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Abstract

Fibronectin polymerization is essential for the development and repair of the extracellular matrix. Consequently,
deciphering the mechanism of fibronectin fibril formation is of immense interest. Fibronectin fibrillogenesis is driven by cell-
traction forces that mechanically unfold particular modules within fibronectin. Previously, mechanical unfolding of
fibronectin has been modeled by applying tensile forces at the N- and C-termini of fibronectin domains; however,
physiological loading is likely focused on the solvent-exposed RGD loop in the 10th type-III repeat of fibronectin (10FNIII),
which mediates binding to cell-surface integrin receptors. In this work we used steered molecular dynamics to study the
mechanical unfolding of 10FNIII under tensile force applied at this RGD site. We demonstrate that mechanically unfolding
10FNIII by pulling at the RGD site requires less work than unfolding by pulling at the N- and C- termini. Moreover, pulling at
the N- and C-termini leads to 10FNIII unfolding along several pathways while pulling on the RGD site leads to a single
exclusive unfolding pathway that includes a partially unfolded intermediate with exposed hydrophobic N-terminal b-strands
– residues that may facilitate fibronectin self-association. Additional mechanical unfolding triggers an essential arginine
residue, which is required for high affinity binding to integrins, to move to a position far from the integrin binding site. This
cell traction-induced conformational change may promote cell detachment after important partially unfolded kinetic
intermediates are formed. These data suggest a novel mechanism that explains how cell-mediated forces promote
fibronectin fibrillogenesis and how cell surface integrins detach from newly forming fibrils. This process enables cells to bind
and unfold additional fibronectin modules – a method that propagates matrix assembly.
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Introduction

Fibronectin (FN) is an extracellular matrix (ECM) protein that

plays an important role in cell adhesion, growth, and survival

during embryological development and is critical for wound

healing and maintenance of normal tissue architecture throughout

adult life [1–3]. FN is secreted as a soluble dimer but forms fibrils

in the extracellular space [4]. Cells bind to FN molecules through

transmembrane integrin receptors that recognize a conserved

solvent-exposed RGD loop within the cell-binding region of FN

[5–7]. Binding of cell-surface integrins is necessary for FN

fibrillogenesis; e.g., antibodies that prevent binding of FN to

integrins inhibit the formation of FN fibrils in vitro [8]. However,

the binding of FN to integrins is not sufficient to initiate fibril

formation; instead cells must also exert cytoskeletally-generated

traction forces on their cell surface integrins, which transfer the

force to underlying FN adhesions to promote FN fibril assembly

[9,10]. Cells therefore trigger FN fibrillogenesis and remodel the

ECM by exerting mechanical stresses at a specific position in the

FN molecule – the RGD site that mediates cell-surface integrin

binding [4,6,11].

FN is a multidomain protein where each domain can be

classified into one of three distinct types (I, II, or III). The 10th type

III repeat (10FNIII) contains the RGD site that is required for

integrin recognition. Molecular force spectroscopy studies have

revealed that this module is the most compliant, and thus it has

been suggested that 10FNIII unfolds in response to cell-traction

forces and that this unfolding facilitates FN fibrillogenesis [12].

While various aspects of this hypothesis have been debated in the

literature [13,14], there are data to suggest that 10FNIII unfolding

plays a role in FN fibril formation. For example, recent studies

suggest that the force generated during actin-myosin mediated cell

traction is sufficient to unfold a FNIII module and that 10FNIII

unfolding may facilitate the formation of FN fibrils in vitro [15,16].

Consequently, characterization of specific regions of 10FNIII that

become exposed when mechanically strained may offer insight

into the earliest steps of FN fibrillogenesis.

Studying the effects of mechanical strain on the structure of

10FNIII is problematic because the direct observation of short-

lived, partially unfolded states is difficult to achieve experimentally.

Computer simulations provide a useful approach to address this

problem. Molecular dynamics simulations, for example, have shed

PLoS ONE | www.plosone.org 1 June 2008 | Volume 3 | Issue 6 | e2373



light on the physical basis of the mechanical stability of titin – a

modular protein consisting of repeating FNIII-like domains – and

of FN [17–21]. But in all of these simulations the molecules were

mechanically strained by applying tensile force to the N- and C-

termini of the 10FNIII domain [17–21]. This loading pattern may

not be helpful for understanding cell-traction induced fibrillogen-

esis as it is more relevant to understand how forces exerted

through integrins bound to the RGD-loop of 10FNIII influence

10FNIII unfolding. Consequently, the goal of this study was to

uncover molecular details of force-mediated unfolding of the

10FNIII domain under physiological loading conditions by

applying tension along an axis that includes the integrin-binding

RGD loop.

Our data suggest that pulling at the RGD motif leads to partial

unfolding of 10FNIII along a unique and well-defined pathway. By

contrast, pulling at the N- and C-termini leads to unfolding that

can occur along many different pathways. Unfolding along a

unique and robust pathway provides a mechanism to enable FN to

reliably sample a limited number of intermediate structures that

may preferentially promote FN fibril formation. These studies also

reveal a novel uncoupling mechanism whereby traction-induced

partial unfolding of the 10FNIII domain dislodges FN-integrin

adhesions; this uncoupling permits new FN-integrin binding and

propagation of fibrillogenesis.

Results

Two Models of Force-induced 10FNIII Unfolding
To mechanically unfold 10FNIII (Figure 1A), two points of

contact are necessary – a fixed anchoring point and a pulling point

where tensile forces are applied. As 10FNIII is covalently bonded to

two other type-III domains at its N- and C- termini (Figure 1B), the

use of these termini as anchoring and pulling points (N-to-C pulling;

Figure 1C), as done in past molecular dynamics simulations [17–

21], models structural changes in 10FNIII when external tension at

distant sites is propagated to 10FNIII through neighboring modules.

Because mechanical unfolding of 10FNIII likely occurs when cell-

generated tensile force is applied through integrins at the RGD site

(Figure 1B), we simplified the integrin-RGD interface such that the

forces transferred to 10FNIII are modeled at a single pulling point -

the Ca-carbon of the central glycine residue in the RGD triplet –

with the fixed anchor point defined at the N-terminus (N-to-RGD

pulling; Figure 1D). Alternatively, one could choose to anchor at the

C-terminus, however this does not lead to module unfolding

because the RGD site and the C-terminus are separated by thirteen

residues that adopt a relatively extended conformation (Figure 1B)

(data not shown). Moreover, the N-terminal region of full length

fibronectin, which contains all FN repeats, contains binding sites for

other ECM proteins such as collagen, fibrin, and other FN modules

[22]. Therefore anchoring at the N-terminus of 10FNIII (Val in

Figure 1B) models the scenario where the upstream FN modules are

tightly bound to these components and therefore remains relatively

stationary, while cellular forces are applied at the RGD loop.

Different 10FNIII Unfolding Pathways under Different
Loading Conditions

Constant velocity steered molecular dynamics (SMD) simula-

tions were used to study structural changes in 10FNIII when

tension is applied along both axes (N-to-C or N-to-RGD). Ten

independent force-mediated unfolding simulations (30 ns each)

were performed for each pulling axis. External force at the pulling

point is provided by translating, at constant velocity, the free end

of a spring (dummy atom in Figure 1C,D) that is attached to the

pulling point. The rate at which 10FNIII unfolds is therefore a

function of the velocity of the dummy atom. Fast unfolding

simulations minimize the time required to unfold the protein but

may introduce artifacts into the unfolding trajectories as the

unfolding rate is much faster than the true unfolding rate in vivo;

slower simulations are more realistic, but they require significant

computational resources. Therefore, the optimal choice of spring

extension represents a compromise between two competing

considerations – computational efficiency and accuracy. Prior

studies demonstrate that meaningful insights into the unfolding

mechanism of fibronectin modules can be obtained from

simulations performed at pulling rates much faster than in vivo

unfolding rates [18,20]. In the present case, an extension velocity

of v = 0.01 Å/ps was used; this rate is at least fifty times slower

than that used in past simulations of force-mediated unfolding of

10FNIII [18,20]. These data reveal that the overall shape of the

unfolding force profiles is similar for the N-to-C and N-to-RGD

unfolding trajectories, with both exhibiting major peaks of similar

number and timing (Figure 2). There exist differences in the

relative magnitudes of the force barriers, especially during the

early stages of partial unfolding when relatively small forces were

required to mechanically unfold 10FNIII along the N-to-RGD

axis (e.g., time,10 ns) compared to the N-to-C axis.

We explored structural variations in unfolding pathways when

tensile forces are applied through the different axes. Analysis of the

radius of gyration of the molecule as a function of time revealed

that pulling on the RGD site leads to a single, well-defined

unfolding pathway that was reliably followed in all ten unfolding

simulations (Figure 3A). By contrast, when similar mechanical

forces were applied through the N-to-C axis, two distinct unfolding

pathways were observed (Figure 3A). Each unfolding trajectory

passed through a characteristic extension plateau that corresponds

to kinetic intermediates. Interestingly, despite the fact that

different pulling axes are used, the unfolding profiles for both N-

to-C and N-to-RGD pulling have plateaus that occur at similar

times and last for similar durations (Figure 3A).

Structures taken from the time interval corresponding to the

plateau in the N-to-RGD unfolding profile all have a fully solvent

exposed N-terminal b-strand (one representative is shown in

Figure 3A), and the exposed strands in this kinetic intermediate are

the most hydrophobic b-strands in 10FNIII (Figure 3B). These

observations are consistent with the notion that cell traction-

mediated unfolding of 10FNIII leads to the formation of a partially

unfolded intermediate that may facilitate the formation of

hydrophobic contacts between different FN domains and drive

fibril formation [23,24].

To obtain a qualitative description of the structures sampled

along both axes, we analyzed the different unfolding trajectories

based on the order in which each b-strand in the structure

becomes solvent exposed. During N-to-C unfolding, the two types

of unfolding pathways (Figure 3A) showed distinct patterns of b-

strand exposure. The N-terminal b-strands became solvent

exposed first in four out of ten trajectories (group 1), while in

the remaining six trajectories (group 2), b-strand G unfolded before

the N-terminal b-strand A (Figure 4 and Movies S1 and S2). By

contrast, when tensile forces were applied along the N-to-RGD

axis, b-strand A unfolded first in all ten trajectories (Figure 4 and

Movie S3). Representative structures from the different trajectories

highlight these differences (Figure 5).

Mechanical Unfolding of 10FNIII Disrupts Integrin
Binding and Induces Cell Detachment

An analysis of the conformation of 10FNIII in the vicinity of the

integrin-binding RGD site reveals that the protein undergoes

significant conformational changes during tension-induced module

Fibronectin Unfolding
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unfolding. Of particular interest are specific residues near the

RGD loop that have been shown to be important for high affinity

binding to integrins. For example, non-conservative mutations at

position R1445, which sits approximately 11 Å from the RGD

loop (Figure 6A), can significantly hinder the ability of cells to bind

FN fragments in vitro [25,26]. R1445 therefore appears to play a

Figure 1. Local Environment of 10FNIII. (A) Crystal structure of 10FNIII. On the left is the cell-binding module of FN (type III), whose globular
folded form is composed of seven b-strands split between two b-sandwich sheets. The RGD loop is highlighted as purple in the loop connecting b-
strands F and G. N- and C- termini are labeled as black spheres. On the right is a schematic topology map of the secondary structure of 10FNIII with
each b-strand labeled and color-coded corresponding to the crystal structure on the left. b-strand boundaries are adapted from the crystal structure
as previously shown [17]. Residues participating in hydrogen bonds (orange arrows pointing in the direction from hydrogen bond donor to acceptor)
are labeled in gray. Hydrogen bonds shown are between backbone atoms of the b-strand residues and are calculated for distances within 3.5 Å and
angles within 120u–180u using the software VMD. (B) 10FNIII as it sits in FN. 10FNIII, adjacent to the ninth (9FNIII) and eleventh (11FNIII) type III
modules, experiences two types of forces. The cell can directly apply force (FCELL) at the RGD loop by binding through a cell-surface integrin and
applying cell traction. Force can also be applied to FN indirectly through the ECM (FECM). FECM represents the forces generated by cells bound to
remote sites in the ECM that are propagated to 10FNIII through neighboring domains bonded at the N- and C- termini. Residues C-terminal to the
RGD loop (highlighted in gold) adopt a relatively extended conformation. (C) Pulling along an N-to-C axis. The protein is anchored at the Ca atom of
the N-terminal residue (Val1416), and force is applied through a spring (with spring constant k) attached at the pulling point by translating the free
end (attached to a dummy atom) at constant velocity (v = 0.01 Å/ps) in the defined direction. This process transmits force to the attached Ca atom of
the C-terminal residue (Thr1509). Each b–strand is color-coded and labeled as in (A). (D) Pulling along an N-to-RGD axis. The Ca atom of the N-
terminus is anchored, and the pulling force is exerted through a spring attached to the Ca atom of the Gly residue in the RGD tripeptide. Each b–
strand is color-coded and labeled as in (A).
doi:10.1371/journal.pone.0002373.g001

Fibronectin Unfolding
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major role in the formation of FN-integrin complexes, possibly by

forming a secondary binding site for integrins [25,26].

We found that early in the unfolding trajectory, the distance

between R1445 and G1494 (the central glycine in the RGD motif)

remained relatively constant; however, after 15 ns, this distance

increased dramatically (Figure 6B). This time also corresponds to

the end of the extension plateau when the kinetic intermediate

forms (Figure 3A). These observations suggest that once this

intermediate is generated, the affinity of FN for cell-surface

integrins significantly decreases. The mechanical coupling be-

tween FN fibril formation and disruption of cell-FN adhesions may

permit cells to reiterate this process of binding, pulling, and

detaching on additional neighboring FN molecules. This process

promotes coordinated extension of FN fibril assembly and cell

spreading over time and space.

Lastly, we note that these data suggest that 10FNIII, when

subjected to mechanical unfolding at the RGD site, does not adopt

structures that are more unfolded than the kinetic intermediate

shown in Figure 6B. In the N-to-RGD unfolding simulations, this

partially unfolded intermediate is reached around 15 ns

(Figure 3A), which coincides with the mechanical decoupling of

R1445 from the vicinity of the RGD loop. This structure exposes

hydrophobic regions at the N-terminus that may facilitate FN fibril

formation. Similarly, pulling along an N-to-C axis also results in

partially unfolded kinetic intermediates that occur around 15 ns

(Figure 3A), where some of these structures have solvent exposed,

hydrophobic N-terminal b-strands (Figure 5). In principle, these

structures can promote FN fibrillogenesis through similar

hydrophobic contacts. However, a comparison of the work as a

function of time required to unfold 10FNIII along the two axes

reveals that the cumulative work needed to reach these kinetic

intermediates is significantly less for pulling along the N-to-RGD

axis (Figure 7).

Discussion

A number of studies suggest that FN fibrillogenesis requires cell-

generated traction forces that lead to the formation of partially

unfolded FN intermediates [4,8–11,13,27,28]. Since prior exper-

iments have provided relatively limited information regarding the

precise structural changes underlying the formation of FN fibrils,

we used dynamical simulations to model the early steps in the

fibrillogenesis process. Unlike previous experiments that applied

mechanical forces at the N- and C-termini of FN modules, we

studied the effect of applying forces at the physiological site of cell

binding to 10FNIII through membrane integrin receptors, and we

compared our data to unfolding trajectories that were generated

by pulling at the N- and C-termini. Our results demonstrate that

the response of 10FNIII to mechanical strain very much depends

on the axis in which tensile forces are applied and that

physiological loading conditions produce a more robust response.

Earlier studies have shown that 10FNIII can unfold via several

different pathways when mechanical forces are applied at the N-

and C-termini, and our results are consistent with these

observations [17–21]. In our model, pulling along an N-to-C axis

Figure 2. Extension Force Associated with Unfolding 10FNIII
Along Either Axis. Averaging across each of the ten simulations along
the N-to-RGD (black) or N-to-C (red) axis shows that the general
properties of the force profiles are similar.
doi:10.1371/journal.pone.0002373.g002

Figure 3. Different Unfolding Pathways for 10FNIII. (A) Backbone
radius of gyration as a function of time for N-to-RGD (black) and N-to-C
(red) pulling. The mass weighted radius of gyration is calculated for the
backbone atoms (N, H, Ca, C, and O atoms) for all time points along the
pulling trajectory. For N-to-C pulling, two groups of unfolding profiles
are readily identified – red solid lines represent group 1, and red dotted
lines represent group 2. Unfolding in group 1 shows larger values of
extension during intermediate times. A representative structure from
the pulling simulation that corresponds to the kinetic intermediate in
the N-to-RGD force profile is shown (inset). The b-strands are colored as
shown in Figure 1A with b-strand A labeled for clarity. (B) Kyte-Doolittle
hydrophobicity values for b-strands in 10FNIII. With a window size of
five, the Kyte-Doolittle hydrophobicity scores are computed for the
10FNIII amino acid sequence. Residue definitions for the b-strands
defined in (A) are labeled above.
doi:10.1371/journal.pone.0002373.g003

Fibronectin Unfolding
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yielded two distinct unfolding pathways – in one the N-terminal

strand A was exposed first, and in the other the C-terminal strand

G was the initial strand to become exposed. Previous atomic force

microscopy experiments have identified a partially unfolded

intermediate adopted during force-induced unfolding of 10FNIII

that may correspond to a structure that has an exposed b-strand;

either at the N-terminus (strand A) or the C-terminus (strand G)

[29]. Past studies have suggested that only the pathway associated

with early exposure of the G strand is relevant under physiological

conditions based on an analysis of unfolding barrier heights [19].

By contrast, we find similar force profiles and barrier heights for

both N-to-C unfolding pathways, suggesting that both pathways

are equally likely to occur in 10FNIII under these loading

conditions.

To gain insight into how cell traction affects the structure of

10FNIII, we modeled the interactions between the integrin receptor

and the RGD motif such that force is transmitted to FN through the

center Gly residue of the RGD sequence. In actuality, it is likely that

the integrin-10FNIII/RGD interface involves multiple inter-atomic

interactions resulting in a pulling force that may be distributed over

several atoms. However, in the absence of an integrin-10FNIII

crystal structure, the precise manner in which these forces are

distributed over atoms in this module is unknown [30,31].

Nevertheless, since the RGD loop is likely the principle point of

contact between FN and the integrin receptor, modeling FN

unfolding by pulling at a distinct atom in the RGD loop therefore

represents a convenient compromise that enables unfolding

simulations to be performed in an efficient manner.

Figure 4. Solvent Accessibility Factor of Each b-strand During the Early Stages of Unfolding. The color scale (right), ranging between 0
and 1, represents the degree of solvent exposure of the b-strand (labeled A through G, left) for time#15 ns. With this scaling, b-strands in the initial
structures all have f = 0, while fully exposed strands have f = 1.
doi:10.1371/journal.pone.0002373.g004

Figure 5. Snapshots of Early Events in the Unfolding Process (time#15 ns). Unfolded structures show b-strand coloring corresponding to
those defined in Figure 1A. The RGD loop is highlighted as a purple tube. The structures are oriented such that the N-terminal ends are on the left so
that pulling of 10FNIII occurs towards the right. Unfolding as a function of time (labeled at left) is shown vertically for both N-to-RGD and N-to-C axes.
doi:10.1371/journal.pone.0002373.g005

Fibronectin Unfolding
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In both cases of pulling along either the N-to-C or N-to-RGD

axis, the work put into the system is initially used to reorient the

module until the end points of the axis (the anchor point and the

pulling point) are aligned along the direction of pulling (along the

long axis of 10FNIII). Overall, the choice of the pulling direction

for N-to-RGD pulling only changes the amount of time initially

spent to reorient the molecule such that the anchor point-to-

pulling point axis is aligned with the pulling direction, but the

resulting unfolding pathways are thereafter similar (data not

shown). Given the relative positions of the N-terminus and the

RGD loop with respect to the direction of pulling, less than 3 ns

are spent realigning the N-to-RGD axis at the beginning of the

trajectories (compare Movies S1 and S2 to Movie S3). During this

time, almost no unfolding occurs in either of the N-to-C unfolding

pathways (Figure 3A, Figure 5). Therefore, the difference in the

work required to unfold 10FNIII by pulling along either axis

cannot be explained by mere reorientation of 10FNIII.

Partial unfolding of 10FNIII by pulling along the N-to-RGD

axis requires less work than partial unfolding by puling along the

N-to-C axis, at least during the early stages of the unfolding

trajectory (up to the point when the kinetic intermediate is reached

prior to cell detachment, time,15 ns). In addition, N-to-RGD

pulling reliably leads to partial unfolding along one well-defined

trajectory. A single pathway ensures that the same kinetic

intermediates are sampled when cell-derived forces are applied

at the RGD site. In addition, this intermediate contains solvent

exposed hydrophobic residues within b-strands A and B

(Figure 3A). Additional pulling induces conformational changes

in 10FNIII that promote integrin dislodgement and therefore cell

detachment. Near the RGD loop is a residue, R1445, that is

required for high affinity binding of FN to integrins, and its

separation from the RGD loop increases following the exposure of

the N-terminal strands in the kinetic intermediate [25,26]. This

conformational transition likely decreases the affinity of 10FNIII

for integrins once the N-terminal strands are exposed (Figure 6B).

We also note that FN contains a synergy site, located in module

9FNIII, that also facilitates FN adhesion to cell surface receptors

[32]. While we do not explicitly consider the role of the module

that contains the synergy site, we note that a R1445A mutation

reduces the affinity of FN fragments, which contain the synergy

site (7–10FNIII), to cell-surface receptors [25]. This observation is

consistent with the notion that unfolding near the R1445 site

facilitates cell-detachment even when the synergy site is present.

Here we focused on conformational changes in 10FNIII and its

relationship to FN fibrillogenesis. It is worthwhile to note that

other FN modules are likely involved in fibril formation. There are

data to suggest that cryptic FN binding sites exist in various FNIII

modules: 1FNIII, 2FNII, 7FNIII, 9FNIII, 10FNIII, and 15FNIII

[13,14,33–35]. Since our unfolding simulations model 10FNIII

unfolding in a dilute solution, they do not explicitly account for

other interactions that are likely important for fibrillogenesis. In

particular, it may be possible for other FN molecules to become

incorporated into FN fibrils through interactions that involve other

partially unfolded domains [13,14,33–35]. Nevertheless, our

results do imply that cell traction-mediated unfolding of 10FNIII

can lead to the formation of partially unfolded kinetic interme-

diates that can influence the rate of FN fibril formation through

several different mechanisms. First, the exposure of hydrophobic

residues in 10FNIII may facilitate the formation of hydrophobic

contacts between distinct FN molecules, thereby promoting FN-

FN association (Figure 8). Since exposure of these hydrophobic

sites is quickly followed by cell-detachment, the formation of FN-

FN contacts will occur only if FN refolding is slow relative to the

time associated with the formation of FN-FN contacts. Secondly,

our data suggest that formation of a relatively long lived kinetic

intermediate may promote cell-detachment – a process which frees

cell-surface integrins to bind other FN molecules. In this latter

Figure 6. The Arginine Cell Detachment Trigger. (A) R1445 in the
crystal structure of 10FNIII. Residues R1445 and G1494 (the central
glycine in the RGD motif) are depicted as gold and magenta spheres,
respectively. (B) Positioning of an essential arginine during the course of
N-to-RGD unfolding. The distance between the Ca atoms of R1445 and
G1494 is shown as a function of time for each of the ten unfolding
simulations along the N-to-RGD axis. R1445 rapidly moves far from the
RGD loop once the kinetic intermediate is formed (time point labeled
with structure inset).
doi:10.1371/journal.pone.0002373.g006

Figure 7. Calculation of the Work Needed to Partially Unfold
10FNIII Along Either Axis. Data for each of the 10 simulations pulled
along N-to-RGD (black) and N-to-C (red) are shown for the first 15 ns.
doi:10.1371/journal.pone.0002373.g007

Fibronectin Unfolding
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mechanism, formation of partially unfolded states that have

decreased affinity for integrin receptors enables additional cycles of

integrin binding to FN and subsequent incorporation of newly

bound FN molecules into fibrils.

Our data also provide insight into the physical basis of the

mechanical stability of 10FNIII. Additional simulations performed

with electrostatic interactions turned off suggest that the main

obstacle to early unfolding arises from changes in the internal

geometry, rather than breaking favorable electrostatic interactions

involving strand A (Figure S1 in Supporting Information). That is,

force barriers in the unfolding profile arise mainly from short

range interactions due to the internal rearrangements in the bond

lengths, bond angles, and van der Waals energy (Figure S2 in

Supporting Information). These conclusions are supported by

recent experimental evidence that suggest that electrostatic

interactions are not critical to the mechanical stability of 10FNIII

because 10FNIII unfolding is not dependent on the protonation

state of residues participating in hydrogen bonds [36].

Finally, it is interesting to note that our finding that the

unfolding profile of 10FNIII depends on the axis in which tensile

forces are applied is similar to behavior exhibited by ‘prestressed’

materials, including certain biopolymers (e.g., fibrin clots and

stress fibers) and living cells under isometric tension at rest [37–

40]. Such ‘‘prestressed’’ states behave quite differently depending

on where and how the load is applied, and they similarly respond

to applied loads by geometrically rearranging the position of their

load-bearing elements [40,41]. In particular, force spectroscopy

has shown that differential protein unfolding occurs for force

exerted along different axes of some proteins, as in the case of

ubiquitin and E2lip3 [42,43]. Simulations have further investigat-

ed the differential behavior of proteins stressed along different

directions, as in the case of ubiquitin and titin [44,45]. Protein

models that are based on this formalism can be used to understand

and predict the unfolding behavior of proteins subjected to

external forces, and variations in the internal stability of the

protein can be deduced from force-induced unfolding trajectories

of the molecule [40,41,46]. Unfolding along a single well-defined

pathway that contains a partially unfolded state having solvent N-

terminal strands suggests that significant internal strain is present

along the N-to-RGD axis – strain that leads to partial unfolding in

response to an external force preferentially oriented along this axis.

The modeling approach used here may therefore prove useful for

analysis of the molecular biophysical basis of cellular mechan-

otransduction as well as ECM remodeling.

Materials and Methods

The Initial Model
The structure of 10FNIII (residues Val1416 to Thr1509) was

taken from the crystal structure of 7–10FNIII (PDB ID 1fnf)

[30,47–49]. An initial polar-hydrogen model of 10FNIII was made

with CHARMM [50]. The N-terminus of the protein was

acetylated and the C-terminus was amidated with a methyl

amine. Atoms in the N and C-terminal blocked regions were

energy minimized, while keeping the remainder of the protein

fixed, for 100 steps of steepest descent minimization. The full

protein was then minimized for 200 steps of steepest descent

minimization followed by 10 steps of Adopted Basis Newton-

Raphson. We refer to this energy minimized structure as the

reference structure. The reference structure has a mass-weighted

backbone (N-Ca-C) root-mean-square (RMS) deviation of 0.2 Å

from the unminimized crystallographic structure. All calculations

used the implicit solvent model EEF1 [51–53].

Figure 8. Cell-mediated Fibrillogenesis. The proposed model involves the formation of a partially unfolded intermediate during cell-traction
mediated unfolding. Potential cryptic sites may exist in this partially unfolded structure that promote FN aggregation and fibrillogenesis. Subsequent
unfolding past this intermediate induces a crucial arginine at a secondary binding site to move to a position far from the RGD loop. This frees the cell
and enables it to reattach to another FN molecule to propagate the process. If 10FNIII refolding is relatively slow, then unfolded portions of this
domain can make contacts with other FN molecules.
doi:10.1371/journal.pone.0002373.g008
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Generating Representative Structures
To generate different starting structures for the pulling

simulations, we performed a relatively short MD simulation on

the isolated 10FNIII structure. A time step of 0.001 ps was used,

and the equations of motion were integrated with a leap frog

integrator. The temperature of the system was maintained by

coupling the system to a heat bath at 300 K using the Berendsen

method [54]. Equilibration consisted of 0.2 ns of simulation time

followed by 0.9 ns of production dynamics. Ten equally spaced

structures (100 ps apart) were extracted from the production

dynamics, and these 10 structures were the initial structures for the

pulling experiments. These conformations had an average

backbone-atom mass-weighted RMS deviation of (2.860.1)Å

from the reference structure.

Constant Velocity Steered Molecular Dynamics
Constant velocity SMD simulations were performed by placing

the Ca atom of the pulling point at the origin and the dummy

atom on the z-axis. In this framework, pulling along an N-to-RGD

axis corresponds to pulling the dummy atom along the +z

direction. For N-to-C pulling, the protein is oriented such that the

C-terminus is the pulling point and the N-terminus is the fixed

point. In this framework, N-to-C pulling corresponds to pulling the

C-terminus in the 2z direction.

In constant velocity SMD external force at the pulling point is

provided by translating, at constant velocity, the free end of a

spring (dummy atom in Figure 1C,D) that is attached to the

pulling point. The rate at which 10FNIII unfolds is therefore a

function of the velocity of the dummy atom. A pulling speed of

v = 0.01 Å/ps for both N-to-RGD and N-to-C pulling was used.

In all pulling simulations the Ca atom of the N-terminus (Val1416)

is fixed, and the pulling vector is defined by the positions of the

pulling point and dummy atom (i.e. along the z-axis). The

endpoints of the spring correspond to the pulling point (the Ca
atom of either Gly1494 at the RGD loop or Thr1509 at the C-

terminus for N-to-RGD or N-to-C pulling, respectively) and the

dummy atom. A spring constant of k = 0.6 kcal/mol/Å2 was used.

Dynamics were run as described above for the initial structure

generation except that simulations were run for a total of 30 ns.

The system temperature was maintained by coupling to a heat

bath at 300 K, again using the Berendsen method [54]. During

the pulling simulations, the temperature of the system remained

near this target value as instantaneous temperatures were within

5% of 300 K during the last 29.8 ns of the simulation.

Coordinates were saved every 0.2 ps, and SHAKE was used to

hold hydrogen bond lengths near their equilibrium values [55].

Constant-velocity SMD pulling simulations were performed on

each of the ten initial structures along both an N-to-RGD and N-

to-C axis. Each simulation was run for 30 ns as outlined above,

making the total simulation time, for the 20 structures, 600 ns.

Unfolding trajectories and associated structures were visualized

with the software program VMD (version 1.8.5) [56]. Some

simulations were performed using a potential energy function

where specific electrostatic interactions were set to zero (Text S1).

This was achieved by setting the charges for the atoms from

Arg1421 to Thr1429 (i.e., b-strand A) to zero. One N-to-RGD

pulling simulation was performed under this altered energy

function.

Force Calculations
The NOE facility in CHARMM was used to introduce an external

pulling force on the dummy atom of interest, where KMIN = 0 kcal/

mol/Å2, KMAX = 0.6 kcal/mol/Å2, RMIN = 0 Å, RMAX = 0 Å,

FMAX = 3000 kcal/mol/Å [50]. The result is to add an additional

term to the potential energy function:

E~ 1
2

k xD{xPð Þ2z yD{yPð Þ2z zD{zPð Þ2
h i

where (xD,yD,zD)

and (xP,yP,zP) are the Cartesian coordinates of the dummy and

pulling atoms, respectively. The components of the force on the

pulling atom can be expressed as:

Fx tð Þ~k xD tð Þ{xP tð Þð Þ;

Fy tð Þ~k yD tð Þ{yP tð Þð Þ;

Fz tð Þ~k vD
:tzzD 0ð Þ{zP tð Þð Þ

ð1Þ

where k is the spring constant. We note that the last expression in

Equation 1 follows from the fact that the dummy atom is pulled at a

constant velocity, vD, along the z-axis, so that zD(t) = vD?t+zD(0). With

these definitions the magnitude of the total force on the pulling atom

is given by Ftotal~ F2
xzF2

y zF2
z

� �1=2

.

The terms in the potential energy function governing the

unfolding simulation give rise to the internal forces that resist the

pulling. More concretely, the force associated with the total

internal energy, which is the sum of the individual energy

contributions attributed to the bonded (bond, angle, dihedral

angle, and improper planar deformation energies) and non-

bonded (van der Waals, electrostatic, and EEF1 solvation energy)

interactions, can be calculated for all the atoms in the protein

throughout the unfolding trajectory. The magnitude of the

internal force of 10FNIII that contribute to its mechanical stability

is then calculated as described above.

Calculating the Work Done
We define the work needed to separate the anchor point and the

pulling point by a distance R, W(R), to be:

W Rð Þ:
ðR

rmin

�FFz rð Þdr ð2Þ

where rmin is the value of the distance between the anchor point

and the pulling point at t = 0. The function F̄z(r) is given by:

�FFz rð Þ~Fz t0ð Þ D t0ð Þ~r

�� ð3Þ

where D(t9) is the distance between the anchor point and the

pulling point at time t9. Values of W(R) are computed from

Equation 2 using the trapezoidal rule.

Calculating the Solvent Accessibility Factor
Solvent accessible surfaces of the b-strands in the structures

from the unfolding trajectories were computed using a Lee and

Richard’s algorithm with a 1.4 Å sphere radius and 0.025 Å

accuracy [57]. b-strand boundaries are as defined in [17]. For

each time point, we compute a solvent accessibility factor, f, as

follows:

f tð Þ~ SASA tð Þ{SASA 0ð Þ
SASAmax{SASA 0ð Þ ð4Þ

where SASA(0) and SASA(t) are the solvent accessible surface areas

(SASAs) of the given b-strand at times 0 and t, respectively.

SASAmax is the b-strand’s maximum solvent accessible surface area

and is computed by calculating the SASA of the strand in the

initial structure when all other atoms in the protein are removed.
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With this definition, b-strands in the initial structures all have f = 0,

while fully exposed strands have f = 1.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0002373.s001 (0.04 MB

DOC)

Figure S1 Evaluating the Role of Electrostatic Interactions

Involving b-strand A. (A) Snapshots of the N-to-RGD unfolding

trajectory with (right) and without (left) strand A electrostatic

contributions ignored. Comparison of the unfolding trajectories

for the same initial conditions, but calculated for either the normal

energy potential (U) or the modified electrostatic energy potential

(UE), show minimal differences between the unfolded structures.

(B) Solvent accessibility factor of the b-strands. The pattern of

solvent accessibility of the secondary structural elements (labeled at

left) calculated every 3 ns throughout the trajectory show

similarities between the two N-to-RGD unfolding profiles for

normal and modified electrostatics.

Found at: doi:10.1371/journal.pone.0002373.s002 (0.92 MB

DOC)

Figure S2 Energy Contributions Significant for 10FNIII Me-

chanical Stability Along the N-to-RGD Axis. (A) Electrostatic

energy contributions to the force profile. The black curve denotes

the N-to-RGD force profile with the full potential energy function.

For the same starting structure, the force profile (magenta) is

calculated with the electrostatic interactions involving strand A

turned off as outlined in the text. (B) Contributions due to bond

length, bond angle, and van der Waals energy terms to the force

profile. The black curve represents the magnitude of the external

pulling force needed to unfold 10FNIII. The blue curve is the

magnitude of the sum of the bond length, bond angle, and van der

Waals energy contributions to the calculated internal force for the

same initial structure.

Found at: doi:10.1371/journal.pone.0002373.s003 (0.66 MB

DOC)

Movie S1 Partial N-to-C Unfolding, Group 1. The anchor and

pulling points are highlighted as black spheres with pulling towards

the right. Initial unfolding of 10FNIII occurs at the N-terminus.

Found at: doi:10.1371/journal.pone.0002373.s004 (6.10 MB

MOV)

Movie S2 Partial N-to-C Unfolding, Group 2. The anchor and

pulling points are highlighted as black spheres with pulling towards

the right. Initial unfolding of 10FNIII occurs at both the N- and C-

termini.

Found at: doi:10.1371/journal.pone.0002373.s005 (5.87 MB

MOV)

Movie S3 Partial N-to-RGD Unfolding. The anchor and pulling

points are highlighted as black spheres with pulling towards the

right. Initial unfolding of 10FNIII occurs exclusively at the N-

terminus. The central glycine is labeled with a magenta sphere

while Arg1445 is highlighted with a gold sphere. Note that the

separation of these two residues increases following the occurrence

of the kinetic intermediate (paused frame).

Found at: doi:10.1371/journal.pone.0002373.s006 (7.34 MB

MOV)
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