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Abstract

Rationale: Infection of the lung with Pseudomonas aeruginosa results in upregulation of nitric oxide synthases (NOS) and
arginase expression, and both enzymes compete for L-arginine as substrate. Nitric oxide (NO) production may be regulated
by arginase as it controls L-arginine availability for NOS. We here studied the effect of systemic arginase inhibition on
pulmonary L-arginine metabolism in Pseudomonas pneumonia in the mouse.

Methods: Mice (C57BL/6, 8–10 weeks old, female) underwent direct tracheal instillation of Pseudomonas (PAO-1)-coated
agar beads and were treated by repeated intra-peritoneal injections of the arginase inhibitor 2(S)-amino-6-boronohexanoic
acid (ABH) or PBS until lungs were harvested on day 3 of the infection. L-arginine metabolites were quantified using liquid
chromatography-tandem mass spectrometry, NO metabolites nitrate and nitrite by Griess reagent and cytokines by ELISA.

Results: NO metabolite concentrations (48.562.9 vs. 10.962.3 mM, p,0.0001), as well as L-ornithine (29.661.7 vs
2.360.4 mM, p,0.0001), the product of arginase activity, were increased in Pseudomonas infected lungs compared to naı̈ve
controls. Concentrations of the NOS inhibitor asymmetric dimethylarginine (ADMA) were also increased (0.4460.02 vs.
0.1660.01 mM, p,0.0001). Arginase inhibition in the infected animals resulted in a significant decrease in L-ornithine
(14.661.6 mM, p,0.0001) but increase in L-arginine concentration (p,0.001), L-arginine/ADMA ratio (p,0.001), L-arginine
availability for NOS (p,0.001), and NO metabolite concentrations (67.365.7 mM, p,0.05). Arginase inhibitor treatment also
resulted in an increase in NO metabolite levels in animals following intratracheal injection of LPS (p = 0.015). Arginase
inhibition was not associated with an increase in inflammatory markers (IFN-c, IL-1b, IL-6, MIP-2, KC or TNF-a) in lung.
Concentrations of the L-ornithine-dependent polyamines putrescine, spermidine and spermine were increased in
Pseudomonas infected lungs (p,0.001, respectively) but were unaffected by ABH treatment.

Conclusions: Systemic arginase inhibition with ABH during Pseudomonas pneumonia in mice results in an increase in
pulmonary NO formation but no pro-inflammatory effect.
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Introduction

Infection of the lung with bacteria leads to increased expression

of the inducible nitric oxide synthase (iNOS or NOS2) and NO

production [1–3], as does intra-tracheal instillation of lipopoly-

saccharide (LPS) [4,5]. NO production from NOS depends on the

availability of substrate and co-factors, as well as the presence of

endogenous inhibitors including asymmetric dimethylarginine

(ADMA) [6]. In the context of lung infection with P. aeruginosa,

an opportunistic pathogen frequently causing infections in patients

with chronic lung diseases including chronic obstructive pulmo-

nary disease (COPD), bronchiectasis or cystic fibrosis (CF),

evidence suggests that relative airway NO deficiency may have

negative effects for the host. Studies in CF patients for instance

have shown that low levels of airway NO are a risk factor for

acquisition of this pathogen [7]. In addition, in a rat model of

chronic P. aeruginosa lung infection, supplementation with L-

arginine reduced the pro-inflammatory cytokine interleukin (IL)-

1b in airways, inhibited neutrophil recruitment, and ameliorated

lung tissue damage, while pharmacological inhibition of NOS in

this model significantly worsened lung damage [3].

Arginase is an enzyme that converts L-arginine to urea and L-

ornithine. The two isoforms of arginase are expressed in a number

of tissues including the lung and are thought to reduce NO
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production from NOS by limiting the availability of substrate L-

arginine [6,8,9]. Thus arginase may represent a target for

interventions aiming to increase L-arginine availability for NOS

and NO production. Inhibition of arginase in animal models of

allergic airway inflammation, for instance, resulted in anti-

inflammatory effects and abrogation of airway remodeling and

hyperresponsiveness to methacholine in these animals, presumably

by increasing L-arginine availability for NOS and increased NO

formation [10–12]. Data on whether inhibition of arginase can

increase NO production in the context of bacterial infection in-

vivo are currently lacking. We therefore studied the effects of

chronic systemic arginase inhibition on the pulmonary L-arginine

metabolism in a mouse model of chronic P. aeruginosa lung

infection.

Methods

The experiments were approved by the institutional Animal

Care Committee and were conducted in accordance with the

guidelines of the Canadian Council for Animal Care.

Mice and infection protocol
Eight to ten week old female C57BL/6 mice purchased from

Charles River Laboratories (Charles River, Oakvile, Quebec,

Canada) were housed in a pathogen-free environment and

received autoclaved food and water in the laboratory animal

services at our institution. Agarose beads embedded with

Pseudomonas aeruginosa (mPAO1) were made following a published

protocol [13] and modified by us, and beads were injected into the

airways after intubation under direct vision as previously described

[13] in anaesthetized mice (ketamine 150 mg/kg and xylazine

10 mg/kg administered intraperitoneally). A final P. aeruginosa dose

of 26106 CFU in a volume of 40–50 ml was injected into the

trachea. Infected mice were treated with a total of 4 i.p. injections

of PBS or 100 mg of the arginase inhibitor 2(S)-amino-6-

boronohexanoic acid (ABH) dissolved in 0.3 ml of PBS at 24,

48, 60 and 70 hours following the instillation of PAO-1. Body

weight was monitored daily, before and for 3 days following the

infection. At 72 hours post infection mice were anaesthetized,

blood was drawn by intracardial puncture and organs were

harvested. Uninfected not ABH treated mice were used as

controls.

A different group of animals (male BALB/c mice, 8 weeks old)

underwent an established LPS pneumonia protocol [14]. Anaes-

thetized mice were instilled with 50 mg of LPS from E. coli

O111:B4 (Sigma) and treated with i.p. injections of PBS (n = 8) or

ABH (n = 8) similar as above, immediately before, and 12, 24, 36

and 48 hrs post instillation of LPS. Lungs were harvest immedi-

ately after the last injection of ABH or LPS and processed on ice.

Lysis buffer (25 mM Tris-HCl, pH 7.4, 1% TritonX100, 10%

glycerol) containing protease inhibitors (Complete, Mini, EDTA-

free plus 2 mM EDTA, Roche Applied Science) was added

(2.5 ml/g lung). Tissue was homogenized using high-speed

homogenizer (Polytron PT 1200E, Kinematica, Switzerland) for

1 min 3 times. Samples were then centrifuged (14000 rpm, 4uC)

for 20 min, supernatants aliquoted and stored at 280uC until

further analyses.

Liquid chromatography-tandem mass spectrometry (LC/MS/

MS) to measure L-arginine, L-ornithine, L-citrulline, ADMA and

the L-ornithine derived polyamines putrescine, spermidine and

spermine was performed in supernatant of organ homogenates as

previously described [15,16]. NO metabolites in plasma and in

lung homogenates from the LPS pneumonia model were

quantified with help of a chemiluminescence analyzer (Eco Physics

CLD 88 sp, Dürnten, Switzerland), while Griess reagent (Cayman,

Ann Arbor, MI) was used for nitrate and nitrite measurements in

lung homogenates of animals infected with Pseudomonas. Arginase

activity was measured by conversion of L-arginine to ornithine in-

vitro, as previously described [17]. A multi-analyte panel enzyme-

linked immunosorbent assay (ELISA) was used to determine the

concentrations of interferon-c (IFN-c), interleukin-1 beta (IL-1b),

IL-6, macrophage inflammatory protein 2 (MIP-2), keratinocyte

chemoattractant (KC), and tumor necrosis factor-alpha (TNF-a) in

supernatant of lung homogenates (Millipore, Billerica, MA, USA).

All results are expressed as the mean 6 standard error of the

mean (SEM). Binary comparisons were made with two-tailed

student’s t-test or Mann-Whitney test, where appropriate.

Comparisons of three groups were performed by one-way

ANOVA with Turkey’s multiple comparison or Kruskal-Wallis

test with Dunn’s multiple comparison post hoc test, where

appropriate. P-values,0.05 were considered statistically signifi-

cant. Statistical analyses were conducted using GraphPad Prism

4.0c (Graphpad Software Inc., La Jolla, CA USA).

Results

P. aeruginosa lung infection resulted in significant weight loss but

no mortality in animals. Weight loss following infection did not

differ significantly (ANOVA) between ABH and PBS treated mice

on day 1 (5.960.9 vs. 5.460.4%), day 2 (10.160.9 vs. 9.461.2%)

or day 3 (7.561.7 vs. 6.761.9%). There was no difference in lung

wet weights between ABH and PBS treated infected mice

(0.16760.017 g vs. 0.19360.007 g, p = 0.244).

Pseudomonas infection resulted in a significant increase in L-

arginine concentrations (28.461.4 vs 17.560.7 mM, p,0.0001)

and a more pronounced increase in L-ornithine (29.661.7 vs

2.360.4 mM, p,0.0001) in lung homogenates of infected mice

compared to non-infected controls. Consequently, the L-arginine/

L-ornithine ratio, an index of L-arginine availability for intracel-

lular NOS [18,19], was significantly reduced by P. aeruginosa

infection (Figure 1). Treatment with the arginase inhibitor ABH,

resulted in a significant decrease in L-ornithine (14.661.6 mM,

p,0.0001), the product of arginase activity, but increase in its

precursor L-arginine (38.962.2 mM, p = 0.001). The L-arginine/

L-ornithine ratio increased significantly with ABH treatment but

did not normalize (Figure 1). L-citrulline concentrations were

higher in the infected animals compared to non-infected controls

(47.264.1 vs. 6.360.4 mM, p,0.0001) but not different in PBS vs

ABH treated animals (49.569.2 mM).

P. aeruginosa infection also resulted in a significant increase in the

concentration of the competitive NOS inhibitor ADMA

(0.4460.02 vs. 0.1660.01 mM, p,0.0001) and a decrease in the

L-arginine/ADMA ratio, an index of NOS impairment. ABH

treatment did not affect ADMA concentrations in the lung but

restored the L-arginine/ADMA ratio to normal (Figure 2).

Plasma NOx concentrations were higher in Pseudomonas infected

PBS treated animals than controls (41.866.1 vs. 27.562.1 mM,

p = 0.02) but not different from ABH treated animals

(43.967.5 mM). NOx (nitrate+nitrite) concentrations were signif-

icantly increased in infected lungs compared to controls (48.562.9

vs. 10.962.3 mM, p,0.0001) and further increased with ABH

treatment (67.365.7 mM, p = 0.01) (Figure 3). A significant

increase in lung NO metabolite concentrations following arginase

inhibition was also seen in the LPS pneumonia model (ABH vs.

PBS: 26.065.7 vs. 10.160.8 mM, p = 0.01) (Figure 3).

NOx concentrations in liver homogenates were not different

between the ABH or PBS treatment groups (23.163.2 vs.

24.165.2 mM) but ABH resulted in a significant increase in

Arginase Inhibition in Pseudomonas Pneumonia
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NOx in kidney homogenates (25.563.7 vs. 7.262.1 mM,

p = 0.001). As arginase 1 is the predominant isoform expressed

in liver while arginase 2 is the predominant arginase isoform

expressed in kidney, the differences in NOx concentration

between the two organs is suggestive of arginase 2 specificity of

ABH.

Arginase activity measured in lung homogenates in-vitro

confirmed an increase in infected mice (48.8620.8 vs.

1562.3 mU/mg protein, p,0.005). The expression of both

arginase isoforms was increased in lung of infected mice using

Western blot analysis (data not shown). Concentrations of the L-

ornithine derived polyamines putrescine, spermidine and spermine

were significantly higher in infected mice but not different between

PBS and ABH treated animals (Table 1). Cytokine concentrations

for the three groups are shown in Table 2. ABH treatment did not

have an effect on cytokine concentrations.

Discussion

We here show that Pseudomonas infection of the lung resulted in a

significant increase in lung tissue L-ornithine, the product of

arginase activity. While there was also an increase in L-arginine

concentration in the lung following infection, the availability of L-

arginine for NOS, expressed as L-arginine/ornithine ratio, was

lower in infected mice than in non-infected controls. In addition,

we observed an increase in the concentration of the competitive

NOS inhibitor ADMA in infected lungs. Systemic application of

an arginase inhibitor resulted in increased L-arginine availability

Figure 1. Concentrations of the amino acids L-ornithine and L-
arginine in mouse lung homogenates of untreated (naı̈ve)
control as well as Pseudomonas infected mice treated with PBS
or the arginase inhibitor 2(S)-amino-6-boronohexanoic acid
(ABH). L-ornithine, the product of arginase activity, as well as L-
arginine was significantly lower in naı̈ve, compared to infected lungs
(*: p,0.0001, ANOVA, respectively). ABH treatment resulted in a
significant decrease in L-ornithine but increase in L-arginine concen-
tration (p,0.001, t-test, respectively). The L-arginine/L-ornithine ratio,
which can be used as an index of L-arginine availability for intracellular
NOS, was reduced in infected lungs (*: p,0.0001, ANOVA) but
improved in the ABH treatment group (p,0.001, t-test).
doi:10.1371/journal.pone.0090232.g001

Figure 2. Concentrations of the nitric oxide synthase inhibitor
asymmetric dimethylarginine (ADMA) in mouse lung homog-
enates of untreated (naı̈ve) control as well as Pseudomonas
infected mice treated with PBS or the arginase inhibitor
2(S)-amino-6-boronohexanoic acid (ABH). ADMA was significantly
lower in naı̈ve compared to Pseudomonas infected lungs
(*: p = 0.0001, Kruskal-Wallis test). The L-arginine/ADMA ratio, which
can be used as an index of NOS impairment, was significantly reduced
in infected lungs (*: p,0.0001, ANOVA). Treatment with ABH did not
change ADMA concentrations but resulted in normalization of the L-
arginine/ADMA ratio. (p,0.001, t-test).
doi:10.1371/journal.pone.0090232.g002

Arginase Inhibition in Pseudomonas Pneumonia
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for NOS and increased NO production. Increased NO production

induced by arginase inhibition was not associated with an increase

in pro-inflammatory cytokines in P. aeruginosa infected animals.

Arginase and NOS both compete for L-arginine as substrate

and an important role of arginase is thought to be the regulation of

NO production by limiting L-arginine availability for NOS

[6,8,9]. While excessive NO production may have negative effects

on inflammation, it is also possible that substrate limitation for

NOS results in deleterious effects due to uncoupling of the enzyme

resulting in superoxide radical formation [3,20–22]. An example

for the importance of the arginase/NOS balance for host/

pathogen interactions is Campylobacter pylori, which induces arginase

activity as a strategy to limit L-arginine availability for host NOS

in order to reduce NO-mediated host defense and facilitate

persistent gastric mucosal infection [23]. Pseudomonas is highly

sensitive to NO- and nitrite-mediated killing, and therefore,

limitation of NO production during infections with this bacterium

may promote infection [24]. We have recently shown using stable

isotopes, that infection of the mouse lung with P. aeruginosa resulted

in a significant increase in the expression and activity of NOS 2

but also arginase 1 and arginase 2 [25]. In the current study we

demonstrated that systemic arginase inhibition enhances pulmo-

nary NO production using an established model of P. aeruginosa

lung infection in the mouse. The observed changes in NO

production in the infected and ABH treated animals were not

caused by effects of the arginase inhibitor on Pseudomonas, as similar

increases in NO following the administration of ABH were also

seen in animals with intratracheal LPS instillation. Gender

disparity exists in certain aspects of the nitric oxide pathway

[26–29], and it is therefore worth mentioning that the infected

animals in our experiments were females while the LPS treated

were male mice. As arginase inhibition resulted in increases in NO

production in both groups, it can be speculated that the effect of

ABH on pulmonary NO production in the mouse is gender

independent. However, further studies will be needed to assess

whether treatment with arginase inhibitors may result in different

physiological responses in males and females.

Our results also showed that infection of the lung resulted in a

significant increase in the concentration of the competitive NOS

inhibitor ADMA and a decrease in L-arginine/ADMA ratio (NOS

substrate/inhibitor) an index reflecting NOS impairment. Effects

of ADMA in the context of respiratory infections with Pseudomonas

were previously studied using human nasal epithelial cells. Pre-

incubation with ADMA significantly reduced Pseudomonas-induced

epithelial damage, loss of ciliated cells and bacterial adherence to

the cultured respiratory mucosa in-vitro [30]. While these data

Figure 3. Nitric oxide metabolite (NOx) concentrations in mouse lung homogenates of untreated (naı̈ve) control as well as
Pseudomonas infected mice treated with PBS or the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH). Concentrations were
significantly different between groups (p,0.0001, ANOVA). NOx levels in lung were lower in naı̈ve compared to Pseudomonas infected and PBS
treated mice (*: p,0.001, Mann-Whitney test). ABH treatment resulted in a significant increase in ABH vs. PBS treated animals (p,0.05, Mann-Whitney
test). A similar increase in lung NOx after ABH treatment was seen in mice after intratracheal instillation of lipopolysaccharide (LPS) (p = 0.015, t-test).
doi:10.1371/journal.pone.0090232.g003

Table 1. Concentrations (mmol/L) of the L-ornithine derived
polyamines putrescine, spermidine and spermine in lung
homogenates of naı̈ve control and Pseudomonas infected
mice treated with PBS or arginase inhibitor ABH.

Putrescine Spermidine Spermine

Control 4.961.2 * 4.061.2 * 2.660.7 *

Pseudomonas

PBS 34.262.4 39.662.3 13.660.8

ABH 28.762.9 37.563.7 12.560.8

* Concentrations were significantly different between groups (p,0.001,
ANOVA). All three polyamines were lower in controls compared to infected
animals but not different between PBS or ABH treatment group (n = 6–8/
group).
doi:10.1371/journal.pone.0090232.t001

Table 2. Cytokine concentrations (ng/g) in lung
homogenates of naı̈ve control and Pseudomonas infected
mice treated with PBS or arginase inhibitor ABH.

P. aeruginosa

Control (n = 6) PBS (n = 14) ABH (n = 15)

IFN-c 0.0460.01 * 3.5060.83 2.5460.52

IL-1b 8.5460.96 15.5163.02 12.2662.37

IL-6 9.9760.51 * 52.2765.67 65.09612.1

MIP-2 0.1560.01 * 59.4667.30 44.2963.67

KC 4.5261.43 * 31.8465.90 29.2863.58

TNF-a 0.0560.01 * 7.6161.41 5.4860.83

Concentrations were significantly different between groups (p,0.001, Kruskal-
Wallis test). All cytokines with the exception of IL-1b were lower in controls
compared to infected animals not different between PBS and ABH treated
animals.
doi:10.1371/journal.pone.0090232.t002

Arginase Inhibition in Pseudomonas Pneumonia
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provided evidence that ADMA was associated with beneficial

effects, it was unclear in that study whether the observed effects of

ADMA were direct or mediated through inhibition of NOS, as

ADMA did not cause a significant change in nitrite concentration

in the culture medium [30]. In our experiments ABH treatment

did not result in a change in ADMA concentration in the infected

lungs, but normalized the ratio of L-arginine/ADMA with a

concomitant increase in NO production.

Dosing of the arginase inhibitor was based on previous

publications on systemic use of ABH in rodents [31,32]. The

half-life of ABH in C57BL/6 mice was previously reported to be

approximately 8 hours [33]. There was no evidence that repeated

systemic application of the arginase inhibitor was harmful to the

animals. Although Pseudomonas resulted in significant weight loss in

the animals on day 1 and day 2 of the infection, there were no

differences in weight loss between the groups of ABH or PBS

treated animals. There was also no significant difference in

cytokine concentrations in lung homogenates when comparing

ABH and PBS treated mice, suggesting that neither ABH nor the

increase in NO production in the lung had a pro-inflammatory

effect. Previous work has shown that mice deficient for NOS2 had

impaired clearance of Pseudomonas from the lung 18 h after

infection [34]. The present study focused on the effect of arginase

inhibition on NO production; whether the increase in NO

formation would lead to altered defense against Pseudomonas was

not assessed, but should be investigated in future studies.

L-ornithine, the product of arginase activity, is substrate for

collagen formation but also for polyamine biosynthesis. Poly-

amines are important in cell repair and also act as NOS inhibitors

[6,9,16]. Arginase activity and polyamine levels are significantly

increased in models of asthma and in the guinea pig for instance,

the increase in putrscine was prevented by pharmacological

blockade of arginase [11]. In our experiments, Pseudomonas

infection also resulted in a significant increase in polyamine

concentrations in the lung. Arginase inhibition reduced L-

ornithine formation by approximately 50% but there was no

effect on polyamine concentrations in the lung. This could likely

be due to the fact that ornithine availability for ornithine

decarboxylase (ODC), the first and rate-limiting step in L-

ornithine dependent polyamine biosynthesis [35] remained

sufficient for polyamine production.

An alternative strategy to increase concentration and availabil-

ity of L-arginine for NOS is supplementation of its substrate. A

previous study using a chronic model of Pseudomonas infection of

the lung in rats had shown that L-arginine given in drinking water

resulted in lower IL-1b concentrations in BAL fluid in the L-

arginine treated compared to the untreated group, whereas VEGF

was increased. L-arginine supplementation has the potential

disadvantage of providing substrate for NOS but also arginase

enzymatic activity, which may result in unwanted effects of L-

ornithine derived metabolites. For instance, generation of sperm-

ine by ODC inhibits iNOS translation and NO-mediated H.

pylori killing [36,37]. Studies in humans with CF or asthma, both

conditions associated with increased arginase activity and relative

NO deficiency, have shown that the effect of systemic L-arginine

supplementation on pulmonary NO formation is moderate and

limited by increased formation of the NOS inhibitor ADMA, a

product of protein degradation [38,39]. Ultimately, one approach

does not exclude the other and the combination of both may have

the highest likelihood of addressing the relative NO deficiency in

P. aeruginosa infection.

In conclusion systemic ABH used in the early phase of acute P.

aeruginosa lung infection at doses effective to significantly reduce

arginase activity in the lung result in increased pulmonary NO

production. The role of pharmacological inhibition of arginase for

treatment of lung infections deserves further investigation.
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