.

To optimize data access at arbitrary mipmap levels we store each computed mipmap level of our dataset in a separate file. Furthermore, to improve disk access time we store the sub-tiles within a single file in Morton order. This space filling curve preserves data locality and increases cache coherency. The visualization archive also allows external segmentation processes to access the image data and to store segmentation results and any manual labeling of the data.

In theory the same data archive can be used for the raw and the pre-processed data. However, for organizational reasons it is often better to separate the two archives. The acquisition archive is closely connected to the actual acquisition and therefore, it is usually managed directly by the microscope operators in cooperation with the biologists. All further processing of the data for visualization (or segmentation) is performed on the visualization archive, which is managed by the visualization experts and the biologists.

Since the raw tile processing stage needs to be performed for every new microscope tile, this module must be able to handle the data rate of the microscope (i.e., process more than 10 Mpixels/s). Currently, our raw tile processing stage achieves a performance of 85 Mpixels/s.

3.3 Registration
Each EM image tile has an affine transformation matrix (i.e., alignment matrix) attached to it which corresponds to the movement of the EM. This matrix is stored only once for each EM tile and inherited by all sub-tiles. The alignment matrix can be iteratively refined by an external registration process to reflect image tile alignment both in 2D and 3D. However, no image data are changed by registration and our raw tile processing stage is completely independent of any registration. Only the alignment matrix is updated by the registration process. Actual stitching of tiles is performed only on-demand in the volume construction stage of our pipeline (see Section 3.4).

We can also use an on-the-fly registration technique for dynamic EM acquisition. In many cases, the region of interest is much smaller than the entire slice of the original tissue sample. In such a case, without scanning the entire slice in high-resolution with an electron microscope, we can progressively scan the slice at different magnification levels by narrowing down the field of view – like zooming into a specific region. Figure 3 shows an example of three EM image tiles at different scales – a low magnification image for the entire view and two higher magnification images for the region of interest – aligned into a single coordinate system. In this scenario, each EM image tile is acquired at a different image scale and spatial location. To align such images, we use a fixed-size reference grid, e.g., a grid at the screen-resolution, and perform the registration of two images on the reference grid. Since the resolution of the images is not the same as that of the reference grid, each image is sub/super-sampled accordingly based on the magnification level. In our implementation, we use the lower level image as the background (i.e., reference) image, and the higher level image is deformed to maximize the correlation between two images. The registration process can be done in a semi-automatic fashion if desired – as a new EM image tile comes in from the microscope, the user can interactively navigate a 2D slice view in order to refine the registration if misalignment is visible. The image registration is implemented on the GPU and its running time is independent of the image tile size because the computation is done on the reference grid. We have observed about 3 ms per single run of registration on a 256 × 256 reference grid.

3.4 Visualization-Driven Volume Data Construction
The volume construction in our system is entirely driven by the visualization stage (Section 4.1). This means, that no data is constructed and loaded to the GPU if it has not been requested by the ray-caster. The ray-caster issues a 3D block construction request (at a certain position and resolution level) only if the data is visible on screen, and the data request cannot be fulfilled from the caches in the visualization stage already. Another important feature of our multi-resolution ray-casting scheme is that only the data for the requested resolution level is required to be computed, no other resolution levels have to be touched (as opposed to octree approaches).

Figure 4 depicts the volume construction stage. Once a block has been requested by the visualization stage (bottom left in Figure 4), it is constructed in the requested resolution and transmitted to the visualization stage. Block construction consists of two main parts: First, the 2D image sub-tiles that intersect the 3D target block are determined and fetched in the requested resolution from the visualization archive. For efficiently retrieving the correct sub-tiles we have implemented a compact index structure that easily fits into main memory and can still...
be searched efficiently, based on Morton order traversal of the sub-tiles. The second step consists of stitching and resampling these 2D sub-tiles directly into the 3D target grid. Stitching is determined by the alignment matrix associated with each image tile. We have implemented fast stitching and resampling to any target resolution on the GPU, using texture mapping and fragment shaders. Due to the large slice distance and resulting anisotropy of our EM data (e.g., an aspect ratio of 1:8) we can simplify the 3D block construction process by allowing a 3D target block to be resampled by simply stitching the image sub-tiles in 2D without performing actual 3D filtering, and storing the result into the correct 3D location. As reconstruction filter we can either use GPU bi-linear filtering or higher-order filters implemented in the fragment shader.

Furthermore, the modular design of our volume construction stage allows us to plug in any kind of visualization algorithm, as long as the visualization stage requests 2D or 3D blocks at a certain location with a certain resolution. Therefore, it would also be possible to use our volume construction module for other types of applications, like automatic segmentation or data analysis modules.

3.5 Multi-Threading and System Environment

All our modules are multi-threaded in order to avoid blocking other computations or delaying the rendering because of uncompleted data requests. The visualization module runs with a separate rendering thread, a GUI or user input thread, and a separate thread for data requests to the volume construction module. Once the renderer has issued a data request, it immediately continues rendering without waiting for the request to complete. The ray-caster is able to deal with incomplete data by either substituting a data block with its lower resolution version, should one be available, or by skipping the block until it has been loaded.

The system environment is based on a client/server network architecture and is depicted in Figure 5. Generally, we allow for a flexible setup, where each stage can run on a separate machine, connected via a high-bandwidth LAN. Optionally, the system can be configured to run all modules on the same machine, omitting any network communication. The visualization archive is stored on a shared file system, to allow multiple users to access the data. Rendering is either performed on a separate render server that sends the final images to a thin client, or directly on the PC that displays the final image. The thin client is not required to be in the same LAN and can potentially be a user from a remote site. All network communication is based on TCP sockets, and uses image compression for reducing data load and network congestion.

4 Visualization

In this section we will explain the detailed components of our visualization stage. First, we will focus on our GPU-based volume raycasting framework, based on a multi-resolution virtual memory hierarchy that scales well to extremely large volume sizes (Section 4.1). After introducing our renderer we will explain the extension of our system to segmentation data, and neuronal connectivity data based on synapses (Section 4.2). Figure 6 shows some renderings of our volume visualization system.

4.1 Volume Rendering

The design of our volume rendering framework differs from previous systems in several important aspects. First, our ray-caster is not based on creating and traversing a tree structure, such as an octree or KD tree. Instead, our design is based on a multi-level, multi-resolution virtual memory architecture that scales well to extremely large volume sizes. This design is more efficient for deep resolution hierarchies as it requires no tree traversal and no tree structure needs to be maintained. Furthermore, it reduces latency by allowing each sample to be fetched directly from any resolution level and enabling switching between resolutions without having to construct intermediate lower resolutions. Finally, it supports arbitrary down-sampling ratios between resolution levels.

4.1.1 Virtual Memory Architecture

We operate in virtual volume space, which is the reference space that corresponds to the size of the 3D tissue block that is being scanned by the EM. We start by subdividing the volume into small 3D blocks (we use 32^3). Only the working set of these currently required (i.e., visible) blocks is resident on the GPU in a large 3D cache texture which is updated dynamically. To access a sample in the original volume we now have to translate the sample’s position to a coordinate in cache texture space, which is done on-the-fly using page table look-ups. Therefore, the original volume becomes a virtual volume that is accessed via a page table, and only the smaller cache texture and the page table have to be stored on the GPU. If a block is not resident in the cache texture, it is flagged as unmapped (i.e., missing) in the page table. However, for very large volumes one indirection layer (i.e., page table) is not sufficient. Therefore, our system not only virtualizes the original volume but can also virtualize page tables. We refer to the top-level page table in the resulting hierarchy as the page directory [6]. In our current setup we use two indirection layers, which already allows us to efficiently handle and render our one teravoxel data set.

For multi-resolution rendering, we conceptually have a separate hierarchy of page tables for each resolution level of the data. However, since the blocks of different resolution levels have the same voxel size (e.g., 32^3), we can map blocks of any resolution level into the same 3D cache texture. The only structure that directly reflects the multi-resolution nature of our data is the multi-resolution page directory.

4.1.2 Ray-Casting Virtual Multi-Resolution Volumes

Ray-casting marches along the ray from sample to sample, performing hierarchical address translation at each position. Figure 7 depicts the ray-casting process, using hierarchical address translation to get from the virtual volume to the final 3D cache texture. The sample position
on the ray is given by a normalized coordinate in virtual volume space. At each sample point we compute the LOD (level of detail) to use for accessing the corresponding resolution level of the data. We estimate the LOD by computing the projected screen space size of the current voxel. Next, the sample’s position and LOD are used as a lookup in the correct level of the multi-resolution page directory to start the address translation.

An important property of our ray-casting scheme is that many successive samples along a ray will map to the same page directory and page table entries. Therefore, we can reduce the texture look-up overhead significantly by exploiting spatial coherence and reducing the number of texture fetches. The closer a page table entry is to the root of the hierarchy (the page directory), the less frequently it needs to be fetched. For example, using 32³ blocks, for an axis-aligned ray the page table is accessed only every 32 voxels, the page directory every 1024 voxels.

Missing data is detected during ray-casting whenever a page directory or page table entry is accessed that does not point to data but is flagged as unmapped. This generates a missing block request for the missing 3D block of visible data. These data requests that are propagated backwards in the pipeline, triggering the visualization-driven construction of volume data from 2D image tiles.

4.2 Segmented Data and Synapse Identification

Our framework supports rendering of segmented data, i.e., data that have been partitioned into neuronal structures such as axons or dendrites. Segmentation approaches can be seen as either sparse approaches, where only selected structures are traced (mostly manually), and dense approaches, where to goal is to trace every structure (mostly automatically). Our framework is independent of whether the segmentation was performed manually or computed automatically.

4.2.1 Visualization of Segmented Data

A detailed description of the used segmentation modules and tools is out of scope of this paper and we will treat the actual segmentation algorithms as black boxes. However, we assume that the segmentation runs on image data from the visualization archive, and that the same archive is used to store the final segmentation results.

Segmentation data are stored as slices of image data (like the original EM data), where each pixel contains the ID of the labeled object it belongs to. To accommodate for a large number of distinct objects we store these IDs as 24 bit data, which allows us to store over 16 million different objects. Once the segmentation data arrives at the visualization archive, we compute 2D mipmaps for each slice, as it is done for the EM data (Section 3.2). The main difference is that a different downsampling filter has to be used because the segmentation data conceptually consists of binary masks and object IDs must not be interpolated. The straight-forward choice for downsampling is to use nearest neighbor filtering, but more elaborate downfiltering algorithms based on a chosen error metric can also be used.

Figure 8 shows the main steps of our visualization pipeline for segmented data. For highest possible generality we handle the segmentation volume as an additional data volume and perform multi-volume rendering. This gives us the option to easily extend our system to include additional data volumes, such as functional brain data, in the future. To handle two volumes we run two instances of the volume construction module as well as two instances of the virtual memory architecture. We allocate separate cache textures for EM data and segmentation data, respectively, because these two types of data are usually of different type, i.e., 8-bit intensity values for EM data, and 24-bit integer IDs for segmentation data.

Actual rendering of the segmentation is performed in the ray-caster. Our system supports different render modes where the object ID of the current sample is used to assign and modify certain properties such as color and opacity, which is then blended with the original EM data. Colors are assigned according to the current sample’s object ID. Finally, the user has the option to either display only the original EM data, display only the segmentation, or blend both together (see Figures 6 and 9).

4.2.2 Synapse Labeling

In addition to the segmentation data we can also render labeled synapses that are stored in tabular format in the visualization archive. Each entry in the table defines a single synapse consisting of: the position in the virtual volume, a textual label, the IDs of the two objects

Fig. 6: Our system supports the visualization of large-scale electron microscopy volumes, their segmentation information and synaptic connections. Left: Screenshot of our application showing an unsegmented axon. Middle: Segmented axons. Right: Combined rendering of EM data with segmented axons.

Fig. 8: Multi-Volume Visualization Scheme. All input data are stored in the visualization archive. Data requests construct 3D blocks for all requested volumes in a unified coordinate system (i.e., the virtual volume). During ray-casting multiple volumes can be sampled and combined for the final rendering.
it connects (i.e., one axon and one dendrite) and some additional meta information.

During rendering we can display all loaded synapses, their labels and their connections. Additionally, the system allows the user to add new synapses to the data, which are then stored in the visualization archive. Synapses are rendered as small geometric shapes, located at the position specified in the synapse table. To simplify navigation within the volume, the user can select individual synapses which are then automatically centered in the current view.

We render the synapses as opaque geometry concurrently with the volume rendering. Therefore, we have to adjust the ray-casting setup step to ensure the correct visibility order of the geometry in combination with the volume rendering. Figure 9, right, shows a volume rendering of segmented axons zoomed-in on a labeled synapse.

5 RESULTS AND DISCUSSION

Currently, our collaborating neuroscientists are working on the segmentation and analysis of an electron microscopy dataset of a mouse cortex with a resolution of $21,494 \times 25,790 \times 1,850$ voxels, which is a total size of roughly one teravoxel. Over the course of several months they have segmented several hundred structures by manually tracing them from slice to slice. Most of the segmented structures are axons, which are long and narrow tubular structures that conduct electrical impulses away from the neuron’s cell body. The electrical impulses are propagated to neighboring neurons over synapses that connect one neuron’s axon to another neuron’s dendrite. Dendrites are treelike extensions of a neuron to receive electrical impulses. In our dataset we have segmented 329 axons and 4 dendrites, where each dendrite makes many synapses. The majority of segmented axons are oriented along the z direction, on average spanning over 490 slices of the data set, with about a dozen of them spanning over the entire 1,850 slices, and the smallest spanning only over a couple of slices. In our data set a segmented axon consists on average of over 6.2 million voxels, with a minimum of 12 voxels and a maximum of 37.5 million voxels. The segmented axons constitute less than 0.2% of the entire data set. We have detailed information on 263 synapses, including their location, label and IDs of the axon and dendrite it connects. On average, in our data set each segmented dendrite is connected to 53 labeled synapses, with a minimum of 1 and a maximum of 101. Axons, on the other hand, have a mean of only 2 labeled synapses, with a minimum of 1 and a maximum of 7.

Figure 6 and Figure 9 show different renderings of this dataset, including the segmented axons and labeled synapses.

5.1 Performance

We tested the performance of our system on 3 12-core dual CPU 3 GHz machines with 48 GB and NVIDIA Quadro 6000 GPUs. Our system is implemented in C++, the ray-caster uses GLSL and for the tile processing we use CUDA and OpenMP. In our current setup we have three machines, that respectively run the raw tile processing, the volume construction, and the visualization stage including the user interface. All network communication is done using TCP/IP and Winsocks2 over a 1 Gb network. Table 1 shows timing results for the 3D block construction and the raw image tile processing as well as frame rates for ray-casting the one teravoxel data set, including segmented volume rendering. For measuring the ray-casting frame rate we have used two different transfer functions, the first one is a linear ramp, the second one is a more transparent transfer function allowing to see farther inside the volume.

5.2 Scalability Discussion

This section discusses the major scalability aspects of our system: scalability of our volume representation including multi-volumes, volume traversal and ray-casting.

Our virtual multi-resolution volume representation is extremely scalable due to the small number of hierarchy levels that are needed for the page table hierarchy. Two or three levels are sufficient for extremely large volumes, resulting in easily manageable page directory sizes [6]. In our current implementation we use two page table hierarchy levels (with a voxel block size of 32^3), which, for example, allows rendering a 4 teravoxel volume with a page directory size of only $32 \times 32 \times 4$. This enables easily accommodating multiple volumes and handling multiple page directories, as well as their corresponding page table hierarchy. Even a data set of several hundred petavoxels could be represented by a page table hierarchy with three levels, with page numbers indicating the number of megapixels that can be processed per second. For the registration and the stitching and resampling (i.e., block construction) stages, the numbers indicate the number of megapixels that can be processed per second. Transfer function 1 (TF1) is a linear ramp for color and opacity, transfer function 2 (TF 2) is a more transparent transfer function, as used in Figure 9, middle. The viewport for volume rendering was set to 1024×768.

<table>
<thead>
<tr>
<th>module</th>
<th>performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw image processing</td>
<td>85 Mpxs / sec</td>
</tr>
<tr>
<td>registration</td>
<td>20 Mpxs / sec</td>
</tr>
<tr>
<td>stitching & resampling</td>
<td>30-65 Mpxs / sec</td>
</tr>
<tr>
<td>EM volume rendering</td>
<td>TF 1 75 fps</td>
</tr>
<tr>
<td>segmented volume rendering</td>
<td>TF 2 70 fps</td>
</tr>
</tbody>
</table>

Table 1: Performance numbers for the different stages in our system.
directory sizes under 64^3.

For multi-volume rendering and segmented volume rendering we have a separate page table hierarchy for every volume. To reduce the number of required textures and page table look-ups one could potentially use the same size and layout in all cache textures that store the actual volume or segmentation data. Then only a single page table hierarchy would have to be maintained that could be used for look-up in both cache textures. However, this would require both cache textures to have the same layout and resolution which in turn could lead to an inefficient memory layout. Another more flexible solution is to share the same page directory look-up, but have a separate page table and cache texture. This has the advantage of a reduced number of texture accesses while maintaining a flexible layout where the cache sizes can be adjusted individually. Subsequently, very sparse segmentation data could be stored in a smaller cache than very dense EM data.

Volume traversal in our system is extremely efficient. To access an arbitrary resolution level we only have to traverse the very compact page table hierarchy (i.e., two or three levels), effectively resulting in an $O(1)$ traversal time for accessing any resolution level. In contrast, octree-based schemes have to traverse the tree from the root to the requested resolution level, which is logarithmic to the number of voxels in the octree. Especially when looking at high-resolutions, which is very common in the typical neuroscience use-case, these differences show up clearly in practice.

For further optimization we have implemented empty space skipping on the granularity level of page table entries. If a data block is reported to be empty, it is not downloaded to the GPU and its page table entry is flagged as empty. Our system performs empty space skipping on the EM data by culling against the currently set transfer function. In the case of segmented data, object IDs are considered for empty space skipping as well.

5.3 Discussion

The main objective of our system is to enable exploration of petascale EM volumes in 3D at interactive frame rates. A main advantage of our design is that it allows the frame rate to be completely decoupled from the time it takes until missing data have been constructed and downloaded into the GPU cache textures. Therefore, our rendering system never stalls because it is waiting for new data. Naturally, this approach incurs a latency until all visible data have arrived in the requested resolution and a fully complete image can be rendered. This is very similar to the latency encountered in Google maps, but with 3D data blocks, instead of 2D map tiles. The overall latency varies significantly, and ultimately depends on the number of new 3D blocks that must be constructed for a new frame in addition to already cached data. However, in a typical scenario that number is very small, leading to low latencies. Furthermore, our system assumes that the current working set (i.e., all visible data of the desired resolution) always fits into the block cache. If this is not the case, our system can lower the requested resolution, but another option would be to perform multiple rendering passes or utilize parallel rendering on multiple GPUs.

6 Conclusions

We have presented a scalable system for interactive 3D exploration and navigation of high-resolution segmented EM data. We have illustrated the major design choices of our system: visualization-driven volume data construction and a novel multi-resolution virtual memory scheme. Segmentation data can be integrated by following a multi-volume data handling and rendering approach that scales well, even for multiple volumes. Scalability to petascale EM data streams is achieved by (1) decoupling data acquisition from the multi-resolution hierarchy required for visualization (this is made possible by the visualization-driven approach of volume data construction), and (2) decoupling the resolution hierarchy of the data from the hierarchy for volume sampling during ray-casting (this is made possible by our virtual memory scheme).

In the future we want to develop novel and intuitive 3D navigation metaphors and offer a 3D proof-reading interface for large-scale segmentation data. We are also looking into more compact representations for segmentation data that do not store the entire voxelized segmentation mask. Finally, we want to extend our system to support distributed volume rendering, especially for handling and rendering multiple volumes that are too large to handle efficiently in a single GPU out-of-core memory approach.

References

