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Abstract

An infofuse is a combustible fuse in which information is encoded through the patterning of

metallic salts. The constraints and advantages and unique error statistics of physical chemistry

require us to rethink coding and decoding schemes for these systems. We take advantage of the

non-binary nature of the our signal with a single bit representing one of N = 7 states to produce a

code that, using a single or pair of intensity thresholds, allows the recovery of the intended signal

with an arbitrarily high recovery probability given reasonable assumptions about the distribution of

errors in the system. An analysis of our experiments with infofuses shows that the code presented

is consistent with these schemes, and encouraging for the field of chemical communication and

infochemistry given the vast permutations and combinations of allowable non-binary signals.
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Infochemistry is an emerging field, attempting to develop methods of storage and trans-

mission of information using chemical or material means. The advantage of these modes

of communication over electronic communication will depend on the speed, reliability, and

versatility of the transmission, as well as the conditions under which the signal is to be

sent (e. g. with no power source available), but remains relatively unexplored, since the

maximum rate at which information can be transmitted is limited by the physical length

scales and timescales in the system as well as the noisiness of the channels which clearly

differs significantly from an electronic analogue.

Recent work has shown that it is possible to transmit and receive messages using both

chemical and material means, using an infofuse [1, 2], a combustible system in which pat-

terned metallic salts encode information, and an infobubble [3], a bubble-based microfluidic

device in which optical pulses encode information. Reliable transmission of a signal in either

of these examples, and indeed in any communication system requires the development of

methods to overcome the noise in transmission, which is itself a function of the system.

Over the past half century, various error correcting codes [4–9] have been developed and

allow for the possibility of accurate signal recovery with minimal loss of information density,

for both binary and non-binary systems. In its most elemental form, error correction is

accomplished by including redundant check bits, which convolve the positions and values

of each bit in the signal in a simple manner. While binary communication schemes are the

most commonly studied[5, 16], non-binary alphabets (where each bit can attain one of N

possible values) may increase the efficiency of these redundant bits in correcting errors[9, 18].

However they might introduce further complexity in both encoding or correction. Here we

focus our attention on the infofuse which uses a triplet code of pulses with a bit taking on

N = 7 possible values and develop a simple error correcting code tailored for correcting

the errors that takes advantage of the inherent non-binary nature of the system[9, 18]. The

coding scheme introduces redundancy in the transmitted signal, with a message of length

n + m transmitted to communicate an intended signal of length n using m redundant check

bits. Our approach which combines theory and experiment shows that this code can recover

the intended sequence with an arbitrarily high probability given some simple but reasonable

assumptions about the distribution of insertion errors. We further show that using a pair

of thresholds, dividing the data into ‘clear’ and ‘indeterminate’ peaks can increase both the

reliability of recovery and reduce the computational complexity. Finally, we show that for
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the infofuse with a bit taking on N = 7 possible values, we achieve a good balance between

the length of the fuse required to send a message and the efficiency (the ratio n/(n + m)) of

the error correction.

THE INFOFUSE

FIG. 1: Block diagram of portable detection system

The experimental system

Infofuses[1] are strips of a flammable polymer (nitrocellulose) patterned with spots of

thermally emissive salts. An ignited infofuse supports a flame front that propagates along

the strip at a roughly constant velocity and successively ignities each spot in turn, thereby

emitting optical pulses in time. Infofuses use three distinct alkali metals with very sharp

emission spectra: Potassium (K, at 767 nm), Rubidium (Rb, at 780 nm), and Cesium (Cs,

at 852 nm). The nitrocellulose strips are on the order of 2-3 mm wide, and 0.1 mm thick.

The speed of the flame front as it propagates along the fuse depends strongly on the fuse

width, but is generally in the range of 1-3 cm/s. The emission from each of the chemical

spots is observed by a telescopic receiver, which monitors the emission midpoint of each

element. The observed light pulses have a duration of about 100 ms (∼ 0.3 mm wide),

and the spacings between subsequent chemical spots is on the order ∼ 1cm. The detector

has excellent range, and clear signals are obtainable from more than 500m away (with

an estimated 1.4km maximum range). Signals sent within the lab (close range of ∼ 20m

only allowed 4-5 pulses per fuse before falling out of the range of view of the telescope,

so long messages sent within the lab were broken into multiple fuses. For the purpose of

encoding information with these three emitters, we used a scheme that assigns alphanumeric

characters to simultaneous combinations of unique optical pulses[1]: seven (23 − 1) unique
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optical pulses exist for three distinct emitters. Each pulse combination is given a numerical

value, with K=0, Cs=1, Rb=2, K/Cs=3, K/Rb=4, Cs/Rb=5, and K/Cs/Rb=6. Two

consecutive pulses (giving a total of 49 unique pair combinations) are therefore sufficient

to encode each alphanumeric character and some special characters (see the Supplementary

Information for further discussion).

A portable infofuse detection system, in the form of a three-channel hard-limiter re-

ceiver, was implemented for long-distance experiments to verify the single threshold encod-

ing/correction algorithm. The main modules of the system consist of three channels of high-

sensitivity photo-receivers (PDF10A, Thorlabs Inc.) and peripheral optics that separate

and amplify three spectrum emissions from burning infofuse (767nm, 78nm, and 852nm).

The photo-receivers output signals are digitized by voltage comparators (TLC3704, Texas

Instruments Inc.) using a single threshold , which can be independently adjusted (with Vi

the voltage threshold for the ith channel) to compensate for the differing sensitivities and

incident intensities in each of the channels. The digital outputs of the comparators are then

transmitted via digital buffers (MM74C04, Fairchild Semiconductor Corp.) to a high-speed

Field-Programmable Gate Array (FPGA) chip for digital signal processing, where an asyn-

chronous algorithm implements message acquisition and decoding. The algorithm puts the

digital system into standby mode and only wakes it up for data acquisition if the optical-

electrical signal of any of the three photo-receivers crosses the thresholds V1 − V3. In this

way, the data acquisition rate can be automatically adjusted to fit the speed of burning

in the infofuse, thus improving the data transmission efficiency and reducing system power

consumption. The results of the decoded messages are displayed on a liquid crystal monitor

(CFAH1604A-YYH-JT, Crystalfontz).

Errors in the infofuse

In Fig. 2(a) we show a typical sample of the measured intensity of the infofuse associated

with the transmission of the message (in this case, the encoding for ‘tufts’, described further

below) as a function of time, with sharp, well defined intended peaks whose intensity is

variable, but well above the background noise over most of the signal duration. However

at the beginning and end of this particular transmission the noise is much larger (typically

the higher noise initially may be due to the ignition of a match); indeed decreasing the
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thresholding level would likely add spurious additional Potassium peaks to the beginning

and end of the signal and produce insertion errors in the signal. In Fig. 2(b), corresponding

to the message we see that the intended peak near 8s (marked as intended in the figure)

has a temporal profile similar to the other intended peaks, but with a significantly reduced

maximum intensity. This is likely caused by either a misapplication of the metallic spot

(too little Potassium), or because portions of the pattern did not successfully ignite. The

intensities of the noise peaks near 8.5s and 9s are similar in both intensity and profile to the

low intended peak at 8s, making it difficult to distinguish between signal and noise. While

the peak near 8.5s may be discarded due to the small temporal spacing from its neighbors,

reducing the spacing between peaks would make such a distinction more difficult. The noise

peak near 9s could be discarded (as well below background), treated as an insertion error

(a K/Rb peak followed by a temporally very close Cs peak), or merge with the intended

peak (with the intended Cs peak read as an K/Rb/Cs peak). While the particular values

of the thresholds in temporal spacing and intensity will have an effect on the noisiness of

the signal sent by the infofuse, experimentally, we find that the primary sources of error are

associated with the insertion of unintended bits and possible permutations of intended bits.

Importantly, we do not have the problem of any missing peaks over the range of operation of

our receivers, so that we do not need to worry about deletion errors as we develop a robust

error correction scheme for the infofuse.

In order to overcome the noise in transmission, a simple solution is to simply increase

the spacing between the metallic patterns. This will cause all of the noisy peaks to be well

separated, so that unambiguously determining the applied chemicals is virtually assured

without confusion due to neighboring peaks. However, this will decrease not only the physical

rate of the information transfer, but also the length of the signals that can be sent (since

messages must be encoded on a fuse of finite length). If we have n intended peaks separated

by a distance d0, and the average flamefront velocity is v, the physical rate is r0 = v/d,

with a time ∼ n/r0 required to transmit the message. By increasing the spacing from d0

to d, we decrease the physical rate of order nd0/d. In Fig. 2, the temporal separation

between intended peaks is on the order of the width of the chemical patterning. Increasing

the spacing by a factor of 2 will significantly separate the peaks, simplifying the process of

distinguishing between data and noise, but at the cost of cutting the physical rate in half

and double the length of the transmission time.
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FIG. 2: Errors in the Infofuse. Blue represents K, black Cs, and red Rb. (a) shows a sample

of the errors occurring for the infofuse. Noise peaks at the beginning and end of transmission

have a somewhat broader profile, but peak intensities well above background. The intensity of

the noise near 2s is on the order of the intended peaks near 4.5-5.5 s. Two peaks occur near 5.5s,

with a temporal spacing smaller than expected. (b) Intended peaks may be difficult to distinguish

between noise peaks in both maximal intensity and intensity profile. The noise peak near 9s could

be considered either an insertion (noise followed by intended) or permutation (noise and intended

giving a K/Rb/Cs signal).

An alternative to simply increasing the distance between peaks is to introduce a self-

correcting code into our encoding for the infofuse, which will allow the correct signal to be

reconstructed in the presence of noise. Such a code will be preferable to simply increasing

the distance between peaks if it is more efficient (i.e. allows a message to be reliably sent at

a higher rate). A variety of error correcting codes have been developed to allow the recovery

of a noisy signal under differing noise conditions. In a perfect world, an error correcting code

would be designed so that any code word sent could not be confused for any other possible

code word, regardless of the errors that occur (see Fig. 3). The classic Hamming[4, 16]
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FIG. 3: Conceptual diagram of error correcting codes. Each intended signal Xi that can be sent

will map onto a set of received signals Xi → {Yi} that differ from the original. By restricting the

sent messages to those whose mappings {Yi} do not overlap for all i, the intended signal can be

perfectly reconstructed. If the overlap is small, the correct signal can only be recovered with high

probability.

or Golay[6] codes, the more commonly used Reed Solomon codes [7], or the more modern

and extremely high rate low density parity check codes[15, 19] allow the correction of up

to a fixed number of permutation errors, ⌊(h − 1)/2⌋ (with h the minimum or Hamming

distance of the code), with 100% probability. All of these codes are effectively implemented

for the correction of permutation errors, where the intended bit value di may be permuted

via channel noise into an unintended value d′

i. However, experimentally we find that the

infofuse suffers from insertion errors (where bits may be added to the signal, see Fig. 2),

which can not be handled using these well known codes. While error correcting codes that

address insertion or deletion errors have been studied [9, 11–13] from a variety of approaches,

many are not optimally adaptable to non-binary codes. Low density parity check (LDPC)

codes, which are extremely efficient for long signals, are somewhat inappropriate for the short

signals that must be sent via the infofuse, due to the physical constraints on the length of

the fuse. Additionally, codes which are capable of correcting insertions and deletions, while

only insertions are observed experimentally, are expected to be less efficient than a code that

focuses solely on insertion errors.
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CODING SCHEME

Check Bits

We wish to develop a simple scheme that uses the non-binary nature of the infofuse to

correct an arbitrary number of errors with high probability[19]. As seen in Fig. 2(a), if we

choose a single, sufficiently low intensity threshold we can be certain of correctly including

all data peaks, but must accept that some noise peaks will be inserted. Alternatively, if we

choose a pair of thresholds with one sufficiently high, we can be sure that all noise peaks

are excluded from the signal, but some data peaks may be excluded as well. These dropped

data peaks will join a set of indeterminate peaks: intensity peaks that clearly indicate that

there was some chemical present (well above background), but whose intensities are not high

enough to be deemed ‘clear’ data peaks. In this case, the receiver must be able to accurately

which of the indeterminate peaks were intended, and which are noise.

To allow error correction in the infofuse, the sender and receiver agree on the number of

data bits, n, and the number of check bits, m, beforehand. The check bits are chosen to

convolve both the position and the value of each data bit in a unique way. The check bits

are chosen such that the first N − 1 bits have the simple form

ck =
∑

i

ik−1di mod N, (1)

where di is the data bit value at the ith position and N = 7 is the number of possible bit

values. This simple form for the check bits is suboptimal in many respects, chosen only

for clarity, simplicity, and flexibility (see the SI for further discussion). It is not difficult

to see that the probability of a randomly chosen sequence producing a given set of {ck} is

pfail = N−m (similar to the discussion in Sec. 8 of Ref. [9]). This exponentially decaying

probability will allow the determination of a robust error correcting code. Below, we describe

the correction scheme for insertion errors (see the SI for discussion of permutation errors).

While codes which have the ability to correct a single insertion or deletion error with 100%

probability convolve data and position with two constraints[13, 14], we will see the use of

multiple check bits and large-alphabet (N = 7) encoding allows us to correct an arbitrary

number of insertion errors with high probability.
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Single Threshold correction

If a single intensity threshold is used (see Fig. 2), with the cutoff set sufficiently low,

the received signal will be a combination of all n + m data and check peaks, as well as

k ≥ 0 noise peak insertions. For the moment, we assume the m check bits are perfectly

recovered, and unrealistic and severe approximation that will be discussed in detail below).

The possibility of permutation errors is also neglected here (see the SI for further discussion).

In order to model the noisy transmission, we assume a uniform probability p that a noise

peak is inserted following any observed peak in the data block. The number of insertion

errors observed in the system then has the distribution Pins(k) =
(

n+k+1

k

)

pk(1 − p)n, giving

〈k〉 = np/(1 − p), with a variance 〈k2〉 − 〈k〉2 = np/(1 − p)2. A receiver who finds a signal

with n + k peaks can simply determine all possible subsequences of length n and compare

the received check bits to the computed values (where the final m bits are assumed correct,

see below for further discussion). There will be
(

n+k

n

)

such sequences, so long sequences

with multiple errors may have an extremely high computational cost. The probability of

recovering only the correct signal given k insertion errors is Prec(k) >∼ (1 − N−m)(
n+k

n )−1,

and the total recovery probability (i.e. the probability that a single, unique sequence is

recovered) is

Prec
>∼

∞
∑

k=0

Pins(k)

(

1 − N−m

)(n+k

n )−1

(2)

The recovery probability as a function of m is shown in Fig. 4, and it is clear that Prec

is sigmoidal in nature and increases rapidly beyond the midpoint of the transition. This

expression incorporates the total number of possible trial sequences rather than unique trial

sequences (neglecting any correlations between the trial sequences), and thus will underes-

timate the probability of recovery.

A sequence containing the average number of insertion errors, k = 〈k〉 = np/(1 − p),

will require
(

n+k

n

)

∼ exp[nHe(p)/(1 − p)] trial sequences, where He(p) = −p ln(p) − (1 −
p) ln(1 − p), similar to the binary entropy function[4]. Due to the exponential growth of

the computational complexity of the code, in practical implementations we must choose

the number of data bits n such that the number of expected trial sequences is not too

large. We expect the number of errors to scale as k0 ≈ 〈k〉 = np/(1 − p), with higher

order corrections scaling as δk0 ∝
√

〈k2〉 − 〈k〉2 ∼ √
np/(1 − p), where the proportionality
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constant is of order unity. It is not difficult to see that Prec(k0 + δk0) ∼ 1 − ǫ when

m = m0 ∼ − logN

[

1 − (1 − ǫ)(
n+k0+δk0

n )
−1

]

, yielding

m0 ∼ n
HN(p)

1 − p
−

√
n

logN(p)
√

p

1 − p
+ g(n, ǫ)

HN(p) = −p logN(p) − (1 − p) logN(1 − p) (3)

with g(n, ǫ) an undetermined function satisfying g(n, ǫ)/
√

n → 0 as n → ∞. g can in

principle be determined numerically, but is analytically difficult to determine directly. This

argument determines the number of check bits required to recover from k0 + δk0 errors with

high probability, and essentially estimates the number of errors that may occur while the

overlap in output sequences remains small (as diagrammed in Fig. 3). The asymptotic values

of m are shown in Fig. 4(a) for various values of p, and the leading order term in n roughly

coincides with the midpoint of the transition between low and high recovery probability. As

n → ∞, the dominant contribution to m will be the number of check bits required to reach

the transition.

Higher rates using multiple thresholds

Improved recovery statistics can be attained by using a pair of thresholds, dividing the

signal into clear, indeterminate, and background ranges. Peaks in the indeterminate range

will be a mix of intended peaks and noise peaks, and the error correction scheme must be

able to distinguish between the two. We assume the threshold Icut is chosen sufficiently high

so that no noise peaks ever fall into the clear range, else our coding scheme would fail. The

receiver will find n− l clear peaks, as well as k+ l indeterminate peaks (with l the number of

intended peaks that are considered indeterminate and k the number of insertions). In order

to recover the intended signal, all possible sequences of length n containing all n − l clear

peaks and l of the indeterminate peaks can be generated, and compared to the check bits.

Again, this decoding scheme has high computational complexity for long, noisy signals, with
(

k+l

l

)

trial sequences being generated. However, the number of trial sequences using a pair

of thresholds is strictly less than when a single threshold is used.

We assume that the probability of an intended peak being considered indeterminate is

uniform with probability q, and maintain the stringent assumption that all m check bits are
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q=0.01

q=0.5

q=1.0

(a) increasing insertion (p)

(b)

q=0.25

q=0.75

p=0.2

p=0.15

p=0.1

p=0.05

increasing indeterminate (q)

FIG. 4: Recovery probability for insertion errors. (a) shows Prec as a function of the number of

check bits m for varying insertion probability p, all with n = 250 (solid red, p = 0.05, dashed

purple 0.1, dotted blue 0.15, and dash-dotted black 0.2). The large circles are centered on the

asymptotic value of m = nHN(p)/(1− p), while the large squares are centered on the higher order

solution in Eq. 3. (b) shows the recovery probability using a pair of thresholds with p = 0.2 and

n = 250 for varying m and q (q being the probability of an intended peak found below the clear

threshold). Shown are q = 0.01 (solid red line), 0.1 (dashed purple line), 0.25 (dotted blue line),

0.5 (dash-dotted black line), and 1 (black points). q = 1 is identical to the p = 0.2 curve in (a).

Large circles denote the predicted midpoint value m0 in Eq. 5.

perfectly recovered. The probability of recovering the the intended signal uniquely is then

Prec =

∞
∑

k=0

n
∑

l=0

Pins(k)Pdel(l)

(

1 − N−m

)(k+l

l )−1

(4)

with Pdel(l) =
(

n

l

)

ql(1 − q)n−l and Pins(k) the uniform probability of insertion. Eq. 4

counts all possible trial sequences, not just unique trial sequences, and thus underestimates

the probability of recovery. The average number of indeterminate peaks will be 〈k + l〉 =

nq + np/(1 − p), and we can perform the same analsis as in the single threshold case to
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q=0.25

q=0.5

q=0.75

Bitwise-Trinary

q=1.0 (single thresh.)

Binary

FIG. 5: The predicted information rate using meta-check bits from Eq. 6. Shown is the rate in

the indeterminate channel with q=0.25 (blue empty triangles), 0.5 (blue filled triangles), 0.75 (red

empty circles) and 1.0 (red filled circles) for N = 7. q = 1.0 is equivalent to the single threshold

corrector. The filled black squares show the rate for q = 1, but for the binary N = 2, and the filled

black squares show the rate for the trinary encoding with a division of bits into bytes of length

b = 2 (Nbyte = 9). These both clearly display the increased efficiency of large alphabet encoding.

estimate the number of bits required:

m0 ∼
n

1 − p

[

(p + q − pq) logN

(

p

1 − p
+ q

)

− p logN

(

p

1 − p

)

− (q − pq) logN (q)

]

+ O(n
1

2 )(5)

Eq. 5 is equivalent to Eq. 3 if the probability of dropping an intended peak q = 1, and

decreases with decreasing q. In Fig. 4(b), we see that for fixed insertion probability p, the

recovery probability has a sharper transition for far lower m as q decreases (see SI Fig. 1 as

well). For decreasing q, the indeterminate error correction is becomes more reliable than the

insertion correction. A pair of thresholds not only decreases the computational complexity,

but also greatly increases the reliability of communication.

Meta-check bits

In our determination of the number of check bits required to correctly recover the intended

sequence, we have thus far made the stringent assumption that the check bits are perfectly

recovered. The results presented above can be used with minimal modification if we can be

sure of recovering the check bits with high probability. This immediately suggests the use

of meta-check bits, which perform the same redundancy on the check bits that the check
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bits perform on the data. The meta bits will have the form c′k =
∑

i i
k−1ci mod N , much

like in Eq. 1. Each of these meta-check bits can suffer from insertion or indeterminate

errors as well, so an additional set of bits must be used to check all meta bits as well. The

multi-layered level of protection can be continued indefinitely (discussed further in the SI),

allowing for an iterative protection scheme ensuring reliable recovery.

In the limit of large n, the kth meta-check block will require mk/n = (m0/n)× (mk−1/n)

bits (with m0 given in Eqs. 3 or 5).

m ∼ n

∞
∑

k=1

(

m0

n

)k

= n
m0

n − m0

(6)

The rates R = n/(n + m) = 1−m0/n of these codes are shown in Fig. 5. The rate vanishes

at a finite value of p for all q, due to the fact that a sufficiently noisy transmission would

require m0 > n. At worst (with q = 1 in the single threshold case), the rate vanishes at

pmax ≈ 0.68. Interestingly, for a binary channel with N = 2, we find pmax ≈ 0.22, showing

the increased efficiency due to the non-binary coding. The indeterminate error correction

scheme has an even higher rate as q (the probability of an intended peak being considered

indeterminate) decreases.

It is worth noting that an alternative to our large alphabet encoding (N = 7) could be

replaced with a binary or trinary system of individual peaks (i.e. K=0, Cs=1, Rb=2), which

are grouped together in bytes of length b. Using 3 elements, each byte can attain Nbyte = 3b

states, so it is useful to determine the efficiency of our error correcting code using such an

encoding system. A system which uses b = 2 (i.e. Nbyte = 9) would still require a pair of

bytes to represent an alpha-numeric character, but would require twice as many peaks as

the N = 7 case to send the message. Eq. 3 can be adapted in a straightforward fashion, and

we find that pmax ≈ 0.59 < 0.68 for the byte-wise trinary signal. Such a method is thus less

efficient than the large alphabet encoding used, despite the fact that Nbyte = 9 > N = 7,

both in the expected rate of the code (Fig. 5), as well as in the required fuse length to

send a message (b = 2 transmission would require twice the length of fuse to send the same

signal). Bytes grouped with b ≥ 3 do allow a higher information rate than the large alphabet

N = 7 encoding, but are more inefficient in terms of fuse length (with a b = 3 encoding

having pmax = 1 but requiring 1.5 times the number of bits to send the message). The large

alphabet encoding presented here thus strikes an excellent balance between length efficiency

and error correction efficiency, important in the context of infochemistry.
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0 recovered

1 recovered

> 1 recovered

0 recovered

1 recovered

> 1 recovered

(a)

(b)

FIG. 6: The error correction of the message ‘tufts,’ using three check bits and one meta-check bit

(n = 10, m0 = 3, m1 = 1). (a) shows the recovery using the Icut = 0.6Imax, (b) shows recovery

using Icut = Imax. Both include the results correcting for 0, 1, and 3 permutation errors. Upward-

slashes denote failed recovery, downward slashes denote unique recovery, and horizontal slashes

denote multiple recovered sequences. Shown are only those sequences that gave fewer than 2× 104

unique trials, which excludes 7 (14%) of the attempts from (b).

EXPERIMENTAL RESULTS

In order to test the applicability of our coding scheme to the experimental system, we

sent the signal ‘tufts’ 19 times using 3 check bits and 1 meta check bit (14 total bits,

with a rate n/(n + m) = 0.71, the encoding scheme is presented in the SI). The intended

signal is 10220010010441, and translates to ‘tuftsiz’ with the four additional error-correcting

bits. For each experiment, the intensity of each channel (K, Rb, and Cs) was rescaled
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by the maximum intensity. Each message was decoded with a noise threshold of at most

Inoise = 0.12Imax, but the threshold was increased if necessary so that no more than 5

insertion errors occurred in any signal (an increase to Inoise = 0.15 was sufficient in all

cases). For most signals this threshold was unnecessarily low, although such a low threshold

was required for some. This threshold was applied to all experiments to be absolutely

certainty that all data peaks would be included. A higher threshold would have produced

fewer channel errors by ignoring more of the inserted peaks, so error correction with this

threshold demonstrates a worst-case scenario. Peaks were considered to occur simultaneously

if their maxima were within 0.08s, and peaks separated by more than 0.11s from both of

their nearest neighbors would be included in the returned sequence (with all other peaks

discarded as noise). The temporal thresholding is also lower than is strictly necessary,

since the average spacing between intended peaks is ∼ 0.3s. The use of a lower threshold

again ensures that no intended peaks are dropped, at the cost of additional insertions or

permutations. Because of the limited field of vision of the telescopic detector over short

ranges, the signal was divided into three fuses, with 5, 5, and 4 bits respectively. This led

to increased separation between blocks of bits (see Fig. 2(a)). The very limited range of

temporal cutoffs (a range of 0.03s for discarding peaks as noise) suggests that this increased

spacing does not significantly alter the noise statistics. When the two thresholds were used,

the threshold for clear peaks was set to Icut = 0.5Imax (see Fig. 6(b)). In all cases, we first

tried to correct the signals without regard for permutation errors, but often found that the

signal was not accurately recovered. We then corrected for a single permutation error (see

the SI for discussion of permutation correction), which ensured the recovery of the correct

sequence in all experiments.

In Fig. 6, we show histograms of the results of the error correction, using a single (Fig.

6(a)) or pair of thresholds (Fig. 6(b)). In both, we show the results when correcting for

both zero and one permutation error in the same histogram. We divide the experimental

results into attempted recoveries for which no trial sequences satisfied the check bits (red,

upward slashes), those that recovered a unique sequence (blue, downward slashes), and those

for which multiple sequences were recovered (grey, horizontal slashes). This histogram is

plotted as a function of the number of unique trial sequences generated, rather than the
(

n+k

n

)

sequences expected from the random coding arguments above. The average results

are also listed in Table 1. We note that in all but one case, if any signals were recovered
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Recovery statistics with two thresholds

perms trials 〈correct〉 〈recovered〉

0 33.9 0.58 0.58

1 202 1.0 1.16

Recovery statistics with one threshold

perms trials 〈correct〉 〈recovered〉

0 192 0.84 0.89

1 883 1.0 1.53

Table 1: Summary of the recovery statistics using one or two thresholds. The first column shows

the number of permutation errors corrected, second column the geometric mean of the number of

unique trials generated, third the fraction of trials that found the correct sequence, and fourth

the average number of returned sequences.

one of them was the intended ‘tufts’; however, other spurious matches were possible. In

all cases where the unique sequence was not recovered, a permutation error had occurred

but was uncorrected. In general, the number of unique trial sequences generated using a

pair of thresholds was lower than the number using q = 1. This is due to the additional

information created by labeling some peaks as ‘certainly’ intended, and greatly reduces the

computational complexity of decoding. In Fig. 6, all occurrences of zero recovered sequences

corresponded to at least one permutation error occurring. Correcting permutation errors

can greatly increase the number of trial sequences that must be sampled, and increases the

probability of finding more than one recovered sequences. The unique intended signal ‘tufts’

was recovered as long as the number of unique trial sequences was less than 3,418 (giving rise

to three matches), while at worst 5 sequences were recovered (the intended and 4 spurious

matches) for 21,015 unique trials. The largest number of trial sequences that resulted in

a unique (and correct) match was 4,207. This shows the importance of correlations in the

trial sequences, since for a randomly drawn set of trials, we would expect the probability of

recovering a unique match as Prec < (1−7−3)4207 ≈ 5×10−6 (see Eq. 2). The random coding

argument presented above significantly underestimates the probability of recovery, and the

surprisingly small number of recovered sequences given the number of trial sequences shows

the importance of correlations between trial sequences. It is worthwhile to note that even
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in cases where multiple sequences satisfy all of the check bits, the error correction scheme

still produces a drastic reduction in the number of possibly intended messages. In the

worst case, with 21k trial sequences, the five recovered messages translate to ‘tufts,’ ‘saets,’

‘saosr,’ ‘tess3,’ and ‘ efs*.’ While it is clear that the possibility of multiple spurious matches

is a limitation of our coding scheme, it is equally clear that the 21k possible sequences are

reduced to a set of five, for which the english message is clearly distinguishable.

CONCLUSIONS

We have presented a relatively simple method for error correction for messages sent via

a burning fuse patterned with metallic salts. Our coding scheme depends on the experi-

mentally observed noise properties of the system: while noise peaks may cause insertion or

indeterminate errors (by being indistinguishable from data peaks), no information is truly

lost from the system. Even with the simplest possible representation for the redundant

error-correcting bits (see the SI), the experiments show that our correction scheme is able

to recover the intended signal in the presence of noise with high probability. By introduc-

ing layering in the error correction, in the form of the meta-check bits, it is possible to

achieve arbitrarily high probability of signal recovery, assuming errors are sufficiently rare.

A random-coding argument that shows there is an achievable, finite rate for error correction

in an idealized infofuse system. However, the experiments show a much higher probability of

recovery than would be expected given the random coding argument, due to the correlations

in trial sequences.

The highly efficient nature of the code is due primarily to the non-binary nature of the

encoding in the infofuse. A binary or trinary signal can be encoded by grouping bits into

bytes of finite length in order to produce a large number of states per byte, but has an

associated cost in increasing the required length of the signal. We have seen that not only

does byte-wise trinary communication require effectively doubling the length of the signal,

but also that the increase in the average number of errors reduces the efficiency of the code

in comparison to a large N bit-wise coding. It is worthwhile to note that this code could be

applied to a system where a larger N is used for encoding, such as increasing the number of

emissive salts used in the preparation of the infofuse. Likewise, higher information density

could be achieved by using the concentration of salts in each spot to encode information[1].
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While the choice of appropriate threhsholds could be more difficult in this situation, we

expect that increasing the alphabet size will give an increase in the efficiency in the code

[18]

The particular nature of the noise observed in the infofuse, coupled with the great advan-

tages in large N encoding, suggest that there may be great advantages in certain cases in

chemical communication. One can envision a multitude of physical or chemical systems in

which the number of ‘bits’ can represent a many states (large N) in a novel form of commu-

nication. For each, all that remains is a more complete understanding of the errors caused in

transmission, and how to design an error correcting code that takes advantage of the noise

characteristics for each. In some cases, the many well developed codes designed for binary

communication may be adaptable or immediately applicable, but new techniques may be

required to fully utilize the advantages of each system while simultaneously overcoming the

inherent disadvantages in the same.
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