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Abstract
Peer prediction mechanisms allow the truthful elicitation of
private signals (e.g., experiences, or opinions) in regard to a
true world state when this ground truth is unobservable. The
original peer prediction method is incentive compatible for
any number of agents n ≥ 2, but relies on a common prior,
shared by all agents and the mechanism. The Bayesian Truth
Serum (BTS) relaxes this assumption. While BTS still as-
sumes that agents share a common prior, this prior need not
be known to the mechanism. However, BTS is only incen-
tive compatible for a large enough number of agents, and the
particular number of agents required is uncertain because it
depends on this private prior. In this paper, we present a ro-
bust BTS for the elicitation of binary information which is
incentive compatible for every n ≥ 3, taking advantage of a
particularity of the quadratic scoring rule. The robust BTS is
the first peer prediction mechanism to provide strict incentive
compatibility for every n ≥ 3 without relying on knowledge
of the common prior. Moreover, and in contrast to the orig-
inal BTS, our mechanism is numerically robust and ex post
individually rational.

Introduction
Web services that are built around user-generated content
are ubiquitous. Examples include reputation systems, where
users leave feedback about the quality of products or ser-
vices, and crowdsourcing platforms, where users (workers)
are paid small rewards to do human computation tasks, such
as annotating an image. Whereas statistical estimation tech-
niques (Raykar et al. 2010) can be used to resolve noisy in-
puts, for example in order to determine the image tags most
likely to be correct, they are appropriate only when user in-
puts are informative in the first place. But what if providing
accurate information is costly for users, or if users otherwise
have an external incentive for submitting false inputs?

The peer prediction method (Miller, Resnick, and Zeck-
hauser 2005) addresses the quality control problem by pro-
viding payments (in cash, points or otherwise) that align an
agent’s own interest with providing inputs that are predic-
tive of the inputs that will be provided by other agents. For-
mally, the peer prediction method provides strict incentives
for providing truthful inputs (e.g., in regard to a user’s in-
formation about the quality of a product, or a user’s view on
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the correct label for a training example) for a system of two
or more agents, and when there is a common prior amongst
agents and, critically, known to the mechanism.

The Bayesian Truth Serum (BTS) by Prelec (2004) still
assumes that agents share a common prior, but does not re-
quire this to be known by the mechanism. In addition to
an information report from an agent, BTS asks each agent
for a prediction report, that reflects the agent’s belief about
the distribution of information reports in the population. An
agent’s payment depends on both reports, with an informa-
tion component that rewards reports that are “surprisingly
common,” i.e., more common than collectively predicted,
and a prediction component that rewards accurate predic-
tions of the reports made by others. A significant drawback
of BTS is that it only aligns incentives for a large enough
number of agents, where this number depends on the prior
and is thus unknown to the mechanism. In addition, BTS
may leave a participant with a negative payment, and is not
numerically robust for all inputs.

In this paper, we present the robust Bayesian Truth Serum
(RBTS) mechanism, which, to the best of our knowledge,
is the first peer prediction mechanism that does not rely on
knowledge of the common prior to provide strict incentive
compatibility for every number of agents n ≥ 3. RBTS is
also ex post individually rational (so that no agent makes a
negative payment in any outcome) and numerically robust,
being well defined for all possible agent reports. Moreover,
the mechanism seems conceptually simpler than BTS, and
the incentive analysis is more straightforward. The main
limitation of RBTS relative to earlier mechanisms, is that
it applies only to the elicitation of binary information; e.g.,
good or bad experiences, or true or false classification la-
bels.1 Extending RBTS to incorporate more than two signals
is the most important direction for future research.

RBTS takes the same reports as BTS, and an agent’s pay-
ment continues to consist of one component that depends on
an agent’s information report and a second component that

1Many interesting applications involve binary information re-
ports. This is supported by the fact that Prelec’s own experimental
papers have adopted the binary signal case (Prelec and Seung 2006;
John, Loewenstein, and Prelec 2011). Indeed, as the number of
possible information reports increases, so does the difficulty im-
posed on users in providing the prediction report, which must in-
clude estimates for the additional possible information reports.



depends on an agent’s prediction report. The main innova-
tion is to induce a “shadow” posterior belief report for an
agent i from her information report and the prediction re-
port of another agent j, adjusting this prediction report in
the direction suggested by agent i’s information report. We
couple this with a particularity of the quadratic scoring rule,
by which an agent prefers a shadow posterior belief that is as
close as possible to her true posterior. In order to determine
the agent’s payment, we then apply both the shadow poste-
rior belief and the agent’s prediction report to the quadratic
scoring rule, adopting the information report of a third agent
k as the event to be predicted.

Related Work
In addition to the original peer prediction method and the
original BTS, there is other related work. Jurca and Falt-
ings (2007) extend the original peer prediction method to
allow agents to have small deviations from a common prior
while still assuming this prior is known to the mechanism,
establishing a trade-off between the required budget and the
robustness to deviations from the prior. The key difference
to our work is that we do not assume any knowledge about
the common prior on behalf of the mechanism.

Jurca and Faltings (2008) assume a common prior known
to the agents but unknown to the mechanism in an online
polling setting, where the current empirical frequency of re-
ports is published and updated as agents arrive.2 While their
mechanism only requires an information report (and not a
prediction report), it is not incentive compatible. Rather,
agents must behave strategically in deciding how to report
information to the mechanism. Indeed, Jurca and Falt-
ings (2011) give an impossibility result in regard to achiev-
ing incentive compatibility when the prior is not known to
the mechanism and when agents make only an information
report.

A setting similar to online polling is studied by Lambert
and Shoham (2008), and in this case without even requiring
a common prior to agents. However, their mechanism is only
weakly incentive compatible, i.e., in the equilibrium, agents
are indifferent between being truthful and misreporting. For
this reason it does not extend to settings in which provid-
ing accurate information is costly or when agents have some
other outside incentive for making false reports.

Witkowski and Parkes (2012) extend the methods of the
present paper to a setting without a common prior to agents,
obtaining incentive compatibility for every n ≥ 2 and binary
information. A crucial new requirement is one of “tempo-
ral separation,” i.e., the ability to elicit relevant information
from an agent both before and after she receives her signal.
While this is possible for settings such as product rating en-
vironments, it prevents the application to settings such as
opinion polls, where an agent already holds her information
when arriving to the mechanism.

2One of their main criticisms of BTS is that it needs to withhold
all information reports until the end of the poll. This criticism does
not apply to RBTS, which easily adapts to online settings by se-
quentially scoring groups of three agents, and subsequently releas-
ing their reports (which can be published as empirical frequencies).

The Setting
There are n ≥ 3 rational, risk-neutral agents who seek to
maximize their expected payment. They all share the same
probabilistic belief system, which consists of two main ele-
ments: states and signals. The state T is a random variable
which can adopt values in {1, . . . ,m}, m ≥ 2 and repre-
sents the true state of the world. Each agent i observes a
signal represented by random variable Si that is binary on
{0, 1}; sometimes the range is denoted {l, h} and referred to
as “low” and “high” respectively. The signal can be thought
to represent an agent’s experience or opinion. A generic sig-
nal is denoted by random variable S. The agents have a com-
mon prior, consisting of Pr(T = t) and Pr(S = h | T = t),
the conditional probability of observing a high signal given
each possible state t. We require that the prior is admissible:
Definition 1. The common prior is admissible if it satisfies
the following properties:
• There are two or more possible states; i.e., m ≥ 2.
• Every state has positive probability, so that Pr(T = t) >

0 for all t ∈ {1, . . . ,m}.
• States are distinct, such that Pr(S = h | T = t) 6=

Pr(S = h | T = t′) for any two t 6= t′. We adopt the
convention that states are sorted; i.e., Pr(S = h | T =
1) < . . . < Pr(S = h | T = m). We refer to this as the
assortative property.

• The signal beliefs conditional on state are fully mixed,
with 0 < Pr(S = h | T = t) < 1 for all t.
Admissibility is a weak requirement. In particular, note

that any prior can be transformed into an admissible prior
as (1) all signals beliefs conditional on state are fully mixed
for states with positive probability, and (2) the signal beliefs
conditional on state are distinct for at least two states with
positive probability. Any two states with the same signal be-
lief probability can be merged into a new state, and states
with zero probability can be dropped. The mechanism does
not need any knowledge about the prior beyond admissibil-
ity.

Given an agent i’s realized signal si, the agent can update
her posterior belief Pr(Sj = h | Si = si) about the prob-
ability of another agent j receiving a high signal. Because
of the common prior, we can denote a generic agent’s poste-
rior following a high and a low signal with p{h} = Pr(Sj =
h | Si = h) and p{l} = Pr(Sj = h | Si = l), respectively.
We refer to this as a “first order” signal posterior, and have

p{h} =

m∑
t=1

Pr(Sj = h | T = t) Pr(T = t | Si = si), (1)

where the posterior on state can be determined in the usual
way from Bayes’ rule, being equal to

Pr(T = t|Si = si) =
Pr(Si = si|T = t) Pr(T = t)

Pr(Si = si)
, (2)

and the denominator being

Pr(Si = si) =

m∑
t=1

Pr(Si = si | T = t) Pr(T = t). (3)



These signal posteriors can be computed analogously in the
case where an agent has knowledge of two signals. We
extend the notation, so that p{h,l} represents this “second-
order” posterior following knowledge of a high signal and
a low signal. For example, for agent i we have p{h,l} =
Pr(Sk = h|Si = h, Sj = l) for any distinct j, k 6= i.
In this case, agent i first updates the posterior on state T ,
Pr(T = t|Si = si), which becomes the belief for the pur-
pose of doing a second round of Bayesian updates.

The Bayesian Truth Serum
In this section, we explain the original Bayesian Truth
Serum (BTS) by Prelec (2004).3 While we present the bi-
nary version of this mechanism, BTS is defined for an arbi-
trary number of signals.

In BTS, every agent i is asked for two reports:

• Information report: Let xi ∈ {0, 1} be agent i’s re-
ported signal.

• Prediction report: Let yi ∈ [0, 1] be agent i’s report
about the frequency of high signals in the population.

The scoring of agent i in BTS involves three steps:

1. For every agent j 6= i, calculate the arithmetic mean4 of
all agents’ signal reports except those of agents i and j:

x̄−ij =
1

n

(
∑
k 6=i,j

xk) + 1

 (4)

2. For every agent j 6= i, calculate the geometric mean of all
prediction reports except those from i and j, on both high
and low signals,

ȳ−ij =

 ∏
k 6=i,j

yk

 1
n−2

, ȳ′−ij =

 ∏
k 6=i,j

(1− yk)

 1
n−2

(5)

3. Calculate the BTS score for agent i:

ui =
∑
j 6=i

(
xi ln(

x̄−ij
ȳ−ij

) + (1− xi) ln(
1− x̄−ij
ȳ′−ij

)

)
︸ ︷︷ ︸

information score

+
∑
j 6=i

(
x̄−ij ln(

yi
x̄−ij

) + (1− x̄−ij) ln(
1− yi

1− x̄−ij
)

)
︸ ︷︷ ︸

prediction score

(6)

This simplifies for n → ∞ in that the summations over
j 6= i in Equation 6 can be replaced with the information
and prediction scores computed using just one, randomly se-
lected, j 6= i.

3In his original paper, Prelec presents two versions of BTS, one
for an infinite number of agents n→∞ and one for finite n. Given
the focus of our paper, we present the latter version.

4Prelec adopts Laplacian smoothing to avoid zero values.

The Bayesian Truth Serum mechanism is strictly Bayes-
Nash incentive compatible if it is a strict Bayes-Nash equi-
librium for all agents to (1) report their true signal and (2)
predict that the frequency of high signals in the population
is that of their signal posterior.
Theorem 1. (Prelec 2004) The Bayesian Truth Serum is
strictly Bayes-Nash incentive compatible for n → ∞ and
all admissible priors.

Prelec comments that the result also holds for suitably
large, finite n with the actual threshold depending on the
common prior. However, BTS need not align incentives for
small groups of agents. Moreover, it need not satisfy interim
individually rational (interim IR) for small groups, meaning
that an agent’s expected payment can be negative.
Theorem 2. The Bayesian Truth Serum is not Bayes-Nash
incentive compatible or interim IR for n = 3.

This limitation of BTS can be understood from Prelec’s
treatment of BTS. Generally the number of agents required
for BTS to be Bayes-Nash incentive compatible depends on
the prior and is hard to characterize. Still, BTS has been
discussed in various places without noting this important
caveat, e.g., (Jurca and Faltings 2008; Chen and Pennock
2010). For this reason, we provide a concrete example. The
example is not unique, and does not rely on n = 3.
Example 1 (BTS and n = 3). Consider three agents sharing
the following prior with m = 2 (two states): Pr(T = 2) =
0.7,Pr(S = h | T = 2) = 0.8 and Pr(S = h | T = 1) =
0.1. Based on this, the posterior signal beliefs (following
Bayes’ rule) are p{h} = Pr(Sj = h | Si = h) = 0.764 and
p{l} = Pr(Sj = h | Si = l) = 0.339.

Consider agent i = 1, and assume agents 2 and 3 are
truthful. Assume that S1 = h, so that agent 1’s truthful
reports are x1 = 1 and y1 = 0.764. The expected score for
the terms in (6) that correspond to agent j = 2 when agent
1 reports truthfully is:

E

[
ln(

X̄−13

Ȳ−13
)+X̄−13 ln(

0.764

X̄−13
)+(1−X̄−13)ln(

1− 0.764

1−X̄−13
)

]
,

with the expectation taken with respect to random vari-
ables X̄−13 and Ȳ−13. With probability p{h} = 0.764,
agent 1 believes that x̄−13 = (1 + 1)/3 = 2/3 and
ȳ−13 = 0.764 and with probability 1 − p{h} = 0.236 that
x̄−13 = (0 + 1)/3 = 1/3 and ȳ−13 = 0.236. Given this,
we have expected information score 0.764 ln( 2/3

0.764 ) +

0.236 ln( 1/3
0.339 ) = −0.108 and expected prediction

score 0.764
(

(2/3) ln(0.764
2/3 ) + (1/3) ln( 0.236

1/3 )
)

+

0.236
(

(1/3) ln(0.764
1/3 ) + (2/3) ln(0.236

2/3 )
)

= −0.117,
giving an expected score of −0.225. Considering also the
score due to the j = 3 terms in (6), the total expected score
when agent 1 is truthful is −0.450. BTS fails interim IR.

If agent 1 misreports and x1 = 0, while still reporting
y1 = 0.764, then the expected information score component
(for the j = 2 terms) would become, E

[
ln( 1−X̄−13

Ȳ ′−13
)
]

=

0.764 ln( 1/3
0.236 ) + 0.236 ln( 2/3

0.661 ) = 0.266, which combines



with the prediction score to give 0.149, and thus, considering
also the j = 3 terms in (6), yields a total expected score of
0.298. Agent 1 can do better by making a misreport.

Example 2 (BTS and n→∞). Consider the same prior but
now a large number of agents. In the limit, and with respect
to the beliefs of agent 1, random variables X−ij , Y −ij and
Ȳ ′−13 take on their respective values with probability 1:

X−ij = lim
n→∞

1

n

(
(n− 2)p{h} + 1

)
= p{h}

Y −ij = lim
n→∞

(
(p

(n−2)p{h}
{h} )(p

(n−2)(1−p{h})
{l} )

)1/(n−2)

= (p
p{h}
{h} )(p

1−p{h}
{l} ) = 0.631,

Ȳ ′−13 = (1− p{h})p{h}(1− p{l})1−p{h} = 0.301.

If agent 1 reports truthfully (x1 = 1 and y1 = 0.764),
her expected information score is ln( 0.764

0.631 ) = 0.191, and
her expected prediction score is 0.764 ln(0.764

0.764 ) + (1 −
0.764) ln( 1−0.764

1−0.764 ) = 0, i.e. 0.191 in total. A misreport
of x1 = 0 gives expected information score (and thus total
score) of ln( 0.236

0.301 ) = −0.243. BTS is Bayes-Nash incentive
compatible in the large n limit in the example.

Having demonstrated the failure of incentive alignment
and interim IR for small n in BTS, we also make the follow-
ing observation in regard to its numerical robustness:
Proposition 3. The score in the Bayesian Truth Serum is
unboundedly negative for posterior reports yi ∈ {0, 1}.

Robust Bayesian Truth Serum
In this section, we introduce the Robust Bayesian Truth
Serum (RBTS). RBTS is incentive compatible for every
n ≥ 3, ex post individually rational (meaning no agent’s
payment is negative, for any outcome), and numerically ro-
bust. We first introduce proper scoring rules.
Proper scoring rules are functions that can be used to in-
centivize rational agents to truthfully announce their private
beliefs about the likelihood of a future event.
Definition 2 (Binary Scoring Rule). Given possible out-
comes Ω = {0, 1} and a report y ∈ [0, 1] in regard to
the probability of outcome ω = 1, a binary scoring rule
R(y, ω) ∈ R assigns a score based on report y and the out-
come ω that occurs.

First, the agent is asked for her belief report y ∈ [0, 1].
Second, an event ω ∈ {0, 1} materializes (observed by the
mechanism) and, third, the agent receives payment R(y, ω).
Definition 3 (Strictly Proper Scoring Rule). A binary scor-
ing rule is proper if it leads to an agent maximizing her ex-
pected score by truthfully reporting her belief p ∈ [0, 1] and
strictly proper if the truthful report is the only report that
maximizes the agent’s expected score.

An example of a strictly proper scoring rule is the bi-
nary quadratic scoring rule Rq , normalized to give scores
between 0 and 1:

Rq(y, ω = 1) = 2y − y2

Rq(y, ω = 0) = 1− y2.
(7)

Proposition 4. (e. g., Selten, 1998) The binary quadratic
scoring rule Rq is strictly proper.

Note that if one applies a positive-affine transformation
to a proper scoring rule, the rule is still proper. For a more
detailed discussion of proper scoring rules in general, we
refer to the article by Gneiting and Raftery (2007).

The RBTS Mechanism
First, every agent i is asked for two reports:

• Information report: Let xi ∈ {0, 1} be agent i’s re-
ported signal.

• Prediction report: Let yi ∈ [0, 1] be agent i’s report
about the frequency of high signals in the population.

In a second step, for each agent i, select a reference agent
j = i+1 (modulo n) and a peer agent k = i+2 (modulo n),
and calculate

y′i =

{
yj + δ, if xi = 1
yj − δ, if xi = 0

where δ = min(yj , 1− yj). The RBTS score for agent i is:

ui = Rq(y′i, xk)︸ ︷︷ ︸
information score

+ Rq(yi, xk)︸ ︷︷ ︸
prediction score

(8)

Example 3 (RBTS and n = 3.) We illustrate RBTS with
the same setting as in Example 1, so that p{h} = 0.764 and
p{l} = 0.339. In addition, we note that p{h,h} = 0.795 and
p{h,l} = 0.664. We consider the perspective of agent 1 (as
agent i) and let agents 2 and 3 play the roles of reference
j and peer k, respectively. We assume agents 2 and 3 are
truthful. We first illustrate the calculations when S1 = h,
S2 = l, and S3 = h. If agent 1 is truthful, we have y′1 =
y2 + δ = 0.339 + 0.339 = 0.678 since y2 = 0.339 and
δ = 0.339. Since x3 = 1, agent 1’s information score is
2y′1 − y′1

2
= 2(0.678)− 0.6782 = 0.896. Since y1 = 0.764

and x3 = 1, the prediction score is 2(0.764) − 0.7642 =
0.944. In total, the agent’s score is 1.84.

To establish that, when S1 = h, agent 1 is best off re-
porting truthfully, we need to consider the expected score
and thus the distribution on signals of agents 2 and 3. For
the prediction report, we have truthfulness because scoring
ruleRq(y1, x3) is strictly proper. Agent 1’s expected predic-
tion score is 0.764(2(0.764)− 0.7642) + 0.236(2(0.236)−
0.2362) = 0.820. For the expected information score, first
consider truthful report x1 = 1. In this case, y′1 is adjusted
upwards from the realized prediction report of agent 2 and
agent 1’s expected information score is:

Pr(S2 = h | S1 = h)[
Pr(S3 = h | S1 = h, S2 = h)Rq(0.764 + 0.236, 1)

+ Pr(S3 = l | S1 = h, S2 = h)Rq(0.764 + 0.236, 0)
]

+ Pr(S2 = l | S1 = h)[
Pr(S3 = h | S1 = h, S2 = l)Rq(0.339 + 0.339, 1)

+ Pr(S3 = l | S1 = h, S2 = l)Rq(0.339 + 0.339, 0)
]



= p{h}
[
p{h,h}

(
2(1)− 12

)
+
(
1− p{h,h}

) (
1− 12

)]
+
(
1− p{h}

) [
p{h,l}

(
2(0.678)− 0.6782

)
+
(
1− p{h,l}

) (
1− 0.6782

)]
= 0.79.

For a report of x1 = 0, the expected information score is:

p{h}
[

p{h,h}Rq(0.764− 0.236, 1)

+
(
1− p{h,h}

)
Rq(0.764− 0.236, 0)

]
+
(
1− p{h}

) [
p{h,l} Rq(0.339− 0.339, 1)

+
(
1− p{h,l}

)
Rq(0.339− 0.339, 0)

]
=0.664

Agent 1 thus maximizes the expected information score
by reporting her signal truthfully.

Note that RBTS is strictly Bayes-Nash incentive compat-
ible for every n ≥ 3 and every admissible prior. We go on
to prove this in the following section.

Incentive Compatibility
In establishing the incentive compatibility of RBTS, we be-
gin with some technical lemmas. The first lemma also estab-
lishes stochastic relevance, so that the signal posteriors are
distinct for distinct signal observations. We then introduce
a proper scoring rule for eliciting signals rather than belief
reports, and use this as a building block for analyzing RBTS.

Lemma 5. It holds that 1 > p{h} > Pr(Sj = h) > p{l} >
0 for all admissible priors.

Proof. The fully mixed property of admissible priors en-
sures that beliefs are always interior, and 1 > p{h} > 0 and
1 > p{l} > 0. Left to show is p{h} =

∑m
t=1 Pr(Sj =

h | T = t) Pr(T = t | Si = h) > P (Sj = h) =∑m
t=1 Pr(Sj = h | T = t) Pr(T = t) >

∑m
t=1 Pr(Sj =

h | T = t) Pr(T = t | Si = l) = p{l}. Recalling the assor-
tative property of admissible priors, i.e. Pr(Sj = h | T =
m) > Pr(Sh = h | T = m− 1) > . . . > Pr(Sj = h | T =
1), it is sufficient for p{h} > Pr(Sj = h) > p{l} that

t′∑
t=1

Pr(T = t|Si=h)<

t′∑
t=1

Pr(T = t)<

t′∑
t=1

Pr(T = t|Si= l), (9)

for all 1 ≤ t′ < m. To see this, consider p{h} > Pr(Sj =
h) (an analogous argument can be made for P (Sj =
h) > p{l}), and construct a sequence of state distributions
Pr(m+1),Pr(m), . . . ,Pr(2). We require Pr(m+1)(T = t) =

Pr(T = t | Si = h), Pr(2) = Pr(T = t), and for each
m ≤ k ≤ 2, that

m∑
t=1

Pr(Sj = h| T = t) Pr(k+1)(T = t) >
m∑
t=1

Pr(Sj = h | T = t) Pr(k)(T = t). (10)

From this, we construct a sequence of state posteriors
such that the signal posterior on h is monotonically de-
creasing. This establishes p{h} > Pr(Sj = h). In addi-
tion, for k = m + 1 to k = 3, we require invariant (P1),
namely

∑t′

t=1 Pr(k)(T = t) <
∑t′

t=1 Pr(T = t), for all

1 ≤ t′ < k − 1 and Pr(k)(T = t) = Pr(T = t) for all
t ≥ k. From this, Pr(k)(T = k − 1) > Pr(T = k − 1).
Invariant (P1) is established for k = m + 1 by (9). Pro-
ceed by induction, constructing Pr(k) for k = m to k = 2.
For any such k, set Pr(k)(T = t) = Pr(k+1)(T = t) for
k < t ≤ m and 1 ≤ t < k − 1. Set Pr(k)(T = k) =

Pr(T = k) < Pr(k+1)(T = k), where the inequality fol-
lows by invariant (P1) for k + 1. Set Pr(k)(T = k − 1) =

Pr(k+1)(T = k − 1) + (Pr(k+1)(T = k) − Pr(k)(T =

k)), ensuring that Pr(k) is a well defined distribution with∑m
t=1 Pr(k)(T = t) = 1. This establishes (10) since the

only change in probability is for T = k and T = k − 1 and
the shift is from T = k to T = k − 1 and by the assortative
property. Moreover, invariant (P1) is established for k since
Pr(k)(T = t) is unchanged from Pr(k+1) for t < k − 1 and
Pr(k)(T = t) = Pr(T = t) for t ≥ k by construction. Fi-
nally, at k = 2 we have Pr(2)(T = t) = Pr(T = t) for all
t ≥ 2 by (P1) and thus Pr(2)(T = t) = Pr(T = t).

To obtain (9), note that

Pr(T = t | Si = h) ∝ Pr(Si = h | T = t) Pr(T = t)

Pr(T = t | Si = l) ∝ Pr(Si = l | T = t) Pr(T = t)

From this, and given that the state posterior probabilities
are normalized to sum to 1, it is sufficient for (9) that,∑t′

t=1Pr(Si=h|T = t)∑m
t=1Pr(Si=h|T = t)

<
t′

m
<

∑t′

t=1Pr(Si= l|T = t)∑m
t=1Pr(Si= l|T = t)

(11)

for all t′ < m. For t′ = 1, we have

Pr(Si = h|T = 1)∑m
t=1 Pr(Si = h|T = t)

=
A

mA+εA
<

1

m
<

B

mB−εB

=
Pr(Si = l|T = 1)∑m
t=1Pr(Si= l|T = t)

, (12)

where A = Pr(Si = h|T = 1), B = Pr(S = l|T = 1)
and εA, εB > 0. The first equality follows since the terms
in the denominator are strictly increasing (by the assortative
property), the second and third inequalities by algebra, and
the second equality since the terms in the denominator are
strictly decreasing (by the assortative property). For the case
of 1 < t′ < m, we have

t′∑
t=1

Pr(Si = h|T = t)

m∑
t=1

Pr(Si = h|T = t)
<

t′A

t′A+
m∑

t=t′+1

Pr(Si = h|T = t)

=
t′A

mA+ εA
<
t′

m
<

t′B

mB − εB

=
t′B

t′B +
m∑

t=t′+1

Pr(Si= l|T = t)
<

t′∑
t=1

Pr(Si = l|T = t)

m∑
t=1

Pr(Si= l|T = t)
, (13)

where the first inequality follows by algebra, with A =
Pr(Si = h|T = t′) and replacing smaller terms in both the
numerator and denominator with A, the first equality recog-
nizes that the remaining terms in the denominator are strictly



0 y 1p{l,I} p{h,I}

δ δ

Figure 1: Illustration of the shadowing method with y ∈
(p{l,I}, p{h,I}). Note that p{l,I} is closer to y′i = y− δ than
to y′i = y+ δ, and that p{h,I} is closer to y′i = y+ δ than to
y′i = y − δ.

increasing, the second equality recognizes that the remain-
ing terms in the denominator are strictly decreasing, and the
final inequality follows by algebra, with B = Pr(Si =
l|T = t′) and replacing larger terms in the numerator and
denominator with B. This completes the proof.

We extend this observation to second-order posteriors.

Lemma 6. It holds that 1 > p{h,h} > p{h} > p{h,l} =
p{l,h} > p{l} > p{l,l} > 0 for all admissible priors.

Proof. (Sketch) Consider p{h,h} > p{h} > p{h,l}. This
follows immediately from the same analysis as Lemma 5,
with state posterior Pr(T = t | Si = h) taking the role
of state prior, Pr(T = t), in the analysis. Since p{h,l} =
p{l,h}, the other case p{l,h} > p{l} = p{l,l} can be shown
analogously.

Lemma 7 is a known result for which we present a proof
only to build intuition.

Lemma 7. (e. g., Selten, 1998) Let p ∈ [0, 1] be an agent’s
true belief about a binary future event. If the center scores
the agent’s belief report according to the quadratic scoring
rule Rq but restricts the set of allowed reports to Y ⊆ [0, 1],
a rational agent will report the y ∈ Y with minimal absolute
difference |y − p|.

Proof. The expected score of reporting y if p is the true be-
lief isE[y] = p·

(
2y − y2

)
+(1−p)·

(
1− y2

)
. The expected

loss is thusE[p]−E[y] = p·
(
2p− p2

)
+(1−p)·

(
1− p2

)
−

p ·
(
2y − y2

)
− (1−p) ·

(
1− y2

)
= (p− y)2. That is, given

a set of reports Y , a rational, selfish agent will report the y
that minimizes (p− y)2 and thus minimizes |p− y|.

This property is not satisfied by all proper scoring rules. The
logarithmic rule, for example, does not satisfy this property.

A Proper Scoring Rule for Eliciting Signals: The
“Shadowing” Method
Making a step towards our main result, we adapt proper scor-
ing rules to elicit signals (rather than beliefs) truthfully.

Let ω ∈ {0, 1} denote a binary future event. (In the con-
text of RBTS this will be the information report by some
agent k 6= i.) In describing a general form of the method,
we allow agent i to have observed a sequence of signals
I ∈ {0, 1}o (for some o ∈ {0, 1, . . .}) before observing a
new signal Si. The shadowing method then proceeds as:

1. Agent i receives a signal Si ∈ {0, 1} = {l, h} and, based
on the prior and previously-observed signals I, forms a
posterior belief p ∈ {p{l,I}, p{h,I}} about ω.

0 yj = p{h} 1p{l,h} p{h,h}

δ δ

Figure 2: An illustration of RBTS in the Sj = h case. Note
that yj is always strictly in between agent i’s two possible
second-order posteriors p{l,h} and p{h,h}.

2. The center asks the agent for signal report xi ∈ {0, 1} and
transforms it into a “shadow” posterior report y′i by:

y′i =

{
y + δ, if xi = 1
y − δ, if xi = 0,

(14)

where y ∈ (0, 1) is a parameter of the method and δ =
min(y, 1− y) (also see Figure 1).

3. The shadow posterior report y′i, and the event ω that even-
tually materializes, is then applied to the quadratic scoring
rule Rq to give agent i a score of:

Rq(y′i, ω). (15)

Lemma 8 (Strict Properness). Agent i uniquely maximizes
her expected score in the shadowing method by truthfully
reporting her signal if y ∈ (p{l,I}, p{h,I}).

Proof. The proof is via reasoning about the distance be-
tween the agent’s posterior and the respective shadow pos-
terior. Note that 0 < y < 1 and thus δ > 0. Without loss
of generality, suppose agent i’s signal is Si = h and signal
posterior is p{h,I}. (The argument is symmetric for Si = l
and posterior p{l,I}.) There are two cases:

• y + δ ≤ p{h,I}. But now δ > 0, and so y − δ < y + δ ≤
p{h,I} and the result follows by Lemma 7.

• y + δ > p{h,I}. But now y < p{h,I} and so (y +
δ) − p{h,I} < p{h,I} − (y − δ) and the result follows
by Lemma 7.

Theorem 9. The Robust Bayesian Truth Serum is strictly
Bayes-Nash incentive compatible for any n ≥ 3 and all ad-
missible priors.

Proof. Fix some i, reference j and peer k, and assume
agents j and k report truthfully. It needs to be shown that it is
the unique best response for agent i to report truthfully. The
best response conditions for xi and yi can be analyzed for
each report type separately, because yi affects only the pre-
diction score, and xi affects only the information score. Not-
ing that strict incentives for the prediction report yi follow
directly from the use of the strictly proper quadratic scor-
ing rule, we focus on xi. There are two cases to consider in
regard to agent j:

1. Sj = h and so yj = p{h} (also see Figure 2). Conditioned
on this additional signal information, agent i’s posterior
signal belief would be p{h,h} if Si = h and p{l,h} if Si =
l. By Lemma 8 it is sufficient that p{l,h} < yj = p{h} <
p{h,h}, which holds by Lemma 6 and the fact that the prior
is admissible.



2. Sj = l and so yj = p{l}. Conditioned on this additional
signal information, agent i’s posterior signal belief would
be p{h,l} if Si = h and p{l,l} if Si = l. By Lemma 8 it
is sufficient that p{l,l} < yj = p{l} < p{h,l}, which holds
by Lemma 6 and the fact that the prior is admissible.

Other Properties and Discussion
Theorem 10. The scores in the Robust Bayesian Truth
Serum are in [0, 2] for any reports from agents including any
yi ∈ [0, 1], and thus RBTS is ex post individually rational
and numerically robust.

Proof. The binary quadratic scoring rule Rq(y, ω) is well-
defined for any input y ∈ [0, 1] and ω ∈ {0, 1}, and gen-
erates scores on [0, 1]. The inputs to Rq for computing the
information score are y := y′i ∈ [0, 1] and ω := xk ∈ {0, 1}.
The inputs for computing the prediction score are y := yi ∈
[0, 1] and ω := xk ∈ {0, 1}.

Note that reports yj = 0 and yj = 1, in particular, lead
to y′i = 0 and y′i = 1, respectively, which are well-defined
inputs toRq . This is the case where BTS is not well defined.

For a designer with a particular budget B > 0, a straight-
forward extension of RBTS is to multiplyRq with a positive
scalar α > 0 to implement a mechanism that conforms with
any budget constraint, since the total ex post cost is upper-
bounded by 2αn.

A simple randomized extension of RBTS achieves con-
stant ex post budget of B > 0 for groups of n ≥ 4 by
randomly excluding an agent from the population, running
RBTS with budget B > 0 on the remaining n − 1 agents,
and redistributing whatever remains from B to the excluded
agent. This extension to RBTS remains strictly incentive
compatible when the agents do not know which of them
is the excluded agent. While multiple equilibria cannot be
avoided in peer prediction settings without trusted reports,
this randomized extension ensures that the agents’ scores
in the truthful equilibrium cannot be less than in any other
equilibrium. Moreover, by sacrificing ex post individual ra-
tionality, the same technique can be used to implement a
mechanism with B = 0.

In contrast to BTS, RBTS easily adapts to online polling
settings, where the center publishes partial information
about reports as agents arrive. Since RBTS achieves incen-
tive compatibility for any group with n ≥ 3 agents, the cen-
ter can sequentially score groups of three, and subsequently
release their reports.

Conclusion
In this paper, we introduced a novel Bayesian Truth Serum
which takes the same inputs as the original Bayesian Truth
Serum by Prelec but achieves strict Bayes-Nash incentive
compatibility for every number of agents n ≥ 3. It is inter-
esting to see that a particularity of the quadratic scoring rule
allows the development of proper scoring rule based mecha-
nisms for eliciting signals. Using this “shadowing” method,

we developed a constructive proof for the incentive com-
patibility of RBTS. We believe that RBTS can have practi-
cal impact, providing a more principled approach to incen-
tivize small groups of workers on crowdsourcing platforms
such as Amazon Mechanical Turk (AMT), where the origi-
nal Bayesian Truth Serum has already been shown to be use-
ful for quality control (Shaw, Horton, and Chen 2011). Most
important for future work is to relax the requirement of bi-
nary information reports, which is the limitation of RBTS in
comparison to BTS.
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