Lactate levels in emergency department patients across all causes of physiologic instability

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1186/cc12925</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:12064457</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Sepsis 2013
Rio de Janeiro, Brazil. 5-6 November 2013
 Published: 5 November 2013

These abstracts are available online at http://ccforum.com/supplements/17/S4

POSTER PRESENTATIONS

P1
Validation of a novel surveillance paradigm for ventilator-associated events
Peter MC Klein Kouwenberg,1,2*, Maaike SM van Mounik,1, David SY Ong1,2, Janneke Hom1, Marcus J Schultz1, Olaf L Cremer2, Marc JM Bonten1,3,4
1Department of Medical Microbiology, University Medical Center Utrecht, the Netherlands; 2Department of Intensive Care, University Medical Center Utrecht, the Netherlands; 3Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, the Netherlands; 4Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
Critical Care 2013, 17(Suppl 4):P1; doi:10.1186/cc12902

Background: Reliable surveillance methods are indispensable for benchmarking of healthcare-associated infection rates. The National Healthcare Safety Network (NHSN) recently introduced surveillance of ventilator-associated events (VAE), including ventilator-associated conditions (VAC) [1]. This new algorithm is amenable to automated implementation and strives for more consistent interpretation. We assess the feasibility and reliability of automated implementation.

Materials and methods: Retrospective analysis of an ICU cohort with prospective assessment of ventilator-associated pneumonia (VAP) in two academic medical centers (January 2011 to June 2012). The algorithm was electronically implemented as specified by the NHSN using minute-to-minute ventilator data. Two minor modifications were developed to improve stability and comparability with manual surveillance (10th percentile and intermittent ventilation). Concordance was assessed between the algorithms and prospective surveillance. Attributable mortality of VAC was estimated by multivariable competing-risk survival analysis.

Results: Two thousand and eighty patients contributed 2,296 episodes of mechanical ventilation (MV). VAC incidence was 10.0/1,000 MV days. Prospective surveillance identified 8 VAP cases/1,000 MV days. The original VAC algorithm detected 32% (38/115) of patients affected by VAP; positive predictive value was 25% (38/152). Using the 10th percentile and intermittent ventilation, VAC concordance was assessed as 1.44 (95% CI = 1.2 to 1.7) among 28-day survivors. Patients who had mild AKI stage 1, 12.1% had stage 2, 26.5% had stage 3, and 43.0% had No AKI, using the KDIGO classification. The mean and median follow-up time was 8.1 and 8.7 years. The 28-day, 1-year, 5-year and 10-year survival rates were 59.6%, 44.9%, 37.4%, and 33.4%, in patients with any AKI (stage 1, stage 2, stage 3), which was significantly worse compared with the critically ill patients with no AKI at any time (P < 0.01). The adjusted 10-year mortality risk associated with AKI was 1.44 (95% CI = 1.2 to 1.7) among 28-day survivors. Patients who had mild AKI (stage 1) had significantly worse survival at 28 days, 1 year, 3 years, 5 years and 10 years compared with No AKI (P < 0.01) (Figure 1A). Patients with sepsis and AKI who survived 28 days had significantly poorer 5-year and 10-year survival compared with nonseptic AKI (P < 0.01) (Figure 1B).

Conclusions: Patients with one episode of mild AKI have significantly lower survival rates over 10 years than critically ill patients without AKI. The causes and mechanisms of this association warrant further careful study. Close medical follow-up of these patients may be warranted and mechanistic research required understanding how AKI influences distant events.

Reference

P2
Acute kidney injury decreases long-term survival over a 10-year observation period
Adam Linder1, Adeera Levin2, Keith Walley1, James A Russell1, John H Boyd1
1Centre for Heart Lung Innovation, Division of Critical Care Medicine, St Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada; 2Division of Nephrology, St Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
Critical Care 2013, 17(Suppl 4):P2; doi:10.1186/cc12903

Background: We hypothesized that one single episode of acute kidney injury (AKI) reduces long-term survival compared with no acute kidney injury (No AKI) following recovery from critical illness.

Materials and methods: A prospective cohort of 2,010 patients admitted to the ICU between 2000 and 2009 at a provincial referral hospital was followed to determine whether AKI influences long-term survival.

Results: Of the 1,844 eligible patients, 18.4% had AKI stage 1, 12.1% had stage 2, 26.5% had stage 3, and 43.0% had No AKI, using the KDIGO classification. The mean and median follow-up time was 8.1 and 8.7 years. The 28-day, 1-year, 5-year and 10-year survival rates were 59.6%, 44.9%, 37.4%, and 33.4%, in patients with any AKI (stage 1, stage 2, stage 3), which was significantly worse compared with the critically ill patients with no AKI at any time (P < 0.01). The adjusted 10-year mortality risk associated with AKI was 1.44 (95% CI = 1.2 to 1.7) among 28-day survivors. Patients who had mild AKI (stage 1) had significantly worse survival at 28 days, 1 year, 3 years, 5 years and 10 years compared with No AKI (P < 0.01) (Figure 1A). Patients with sepsis and AKI who survived 28 days had significantly poorer 5-year and 10-year survival compared with nonseptic AKI (P < 0.01) (Figure 1B).

Conclusions: Patients with one episode of mild (stage 1) AKI have significantly lower survival rates over 10 years than critically ill patients without AKI. The causes and mechanisms of this association warrant further careful study. Close medical follow-up of these patients may be warranted and mechanistic research required understanding how AKI influences distant events.

Reference

P3
Heparin-binding protein improves prediction of severe sepsis in the emergency department
Adam Linder1, Ryan Arnold2, Marco Zindovic1, Igor Zindovic1, Anna Lange-Jendeberg1, Magnus Paulson1, Patrik Nyberg3, Bertil Christensson1, Per Åkesson1
1Skåne University Hospital, Lund, Sweden; 2Cooper University Hospital, Camden, NJ, USA; 3Orebro University Hospital, Orebro, Sweden
Critical Care 2013, 17(Suppl 4):P3; doi:10.1186/cc12904

Background: Heparin-binding protein improves prediction of severe sepsis. The heparin-binding protein improves prediction of severe sepsis in the emergency department.

Materials and methods: A prospective cohort of 2,010 patients admitted to the ICU between 2000 and 2009 at a provincial referral hospital was followed to determine whether AKI influences long-term survival.

Results: Of the 1,844 eligible patients, 18.4% had AKI stage 1, 12.1% had stage 2, 26.5% had stage 3, and 43.0% had No AKI, using the KDIGO classification. The mean and median follow-up time was 8.1 and 8.7 years. The 28-day, 1-year, 5-year and 10-year survival rates were 59.6%, 44.9%, 37.4%, and 33.4%, in patients with any AKI (stage 1, stage 2, stage 3), which was significantly worse compared with the critically ill patients with no AKI at any time (P < 0.01). The adjusted 10-year mortality risk associated with AKI was 1.44 (95% CI = 1.2 to 1.7) among 28-day survivors. Patients who had mild AKI (stage 1) had significantly worse survival at 28 days, 1 year, 3 years, 5 years and 10 years compared with No AKI (P < 0.01) (Figure 1A). Patients with sepsis and AKI who survived 28 days had significantly poorer 5-year and 10-year survival compared with nonseptic AKI (P < 0.01) (Figure 1B).

Conclusions: Patients with one episode of mild (stage 1) AKI have significantly lower survival rates over 10 years than critically ill patients without AKI. The causes and mechanisms of this association warrant further careful study. Close medical follow-up of these patients may be warranted and mechanistic research required understanding how AKI influences distant events.

Reference

© 2013 various authors; licensee BioMed Central Ltd. All articles published in this supplement are distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background: The early identification of risk of developing severe sepsis in patients with suspected infection remains a difficult challenge. We hypothesized that an elevated plasma level of heparin-binding protein (HBP), a neutrophil-secreted mediator of vascular leakage, would be a predictor of delayed clinical deterioration and progressive organ dysfunction in emergency department (ED) sepsis patients.

Materials and methods: A prospective, multicenter study in Sweden and the US was conducted of 763 patients presenting to an ED with a suspected infection and signs of systemic inflammation. Based on recorded clinical and laboratory parameters and final diagnoses, patients were classified into various groups depending on the severity of the infection and inflammatory response. Plasma levels of HBP were measured and compared with levels of other standard sepsis biomarkers including procalcitonin, lactate, WBC, and C-reactive protein.

Results: The final diagnoses were severe sepsis with organ failure in 338 patients, nonsevere sepsis without organ failure in 340 patients, and no infection in 85 patients. One-hundred and forty-three patients (19%) presented without signs of severe sepsis, but developed delayed circulatory failure and/or organ dysfunction within 72 hours of enrolment. In this patient group, an elevated HBP level could predict the delayed
development of severe sepsis with an AUC value of 0.86. Elevated HBP levels (>30 ng/ml) were found in 80% of the patients and elevated procalcitonin levels (>0.5 ng/ml) were detected in 59%, 10.5 hours (median) before developing severe sepsis.

Conclusions: Detection of elevated plasma-HBP levels may help to provide an early risk-stratification of patients with suspected infections in the ED. An elevated HBP level was independently able to predict delayed clinical deterioration to overt shock or severe sepsis with organ failure.

Acknowledgements: This project was supported in part by Axis-Shield Diagnostics and the Swedish Government Funds for Clinical Research (ALF), the University Hospital, Lund, Sweden.

Clinical trial number: ClinicalTrials.gov NCT01392508 (the IMPRESSED study).

Potential conflicts of interests: AL, BC, and PA are listed as inventors on a patent filed by Hansa Medical AB.

P4
Impact of the Surviving Sepsis Campaign clinical guideline of in sepsis mortality in a public health institution in Brazil
Suellen C de Aguiar , Guilherme F Garcia, Daniela N Ferreira, Francisco C de Souza, Valda MF Mendonça, Vanzuza F Ribeiro, Lívia M Ferreira, Flávio D Capanema, Luiana C de Carvalho, Marina F de Gomes
Comissão Central de Protocolos Clínicos, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, MG, Brazil

Critical Care 2013, 17(Suppl 4):P4; doi:10.1186/cc12905

Background: Sepsis is the principal cause of mortality in intensive therapy units (ITUs) around the world [1]. Several international organizations created in 2002 the Surviving Sepsis Campaign (SSC), targeting the reduction of sepsis mortality in 25% during 5 years [2]. The Função Hospitalar do Estado de Minas Gerais (FHEMIG, Brazil), was incorporated in this campaign with eight hospitals (four general hospitals, one trauma hospital, one oncologic center, one infectious diseases center, one maternity hospital). The aim of this study is to evaluate the impact of using the SSC sepsis protocol in severe sepsis and sepsis shock lethality in the FHEMIG net hospitals.

Materials and methods: This is a retrospective cohort study based on eight ITU public hospitals. The inclusion criteria were patients with severe sepsis and sepsis shock according to the SSC protocol, from January 2010 to December 2012, aged older than 18 years, which had a final outcome of hospital discharge or death. The sepsis lethality was compared annually from 2010 to 2012. Since 2010, the implementation of educative and managerial measures was based on the SSC guidelines: auditing of medical charts; education in sepsis care; issue of booklet and posters about sepsis; inclusion of sepsis information in the medical residence program; and collaboration of hospital directors in monitoring and giving information of the sepsis guideline. The study was approved by the Institutional Ethical and Research Committee. Data were collected and analyzed on EPIINFO software, using ANOVA test for comparisons with precision of 95%.

Results: In the period of 3 years, 1,698 severe sepsis and sepsis shock patients were registered and 1,152 (67.84%) died. We verified a reduction of 12% (P = 0.0073) on lethality global. Hospitals 2 and 6 had a significant reduction on lethality, of 35% (P < 0.0001) and 17% (P = 0.0073) respectively (Table 1).

Conclusions: The sepsis lethality is still high in this institution (64.1%), compared with the Public Hospitals in Brazil (59.6%) and the world rate (30.8%) [3]. After the adoption of managerial measures based on the SSC protocol, there was a significantly reduction in lethality, but only one hospital reached the target reduction of 25% on lethality. This heterogeneity could be explained by different engagements of the professional board and directory and different patient’s profiles. The sepsis mortality is a major challenge in the world [4], and application of the SSC protocol led to a significant reduction in sepsis lethality.

Acknowledgements: The authors would like to acknowledge the assistance of the staff and local protocol team of the participant hospitals: Hospital João XXIII, Hospital Alberto Cavalcanti, Hospital Geral de Barbacena, Hospital Júlia Kubitschek, Hospital Eduardo de Menezes, Maternidade Odete Valadares, Hospital Regional João Penido and Hospital Regional Antônio Dias.

References:
1. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin DP, Moreno R, Lechsek S, Komaroff AL, BC, and PA are listed as inventors on a patent filed by Hansa Medical AB.

P5
Passive immunotherapy of extended peritonitis as abdominal sepsis prevention
Olexandr Butyrsky†, Viktor Starosek
Department of Surgical Diseases, Crimene State Medical University, Simferopol, Ukraine

Critical Care 2013, 17(Suppl 4):P5; doi:10.1186/cc12906

Background: The outcome of extended peritonitis is determined by many factors including antimicrobial defense. Microral lesion, surgery, and intensive therapy cause secondary immunity deficiency associated with septic complication incidence and post-surgery lethality. The great importance in initialization and supporting these processes belongs to Escherichia coli endotoxin that participates in digestive tract immunity and general immunoeresistance.

Table 1(abstract P4) Severe sepsis and sepsis shock death in the eight FHEMIG hospitals, from 2010 to 2012

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Number of patients</th>
<th>2010 Death</th>
<th>2011 Death</th>
<th>2012 Death</th>
<th>P value ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital 1</td>
<td>103</td>
<td>62</td>
<td>60.2</td>
<td>120</td>
<td>66</td>
</tr>
<tr>
<td>Hospital 2</td>
<td>59</td>
<td>52</td>
<td>88.1</td>
<td>114</td>
<td>87</td>
</tr>
<tr>
<td>Hospital 3</td>
<td>24</td>
<td>22</td>
<td>91.7</td>
<td>33</td>
<td>26</td>
</tr>
<tr>
<td>Hospital 4</td>
<td>68</td>
<td>57</td>
<td>83.8</td>
<td>71</td>
<td>63</td>
</tr>
<tr>
<td>Hospital 5</td>
<td>64</td>
<td>50</td>
<td>78.1</td>
<td>63</td>
<td>51</td>
</tr>
<tr>
<td>Hospital 6</td>
<td>94</td>
<td>75</td>
<td>79.8</td>
<td>92</td>
<td>54</td>
</tr>
<tr>
<td>Hospital 7</td>
<td>39</td>
<td>31</td>
<td>79.5</td>
<td>56</td>
<td>40</td>
</tr>
<tr>
<td>Hospital 8</td>
<td>49</td>
<td>15</td>
<td>30.6</td>
<td>38</td>
<td>10</td>
</tr>
</tbody>
</table>

Total | 500 | 364 | 72.8 | 587 | 397 | 67.6 | 611 | 391| 64.1 | 0.0074 |
Table 1(abstract P5) Indexes of anti-endotoxin immunity in extended peritonitis

<table>
<thead>
<tr>
<th></th>
<th>Before treatment, opt.un</th>
<th>5th day of treatment, opt.un</th>
</tr>
</thead>
<tbody>
<tr>
<td>High immunity level patients (group I, n=5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-LPS-IgA</td>
<td>0.276 ± 0.004 (p_1 > 0.05)</td>
<td>0.452 ± 0.02 (p_2 < 0.001)</td>
</tr>
<tr>
<td>Anti-LPS-IgM</td>
<td>0.210 ± 0.03 (p_1 < 0.01)</td>
<td>0.286 ± 0.04 (p_2 < 0.05)</td>
</tr>
<tr>
<td>Anti-LPS-IgG</td>
<td>0.121 ± 0.01 (p_1 < 0.01)</td>
<td>0.184 ± 0.02 (p_2 < 0.01)</td>
</tr>
<tr>
<td>Low immunity level patients (group II, n=27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-LPS-IgA</td>
<td>0.084 ± 0.007 (p_1 < 0.001, p_3 < 0.001)</td>
<td>0.154 ± 0.015 (p_2 < 0.01)</td>
</tr>
<tr>
<td>Anti-LPS-IgM</td>
<td>0.202 ± 0.02 (p_1 < 0.05, p_3 > 0.05)</td>
<td>0.213 ± 0.01 (p_2 < 0.05)</td>
</tr>
<tr>
<td>Anti-LPS-IgG</td>
<td>0.069 ± 0.008 (p_1 < 0.01, p_3 < 0.001)</td>
<td>0.083 ± 0.007 (p_2 < 0.05)</td>
</tr>
</tbody>
</table>

*p<0.001, p_1 evidence between donors and day of admission; p_2 evidence between day of admission and the 5th day; p_3 evidence between patients of different immunity level.

Table 2(abstract P5) Dynamics of anti-LPS-antibodies in low immunity level patients with peritonitis after sandoglobulin H injection

<table>
<thead>
<tr>
<th></th>
<th>Before injection, opt.un</th>
<th>After injection, opt.un</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-LPS-IgA</td>
<td>0.154 ± 0.015</td>
<td>0.342 ± 0.02*</td>
</tr>
<tr>
<td>Anti-LPS-IgM</td>
<td>0.213 ± 0.01</td>
<td>0.284 ± 0.02*</td>
</tr>
<tr>
<td>Anti-LPS-IgG</td>
<td>0.083 ± 0.007</td>
<td>0.186 ± 0.04*</td>
</tr>
</tbody>
</table>

*P < 0.001.

Materials and methods: Thirty-two patients ages 15 to 86 (male:female = 24:8) treated for extended peritonitis were investigated. Blood was sampled after admission and in 5 days to determine anti-lipopolysaccharide antibodies of different classes (anti-LPS-IgA, anti-LPS-IgG, anti-LPS-IgM, respectively) by hard-phase immunoenzyme analysis. The control group included 10 healthy donors (opt.un.); anti-LPS-IgA - 0.348 ± 0.053, anti-LPS-IgM - 0.162 ± 0.01, anti-LPS-IgG - 0.333 ± 0.051.

Results: Patients with high levels of anti-endotoxin immunity were 15.6% (n=5) (Table 1); after surgery they had rapid recovery, normalization of peristalsis and laboratory parameters by the 5th day. Patients of low immunity level were 84.4% (n=27); they had a long complicated recovery period. In group I for standard treatment within 5 days one noticed evident shifts of all parameters that witnesses its sufficiency. In group II the parameters are not increased evidently, which testifies to necessity of additional immunocorrection. Low immunity level patients were introduced to 3 ml sandoglobulin H on the 5th day after surgery that was associated with a sharp increase of anti-LPS antibody titer (Table 2). Growth of anti-LPS antibody titer was associated with positive dynamics of the post-surgery period.

Conclusions: The majority of peritonitis patients have decreased competent anti-LPS antibodies, which determines the severity of the post-surgery period. Low immunity level patients need passive nonspecific immunotherapy that stimulates protective functions, blocks mechanisms of inflammation progress, and prevents abdominal sepsis.

P6

Efficacy of specific immunotherapy of abdominal sepsis

Olexandr Butinsky1, Ilona Butinsky2

1Department of Surgical Diseases, Crimean State Medical University, Simferopol, Ukraine; 2Department of Hygiene, Crimean State Medical University, Simferopol, Ukraine

Critical Care 2013, 17(Suppl 4):P6; doi:10.1186/cc12907

Background: According to the 2004 WHO Annual Report, abdominal sepsis (AS) is one of the most dangerous diseases of the 21st century. But the issue of its treatment including immunotherapy is very far from being completely solved. Our aim was the demonstration of specific immunotherapy efficacy in AS.

Materials and methods: We investigated activity of immunogenesis (production of specific antibodies) in AS in 50 patients under impact of hyperimmune plasma infusion obtained from the donors who recently endured acute inflammatory abdominal diseases. The control group was made up of 10 healthy people.

Results: Our investigations demonstrated that the donors’ titer of specific antibodies is evidently more according to indexes of anti-Escherichia coli, anti-Pseudomonas aeruginosa, anti-Staphylococcus aureus, anti-bacteroids, anti-peptococci immunity. Introducing hyperimmune plasma obtained from such donors evidently increases specific antibody titer in AS patients (Table 1).

Our results demonstrated that the titer of specific antibodies to AS main agents in the dead patients was evidently lower in comparison with the control group and in recovered people. This trend is observed 7 to 10 days after surgery. For example, at admission the titer of anti-S. aureus antibodies in dead patients was 11% lower in comparison with the control group, and the titer of anti-E. coli antibodies 19% lower in comparison with control group and 32% lower in comparison with recovered patients; 7 to 10 days after surgery in dead patients in comparison with recovered patients, the titer of anti-S. aureus antibodies was lower by 22%, and the titer of anti-E. coli antibodies by 47%.

Conclusions: Introducing hyperimmune plasma (specific immunotherapy) increases titer of specific antibodies, and increased concentration of specific antibodies improves forecast of survival in AS.

P7

Characteristics and outcomes of patients with culture negative septic shock compared with patients with culture positive septic shock: a retrospective cohort study

Shravan Kethireddy1, Aseem Kumar2,3,4, Anand Kumar4,5, Dennis Maki6, Steven Lapinsky7, R Bruce Light3, Yazdan Mirzanejad8, Aseem Kumar2,3,4, Anand Kumar4,5, the Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Group

1Section of Critical Care Medicine and Infectious Diseases, Geisinger Medical Center, Danville, PA, USA; 2Clinical Innovation and Biostatistics, Division of Internal Medicine, Geisinger Medical Center, Danville, PA, USA; 3Section of Critical Care, Section of Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada; 4Surrey Memorial Hospital, Surrey, BC, Canada; 5University of Wisconsin Hospital and Clinics, Madison, WI, USA; 6King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia;
Background: Previous studies have identified that nearly 30% of patients with severe sepsis and septic shock lack a definitive microbial etiology. The characteristics and outcomes of culture negative septic shock are not well defined despite large epidemiologic studies on septic shock.

Materials and methods: Retrospective nested cohort study of 2,651 patients with culture-negative septic shock and 6,019 culture-positive septic shock patients derived from a trinational, 8,760-patient database of patients with septic shock between 1989 and 2008.

Results: In total, 30.6% of cases of septic shock were identified as culture-negative within the database. Patients with culture-negative septic shock (CNSS) experienced similar ICU mortality as did those with culture-positive septic shock (CPSS) (41.7% vs. 40.5%, P = 0.289) (Tables 1 and 2).

Table 1: Comparison of variables of culture--positive and culture-negative septic shock (Continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>CNSS</th>
<th>CPSS</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital LOS</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Missing (%)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>26.3 (34.1)</td>
<td>23.1 (31.1)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>15.0</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.5 to 3700</td>
<td>0.3 to 3140</td>
<td></td>
</tr>
<tr>
<td>APACHE</td>
<td></td>
<td></td>
<td>0.4450</td>
</tr>
<tr>
<td>Missing (%)</td>
<td>375 (62)</td>
<td>179 (68)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>25.7 (8.1)</td>
<td>25.7 (8.3)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>25.0</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>4 to 70</td>
<td>6 to 54</td>
<td></td>
</tr>
<tr>
<td>Days to extubation</td>
<td></td>
<td></td>
<td>0.2414</td>
</tr>
<tr>
<td>Mean</td>
<td>6.5 (9.5)</td>
<td>6.2 (9.2)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>4.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.0 to 1170</td>
<td>0.0 to 1000</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean</td>
<td>37.6 (1.7)</td>
<td>37.4 (1.7)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>38.0</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>27.3 to 42.7</td>
<td>30.4 to 42.7</td>
<td></td>
</tr>
<tr>
<td><36°C</td>
<td>869 (15.3)</td>
<td>473 (18.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>>38°C</td>
<td>2,707 (47.7)</td>
<td>1,075 (42.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>>38.3°C</td>
<td>2,264 (39.9)</td>
<td>878 (35.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Infection source</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Community</td>
<td>3,491 (58.0)</td>
<td>1,677 (63.3)</td>
<td></td>
</tr>
<tr>
<td>Nosocomial</td>
<td>2,528 (42.0)</td>
<td>794 (36.7)</td>
<td></td>
</tr>
<tr>
<td>Lactate - baseline</td>
<td></td>
<td></td>
<td>0.2377</td>
</tr>
<tr>
<td>Missing (%)</td>
<td>5,328 (88.5)</td>
<td>2,328 (87.8)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.3 (3.8)</td>
<td>4.4 (4.5)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>3.1</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.3 to 26.4</td>
<td>0.3 to 26.7</td>
<td></td>
</tr>
<tr>
<td>Lactate - 6 hours</td>
<td></td>
<td></td>
<td>0.2214</td>
</tr>
<tr>
<td>Missing (%)</td>
<td>5,132 (85.3)</td>
<td>2,204 (83.1)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.1 (3.7)</td>
<td>4.0 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.8</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.1 to 25.8</td>
<td>0.4 to 23.1</td>
<td></td>
</tr>
<tr>
<td>Lactate - 24 hours</td>
<td></td>
<td></td>
<td>0.4919</td>
</tr>
<tr>
<td>Missing (%)</td>
<td>5,164 (85.8)</td>
<td>2,236 (84.3)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.7 (4.1)</td>
<td>4.1 (5.0)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.4</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.3 to 54.4</td>
<td>0.2 to 37.6</td>
<td></td>
</tr>
</tbody>
</table>

Similar to our previous findings, we identified by the second hour after onset of persistent/recurrent hypotension that the in-hospital mortality rate was significantly increased relative to receiving therapy within the first hour (odds ratio, 1.62; 95% CI, 1.21 to 2.15; P < 0.001) in the CPSS group. Following increasing delays in the administration of appropriate antimicrobial therapy over the first 6 hours after the onset of hypotension, patients in both groups experienced nearly congruent, significant increases in hospital mortality; at 6 hours the CNSS group (odds ratio, 2.87; 95% CI,
1.72 to 4.78; \(P < 0.0001 \)) and the CPSS group (odds ratio, 3.44; 95% CI, 2.17 to 5.48; \(P < 0.0001 \)) (Figure 1). Survival differences between these time intervals are not significantly different in patients with CNSS and CPSS.

Conclusions: Patients with CNSS behave similarly to CPSS patients in nearly all respects. As with bacterial septic shock, early appropriate antimicrobial therapy appears to improve mortality. Earlier recognition of infection is the most obvious effective strategy to improve hospital survival. Optimal duration of therapy is not well defined among patients with CNSS. In addition to early, appropriate antimicrobial therapy, use of de-escalation strategies such as serial procalcitonin levels may be useful to determine the length of empiric broad-spectrum antimicrobial use in this population.

Table 2 (abstract P7) Comparison of major sites of infection

<table>
<thead>
<tr>
<th></th>
<th>Culture-positive</th>
<th>Culture-negative</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n) (%)</td>
<td>2,172 (63.9)</td>
<td>1,228 (36.1)</td>
<td></td>
</tr>
<tr>
<td>ICU LOS (median, IQR)</td>
<td>8.0 (4, 16)</td>
<td>6.7 (3, 12.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hospital LOS (median, IQR)</td>
<td>16.0 (6, 32)</td>
<td>13.0 (5, 26)</td>
<td>0.0024</td>
</tr>
<tr>
<td>15-day survival (n, %)</td>
<td>1,344 (61.9)</td>
<td>782 (63.7)</td>
<td>0.4761</td>
</tr>
<tr>
<td>Hospital survival (n, %)</td>
<td>949 (43.7)</td>
<td>619 (50.4)</td>
<td>0.0086</td>
</tr>
<tr>
<td>APACHE (mean, SD)</td>
<td>264 (8.0)</td>
<td>254 (8.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Gastrointestinal infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n) (%)</td>
<td>1,476 (58.9)</td>
<td>1,030 (41.1)</td>
<td></td>
</tr>
<tr>
<td>ICU LOS (median, IQR)</td>
<td>6.5 (3, 13)</td>
<td>5.0 (3, 11)</td>
<td>0.0153</td>
</tr>
<tr>
<td>Hospital LOS (median, IQR)</td>
<td>15 (5.7, 33)</td>
<td>11.1 (3, 29)</td>
<td>0.0059</td>
</tr>
<tr>
<td>15-day survival (n, %)</td>
<td>877 (59.4)</td>
<td>542 (52.6)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Hospital survival (n, %)</td>
<td>617 (41.8)</td>
<td>402 (39.0)</td>
<td>0.2892</td>
</tr>
<tr>
<td>APACHE (mean, SD)</td>
<td>25.5 (8.2)</td>
<td>26.1 (8.5)</td>
<td>0.1180</td>
</tr>
</tbody>
</table>

Figure 1 (abstract P7) Odds ratio of death by antibiotic delay in culture-positive and culture-negative septic shock

P8

SRT2379, a small-molecule SIRT1 activator, fails to reduce cytokine release in a human endotoxemia model

Maryse A Wiewel\(^1\)*, Anne Jan van der Meer\(^1\), Jonathan Haddad\(^2\), Eric W Jacobson\(^2\), George P Vlasuk\(^2\), Tom van der Poll\(^1\)

\(^1\)Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, the Netherlands; \(^2\)Sirtris, A GSK Company, Cambridge, MA, USA

Critical Care 2013, 17(Suppl 4):P8; doi:10.1186/cc12909

Background: SRT2379 is a selective small-molecule activator of the NAD\(^+\)-dependent deacetylase, Siruin 1 (SIRT1), which has broad anti-inflammatory effects in cell cultures and rodents. The aim of the current
study (EUDRACT # 2011-002266-20) was to determine the effect of SRT2379 on the inflammatory responses in normal healthy male subjects after exposure to LPS.

Materials and methods: This single-blind, placebo-controlled study consisted of four treatment arms (n = 8 per arm): (1) oral SRT2379 50 mg; (2) oral SRT2379 250 mg; (3) oral SRT2379 1000 mg; and (4) placebo. All subjects received a single dose of study drug on day 1 followed by intravenous LPS 4 hours later. Laboratory parameters of inflammation along with assessment of clinical signs, safety assessments, and pharmacokinetic measurements were recorded at baseline and after LPS administration.

Results: SRT2379 was well tolerated. Adverse events were similar across all treatment groups and were predominantly as expected with LPS administration. Pharmacokinetic exposures increased in a dose-dependent manner. SRT2379 did not significantly impact cytokine release as compared with placebo. TNFα (183.52, 177.57, 123.64 vs. 195.30 pg/ml for groups 1, 2, 3 vs. group 4, respectively, P > 0.05), IL-6 (195.25, 237.51, 180.26 vs. 250.08 pg/ml, respectively, P > 0.05), IL-17 (3.88, 2.59, 6.42 vs. 8.09 pg/ml, respectively, P > 0.05), IL-8 (126.11, 105.25, 110.56 vs. 108.77 pg/ml, respectively, P > 0.05), and IL-10 (12.61, 13.03, 40.40 vs. 11.90 pg/ml, respectively, P > 0.05). SRT2379 also had no impact on vital signs, leukocyte counts, or coagulation activation markers compared with placebo.

Conclusions: Although SRT2379 suppresses inflammatory markers in preclinical experiments, we were unable to demonstrate a similar impact in this human model of endotoxia. This may be due to potency or exposure issues, with the compound. SRT2379 terminated for further clinical development. More promising candidates are being identified for future clinical exploration.

Reference

P11

Bacteriological profile and antimicrobial sensitivity pattern of blood culture isolates among septicaemia-suspected children at Tikur Anbessa Specialized Hospital and Yekatit 12 Hospital, Addis Ababa, Ethiopia

Adugna Negussie,1,2 Gebra Mukafta,3 Ahmed Bedru,1,4 Damte Shimeles,1 Tsehaynesh Lema,1 Abraham Aseffa1
1Department of Medical Laboratory Science, College of Health Science, Addis Ababa University, Ethiopia; 2Department of Public Health Officer, Jigjiga University, Jigjiga, Ethiopia; 3Armauer Hansen Research Institute, Addis Ababa, Ethiopia; 4Tikur Anbessa Specialized Hospital, Department of Pediatrics, Addis Ababa, Ethiopia

Critical Care 2013, 17(Suppl 4):P11; doi:10.1186/cc12911

Background: Septicemia is a systemic disease caused by the spread of microorganisms and their toxins in the blood. These bloodstream infections are a major cause of morbidity and mortality in children in developing countries (1-4). It has been confirmed by culture that is associated with clinical manifestation and systemic response (5-7). It is crucial to continuously monitor any change in the local patterns of infection and susceptibility to various antibiotics. The aim of this study was to determine the bacteriological profile and antimicrobial sensitivity patterns among children suspected of having septicemia.

Materials and methods: A cross-sectional study involved about 201 pediatric patients (≤12 years) was conducted from October 2011 to February 2012 at Tikur Anbessa Specialized Hospital and Yekatit 12 Hospital’s pediatric units after the proposal of this study was approved by National Ethics Review Committee. Standard procedure was followed for blood sample collection. Samples were incubated in the BACTEC 9050 System, followed by isolate identifications based on standard microbiological procedures and testing for their susceptibility to antimicrobial agents using the disc diffusion method. Data were analyzed using the SPSS version 19 software package.

Results: Out of 201 study subjects, 110 (54.7%) were male. The majority (147, 73.1%) of them were neonates (≤28 days). The mean length of hospitalization was 11.24 days. Out of the 201 tested blood samples, blood cultures were positive in 56 (27.9%) cases (Figure 1). Gram-negative and Gram-positive bacteria constituted 51.8% and 46.4%, respectively. The most frequent pathogen found was Staphylococcus aureus (23.2%), followed by Serratia marcescens (21.4%), CoNS (19.6%), K. pneumoniae (16%), Pseudomonas aeruginosa (14.7%), Enterobacter cloacae (12.4%), and S. aureus (11.7%). Ciprofloxacin and nalidixic acid were the most effective antimicrobial agents for Gram-negative bacteria, while vancomycin and clindamycin for Gram-positive bacteria (Table 1). Deaths occurred in 25 (12.4%) children, out of which 13 (22.6%) had bacteremia.

Conclusions: The preliminary study revealed that both Gram-positive and Gram-negative bacteria were responsible for bloodstream infections and the majority of the isolates were multidrug resistant. S. aureus and S. marcescens were the most common isolated bacteria from blood cultures. The alarmingly higher percentages of multidrug-resistant isolates urge us to take infection prevention measures and to conduct other large studies for appropriate empiric antibiotic choice.

Acknowledgements: The authors would like to acknowledge the technical support provided by the members of the Departments of Microbiology and Pediatrics of Tikur Anbessa Specialized and Yekatit 12 Hospitals. They also thank Mr. Joseph Kenea for his excellent statistic support. This work was supported by AHRI/ALERT and AAU.

References

5. Wynn JL, Seed PC, Cotten CM. Does IV Ig administration yield improved immune function in very premature neonates? *J Perinatol* 2010, **30**:635-642.

Table 1 (abstract P11) Antimicrobial resistance pattern of bacteria isolated from blood culture

<table>
<thead>
<tr>
<th>Antimicrobial drugs</th>
<th>Resistance proportion of bacterial isolates (R%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus (n = 13)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>92.3</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>84.6</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>30.8</td>
</tr>
<tr>
<td>Chloramph.</td>
<td>7.7</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>30.8</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>15.4</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>38.5</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>30.8</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>53.8</td>
</tr>
<tr>
<td>SXT</td>
<td>61.5</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>46.2</td>
</tr>
<tr>
<td>Nitazoxacine</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND, not done; SXT, sulphonamethaxozol/trimethoprim. *Gram-negative bacteria (Acinetobacter baumannii, Escherichia coli, and Pseudomonas leuteola). **Gram-positive bacteria (Enterococcus spp. and Streptococcus spp.).

Conclusions: The assay shown here for the quantification of PCT fulfils all requirements for POCT. Within 9 minutes, PCT can be quantified near the patient’s bed in whole blood without sample preparation.

Acknowledgements: The authors thank Dr A Geerlof (HMGU) for producing recombinant PCT, Dr E Kremmer (HMGU) for producing the mAbs and Dr P Miethe from the Forschungszentrum für Medizintechnik und Biotechnologie (fzmb GmbH) for the delivery of the patient plasma samples.

References
they were randomized to receive either pentoxifylline at a dose of 6 mg/kg/hour or placebo. Patients with major congenital malformations, congenital infections and severe hemorrhage were excluded from the study. Pentoxifylline was administered as a 6 ml infusion for 6 hours for 6 days. The control group received normal saline in the same manner as the pentoxifylline infusion. Patients, parents and physicians (outcome assessors) were blinded to the treatment assignments. The primary outcome was analyzed on an intention to treat basis. The primary outcome measured in the study is the occurrence of all-cause mortality between the two groups. Secondary outcomes measured include mortality from sepsis, adverse drug reactions and length of hospital stay.

Results: A total of 312 neonates are included in this interim analysis: 156 in the pentoxifylline group and 156 in the control group. Baseline characteristics were comparable between the two groups. In this analysis, there is no difference in the occurrence of death among patients in the pentoxifylline group versus the placebo group (RR: 1.08 (0.83, 1.41)). There is no statistical difference in the risk of death from septic shock (RR: 1.03 (0.67, 1.59), P = 1.0). There was also no significant difference in the length of hospital stay in the two groups (36 days in treatment group vs. 35 days in control group, P = 0.910). No significant adverse drug reactions were noted with pentoxifylline use.

Conclusions: Pentoxifylline as an adjunct therapy for sepsis did not show a decrease in the all-cause mortality. There is no statistical significance in the occurrence of death from sepsis and length of hospital stay. No adverse drug reactions were noted with pentoxifylline use.

Acknowledgements: The authors thank the neonatology fellows of the Philippine General Hospital and Ms Carmi Pitajen, RN, research assistant.

P15
Effect of semi-quantitative procalcitonin assay on the adequacy of empirical antibiotics and mortality in septic patients
Dana Dharaniyadewi1*, Khie Chen Lie2, Nanang Sukmana3, C Martin Rumende4
1Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; 2Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; 3Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; 4Division of Respiratory and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

Background: Sepsis is a serious clinical condition with a considerable morbidity and mortality. Procalcitonin (PCT) is a good biomarker for early diagnosis and infection monitoring. A semi-quantitative PCT assay can be performed at the bedside and has good diagnostic value [1,2]. The present study aimed to investigate the effect of a semi-quantitative PCT test on the empirical antibiotic initiation time, the appropriateness of empirical antibiotics and mortality in septic patients.

Materials and methods: The study design was a randomized diagnostic trial, which was also a pragmatic trial. Septic patients more than 18 years old with and without signs of organ hypoperfusion or dysfunction who were admitted to Cipto Mangunkusumo Hospital emergency department in the internal medicine unit were eligible. Subjects were randomly assigned to either a semi-quantitative PCT-examined group (study group) or a control group. Semi-quantitative PCT test results will be informed to the physicians taking care of the patients. The primary outcome was 14-day mortality. Secondary outcomes were the time of initiation and appropriateness of empirical antibiotics.

Results: Two hundred and five patients met the inclusion criteria. Ninety-five of 100 subjects from the study group and 102 of 105 subjects from the control group were included in the analysis (Figure 1). Both groups have equal baseline characteristics (Table 1). The mortality risk was lower in the study group (RR 0.53; 95% CI 0.36 to 0.77). The study group had greater probability to have a first dose of empirical antibiotic in less than 6 hours compared with the control group (RR 2.48; 95% CI 1.88 to 3.26). No effect was seen in appropriateness of empirical antibiotics between groups (RR 0.99; 95% CI 0.92 to 1.08) (Table 2).

Conclusions: Semi-quantitative PCT examination affects the empirical antibiotic initiation time and mortality in septic patients, but not the appropriateness of empirical antibiotics.

Figure 1 (abstract P15) Enrollment of patients and completion of the study.
References

P16
Is Strongyloides stercoralis a risk factor for sepsis severity?
Patrícia Terra Alves1, Marcelo Arantes Levenhagen1, Fabiana de Almeida Araújo Santos1, Omar Pereira de Almeida Neto1, Liliane Barbosa da Silva Passos1, Cezar Augusto dos Santos1, Julia Maria Costa Cruz2, Luz Ricardo Goulart1
1Genetics and Biochemistry Institute, Federal University of Uberlândia, Brazil; 2Biomedical Sciences Institute, Federal University of Uberlândia, Brazil

Background: Sepsis is a complex disease with an initial proinflammatory profile triggered by an infection process, which is typically followed by a compensatory anti-inflammatory response, leading to immunosuppression. There are few cases in literature relating sepsis with opportunistic infections, such as strongyloidiasis, which may lead to severe clinical consequences due to hyperinfection. Human strongyloidiasis is a neglected tropical disease of major worldwide distribution, affecting millions of people. Despite of the fact that infection with Strongyloides stercoralis is usually self-limited and with low morbidity in immunocompetent individuals, it may become lethal in cases of immunosuppression, such as AIDS, corticosteroid treatment and transplantation. Our aim in this work was to investigate the presence of S. stercoralis antigens and anti-parasitic IgG in sepsis patients in a highly endemic area of strongyloidiasis.

Materials and methods: Serum samples from 27 individuals with strongyloidiasis and 27 healthy subjects were used as positive and negative controls, respectively, according to their parasitological analyses. Additionally, 27 sepsis patients were also investigated. We have used ELISA tests to detect S. stercoralis antigens and IgG anti-S. stercoralis in all three groups. The cutoff value was determined by the ROC curves obtained by Prism 5.0 software.

Results: IgG anti-S. stercoralis was detected in six patients; five under septic shock and one with sepsis. Among them, four were positive for the parasite antigen-antibody immune complex; three under septic shock and one with sepsis, demonstrating that 15% of sepsis patients were infected by the parasite, which may have significantly contributed with the hyperinfection presented by septic-shock patients (10%).

Conclusions: There are only two reports of an association between S. stercoralis infection and immunosuppression, which led to lethal sepsis cases. However, our preliminary analysis through antigen-antibody

Table 1(abstract P15) Baseline characteristics of the patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Semi-quantitative PCT-examined group, n (%)</th>
<th>Control group, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>60 years</td>
<td>28 (29.5)</td>
<td>23 (22.5)</td>
</tr>
<tr>
<td>≤60 years</td>
<td>67 (70.5)</td>
<td>79 (77.5)</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>51.4 ± 15.7</td>
<td>48.6 ± 46.0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>42 (44.2)</td>
<td>40 (39.2)</td>
</tr>
<tr>
<td>Female</td>
<td>53 (55.8)</td>
<td>62 (60.8)</td>
</tr>
<tr>
<td>Sepsis severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepsis</td>
<td>57 (60.0)</td>
<td>54 (52.9)</td>
</tr>
<tr>
<td>Severe sepsis and septic shock</td>
<td>38 (40.0)</td>
<td>48 (47.1)</td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without comorbidities</td>
<td>20 (21.1)</td>
<td>20 (19.6)</td>
</tr>
<tr>
<td>With comorbidities</td>
<td>75 (78.9)</td>
<td>82 (80.4)</td>
</tr>
<tr>
<td>Source of infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One source</td>
<td>82 (86.3)</td>
<td>86 (84.3)</td>
</tr>
<tr>
<td>≥2 sources</td>
<td>13 (13.7)</td>
<td>16 (15.7)</td>
</tr>
<tr>
<td>14-day mortality</td>
<td>26 (27.4)</td>
<td>53 (52.0)</td>
</tr>
</tbody>
</table>

Table 2(abstract P15) Effect of semi-quantitative procalcitonin assay on adequacy of empirical antibiotics and mortality in septic patients

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Semi-quantitative PCT assay, n (%)</th>
<th>RR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examined</td>
<td>Not examined</td>
<td></td>
</tr>
<tr>
<td>Empirical antibiotic initiation time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤6 hours</td>
<td>83 (87.4)</td>
<td>36 (35.3)</td>
<td>2.48 (1.88 to 3.26)</td>
</tr>
<tr>
<td>>6 hours</td>
<td>12 (12.6)</td>
<td>66 (64.7)</td>
<td></td>
</tr>
<tr>
<td>Appropriateness of empirical antibiotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate</td>
<td>88 (92.6)</td>
<td>95 (93.1)</td>
<td>0.99 (0.92 to 1.08)</td>
</tr>
<tr>
<td>Inappropriate</td>
<td>7 (7.4)</td>
<td>7 (6.9)</td>
<td></td>
</tr>
<tr>
<td>14-day mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>26 (27.4)</td>
<td>53 (52.0)</td>
<td>0.53 (0.36 to 0.77)</td>
</tr>
<tr>
<td>No</td>
<td>69 (72.6)</td>
<td>49 (48.0)</td>
<td></td>
</tr>
</tbody>
</table>
immune complex demonstrated that this parasitic infection might be more common in sepsis than expected. The correct diagnosis of the causal infection in sepsis may support the correct therapeutic choice, which is fundamental to avoid the continuous spread of specific pathogen/parasite triggers that will eventually lead to hyperinfection, and consequently to severe sepsis.

Acknowledgements: The authors would like to thank the patients and their families for the direct collaboration in this work, the medical staff from the ICU of the university hospital for providing the biological samples and the clinical parameters, and financial support by CNPq, CAPES, and FAPEMIG.

P17
Procalcitonin, presepsin, pro-adrenomedullin, fibrin degradation products, and lactate in early diagnosis and prognosis of septic patients newly admitted to the intermediate care unit from the emergency department
Filippo Mearelli1, Nicola Fiotti1, Nicola Altamura1, Irene Paoli1, Chiara Casarsa1, Maurizio Ruscio2, Gianni Biolo1
1Unit of Clinica Medica Generale e Terapia Medica, Department of Medical Surgical and Health Sciences, University of Trieste, Italy; 2Laboratory Medicine Ospedale Sant’Antonio, San Daniele Del Friuli, Italy

Background: More than 50% of all septic patients admitted to intensive care departments derive from intermediate care units (ICU). Biomarkers represent the most promising tool for early diagnosis of sepsis; but their accuracy in ICU has been largely disregarded [1]. Moreover, given the complexity of the septic pathophysiology, a panel of biomarkers could be more effective than a single one. For this reason we tested acute phase protein, cell surface, vasotonous related, coagulation system, and tissue hypoxia markers in early ruling in/out of sepsis in patients suffering from systemic inflammatory response syndrome (SIRS) [2-5].

Materials and methods: This prospective observational study included all SIRS [5] patients newly admitted to a medical ward from February to May 2012. Cases were diagnosed as sepsis or non-infective SIRS by clinical examination, cultures of the biological fluid, and imaging during a 7-day follow-up. Investigators were blinded to biomarker results. Survivors at 7 and 30 days were also assessed. Samples for procalcitonin (PCT), presepsin (sCD14-ST), pro-adrenomedullin (PRO-ADM), fibrin degradation products (FDP) and lactate were collected within 4 hours of admission. Their role in predicting diagnosis and survival, alone or in combination, have been investigated by receiver operating characteristic (ROC) curve, Youden index, relative risk and binary logistic regression.

Results: Among the 60 sepsis patients (microbiological and clinical sepsis), the most common sites of infection were the lung (67%), urinary tract (17%), abdomen (5%), and skin (8%). The sepsis group had significantly higher levels of PCT, sCD14-ST and FDP than the non-infective SIRS group. The area under the ROC was 0.80, 0.78, and 0.67 for PCT, FDP, sCD14-ST respectively. Main results are reported in Table 1: the combination of FDP and PCT detected correctly 10 more cases compared to PCT alone (sensitivity 0.89 vs 0.77, specificity 0.70 vs 0.67, PPV 80 vs 74, NPV 90 vs 54). The use of FDP together with PCT showed a higher Youden index 0.20 (95% CI 0.19 to 0.20) vs 0.20 (95% CI 0.20 to 0.20) for FDP and PCT, respectively. The combination of FDP and PCT was also able to detect all ICU patients with APACHE II score >15.

Conclusions: In intermediate care setting patients, the combination of FDP and PCT could be useful for an early discrimination of sepsis from non-infective SIRS. PRO-ADM, sCD14-ST, and lactate should be considered as early indicators of more intensive ward care and precocious ICU admission.

References

Table 1 (abstract P17)

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Cutoff</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>PLR</th>
<th>NLR</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO-ADM</td>
<td>0.2 nmol/l</td>
<td>83</td>
<td>37</td>
<td>80</td>
<td>41</td>
<td>1.3</td>
<td>0.5</td>
<td>72</td>
</tr>
<tr>
<td>PCT</td>
<td>0.1 ng/ml</td>
<td>80</td>
<td>74</td>
<td>90</td>
<td>54</td>
<td>3.0</td>
<td>0.2</td>
<td>78</td>
</tr>
<tr>
<td>sCD14-ST</td>
<td>0.407 ng/ml</td>
<td>90</td>
<td>50</td>
<td>84</td>
<td>62</td>
<td>1.8</td>
<td>0.2</td>
<td>80</td>
</tr>
<tr>
<td>FDP</td>
<td>180 ng/ml</td>
<td>80</td>
<td>70</td>
<td>89</td>
<td>53</td>
<td>2.6</td>
<td>0.2</td>
<td>77</td>
</tr>
<tr>
<td>FDP + PCT</td>
<td>180 + 0.1 ng/ml</td>
<td>95</td>
<td>68</td>
<td>90</td>
<td>81</td>
<td>3.0</td>
<td>0.075</td>
<td>88</td>
</tr>
</tbody>
</table>
Mortality was higher in patients with incomplete immunization \((P = 0.047)\). Among the cases with meningococcal etiology, \(3/4\) were not vaccinated.

Conclusions: The clinical group of patients diagnosed with sepsis showed short time of hospitalization, use of vasoactive drugs and mechanical ventilation. Mortality was high and higher in the group of patients with incomplete immunization. Among the causative agents, it was predominantly Gram-negative bacteria and \textit{S. aureus}, no vaccine-preventable etiologies.

References
State University, Rio de Janeiro, Brazil; 1Bacteriology, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil; 2Central Laboratory, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil; 3School of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil; 4School of Medical Sciences, Rio de Janeiro State Federal University, Rio de Janeiro, Brazil

Critical Care 2013, Volume 17 Suppl 4
http://ccforum.com/supplements/17/S4

Introduction: The project ‘HUPE against sepsis’ seeks to emphasize the importance of early recognition of sepsis, in order to accelerate the implementation of measures associated with decreased mortality for severe sepsis. It is therefore important that the professionals involved in healthcare are attentive to quick detection of signs and symptoms associated with the condition. The objective was to identify the difficulties for the implementation of the protocol advocated by the Surviving Sepsis Campaign and adopted by the project ‘HUPE against sepsis’.

Materials and methods: The study was conducted in clinical medical and surgical wards, DIP, general duty, cardiac and ICUs of the Pedro Ernesto University Hospital (HUPE), totaling 11 inpatient units. In January 2013, a questionnaire was applied to doctors, nurses and nurse technicians, including effective, contractors and residents. This instrument contained closed questions, professional profile and was related to the topic in question.

Results: Fifty-one professionals participated in the study: 22 (43%) medical staff and 29 (57%) nurses. Of these, 12 were medical residents, and eight were nursing residents, all in the first year (approximately 78% of workers investigated). Most physicians (55%), 38% of nurses and 40% of nurses claimed to have greatest difficulty administering the first dose of antibiotics within up to 1 hour after the diagnosis. About 45% of doctors and 31% of nurses also reported difficulty in the distribution of materials to acquire the sepsis kit (which contains materials for deep venous puncture, invasive hemodynamic monitoring and collecting blood cultures). Physicians (41%) and nurses (40%) still reported as a problem going to the pharmacy to get the first dose of the antibiotic. Other limiting factors were also appointed: obtaining the vesical catheterization of delay (for hourly diuresis control); rapid identification of severe sepsis; printed data record of the protocol; samples of blood culture for aerobic and peripheral venous access puncture.

Conclusion: The difficulties pointed out by the professionals investigated are common and include factors that prevent the correct and early implementation of the protocol, be they of institutional and/or professional responsibility. Seeking solutions to the problems raised allows a targeting of future actions to be developed, among them the constant updating and training of professionals involved in assistance for the patients investigated. This allows, also, the search for better institutional infrastructure appropriate to meeting the demands of the patient with severe sepsis.

P20
Early prediction of SIRS and sepsis development via chemiluminescent analysis
Igor V Obraztsov
Department of Immunology, Federal Scientific and Clinical Center for Pediatric Haematology, Oncology and Immunology, Moscow, Russia

Background: Neutrophils as a part of nonspecific immunity factors play a crucial role in antimicrobial resistance. Reactive oxygen species (ROS) are an important compound of the neutrophils’ microbialidal action. Analysis of neutrophils’ ROS production could provide valuable data on a phagocyte link of immunity [1]. A chemiluminescent (CL) assay being highly sensitive allows evaluating oxidative output of the cells in dynamics. Many studies on neutrophil CL in humans with different diseases have been published [2,3]. However, the results often vary between authors because of the lack of standardized method of CL analysis. So we have developed a methodology of neutrophils’ CL analysis according to the principles of evidence-based medicine.

Materials and methods: One hundred and twenty healthy donors and 17 ICU patients with second-third-degree burns participated in this study. We held an assay on the 1st, 8th and 15th day after injury and later; 37 observations in total. To dilute blood samples we used Hank’s balanced salt saline (HBSS) with glucose, pH 7.4. Luminol (Sigma-Aldrich) was dissolved in double-distilled water at 1 mM. N-formyl-methionyl-leucyl-phenylalanine (FMLP; Sigma-Aldrich) and 4-phorbol-12-myristate-13-acetate (PMA; Sigma-Aldrich) were diluted in dimethyl sulfoxide (MP Biomedicals, LLC) to make stock solutions that were dissolved in HBSS on the day of experiment. CL was evaluated by means of a chemiluminometer Lum-12 (Department of Biophysics, Moscow State University) [4].

Results: We substantiate an optimal experiment design in the context of obtaining the highest intensity of analytic signal and reproducible findings. Thus we have developed a method for evaluation of a neutrophil function, based on a step-by-step stimulation of the cells by PMA and FMLP. Using our approach, we investigated the distributions of CL characteristics for the population of 80 healthy donors. We obtained reproducible kinetic profiles with intensive flash and absent glow phase of emission in all of the samples. Profiles of ICU patients’ samples showed high intensity of both flash and glow phase of emission (Figure 1). Insufficient glow phase indicated subsequent development of severe septic complications.

Figure 1 (abstract P20) Kinetics of CL response in ICU patient and donor

Critical Care 2013, 17(Suppl 4):P20; doi:10.1186/cc12920
Conclusions: As a result we suggest a reliable and replicable method for the evaluation of a neutrophil function. Investigation of the Glow phase of the emission is promising to forecast risks of septic complications; we constructed a range of values of adjusted CL glow amplitude at different neutrophil counts that indicates a low probability of SIRS and septic complications that could be useful for correction of intensive treatment tactics.

Acknowledgements: The author would like to express deepest appreciation to all those who provided the possibility to perform this research. The author wishes to thank Prof. Ya Vladimirov and the team of Department of Biophysics at Moscow State University (Russia) and Dr MA Godkov for assistance and guidance with this study and for submitting of equipment and reagents. Also the author would like to thank Dr EN Kobzeva and Prof. Dr SV Smirnov for the opportunity to work with blood donors and ICU patients. Furthermore, the author would also like to acknowledge with much appreciation Dr VV Kalabukhov and the staff of the Department of Burn Resuscitation at Vishnevsky Institute of Surgery (Moscow, Russia) for their suggestions and encouragement.

References

Materials and methods: This was a retrospective matched cohort study, set in a large urban academic tertiary ED at Aarhus University Hospital, Aarhus, Denmark with approximately 56,000 patient visits annually. Adult ED patients with blood cultures obtained from 1 January through 31 December 2011. ED patients with blood culture-confirmed bacteremia were matched 1:3 to patients with negative cultures. The outcome was true bacteremia. Features of the clinical history, co-morbid illnesses, physical observations and laboratory tests were used to evaluate the performance of the clinical decision rule including calculation of the total score (Table 1). We report operating characteristics and the summary statistic for the decision rule.

Results: Among 1,526 patients, 105 (6.9%) patients were classified with true bacteremia. The sensitivity of the prediction rule was 94% (95% confidence interval (CI) 88 to 98%) and specificity 48% (95% CI 42 to 53%). Positive and negative predictive values were 37% (95% CI 32 to 44%) and 96% (95% CI 92 to 99%), respectively. The area under the receiver-operating characteristics curve was 0.83 ± 0.02 standard error (Figure 1).

Conclusions: The clinical decision rule performed well in our ED setting and is likely to be a useful supplement to clinical judgment.

Acknowledgements: The CONSIDER Sepsis Network is a collaboration of clinical researchers with an interest in sepsis at Aarhus University Hospital, Aarhus, Denmark.

Reference

P23
Prediction of bacteremia in emergency department patients with suspected infection: an external validation of a clinical decision rule

Marie K Jessen1,2, Julie Mackenhauer1, Anne Mette Sondrup Wulff Hvass1, Simon Skibsted1, Hans Kirkegaard1, Henrik C Schanheyder1, Nathan I Shapiro1
1Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark; 2Department of Infectious Disease, Aarhus University Hospital, Aarhus, Denmark.

Background: Bacteremia is a common clinical condition with an incidence of approximately 140 to 160 per 100,000 person-years. Since sepsis is a time-critical diagnosis, identification of emergency department (ED) patients at risk of bacteremia is therefore a priority. The study objective was to validate a previously published clinical decision rule for predicting a positive blood culture in ED patients with suspected infection based on minor criteria, major criteria and a total score [1].

Materials and methods: This was a retrospective matched cohort study, set in a large urban academic tertiary ED at Aarhus University Hospital, Aarhus, Denmark with approximately 56,000 patient visits annually. Adult ED patients with blood cultures obtained from 1 January through 31 December 2011. ED patients with blood culture-confirmed bacteremia were matched 1:3 to patients with negative cultures. The outcome was true bacteremia. Features of the clinical history, co-morbid illnesses, physical observations and laboratory tests were used to evaluate the performance of the clinical decision rule including calculation of the total score (Table 1). We report operating characteristics and the summary statistic for the decision rule.

Results: Among 1,526 patients, 105 (6.9%) patients were classified with true bacteremia. The sensitivity of the prediction rule was 94% (95% confidence interval (CI) 88 to 98%) and specificity 48% (95% CI 42 to 53%). Positive and negative predictive values were 37% (95% CI 32 to 44%) and 96% (95% CI 92 to 99%), respectively. The area under the receiver-operating characteristics curve was 0.83 ± 0.02 standard error (Figure 1).

Conclusions: The clinical decision rule performed well in our ED setting and is likely to be a useful supplement to clinical judgment.

Acknowledgements: The CONSIDER Sepsis Network is a collaboration of clinical researchers with an interest in sepsis at Aarhus University Hospital, Aarhus, Denmark.

Reference

Table 1[abstract P23] Decision rule

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria (1 point each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected endocarditis (3 points)</td>
<td>Age >65 years</td>
</tr>
<tr>
<td>Temperature >39.4°C (103.0°F) (3 points)</td>
<td>Temperature 38.3 to 39.3°C</td>
</tr>
<tr>
<td>Indwelling vascular catheter (2 points)</td>
<td>Chills</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
</tr>
<tr>
<td></td>
<td>Hypotension (systolic blood pressure <90 mmHg)</td>
</tr>
<tr>
<td></td>
<td>White blood cell count >18,000 cells/mm³</td>
</tr>
<tr>
<td></td>
<td>Bands >5% (in our setting, immature cells >0.5%)</td>
</tr>
<tr>
<td></td>
<td>Platelets <150,000 cells/mm³</td>
</tr>
<tr>
<td></td>
<td>Creatinine >2.0 mg/dl (177 μl/l)</td>
</tr>
</tbody>
</table>

A blood culture is indicated by the rule if at least one major criterion or two minor criteria are present. Otherwise, cultures may be omitted. Points used to calculate the total score.
Figure 1(abstract P23) Receiver operating characteristics curve (ROC) for external validation of the bacteremia prediction rule, calculated using the total score.

Figure 1(abstract P24)
Logistic regression was performed to determine the independent mortality odds.

Results: Four thousand, nine hundred and fifty-two patients were enrolled at BIDMC and 483 patients at AUH. Overall mortality rates were 4% and 11% with mean ages of 58 ± 21 and 69 ± 16 years, respectively. The mortality rate increased with increasing number of organ dysfunctions: BIDMC: 0 organ dysfunctions, 0.6% mortality; 1 dysfunction, 3.3%; 2 dysfunctions, 7.8%; 3 dysfunctions, 15.9%; and ≥4 dysfunctions, 34.3%; and AUH: 2.2%, 6.7%, 17%, 41%, and 57% mortality (Figure 1). The number of organ dysfunctions remained an independent predictor after adjustment for age and Charlson Index (Table 1). The AUCs for the models were 0.82 and 0.87, respectively (Figure 2). The effect of specific types of organ dysfunction on mortality was largest for respiratory dysfunction (OR 3.57 (95% CI 2.5 to 5.1)) in the internal and for hematologic dysfunction (OR 33.57 (8.56 to 127.3)) in the external validation set (Table 2).

Conclusions: Using readily available criteria in the ED to assess the number of organ dysfunctions is a reliable tool in predicting in-hospital mortality in both validation sets and could assist in risk prognostication and aid with earlier, targeted therapy.

Table 1

<table>
<thead>
<tr>
<th>Number of organ dysfunctions</th>
<th>Internal validation set in-hospital mortality</th>
<th>External validation set in-hospital mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5 (2.3 to 8.6)</td>
<td>3.1 (0.9 to 10.4)</td>
</tr>
<tr>
<td>2</td>
<td>9.3 (4.8 to 18.1)</td>
<td>7.3 (2.1 to 24.7)</td>
</tr>
<tr>
<td>3</td>
<td>18.0 (8.8 to 36.9)</td>
<td>33.6 (8.56 to 127.3)</td>
</tr>
<tr>
<td>4</td>
<td>50.5 (22.0 to 115.8)</td>
<td>45.0 (8.56 to 236.2)</td>
</tr>
<tr>
<td>5</td>
<td>39.0 (8.9 to 170.7)</td>
<td>285.9 (16.9 to 483.2)</td>
</tr>
</tbody>
</table>

Data presented as OR (95% CI).

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Internal in-hospital mortality</th>
<th>External in-hospital mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic</td>
<td>3.4 (2.2 to 5.2)</td>
<td>290 (7.1 to 116.9)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>3.6 (2.5 to 5.1)</td>
<td>1.4 (0.8 to 2.6)</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>3.2 (0.9 to 11.5)</td>
<td>18.5 (7.3 to 46.8)</td>
</tr>
<tr>
<td>Metabolic</td>
<td>3.0 (2.2 to 4.0)</td>
<td>6.7 (2.9 to 11.2)</td>
</tr>
<tr>
<td>Neurologic</td>
<td>2.4 (1.7 to 3.4)</td>
<td>8.9 (4.7 to 17.1)</td>
</tr>
<tr>
<td>Renal</td>
<td>2.1 (1.4 to 3.0)</td>
<td>5.4 (2.7 to 10.9)</td>
</tr>
<tr>
<td>Hepatologic</td>
<td>2.2 (1.4 to 3.4)</td>
<td>4.5 (1.1 to 18.2)</td>
</tr>
</tbody>
</table>

Data presented as OR (95% CI).

Background: Physiologic instability (PI) is a common, critical problem in the emergency department (ED) [1,2], and can have different underlying causes. The ability to determine the underlying cause of instability is paramount for early treatment and risk stratification [3]. Lactate has been shown to have prognostic value in some categories of unstable patients [4,5]. The objective of this study was to investigate how serum lactate concentrations differ across categories of PI and the association of lactate concentrations with clinical deterioration for each category.

Materials and methods: A prospective observational study of adult patients with PI at a university ED. PI was defined as lactate ≥4 mmol/L, or >5 minutes of heart rate (HR) ≥130, or respiratory rate (RR) ≥24, or shock index ≥1, or systolic blood pressure <90 mmHg. We excluded patients with no lactate measurements, isolated atrial tachycardia, seizure, intoxication, psychotic agitation, or tachycardia due to pain. A physician retrospectively...
Figure 1 (abstract P25) Lactate levels across groups of physiological instability

Figure 2 (abstract P25) Levels of lactate across groups of physiologic instability stratified by deterioration. no/yes = deterioration present or not. (*) Significant differences between groups ($p < 0.05$).
categorized PI cause. Categories were defined as septic, cardiogenic, hemorrhagic, hypovolemic, or other. The primary outcome was deterioration, defined as: acute renal failure (elevated creatinine to ≥2× baseline levels), intubation, vasopressors, or in-hospital mortality.

Results: We identified 1,156 patients with PI and excluded 324. Of the remaining, 304 did not have lactate measurements, leaving 528 for the analysis: 302 septic, 46 cardiogenic, 29 hemorrhagic, 57 hypovolemic, and 94 with another cause of instability. The differences in lactate levels between groups were not statistically significant (Figure 1). The lactate levels were statistically different between patients who deteriorated when compared with patients who did not deteriorate in the sepsis group (3.05 mmol/l vs. 1.91 mmol/l, \(P < 0.0001 \)) and the other group (2.89 mmol/l vs. 1.94 mmol/l, \(P = 0.002 \)). No statistically significant differences were demonstrated for the cardiogenic, the hemorrhagic or the hypovolemic groups (Figure 2).

Conclusions: Lactate levels were not significantly different between the five groups with PI. However, in patients in the sepsis or other group, elevated lactate predicted deterioration. This was not demonstrated for the other causes of PI. This study suggests that in unstable patients lactate has the same likelihood of elevation between different causes of instability, but it may not have the same prognostic value for deterioration across underlying causes.

Acknowledgements: CONSIDER Sepsis Network is a collaboration of clinical researchers with an interest in sepsis at Aarhus University Hospital, Aarhus, Denmark.

References

Table 1(abstract P26) Distribution of characteristics in the two groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Intervention group (n= 17)</th>
<th>Control group (n= 29)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>63 (46 to 75)</td>
<td>66 (39 to 85)</td>
<td>0.340</td>
</tr>
<tr>
<td>Gender (female)</td>
<td>5 (30%)</td>
<td>10 (34%)</td>
<td>0.999</td>
</tr>
<tr>
<td>Hospital stay (mean, days)</td>
<td>32 (9 to 118)</td>
<td>31 (3 to 112)</td>
<td>0.632</td>
</tr>
<tr>
<td>APACHE II (mean)</td>
<td>17 (8 to 29)</td>
<td>17 (8 to 29)</td>
<td>0.730</td>
</tr>
<tr>
<td>Ejection fraction <40%</td>
<td>8 (47%)</td>
<td>17 (58%)</td>
<td>0.545</td>
</tr>
<tr>
<td>Receiving antibiotics prior to study</td>
<td>11 (65%)</td>
<td>11 (38%)</td>
<td>0.126</td>
</tr>
<tr>
<td>Septic shock</td>
<td>9 (53%)</td>
<td>16 (55%)</td>
<td>0.999</td>
</tr>
<tr>
<td>Patients with adjustment therapy</td>
<td>6 (35%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>based on Septifast*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with adjustment therapy</td>
<td></td>
<td>7 (21%)</td>
<td></td>
</tr>
<tr>
<td>based on blood culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean time (minutes) of adjustment</td>
<td>580</td>
<td>3,007</td>
<td>0.004</td>
</tr>
<tr>
<td>therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathogens detected in Septifast*</td>
<td>P. aeruginosa (2), K. pneumonia/oxytoca (1), E. aerogenes/cloacae (1), S. marcescens (1), A. baumannii (1)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pathogens detected in blood culture</td>
<td>-</td>
<td>S. aureus (4), K pneumonia (2), M. morganii (1)</td>
<td></td>
</tr>
<tr>
<td>28-day mortality</td>
<td>9 (53%)</td>
<td>17 (59%)</td>
<td>0.765</td>
</tr>
</tbody>
</table>

P26
Rapid molecular test (SeptiFast*) reduced time for adjustment of antibiotic treatment in comparison with conventional blood cultures in critically ill sepsis patients: a randomized controlled clinical trial (preliminary results)

Maria Renata Gomes Franco, Cecilia Eugênia Charbel, Luciane de Carvalho Saraiba da Silva, Flávia Rossi, Maria Renata Gomes Franco, Rinaldo Focaccia Siciliano, Tânia Mara Varejão Strabelli

Background: Sepsis is the main cause of death in ICUs all over the world. Early detection of the pathogen is essential for appropriate antimicrobial treatment.

Materials and methods: To evaluate the reduction in time of antimicrobial adjustment therapy in patients with sepsis comparing a rapid molecular test (SeptiFast*) with conventional blood cultures, a randomized controlled clinical trial was conducted between October 2012 and May 2013 in a cardiology hospital. Adult patients staying more than 48 hours in hospital with clinical suspicion of sepsis were included in the study. Blood samples were collected for cultures (Bact/ALERT®) and SeptiFast® test immediately prior to initiation of antibiotic therapy. Patients were allocated into two groups. In the Intervention Group (GI), SeptiFast* results were communicated to the medical researcher and antimicrobials were adjusted. In the Control Group (GII), SeptiFast* results were not informed and therapy adjustment was based on the blood culture. Registered in Clinical trials.gov (NCT 01450358).

Results: Forty-six patients were included, 17 in GI and 29 in GII. Key data are shown in Table 1. GI therapy adjustment was done in 580 minutes compared with 3,007 minutes in GII (\(P = 0.004 \)).

Conclusions: The rapid molecular test (SeptiFast*) reduced the time for adjustment of antibiotic treatment in comparison with conventional blood cultures in critically ill sepsis patients.
A total of 268 patients were admitted to the ICU with pneumonia and sepsis-associated delirium (SAD). From all analyzed biomarkers only STNFR1, STNFR2 and adiponectin presented significantly higher values. Levels of CRP in group I differed significantly from those found in group III (P < 0.05). Groups differed in levels of IL-6 and CRP at fever onset. Group II presented IL-6 and CRP concentrations significantly lower than group III. Cutoff values of PCT: fever onset, 24 hours upon fever, 72 hours upon fever and long-standing fever were: 0.32; 0.47; 0.46 and 0.35 µg/l. At fever onset, sensitivity was 52.3 and specificity 52.6 for infection diagnosis. Best cutoff values of CRP for fever onset, 24 hours upon fever, 72 hours upon fever and long-standing fever were: 79, 120, 108 and 72 mg/l. At fever onset, sensitivity was 55.4 and specificity was 55.1. Best cutoff values of IL-6 for fever onset, 24 hours upon fever, 72 hours upon fever and long-standing fever were: 25 (mg/dl) and CRP ≥25 mg/dl.

Conclusions: IL-6 and CRP are associated with the early diagnosis of clinically or microbiologically confirmed infection in post-HSCT febrile neutropenia. The association of the three biomarkers did not present any advantage, nor did it improve diagnostic accuracy. IL-6 was the only biomarker significantly associated at an early stage with infection when assessed only in patients submitted to autologous HSCT. The independent variables associated with death were: allogeneic transplantation, Gram-negative infection, DHL ≥390 UI/l at fever onset and urea ≥25 mg/dl at fever onset and CRP ≥120 mg/l.

P28

Severe pneumonia in critically ill cancer patients: clinical outcomes and a comparison between healthcare-associated pneumonia and community-acquired pneumonia

Liga SCF Fabiello1, Luciano CP Azevedo2, Ivanos Augusto Oliveira de Souza3, Viviane Borgado Leite Torres4, Maria M Rosolem3, Jose Roberto Lapa e Silva4, Marcio Soares1,4, Jorge IE Salih2,4

1Postgraduate Program of Internal Medicine, Universidade Federal do Rio de Janeiro, Brazil; 2Hospital Sirio-Libanes, Sao Paulo, Brazil; 3Hospital Barra Dor, Rio de Janeiro, Brazil; 4Otor Institute for Research and Education, Rio de Janeiro, Brazil; 5Postgraduate Program, Instituto Nacional de Cancer, Rio de Janeiro, Brazil

Critical Care 2013, 17(Suppl 4):P28; doi:10.1186/cc12928

Background: Pneumonia is the most frequent source of infection in cancer patients and accounts for 50% of all cases of septic shock. Frequently cancer patients attend a hospital for several treatments and an event of pneumonia in this scenario is called healthcare-associated pneumonia (HCAP) by current ATS/IDSA guidelines. The aims of this study were to describe a population of cancer patients with severe pneumonia (not acquired in the hospital setting) who required ICU admission; identify predictors of hospital mortality; and classify the study population based on ATS CAP/HCAP definitions providing a comparison of clinical data, microbiologic variables and outcomes between the two groups.

Materials and methods: A prospective cohort study was performed from 2002 to 2011 at Instituto Nacional de Cancer and Hospital Sirio-Libanes, Brazil. Adult patients (>18 years) with a definite diagnosis of cancer and presenting with pneumonia (not acquired in the hospital setting) were evaluated at ICU admission. Demographic, clinical and laboratory data were collected during the first day of ICU including the CURB-65, the SAPS II, the SOFA score, comorbidities, Performance Status and cancer-related and treatment-related data.

Results: A total of 268 patients were admitted to the ICU with pneumonia and classified as CAP (n = 109/40.7%) and HCAP (n = 159/59.3%). There were 187 (69.8%) patients with solid tumors and 81 (30.2%) patients with hematological malignancies. One hundred and sixty-seven (63.9%) patients had septic shock at ICU admission. ICU and hospital mortality rates were 45.5% and 67.9%. When we compared CAP and HCAP populations, we observed similar characteristics and outcomes in both groups. As expected, higher severity of illness, organ failures, need for life-sustaining therapies and failure of NIV were associated with increased mortality. In a multivariate analysis, mechanical ventilation in the ICU (OR 2.52 (1.99 to 3.22); dialysis in the ICU (OR 3.86 (1.23 to 12.10)) and higher severity of illness (SAPS2 per point OR 1.03 (1.01 to 1.05)) were associated with increased hospital mortality whereas successful noninvasive ventilation was associated with lower mortality (OR 0.32 (0.13 to 0.77)). The model showed good discrimination (AROC 0.832).

Conclusions: We believe that cancer patients are a distinct group of patients with pneumonia regardless of HCAP or CAP classification. They have specific characteristics and predictors of outcome, and treatment should be based on their clinical characteristics and local microbiologic profiles.
Conclusions: The association between IL-1 and delirium is different in septic versus nonseptic patients, suggesting that mechanisms which drive SAD may differ from that of nonseptic ICU delirium.

Acknowledgements: This work was funded by the NENASC project (PRONEX program CNpq/FAPESC), INCT-TM; PROCAD Sepse - CAPES and FAPESP.

References

P30
Clinical features and prognosis of patients co-infected with HIV and tuberculosis in the ICU
Ana Carla Fiacco, Carla Ribeiro da Silva, Rodrigo T Amâncio, Denise Medeiros, Emerson C Mesquita, André M Japiassú, Fernando Bozza
Instituto de Pesquisa Clínica Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil

Background: Despite advances in treatment, tuberculosis (TB) remains a global health threat and is the leading co-infection among Brazilian HIV-infected patients [1-4]. Mortality of TB in the presence of sepsis and shock septic can be as high as 67%, with respiratory failure being the leading cause of ICU admission [2,3,5]. Clinical factors that enhance mortality among HIV-TB patients are yet to be explored.

Materials and methods: We retrospectively accessed data of HIV/AIDS critically ill patients from January 2007 until May 2012, at a referral infectious diseases hospital. All patients admitted to the ICU with laboratory-confirmed TB were included in the analysis. Demographic and clinical data were categorized for survivors and nonsurvivors and the results were displayed as frequency (%), median values and interquartile range.

Results: Fifty patients were included. Hospital mortality was 48%. Age was 31.5 years (26.5 to 42.75) in the survivors group versus 33.5 years (30 to 45.25) in nonsurvivors (P = 0.025), and the SAPS II score was 44.5 (37.25 to 55.75) versus 47.25 (38.75 to 54.25) (P = 0.58). The most common TB presentation was disseminated disease (56%) followed by pulmonary disease (44%), with no difference according to survival. The delta of days between ICU admission and beginning of TB treatment was not different between groups. Rifampicin (94%), pyrazynamide (94%), isoniazide (92%) and ethambutol (76%) were administered in the majority of patients, while fluoroquinolones and aminoglycosides were administered in 64% and 54% respectively. Nonsurvivors presented with more elapsed time since HIV diagnosis (1 (1 to 7) vs. 26 (5 to 72), P = 0.10); lower nadir CD4 cell count (72.5 (27.5 to 133.5) vs. 24 (14.5 to 63), P = 0.03); and HAART initiated within 30 days after admission (62% vs. 29%, P = 0.03, odds ratio 3.9 (95% CI 1.2 to 12.71)). The main reason for ICU admission was respiratory failure (70%). Nonsurvivors needed mechanical ventilation (88% vs. 48%, P = 0.006) and vasopressors (71% vs. 41%, P = 0.05) more frequently. Neurological dysfunction was more common in nonsurvivors (79% vs. 41%, P = 0.01, odds ratio 5.2 (95% CI 1.5 to 18.21)). After multivariate analysis, neurological dysfunction was associated with higher mortality, while HAART in the first 30 days of hospitalization was a protective associated factor.

Conclusions: The disseminated form was the most common presentation of TB in HIV/AIDS critically ill patients. Nonsurvivors were more prone to multiple organ dysfunction syndrome, with neurological dysfunction associated with hospital mortality. The administration of HAART within 30 days of hospitalization was associated with survival.

References

P31
Predictors of mortality in patients with severe sepsis or septic shock in the ICU of a public teaching hospital
Argenil José Assis de Oliveira 1,2,3, Cristina Padre Cardoso 1,3, Fabrício Rios Santos 1, Ana Paula de Magalhães Campos 2, Edna Leite 5, Juliana de Assis Silva Gomes Stanislaw 1,2,6, Fernando Antonio Botoni 1,2,6
1Postgraduate Course of Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; 2Hospital Risolota Tolentino Neves, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; 3Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; 4Universidade Federal do Mato Grosso, Brazil; 5Hospital Infection Control Center, Hospital Risolota Tolentino Neves - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; 6Department of Internal Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil

Background: Sepsis is a complex and multifactorial syndrome, whose incidence, morbidity and mortality have been increasing worldwide. The knowledge of clinical, epidemiological and hemodynamic parameters responsible for its evolution, diagnosis and treatment are still the subject of many studies. Therefore, this study aims to evaluate clinical, laboratory and hemodynamic parameters of morbidity and mortality in patients with severe sepsis and septic shock.

Materials and methods: As the diagnostic criteria of the systemic inflammatory response syndrome (SIRS) are very sensitive and very little specific, we selected patients with severe sepsis and septic shock in the first 24 hours of ICU admission, 18 years old or more, with two general and one or more inflammatory criteria of SIRS (ACCP/SCCM/2003). Patients with pathologies that could confound clinical and laboratory evaluations and advanced comorbidities or on immunosuppressive drug therapy were excluded. The ICU had 35 beds, five of them were restructuration beds located in

Table 1: abstract P31 Demographic and clinical characteristics observed in patients with severe sepsis and septic shock

<table>
<thead>
<tr>
<th>Variable</th>
<th>n = 72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (years; IQR)</td>
<td>53 ± 19</td>
</tr>
<tr>
<td>Male gender</td>
<td>64%</td>
</tr>
<tr>
<td>Type of admission</td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td>33 (47%)</td>
</tr>
<tr>
<td>Surgical</td>
<td>39 (53%)</td>
</tr>
<tr>
<td>ICU admission source</td>
<td></td>
</tr>
<tr>
<td>Emergency room</td>
<td>34 (47%)</td>
</tr>
<tr>
<td>Surgical room</td>
<td>38 (53%)</td>
</tr>
<tr>
<td>Interval between hospital admission and ICU</td>
<td></td>
</tr>
<tr>
<td>>24 hours</td>
<td>20 (28%)</td>
</tr>
<tr>
<td><24 hours</td>
<td>52 (72%)</td>
</tr>
<tr>
<td>Physical examination</td>
<td></td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>46 (63.9%)</td>
</tr>
<tr>
<td>Capillary refill time reduced</td>
<td>45 (62.5%)</td>
</tr>
<tr>
<td>Sedation</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>55 (76.4%)</td>
</tr>
<tr>
<td>No</td>
<td>17 (23.6%)</td>
</tr>
</tbody>
</table>
Table 1(abstract P31): Demographic and clinical characteristics observed in patients with severe sepsis and septic shock (Continued)

<table>
<thead>
<tr>
<th>Comorbidities</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>23 (31.9%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>11 (15.3%)</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>30 (41.6%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>29 (40%)</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>7 (9.7%)</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>18 (25%)</td>
</tr>
<tr>
<td>Blood products</td>
<td>39 (54.2%)</td>
</tr>
<tr>
<td>Cardiac arrest rate during ICU stay</td>
<td>4 (2.88%)</td>
</tr>
<tr>
<td>APACHE II score, median (IQR)</td>
<td>28 (18 to 34)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOFA score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial, median (IQR)</td>
<td>3 (2 to 8)</td>
</tr>
<tr>
<td>Media, median (IQR)</td>
<td>6 (5 to 10)</td>
</tr>
<tr>
<td>Maximum, median (IQR)</td>
<td>11 (7 to 13)</td>
</tr>
</tbody>
</table>

Severe sepsis	15 (20.8%)
Septic shock	57 (79.2%)
ICU stay, median (days; IQR)	8 (4 to 15)
Hospital stay, median (days; IQR)	20 (8 to 40)

<table>
<thead>
<tr>
<th>Positive cultures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>12 (17%)</td>
</tr>
<tr>
<td>Sterile tissue or cavity</td>
<td>11 (15%)</td>
</tr>
<tr>
<td>ICU mortality</td>
<td>13 (18%)</td>
</tr>
<tr>
<td>Hospital mortality</td>
<td>13 (18%)</td>
</tr>
</tbody>
</table>

Demographic and clinical characteristics observed in patients with severe sepsis and septic shock in the ICU/HRTN between April 2011 and October 2012. IQR, interquartile range.

Table 2(abstract P31) Clinical and laboratory variables related to mortality in patients with severe sepsis and septic shock

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation r</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>0.248</td>
<td>0.05</td>
</tr>
<tr>
<td>Age</td>
<td>0.309</td>
<td>0.01</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>0.478</td>
<td>0.01</td>
</tr>
<tr>
<td>SOFA score</td>
<td>0.572</td>
<td>0.01</td>
</tr>
<tr>
<td>Fluid balance (24 hours)</td>
<td>0.350</td>
<td>0.01</td>
</tr>
<tr>
<td>Fluid balance (7 days)</td>
<td>0.590</td>
<td>0.01</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>0.548</td>
<td>0.01</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>0.266</td>
<td>0.01</td>
</tr>
<tr>
<td>PaO2/FiO2</td>
<td>0.320</td>
<td>0.01</td>
</tr>
<tr>
<td>Vasopressor agent (24 hours)</td>
<td>0.445</td>
<td>0.01</td>
</tr>
<tr>
<td>MAP (24 hours)</td>
<td>0.485</td>
<td>0.01</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.548</td>
<td>0.01</td>
</tr>
<tr>
<td>Lactate</td>
<td>0.375</td>
<td>0.01</td>
</tr>
<tr>
<td>Steroid use</td>
<td>0.337</td>
<td>0.01</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>0.404</td>
<td>0.01</td>
</tr>
<tr>
<td>NT-pro-BNP</td>
<td>0.269</td>
<td>0.05</td>
</tr>
<tr>
<td>PCT</td>
<td>0.320</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Clinical and laboratory variables related to the mortality observed in patients with severe sepsis and septic shock in the ICU/HRTN between April 2011 and October 2012 (n = 72). Data expressed as Spearman r and P value. MAP, mean arterial pressure; NT-pro-BNP, N-terminal natriuretic peptide; PCT, procalcitonin.

Table 3(abstract P31) Univariate analysis of variables associated with mortality in patients with severe sepsis and septic shock

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>3.24</td>
<td>1.13 to 22.40</td>
<td>0.06</td>
</tr>
<tr>
<td>Age</td>
<td>1.05</td>
<td>0.92 to 13.70</td>
<td>0.00</td>
</tr>
<tr>
<td>MAP 24 hours</td>
<td>0.79</td>
<td>0.71 to 0.90</td>
<td>0.00</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>1.03</td>
<td>1.00 to 1.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Fluid balance (24 hours)</td>
<td>1.00</td>
<td>1.00 to 1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Vasopressor use (24 hours)</td>
<td>1.18</td>
<td>0.84 to 2.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Steroid use</td>
<td>5.28</td>
<td>2.30 to 11.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>5.36</td>
<td>0.97 to 29.6</td>
<td>0.05</td>
</tr>
<tr>
<td>Mechanical ventilation (l)</td>
<td>0.762</td>
<td>0.60 to 0.96</td>
<td>0.12</td>
</tr>
<tr>
<td>PEEP</td>
<td>1.24</td>
<td>0.70 to 1.70</td>
<td>0.08</td>
</tr>
<tr>
<td>PIP</td>
<td>1.22</td>
<td>1.07 to 1.59</td>
<td>0.04</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>6.29</td>
<td>2.05 to 19.2</td>
<td>0.00</td>
</tr>
<tr>
<td>PCT</td>
<td>1.14</td>
<td>0.90 to 1.30</td>
<td>0.06</td>
</tr>
<tr>
<td>Lactate</td>
<td>9.55</td>
<td>1.12 to 73.96</td>
<td>0.03</td>
</tr>
<tr>
<td>Creatinine</td>
<td>4.07</td>
<td>0.99 to 22.32</td>
<td>0.01</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>1.09</td>
<td>0.977 to 1.23</td>
<td>0.00</td>
</tr>
<tr>
<td>SOFA score</td>
<td>1.24</td>
<td>1.06 to 1.44</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Univariate analysis of variables associated with mortality observed in patients with severe sepsis and septic shock in the ICU/HRTN between April 2011 and October 2012 (n = 72). MAP, mean arterial pressure; PEEP, positive end expiratory pressure; PIP, peak inspiratory pressure; t, time (days).

Table 4(abstract P31) Multivariate analysis of variables associated with mortality in patients with severe sepsis and septic shock

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP (24 hours)</td>
<td>0.74</td>
<td>0.64 to 0.85</td>
<td>0.0001</td>
</tr>
<tr>
<td>Fluid balance (24 hours)</td>
<td>1.001</td>
<td>1.00 to 1.01</td>
<td>0.002</td>
</tr>
<tr>
<td>Male gender</td>
<td>5.35</td>
<td>1.10 to 26.15</td>
<td>0.038</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>60.85</td>
<td>4.97 to 74</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Multivariate analysis of variables associated with mortality observed in patients with severe sepsis and septic shock in the ICU/HRTN between April 2011 and October 2012 (n = 72). CI, confidence interval; HR, hazard ratio; MAP, mean arterial pressure.

the emergency room (ER). The same intensivist team assists all patients in the ER and during ICU permanence. The principal investigator did not perform any orientation or intervention in the treatment of selected patients. Clinical (age, sex, infection focus, fluid balance, hemodialysis, use of corticosteroids, antibiotic therapy, APACHE II, SOFA), laboratory (blood cell counting, lactate, creatinine, bilirubin, glucose, cortisol, NT-proBNP, C-reactive protein (CRP), procalcitonin (PCT), Troponin I), hemodynamic (blood pressure, heart rate, left ventricular systolic function (echocardiography)) and respiratory parameters (respiratory rate, PaO2/FiO2, PEEP and peak inspiratory pressure (PIP)) were analyzed from ICU admission until discharge or death. Echocardiography was performed at 48 hours and on the 10th day after ICU admission.

Results: Seventy-two patients (64% male), mean age 52 ± 19 years, were consecutively included, 21% (15/72) with severe sepsis and 79% (57/72) with septic shock. Mortality was 18% (13/72), of these 21% (3/13) for severe sepsis and 79% (10/13) for septic shock. Median APACHE II score was 28 (16 to 37) and SOFA score 6 (5 to 10) (Table 1). There was positive correlation between mortality with: male gender, APACHE II, SOFA, positive 24-hour fluid balance, hemodialysis indication, corticosteroid use, leukopenia, lactate, NT-proBNP and PCT levels (Table 2). From univariate analysis, practically the same significant association with mortality was observed (Table 3). In addition, the final multivariate Cox model showed...
that male gender, hypotension (first 24 hours), leukopenia and positive fluid balance (first 24 hours) had an impact on mortality (Table 4). Glycemic control and early antibiotic use were not relevant.

Conclusions: Precocious treatment, judicious fluid management and individualized care showed benefit in the treatment of patients with severe sepsis, septic shock.

P32

Risk factor for mortality associated with carbapenem-resistant Enterobacteriaceae infections

Claudia MDM Carrilho1, Cinta MC Gion1, Marcos T Tanita1, Jamile Vale1, Larissa Oliveira2, Ana P Marchi2, Silvia F Costa2

1Universidade Estadual de Londrina, PR, Brazil; 2Universidade de Sao Paulo, SP, Brazil

Critical Care 2013, 17(Suppl 4):P32; doi:10.1186/cc12932

Background: Antimicrobial resistance has emerged and increased in the last 25 years, complicating the treatment of nosocomial infections, especially for extended-spectrum beta-lactamase Enterobacteriaceae (ESBL). Furthermore, disseminated use of invasive procedures, particularly in ICU patients favors the emergence of multidrug resistant pathogens. More recently, Enterobacteriaceae has developed a new mechanism of antimicrobial resistance and became resistant to carbapenems. Among Enterobacteriaceae resistant to carbapenem, Klebsiella pneumoniae is the most common. These pathogens manifest resistance to most of antimicrobials tested and are associated with high mortality rates. The aim of this study is to describe epidemiologic data about nosocomial infections due to carbapenem-resistant Enterobacteriaceae and identify risk factors for death.

Materials and methods: Longitudinal study evaluating patients with infections caused by carbapenem-resistant Enterobacteriaceae, isolated from blood, urine, tracheal secretions, skin and soft tissues, treated accordingly to the Brazilian Society of Infectious Diseases guidelines, from March 2011 to December 2012. Acute Physiology and Chronic Health Evaluation (APACHE II) was calculated to evaluate severity of disease and Sequential Organ Dysfunction Assessment (SOFA) to measure organ dysfunction. Comorbidities were classified according to Charlson comorbidities index list. Patients were followed until hospital discharge.

Results: During the study period, 174 nosocomial infections caused by carbapenem-resistant Enterobacteriaceae were identified in 148 patients. All infections were microbiologically documented and 136 (78.2%) occurred in patients who were admitted to the ICU. Sepsis (17.8%), polytrauma (14.4%), cardiovascular disease (13.8%) and respiratory disease (11.5%) were the most common diagnosis. Most of the patients (78%) had one or more comorbidities according to Charlson criteria, and 57/148 (43.2%) had three or more comorbidities. Median APACHE II was 20.7 (7 to 38) and median SOFA at ICU admission was 7 (0 to 14). Median length of hospital stay was 43 (6 to 230) days. K. pneumoniae was the most common enterobacteria (86.8%), followed by Enterobacter spp. (8%). The mechanism of resistance was identified as Klebsiella pneumoniae carbapenemase (KPC) present in 77.2% of K. pneumoniae infections. Shock was present in 61/148 (46.6%) patients and dialysis was used in 62/148 (35.6%). Hospital mortality was 62.6% and associated mortality was 33.3%. Multivariate analysis identified dialysis and pneumonia as independent risk factors for death.

Conclusions: Many patients infected with carbapenem-resistant Enterobacteriaceae were identified, and most of them were caused by carbapenem producing bacteria. These infections were associated with high mortality rate. Shock, dialysis, pneumonia, SOFA discharged >6 and APACHE >20 were identified as independent risk factors for mortality.

Table 1(abstract P33)

<table>
<thead>
<tr>
<th>Characteristic and outcomes</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>64.7 (± 17.8)</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>41 (63.1)</td>
</tr>
<tr>
<td>Locate of transfer</td>
<td></td>
</tr>
<tr>
<td>ICU</td>
<td>42 (64.6)</td>
</tr>
<tr>
<td>Step-down unit</td>
<td>23 (35.4)</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>30 (46.2)</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>3 (4.6)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>18 (27.7)</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>11 (16.9)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>6 (9.2)</td>
</tr>
<tr>
<td>Chronic heart failure</td>
<td>5 (7.7)</td>
</tr>
<tr>
<td>Severe sepsis</td>
<td>56 (86.2)</td>
</tr>
<tr>
<td>Septic shock</td>
<td>9 (13.8)</td>
</tr>
<tr>
<td>Site of infection</td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>29 (44.2)</td>
</tr>
<tr>
<td>Urinary tract</td>
<td>13 (20.0)</td>
</tr>
<tr>
<td>Abdominal</td>
<td>8 (12.3)</td>
</tr>
<tr>
<td>Skin and soft tissue</td>
<td>4 (6.2)</td>
</tr>
<tr>
<td>Blood (ICS)</td>
<td>4 (6.2)</td>
</tr>
<tr>
<td>Others sites</td>
<td>7 (10.8)</td>
</tr>
<tr>
<td>SAPS II score</td>
<td>57.8 (± 12.8)</td>
</tr>
<tr>
<td>Initial bundle 6 hours</td>
<td></td>
</tr>
<tr>
<td>Serum lactate + blood culture measured</td>
<td>40 (63.5)</td>
</tr>
<tr>
<td>Fluids administration</td>
<td>41 (64.1)</td>
</tr>
<tr>
<td>Length of stay ICU (days)</td>
<td>3 (1-6)</td>
</tr>
<tr>
<td>Length of stay hospital (days)</td>
<td>26 (10-71)</td>
</tr>
<tr>
<td>Hospital mortality</td>
<td>13 (20.0)</td>
</tr>
</tbody>
</table>

Data presented as n (%), mean (± SD) or median (IQR).
was also initiated in the ward. The serum lactate + measured blood culture was 40 (63.5%) and fluid administration was 41 (64.1%) (Table 1). Pressing the RRT was in 43 (66.2%) cases by the staff member with significant concern about the patient’s condition. 27 (41.5%) cases by changes in systolic blood pressure, and 23 (35.4%) cases due to change in oxygen saturation (Table 2).

Conclusions: The criteria for calling the RRT can support the prompt identification of patients who have sepsis and prevent disease progression. Furthermore, the treatment may also be performed in the ward and may result in a reduction in mortality. References

P34 Knowledge of the nurse in advanced life support and the impact of continuing education in cardiopulmonary arrest in the ICU

Daniella Fernandes Mendonça1, Denise de Fátima Gomes Machado2, Renata Cristina Barbosa Silva3, Camila Medeiros Cruvinel Cunha4, Marislei Brasileiro5

1Unidade de Terapia Intensiva pelo CEEN, Hospital Santa Genoveva, Bairro Brasil, Uberlândia, MG, Brazil; 2CEEN/PUC, Goiânia, GO, Brazil; 3Saúde Pública e da Família pela UNIASSELVI, UTI Neonatal e Pediátrica, Hospital Santa Genoveva, Bairro Brasil, Brazil; 4Docente do CEEN/PUC, Goiânia, GO, Brazil

Critical Care 2013, 17(Suppl 4):P34; doi:10.1186/cc12934

Background: The knowledge of the nurse in advanced life support and the impact of continuing education in cardiopulmonary arrest in the ICU. Faced with the complications of cardiopulmonary arrest (CPA) in the ICU it is important for nurses to be prepared for emergency actions, mastering the techniques of care and maintaining well-trained staff. The objective was to identify and describe the knowledge of the nurse in advanced life support (ALS) and the impact of continuing education PCI in ICU.

Results: Twenty-six publications found and gave rise to two categories. First, the identification of clinical signs and CPR maneuver by the nursing staff and the nurse in the PCR are essential for successful resuscitation: the authors agree that the service systematized-based SAV protocol is essential for there to be success in CPR. Recognition theoretical and practical skills of the staff are among the most important determinants of the success rates of RC [1]. Thus, it is necessary that health professionals, especially nursing staff, be aware of the clinical signs of PCR. Furthermore, the residence time of the professional nursing staff in the ICU causes them to gain more experience, making it easier to identify clinical signs and cardiac rhythms [2,3]. Second, the impact of continuing education on quality of nursing care in a PCR: the proper training of the nursing staff, especially those that operate in the ICU, is vital for emergency treatment PCR. Identifying the theoretical and practical knowledge of staff about the PCR and PCI is an important prerequisite for planning a training service [2]. The nurse as team leader and organizer of the ICU is the right professional to establish measures to be taken at the time of the PCR. The nurse has a responsibility to properly distribute the measures to be implemented at the time of service of the PCR, identifying it early and minimizing damage [4].

Conclusions: Continuing education has significant impact in improving the level of knowledge of nursing professionals, leading to survival of patients in a hospitalized ICU, as it ensures the identification of the signs and symptoms of CRP in patients in the ICU.

Acknowledgements: The authors thank everyone who contributed to this work, Professor Dr Marislei Brasileiro for encouragement, and the dedication of coworkers Denise Machado, Renata Barbosa and Camila Cunha for their knowledge and effort to achieve this project.

References

P35 Prevalence of vitamin D deficiency among children with sepsis, its association with sepsis severity and its outcome in a pediatric ICU

Ponnarneni Satheesh1, Savita Verma, Sunit Singh, Arun Bansal

Department of Paediatrics, Post-Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India

Critical Care 2013, 17(Suppl 4):P35; doi:10.1186/cc12935

Background: Increased prevalence of vitamin D deficiency (VDD) in sepsis and its association with sepsis severity has been documented in adults [1-3]. However, data on the pediatric population are scarce. This study aims at assessing the prevalence of VDD (25-hydroxy vitamin D (25(OH)D) level <20 ng/ml) among children with sepsis in developing nations and its implication on sepsis severity.

Materials and methods: A prospective observational study conducted between January and December 2012. During the study period all consecutive PICU admissions between the ages of 1 and 12 years were screened for sepsis at the time of admission to the ICU. Out of 613 PICU admissions, 124 patients satisfying the criteria for sepsis [4] were randomly enrolled and followed up throughout the hospital stay. Patients with an immunosuppressed state or receipt of vitamin D within the 3 months prior to hospital admission were excluded. A control group comprising of 40 healthy children was also included for comparison with the general population. The serum 25(OH)D level was measured in all patients with sepsis within 24 hours of admission to the PICU. Severity of sepsis was assessed using the Pediatric Risk of Mortality II (PRISM II) score and the daily Sequential Organ Function Assessment (SOFA) score.

Results: Patients with sepsis had low 25(OH)D levels compared with healthy controls (P = 0.04). Median 25(OH)D level among patients was 19.7 ng/ml (interquartile range [IQR]: 12.5, 31.2) and median 25(OH)D level among controls was 30.4 ng/ml (IQR: 22.1, 38). Prevalence of VDD was high among patients 51% (95% confidence interval (CI), 42 to 59) compared with the VDD of 17% (95% CI, 8 to 32) in healthy controls (P < 0.001) (Table 1). No significant correlation was found between vitamin D level and PRISM II score or daily SOFA score. Out of 19 deaths, 17 (90%) deaths occurred in patients with vitamin D deficiency and insufficiency (odds ratio 3.09, 95% CI: 0.6 to 20.7). However, the difference in mortality was not statistically significant (P = 0.58). Factors such as septic shock, multiorgan...
dysfunction syndrome (MÖDS), duration of mechanical ventilation, blood culture positivity, hypocalcemia and length of PICU stay were not modified by the presence of VDD (Table 2).

Conclusions: We found a high prevalence of VDD among children with sepsis when compared with healthy children but VDD was not associated with the severity of sepsis or its outcome.

Acknowledgements: This study was carried out as a MD thesis, with support from the institute (PGIMER, Chandigarh, India)

References

Table 1(abstract P35) Vitamin D status among patients with sepsis and healthy controls

<table>
<thead>
<tr>
<th>Vitamin D status, % (n)</th>
<th>Deficient, 25(OH)D <20 ng/ml</th>
<th>Insufficient, 25(OH)D = 20 to 30 ng/ml</th>
<th>Sufficient, 25(OH)D >30 ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n = 124)</td>
<td>51 (63)</td>
<td>25 (31)</td>
<td>24 (30)</td>
</tr>
<tr>
<td>Controls (n = 40)</td>
<td>18 (7)</td>
<td>30 (12)</td>
<td>52 (21)</td>
</tr>
</tbody>
</table>

P < 0.001.

Table 2(abstract P35) Comparison of clinical characteristics of patients with sepsis by vitamin D status

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 (2.1 to 9.4)</td>
<td>4.2 (1.8 to 8.5)</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 (10.3 to 24.5)</td>
<td>14 (10 to 20)</td>
<td>0.67</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRISM III score</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 (13 to 22)</td>
<td>14 (13 to 22)</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean SOFA score from day 1 to day 5</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (2 to 6.8)</td>
<td>4 (2 to 6.3)</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Septic shock</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 (32)</td>
<td>49 (30)</td>
<td>0.85</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODS</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>58 (35)</td>
<td>56 (34)</td>
<td>0.83</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical ventilation (hours)</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 (24 to 144)</td>
<td>120 (72 to 216)</td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bacterial culture positivity</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 (43 to 168)</td>
<td>90 (43 to 168)</td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypocalcaemia (calcium <8 mg/dl)</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 (17)</td>
<td>18 (11)</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Vitamin D deficient (n = 63)</th>
<th>Not deficient (n = 61)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (10)</td>
<td>15 (9)</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>

Data presented as median (IQR) or % (n).
Stratifying septic patients using lactate: severe sepsis and cryptic, vasoplegic and dysoxic shock profile

Otavio T Ranzani,*, Mariana B Monteiro, Elaine M Ferreira, Fernando Leibel, Sergio Ricardo Santos, Flavia R Machado,² Daniilo T Noritomi

Background: The current consensus definition of severe sepsis and septic shock includes a heterogeneous profile of patients under the same definition. Although the prognostic value of hyperlactemia in sepsis is well established, hyperlactemia can be found both in severe sepsis and septic shock patients. We sought to compare features and outcomes of septic patients stratified by two factors: the presence of hyperlactemia and persistent hypotension.

Materials and methods: This was a secondary analysis of a multicenter observational study from 10 private hospitals in Brazil (Rede Amil-SP) aiming to evaluate the impact of a multifaceted program to implement the Surviving Sepsis Campaign bundles. We retrieved 1,948 septic patients with an initial lactate level collected within the first 6 hours of diagnosis. Based on previous literature, we stratified them into four groups according to the presence of hypoperfusion (lactate >4 mmol/l) and/or persistent hypotension despite adequate fluids: 1, severe sepsis (without both criteria); 2, cryptic shock (hypoperfusion without persistent hypotension) [1]; 3, vasoplegic shock (persistent hypotension without hypoperfusion); and 4, dysoxic shock (with both criteria) [2].

Results: Severe sepsis was found in 1,018 (52%), cryptic shock in 162 (8%), vasoplegic shock in 549 (28%) and dysoxic shock in 219 (12%) patients. Mean age was 60 years, 47% were male and the majority was admitted form the emergency department (47%). The lung was the principal source of infection, followed by the urinary tract and abdominal. Overall, the four groups presented significant differences in APACHE II and SOFA scores (P < 0.001 for both), dysoxic shock being the most severe group. In post-hoc analysis, patients in the severe sepsis group presented a similar SOFA score to patients in the cryptic shock group (P = 0.20). Over 28-day crude survival was different between groups (P < 0.001), being higher for the severe sepsis group (69%, P < 0.001 vs. other), similar between cryptic and vasoplegic shock (53%, P = 0.39) and lower for dysoxic shock (38%, P < 0.001 vs. other). In an adjusted analysis considering age, APACHE II and SOFA, the 28-day survival remained different between groups (P < 0.001) and the hazard ratio for the dysoxic shock group was the highest: HR 2.29 (95% CI 2.21 to 4.02).

Conclusions: Current definitions for severe sepsis and septic shock include four different phenotypes, which should be considered for epidemiology purposes, customizing treatment goals and inclusion criteria for future studies. Although previous studies showed similar outcomes between cryptic shock and overt septic shock (vasoplegic and dysoxic profile), we demonstrated that cryptic shock is similar only to vasoplegic shock.

Acknowledgements: On behalf of the Amil Critical Care Group.

References

Antithrombin III concentrate may contribute to sepsis in nonovert disseminated intravascular coagulation

Noriko Saito, Mari Yokota, Ahmin Kim, Tomoyuki Harada, Munekazu Takeda, Mizuho Namiki, Arino Yaguchi

Department of Critical Care and Emergency Medicine, Tokyo Women’s Medical University, Tokyo, Japan

Critical Care 2013, 17(Suppl 4):P38; doi:10.1186/cc12938

Background: Antithrombin III (AT III) has been known to contribute to anti-inflammatory response as well as its anticoagulation. Our previous study showed AT III deficiency happened in the early stage of sepsis with no relation to disseminated intravascular coagulation (DIC) status. Whether AT III concentrate is a beneficial therapy or not for septic patients is still a controversial issue. Our hypothesis is that AT III concentrate may have efficacy as an anti-inflammatory for sepsis.

Materials and methods: From January 2009 to June 2013, adult septic patients with nonovert DIC whom were given AT III concentrate in our medico-surgical ICU were included in this study. DIC scoring was used with the definition of the International Society on Thrombosis and Haemostasis (ISTH). AT III concentrate was administered 30 to 60 U/kg intravenously every 24 hours for 3 days in the patients. Between before and after the AT III concentrate therapy, WBC (/mm³), CRP (mg/dl), platelet (x10⁹/µl), PT (seconds), fibrinogen (mg/dl), FDP (µg/ml), SOFA score and DIC score by ISTH were compared. Values are expressed as mean ± SD. Data were analyzed by Wilcoxon signed-rank test. P < 0.05 was considered significant.

Results: There were 157 patients (100 men, 57 women; age range 19 to 96 years [mean 70.0 ± 16.0]), and the 28-day mortality rate was 25.5% and APACHE II score was 17.2 ± 8.3. WBC, CRP, PT, and SOFA score were significantly improved after AT III concentrate therapy (13.411 ± 8.794 vs. 11.798 ± 6.562, P = 0.0007, 17.1 ± 11.5 vs. 13.9 ± 7.0, P = 0.0001, 16.3 ± 10.9 vs. 15.2 ± 5.3, P = 0.002, and 8.6 ± 3.6 vs. 7.7 ± 4.5, P = 0.005, respectively), although platelet was significantly decreased (15.8 ± 11.3 vs. 13.7 ± 11.3, P < 0.0001). There were no significant differences in fibrinogen, FDP and DIC score (464.7 ± 235 vs. 437.6 ± 185.4, P = 0.10, 25.1 ± 36.9 vs. 25.6 ± 36.2, P = 0.85, 2.0 ± 1.5 versus 2.3 ± 1.7, P = 0.06, respectively). One week after the therapy, SOFA score was significantly improved, while the DIC score did not change compared with before the therapy (6.1 ± 4.7, P < 0.0001 and 2.3 ± 1.7, P = 0.98).

Conclusions: In the patients with septic nonovert DIC, WBC, CRP and SOFA score were immediately improved after the AT III concentrate therapy, while fibrinogen, FDP and DIC score did not change. AT III concentrate may also contribute to anti-inflammatory without DIC status.

Intravenous immunoglobulin therapy could have efficacy in severe sepsis

Ahmin Kim, Mari Yokota, Noriko Saito, Munekazu Takeda, Tomoyuki Harada, Mizuho Namiki, Arino Yaguchi

Department of Critical Care and Emergency Medicine, Tokyo Women’s Medical University, Tokyo, Japan

Background: Intravenous immunoglobulin (IVIG) administration has been approved to use for severe sepsis with antibiotics by the Ministry of Health, Labour and Welfare since 1980 in Japan. IVIGs are commonly used for severe sepsis and septic shock in Japan, while the international guidelines for management of severe sepsis and septic shock in 2012 suggest not using IVIG in adult patients. Our hypothesis is that IVIG administration has an efficacy for severe sepsis and septic shock.

Materials and methods: This retrospective observational study included all adult patients in our ICU who were administered IVIG for severe sepsis and septic shock from January 2011 to June 2013. IVIG was used at 5,000 mg/day intravenously any 24 hours for 3 days in the patients. We compared body temperature (°C), WBC (/mm³) between before and after IVIG treatment. Values are expressed as the median. The Wilcoxon signed-rank test was used for the statistical analysis. P < 0.05 was considered significant.
Results: One hundred and fifty-one patients (85 men, 66 women; age range: 23 to 96 (median: 67.8)) were included in this study. The 28-day mortality after IVIG treatment was 13.9%. The SOFA score before IVIG treatment was 5.0. Values of WBC, CRP and procalcitonin were significantly decreased after IVIG treatment (10.905 vs. 9.805, P < 0.0001, 12.3 vs. 7.7, P < 0.0001, 2.4 vs. 1.7, P = 0.0003, respectively). Body temperature did not significantly change (37.4 vs. 37.2, P = 0.07). Serum IgG was significantly increased after the treatment (1.046 vs. 1.563, P = 0.003).

Conclusions: The present study has some limitations because of being a retrospective observational study. However, the mortality was quite low in the group of patients included in this study. Moreover, after IVIG treatment values of WBC, CRP and procalcitonin were improved. The median value of serum IgG before treatment was within the normal range, but after treatment was also significantly improved. There is a possibility that severe septic patients require additional IgG regardless of its normal concentrations in their blood.

P40
Polymyxin B-direct hemoperfusion therapy improves mean arterial pressure in septic shock
Mari Yokota, Ahmin Kim, Tajiro Goto, Tomyuki Harada, Munekazu Takeda, Miharu Namiki, Aino Yaguchi
Department of Critical Care and Emergency Medicine, Toyo Women's Medical University, Tokyo, Japan
Critical Care 2013, 17(Suppl 4):P40; doi:10.1186/cc12940

Background: In our previous study, we reported that polymyxin B-direct hemoperfusion (PMX-DHP) (Toraymyxin®; Toray Medical Co., Tokyo, Japan) therapy could contribute to oxygen delivery due to improved hemodynamic status, while decreasing inotropic agents in septic patients immediately after that treatment. The randomized controlled studies are ongoing in other countries, because its efficacy and indication are still controversial issues. The purpose of this study is to evaluate whether PMX-DHP therapy sustains to improve hemodynamic status after the treatment.

Materials and methods: All adult patients treated with PMX-DHP and receiving a pulmonary arterial catheter (PAC) in our ICU from July 1994 to June 2010 were included in this retrospective observational study. Patients’ clinical, microbiological and PAC data were collected from medical archives. PAC variables were compared between immediately before and after 24 hours of PMX-DHP therapy. Values were expressed as a mean ± SD. Data were analyzed by Wilcoxon signed-rank test. P < 0.05 was considered statistically significant.

Results: There were 63 patients (36 men, 27 women; age mean: 63.4 ± 14.8) studied. The mortality rate was 30.2% 28 days after PMX-DHP. APACHE II score and SOFA score on the day of PMX-DHP therapy were 20.2 ± 14.8 and 7.3 ± 3.8, respectively. Mean arterial pressure (MAP) (mmHg) was significantly increased after PMX-DHP therapy (77.5 ± 22.5 vs. 68.2 ± 15.9, P = 0.02). The inotropic score decreased 24 hours after PMX-DHP, but did not reach statistical change (10.0 ± 16.1 vs. 6.3 ± 11.6, P = 0.08). The cardiac index (CI) (l/minute/m²), systemic venous resistance index (SVRI) (dyn-second·m²/cm⁵), mixed venous oxygen saturation (SvO₂) (%), oxygen delivery and consumption (DO₂ and VO₂) (ml/minute) and P/F ratio were not statistically different before and after PMX-DHP therapy.

Conclusions: Only the increasing of MAP was sustained after 24 hours of PMX-DHP therapy, while the inotropic agents were decreased. Although the CI, DO₂, VO₂, and P/F ratio were improved immediately after PMX-DHP therapy in our previous study, these were not significantly changed between before and after 24 hours. PMX-DHP could improve MAP with decreasing inotropic agents, while alterations of other PAC variables were not sustained in 24 hours of PMX-DHP.

Table 1 (abstract P41) Population characteristics

<table>
<thead>
<tr>
<th>No fungal (n = 48)</th>
<th>Fungal (n = 17)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>38 (31 to 43)</td>
<td>35 (33 to 46)</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>34 (71%)</td>
<td>13 (76%)</td>
</tr>
<tr>
<td>CD4+ lymphocyte count (cell/mm⁵)</td>
<td>69 (32 to 204)</td>
<td>28 (14 to 115)</td>
</tr>
<tr>
<td>Nadir CD4+ (cell/mm⁵)</td>
<td>57 (27 to 153)</td>
<td>27 (14 to 122)</td>
</tr>
<tr>
<td>Time since HIV diagnosis (months)</td>
<td>31 (1 to 123)</td>
<td>13 (1 to 77)</td>
</tr>
<tr>
<td>HAART naive</td>
<td>15 (31%)</td>
<td>8 (47%)</td>
</tr>
<tr>
<td>Mortality</td>
<td>15 (31%)</td>
<td>11 (64.7%)</td>
</tr>
</tbody>
</table>

Fungal disease in AIDS patients in intensive care
Edwiges Santos*, Andre Japiassu, Marcia Lazera, Fernando Bozza
Instituto Evandro Chagas, Fiocruz, Brazil
Critical Care 2013, 17(Suppl 4):P41; doi:10.1186/cc12941

Background: Information about the prevalence of fungal diseases in critically ill AIDS patients is sparse. Our goal is to describe the prevalence of fungal diseases in this population, when they are admitted to the ICU.

Materials and methods: Prospective, observational study. Blood and urine samples were collected from 65 AIDS patients at a specialized ICU in infectious diseases, from August 2011 to June 2013. When indicated by clinical suspicion, samples of respiratory, bone marrow and/or tissue were collected. Cultures, cytology and serologic tests were performed to evaluate fungal colonization or infection. Clinical data were collected from medical records. Values are expressed as the median and percentage.

Results: Table 1 presents general characteristics of the HIV/AIDS patients. Patients with fungal disease did not differ from patients without fungal infection: age 35 versus 38 years (P = 0.43), male gender 76% versus 70% (P = 0.29); nadir CD4 count 27 versus 57 cell/mm⁴ (P = 0.15). Most patients were exposed to HAART previously, while there were 47% naïve patients in the fungal group versus 31% in the no fungal group. The ICU mortality of patients without fungal disease was 31% versus 64.7% with fungal disease (P = 0.02); hospital mortality was not different between groups (52% vs. 64.7%, P = 0.4). Figure 1 presents 17 diagnoses of disseminated fungal diseases (prevalence: 26%). All histoplasmosis diagnoses were made from marrow bone culture (11%). Disseminated cryptococcosis was diagnosed from serum serologic latex, direct examination and positive culture in LCR. Three patients (4.6%) were diagnosed with candidiasis in blood cultures. Pneumocystosis was diagnosed from immunofluorescence and Grogop positive in sputum. One patient had disseminated esporotricosis with positive cultures in LCR, blood, tissue, urine and sputum. The only case of aspergillosis is a previous tuberculosis-treated patient that developed a disseminated disease (galactomanaana-positive) from a fungal ball.

Conclusions: One in four HIV/AIDS critically ill patients presents with fungal disease when they are admitted to the ICU. Surveillance of fungal pathogens shall be necessary in the first screening of medical HIV/AIDS patients in the ICU.

Figure 1(abstract P41) Fungal diseases

Table 1(abstract P41) Population characteristics

<table>
<thead>
<tr>
<th></th>
<th>No fungal (n = 48)</th>
<th>Fungal (n = 17)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>38 (31 to 43)</td>
<td>35 (33 to 46)</td>
<td>0.43</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>34 (71%)</td>
<td>13 (76%)</td>
<td>0.29</td>
</tr>
<tr>
<td>CD4+ lymphocyte count (cell/mm⁵)</td>
<td>69 (32 to 204)</td>
<td>28 (14 to 115)</td>
<td>0.15</td>
</tr>
<tr>
<td>Nadir CD4+ (cell/mm⁵)</td>
<td>57 (27 to 153)</td>
<td>27 (14 to 122)</td>
<td>0.40</td>
</tr>
<tr>
<td>Time since HIV diagnosis (months)</td>
<td>31 (1 to 123)</td>
<td>13 (1 to 77)</td>
<td>0.53</td>
</tr>
<tr>
<td>HAART naive</td>
<td>15 (31%)</td>
<td>8 (47%)</td>
<td>0.56</td>
</tr>
<tr>
<td>Mortality</td>
<td>15 (31%)</td>
<td>11 (64.7%)</td>
<td>0.02</td>
</tr>
</tbody>
</table>
P42

Usefulness of broad-range PCR in the etiologic diagnosis of sepsis

Aline Gozzi, Romulo R Lobo, José Maurício SC Mota, Antonio Pazin Filho, Benedito C Borges

Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil

Critical Care 2013, 17(Suppl 4):P42, doi:10.1186/cc12942

Background: Sepsis is responsible for a high rate of hospitalization and mortality. Traditional methods for bacterial isolation and identification, such as blood culture, have limitations in sensitivity and specificity and their results usually are not available before 48 to 72 hours. The PCR allows a rapid diagnosis of infectious agents. Broad-range PCR allows an earlier and more sensitive bacterial identification in just one reaction, even after the initiation of antibiotics. Therefore, this study evaluates the use of broad-range PCR in the etiologic diagnosis of septic patients, and compares it with traditional methods of culture.

Materials and methods: Thirty-five patients with sepsis, admitted to the Emergency Unit of Clinical Hospital of Ribeirão Preto Medical School, were included in the study. Clinical, laboratory, and culture data were collected at hospital admission. On the first day of admission, DNA extraction was performed from blood, plasma, and buffy-coat samples from all patients. Broad-range 16S rDNA PCR was then performed using two different pairs of primers (Bak1/1W/Bak2 and Taf/Tar).

Results: Eighteen (51%) patients were female; mean age was 58 ± 18 years; 15 (43%) had severe sepsis and 20 (57%) septic shock, and mortality was 54%. Mean C-reactive protein (CRP) was 14.39 ± 9.52 and 28 (80%) patients have levels of CRP greater than 5.0 ng/l. The primary site of infection was detected in all patients, 20 (57%) patients had respiratory tract infection, nine (26%) urogenital tract infection, three (8.5%) cutaneous infection, and three (8.5%) other sites. Blood culture was positive in 14 (40%) samples. Broad-range PCR was positive in 19 (51%) samples. Only 10 (29%) samples were positive for both techniques. In 11 (31%) patients, neither blood culture nor PCR were positive.

Conclusions: Broad-range PCR was effective for diagnosis of bacterial infection in septic patients, and could be an option to be used in patients with severe sepsis and septic shock. Moreover, it is faster than blood culture and can detect bacteria even after the initiation of intravenous antibiotics. The combination of both techniques could increase the likelihood of etiologic diagnosis in septic patients.

Acknowledgements: Thanks to FAPESP and CAPES for financial support.

P43

Clinical features and prognosis of patients co-infected with HIV and tuberculosis in the ICU

Ana Carla Pecego, Camila Ribeiro da Silva, Rodrigo T Amâncio, Denise M Medeiros, Emenon C Mesquita, André M Japassú, Fernando A Roza

Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, RJ, Brazil

Critical Care 2013, 17(Suppl 4):P43, doi:10.1186/cc12943

Background: Despite the advances in treatment, tuberculosis (TB) remains a global health threat and is the leading co-infection among Brazilian HIV-infected patients. Mortality of TB in the presence of sepsis and shock septic is still high, with respiratory failure being the leading cause of ICU admission. Clinical factors enhancing mortality among HIV-TB patients are yet to be explored.

Materials and methods: We retrospectively accessed data of HIV/AIDS critically ill patients from January 2007 until May 2012, at a referral infectious diseases hospital. All patients admitted to the ICU with laboratory-confirmed tuberculosis were included in the analysis. Demographic and clinical data were categorized for survivors and nonsurvivors and the results were displayed as frequency (%), median values and interquartile range.

Results: Fifty patients were included. Hospital mortality was 48%. Age was 31.5 years (26.5 to 43) in the survivors group versus 33.5 years (30 to 45) in nonsurvivors (P = 0.25), and SAPS II score was 44.5 (37 to 56) versus 47 (39 to 54) (P = 0.38). The most common TB presentation was disseminated disease (56%) followed by pulmonary (44%), with no difference according to survival. The interval of days between ICU admission and TB treatment was not different between groups. Rifampicin (94%), pyrazinamide (94%), isoniazid (92%) and ethambutol (76%) were administered in the majority of patients, while fluoroquinolones and aminoglycosides were administered in 64% and 54% respectively. Nonsurvivors presented with more elapsed time since HIV diagnosis (1 (1 to 7) vs. 26 (5 to 72), P = 0.10); lower nadir CD4 cell count (72.5 (27.5 to 133.5) vs. 24 (14.5 to 63), P = 0.04); and HAART initiated within 30 days after admission (62% vs. 29%, P = 0.03; odds ratio 3.9 (95% CI 1.2 to 12.7)). The main reason for ICU admission was respiratory failure (70%). Nonsurvivors needed mechanical ventilation (88% vs. 48%, P = 0.01) and vasopressors (71% vs. 41%, P = 0.05) more frequently. Neurological dysfunction was more common in nonsurvivors (79% vs. 41%, P = 0.01, odds ratio 5.2 (95% CI 1.5 to 18.2)). After multivariate analysis, neurological dysfunction was associated with hospital mortality, while HAART in the first 30 days of hospitalization was a protective associated factor.

Conclusions: Disseminated TB was the most common presentation in HIV/AIDS critically ill patients. Nonsurvivors were more prone to multiple organ dysfunction syndrome, and neurological dysfunction was associated with hospital mortality. The administration of HAART within 30 days of hospitalization was associated with survival.

P44

Sepsis care protocol: initial evaluation at a university hospital in southern Brazil

Fabiano Ramos, Maniâne P Silva, Paola H Alves, Michèle S Borges, Miriane MS Moretti, Georgiça L Silva, Letícia G Lobo, Silvia PT Soares

Hospital São Lucas, Pontifícia Universidade Católica Rio Grande do Sul, Porto Alegre, Brazil

Critical Care 2013, 17(Suppl 4):P44, doi:10.1186/cc12944

Background: Sepsis is a systemic inflammation caused by severe infection. It is a life-threatening condition, progresses rapidly, and affects multiple system functions. An evidence-based medical sepsis bundles model has been used for sepsis care in clinical practice. All patients who have at least two signs or symptoms of systemic inflammatory response syndrome (SIRS) secondary to an infectious process are considered septic. Sepsis is the leading cause of death in ICUs and a major cause of late hospital mortality rate, exceeding the acute coronary syndromes and neoplasms. Mortality in Brazil reaches 60%, while the world average is around 30%, overcoming countries such as India and Argentina. The early recognition and treatment of these patients are key to reducing mortality. The aim of this study is to evaluate the implementation of the protocol of sepsis in a university general hospital in Porto Alegre.

Materials and methods: Retrospective evaluation of protocols for sepsis in emergency in 2012.

Results: A total of 200 patients were enrolled in the protocol during the study period. The average age was 35 years (SD ± 16.5), 51% of patients were male, the most frequent focus was respiratory 61%, and the second urinary with 14%. Clinical criteria for inclusion in the protocol that most prevailed were: axillary temperature and heart rate, with more than 95%. Altered axillary temperature was present in 98% of the sample. Of these cases, 86.5% (n = 173) of patients were discharged within 24 hours. Twenty-seven patients met criteria for hospitalization, 22% required the ICU. Around 75% (n = 20) of inpatients had no blood cultures collected before starting antibiotics. Only 7% mortality (n = 2).

Conclusions: The criteria for inclusion in the protocol are quite sensitive and the number of visits per month in the emergency exceeds 10,000. A total of 200 patients enrolled to the sepsis care protocol in a year, over 80% of these being discharged within 24 hours, suggests a low adherence to institutional protocol, especially in patients with septic shock, which is reinforced by the very low mortality compared with literature data. The evaluation of these data was essential to bring the knowledge that adherence to the protocol is still very low in our institution.

P45

Septic shock by mechanical ventilation-associated pneumonia

Hospital of Clinicals, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil

Critical Care 2013, 17(Suppl 4):P45, doi:10.1186/cc12945
Background: A 69-year-old woman underwent elective surgical repair of an abdominal aortic aneurysm. Intraoperative lesions were intestinal and splenic, requiring performing segmental bowel resection and splenectomy. By hemodynamic instability the patient was maintained on mechanical ventilation in norepinephrine and was transferred to the ICU. After 3 days, she had fever, tachycardia, hypotension and anuria, with output field had purulent secretion by the tracheal tube. Chest X-ray showed opacity in the right lung; cultures were collected and ceftimepine initiated empirically for treatment of ventilator-associated pneumonia. *Acinetobacter baumannii* was isolated sensitive only to polymyxin-E in the sample of tracheal secretions. An exchange of antimicrobial therapy was made, but the patient developed refractory shock and died.

Materials and methods: We report the case of a patient with septic shock.

Results: Despite the upgrading of intensive therapies with the presence of increasingly prepared professionals and all of the technological and scientific developments that occurred in the last 10 years, sepsis remains a major challenge for contemporary medicine. Mortality rates may vary from 20 to 80%. Several factors contribute to this high mortality rate, such as the growing population of patients aged over 65 years with various chronic diseases, the most frequent use of invasive procedures, increased demand for immunocompromised patients and the development of nosocomial microorganism infections increasingly resistant to antimicrobial agents. Besides the pathophysiology, evidence substantiated that early intervention reduces mortality in severe sepsis and thus several ICUs have sought to improve the quality of clinical management of septic patients. In 2002, the Medical Society of Intensive American (SCCM) and European (ESICM) together with the International Sepsis Forum initiated the Surviving Sepsis Campaign (SSC). The SSC initiative was based on six strategies, including: implement surveillance sepsis; improve the early diagnosis and safety; establish protocols for treatment and early intervention; create programs continuing professional education; proposed therapy post-ICU; and develop global standards for intensive care.

Conclusions: The emergence of antimicrobial-resistant microorganisms is a growing problem worldwide and this complicates the choice of empirical antimicrobials and can compromise the evolutionary outcome of patients.

Background: Severe sepsis is an important cause of morbidity and mortality for patients in ICUs [1]. Since instituting rapid treatment for patients with sepsis is critical, the need for reliable predictors of mortality to guide therapy is evident. This study attempts to identify the risk factors for mortality in patients admitted with severe sepsis to the ICU.

Materials and methods: Case-control study conducted in the ICU of Hospital Anchieta, Brasilia, DF, Brazil, during 5 months. Patients were divided into two groups: survivors group (SG) and nonsurvivors group (NSG).

Results: During the study, 38 patients were admitted with severe sepsis, with a mortality rate of 47% (n = 18). Upon admission, the patients in the NSG presented higher values of: SAPS3 score (82 ± 12 vs. 60 ± 14, P = 0.03), PaO2/FiO2 ratio (21 ± 9 vs. 15 ± 21, P = 0.00), heart rate (119 ± 21 vs. 99 ± 15 bpm, P = 0.00), creatinine level (2.4 ± 1.4 vs. 1.5 ± 0.9 mg/dl, P = 0.00), decreased level of consciousness (92% vs. 58%, P = 0.03), need for vasopressor (85% vs. 25%, P = 0.00), need for invasive mechanical ventilation (62% vs. 12%, P = 0.00) and previous cardiac arrest (15% vs. 0%, P = 0.00). The platelet count was lower in the NSG (119,000 ± 70,000 vs. 220,000 ± 103,000/mm3, P = 0.00). There was no significant difference between the groups regarding the following factors: age (65 ± 19 vs. 65 ± 19 years, P = 0.98), respiratory rate (29 ± 9 vs. 26 ± 7 rpm, P = 0.30), auxillary temperature (36.9 ± 0.7 vs. 37.2 ± 1.8°C, P = 0.43), leukocyte count (17,500 ± 7,800 vs. 13,000 ± 6,000/mm3, P = 0.08), immunosuppression (38.5% vs. 12.5%, P = 0.07), and prior use of corticosteroids (23% vs. 25%, P = 0.90).

Conclusions: SAPS3 score, metastatic cancer, decreased level of consciousness, need for vasopressors, invasive mechanical ventilation, previous cardiac arrest, heart rate, serum creatinine, and platelet count were associated with mortality in severe sepsis for this sample of patients.

Reference

P47

Serum arterial lactate at the time of admission as a predictor of mortality in patients admitted with severe sepsis and septic shock to an ICU

Adriell Ramalho Santana1,2, Fábio Ferreira Amorim1, Bárbara Magalhães Menezes1, Felipe Bozi Soares1, Fernanda Vilas Básas Araújo1, Jacqueline Lima de Souza1, Mariana Pinheiro Barbosa de Araújo1, Louise Cristhine de Carvalho Santos1, Pedro Henrique Gomes Rocha1, Lucas Garcia de Souza Godoy1, Kátye Crys Moura Oglian1, Pedro Nery Ferreira Júnior1, Aleteha Patricia Pontes Amorim1, Rodrigo Santos Biondi3, Rubens Antônio Bento Ribeiro3

1Escola Superior de Ciências da Saúde, Brasília, Brazil; 2Hospital Anchieta, Brasília, Brazil; 3Liga Acadêmica de Medicina Intensiva de Brasília, Brasília, Brazil; 4Hospital Anchieta, Brasília, Brazil

Critical Care 2013, Volume 17 Suppl 4; doi:10.1186/cc12947

Background: Elevated serum arterial lactate levels are often associated with an imbalance between oxygen demand and delivery, which has a strong correlation with poorer outcomes in critically ill patients [1,2]. This study aims to evaluate serum arterial lactate as a predictor of mortality in critical patients admitted with severe sepsis and septic shock.

Materials and methods: Retrospective cohort study conducted in the ICU of Hospital Anchieta, Brasilia, DF, Brazil, during 3 years. For the first analysis, patients were divided into two groups: group with arterial lactate >2 mmol/l and group with low arterial lactate ≤2 mmol/l at the time of admission. For a second analysis, patients were divided into two groups: group with arterial lactate >3.3 mmol/l and group with arterial lactate ≤3.3 mmol/l at the time of admission.

Results: A total of 195 patients with sepsis were enrolled, 41% (n = 80) with septic shock. Mean age was 63 ± 22 years, ICU length of stay was 9 ± 11 days, SAPS3 62 ± 16, and APACHE II 21 ± 9. ICU mortality in 4 days was 10.8% (n = 21), in 28 days was 12.3% (n = 24), and hospital mortality was 26.2% (n = 51). The nonsurvivor patients had higher lactate values (2.0 ± 1.4 vs. 1.3 ± 1.1, P = 0.00). Considering the arterial lactate cutoff value of 2.0 mmol/l, there was no difference between groups regarding ICU length of stay (10 ± 13 vs. 9 ± 2 days, P = 0.47), mortality in 4 days (12% vs. 10%, P = 0.85), mortality in 28 days (13% vs. 16%, P = 0.77), and hospital mortality (30% vs. 32%, P = 0.86). However, considering the lactate cutoff value of 3.3 mmol/l, the high lactate group had higher mortality in 4 days (27% vs. 9%, P = 0.04) and hospital mortality (67% vs. 23%, P = 0.00). There was no statistical significant difference regarding mortality in 28 days (27% vs. 11%, P = 0.08), and ICU length of stay (8 ± 7 vs. 9 ± 11 days, P = 0.59). The relative risk of hospital death in patients with arterial lactate >3.3 mmol/l was 2.93 (95% CI: 1.87 to 4.58). The specificity of arterial lactate >3.3 mmol/l for hospital mortality was 96.5% (95% CI: 92.1 to 98.5%), sensitivity was 19.6% (95% CI: 11.0 to 32.5%), and LR+ was 5.65 (95% CI: 2.03 to 15.7%). The arterial lactate area under the ROC curve for mortality was 0.634 (95% CI: 0.540 to 0.748).

Conclusions: In the patients admitted with severe sepsis and septic shock, for this sample, the nonsurvivors had higher lactate values. Arterial lactate >2 mmol/l at the time of admission was not associated with mortality. Arterial lactate >3.3 mmol/l was associated with mortality in 4 days, and hospital mortality. Indeed, lactate >3.3 mmol/l had high specificity for hospital mortality.

References

P48

Comparison of demographics and outcomes of patients with severe sepsis admitted to the ICU with or without septic shock

Bárbara Magalhães Menezes,1* Fernanda Vilas Bôas Araújo1 Fábio Ferreira Amorim,1 Adriell Ramalho Santana,1 Felipe Bozi Soares1, Jacqueline Lima de Souza1, Mariana Pinheiro Barbosa de Araújo1, Louise Cristhine de Carvalho Santos1, Pedro Henrique Gomes Rocha1, Mateus Gonçalves Gomes1, Osvaldo Gonçalves da Silva Neto1, Pedro Nery Ferreira Júnior1, Alethea Patrícia Pontes Amorim1, Rodrigo Santos Biondi1, Rubens Antônio Bento Ribeiro1

1Escola Superior de Ciências da Saúde, Brasília, Brazil; 2Liga Académica de Medicina Intensiva de Brasília, Brazil; 3Hospital Anchieta, Brasília, Brazil

Background: Severe sepsis and septic shock are common and are associated with substantial mortality and substantial consumption of healthcare resources [1]. Although the incidence of septic shock has steadily increased during the past several decades, the associated mortality rates have remained constant or have decreased only slightly [2]. Our study aimed to identify the prognostic factors during the first hour after admission for intra-hospital mortality in patients with septic shock in a general ICU.

Materials and methods: Case-control study conducted on patients admitted to the ICU of Hospital Anchieta, Brasília, DF, Brazil, during 17 months. Patients were divided into two groups during the hospital stay: survivors group (SG) and nonsurvivors group (NSG). Patients proceeding from or transferred to another ICUs were excluded.

Results: During the period of the study, 1,918 patients were admitted, 120 with septic shock (6.2%). For this sample, the mean age was 62 ± 20, SAPS III was 71 ± 18, 55.8% were males, and the hospital mortality was 49% (n = 59). In the NSG group, there was a higher incidence of decreased level of consciousness (83.1% vs. 52.5%, P = 0.00), acute respiratory failure (96.6% vs. 83.6%, P = 0.03), hypoxemia (60.8% vs. 39.2%, P = 0.02), acidemia (77.4% vs. 50%, P = 0.02), and thrombocytopenia (74.6% vs. 53.1%, P = 0.07), incidence of acute renal injury (47.5% vs. 32.8%, P = 0.00), and thrombocytopenia <60,000/mm3 (25.4% vs. 4.9%, P = 0.00). There was no difference between the groups regarding age (64 ± 21 vs. 61 ± 18, P = 0.37), PaO2/FiO2 ratio (174 ± 129 vs. 250 ± 236, P = 0.07), gender (47.5% vs. 63.9%, P = 0.00), and thrombocytopenia (64 ± 20 vs. 59 ± 21, P = 0.00) scores. Patients in the SG group also had higher mortality in 4 days (18% vs. 8%, P = 0.00) and APACHE II score to predict ICU mortality (11 ± 1, P = 0.51). The SS group presented higher SAPS III (70 ± 17 vs. 57 ± 15, P = 0.00) and APACHE II (1 vs. 8 ± 9 ± 1, P = 0.00) scores. Patients in the SS group also had higher mortality in 4 days (18% vs. 8%, P = 0.04), in 28 days (20% vs. 9%, P = 0.03) and hospital mortality (37% vs. 22%, P = 0.02).

Conclusions: Patients admitted with septic shock had higher mortality than patients admitted with severe sepsis without septic shock, but there was no difference between the groups with respect to length of stay in the ICU.

References

P50

Organ dysfunction and mortality in septic patients admitted to an ICU

Thais Almeida Rodrigues,1* Louise Cristhine de Carvalho Santos1, Jacqueline Lima de Souza1, Fernanda Vilas Bôas Araújo1, Thaigo Alves Silva1, Pedro Henrique Gomes Rocha1, Mateus Gonçalves Gomes1, Osvaldo Gonçalves da Silva Neto1, Pedro Nery Ferreira Júnior1, Alethea Patrícia Pontes Amorim1, Lucas Garcia de Souza Godoy1, Kátia Crys Moura Ogliari1, Pedro Nery Ferreira Júnior1, Adriell Ramalho Santana1, Fábio Ferreira Amorim1, Clayton Barbieri de Carvalho1

1Escola Superior de Ciências da Saúde, Brasília, Brazil; 2Liga Académica de Medicina Intensiva de Brasília, Brazil; 3Hospital Regional de Samambaia, Brasilia, Brazil

Critical Care 2013, 17(Suppl 4):P50; doi:10.1186/cc12950

Background: Sequential Organ Failure Assessment (SOFA) is a largely used score in the evaluation of organ dysfunction/failure in septic patients [1]. Repeated scoring can also assess patient condition and disease development [2]. The present study aims to describe the association between SOFA score and the organ dysfunction components of this score with mortality in septic patients admitted to an ICU.

Materials and methods: Prospective study conducted on patients admitted to the ICU of Hospital Regional de Samambaia, Brasília, DF, Brazil, during 7 months. This SOFA was evaluated at the moment of admission to the ICU. Patients were divided into two groups: survivors group (SG) and nonsurvivors group (NSG). Accuracy of SOFA and the organ dysfunction components of SOFA score to predict ICU mortality were measured with the area under the receiver operating characteristic (ROC) curve.

References
Results: One hundred and seven patients were enrolled. Mean age was 53 ± 20, APACHE II 14 ± 6, SAPS 6.2 ± 3.3, ICU mortality was 34.6% (n = 37). The SOFA score was higher in nonsurvivors (7.4 ± 3.0 vs. 5.8 ± 3.4, P = 0.01), cardiovascular (2.0 ± 1.8 vs. 1.4 ± 1.6, P = 0.01) and kidney dysfunctions (0.7 ± 1.0 vs. 0.4 ± 0.9, P = 0.04) being higher in this group. There were no differences between the groups regarding coagulation (0.4 ± 0.8 vs. 0.4 ± 0.8, P = 0.59), liver (0.0 ± 0.3 vs. 0.0 ± 0.7, P = 0.65), respiratory (2.0 ± 1.2 vs. 1.6 ± 1.4, P = 0.87), and neurologic (2.2 ± 1.7 vs. 1.7 ± 1.6, P = 0.96) organ dysfunctions. The area under the ROC curve (Figure 1) for SOFA was 0.650 (95% CI 0.541 to 0.759). The components of the cardiovascular system, renal system, coagulation, liver, respiratory, and nervous systems had areas under the ROC curve of 0.612 (95% CI 0.501 to 0.732), 0.565 (95% CI 0.478 to 0.712), 0.484 (95% CI 0.369 to 0.600), 0.457 (95% CI 0.344 to 0.571), 0.580 (95% CI 0.469 to 0.691), and 0.582 (95% CI 0.465 to 0.699), respectively.

Conclusions: The SOFA score was moderately associated with ICU mortality. The scores for cardiovascular and renal impairment were individually associated with mortality.

References

PS1
SaO₂/FiO₂ ratio as risk stratification for patients with sepsis
Adriell Ramalho Santana1, Jaqueline Lima de Sousa1, Fábio Ferreira Amorim1, Bárbara Magalhães Menezes1, Fernanda Vilas Bôas Araújo1, Felipe Boz Soares1, Louise Cristhine de Carvalho Santos1, Mariana Pinheiro Barbosa de Araújo1, Pedro Henrique Gomes Rocha1, Pedro Nery Ferreira Júnior1, Alessandra Vasconcelos da Silva Paiva1, Gabriel Kanhouche2, Alethea Patrícia Pontes Amorim2, José Ares de Araújo Neto2, Edmilson Bastos de Moura2, Marcelo de Oliveira Maia2
1Escola Superior de Ciências da Saúde, Brasília, Brazil; 2Liga Acadêmica de Medicina Intensiva de Brasília, Brazil; 3Hospital Santa Luzia, Brasilia, Brazil

Critical Care 2013, 17(Suppl 4):P51; doi:10.1186/cc12951

Background: The PaO₂/FiO₂ ratio is a well-known parameter to assess respiratory dysfunction, used in Sequential Organ Failure Assessment (SOFA) [1]. This study aims to determine whether the SaO₂/FiO₂ ratio can be used in the assessment of respiratory impairment and as a predictor of ICU mortality in patients with sepsis and to evaluate its correlation with PaO₂/FiO₂.

Materials and methods: A retrospective cohort study conducted in the ICU of Hospital Santa Luzia, Brasília, DF, Brazil, during 5 months. An arterial blood sample was collected at the time of admission. Patients with sepsis were divided into two groups: survivors group (SG) and nonsurvivors group (NSG). Correlation with SaO₂/FiO₂ and PaO₂/FiO₂ was evaluated with the Pearson correlation coefficient. Accuracy of SaO₂/FiO₂ and PaO₂/FiO₂ to predict ICU mortality was measured with the area under the receiver operating characteristic curve.

Results: A total of 118 patients with sepsis were enrolled. The mean age was 66 ± 21 years, SAPS3: 50 ± 14, APACHE II: 13 ± 8, PaO₂/FiO₂: 317
IQ 233 to 426) and SaO$_2$/FiO$_2$: 362 (IQ 247 to 453). ICU mortality was 17.8% (n = 21). The main sites of infections were respiratory (57%, n = 67), urinary (19%, n = 23) and cutaneous (8.5%, n = 10). Non-survivor patients had lower SaO$_2$/FiO$_2$ (258 vs. 366, P = 0.00) and PaO$_2$/FiO$_2$ had a good correlation (r = 0.645, P = 0.00). The relative risk of death in patients with SaO$_2$/FiO$_2$ <400 was 1.81 (95% CI: 1.47 to 2.24), SaO$_2$/FiO$_2$ <300 was 2.5 (95% CI: 1.54 to 4.05), SaO$_2$/FiO$_2$ <200 was 2.45 (95% CI: 1.27 to 4.71). The sensitivity for ICU mortality of SaO$_2$/FiO$_2$ <300 was 28% and of SaO$_2$/FiO$_2$ <200 was 35%. The specificity for ICU mortality of SaO$_2$/FiO$_2$ <300 was 90% and of SaO$_2$/FiO$_2$ <200 was 86% (95% CI: 93.5 to 100.0%). The area under the ROC curve for SaO$_2$/FiO$_2$ was 0.655 (95% CI: 0.507 to 0.804) (Figure 1).

Conclusions: A low SaO$_2$/FiO$_2$ was associated with mortality in this group of patients and had a good correlation with PaO$_2$/FiO$_2$. SaO$_2$/FiO$_2$ <300 showed high specificity for mortality. Further analysis is necessary to the validation of less invasive measures such as pulse oximetry saturation (SpO$_2$/FiO$_2$ ratio) in the assessment of patients with sepsis.

Reference

Figure 1 (abstract P51) ROC curve for SaO$_2$/FiO$_2$ and PaO$_2$/FiO$_2$.

P52 Platelet/leukocyte ratio as a predictor of mortality in patients with sepsis

Bárbara Magalhães Menezes1*, Fábio Ferreira Amorim1, Adrielli Ramalho Santana1, Felipe Bozi Soares1, Fernanda Vila Bôas Araújo1, Jacqueline Rodrigues de Carvalho1, Manana Pinheiro Barbosa de Araújo1, Louise Cristhine de Carvalho Santos1, Pedro Henrique Gomes Rocha1, Jaqueline Lima de Souza1, Mateus Gonçalves Gomes1, Pedro Nery Ferreira Júnior1, Alethea Patrícia Pontes Amorim2, Rodrigo Santos Bondi1, Rubens Antônio Bento Ribeiro1

1 Escola Superior de Ciências da Saúde, Brasília, Brazil; 2 Liga Acadêmica de Medicina Intensiva de Brasília, Brazil; 3 Hospital Anchieta, Brasília, Brazil

Critical Care 2013, Volume 17 Suppl 4; doi:10.1186/cc12952

Background: The platelet count is an established index in the evaluation of severity in patients with sepsis, and therefore is a component of the SOFA score [1]. Furthermore, the alterations in leukocyte count are also used in the definition of SIRS. The present study aims to evaluate the accuracy of the platelet/leukocyte ratio (P/L) as a predictor of mortality in septic patients.

Materials and methods: Retrospective cohort study conducted on patients admitted to the ICU of Hospital Anchieta, Brasília, DF, Brazil during 3 years. The patients with sepsis were divided according to P/L as follows: P/L ≥8 group (HPL) or P/L <8 (LPL). The primary outcome was...
mortality at 4 and 28 days. Accuracy of P/L to predict ICU mortality was measured with the area under the receiver operating characteristic curve.

Results: In the present study, 195 patients were enrolled, 41% (n = 80) with septic shock. Their mean age was 62.8 ± 21.6 years, SAPS 3 was 20.1 ± 15.0, APACHE II was 20.6 ± 8.6, and length of stay in the ICU was 9 ± 11 days. Mortality at 4 days was 10.8% (n = 21) and at 28 days was 12.3% (n = 24). The groups P/L < 8 and P/L ≥ 21 did not present differences regarding age (59 ± 20 vs. 65 ± 22, P = 0.07) and APACHE II (22 ± 9 vs. 20 ± 9, P = 0.19). The LPL group had higher SAPS3 (68 ± 18 vs. 59 ± 13, P = 0.00). The LPL was significantly associated with mortality in 4 days (18% vs. 7%, P = 0.02) and 28 days (19% vs. 9%, P = 0.03). The area under the ROC curve of P/L for mortality at day 4 was 0.628 (95% CI 0.498 to 0.757) and at day 28 was 0.613 (95% CI 0.489 to 0.736).

Conclusions: P/L < 8 at admission was associated with higher mortality in 4 and 28 days in patients with sepsis.

Reference

P54
SIRS criteria as predictors of mortality in patients admitted with sepsis

Background: The ACCP/SCCM consensus conference definitions for sepsis are used worldwide [1]. However, consensus definitions do not adequately reflect the intricacies of sepsis and can overestimate the diagnosis due to their high sensitivity. Moreover, the consensus criteria do not allow the staging or the prediction of sepsis outcome [2]. This study aims to evaluate the individual components of SIRS criteria as predictors of mortality in patients admitted to an ICU with sepsis.

Materials and methods: A case-control study conducted in the ICU of Hospital Santa Luzia, Brasilia, DF, Brazil, during 4 months. Patients were divided into two groups: survivors group (SG) and nonsurvivors group (NSG). The accuracy of individual components of SIRS criteria as predictors of mortality was measured with the area under the receiver operating characteristic (ROC) curve.

Results: A total of 76 patients were enrolled, 10.5% (n = 8) with septic shock. Age was 70 ± 18 years, SAPS3: 52.9 ± 13.9, APACHE II: 15.5 ± 8.8. The ICU length of stay was 9 ± 10 days. ICU mortality was 21% (n = 16). The most prevalent sites of infections were respiratory (57.9%, n = 44), followed by urinary (25%, n = 19) and cutaneous (6.6%, n = 5). The incidence of tachycardia was the only parameter higher in the NSG (37.5% vs. 9.1%, P = 0.00). There was no difference regarding the incidence of fever or hypothermia (15.4% vs. 24.0%, P = 0.850), versus 0.442 (95% CI: 0.287 to 0.597) for fever/hypothermia, 0.556 (95% CI: 0.397 to 0.715) for tachypnea, and 0.498 (95% CI: 0.338 to 0.668) for leukocytosis/leucopenia.

Conclusions: For this sample, tachycardia was the only SIRS component associated with ICU mortality in patients admitted with sepsis.

References

P55
SaO2-SvO2 difference for risk stratification of patients with sepsis and septic shock

Fábio Ferreira Amorim1, Adrelli Ramalho Santana1, Jaqueline Lima de Souza1, Fabio Ferreira Amorim1, Felipe Bozi Soares1, Barbara Magalhaes Menezes1, Mariana Pinheiro Barbosa de Araujo1, Fernanda Vilas Boas Araujo1, Louise Cristhine de Carvalho Santos1, Pedro Henrique Gomes Rocha1, Lucila de Jesus Almeida1, Thais Almeida Rodrigues1, Pedro Nery Ferreira Jureria1, Alethea Patricia Pontes Amorim1, Jose Aires de Araujo Neto1, Edmilson Bastos de Moura1, Marcelo de Oliveira Mai1

1Escola Superior de Ciências da Saúde, Brasilia, Brazil; 2Liga Académica de Medicina Intensiva de Brasilia, Brasilia, Brazil; 3Hospital Santa Luzia, Brasilia, Brazil Critical Care Critical Care 2013, 17(Suppl 4):P55; doi:10.1186/cc12954

Background: The ACCP/SCCM consensus conference definitions for sepsis are used worldwide [1]. However, consensus definitions do not adequately reflect the intricacies of sepsis and can overestimate the diagnosis due to their high sensitivity. Moreover, the consensus criteria do not allow the staging or the prediction of sepsis outcome [2]. This study aims to evaluate the individual components of SIRS criteria as predictors of mortality in patients admitted to an ICU with sepsis.

Materials and methods: A case-control study conducted in the ICU of Hospital Santa Luzia, Brasilia, DF, Brazil, during 4 months. Patients were divided into two groups: survivors group (SG) and nonsurvivors group (NSG). The accuracy of individual components of SIRS criteria as predictors of mortality was measured with the area under the receiver operating characteristic (ROC) curve.

Results: A total of 76 patients were enrolled, 10.5% (n = 8) with septic shock. Age was 70 ± 18 years, SAPS3: 52.9 ± 13.9, APACHE II: 15.5 ± 8.8. The ICU length of stay was 9 ± 10 days. ICU mortality was 21% (n = 16). The most prevalent sites of infections were respiratory (57.9%, n = 44), followed by urinary (25%, n = 19) and cutaneous (6.6%, n = 5). The incidence of tachycardia was the only parameter higher in the NSG (37.5% vs. 9.1%, P = 0.00). There was no difference regarding the incidence of fever or hypothermia (15.4% vs. 24.0%, P = 0.850), versus 0.442 (95% CI: 0.287 to 0.597) for fever/hypothermia, 0.556 (95% CI: 0.397 to 0.715) for tachypnea, and 0.498 (95% CI: 0.338 to 0.668) for leukocytosis/leucopenia.

Conclusions: For this sample, tachycardia was the only SIRS component associated with ICU mortality in patients admitted with sepsis.

References
Background: Assessment and monitoring of hemodynamics is a cornerstone in critically ill patients as hemodynamic alteration may become life-threatening in a few minutes [1,2]. This study aimed to determine whether the SaO₂-SvO₂ difference could be used as risk stratification for patients with sepsis and septic shock.

Materials and methods: A retrospective cohort study conducted in the ICU of Hospital Santa Luzia, Brasilia, DF, Brazil, during 6 months. An arterial blood sample was collected at admission. Patients with sepsis were divided in two groups: survivors group (SG) and nonsurvivors group (NSG).

The accuracy of SaO₂-SvO₂ difference to predict ICU mortality was measured with the area under the receiver operating characteristic curve.

Results: A total of 117 patients with sepsis were enrolled, 11.5% (n = 15) with septic shock. Age was 66 ± 21 years, SAPS3: 37 ± 17, APACHE II: 14 ± 8, PaO₂/FIO₂: 342 ± 142 and SaO₂/FIO₂: 347 ± 109. ICU mortality was 18% (n = 23). The main sites of infections were respiratory (36.5%, n = 74), urinary (19%, n = 25) and cutaneous (7.6%, n = 10). Nonsurvivor patients had higher SaO₂-SvO₂ difference (26 ± 9 vs. 19 ± 9, P = 0.03). In the group of patients with SaO₂-SvO₂ difference was also higher in nonsurvivors (29 ± 3 vs. 10 ± 2, P = 0.02). All patients with septic shock who died had SaO₂-SvO₂ difference greater than 25%. The SaO₂-SvO₂ difference area under ROC curve was 0.714 (95% CI 0.534 to 0.894).

Conclusions: A higher SaO₂-SvO₂ difference is associated with mortality in patients with sepsis, especially in patients with septic shock.

References
were higher than those of PCT. When 43 cases were divided into four groups (sepsis, severe sepsis, septic shock and infection groups), presepsin levels were only significantly different between sepsis/infection group and severe sepsis group (P < 0.05). Presepsin levels reflected the blood culture test and sepsis severity more than other biomarkers.

Conclusion: This assay has sufficient clinical performance in patients admitted to the hospital in addition to the emergency room and ICU.

P60

Does the ICU experience predict psychological symptoms in relatives of patients with severe sepsis and end-of-life decisions?

Christiane Hartog1,2, Daniel Schwarkopf2, Helga Skupin1, Bjorn Kabisch1, Ruediger Pfeifer3, Albrecht Guenther4, Konrad Reinhart1,2

1Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; 2Center for Sepsis Control & Care, Jena University Hospital, Jena, Germany; 3Department of Internal Medicine I, Jena University Hospital, Jena, Germany; 4Department of Neurology, Jena University Hospital, Jena, Germany

Critical Care 2013, 17(Suppl 4):P60; doi:10.1186/cc12959

Background: Severe sepsis is the main cause of death in the ICU. Relatives are at risk for post-traumatic stress disorder (PTSD) or anxiety and depression [1]. The objective is to assess whether the ICU experience may predict these psychological symptoms of relatives at 90 days after the patient’s death or discharge.

Materials and methods: Prospective observational study in four ICUs of one university hospital, including all patients with severe sepsis and end-of-life-decisions. At 90 days, the main relative was interviewed with the Impact of Event Scale (to measure PTSD), the Hospital Anxiety and Depression Scale and self-developed items on satisfaction with the ICU experience, including medical care and communication in general as well as specifically in the end-of-life context, and decision-making. Three multiple linear regression models were calculated to predict anxiety, depression and post-traumatic stress each.

Results: Eighty-four relatives were included. They were mostly female (74%), spouse (42%) or child (42%), median age was 57 years. Seventy-seven percent acted as proxies. After 90 days, 51% relatives were at risk for PTSD, 48% for anxiety and 33% for depression. Overall satisfaction with the ICU experience was high. Relatives’ satisfaction with medical care and communication in general predicted lower anxiety (P = 0.025).

Conclusions: Relatives of patients with sepsis have a high psychological burden. Improving communication between ICU staff and relatives may reduce their symptoms of anxiety.

Acknowledgements: Funded partly by the German Ministry of Education and Research (grant number 01 E0 1002). This investigation was part of a study to improve quality of end-of-life care in the ICU (trial registration NCT01247792).

Reference

P61

Quality assurance in severe sepsis: an individualised audit/feedback system results in substantial improvements in sepsis care at a large UK teaching hospital

Mark Simmonds1, Esme Blyth, Marc Chikhani, Jaimie Coleman, Vivienne Weston, Tim Hills

Sepsis Action Group, Nottingham University Hospitals NHS Trust, Nottingham, UK

Critical Care 2013, 17(Suppl 4):P61; doi:10.1186/cc12960

Background: Severe sepsis has a high mortality and high healthcare costs. Rapid recognition and treatment can save lives but requires a coordinated response [1]. Hospital-wide audits in 2005 and 2010 showed significant deficiencies when compared with international guidelines, with 35% of cases receiving antibiotics in <1 hour and only 25% receiving basic pre-ICU interventions in a timely manner. By time-lining our response to severe sepsis, we identified system and process failures [2]. Some system improvements (for example, providing first-line antibiotics in acute areas) were straightforward to tackle, but sepsis care remained reliant on individual clinician response. Equally, whilst dissemination of organisation-level audit data raised the profile of sepsis, it appeared that individual clinicians did not view it as ‘their problem’. It is recognised that individualised feedback can improve care, as pride and the competitive nature of healthcare workers drives improvement. This is especially true when adherence to recommended practice is low [3]. We tried to change behaviour by creating a rapid response audit/feedback mechanism that informed clinicians of their own response to the severely septic patient, from which they could learn and improve.

Materials and methods: Patients admitted to any critical care unit (58 beds, four units, two sites) with a primary admission diagnosis of

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Target Time (hrs)</th>
<th>Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Warning Score recorded and escalated</td>
<td>—</td>
<td>No CCOT referral</td>
</tr>
<tr>
<td>Doctor review</td>
<td>0.5</td>
<td>1 hour</td>
</tr>
<tr>
<td>Senior clinician review</td>
<td>2</td>
<td>1 hour</td>
</tr>
<tr>
<td>Blood cultures taken</td>
<td>1</td>
<td>1 hour</td>
</tr>
<tr>
<td>Broad spectrum antibiotics</td>
<td>1</td>
<td>3 hours</td>
</tr>
<tr>
<td>Lactate measured</td>
<td>6</td>
<td>1.5 hours</td>
</tr>
<tr>
<td>Adequate fluid resuscitation</td>
<td>6</td>
<td>1 hour</td>
</tr>
<tr>
<td>Escalation to critical care if patient fails to improve</td>
<td>6</td>
<td>6.5 hour</td>
</tr>
</tbody>
</table>

Figure 1 (abstract P61) Example report.
infection were screened for severe sepsis. The pre-ICU care of patients who met the criteria was then audited against the Surviving Sepsis Guidelines [1]. Time zero was defined as when the criteria for severe sepsis were first met. Information on timings of key interventions (such as doctor review and request for critical care escalation) was also gathered. An individualised traffic-light report was then generated and emailed to the patient’s consultant and other stakeholders such as junior doctors or nurses involved in the patient’s care (Figure 1). We aimed to report cases back within 7 days of arrival to ensure the patient story was fresh in the clinician’s mind. A cumulative report is generated monthly to track organisation-wide performance.

Results: Since November 2011 we have provided feedback on over 300 severe sepsis cases. Antibiotic administration in <1 hour has risen from 35% to 75% (Figure 2), and pre-ICU bundle compliance has risen from 25% to 70% (Figure 3). Since November 2012 all sepsis cases in our critical care units have been audited (30 to 35 cases/month).

Conclusions: Individualised feedback on sepsis care has led to substantial improvements in guideline compliance.

References

P62
LD₅₀ values of ISS or NISS from the Chinese Trauma Data Bank and their application in predicting post-trauma sepsis
Huaping Liang*, He Jin, Zheng Liu, Ya Xiao
Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing, People’s Republic of China

Background: To introduce the LD₅₀ values of ISS or NISS from the Chinese Trauma Data Bank, and to compare the roles of some formulae including LD₅₀ values in predicting the onset of post-trauma sepsis.

Materials and methods: Data of 6,542 patients (aged ≥16) from the Chinese Trauma Data Bank were analyzed to obtain the LD₅₀ values of ISS or NISS using probit regression. A total of 908 trauma patients (aged ≥16) admitted to Daping Hospital of Chongqing from January 2011 until June
2013 were enrolled. Discrimination and calibration of the ISS, NISS, SIRS score (the first 3 days post trauma), ISS/LODDSS, NISS/LODSS, ISS’SIRS score, NISS’SIRS score, ISS/LODSS+SIRS score, ISS/LODSS score, ISS+SIRS score, ISS/LD+NISS+SIRS score, and NISS/LODSS+SIRS score in predicting post-trauma sepsis were compared using receiver operator characteristic (ROC) curves and Hosmer-Lemeshow statistics.

Results: The LODSS values of ISS for age 16 to 44, 45 to 64, and ≥65 were 55, 49, and 33, respectively, for females: 60, 47, and 39. The LODSS value of NISS for age 16 to 44, 45 to 64, and ≥65 was 62, 56 and 43, respectively, (for males: 62, 56, and 42; for females: 65, 53, and 48). The predicting capability of ISS/LODSS+SIRS score and NISS/LODSS+SIRS score were equivalent (area under the ROC curve = 0.932 versus 0.932) and both showed better discrimination than others in predicting post-trauma sepsis. For ISS/LODSS+SIRS score, the cutoff value of ROC curve was 2.2128, with a positive predictive value of 65.86%, a negative predictive value of 95.95%, a sensitivity of 87.13%, a specificity of 87.11%, a positive likelihood ratio of 6.687, and a negative likelihood ratio of 0.15, a Youden index of 0.7424, and an accuracy of 87.11%. For NISS/LODSS+SIRS score, the cutoff value of ROC curve was 2.3208, with a positive predictive value of 66.87%, a negative predictive value of 95.98%, a sensitivity of 87.13%, a specificity of 87.68%, a positive likelihood ratio of 7.07, a negative likelihood ratio of 0.15, a Youden index of 0.7481, and an accuracy of 86.47%.

Conclusions: This study calculates for the first time the LODSS values of ISS or NISS from Chinese trauma patients. The novel and simple formulae ISS/LD+NISS+SIRS score and NISS/LODSS+SIRS score are then set up to predict the incidence of sepsis following traumatic injury, which perform better at predicting capability than ISS, NISS, SIRS score and other formulae including LODSS values of ISS or NISS.

P64 Epidemiology of sepsis in a university hospital in Rio de Janeiro
Sergio da Cunha1,2, Maria CA Perez1, Elisabete N Ferreira1, Julio CD Correal1, Viveane S Silva1, Eline PA Assumpção1, Luana FA Almeida2, Catherine C Valdez1, Jessica R Oliveira1, Thereza CF Camello1, Paulo V Damascó1
1Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil; 2Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Brazil; 3Escola de Medicina e Ciências da Saúde, Universidade Federal do Estado do Rio de Janeiro, Brazil

Critical Care 2013, 17(Suppl 4):P64; doi:10.1186/cc12963

Background: Severe sepsis and septic shock are challenges in critical medicine care and there are few epidemiologic studies in public university hospitals in Brazil.

Materials and methods: A prospective study was performed to determine the epidemiology of the sepsis in hospitalized patients in our institution (600-bed tertiary teaching urban hospital) from September 2012 to May 2013. The criteria for sepsis definition were obtained from the 2013 guidelines [1]. Clinical and epidemiological data were collected from patients’ records. A univariate, bivariate and multivariate analyses were performed.

Results: In total, we analyzed 103 patients with severe sepsis and septic shock during the period of study. The frequency of male gender was 55.8% and a median age of 62 years was observed in the patients. The median acute physiology and chronic health disease classification system II (APACHE II) score estimated was 21.1 and a community origin of sepsis was present in 53.4% of them with a mortality rate of 61.3%. Yet in 57 (64.0%) patients with healthcare-associated sepsis, the mortality rate was 63.1% and the risk of death was higher for this group (odds ratio (OR) = 5.54; 95% confidence interval (CI) = 2.19 to 14.0; P < 0.05). In the entire group, 53.4% had septic shock and 60.1% entered the vasopressor protocol. In relation to the source of infection, the top three were: pulmonary (51.4%), abdominal (14.5%) and urinary (12.6%). We observed the greatest risk of death in the group with pulmonary infection (OR = 3.08; 95% CI = 1.1 to 8.5; P = 0.03). The prevalence of positive blood cultures was 32.1% and 23 microorganisms were identified, these being 65.2% Gram-negative bacilli (Klebsiella pneumoniae (21.7%), Escherichia coli (17.3%), 21.2% Gram-positive cocci and 13.6% fungi. Lethality in sepsis episodes was associated independently with the delay in starting antibiotic therapy (more than 6 hours: OR = 2.94; 95% CI = 1.05 to 8.02; P = 0.04), inappropriate plasmatic volume expansion use (less than 20 ml/kg: OR = 2.84; 95% CI = 1.07 to 7.5; P = 0.03) and pulmonary source of sepsis (OR = 3.08; 95% CI = 1.1 to 8.5; P = 0.03). The use of corticosteroids seemed to increase the mortality rate, but in the multivariate analysis this association failed to reach statistical significance (OR = 2.2; 95% CI = 0.08 to 6.5, P = 0.1).

Conclusions: Enterobacteriaceae and pulmonary sepsis were the main factors responsible for triggering sepsis. Fast and aggressive fluid therapy and early adequate antibiotics are mandatory to change the lethality in severe sepsis and septic shock. Further studies evaluating the effect of therapy with corticosteroids should be assessed.

Reference
P65

Burden of mortality related to sepsis in Brazil from 2002 to 2011

Luciano CP Azevedo1*,2,3, Leandro U Taniguchi1,2, Guilherme PF Schettino1, Cristiana M Toicano1, Ana L. Bienenbach1
1Instituto Sírio-Libanês de Ensino e Pesquisa, São Paulo, Brazil, 2State University of São Paulo, Brazil, 3Federal University of São Paulo, Brazil
Critical Care 2013, 17(Suppl 4):P65; doi:10.1186/cc12964

Background: Sepsis represents a substantial healthcare burden. Limited epidemiologic information about the demography of sepsis mortality or about temporal changes is available. Few population-based sources of data have been used to investigate the burden of sepsis-associated mortality on a national level. We investigated the epidemiology of sepsis deaths in Brazil from 2002 to 2011 using secondary data from the Brazilian Mortality Information System (Sistema de Informações de Mortalidade-SIM).

Materials and methods: A retrospective descriptive study using data reported to the Brazilian SIM for the years 2002 to 2011. SIM is an electronic, case-based mortality registry that derives its information almost entirely from death certificates. Sepsis-associated deaths from 2002 to 2011 were identified based on International Classification of Diseases 10th Revision codes listed on the underlying and on the contributing causes-of-death. Population-based sepsis-associated mortality rates and trends were estimated. In addition, age, gender, ethnicity, and outcome variables were assessed. Considering the cases of sepsis identified during the study period, annual population-based mortality rates were calculated using as denominators population estimates provided by the Brazilian Institute of Geography and Statistics with the 2010 census age-stratified population as the standard. Trends of mortality rates over time were explored with the chi-square test for trend. Rate changes were considered significant when P < 0.05.

Results: The total number of deaths recorded in SIM increased over the decade. In 2002 there were 982,294 deaths reported and in 2010 this number was 1,133,761. The number of sepsis deaths increased from 95,972 (9.8%) to 186,712 (16.5%). The average age of sepsis-associated deaths progressively increased from 60.2 years in 2002 to 2003 to 67.1 years in 2010 to 2011. During the same period the average age of all deaths increased from 57.8 years to 62.7 years. White individuals were more frequent (60.4%), as compared with mixed race (24.4%) and blacks (9.2%). Mortality in the last decade was third with 11.11%. The cultures were performed on admission of patients, the prevalent germ, 240 (52.98%) were negative and 35 (7.72%) had impaired analysis. There were 157 positive blood cultures of nasal swab taken on admission of patients, the prevalent germ was Staphylococcus aureus and Proteus mirabilis with the same number of specimens, 15.78%. Among the 36 positive urine cultures, Candida albicans was the prevalent with 22.22%, second place was 13.88% Escherichia coli and P. mirabilis was third with 11.11%. The cultures were tracheal P. aeruginosa as the most prevalent in half of the cases (50%), and secondly C. albicans and Acinetobacter baumannii at 10%. Among the cultures of nasal swab taken on admission of patients, the prevalent germ was P. aeruginosa with 26.76%, in second place with 12.67% was P. mirabilis and third with the same number of cases were A. baumannii and Serratia marcescens, 11.26%. Among the catheter tip cultures, P. aeruginosa was prevalent with 40%, and P. mirabilis second with 20%. There no was positive cerebrospinal fluid culture in the period.

Conclusions: This study contributes to the knowledge of local resistance rates, which is one of the basic steps for the establishment of individualized strategies regarding the use of antimicrobials.

Acknowledgements: We are thankful to the Director, Laboratory and Committee of the Hospital Infection Control from Hospital Unimed Costa do Sol, whose contributions have made this study possible.

P66

Microbiological profile in an ICU in 1 year

Joel Passos1, Paulo Pires, Sérgio Curvelo, Decio Netto, Bruna Passos, Larissa Peixoto, Bruno D’Avila
Unimed Costa do Sol, Macaé, Brazil
Critical Care 2013, 17(Suppl 4):P66; doi:10.1186/cc12965

Background: Critical patients requiring prolonged intensive care are more at risk of being colonized by germs acquired in an ICU and present infections. The factors that contribute to the high rate of infection and mortality in ICUs are possibly associated with the severity of the underlying disease, invasive procedures, the long period of hospitalization and use of antibiotics, especially the expanded spectrum, so that there are multidrug-resistant bacteria, which complicates therapy. Approximately 5% of patients admitted to ICUs will acquire a nosocomial infection, resulting in increased length of hospitalization, around 5 to 10 days, and will be considered a consequence of healthcare in 30% of cases. Diagnostic or therapeutic interventions provide breakdown of the mechanical barrier of the skin and mucus assigned to invasive, skin lesions caused by devitalization, trauma or by removing the skin secondary to burns or debridement. In addition to the mechanical factors that disrupt the natural barriers of defense, there are others that are inherent in clinical conditions of patients and promote the acquisition of infections in the hospital environment, the immune ability is compromised because the natural defense mechanisms are altered by the very nature base or as a result of therapeutic interventions. The rate of infection is high among intensive care patients, especially respiratory infections. Pseudomonas aeruginosa was the prevalent bacteria in our ICU. That is why the prevalence of infection acquired in the ICU is high and suggests that preventive measures are important to reduce the occurrence of infection in critical patients.

Materials and methods: Retrospective study, analyzing culture results for 1 year in a ICU with 10 beds in the northern of state of Rio de Janeiro. We considered cultures of urine, blood, cerebrospinal fluid, tracheal aspirate, nasal swabs and catheter tip, and detected the most prevalent microorganisms in our ICU.

Results: We analyzed 453 cultures, 178 (39.20%) were positive for some germ, 240 (52.98%) were negative and 35 (7.72%) had impaired analysis. Among the cultures were performed 152 blood cultures, 38 (25%) positive and 114 (75%) negative, 96 urine cultures, 36 (52.17%) positive and 60 (47.83) negative, 31 samples of tracheal secretions, 20 (64.51%) positive and 11 negative (35.49%), 141 nasal swabs, 71 (50.35%) positive and 70 negative (49.65%), and 27 cultures from the catheter tip, six (22.22%) positive and 21 (77.78%) negative. Among the positive blood cultures assayed as being prevalent was 31.57% with P. aeruginosa, the second Staphylococcus aureus and Proteus mirabilis with the same number of specimens, 15.78%. Among the 36 positive urine cultures, Candida albicans was the prevalent with 22.22%, second place was 13.88% Escherichia coli and P. mirabilis was third with 11.11%. The cultures were tracheal P. aeruginosa as the most prevalent in half of the cases (50%), and secondly C. albicans and Acinetobacter baumannii at 10%. Among the cultures of nasal swab taken on admission of patients, the prevalent germ was P. aeruginosa with 26.76%, in second place with 12.67% was P. mirabilis and third with the same number of cases were A. baumannii and Serratia marcescens, 11.26%. Among the catheter tip cultures, P. aeruginosa was prevalent with 40%, and P. mirabilis second with 20%. There no was positive cerebrospinal fluid culture in the period.

Conclusions: This study contributes to the knowledge of local resistance rates, which is one of the basic steps for the establishment of individualized strategies regarding the use of antimicrobials.

Acknowledgements: We are thankful to the Director, Laboratory and Committee of the Hospital Infection Control from Hospital Unimed Costa do Sol, whose contributions have made this study possible.

P67

Hourly and accurate severe sepsis classification using kernel density estimates

Jacquelyn D Parente1*, Geoffrey M Shaw2,3, Dominic S Lee3, J Geoffrey Chase1
1Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand, 2Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand, 3Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
Critical Care 2013, 17(Suppl 4):P67; doi:10.1186/cc12966

Background: Sepsis score classifications increase conditionally with concurrent systemic inflammatory response syndrome (SIRS) score, Sequential Organ Failure Assessment score, and clinical intervention. However, hierarchical criteria fail to accurately classify sepsis when related physiological manifestations are resolved, while the underlying infection remains.

Materials and methods: To enable hour-to-hour sepsis classification, we examined the diagnostic performance of a continuous sepsis score. We identified 36 adult patients in the Christchurch Hospital ICU with sepsis from a patient database. A severe sepsis biomarker was developed from model-based insulin sensitivity, temperature, heart rate, respiratory rate, blood pressures, and SIRS score. Sepsis and nonsepsis patient-hours were categorized by the ACCP/SCCM guidelines, where each category was scored independently, rather than hierarchically. Kernel density estimates

--
were used to classify severe sepsis (including septic shock) of 1,690 hours over 6,550 total hours. Optimal diagnostic performance from the receiver operating characteristic (ROC) curve was determined for in-sample, out-of-sample, and overall estimates.

Results: The severe sepsis biomarker achieved 86% sensitivity (81 to 94%), 85% specificity (80 to 95%), 0.93 (0.88 to 0.99) area under the ROC curve, 8.2 (4.0 to 19.0) positive likelihood ratio, 0.17 (0.06 to 0.23) negative likelihood ratio, 68% (58 to 87%) positive predictive value, 94% (92 to 98%) negative predictive value, and a diagnostic odds ratio of 116 (17 to 308) at an optimal probability cutoff value of 0.25.

Conclusions: This clinical biomarker can thus be readily assessed at the bedside to yield a non-invasive and continuous estimate of the probability of severe sepsis. The results show high accuracy as a potential severe sepsis diagnostic and monitoring response to sepsis interventions in real time.

P68

Potential anti-inflammatory role of 2-chloroadenosine treatment during acute lung inflammation in BALB/c mice suffering from Klebsiella pneumoniae B855-induced acute lung infection

Vijay Kumar1, Kusum Harjai, Sanjay Chhibber

Department of Microbiology, Panjab University, Chandigarh, India

Critical Care 2013, 17(Suppl 4):P68; doi:10.1186/cc12967

Background: Acute lung inflammation (ALI) is a life-threatening pathology and can develop during the course of several clinical conditions such as pneumonia, acid aspiration or sepsis. Adenosine plays a significant role in controlling acute inflammation via binding to A2A receptors on inflammatory cells; that is, neutrophils or macrophages. The present study was designed to evaluate the anti-inflammatory and immunomodulatory effects of 2-chloroadenosine (2-CADO), alone or in combination with amoxicillin/clavulanic acid (AMC), in Klebsiella pneumoniae B855-induced acute lung infection in mice.

Materials and methods: Acute lung infection in mice was induced by directly instilling the selected dose (106 colony-forming units/ml) of bacteria intranasally. Histopathological examination of the lungs was performed to reveal neutrophil infiltration into the lung alveoli. In addition to the major proinflammatory cytokines TNFα and IL-1α, levels of the anti-inflammatory cytokine IL-10 were also determined by ELISA.

Results: Intranasal instillation of bacteria caused profound neutrophil infiltration into the lung alveoli as well as a significant increase in the levels of proinflammatory mediators (that is, TNFα and IL-1α). However, intravenous administration of 2-CADO 10 μg/kg/day, alone or in combination with an antibiotic (that is, AMC 20 μg/ml i.p. 1 day after establishment of infection), significantly decreased neutrophil infiltration into the lung alveoli. A significant decrease in TNFα and IL-1α along with elevation of IL-10 levels in the lung homogenate of mice with acute lung infection was observed upon treatment with 2-CADO alone, with no significant decrease in bacterial counts. Moreover in combination with AMC, 2-CADO exhibited its immunomodulatory action in acute lung infection and prevented ALI observed during acute bacterial pulmonary infection, whilst an antibacterial action was exhibited by AMC.

Conclusions: 2-CADO proved a potent immunomodulatory agent during acute Gram-negative bacteria-induced ALI and exhibited its anti-inflammatory and immunomodulatory potential even in the presence of antibiotics. Thus, it has a potential to be used as an adjunct immunomodulatory agent during acute inflammatory conditions like ALI or sepsis.

P70

Possible variables related to paradoxical findings between PCR and hemoculture assays in rat experimental sepsis

Marcello R da Silva1, Marcos M Castele2, Dercy José de Sá Filho2, Ivan HJ Koh2

1Department of Pediatrics, Federal University of São Paulo, Brazil; 2Department of Pediatrics, Lusíada University Center, Lisbon, Portugal;

Critical Care 2013, 17(Suppl 4):P70; doi:10.1186/cc12969

Background: A positive blood culture (BC) is considered the gold standard method for the sepsis diagnosis, although its sensibility is low (10 to 30%) which demands a better diagnostic tool to limit broad-spectrum antibiotic use in the majority of patients without culture-based sepsis diagnosis. Besides, after microbial invasion, they can remain live, dead or fragmented in the bloodstream, thus limiting BC efficiency. Herein we evaluated the PCR diagnostic efficacy under live, dead and bacterial DNA contents in the bloodstream.

Materials and methods: Wistar-EPF rats were distributed in three groups (n = 20/group) based on live, dead and DNA inoculations. The LPS+DNA group (1 mg/kg LPS injection plus 4 hours later DNA injection, n = 10) was designed for DNA detection under an induced inflammatory state. Dead and extracted DNA forms of Pseudomonas aeruginosa (ATCC 27853) relative to 2 ml of 106 colony-forming units/ml were injected into the circulation. Blood samples were collected after 20 minutes and 6 hours (n = 10/group/period), and were submitted to nested PCR assay using general and specific primers. BC was performed with 200 μl and 3,000 μl only in the Live group.
Results: In the Live group, at 20 minutes the sensibility was 100% by both BC and PCR and at 6 hours the sensitivity was 60% (with 200 μl) and 90% (with 3,000 μl) in BC, and 80% in PCR sampled with 50 μl blood volume. In the Dead group, the PCR sensitivity was 90% at 20 minutes and 50% at 6 hours. In the DNA group, the sensitivity remained at 50% independent of time. The inflamed condition did not change PCR sensitivity. Overall data showed that in both techniques the sensitivity dropped with time. In the BC assay the positivity was dependent on sampled blood volume, and in the PCR it was related to live or dead condition. These findings suggest that the live bacteria remain for a short period of time in the bloodstream while DNA can last for longer periods.

Conclusions: Considering that PCR is performed with 40× less blood compared with a habitual BC, PCR can be an assay of choice when BC is negative and in conjunction in a live bacteria circulating condition. Besides, the PCR assay with specific primers can be a useful method for sepsis diagnosis in specific bacterial surge events in the ICU, thus improving antibiotic usage potentials.

P71

Involvement of ghrelin in the neonatal exposure to lipopolysaccharide and thermoregulation during endotoxia in adulthood

Mayara Andrade Ferrari1, Marcelo Eduardo Batalhão, Evelin Capellari Cárnio, School of Nursing of Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, Brazil

Critical Care 2013, 17(Suppl 4):P71; doi:10.1186/cc12970

Background: Prior exposure to infection, particularly during the neonatal phase, contributes to individual differences in susceptibility to disease during adult life. Animal neonates undergoing lipopolysaccharide administration (LPS) react differently to the front endotoxemia in adulthood. Ghrelin, a peptide hormone originally found in the stomach, has effects on the modulation of the inflammatory response. Specific receptors are found for ghrelin on neutrophils, macrophages and lymphocytes and their activation by ghrelin inhibits the production of several inflammatory cytokines, including nitric oxide (NO). Therefore, our objective is to evaluate the role of ghrelin in the attenuation of fever during endotoxia in adulthood induced by neonatal exposure to LPS.

Materials and methods: The study was conducted using rats in the pregnancy phase. After the birth of pups (day 0 of the experiment) we selected only male rats. All animals were weaned at 21 days and at 14 days of age received neonatal administration of LPS 100 μg/kg intraperitoneally (i.p.). Subsequently, they were separate in cages until they reached 8 to 12 weeks of age for the experiment (by endotoxia in adult administration of 10 mg/kg LPS i.p.). To determine the body temperature, the animals were anesthetized and a capsule inserted into the peritoneal cavity biotelemetry. Body temperature was measured for a period of 6 hours after induction of endotoxia. To verify the effect of ghrelin and ghrelin antagonist on body temperature during endotoxia, ghrelin was administered 0.1 mg/kg ghrelin antagonist or 50 nmol/kg i.p. concomitant administration of LPS. After decapitation, blood samples were collected and centrifuged to separate the plasma. The plasma was stored at -70°C for subsequent determination of NO.

Results: In our preliminary data we observed no significant difference in fever-induced endotoxia in animals subjected to LPS administration in the neonatal phase, when compared with their respective controls.

Conclusions: These data do not corroborate the findings of the literature. These data highlight that the use of ghrelin and ghrelin antagonist cannot be used as an adjuvant in the prevention of endotoxemia.

P72

Interruption of the intestinal immune route to the systemic circulation associated with early hyperhydration minimized splanchic microcirculation damage and improved sepsis survival

Fernando M Dulcini1, Ana MA Liberatore, Bianca C Zychar, Ivan HJ Koh

1Department of Surgery, Federal University of São Paulo, Brazil; 2Department of Pediatrics, Federal University of São Paulo, Brazil

Critical Care 2013, 17(Suppl 4):P72; doi:10.1186/cc12977

Background: Considering that the communication of the intestinal immunity with the systemic bloodstream can be a relevant adjuvant factor in the amplification of the host systemic inflammatory response and subsequent multiple organ dysfunction in sepsis, we aimed to evaluate the effect of the obstruction of the mesenteric lymph duct (OMLD) associated with massive fluid therapy in the early phase of sepsis and severe sepsis models.

Materials and methods: Adult Wistar-EP rats were submitted to 10^8 (S8) or 10^9 (S9) CFU/ml Escherichia coli inoculum intravenously (i.v.) (DL50 within 26 hours), and were treated with hyperhydration (HH) with or without previous OMLD (n = 5/group). Control group were naive animals (N) and animals submitted to HH or sepsis only. The mortality of all groups was followed up to 30 days after experiments and microcirculation monitoring was observed at 6 hours post sepsis induction by videomicroscopy (sidestream darkfield imaging (SDF)).

Results: The effect of OMLD + HH reduced significantly the sepsis mortality rate: 58 (60% to 14.5%) and 59 (80% to 60%). Besides, the liver and kidney microcirculatory features were better preserved as compared with untreated sepsis groups under video-microscopy (SDF) monitoring.

Acknowledgements: Grant number 2011/204014, São Paulo Research Foundation (FAPESP).

P73

Effect of sepsis challenge in chronic inflammation state on mortality and long-term pathological findings in rats

Roberto Tussi-Junior1, Eduardo LS Bastos, Ana MCRPF Martins, Rodrigo B Souza, Ana MA Liberator, José CF Vieira, Ivan HJ Koh

1Department of Surgery, Federal University of São Paulo, Brazil; 2Institute of Biology of São Paulo State, São Paulo, Brazil; 3Department of Pediatrics, Federal University of São Paulo, Brazil

Critical Care 2013, 17(Suppl 4):P73; doi:10.1186/cc12972

Background: Recent studies from our laboratory showed that animals subjected to 50% shortening of the small intestine developed bacterial translocation unleashed chronically. Bacterial translocation has shown the effect of exacerbation of systemic inflammatory response by crosstalk between intestinal and systemic immune response. In this sense, the aim of this study was to evaluate whether a septic challenge in the state of chronic inflammation resulting from the shortening of the small bowel can modify the mortality outcome and trigger organ alterations in the long term.

Materials and methods: Wistar-EPM rats were submitted to 50% small intestine shortening (IS group, n = 20) or sham intestinal anastomosis (IA group, n = 20) and were killed after 6 months for histological analysis. The other 10 animals were killed after 4 months of intestinal shortening in order to determine the histological pattern related to the bowel shortening effect.

Results: The mortality rate after sepsis was 80% in the IS group and 35% in the IA group. The bowel shortening without sepsis challenge showed hepatic mild steatosis with inflammation similar to acute hepatitis, vascular congestion and focal necrosis. The distal ileum showed shortening and intestinal fibrosis, with thickening of the muscular layer. Bacterial translocation has shown the effect of exacerbation of systemic inflammatory response. Besides, the liver and kidney microcirculatory features were better preserved as compared with untreated sepsis groups under video-microscopy (SDF) monitoring. (Figure 1).

Conclusions: These preliminary findings showed that both HH and OMLD have a potential therapeutic application in sepsis by minimizing the splanchic organ’s microcirculation dysfunction.

Acknowledgements: Grant number 2011/204014, São Paulo Research Foundation (FAPESP).
Bowman capsule thickness. However, the alterations were less compared with the IS group.

Conclusions: The chronic inflammatory state, in combination with sepsis, might be an important aggravating factor related to sepsis morbidity and mortality by promoting an increasing organ dysfunction in the long term.

Acknowledgements: Grant number 2011/20401-4, São Paulo Research Foundation (FAPESP).

Figure 1 (abstract P72) Splanchnic organ's microcirculation following 6 hours after sepsis or HH procedures by SDF monitoring: (a) HH; (b) S8 + OMLD + HH; (c) S9 + OMLD + HH
P74
Cholecystokinin inhibits inducible nitric oxide synthase expression in lipopolysaccharide-stimulated macrophages
Evelin C Carolino1, Luiz GS Branco1, Rafael S Saia1
1Escola de Enfermagem de Ribeirão Preto - USP, Brazil; 2Faculdade de Odontologia de Ribeirão Preto - USP, Brazil; 3Faculdade de Medicina de Ribeirão Preto - USP, Brazil
Critical Care 2013, 17(Suppl 4):P74; doi:10.1186/cc12974

Background: Cholecystokinin (CCK) receptors are expressed in macrophages and are upregulated by inflammatory stimulus. In vitro and in vivo studies have demonstrated the ability of CCK to decrease the production of various proinflammatory cytokines. This study investigates the role of CCK on iNOS expression in lipopolysaccharide (LPS)-activated peritoneal macrophages, as well as the intracellular signaling pathways involved in affecting iNOS synthesis.

Materials and methods: Experimental procedures were approved by the Comitê de Ética em Experimentação Animal - FMUP (protocol number 152/ 2009). Thiogliocolate-elicited macrophages were obtained by peritoneal lavage and cultured in RPMI 1640 medium, 10% fetal bovine serum and antibiotics. Nuclear p65, cAMP and iNOS levels were determined using ELISA kits, CCK receptors and IκB-α expression by Western blot and nitrite by the Griess method. Data were compared by one-way ANOVA and significant differences obtained using the Tukey multiple variances post hoc test.

Results: CCK reduced NO production attenuating iNOS mRNA expression (15.49 ± 10.80 vs. 113.16 ± 0.23 AU; P < 0.05) and protein formation. Furthermore, CCK inhibited the NF-κB pathway reducing IκBα degradation and minor p65-dependent translocation to the nucleus (54.78 ± 8.47 vs. 90.42 ± 0.13%, P < 0.05). Moreover, CCK restored the intracellular CAMP content activating the cAMP-kinase A (PKA) pathway, which resulted in a negative modulatory role on iNOS expression and nitrite production. In peritoneal macrophages, the CCK-1R expression was predominant and upregulated by LPS (0.61 ± 0.08 vs. 0.30 ± 0.09 AU; P < 0.05). The pharmacological studies confirmed that CCK-1R subtype is the major receptor responsible for the biological effects of CCK.

Conclusions: These data suggest an anti-inflammatory role for the peptide CCK in modulating iNOS-derived NO synthesis, possibly controlling the macrophage hyper-activation through NF-κB, cAMP-PKA and CCK-1R pathways.

Acknowledgements: Fapesp and CNPq.

P75
CD11b and TLR4 in human neutrophil priming by endotoxins from Escherichia coli
Isabella Prokhorenko1, Dimitry Kabanov, Svetlana Zubova, Sergay Grachev
Institute of Basic Biological Problems, Pushchino, Moscow Region, Russia
Critical Care 2013, 17(Suppl 4):P75; doi:10.1186/cc12974

Background: The interaction of endotoxins (lipopolysaccharides (LPS)) from Gram-negative bacteria with peripheral blood mononuclear cells leads to the assembly of a receptor cluster composed from mCD14, CD11b/CD18, TLR4, CD16A and CD36 [1,2]. It is well known that the main signal transducing receptor complex involved in this recognition is TLR4-MD-2 while mCD14 is involved in the recognition of S or R endotoxin’s glycoforms [3,4]. A growing body of evidence indicates that the CD11b/CD18 receptor plays the significant role in the endotoxin signaling machinery because it can influence TLR4-mediated cell activation [5]. So, using mCD14, we carried out experiments to elucidate the influence of CD11b inhibition on neutrophil priming by endotoxins for N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced respiratory burst.

Materials and methods: Human neutrophils were isolated from heparinized blood of healthy volunteers by standard procedure and incubated with or without anti-TLR4 mAbs (HTA125, IgG1a or anti-CD11b mAbs (clone 44, IgG2a) or isotypic immunoglobulin controls, respectively, for 30 minutes before stimulation with S-LPS or Re-LPS from Escherichia coli O55: B5 or JM103, respectively. The cells (2 x 10⁶), 2% of autologous serum, glucose and luminol in Ca²⁺-PBS buffer (pH 7.3), were placed in the chemiluminometer’s chambers (37°C) and primed by S-LPS or Re-LPS (100 ng/mL for 30 minutes; 37°C). Reactive oxygen species (ROS) production was triggered by addition of fMLP (1 µM). The chemiluminescence reaction was monitored continuously for 7 minutes. Total ROS production by control and LPS primed neutrophils during the first 50 seconds after fMLP addition is presented in Figure 1.

Results: Re-LPS revealed the most neutrophil priming activity in comparison with S-LPS (Figure 1A), which is in accordance with our previous work [6]. Actually, mAbs against TLR4 as well as against CD11b did not inhibit neutrophil priming by E. coli endotoxins. Moreover, the incubation of cells with anti-TLR4 or anti-CD11b mAbs followed by endotoxin priming increased fMLP-induced ROS production (Figure 1A). However, the differences between priming effectiveness of S-LPS and Re-LPS, which had been seen in endotoxin primed cells, were leveled by prior cell exposure to anti-CD11b mAbs. Neutrophils exposed to anti-TLR4 mAbs retained their ability to distinguish between S-LPS or Re-LPS being primed, respectively (Figure 1A).

Introduction: Attention has been paid in recent years to studies showing immune cell death mechanisms during the course of sepsis in response to proinflammatory and anti-inflammatory mediators that are involved in its pathophysiology. Taurine (Tau) is an abundant amino acid in polyphosphonucleic leucocytes that reacts with hypochlorous acid to form taurine chloramine (TauCl) under inflammatory conditions. In this context, we investigated potential interactions between lysozymes and TauCl in rats submitted to cecal ligation and perforation (CLP), analyzing cell viability and cytokine secretion profile (TNFα, IFNγ, IL-6, IL-17A, IL-23 and IL-10).

Materials and methods: Adult male rats were divided in two groups: sham and CLP, that were killed 24 or 120 hours after sepsis induction to isolate lymphocytes from the blood and spleen. Lymphocytes (>95.0% purity determined by differentiation with Giemsa staining) were cultured
for 24 hours at a concentration of 1×10^6 cells/ml and activated by 2 mg/ml concanavalin A. After 24 hours, Tau and TauCl were added at concentrations of 0.1, 0.2, 0.3, 0.4 and 0.5 mM for 1 hour. After this time, cells were incubated with MTT (500 μg/ml) for 3 hours to evaluate cell viability and supernatants were used to determine cytokine concentrations.

Results: Tau-treated cells exhibited better viability than those treated with TauCl, in both time and organs. TauCl, in a time and dose-dependent ratio, decreased cytokines secretion when compared with untreated cells. See Figures 1 to 7.

Conclusion: These findings show a possible impairment in lymphocyte function promoted by TauCl, correlated with immunosuppression and cell death characteristic of the late stages of sepsis.
Figure 1 (abstract P76) Cell viability by MTT assay. Viability of lymphocytes treated with Tau and TauCl in different molar concentrations. Rats were submitted to CLP or Sham, and 24 or 120 hours after the surgery their blood and spleens were collected, the lymphocytes were isolated, cultured and the cell viability was measured by MTT assay. (A) blood, 24 hours; (B) blood, 120 hours; (C) spleen, 24 hours; (D) spleen, 120 hours. *P < 0.05, compared with sham group (Tau-treated); #P < 0.05, compared with sham group (TauCl-treated), n = 5.

Figure 2 (abstract P76) Cytokine secretion. Effect of TauCl on production of proinflammatory mediator IL-17A by Th17 lymphocytes. Activated lymphocytes (1 × 10^6 cells/ml) were preincubated with TauCl (0.1 or 0.5 mM) for 1 hour. After this, supernatants were collected and IL-17A was measured by ELISA. (A) blood; (B) spleen. Results are expressed as means ± SD. *Compared with sham control 24 hours; #compared with Clp control 24 hours; &compared with sham control 120 hours; $compared with Clp control 120 hours, all with P < 0.05 significant (n = 5).

Figure 3 (abstract P76) Effect of TauCl on production of proinflammatory mediator IL-23 by Th17 lymphocytes. Activated lymphocytes (1 × 10^6 cells/ml) were preincubated with TauCl (0.1 or 0.5 mM) for 1 hour. After this, supernatants were collected and IL-23 was measured by ELISA. (A) blood; (B) spleen. Results are expressed as means ± SD. *Compared with sham control 24 hours; †compared with Clp control 24 hours; ‡compared with sham control 120 hours; ‡‡compared with Clp control 120 hours, all with P < 0.05 significant (n = 5).
Background: Sepsis is a clinical condition resulting from the excessive inflammatory response of the host against an infectious agent and is associated with high morbidity and mortality in patients in ICUs. In sepsis, the brain can be targeted, associated with mental damage and decline, impaired attention, disorientation, delirium and coma. It has been seen that the permeability of the blood-brain barrier (BBB) is associated with septic encephalopathy, allowing cell infiltration and increased oxidative stress. Accordingly, such events can be potentiated through the involvement of molecules that when activated perpetuate the inflammatory response and the breaking of the BBB, and it is possible to postulate that the CD40 molecule may be involved by being under increased expression in microglia in inflammatory events occurring systemically. The aim of this study therefore is to evaluate the role of CD40 in the breakdown of the BBB, cell infiltration and oxidative damage in the brain of rats with sepsis.

Materials and methods: Male Wistar rats were subjected to cecal ligation and puncture (CLP) to induce sepsis. The animals (n = 10) were

Figure 4 (abstract P76) Effect of TauCl on production of proinflammatory mediator IFN\(\gamma\) by Th1 lymphocytes. Activated lymphocytes (1 × 10⁶ cells/ml) were preincubated with TauCl (0.1 or 0.5 mM) for 1 hour. After this, supernatants were collected and IFN\(\gamma\) was measured by ELISA. (A) blood; (B) spleen. Results are expressed as means ± SD. *Compared with sham control 24 hours; †compared with Clp control 24 hours; ‡compared with sham control 120 hours; §compared with Clp control 120 hours, all with \(P < 0.05\) significant (n = 5).

Figure 5 (abstract P76) Effect of TauCl on production of proinflammatory mediator TNF\(\alpha\) by Th1 lymphocytes. Activated lymphocytes (1 × 10⁶ cells/ml) were preincubated with TauCl (0.1 or 0.5 mM) for 1 hour. After this, supernatants were collected and TNF\(\alpha\) was measured by ELISA. (A) blood; (B) spleen. Results are expressed as means ± SD. *Compared with sham control 24 hours; †compared with Clp control 24 hours; ‡compared with sham control 120 hours; §compared with Clp control 120 hours, all with \(P < 0.05\) significant (n = 5).

Figure 6 (abstract P76) Effect of TauCl on production of proinflammatory mediator IL-6 by Th2 lymphocytes. Activated lymphocytes (1 × 10⁶ cells/ml) were preincubated with TauCl (0.1 or 0.5 mM) for 1 hour. After this, supernatants were collected and IL-6 was measured by ELISA. (A) blood; (B) spleen. Results are expressed as means ± SD. *Compared with sham control 24 hours; †compared with Clp control 24 hours; ‡compared with sham control 120 hours; §compared with Clp control 120 hours, all with \(P < 0.05\) significant (n = 5).
divided into sham, CLP, CLP + 1 ng, CLP + 10 ng and CLP + 100 ng anti-CD40 antibody administered intracerebroventricularly. The rats were killed at 24 hours for assessment of oxidative damage in lipids (TBARS), damage to proteins by protein carbonylation, nitrite/nitrate concentration (NO), myeloperoxidase (MPO) and breakdown of the BBB. The other group was subjected to CLP and after 24 hours they were killed and the hippocampus removed to analyse expression of CD40 and CD40L by western blotting. Data were evaluated by ANOVA and post-hoc Tukey test with significance P < 0.05.

Results: Our results show that in the most effective dose of 100 ng/kg anti-CD40 showed a decrease in the breakdown of the BBB, MPO, nitrite/nitrate concentration and TBARS. A dose of 1 ng/kg was effective only in the reduction of nitrite/nitrate concentration and 10 ng/kg was not effective in TBARS and carbonyl. Western blotting analysis showed increased expression of CD40 and CD40L in CLP animals when compared with sham.

Conclusions: Modulation of the levels of CD40 may represent a potential therapeutic target in sepsis.

Acknowledgements: CAPES, CNPq, UNESC and UNISUL.

P78 Endotoxin induces conversion of endothelial cells into activated fibroblasts
César Echeverría1*, Ignacio Montorfano1, Daniela Sarmiento1, Alvaro Becerra1, Claudio Cabello-Verrugio1, Felipe Simon1,2
1Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile; 2Millennium Institute on Immunology and Immunotherapy, Santiago, Chile

Background: Endothelial dysfunction is a key step in endotoxemia-derived sepsis syndrome pathogenesis. It is well accepted that the bacterial endotoxin lipopolysaccharide (LPS) induces endothelial cell (EC) dysfunction through immune system overactivation [1-3]. However, LPS can also affect ECs in the absence of participation by immune cells [4-6]. Although interactions between LPS and ECs evoke endothelial death, a significant portion of ECs are resistant to LPS challenge [6-8]. However, the mechanism that confers endothelial resistance to LPS is not known. Considering that LPS-resistant ECs exhibit a fibroblast-like morphology, suggesting that these ECs enter in a fibrotic program in response to LPS, our aim was to investigate whether LPS induces endothelial fibrosis and explore the underlying mechanism.

Materials and methods: We used two different models: primary ECs, and intact blood vessels (IBV). Both preparations were freshly obtained from umbilical cord veins from normal pregnancies, after patients’ informed consent. The investigation conforms with the principles outlined in the Declaration of Helsinki. The Commission of Bioethics and Biosafety of Universidad Andres Bello approved all experimental protocols. Once the preparation was established they were cultured with or without LPS as a model of endotoxia. ECs were exposed to 20 mg/ml LPS for 72 hours, while IBV was challenged to 20 mg/ml LPS on the inside for 48 hours.

Results: ECs exposed to LPS showed a fibroblast-like morphologic change. In addition, LPS-treated ECs showed an upregulation of both fibroblast-specific protein expression such as fibroblast specific protein-1 and α-smooth muscle actin, and extracellular matrix proteins secretion including fibronectin and collagen type III. In concordance, ECs exposed to endotoxin showed a severe downregulation of endothelial markers such as vascular endothelial cadherin and the platelet endothelial cell adhesion molecule-1 (CD31). Similar results were obtained in the endothelial monolayer from IBV perfused with LPS in which abundant fibrosis was observed. Furthermore, we demonstrated that LPS-induced EC fibrosis is dependent on the endotoxin receptor toll-like receptor-4. In addition, the participation of NAD(P)H oxidase activity and ROS generation was demonstrated using specific blockers. Finally, we demonstrated by means of small interfering technology and a pharmacological inhibitor that LPS-induced EC fibrosis is dependent on the activin like kinase-5 kinase activity, suggesting that tumor growth factor beta is involved in this fibrotic process.

Conclusions: We conclude that LPS is able and sufficient to promote endothelial fibrosis. It is noteworthy that LPS-induced endothelial fibrosis perpetuates endothelial dysfunction as a maladaptive process rather than a survival mechanism for protection against LPS. These findings are useful in improving current treatment against endotoxia-derived sepsis syndrome and other inflammatory diseases.

Acknowledgements: Fondecyt 1121078 (CE), 1120380 (CCV), MECESUP UAB0802 (CE), UNAB DI-67-12/I (CE), and Millennium Institute on Immunology and Immunotherapy P09-016-F (F).

References
Impaired calcium mobilization in vascular smooth muscle of rats in septic shock

Sandra Crestani¹, Jose Eduardo da Silva Santos, Jamil Assreuy
Department of Pharmacology, UFSC, Florianópolis, SC, Brazil
Critical Care 2013, 17(Suppl 4):P79; doi:10.1186/cc12979

Background: Calcium activity is essential to vascular smooth muscle contraction. Although it is well established that arteries from rats in septic shock present hyporesponsiveness to vasoconstrictor drugs, the role of calcium mobilization in this contractile dysfunction is far less investigated. We hypothesized that during septic shock calcium dynamics is changed and may have a role in the vascular dysfunction in sepsis.

Materials and methods: Female Wistar rats (3 months old) were anesthetized with oxygen-isoflurane (3%) inhalation and subjected to cecal ligation and puncture surgery (CLP). Immediately after and every 12 hours rats received physiological saline solution (PBS 30 ml/kg, subcutaneously) and trandolapril (5 mg/kg, subcutaneously). After 6 hours (CLP-6) or 24 hours (CLP-24) rats were killed, the aorta was harvested and cut in rings, the endothelium was removed and rings were mounted in baths. Rings were exposed to KCl 120 mM and phenylephrine (PE 1 µM). Aorta rings were kept in a modified depolarizing Krebs solution nominally Ca²⁺ free and contracted by CaCl₂ (1 to 100 mM). The same protocol were repeated in presence of thapsigargin (3 µM), DTNB (100 µM) and PTIO (100 µM). Different vessels were exposed to single concentrations of PE (1 µM) or caffeine (20 mM) in Ca²⁺ free solution, in the presence or absence of thapsigargin.

Results: Maximal contraction (Emax) induced by KCl or PE was reduced, especially in the CLP-24 group. Similarly, CaCl₂-induced contraction was reduced (60%) in the CLP-24 group. Thapsigargin (sarcoplasmatic calcium reuptake blocker) and DTNB (sulphydryl oxidation) restored the contraction elicited by CaCl₂ in septic rings, but without effect in control rings. PE-induced contraction in calcium-free solution was significantly reduced in CLP-24 rings (Emax 1.6 ± 0.4 g control vs. 0.3 ± 0.1 g CLP-24 rings). Thapsigargin did not change the hyporesponsiveness to PE but PTIO (nitrict oxide scavenger) restored it partially. Caffeine-induced contraction in Ca²⁺ free solution was reduced in CLP-24 rings (0.2 ± 0.06 g control vs. 0.03 ± 0.01 g CLP-24). Thapsigargin or PTIO restored the contraction induced by caffeine.

Conclusions: These data suggest that in septic shock septic calcium mobilization is strongly impaired. Although preliminary, our results suggest that calcium channel nitrosylation and calcium reuptake may be reasons for the vascular hyporesponsiveness of septic shock.

Acknowledgements: Financial support: CNPq. FINEP. FAPESC and CAPES.
CLP 6 hours 21.9 ± 3.1*; CLP 6 hours + HEX 52.6 ± 7.0; CLP 6 hours + PENT 54.1 ± 4.9; CLP 24 hours 31.1 ± 5.6*; CLP 24 hours + HEX 74.6 ± 3.0; CLP 24 hours + PENT 64.4 ± 7.8 mmHg; *P < 0.05 compared with control group). The early ganglionic blockade with PENT decreased the mortality observed after 96 hours.

Conclusions: Our data indicate that increased sympathetic tone in sepsis contributes, at least in part, to the development of hypotension, hyporesponsiveness to vasoactive agents and mortality. Blockade of increased sympathetic tone thus may be considered as an adjuvant therapy for the treatment of septic cardiovascular dysfunction.

Acknowledgements: Financial support: CAPES, CNPq, FAPESC and FINEP.

P82
Vascular smooth muscle cell activation depends on NOS-1-derived NO and consequent peroxynitrite generation
Karin Scheschowitsch¹, Regina de Sordi², João Alfredo de Moraes², Christina Barja-Fidalgo³, Jamil Asseuy⁴
¹Department of Pharmacology, UFSC, Florianópolis, SC, Brazil; ²Department of Pharmacology, UERJ, Rio de Janeiro, RJ, Brazil
Critical Care 2013, 17(Suppl 4):P82; doi:10.1186/cc12981

Background: Low levels of nitric oxide (NO) play a key role in vascular tonus maintenance. Previous results from our laboratory show that hypotension and mortality during sepsis are prevented by the early administration of NOS-1 inhibitors. The aim of this study was thus to investigate the role of NOS-1 and NOS-3-derived NO and of other reactive oxygen species (ROS) in smooth muscle cell activation.

Materials and methods: Smooth muscle cell line of rat aorta (A7r5) was used. Control cells and either NOS-1 or NOS-3 silenced cells (siNOS-1 and siNOS-3, respectively) were stimulated with LPS 1 µg/ml and IFN 200 IU/ml (LPS/IFN). NO and ROS production was assessed with fluorescent probes. NO content was evaluated by western blot and NOS-2 activity was indirectly measured by Griess reaction. Further, control cells were treated for 30 minutes with a NO scavenger (c-PTIO), a NOS inhibitor (DPI) before stimulation. Immunofluorescence was used to evaluate protein nitration and NF-κB nuclear translocation. To confirm the role of peroxynitrite in cell activation, control cells were stimulated with a sub-effective amount of LPS/IFN together with a NO donor and a superoxide anion generator and treated with a NOS-2 inhibitor 4 hours after stimulation. Griess reaction was performed 48 hours after. Statistical comparisons were performed by two-way ANOVA followed by the Bonferroni test.

Results: A7r5 control cells stimulated with LPS/IFN presented a rapid increase in intracellular NO and ROS content. These increases were prevented by c-PTIO, 7-NI and DPI, as well as in siNOS-1 and siNOS-3 cells. NOS-2 was only expressed after cell stimulation. Control cells incubated with c-PTIO or 7-NI and stimulated with LPS/IFN presented a diminished NOS-2 expression and activity. Only in siNOS-1 cells was NOS-2 expression and activity also reduced. Nuclear translocation of NF-κB and positive nitrotyrosine reaction were reduced in c-PTIO or 7-NI treated groups. Sub-effective concentrations of LPS/IFN did not induce significant nitrite production. However, when sub-effective LPS/IFN was associated with the production of low concentrations of peroxynitrite, nitrite accumulation was as high as in cells stimulated with activating concentrations of LPS/IFN.

Conclusions: We show for the first time the importance of NOS-1-derived NO and peroxynitrite for smooth muscle cell activation. Cell stimulation with LPS/IFN causes an early NOS-1-derived NO pulse and a ROS pulse that forms peroxynitrite. The interplay between these species seems to be key events for NF-κB nuclear translocation and NOS-2 expression.

Acknowledgements: CNPq, CAPES and FAPESC.

P83
Estradiol cypionate modulates immunological response during sepsis
Luiz E da Silva¹, Angélica M Stabile, Marcel E Batallão, Evelin C Camino College of Nursing at Ribeirão Preto, São Paulo, Brazil
Critical Care 2013, 17(Suppl 4):P83; doi:10.1186/cc12982

Background: Sepsis and its common complication septic shock are generally induced by the action of lipopolysaccharide (LPS) and characterized by peripheral arteriolar vasoconstriction that results in hypotension and inadequate tissue perfusion. During sepsis, sepsis occurs of large amounts of inflammatory mediators such as nitric oxide (NO), interleukin 1 (IL-1) and TNFα that will modulate the inflammatory response. One significant finding in clinics is that men and women respond differently to sepsis, with better prognosis related to women [1].

Materials and methods: Male and female (ovariectomized and sham surgery) rats were injected intraperitoneally (i.p.) for three consecutive days with ECP 40 µg/kg or vehicle. On the third day, after ECP injection, rats receive i.p. injection of 10 mg/kg bacterial LPS or saline solution. Plasma was collected 2, 4 and 6 hours after LPS for NO and cytokine measurements.

Results: Administration of LPS increased the NO plasma concentration in males and females (2, 4 and 6 hours). ECP pretreatment decreased the NO concentration in sham females at 4 and 6 hours; conversely, it increased nitrate levels in ovariectomized and in males at 4 and 6 hours. IL-1 plasma concentration was increased in the three groups after LPS administration at 2 and 4 hours and in Sham at 6 hours; ECP pretreatment decreased IL-1 plasma concentration in all groups at 2 hours. LPS administration also increased TNFα plasma concentration at 2, 4 and 6 hours in the three groups; ECP pretreatment inhibited the increase of TNFα at 2 hours in three groups.

Conclusions: Our results indicate that estradiol may have proinflammatory or anti-inflammatory actions depending on the gender and the mediator evaluated; this balance in mediator secretion may be protective and explain in part the better outcomes of woman during sepsis.

Acknowledgements: FAPESP

P84
Sulphydryl oxidation restores alpha-adrenergic vascular response and improves survival in septic rats
Patrícia de Oliveira Benedet¹, Gustavo Campos Ramos, Ana Maria Favero, Jamil Asseuy²
¹Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
Critical Care 2013, 17(Suppl 4):P84; doi:10.1186/cc12983

Background: The profound decrease in vasomotor tone accompanied by hyporesponsiveness to vasoconstrictors is an important contributor to morbidity and mortality in septic shock. Overproduction of nitric oxide (NO) (NGO) has been shown to play a relevant role in septic shock vascular dysfunction. One of the mechanisms whereby NGO exerts some of its effects is the reaction with thiol groups of cysteine residues in a process called S-nitrosation and producing S-nitrosothiols. The aim of the present study is to show that modification in S-nitrosylation has an important impact in sepsis-induced vascular dysfunction and mortality.

Materials and methods: Wistar female rats were anesthetized and treated with a NOS-2 inhibitor 4 hours after stimulation. Control cells and NOS-1 or NOS-3 silenced cells (siNOS-1 and siNOS-3, respectively) were stimulated with LPS 1 µg/ml and IFN 200 U/ml (LPS/IFN). NO and ROS production was assessed with fluorescent probes. NO content was evaluated by western blot and NOS-2 activity was indirectly measured by Griess reaction. Further, control cells were treated for 30 minutes with a NO scavenger (c-PTIO), a NOS inhibitor (7-NI) or a NADPH oxidase inhibitor (DPI) before stimulation. Immunofluorescence was used to evaluate protein nitration and NF-κB nuclear translocation. To confirm the role of peroxynitrite in cell activation, control cells were stimulated with a sub-effective amount of LPS/IFN together with a NO donor and a superoxide anion generator and treated with a NOS-2 inhibitor 4 hours after stimulation. Griess reaction was performed 48 hours after. Statistical comparisons were performed by two-way ANOVA followed by the Bonferroni test.

Results: A7r5 control cells stimulated with LPS/IFN presented a rapid increase in intracellular NO and ROS content. These increases were prevented by c-PTIO, 7-NI and DPI, as well as in siNOS-1 and siNOS-3 cells. NOS-2 was only expressed after cell stimulation. Control cells incubated with c-PTIO or 7-NI and stimulated with LPS/IFN presented a diminished NOS-2 expression and activity. Only in siNOS-1 cells was NOS-2 expression and activity also reduced. Nuclear translocation of NF-κB and positive nitrotyrosine reaction were reduced in c-PTIO or 7-NI treated groups. Sub-effective concentrations of LPS/IFN did not induce significant nitrite production. However, when sub-effective LPS/IFN was associated with the production of low concentrations of peroxynitrite, nitrite accumulation was as high as in cells stimulated with activating concentrations of LPS/IFN.

Conclusions: We show for the first time the importance of NOS-1-derived NO and peroxynitrite for smooth muscle cell activation. Cell stimulation with LPS/IFN causes an early NOS-1-derived NO pulse and a ROS pulse that forms peroxynitrite. The interplay between these species seems to be key events for NF-κB nuclear translocation and NOS-2 expression.

Acknowledgements: CNPq, CAPES and FAPESC.
the role of S-nitrosylation may help to develop strategies to prevent or reverse the vascular dysfunction of sepsis.

Acknowledgements: Financial support: CNPq, CAPES, FAPESC and FINEP.

P85
Effect of polymicrobial sepsis on the respiratory mechanism of rats previously exposed to cigarette smoking
Glauber C Lima1, Kalynca RV Aragão2, Viviane G Portella1, Lúcia RL Diniz2, Sales A Cavalcante3, Daniel S Serra3, Andreinha N Coelho-de-Souza4,5
1Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, Brazil; 2Faculty of Medicine, UniChristus, Fortaleza, CE, Brazil; 3Center of Science and Technology, State University of Ceará, Fortaleza, CE, Brazil
Critical Care 2013, 17(Suppl 4):P85; doi:10.1186/cc12984

Background: The objective was to evaluate the profile of respiratory mechanism of septic female rats previously submitted to exposure of cigarette smoking.

Materials and methods: Initially, female rats (230 to 300 g) were randomly divided into a control group (NS) kept with no manipulation and a cigarette smoking-induced respiratory disorders group (S). A rat model used to induce respiratory disorders was established by exposure to cigarette smoke, 15 minutes (15 minutes) daily for 6 weeks. Twenty-four hours after the last cigarette smoking exposure session, each group underwent cecal ligation and puncture procedures to induce polymicrobial sepsis (CLP group) or only underwent a laparotomy (sham group), resulting in the following four experimental groups: Sham-NS (n = 11), Sham-S (n = 11), CLP-NS (n = 6) and CLP-S (n = 9). The profile of respiratory mechanism was evaluated by forced oscillation measurements using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc.) at 24 hours CLP or Sham procedures. The respiratory system parameters evaluated were calculated in flexiWare7 software. All experimental procedures used in our study were approved by the Institutional Animal Ethics Committee (nº 11221971-3/47).

Results: Among the experimental groups, no significant difference in airway resistance was verified, while prior exposure to cigarette smoking decreased the tissue resistance of sham-operated rats (0.77 ± 0.03 vs. 0.55 ± 0.01 cmH2O·second/ml, Sham-NF and Sham-F, respectively) as well as inhibiting the increase in tissue resistance induced by sepsis (1.11 ± 0.11 vs. 0.76 ± 0.03 cmH2O·second/ml, CLP-NS and CLP-S, respectively). The prior exposure to cigarette smoking did not alter the lung compliance of sham-operated rats, but it blocked the CLP-induced reduction of lung compliance (0.8 ± 0.04, 0.21 ± 0.11 and 0.57 ± 0.07 cmH2O·second/ml, Sham-NS, CLP-NS and CLP-S, respectively). Similarly, cigarette smoking blocked the CLP-induced decrease of inspiratory capacity (7.85 ± 0.25, 4.96 ± 1.49 and 7.00 ± 0.41 cmH2O·second/ml, Sham-NS, CLP-NS and CLP-S, respectively) but did not alter the inspiratory capacity from sham-operated rats (8.68 ± 0.2 cmH2O·second/ml, Sham-S) compared with Sham-NS.

Conclusions: In contrast to sham-operated rats, cigarette smoking inhibited changes in the resistance, compliance and inspiratory capacity of the respiratory system of CLP-operated rats.

P86
Study of the effect of C1-esterase inhibitor administration to the sepsis pig model
Hisashi Imahase1, Yuichiro Sakamoto1, Taku Miyasho2, Kazuto Yamashita1, Jun Tamura1, Takaharu Itami1, Tomohito Ishizuka3, Yoshio Kawamura1, Tadashi Saro4, Satoshi Inoue2
1Emergency and Critical Care Center, Saga University Hospital, Saga City, Japan; 2Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan; 3Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
Critical Care 2013, 17(Suppl 4):P86; doi:10.1186/cc12985

Background: New therapy is required that improves the prognosis of patients suffering from severe sepsis or septic shock. C1-esterase inhibitor (C1-Inh) was introduced in clinical medicine for patients with hereditary angioedema. Some studies show that C1-Inh administration may also have a beneficial effect in other clinical conditions such as sepsis [1,2]. We examined the effect of C1-Inh administration to the sepsis pig model.

Materials and methods: The experiments were performed divided into two groups: the treatment group and the control group. We administered LPS (40 μg/kg) to pigs of about 10 kg over 30 minutes. At the same time, we administered C1-Inh in the control group (500 U, n = 3; 1,000 U, n = 3), and saline in the control group (n = 3). We examined the effect of C1-Inh for the outcome of the two groups, physiological indicators such as heart rates (HR) and mean arterial pressure (MAP), and autopsy results such as pleural effusion and ascites.

Results: The outcome of the two groups was that 5/6 in the treatment group and 2/3 in the control group survived at 240 minutes from the end of LPS administration. HR (minute) at 180 minutes from the end of LPS administration was 157.5 ± 12.3 in the treatment group and 205.3 ± 42.6 in the control group, and MAP (mmHg) at the same time was 60.0 ± 8.2 in the treatment group and 58.3 ± 5.6 in the control group. As for the autopsy results, pleural effusion (ml) was 13.28 ± 3.13 in the treatment group and 9.87 ± 4.33 in the control group, and ascites (ml) was 165.8 ± 32.99 in the treatment group and 210.0 ± 60.8 in the control group. Seeing each individual, the individual showing a large effect of C1-Inh was observed.

Conclusions: C1-Inh tended to stabilize the hemodynamics of the sepsis pig model, but was not able to reduce significantly the amount of pleural effusion and ascites.

Acknowledgements: This is a collaborative study of Emergency and Critical Care Center, Saga University Hospital and the Department of Veterinary Medicine, Rakuno Gakuen University.

References

P87
Brain markers of neurodegeneration in sepsis survivor rats
Larissa de Souza Constantino1, Cristiane Damiani Tomasi1, Matheus Pasquali2, Samantha Pereira Miguel2, João Paulo Almeida dos Santos2, Francieli Vuolo1, Clarissa Martinello Corrêa1, Fabricia Petronilho1, João Quevedo1, Daniel Pens Gelain4, José Cláudio Fonseca Moreira4, Felipe Dal-Pizzol5
1University of the Extreme-South Catarinense, Criciúma, Brazil; 2Federal University of the Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; 3University of Southern Santa Catarina, Tubarão, Brazil
Critical Care 2013, 17(Suppl 4):P87; doi:10.1186/cc12986

Background: Several preclinical and clinical reports indicate a significant role for systemic inflammation in chronic neurodegenerative diseases [1], with commitment of different brain regions. Several studies have demonstrated hippocampal atrophy, EEG changes [2], profound glial activation, the generation of nitric oxide and changes in expression of mediator apoptosis [3]. The release of these mediators and oxidative stress occur mainly in acute phase inflammation in sepsis survivor rats and are associated with long-term cognitive impairment [4]. These cognitive deficits have been associated with decreased quality of life and increased long-term morbidity. Some of these alterations resembled the pathophysiological mechanisms of neurodegenerative diseases. For this reason, we analyzed parameters related to neurodegeneration in rats that survived sepsis, and their relation to cognitive dysfunction.

Materials and methods: Wistar rats were subjected to sepsis by cecal ligation and puncture and 30 days after surgery the hippocampus and prefrontal cortex were isolated just after cognitive evaluation by the inhibitory avoidance test. The immunoreactivity of β-amyloid peptide (Aβ), receptor for advanced glycation endproducts (RAGE) and synaptofilin were analyzed by western blot.

Results: Aβ was increased in septic animals in the hippocampus, but not in the prefrontal cortex. RAGE was upregulated in both structures after sepsis, and the immunoreactivity of synaptofilin was decreased only in the prefrontal, and inversely correlated to Aβ levels. Prefrontal levels of synaptofilin correlated with performance in the inhibitory avoidance.
Conclusions: The brain from sepsis survivor animals presented several markers of neurodegeneration, and inhibitory avoidance test performance seems to be dependent on the levels at some of these markers.

Acknowledgements: Supported by grants from the National Council for Scientific and Technological Development (CNPq), FAPERGS PqG 2010 (10088680) and Universidade do Estado do Sul Catarinense.

References:

P88
Epigenetic profile in lipopolysaccharide-stimulated macrophages
Ester Correira Sarmento Rios1, Thais Martins Lima Salgado, Francisco Garcia Soriano
Department of Emergency Medicine, University of São Paulo Medical School, Brazil
Critical Care 2013, 17(Suppl 4):P88; doi:10.1186/cc12987

Background: Sepsis remains a clinical challenge for the ICUs. However, it is known that the tolerance mechanism using low doses of lipopolysaccharide (LPS) reduces the expression of proinflammatory genes and involves epigenetic regulation. The chromatin openness is regulated by histone acetyltransferases (HATs) and these enzymes could be modulated by nitric oxide (NO) interaction. In the present work, we demonstrate the pathway of tolerance to LPS from HAT activity and level of histone openness to production of cytokines as well as the influence of NO inhibition.

Materials and methods: THP1 differentiated into macrophages (with 2.5% FCS) were cultivated RPMI medium (Control group), submitted to tolerance (500 ng/ml LPS 24 hours before challenge with 1,000 ng/ml LPS - Tolerant group) and challenge (1,000 ng/ml LPS - D group) during 24 hours. NO production was inhibited by addition of 100 µM LNAME. The HAT activity and cytokine production (IL-6) were measured with biochemistry kits. Histone acetylated H3 and H4 were analyzed by western blotting.

Results: Tolerance reduced HAT activity compared with the group directly challenged (P < 0.05). Acetylated H4 was maintained at basal levels in the tolerant group and increased in the D group (P < 0.05). However, the tolerance increases the acetylation of histone H3 in a NO-dependent response. Similarly, the IL-6 release was reduced by induction of tolerance (P < 0.05 vs. D group). However, this effect was abolished by inhibition of NO production.

Conclusions: The induction of tolerance diminishes HAT activity and cytokine production. The tolerance triggers a complex epigenetic modulation dependent of NO.

Acknowledgements: FAPESP 09/15530-0.

P89
Histone acetyltransferase and DNA methyltransferase expression in response to LPS stimulation
Ester Correira Sarmento Rios1, Francisco Garcia Soriano
Departamento de Clínica Médica da Universidade de São Paulo, SP, Brazil
Critical Care 2013, 17(Suppl 4):P89; doi:10.1186/cc12988

Background: Tolerance is a defense strategy capable of reducing the proinflammatory impact of infection. Tolerance capacity differs among the different tissues. It is known that epigenetic regulation is cell specific type. The cell machinery regulates the expression and activity of the enzymes that regulate chromatin openness. Understanding the epigenetic mechanism activated by different doses of LPS is important to define new approaches for the treatment of systemic infections. The objective of this work was to study the LPS-induced epigenetic response, analyzing the expression of histone acetyltransferases (HAT) and DNA methyltransferases (DNMTs).

Materials and methods: THP-1 human promonocytes were cultivated in RPMI (C group), submitted to different doses of LPS (T group - tolerance with 500 ng/ml during 24 hours and challenge with 1 µg/ml during 24 hours; D group - 1 µg/ml during 24 hours). The inhibition of nitric oxide production was performed with LNAME (100 µM). Male Balb C mice (8 weeks old) were divided into two groups: C group - without manipulation; D group - received 2 mg/kg LPS. The spleens were collected 48 hours after. The HAT, DNMTs, lysine acetylated and histone H3 acetylated amounts were determinate by western blot. The results represent three similar experiments. The statistical analysis was performed by ANOVA. Research protocol number 0950/09 was approved by the ethics committee.

Results: The challenge with LPS reduced the expression of DNMT1 in THP1 cells. However, the tolerance increased the amount of this enzyme (25%). Challenge with LPS reduces DNMT3a production (50%) in mice spleen. The expression of HAT was reduced (50%) in the T group and this event was NO dependent. The LPS addition to THP1 culture decreases the production of acetylated lysine (P < 0.05) in a dose-dependent way (68% and 33% with 0, 1 and 5 µg/ml LPS respectively). Low doses of LPS reduce the acetylation of histone H3 (30% and 60% with 500 ng and 1 µg/ml LPS respectively).

Conclusions: Different concentrations of LPS are required for selective regulation of subsequent LPS-stimulated epigenetic mechanisms.

Acknowledgements: FAPESP 09/15530-0.
Association of the immature platelet fraction with the diagnosis and severity of sepsis: an observational study
Melina V Rodrigues, Bruna D Andreugetto, Thiago M Santos, Maria de Fatima P Gilberti, Joyce M Annichino-Bizzacchi, Desanka Dragosavac, Marco A Canavilho-Filho, Erich V De Paula
Faculty of Medical Sciences, University of Campinas, SP, Brazil
Critical Care 2013, 17(Suppl 4):P91; doi:10.1186/cc12990

Background: An ideal sepsis biomarker should be able to segregate infected patients from other causes of SIRS, and also to allow some kind of risk stratification. Furthermore, it should be capable of identifying subgroups of patients with specific sepsis complications, enabling target-specific preventive and therapeutic measures. Finally, access to this biomarker should not depend on complex and high-cost equipments and reagents, allowing access to more patients. New hematologic automated analyzers used for evaluation of the complete blood count provide a series of advanced analytical parameters that permit more detailed evaluations of circulating blood cells. Parameters such as the immature reticulocyte fraction (IRF) and immature platelet fraction (IPF) identify early signs of hematopoietic recovery, and have been studied in several inflammatory conditions. Recently, a study performed in critically ill patients suggested that the IRF could be a more accurate biomarker of sepsis development than C-reactive protein (CRP) and procalcitonin. The aim of this study was to evaluate whether IPF and IRF levels presented any association with clinical and laboratory parameters of sepsis severity.

Materials and methods: During 30 days the IPF and IRF were obtained using an automated hematologic analyzer (Sysmex XES5000) within 24 hours from admission for consecutive patients with sepsis.

Results: In total, 23 patients with sepsis were enrolled in the study, of which 12 (52%) presented severe sepsis or septic shock. The median APACHE II and SOFA scores at admission were 15 (6 to 37) and 6 (1 to 17). Median IPF and IRF levels at admission were 4% (1.1 to 11.0%) and 14% (1.6 to 7.1%) respectively, and were significantly higher than in a population of healthy individuals (IPF = 2.1% and IRF = 2.9%; both P < 0.001). As opposed to the CRP, both IPF and IRF were significantly correlated with the SOFA at admission (Rs = 0.52 and 0.45; P = 0.01 and 0.02 respectively). However, when patients were stratified by the median SOFA score at admission, only the IPF was significantly higher in patients with SOFA ≥6 (IPF = 6.2% vs. 2.9%; P = 0.01). Similar results were observed when patients were stratified by the presence of severe sepsis. The IPF presented a significant correlation with the platelet count (Rs = 0.71; P < 0.001), but with not with PT, aPTT and D-dimer.

Conclusions: In patients with sepsis, both IPF and IRF were higher than in healthy individuals, and the IPF was associated with increased sepsis severity. Larger studies are warranted to define and validate the precise role of the IPF as a sepsis biomarker.

Effect of IL-1 receptor antagonist on the cerebrospinal fluid nitric oxide concentrations during experimental polymicrobial sepsis in rats
Fazal Wahab1, Lucas F Tazzaño1, Marcelo Eduardo Batalhão1, Evelin Capellari Carnio1, Maria Jose Alves da Rocha1
1Department of Morphology, Physiology and Basic Pathology, FORP, University of São Paulo Campus of Ribeirão Preto, São Paulo, Brazil; 2Department of General and Specialized Nursing, EERP, University of São Paulo Campus of Ribeirão Preto, São Paulo, Brazil
Critical Care 2013, 17(Suppl 4):P93; doi:10.1186/cc12992

Background: Recently, we observed that blocking the IL-1-IL-1r signaling pathway by central administration of IL-1ra (an IL-1 receptor antagonist) can result in increased AVP secretion and survival rate in the late phase of sepsis [1]. The mechanism of this effect of IL-1ra on AVP concentration and survival rate remains elusive. Many studies have implicated excessive production of nitric oxide (NO) as one of the important factors responsible for decreased AVP secretion during the late phase of sepsis [2]. Currently, the effect of IL-1ra on the central NO production and release during sepsis is not known.

Materials and methods: In this study, we checked the effect of IL-1ra on sepsis-induced increased release of NO in cerebrospinal fluid (CSF). Sepsis was induced by cecal ligation and puncture (CLP). IL-1ra (9 nmol/animal) and vehicle (PBS: 2 μl/animal) were injected intracerebroventricularly to separate groups of CLP (n = 8/group) and control (n = 8/group) animals. CSF and blood samples were collected from different groups of rats (n = 6 to 8/group) after 1, 2, 4, 6 and 24 hours. The NO concentration in CSF was determined by chemiluminescence assay. Specific ELISA was used for AVP analysis. All experiments were carried out according to an institutional ethic committee-approved protocol (CEUA protocol number 12.1.1205.53.0).

Results: NO levels were significantly (P < 0.05 to 0.005) increased in post-CLP 6-hour and 24-hour as compared with control, post-CLP 1-hour, 2-hour, and 4-hour animals. IL-1ra administration did not significantly alter the NO concentration in CSF after 1, 2, 4 and 6 hours as compared with vehicle treatment in CLP animals as well as in control. In contrast, after 24 hours NO levels were significantly (P < 0.02) lowered in IL-1ra-treated animals (22.36 ± 2.07 μM) as compared with vehicle-treated animals (31.97 ± 2.88 μM). The AVP concentration in IL-1ra-treated rats was significantly higher in IL-1ra-treated animals in comparison with vehicle treatment. Moreover, the survival rate of IL-1ra-treated rats was >80% while that of vehicle-treated rats was 47%.

Materials and methods: Two gene constructs were used to evaluate the feasibility of gene transfer in the endotoxemia model: a lacZ expression plasmid driven by the CMV promoter, and a coagulation factor IX expression plasmid with the hAAT liver-specific promoter. The latter was used as a reporter gene for sequestered proteins. C57Bl/6 mice were challenged with LPS and gene transfer was performed 6 hours thereafter, so as to mimic the timepoint when sepsis treatments would be initiated. Fifty micrograms of plasmid were injected into the tail vein using hydrodynamic transfection. A less aggressive protocol, which could in principle be translatable to the clinical setting, was also tested. Gene expression was evaluated 72 hours after gene transfer by a blinded investigator.

Results: Factor IX activity levels (FIX:C) were significantly lower in nontransfected LPS-challenged mice (n = 12) compared with nontransfected controls (n = 14), suggesting that endotoxemia decreases baseline FIX:C levels. Higher FIX:C levels (twofold higher than controls) were observed in control mice submitted to hydrodynamic transfection (n = 5), as expected. When gene transfer was evaluated in the context of sepsis, LPS-challenged mice (n = 9) presented 1.7-fold higher FIX:C levels than control mice (n = 12) (P < 0.01). Moreover, mice that were exposed to a less aggressive intravenous transfection protocol (n = 8) presented FIX:C levels that were 1.4-fold higher than controls (P = 0.04). Liver-expression of β-galactosidase also demonstrated the feasibility of gene transfer in LPS-challenged mice.

Conclusions: Our results suggest that the cellular and molecular events of sepsis reproduced in the endotoxemia model could facilitate gene transfer, thus offering a unique opportunity for gene therapy with nonviral vectors, without the need for traumatic gene transfer protocols that would be required in other pathological conditions.
Conclusions: Our results have demonstrated that blocking the IL-1-IL-1r signaling pathway by central administration of IL-1ra increases AVP secretion in the late phase of sepsis, which may be beneficial for survival. We believe that one of the mechanisms for this effect of IL-1ra is through reduction of NO concentration in CSF of the septic rats.

Acknowledgements: This research work was funded by FAPESP. FW is supported by a postdoctoral fellowship of FAPESP.

References

P94
Central and peripheral effects of ghrelin over the hypotension induced by endotoxic shock
Felipe Fain, Marcelo Batallão, Evelin Carnio
1Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil; 2Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Brazil
Critical Care 2013, 17(Suppl 4):P94; doi:10.1186/cc12993

Background: Since its discovery by Kojima and colleagues in 1999 [1], the hormone ghrelin has been studied in different contexts, since this peptide has the ability to promote hormonal, vascular and immune changes. His well-established functions are the release of growth hormone, by a mechanism distinct from the growth hormone release factor, and stimulation of hunger, by activating hypothalamic neurons, leading to release of neuropeptide Y, thus promoting orexigenic effects [2]. Because of its ability to release hormones, including vasopressin [3], and by possessing immunomodulatory properties, ghrelin has been studied in different contexts of inflammatory states, as present in endotoxemia and sepsis [4]. The infusion of lipopolysaccharide (LPS) is capable of generating an inflammatory state, with augmenting of TNFα, IL-1β and nitric oxide, which in turn leads to cardiac depression and systemic vasodilation and hypotension [5]. Due to its properties to modulate the inflammatory response, in a way of diminishing the levels of TNFα, IL-1β and nitric oxide, which are augmented in the endotoxemic state, as well the ability to augment the plasma levels of vasopressin, ghrelin emerges as a potential neuro-immunomodulator in hypotension caused by endotoxemia. We speculate that ghrelin, mediating the inflammatory response and by augmenting vasopressin blood levels, could attenuate the hypotension caused by endotoxin.

Materials and methods: Male Wistar rats (250 to 300 g) had their jugular vein and/or their right cerebral ventricle cannulated for drug administration, and the femoral artery cannulated for mean arterial pressure (MAP) and heart rate (HR) records, respectively. All experimental procedures were approved by the Comitê de Ética em Experimentação Animal-campus de Ribeirão Preto (protocol number 12.1.1441.53.S). The endotoxemia model was induced by endovenous injection of lipopolysaccharide (LPS; 1.5 mg/kg). Data were compared using two-way analyses of variance and significant differences were obtained using the Bonferroni post test.

Results: LPS administration leads to a drop in MAP in the first 2 hours, followed by a partial recovery of the MAP, and then a second drop in MAP, with a peak in 6 hours. The HR was augmented in this group. Systemic administration of ghrelin alone, through a bolus followed by subcutaneous implantation of an osmotic pump, did not alter the response, in comparison with the saline-treated group. The ivc administration of ghrelin, however, diminished the HR in some intervals, although did not present a difference in MAP, in comparison with the saline-treated group. The administration of ghrelin, centrally and peripherally, when given at the same time as the LPS bolus, attenuated the first drop in MAP and completely restored the second drop present in the LPS group.

Conclusions: Ghrelin is capable of attenuating the hypotension caused by endotoxin, and we speculate that the improvement is due to modulation of cytokines, nitric oxide and augmented vasopressin blood levels.

P95
Gene expression patterns in multiple organs in experimentally induced Staphylococcus aureus sepsis in pigs
Helle G Olsen, Morten A Heegaard, Evelin Carnio, Ulriksen J Skovgaard, Pål S Leifsson, Henrik E Jensen, Peter MH Heegaard, Ib M Skovgaard
1Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark; 2Department of Food Science, University of Copenhagen, Frederiksberg, Denmark; 3Institute of Immunology Group, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark; 4Department of Mathematical Sciences, University of Copenhagen, Denmark; 5Department of Small Animal Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
Critical Care 2013, 17(Suppl 4):P95; doi:10.1186/cc12994

Background: Animal research in sepsis needs analytical tools that can capture and exploit the complexity of the condition. To summarise the disease progression in a porcine model of severe Staphylococcus aureus sepsis, we used principal component analysis (PCA) as a multivariate approach to identify early dynamic expression patterns of 34 selected genes in the liver, lung, and spleen tissue.

Materials and methods: We combined data from two related experimental studies in pigs haematogenously infected with a porcine pathogenic strain of S. aureus [1,2]. Seventeen infected pigs were euthanised at the following time points post infection (p.i.); 6 hours (n = 3), 12 hours (n = 3), 24 hours (n = 3), 30 hours (n = 1), 36 hours (n = 2), and 48 hours (n = 5). Five healthy controls were managed in parallel. Gene expression of 34 genes related to acute inflammation and haemostasis was measured in the liver, lung, and spleen by quantitative real-time PCR. The data matrix of 22 samples and 102 (34 × 3) variables were log-transformed, scaled to unit variance, and subjected to PCA.

Conclusions: Three (PC1 to PC3) distinct dynamic response patterns were identified. PC1: hepatic positive and negative acute-phase genes were the main influencers of a protracted pattern induced between 12 and 48 hours of infection, which explained 23% of the total variation in the dataset (Figure 1A, C). PC2: an acute pattern distinguished infected pigs from controls already after 6 hours and peaked around 12 hours p.i. After 30 to 48 hours, pigs had either reverted back to basal levels (n = 7) or below basal levels (n = 2) (Figure 1A). This pattern explained 14% of the total variation and was influenced by a systemic (nonorgan-specific) mixture of proinflammatory, anti-inflammatory and haemostatic genes (Figure 1C). The two pigs with low PC2 levels had suffered from overt disseminated intravascular coagulation when euthanised (3), and this outcome was clearly reflected by PC2. PC3: a per-acute pattern, influenced mainly by pulmonary proinflammatory genes (explaining 11% of the total variation), was induced in infected pigs at 6 hours p.i., while at later time points most pigs had moved towards basal levels (Figure 1B, D).

Conclusions: Multivariate analysis (PCA) identified three temporally distinct patterns in gene expression data from the liver, lung, and spleen tissue: pulmonary inflammation was rapidly induced, followed by transient induction of a generalised inflammatory and haemostatic response, and initiation of the hepatic acute-phase response.
References

P96
Microparticles from septic shock patients contain miRNA and messenger RNA: new players in the pathogenesis of sepsis?
Luciano CP Azevedo1-2, Juliana M Real1, João E Bezerra1, Flavia R Machado1, Reinaldo Salomao3
1Instituto Sírio-Libanês de Ensino e Pesquisa, São Paulo, Brazil; 2State University of São Paulo, Brazil; 3Federal University of São Paulo, Brazil Critical Care 2013, Volume 17 Suppl 4, P96; doi:10.1186/cc12995

Background: Previous studies demonstrated the presence of microparticles (exosomes) in plasma of septic patients. These are cell-derived vesicles containing specific collections of proteins, lipids and genetic material that participate in the intercellular communication, changing the function and physiology of their target cells. The role of exosomes in sepsis, however, remains deeply unexplored. This study aimed to investigate the composition of microRNAs and messenger RNAs related to inflammatory response in circulating microparticles of septic shock patients.

Materials and methods: Fourteen patients had 30 ml blood collected in the first 48 hours of sepsis and 7 days after for those who survived. Five healthy volunteers served as controls. Exosomes were isolated from plasma by filtration (0.22 μM) and ultracentrifugation. Thirty nanograms of the total RNA were reversely transcribed and the expression profile of 754 human miRNAs and 91 mRNAs from immune response was evaluated by real-time quantitative PCR using the Taqman Low Density Array (Applied Biosystems). The raw data were processed in Expression Suite v1.0.1 software and analyzed in StatMiner v3.0 software considering the global expression level for normalization. The fold-change was calculated based on the estimated mean difference ($2^{-\Delta\Delta CT}$).

Results: Different miRNA expression was observed in the exosomes from septic patients in comparison with healthy donors. In the first 48 hours of septic shock, three miRNAs were differentially expressed: miR-1290 (2.78-fold, $P = 0.02$), miR-1298 (4.02-fold, $P = 0.03$) and miR-146a (-2.51-fold, $P = 0.02$). In the recovery phase of sepsis, five miRNAs were differently

Figure 1(abstract P95) Pigs (scores) and genes (loadings) in PC1-PC2 (A, C) and PC1-PC3 space (B, D). (A) Increased PC1 scores are seen in infected pigs from 12 hours until the end of the study (48 hours), with a peak around 24 hours. PC2 scores are increased after 6 hours of infection, with a peak at 12 hours. Thereafter, scores decline towards basal levels, or below. (B) PC3 scores are increased mainly in infected pigs at 6 hours p.i. (C) Genes with largest influence on the PC1 axis are mainly hepatic positive and negative acute phase genes (for example, SAA, ITIH4, TTR, TRF). Genes with largest influence on the PC2 axis are not specifically related to a single tissue. (D) The main influencers of the PC3 axis are inflammatory genes measured in lung tissue. Gene symbols are used according to the National Center for Biotechnology Information (NCBI).
expressed as compared with controls: mir-1260 (2.29-fold, \(P = 0.02\)), mir-1274A (2.83-fold, \(P = 0.02\)), mir-1274B (3.31-fold, \(P = 0.02\)), mir-192 (1.83-fold, \(P = 0.02\)) and mir-604 (-6.41-fold, \(P = 0.02\)). The miRNA expression profiles in different stages of sepsis were similar. Moreover, exosomes from patients after 1 week of sepsis carry less CCL5 mRNA than in the beginning of the disease (-2.49-fold, \(P = 0.02\)).

Conclusions: Exosomes from septic shock patients carry different miRNA expression profiles at different stages of the disease, as compared with healthy individuals. CCL5 mRNA is less expressed in the recovery phase of sepsis. The composition of these vesicles may help to understand the underlying mechanisms involved in their role in the pathogenesis of sepsis.

Acknowledgements: Financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

P97
Role of NOX2-derived ROS in the development of cognitive impairment after sepsis
Joana C D’Avila1, Marina S Hernandez2, Silvia C Trevelin1, Patricia A Reis1, Hugo Castro-Faria-Neto1, Fernando Q Cunha1, Luiz RG Britto2, Fernando A Bozza3
1Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; 2Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil; 3Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; 4Evandro Chagas Clinical Research Institute (IPEC), FIOCRUZ and OYR Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
Critical Care 2013, 17(Suppl 4):P97; doi:10.1186/cc12996

Background: Septic encephalopathy (SE) is a frequent complication in severe sepsis. Here we have explored the role of NADPH oxidase in different aspects of SE pathophysiology. We investigated the involvement of NADPH oxidase in neuroinflammation and in the long-term cognitive impairment of sepsis survivors.

Materials and methods: Our approach included pharmacological inhibition of NADPH oxidase activity with apocynin and the use of genetically deficient (knockout) mice for gp91phox (gp91phox–/–), the catalytic subunit of Nox2. Sepsis was induced by cecal ligation and puncture and peritonitis. We measured the hippocampal oxidative stress, Nox2 and Nox4 gene expression and neuroinflammation in WT and gp91phox–/– mice at 6 hours, 24 hours and 5 days post sepsis. Behavioral outcomes were evaluated 15 days after sepsis with the inhibitory avoidance and the Morris water maze tests.

Results: The data show progressive oxidative damage to the hippocampus, identified by increased 4-hydroxynonenal expression, associated with an increase in Nox2 gene expression in the first days after sepsis. Pharmacological inhibition of Nox2 with apocynin completely inhibits hippocampal oxidative damage in septic animals as well as the development of long-term cognitive impairment in the survivors. Pharmacologic inhibition or the absence of Nox2 in gp91phox–/– mice prevents glial cells activation, one of the central mechanisms associated with SE and other neurodegenerative diseases.

Conclusions: We identified Nox2 activation as a necessary step for glial cell activation in SE. Our data indicate that Nox2 is as a major source of oxidative stress in the brain and consequently has a central role in the development of cognitive impairments observed in sepsis survivors.

P99
Modulation of peroxynitrite improves host response to vasopressin in ovine sepsis
Osamu Fujiwara1,2,3, Yong Zhu1, Daniel Traber1, David Herndon2, Perenlei Enkhbaatar4
1Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; 2Shriners Hospital for Children, Galveston, TX, USA; 3Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; 4Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil

Background: The standard therapy for sepsis is becoming less effective due to increasing microorganism resistance to antibiotics and cardiovascular collapse refractory to fluid resuscitation and vasopressors. In this study, we demonstrate a critical role of peroxynitrite in vascular hypersensitivity to vasopressin (VP) in methicillin-resistant Staphylococcus aureus (MRSA)-induced ovine sepsis.

Materials and methods: Sheep were instrumented with Swan Ganz (common jugular vein), femoral artery, and left atrium catheters to monitor hemodynamics for 24 hours. Sepsis was induced by installation of live MRSA (2.5 to 3.5 × 10^11 CFU) into the lungs by bronchoscope under maintenance isoflurane anesthesia. Following the injury, sheep were awakened, placed on mechanical ventilation and randomly allocated into two groups: control group, saline treated, \(n = 6\); and POV group, treated with intravenous VP alone, pov2-omh-vasotocin (POV) (Ferring Research Institute, Inc., San Diego, CA, USA), \(n = 6\). The titration of POV was started when mean arterial blood pressure (MAP) dropped by 10 mmHg from the baseline with the initial dose of 30 pmol/minute, which was further adjusted to maintain MAP close to baseline. All sheep were resuscitated with lactated Ringer’s solution with initial rate of 2 ml/kg/hour that was further adjusted according to hematocrit. The experiment lasted 24 hours. Plasma levels of nitric oxide (NO; Grease reaction), asymmetric dimethylarginine (ADMA; mass spectrometry) and bradykinin (mass spectrometry) were determined at 0 hours and every 3 hours after the injury.

Results: MRSA-induced plasma levels of NO (nitrite/nitrate) as well as cumulative body fluid were significantly inhibited by V1aR agonist. The treatment with POV also attenuated the MRSA-induced hypotension. The plasma levels of ADMA were higher in the treated group compared with the control at 24 hours after the injury (0.93 ± 0.14 in control, \(n = 3\) vs. 1.23 ± 0.08 in POV, \(n = 6\)). In addition, the treatment with POV significantly inhibited the MRSA-induced bradykinin increases at 3 hours after the injury (1.14 ± 0.14 in control vs. 0.52 ± 0.001 in POV, \(P < 0.05\)).

Conclusions: Arginine vasopressin V1aR agonist attenuates the severity of MRSA-induced vascular leakage by inhibiting potent permeability factor bradykinin and excessive NO. The V1aR agonist may modulate NO production by promoting the release of endogenous NO synthase inhibitor ADMA.

Reference

P98
Arginine vasopressin V1a agonist attenuates methicillin-resistant Staphylococcus aureus-induced vascular leakage by inhibiting bradykinin
Perenlei Enkhbaatar1, Sebastian Rebberg, Osamu Fujiwara, Ernesto Lopez, Donald S Prough
Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
Critical Care 2013, 17(Suppl 4):P98; doi:10.1186/cc12997

Background: Previously, we have shown that methicillin-resistant Staphylococcus aureus (MRSA) sepsis was associated with more severely pronounced vascular leakage compared with Pseudomonas aeruginosa sepsis. We have also demonstrated that the arginine vasopressin V1a receptor (V1aR) agonist significantly attenuated the severity of MRSA-induced vascular leakage [1]. The goal of the present study was to explore mechanistic aspects of V1aR agonist’s action.

Materials and methods: Twelve adult female sheep were operatively prepared for chronic study. After 5 days of recovery, tracheostomy was performed under anesthesia and injury was given. The injury consisted of inflation of cooled cotton smoke (48 breaths) andinstillation of 2.5 × 10^11 CFU MRSA into the lungs by bronchoscope under maintenance isoflurane anesthesia. Following the injury, sheep were awakened, placed on mechanical ventilation and randomly allocated into two groups: control group, saline treated, \(n = 6\); and POV group, treated with intravenous V1aR agonist pov2-omh-vasotocin (POV) (Ferring Research Institute, Inc., San Diego, CA, USA), \(n = 6\). The titration of POV was started when mean arterial blood pressure (MAP) dropped by 10 mmHg from the baseline with the initial dose of 30 pmol/minute, which was further adjusted to maintain MAP close to baseline. All sheep were resuscitated with lactated Ringer’s solution with initial rate of 2 ml/kg/hour that was further adjusted according to hematocrit. The experiment lasted 24 hours. Plasma levels of nitric oxide (NO; Grease reaction), asymmetric dimethylarginine (ADMA; mass spectrometry) and bradykinin (mass spectrometry) were determined at 0 hours and every 3 hours after the injury.

Results: MRSA-induced plasma levels of NO (nitrite/nitrate) as well as cumulative body fluid were significantly inhibited by V1aR agonist. The treatment with POV also attenuated the MRSA-induced hypotension. The plasma levels of ADMA were higher in the treated group compared with the control at 24 hours after the injury (0.93 ± 0.14 in control, \(n = 3\) vs. 1.23 ± 0.08 in POV, \(n = 6\)). In addition, the treatment with POV significantly inhibited the MRSA-induced bradykinin increases at 3 hours after the injury (1.14 ± 0.14 in control vs. 0.52 ± 0.001 in POV, \(P < 0.05\)).

Conclusions: Arginine vasopressin V1aR agonist attenuates the severity of MRSA-induced vascular leakage by inhibiting potent permeability factor bradykinin and excessive NO. The V1aR agonist may modulate NO production by promoting the release of endogenous NO synthase inhibitor ADMA.

Reference
Conclusions: Peroxynitrite modulation may be a novel treatment option for management of sepsis-induced cardiovascular collapse refractory to vasopressors. These findings are especially provocative since peroxynitrite is the product of excessive nitric oxide regardless of which NOS isof orm is involved and the major debate of whether the use of NOS inhibitors in management of sepsis is beneficial still remains.

P100 Effects of solid dispersion of curcumin in metabolic and immunological alterations during experimental sepsis

Letícia Silva da Silva 1, Tatiana Tocchini Felippoti 1, Gabriela Ravaneli de Oliveira Pelegrin 1, Luis Henrique Angenendt da Costa 1, Sérgio Olavo Petenuschi 1, Luiz Alexandre Pedro de Freitas 1, Maria José Alves da Rocha 1

1Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; 2Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil

Critical Care 2013, 17(Suppl 4):P100; doi:10.1186/cc12999

Background: Studies suggest that curcumin, found in the tropical plant Curcuma longa, has anti-inflammatory and antioxidant properties and can act in sepsis, decreasing the release of proinflammatory mediators and free radicals. In the search to increase curcumin's bioavailability a biotechnological process was developed that generated a solid dispersion of curcumin named DS17. This dispersion is water soluble and seems to increase the curcumin absorption by the gastrointestinal tract. The aim of our study was to assess the biological activity of the solid dispersion of curcumin (DS17) in immunological and metabolic alterations observed in a model of sepsis in rats induced by CLP.

Materials and methods: Male Wistar rats (250 to 300 g) were divided into two groups: polymicrobial sepsis model by cecal ligation and puncture (CLP) and sham operation (OF). The animals were pretreated with DS17 (100 mg/kg) orally for 7 days prior to CLP and treated 2 hours after surgery. The animals were used to analyze curcumin absorption through HPLC, plasma glucose, cytokines, nitric oxide (NO) and HSP70. Another group had the survival rate assessed for 48 hours.

Results: Our results showed that curcumin is present in the plasma at 4 and 6 hours but absent 24 hours following the DS17 administration. The dispersion decreased IL-6 in plasma and peritoneal fluid at 6 and 24 hours, and IL-1β 6 hours after sepsis stimulus. Moreover, we observed an increase in the hemocrit and a decrease in plasma glucose in the same animals. Paradoxically, plasma IL-10 and serum HSP70 decreased in 24 hours while plasma NO increased in the same period. These changes were not sufficient to increase significantly the survival although we observed a biological improvement of 20% 24 hours following CLP.

Conclusions: Our results suggest that despite a significant decrease in proinflammatory cytokines (IL-1β and IL-6), treatment with curcumin solid dispersion produced no beneficial biological effect in septic animals. Further studies are necessary to better clarify the suggested antioxidant and anti-inflammatory effect of curcumin.

P101 Effects of PPARγ in dendritic cells during severe sepsis and sepsis-induced immunosuppression

Raphael Molinaro 1, Papp Attila 2, Adriana Ribeiro Silva 1, Hugo Caere Castro-Faria-Neto 1, Claudia Farias Benjamin 1, Laszlo Nagy 3, Patrícia Torres Bozza 1

1Immunopharmacology Laboratory, IOC/FIOCRUZ, Rio, Brazil; 2Nuclear Hormone Receptors Laboratory, Debrecen, Hungary; 3Inflammation Laboratory, UFRJ, Brazil

Critical Care 2013, 17(Suppl 4):P101; doi:10.1186/cc13000

Background: Sepsis is a systemic inflammatory response syndrome against infection, which can develop in sepsis-associated immunosuppression. Actually, several inflammatory dysfunctions have been described in dendritic cells (DCs), which could be responsible for impairing the immune response towards the secondary infection, although how these stable modifications maintain is still unknown. Our hypothesis is that DCs from post-septic mice have chromatin alteration and differential microRNA expression.

Materials and methods: To investigate the global gene expression, post-septic and Sham-derived BMDC were infected or not with BCG for 24 hours. Total RNA were collected and the gene expression profile was assessed by Affymetrix GeneChip technology. The gene expression profiles were classified by Gene Ontology (GO). Also, the microRNA analysis was obtained from Affymetrix microarray. To investigate the chromatin modifications, post-septic and Sham BMDC were performed to Chip-Seq analysis.

Results: Supervised analysis identified a set of 2,755 genes that distinguished very accurately between post-septic BMDC and Sham BMDC. The gene expression signature showed 1,805 stimulated genes and 950 inhibited genes in post-septic BMDC compared with Sham BMDC. The gene expression signature of post-septic BMDC provided a molecular and functional profile based in GO enriched analysis. Interestingly, that post-septic BMDC were mostly found in the downregulated genes to encode proteins involved in the biological pathways of the inflammatory process (IL-1, IL-12, CD28, TLR2, Hmgb1, CCL2), lipid metabolism (FABP4, Elov12, PTGS1, PPAR6) and histone modifications (ACAT3, CB2X, Oip5, Hist2k). When post-septic and Sham BMDC were infected with BCG, downregulated gene sets were classified in 130 significant GEO terms (mainly involved in inflammatory and...
Our study demonstrates the acute inflammatory response. Our results showed that = 0.003) groups but without difference between the groups. The 38 Fazal Wahab, Nilton Nascimento dos Santos Junior, 2007, Sepsis is a severe medical co

colonies of P. aeruginosa demonstrates the global gene expression < 0.001) with difference between the groups (154 ± 0.26 SEM vs. 6.16 ± 0.94 SEM pg/ml CLP, animals responded with an increase in the AVP plasma levels (6.12 ± 0.68 g/ml; s.c.) after every 6 hours for 12 hours after CLP, and ceftriaxone (30 mg/kg; s.c.) and clindamicin 12 hours after CLP, and also ceftriaxone (30 mg/kg; s.c.) and clindamicin (25 mg/kg; s.c.) after every 6 hours for 3 days. Sham animals received the volume of saline corresponding to antibioticas administration. After 10 days, the animals were dehydrated or left as control. After 2 days, the animals were decapitated, and the serum and plasma collected for sodium, hemocrit and hormone determination. The posterior pituitary glistens were removed for hormone stock analysis.

Results: Sepsis-surviving animals presented a higher serum sodium even without the osmotic stimulus (147.8 ± 0.97 SEM vs. 151.4 ± 0.6 SEM mmol/l CLP, P < 0.001). Following dehydration, as expected, there was an increase of serum sodium in CLP animals (151.4 ± 0.6 SEM vs. 155.71 ± 0.47 SEM mmol/l; P < 0.001) and sham animals (147.8 ± 0.97 SEM vs. 154 ± 0.26 SEM mmol/l dehydrated; P < 0.001) with difference between the groups (154 ± 0.26 SEM vs. 155.71 ± 0.47 SEM mmol/l CLP, P < 0.001). Hemocrit also increased in both CLP (42.63 ± 1.58 SEM vs. 50.17 ± 1.67% SEM dehydrated; P = 0.002) and sham (mean: 41.8 ± 1.43 SEM vs. 49.5 ± 1.09% SEM, P = 0.003) groups but without difference between the groups. The animals responded with an increase in the AVP plasma levels (6.12 ± 0.68 SEM vs. 6.16 ± 0.94 SEM pg/ml CLP, P > 0.05), and a decrease in AVP neurohypophysis stocks (4.0 ± 1.02 SEM vs. 1.91 ± 0.67 SEM ng/µg CLP; P = 0.107), with no difference between the groups.

Conclusions: The results suggest that sepsis-surviving animals do not present alterations in secretion of AVP in relation to volemia. However, serum sodium results suggest that AVP secretion is impaired in sepsis-surviving animals.

References
caspases in immunosuppression and cognitive damage associated with a two-hit model of sepsis.

Materials and methods: We submitted Swiss animals to the model of two hits of infection. The first hit was the CLP model and the second hit was intratracheal instillation of Pseudomonas aeruginosa. We analyze the mortality rate and the inflammatory profile of the animals submitted to the CLP model and the two-hit sepsis model. The cognition of the animals was tested by the passive avoidance test 15 and 21 days after the CLP and 21 days until 96 days after the two-hit sepsis model.

Results: First we characterize the model and we observed a 30% survival rate of the CLP group in comparison with a 100% survival rate in the SHAM group. The high mortality of the CLP group was associated with hypoglycemia in the first 72 hours after the infection, increased neutrophil accumulation in the peritoneal cavity 6 and 24 hours after the CLP and an increase of inflammatory cytokines 6 hours after the CLP, such as CCL2, IL-1β and IL-10. The CLP group had a cognitive impairment 15 days after the CLP, but the memory was recovered 21 days after the infection. The CLP group was more susceptible to P. aeruginosa infection 21 days after the CLP, when we compare with the SHAM group. The CLP + P. aeruginosa group had a low count of neutrophils in BAL when compared with the SHAM + P. aeruginosa group. We observed a decrease in caspase-1 expression and an increased expression of caspase-12 in the lungs of the CLP + P. aeruginosa group. When we look to cognition, both the SHAM + P. aeruginosa and CLP + P. aeruginosa groups had cognitive impairment 21 days after the infection, and the cognitive impairment remained until 96 days in the SHAM + P. aeruginosa group after the infection, but the CLP + P. aeruginosa recovered the memory 96 days after the infection.

Conclusions: Our preliminary results suggest that the immunosuppression associated with the CLP model (first hit) led to more susceptibility for survivor animals, which succumbed to a pneumonia model (second hit). We observed the involvement of inflammatory caspases in this immunosuppression phenomenon with a decrease of caspase-1 and an increase in caspase-12 expression. When we observed the cognitive function, we observed that the animals submitted to CLP had a cognitive impairment 15 days after the infection and the infection with P. aeruginosa induced a cognitive impairment until 96 days in both in groups. However, further studies should be made to confirm these results.

Involvement of CC-chemokine receptor 2 in sepsis: focus on cognitive impairment

Mariana Gesely Amarante Teixeira da Cunha, Rachel Novais Gomes, Daniel Bastos de Albuquerque, Patrícia Alves Júnior, Patrícia Torres Bozza, Fernando Augusto Bozza

Background: Sepsis is a major disease entity with important clinical implications. Critical illness survivors present long-term cognitive impairment problems with memory and learning. Chemokines are important to the recruitment of leukocytes to infectious tissue, but a few studies described the role of the CC-chemokine receptor 2 (CCL2) in the cognitive process. In this study, we analyze the involvement of CCR2 in the physiopathology of sepsis, especially in development of cognitive dysfunction.

Materials and methods: The CCR2-deficient mice (CCR2^{-/-}) were submitted to a CLP model and we analyzed the survival rate, the severity score of the animals during 144 hours and 15 days after the CLP, and we analyzed the memory of the animals. To analyze the contextual memory, the mice were submitted to the open field method and the water maze procedure. To evaluate the averse memory, the passive avoidance test was used.

Results: First, we observed that the CLP group had cognitive impairment, but the CCR2^{-/-} group submitted to CLP had more severe cognitive impairment in comparison with the WT-CLP group. Interestingly, the CCR2^{-/-} Sham group presented cognitive impairment, suggesting that CCR2 is important to the physiological process of cognition. We then submitted CCR2^{-/-} naive mice to water maze and passive avoidance tests.

We found that CCR2^{-/-} naive mice have an impairment of averse and contextual memory. The cognitive impairment was associated with a decrease of BDNF expression in the hippocampus. When we analyze the expression of β-amyloid protein in the brain of CCR2^{-/-} naive mice, we observed the increased in β-amyloid protein expression in the cortex and hippocampus of these animals, accompanied by increased cell proliferation in the dentate gyrus, and increased caspase-3 and caspase-12 expression in the hippocampus and cortex. We did not observe a difference in the numbers of neurons in the brain from CCR2^{-/-} naive mice, as well the numbers of microglial cells. But, surprisingly, there was an increased of astrocytes in the hippocampus of CCR2^{-/-} mice.

Conclusions: CCR2 is involved with the physiology of cognition, with the important role arising in the amyloid accumulation in the brain and induction of the caspase-3 pathway.

Evaluation of compound NXY-059 on cognitive impairment caused by sepsis

Nathália S Oliveira, Monica F Pereira, Mariana GAT Cunha, Silvio CA Júnior, Rachel N Gomes, Patricia A Reis, Robert Floyd, Hugo CCF Neto

Background: Nitrones are a class of molecules whose main effect on biological systems is their antioxidant action. Some studies showed a neuroprotective effect in ischemia models and neurodegenerative diseases. Those diseases presented an inflammatory profile that leads to the production of reactive oxygen species. This characteristic can generate brain injuries, which can affect areas related to memory consolidation. Sepsis is a pathology that forms an inflammatory response, which causes encephalopathy creating cognitive impairment. Therefore, the present study has the aim to evaluate the effect of the compound NXY-059 on the cognitive impairment caused by encephalopathy like sepsis.

Materials and methods: For the assays, mice Swiss Webster male (22 to 28 g, n = 15 per group) were submitted to the CLP model and treated with antibiotics (10 mg/kg, i.p.) for three consecutive days (6, 24 and 48 hours) and with NXY-059 (50 mg/kg, i.p.) for five consecutive days (6, 24, 48, 72 and 96 hours after the surgery). At 24 and 48 hours, a gravity score was made to determine the level of sepsis and the percent of survival was assessed until 144 hours. After 4 hours fast, the glucose levels were also measured 24 and 48 hours after CLP performance. The cognitive impairment was evaluated through the open field method on the 15th (training) and 16th (test) day after the surgery.

Results: Our results show that treatment with NXY-059 did not offer a protective effect on mortality and the animals developed moderated sepsis according to the gravity score at 24 hours (4 to 6). At 48 hours, the animals recovered for slight sepsis (2 to 3). The glucose levels were slightly restored at 48 hours for the animals treated with the compound. In the cognitive impairment analysis, we observed a as reduction (P < 0.05) in the numbers of crossing and rearings for the animals treated with NXY-059 when compared with animals treated with vehicle (saline).

Conclusions: According to these results, we suggest that treatment with NXY-059 offered protection against cognitive impairment generated by sepsis.

Atorvastatin and simvastatin protects cognitive impairment in an animal model of sepsis

Pedro CB Alexandre, Patricia A Reis, Joana D’Avila, Flora M de J Oliveira, Fabricio A Pamplona, Luciana D Siqueira, Hugo CC Faria Neto, Fernando A Bozza

Background: Recently it was shown that a significant proportion of sepsis survivors can develop a transitory or permanent cognitive impairment. Statins have the ability to block the cascade of cholesterol
formation by acting on HMG-CoA reductase, reducing the synthesis of endogenous cholesterol. Recently it has been observed that statins have anti-inflammatory properties preventing brain dysfunction in malaria models, reducing the production of brain cytokines, oxidative stress and alterations in the blood-brain barrier. The aim of the present study was to evaluate the ability of statins to reduce neuroinflammation and protect septic animals from neurocognitive damage.

Materials and methods: Feces were extracted (5 mg/g b.w.) from the large intestine of SW mice and diluted in saline, centrifuged and the supernatant collected and injected into the animals (n = 5 to 8/group). Control animals received 0.5 ml saline. Animals were treated at 6, 24 and 48 hours after sepsis induction with imipenem (30 mg/kg b.w., 0.2 ml s.c.) and 1.0 ml saline (s.c.). Statins (Atorv and Simv) were administrated 1 hour before and 6, 24 and 48 hours after the infection (20 mg/kg b.w., p.o.). Mortality was observed for 96 hours and a score of severity evaluated. The inflammatory profile and oxidative damage was determined at 6 and 24 hours. In addition, mice brains were evaluated for microglial activation and B88 dysfunction. After 15 days we analyzed the cognitive damage using the inhibitory avoidance task and Morris water maze.

Results: No significant difference in survival was observed comparing septic animals treated with antibiotics plus atorvastatin or simvastatin (56%; 53%) with septic animals with only antibiotics (37%). We observed lower levels of proinflammatory cytokines (IL-1, IL-6) and chemokines (KC and MCP-1) when comparing statin-treated animals and nontreated. We also observed a decreased in the oxidative damage in brains 6 hours after sepsis in the treated groups. Finally, statin treatment was able to protect septic animals from cognitive damage including avoidance and spatial memory, both affected in untreated infected mice.

Conclusions: We can conclude that statins protected septic animals from cognitive damage, reducing neuroinflammation, and adjuvant therapies with statins can be interesting targets for future clinical trials focused on the prevention of long-term cognitive decline in sepsis.

P109
Dasatinib has a dual effect on sepsis
Cassiano F Gonçalves-de-Albuquerque*, Alessandra F Silveira, Cristina L Nagae, Carlos André M Silva, Mirian Priscila L Lima, Rayna Captivo, Larissa Carnioso, Caroline L Hildebrandt, Patricia T Bozza, Adriana R Silva, Hugo C Castro-Faria-Neto, Laboratório de Imunofarmacologia, IOC/Fiocruz, Rio de Janeiro, Brazil

Background: Sepsis occurs as a result of a systemic inflammatory response to an infection. In this context, homeostasis of biological systems depends on regulatory mechanisms to modulate the amplitude of the immune response to stimuli, such as infection, preventing damage resulting from this imbalance of immune response. The exacerbated immune response can cause serious tissue or systemic damage, as occurs in autoimmune and chronic inflammatory diseases. The main aim of our study is to investigate the effect of dasatinib in polymicrobial sepsis.

Materials and methods: Swiss mice were subjected to cecal ligation and puncture and treated with dasatinib 1, 5 and 10 mg/kg 30 minutes before and 6 and 24 hours after the surgery. Survival rate and clinical signs were assayed; cell accumulation, bacterial load were measured in peritoneal lavage and inflammatory mediators were measured in plasma.

Results: Animals receiving dasatinib 5 and 10 mg/kg showed the worst clinical score and an increased mortality rate. Animals receiving dasatinib 1 mg/kg showed an increase in survival, a decrease in clinical score, in cell migration, in colony-forming units and cytokine production.

Conclusions: Dasatinib has a dual effect in polymicrobial sepsis, where higher doses had deleterious effects but lower doses had beneficial effects, probably because lower doses may downregulate the immune response, avoiding extensive tissue damage.

Acknowledgements: Financial support: Fiocruz, CNPq, Faperj, Vichem Chemie and TARKINAID.

P110
Severe sepsis and septic shock survival in a clinical canine model
JGM Isola*, AE Santana, GB Pereira-Neto, Rodrigo C Rabelo
1Universidade Estadual Paulista ‘Julio de Mesquita Filho’, FCAV UNESP, Jaboticabal, SP, Brazil; 2Universidade de Brasília - FAV, Brasilia, DF, Brazil; 3Veterinary Department at AMIB (Brazilian Intensive Care Association) and Intensivist Veterinary Consulting, Brasilia, DF, Brazil

Critical Care 2013, 17(Suppl 4):P110; doi:10.1186/cc13009

Background: Sepsis is a major cause of death in veterinary medicine, as in the human field, but there are no survival data described for this syndrome in the veterinary clinical field. This aspect challenges experimental medicine, may alter the baseline data to be applied in the human setting and could explain in part why most results obtained from laboratory research are not completely useful in the human clinical field. The purpose of this prospective observational study was to investigate the 24-hour and 30-day survival from severe sepsis and septic shock in canine septic patients that were approached with the Surviving Sepsis Campaign (SSC) bundles.

Materials and methods: Nineteen client-owned puppies with naturally acquired parvovirus haemorrhagic gastroenteritis were classified as severe sepsis and septic shock patients and received medical care according to the guidelines proposed by the SSC. Subsequently, the 24-hour and 30-day survival was evaluated for each case. The results were statistically analysed by Fisher’s exact test at a significance level of 5%.

Results: Fifteen patients (78.9%) were admitted to the emergency department and classified as severe sepsis subjects. The mortality rate in the septic shock group was 100%, of which two animals died in the first 24 hours of admission and the other on the following day. Four dogs (21.1%) were classified as septic shock patients. The mortality rate in the septic shock group was 100%, of which two animals died in the first 24 hours of admission and two on the day after (Table 1).

Conclusions: The observation of clinical outcomes in this clinical canine sepsis model showed that the majority of deaths in both severe sepsis and septic shock occur within the first 24 hours. However, after 30 days there is a significant difference between both groups, showing no survival in septic shock animals. Therefore, this preliminary study suggests a new veterinary database to be applied for future human research.

Table 1 (abstract P110) Severe sepsis and septic shock animals classified as nonsurvivors and survivors 24 hours and 30 days after admission

<table>
<thead>
<tr>
<th>Classification</th>
<th>Total</th>
<th>Nonsurvivors 24 hours</th>
<th>Survivors 24 hours</th>
<th>P</th>
<th>Nonsurvivors 30 days</th>
<th>Survivors 30 days</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe sepsis</td>
<td>14</td>
<td>4 (26.7%)</td>
<td>11 (73.3%)</td>
<td>0.557</td>
<td>5 (33.3%)</td>
<td>10 (66.7%)</td>
<td>0.033</td>
</tr>
<tr>
<td>Septic shock</td>
<td>4</td>
<td>2 (50.0%)</td>
<td>2 (50.0%)</td>
<td>4 (100.0%)</td>
<td>0 (0.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>6 (31.6%)</td>
<td>13 (68.4%)</td>
<td>9 (47.4%)</td>
<td>10 (52.6%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P, significance value of Fisher’s exact test.
Background: *Pseudomonas aeruginosa* is a Gram-negative bacterium regarded as an opportunistic pathogen. It infects immunocompromised patients, and is the second leading cause of nosocomial diseases. This bacterium has numerous virulence factors, adapts quickly to new environments, and requires a few nutrients to survive. All of these mechanisms will generate a host response. The fastest immune response is neutrophil recruitment, followed by phagocytosis and degranulation. There is another mechanism to fight bacteria called NET formation, which is the formation of a neutrophil extracellular network. NET is formed through a process called NETosis where the release of the cell nuclear material can hold and destroy pathogens. The nuclear receptor peroxisome proliferator-activated receptor (PPARγ), besides lipid and glucose metabolism, is involved in the inflammatory response modulation, being considered a potential target for the study of new therapies for inflammatory and infectious diseases. We therefore aim to investigate the involvement of PPARγ in lung injury caused by *P. aeruginosa* using an agonist of this receptor, rosiglitazone.

Materials and methods: For this purpose, Swiss mice were instilled intratracheally with bacteria and treated with rosiglitazone 5 hours after the operation. We analysed clinical signs using 10 physical parameters, cellularity and DNA measurement to assess NET formation.

Results: We found that the animals stimulated with *Pseudomonas* showed an increase in inflammatory parameters, while the animals treated with rosiglitazone showed improvement in clinical signs and increased NET formation.

Conclusions: We can conclude that rosiglitazone has an anti-inflammatory role during lung infection, suggesting that PPARγ activation may improve the host defense against bacteria.

Acknowledgements: Financial support: FiOCRUZ, CNPq and FAPERJ.