Synthesis of Vanadium Dioxide Thin Films on Conducting Oxides and Metal–Insulator Transition Characteristics

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12132061

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Synthesis of vanadium dioxide thin films on conducting oxides and metal-insulator transition characteristics

Yanjie Cuia)*, Xinwei Wangb), You Zhoua), Roy Gordonb) and Shriram Ramanathana)

a) Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
b) Harvard Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138

*Email: cuiyanjie@hotmail.com

We report on growth and physical properties of vanadium dioxide (VO\textsubscript{2}) films on model conducting oxide underlayers (Nb-doped SrTiO\textsubscript{3} and RuO\textsubscript{2} buffered TiO\textsubscript{2} single crystals). The VO\textsubscript{2} films, synthesized by rf sputtering, are highly textured as seen from X-ray diffraction. The VO\textsubscript{2} film grown on Nb doped SrTiO\textsubscript{3} shows over two orders of magnitude metal-insulator transition, while VO\textsubscript{2} film on RuO\textsubscript{2} buffered TiO\textsubscript{2} shows a smaller resistance change but with an interesting two step transition. X-ray photoelectron spectroscopy has been performed as a function of depth on both sets of structures to provide mechanistic understanding of the transition characteristics. We then investigate voltage-driven transition in the VO\textsubscript{2} films grown on Nb-doped SrTiO\textsubscript{3} substrate as a function of temperature. The present study contributes to efforts towards correlated oxide electronics utilizing phase transitions.

INTRODUCTION

Vanadium dioxide shows a metal-insulator transition (MIT) with several orders of magnitude conductivity change, accompanied by a phase change from high temperature tetragonal rutile structure ($P4_2/mnm$) to low temperature monoclinic structure ($P2_1/c$) [1]. The phase change is accomplished by a small lattice distortion along the c axis of the tetragonal structure hence the formation of V-V pairs along a axis in the monoclinic structure. The transition temperature could be manipulated to either higher or lower temperature through cation substitution as investigated early in late 60’s, for example: W^{6+}, Nb^{5+}, Ru^{4+} et.al most higher valence state ($\geq 4+$ except Ge$^{4+}$) cation doping depress the transition temperature, while M^{3+} (M = Cr, Fe, Ga, Al) doping elevates the transition temperature [2].

It is necessary to be able to deposit high quality VO$_2$ films on conducting substrates in order to explore carrier conduction out-of-plane of the film. To date, VO$_2$ films have primarily been grown on conducting substrates such as heavily-doped Si or Ge, and Pt [3-5]. As far as conducting oxide substrates are concerned; there is a recent report discussing the role of twin boundaries of VO$_2$ grown on Ga-doped ZnO buffered c-sapphire [6]. VO$_2$ films grown on conducting oxides would be of particular interest to explore all-oxide electronics wherein the underlayer could be used as an electrode for electron transport. Therefore, here we have studied the physical properties of VO$_2$ grown on conducting oxide substrates namely Nb-doped SrTiO$_3$ single crystal substrate and RuO$_2$ buffered TiO$_2$ single crystal substrate.

II. EXPERIMENTAL
VO₂ thin films (~200nm) were deposited by rf-sputtering on two representative conducting oxide substrates: Nb-doped SrTiO₃ (001) (Nb:STO) or RuO₂ (101) buffered TiO₂ (101) single crystal substrates. The single crystals of Nb:STO (Nb weight concentration 1.0 %) with resistivity of 0.0035 ohm-cm were used as-obtained (from MTI Crystal) except for high pressure nitrogen cleaning before loading into a sputtering chamber. Crystalline RuO₂ thin films were grown by pulsed chemical vapor deposition in a home-built tube reactor [7], with bis(N,N'-di-tert-butylacetamidinato) ruthenium (II) dicarbonyl as the ruthenium precursor and oxygen as co-reactant gas. The ruthenium precursor was placed in a glass bubbler in an oven set at 140 °C, and it was delivered into the reactor tube with nitrogen as carrier gas in each precursor pulse. The precursor has a vapor pressure of 100 mTorr at 140 °C, and the glass bubbler has a volume of 0.14 L, therefore, an amount of 14 mTorr L precursor vapor was delivered during each pulse. While the ruthenium precursor was delivered, a gas mixture of oxygen and nitrogen (O₂:N₂ = 1:2 in partial pressure) was kept flowing at a total pressure of 450 mTorr. The deposition temperature was 280 °C. Given the pumping speed of 2.5 L/s, the exposure of the ruthenium precursor was estimated to be approximately 7.5 mTorr s for each pulse. Several hundred pulses of ruthenium precursor were supplied to grow the RuO₂ film. Rutile TiO₂ (101) substrates supplied by MTI Corporation were used for growing epitaxial RuO₂ films. Each substrate was treated with UV/ozone for 5 minutes to remove surface organic contaminants before deposition. The RuO₂ film thickness is ~38 nm with resistivity of 0.00008 ohm-cm. The sputtering was performed in an Ar environment at set pressure of 10 mTorr from a V₂O₅ target for 6 hours, with the substrate temperature and RF source power set at 550 °C and 120 W, respectively. Detailed description of VO₂ film growth by sputtering and deposition condition effects on properties can be found in previous reports [4, 8].

X-ray diffraction (XRD) experiments were first characterized by the Bruker D8 which has a conventional 1.6 kW sealed X-ray tube source, a horizontal circle Eulerian cradle and a
Vantec2000 2D detector. The data were collected with 0.3 mm monocapillary lenses and a graphite monochromator at the incident-beam side. The VO$_2$ film on RuO$_2$ was further characterized by a triple-axis diffractometer, the Bruker D8 high resolution XRD (HRXRD) diffractometer, with Cu $K\alpha$ radiation, configured with a Ge(022)x4 asymmetric monochromator at the incident-beam side, and the Pathfinder, a scintillation point detector, at the receiving-side. Crystallographic characterization was accomplished with 2θ - ω coupled scans, and a ϕ scan (for epitaxial film only). A Zeiss Ultra55 Field Emission Scanning Electron Microscope (FESEM) was employed to obtain microstructures and operated at 5 keV with In-lens detector. X-ray photoelectron spectroscopy (XPS) measurements were performed in an ESCA SSX-100 spectrometer with Al $K\alpha$ (1.4866 keV) as X-ray source. XPS depth profiling was assisted with Ar ion milling with spectra taken after every 10 minute etching. All the XPS data were analyzed with Casa-XPS software package. Au (200 nm) / Ti (20 nm) metal contacts with different sizes ranging from 50×50 μm2 to 500×500 μm2 were deposited in a Denton E-Beam Evaporator with shadow mask. The electrical properties were measured in a probe station equipped with a hot stage and a Keithley 236 source meter.

III. RESULTS AND DISCUSSION

Figure 1 shows the 2θ - ω coupled X-ray diffraction patterns for VO$_2$ film grown on Nb:STO single crystals substrate and RuO$_2$ buffered TiO$_2$ single crystal substrates. The VO$_2$ film on Nb:STO is highly textured, as seen in Figure 1a, the major peaks at 27.83°, 57.44° 2θ are attributed to the reflection of (011) and (022) plane of the monoclinic phase, and the other minor peaks belong to VO$_2$ or the substrate. The high-resolution XRD characterization of VO$_2$ film on
RuO$_2$ is shown in Figure 1b. The peaks at 35.77°, 36.11°, 37.13°, are ascribed to (101) plane of tetragonal RuO$_2$, TiO$_2$ and VO$_2$ respectively. The as-deposited RuO$_2$ (101) diffraction in the epitaxial film shifts from 35.05° (for bulk single crystal) to 35.54° approaching the substrate TiO$_2$ (101) diffraction (at 36.08° for single crystal). This indicates that the RuO$_2$ d_{101} spacing is decreasing dominated by the decrease of the c axis of RuO$_2$ to match the substrate lattice (crystallographic information is shown in Table 1 [9-12]). After the VO$_2$ growth, the RuO$_2$ (101) peak further shifted towards higher angles at 35.77°. The in-plane orientation was determined from ϕ scan on (002) plane for both TiO$_2$ substrate and VO$_2$ film, suggesting epitaxial growth of VO$_2$ on the RuO$_2$ buffered TiO$_2$ substrate, as shown in Figure 2b inset.

Field emission SEM images show the morphology of the films grown on different substrates (Figure 2a-b). In Figure 2a, the “flower” like microstructure of VO$_2$ film on Nb:STO are composed of closely packed thin sheets, which could cause the highly oriented XRD patterns showed earlier. VO$_2$ film on RuO$_2$ buffered TiO$_2$ shows inclined column structure with a larger grain size of about 200 nm. Both films exhibit well defined crystalline grains, and the uniformity was checked by taking images across several regions. The thickness of both VO$_2$ film on Nb:STO or RuO$_2$ buffered TiO$_2$ are ~200 nm as shown in SEM micrographs from film cross-section, Figure 2c-d. From Figure 2d, we can observe that the RuO$_2$ buffer layer is ~35 nm.

The electrical properties of VO$_2$ films grown on Nb:STO and RuO$_2$ layer were characterized in both in-plane and out-of-plane geometry, as shown in Figure 3, the normalized resistance ($R_n = R(T)/R(25 \, ^{\circ}C)$) versus temperature curves (inset shows linear I-V curves from which the resistance values were determined). For VO$_2$ films on Nb:STO, the MIT temperature (T_{MIT}), defined as the peak position in the derivative curve of corresponding resistance versus temperature curve, was determined to be ~58.5 °C and 54.8 °C for heating and cooling from the
in-plane measurement, as shown in Figure 3b. The out-of-plane measurement shows similar T_{MIT} with \sim58.1 °C and 54.4 °C for heating and cooling process respectively, detailed MIT characteristics are summarized in Table 2. In Figure 3a, in plane R_n-T measurement of the VO$_2$ film on Nb:STO shows a larger resistance ratio ($\Delta R = R(25^\circ C)/R(100^\circ C)$) of 397 compared to the out of plane ratio of 79. The lower transition order for out-of-plane measurement was also observed in a recent study, which discussed the twin boundary effect on MIT thermal hysteresis [6]. Yang et al described that the thermal hysteresis of the out of plane measurement of epitaxial growth VO$_2$ on Ga:ZnO buffered c-sapphire with current flow parallel to the twin boundaries was considerably reduced compared to in plane measurement of epitaxial growth VO$_2$ on ZnO buffered c-sapphire where current flows normal to the boundaries. However, the thermal hysteresis (ΔH: difference between the critical temperature of heating and cooling curves) of the VO$_2$ film on Nb:STO for both in plane and out of plane measurement is similar, i.e. \sim3.7 °C, which could be explained by the textured nature of our film.

Figure 3c shows the R_n-T curves of VO$_2$ film on RuO$_2$ buffered TiO$_2$ measured in both in-plane and out-of-plane geometry (inset shows representative linear I-V plots). This film shows a small resistance change in both in-plane and out-of-plane measurement compared to VO$_2$ films grown on Nb:STO deposited at the same time. The current flow in the low resistivity RuO$_2$ layer could explain the small resistance change for the in-plane measurement of a high quality VO$_2$ film, while this does not necessarily explain the small resistance change observed in the out of plane measurement. Since the phase transition is quite sensitive to stoichiometry, this smaller transition might indicate that this film is off-stoichiometric. It is interesting to note that this film shows a two step transition, as shown in Figure 3d (derivative curve of the in-plane measurement, with two transitions at 48.7 and 61.0 °C during heating, and 45.6 and 57.9 °C
during cooling, respectively). The transition width (ΔT: full width at half maximum of derivative curve) for these four peaks ranges from 8.7 to 9.2 °C, and the width of thermal hysteresis for both transition is 3.1 °C. The out-of-plane measurement shows the same two step transition with the T_{MIT} at 48.5 and 59.8 °C during heating, and 46.0 and 57.3 °C during cooling, respectively. The thermal hysteresis widths for both transitions in the out-of-plane measurement are 2.5 °C which is narrower than the in plane measurement. This is consistent with the recent study that out of plane measurement shows narrower width of thermal hysteresis due to less grain boundaries in a columnar growth epitaxial film containing twin boundaries [6].

X-ray photoelectron spectroscopy (XPS) depth profiling was carried out on both sets of VO$_2$ films grown on Nb:STO and RuO$_2$ buffered TiO$_2$, as shown in Figure 4. In the surface full scan spectra, except for features arising from V and O, there are also N 1s and C 1s which arises from surface contamination and Au from electrode fabrication. The adventitious C 1s peak was assumed to have a binding energy of 284.8 eV [13], and used to calibrate the binding energy of vanadium. High resolution XPS spectra were focused around the O 1s and V 2p region.

Figure 4a and c shows the depth dependent XPS full scan spectra of VO$_2$ film on different substrates with the depth indicated by etching time, the curves are vertically shifted for clarity. The etching rate for VO$_2$ was calibrated to be ~0.5 nm/min. The distance (d) to the surface is estimated according to the etch rate and time. Figure 4b summarizes the elements V, O and Sr concentration profile, which is calculated according to the relative sensitivity factor (RSF)-scaled areas under V 2$p_{3/2}$, O 2s and Sr 3$p_{3/2}$ peaks after Shirley background subtraction. Due to any preferential sputtering rate of different elements, the absolute values of the atomic percentage may not be accurate, and hence we just compare the relative peak to peak intensity here. Both oxygen and vanadium are evenly distributed in the bulk part of the film (15-200 nm from
The fraction of V decreased from about 30% after 410 mins etching to 15% after 450 mins etching and the relative fraction of Sr correspondingly increase to 17% after 450 mins etching. The slow decreasing rate (the profile tail) is commonly observed in the XPS depth profiling [14, 15], since surface roughness as well as etching spot edge effect may blur the profile.

For VO₂ film on RuO₂ buffered TiO₂, as shown in Figure 4c, the Ru peaks appeared after 350 min etching at ~175 nm to the surface. Then the intensity of Ru peak continuously increased to 18% until 440 min etching with the presence of Ti peak in the spectra. Figure 4d summarized the relative fraction of the elements calculated according to the RSF-scaled areas under V 2p₃/₂, O 2s, Ru 3p₁/₂ and Ti 2s peaks. The V fraction decreased from 31% to 17% in 90 mins etching from the observation of Ru peaks (after 350 mins etching) to the presence of Ti peaks (after 440 mins etching) from TiO₂ substrate. The etching rate of RuO₂ film on TiO₂ was calibrated to be ~1 nm/min based on both as deposited film and the film annealed under the VO₂ film deposition condition. From SEM image in Figure 2d, we measured the thickness of RuO₂ layer is approximately 35 nm, which should be etched through in ~40 min. We, however, see that it takes 90 min from the observation of Ru to the observation of Ti peak. This difference and the slower decreasing rate of V concentration compared to the film on Nb:STO suggest that a solid solution, V₁₋ₓRuₓO₂, is likely formed at the interface. In addition, the VO₂ film is ~206 nm thick as shown in the SEM cross-section image, while we start to observe Ru peak at ~175 nm. Ru might diffuse into the VO₂ layer to the extent of ~30 nm (which is expected to take about 50 min etch time), and is consistent with the 90 min etching time from observation of Ru to Ti peaks in the XPS measurement. According to previous studies, a rutile structure will be sustained when 0.025<ₓ<0.75 [2, 16]. The formation of a solid solution of V₁₋ₓRuₓO₂ could cause the shift of
RuO$_2$ (101) diffraction towards the higher angle as we observed [17]. It is known that transition temperature of VO$_2$ can be reduced by Ru doping [2, 16], so the V$_{1-x}$Ru$_x$O$_2$ is expected to show a different transition temperature to the VO$_2$ film on top layer. Therefore we speculate that the overlap of these two transitions resulting in the two step transition in R_n~T curves of the VO$_2$ film grown on RuO$_2$ buffered TiO$_2$.

Next, we consider the relative fraction of the vanadium dioxide (V$^{4+}$) phase. In the high resolution XPS spectra, we focused on the V 2$p_{3/2}$ peaks to compare the compositional difference between various films. After Shirley background subtraction, the V 2$p_{3/2}$ peaks were de-convoluted into two peaks. At the surface, the peaks at 516.9(2) and 515.8(2) eV are assigned to V$^{5+}$ and V$^{4+}$ respectively), as shown in Figure 5a [18]. In the interior region of the film, the peaks are located at 515.8(2) eV and 513.7(2) eV and attributed to V$^{4+}$ and V$^{2+}$, respectively, as shown in Figure 5b[4, 19]. The average fraction of V$^{4+}$ for interior region of VO$_2$ films are ~71% on Nb:STO and ~68% on RuO$_2$ buffered TiO$_2$, while the surface of the films are composed of about 55% of V$^{4+}$ on both films, as shown in Figure 5c. It also shows that the V$^{4+}$ fraction decreased with decreasing vanadium content at the interface of VO$_2$ film on Nb:STO, while the V(IV) concentration was relatively unchanged for VO$_2$ film on RuO$_2$ buffered TiO$_2$ indicating that the V(IV) state is stabilized in the solid solution.

Next, we have investigated the electrically-driven metal-insulator transition (referred to as E-MIT) with a VO$_2$ film grown on Nb-doped SrTiO$_3$ substrate. Experiments were carried out in both in-plane and out-of-plane geometry to understand the role of the substrate in influencing the overall current-voltage characteristics. Figure 6 (a) and (b) show I-V plots measured in the out-of-plane mode (Figure 6(b) shows the zoom-in view of fewer I-V curves in log scale for clarity) at different temperatures. The out-of-plane curves show a small hysteresis loop when sweeping
current up and down that on its own is not clear if we can ascribe it to the phase transition. However one can get additional insights from the in-plane measurements on the same sample. In-plane results (Figure 6(c)) show large current jumps and the threshold voltage dependence on temperature in agreement with previous studies on VO₂ [20, 21]. This demonstrates that VO₂ film on Nb:STO does show the electrically-driven transition. The in-plane E-MIT happens at ~12 V which is larger than the out-of-plane value because the spacing of electrodes in this geometry is a few tens of micrometers that is larger than the ~200 nm separation for the out-of-plane measurement. In the out-of-plane geometry, the Nb:STO substrate acts as a resistor in series with VO₂. The resistance of Nb: SrTiO₃ becomes larger as the voltage increases (which can be seen for example from I-V data at 100 °C where the resistance mainly comes from Nb:STO). When VO₂ reaches threshold voltage for switching, there would have been a sharp current jump. However, since the I-V curve of Nb:STO is not linear, such a large current will need a much larger external voltage than the applied bias. As a consequence, the current only changes gradually. The larger the resistance of Nb:STO, the smaller the hysteresis loop. This is likely why the out-plane I-V at 55 °C has a larger hysteresis than that at 25 °C (due to decrease in resistance of Nb:STO). Although the resistance of Nb:STO continues to decrease above 60 °C, the I-V hysteresis becomes smaller because the E-MIT magnitude decreases as temperature increases. Similarly, the out-of-plane measurement shows a smaller metal-insulator transition magnitude than in-plane due to additional series resistance from Nb:STO substrate. The shape of the out-of-plane I-V curve may be explained as the following: at small voltages (~0-1.5 V) the shape is primarily determined due to the VO₂ layer contribution, which looks similar to the in-plane I-V curve below threshold voltage. At intermediate voltages (~1.5-2 V), the current increases gradually because of the series resistance of Nb:STO. At larger voltages (~2-3 V), the I-V curve
corresponds to Nb:STO, and resembles I-V measurements at ~100°C when the VO$_2$ layer is in the conducting state.

IV. SUMMARY

Textured vanadium oxide films have been grown on conducting oxide substrates by rf sputtering, and their physical properties have been studied. The VO$_2$ film on Nb-doped SrTiO$_3$ shows over two orders of magnitude resistance change across the transition. The VO$_2$ film on RuO$_2$ buffered TiO$_2$ shows a two step transition. From photoelectron spectroscopy, it is likely an interfacial V$_{1-x}$Ru$_x$O$_2$ layer is formed with a lower transition temperature resulting in the two step transition.

ACKNOWLEDGMENT

We are grateful to National Science Foundation Grant DMR-0952794 and Office of Naval Research Grant N00014-10-1-0131 for financial support. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765.
REFERENCES

 702101.
 113715.
Fig. 1 2θ-ω scan X-ray diffraction patterns of VO$_2$ films grown on different substrates: (a) VO$_2$ on Nb-doped SrTiO$_3$ (001) (VNST) and (b) VO$_2$ on RuO$_2$ buffered TiO$_2$ (101) (VRT). Inset in figure 1(b) is the ϕ scan of (002) plane of film VO$_2$ and substrate TiO$_2$.

![X-ray diffraction patterns of VO$_2$ films](image)
Fig. 2 Plan view and cross-section FESEM images of as-deposited VO$_2$ films grown on different substrates: (a, c) Nb-doped SrTiO$_3$, (b, d) RuO$_2$ buffered TiO$_2$ respectively
Fig. 3 (a) Normalized resistance plotted as a function of temperature for VO$_2$ films grown on Nb doped SrTiO$_3$, (b) derivative plot for in-plane measurement from which we extract the phase transition characteristics (c) normalized resistance plot for VO$_2$ grown on RuO$_2$ buffered TiO$_2$, insets show the derivative curves for the in-plane measurement and (d) corresponding derivative plot of in-plane resistance versus temperature Table 2 summarizes the phase transition characteristics.
Fig. 4 XPS spectra of VO$_2$ films grown on: (a) Nb-doped SrTiO$_3$, (c) RuO$_2$ buffered TiO$_2$ and compositional depth profile of VO$_2$ film on: (b) Nb-doped SrTiO$_3$, (d) RuO$_2$ buffered TiO$_2$.
Fig. 5 De-convolution of high resolution XPS V2p$_{3/2}$ peak (a) on surface and (b) in bulk region in VO$_2$ film, (c) V2p$_{3/2}$ relative fraction. VNST: VO$_2$ on Nb doped SrTiO$_3$ and VRT: VO$_2$ on RuO$_2$ buffered TiO$_2$
Fig. 6 Voltage-driven metal-insulator transition: (a) Out-of-plane current-voltage measurement on VO2 film grown on Nb-doped SrTiO$_3$ and (b) close-up view of representative I-V curves at various temperatures, (c) in-plane measurement of the current-voltage curves at various temperatures.
Table 1. Lattice parameters of various materials considered in this study.

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Space group</th>
<th>Lattice parameter (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a c</td>
</tr>
<tr>
<td>SrTiO$_3$</td>
<td>$Pm-3m$</td>
<td>3.905 -</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>$P4_2/mnm$</td>
<td>4.594 2.959</td>
</tr>
<tr>
<td>RuO$_2$</td>
<td>$P4_2/mnm$</td>
<td>4.492 3.106</td>
</tr>
<tr>
<td>VO$_2$ (HT)</td>
<td>$P4_2/mnm$</td>
<td>4.554 2.856</td>
</tr>
<tr>
<td>VO$_2$ (LT)</td>
<td>$P2_1/c$</td>
<td>a: 5.753, b: 4.526 5.383</td>
</tr>
</tbody>
</table>

Table 2. Phase transition characteristics of VO$_2$ films grown on different substrates.

<table>
<thead>
<tr>
<th>Substrates</th>
<th>T_{MIT} ($^\circ$C)</th>
<th>ΔH ($^\circ$C)</th>
<th>ΔA</th>
<th>ΔT ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb:SrTiO$_3$ (001)</td>
<td>58.5 (H), 54.8 (C)</td>
<td>3.7 in plane</td>
<td>397</td>
<td>8.0/10.1</td>
</tr>
<tr>
<td>Nb:SrTiO$_3$ (001)</td>
<td>58.1 (H), 54.4 (C)</td>
<td>3.7 out plane</td>
<td>79</td>
<td>7.4/9.3</td>
</tr>
<tr>
<td>RuO$_2$ (101)</td>
<td>48.7 (H), 45.6 (C)</td>
<td>3.1 in plane</td>
<td>3.6</td>
<td>8.7/9.1</td>
</tr>
<tr>
<td>RuO$_2$ (101)</td>
<td>48.5 (H), 46.0(C)</td>
<td>2.5 out plane</td>
<td>1.9</td>
<td>8.6/9.2</td>
</tr>
<tr>
<td></td>
<td>59.8 (H), 57.3 (C)</td>
<td></td>
<td></td>
<td>12.0/10.3</td>
</tr>
</tbody>
</table>