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Abstract

Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited
information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested
interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among
9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet
interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal
associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple
testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated
with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From
the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat
consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of
colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT
genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results
identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the
effect of genetic variants on disease risk, which may have important implications for prevention.
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Introduction

Colorectal cancer is the third most common neoplasm and the

third leading cause of cancer death in both men and women across

most ethnic-racial groups [1]. Intake of various dietary factors,

most notably, meat, fruits/vegetables, and fiber, have been

extensively investigated in relation to colorectal cancer risk.

Overall, the evidence suggests that consumption of red and

processed meat modestly increase the risk of colorectal cancer

[2,3]; and fruits [4], vegetables [4,5], and fiber [6–8] decrease risk,

although these associations have not been observed across all

studies [2,9,10], perhaps due to methodological differences and

unaccounted modifying effects.

More recently, studies have focused on the potential modifying

effects of common genetic variants, single nucleotide polymor-

phisms (SNPs), on the relationship between dietary factors and risk

of colorectal cancer. However, attention has largely focused on

candidate SNPs in genes directly involved in the metabolism of

selected nutrients; for example, metabolism of B-vitamins [11], key

nutrients found in fruits and vegetables; or the metabolism of

carcinogenic by-products resulting from cooking or processing of

meat [12]. From these candidate gene/pathway-approaches, few

genetic variants have been consistently identified and further

investigation is warranted.

Large datasets from genome-wide association studies of

colorectal cancer are now available for a comprehensive analysis

of gene-diet interactions on the risk of colorectal cancer. To

date, one genome-wide study of gene-diet interactions focusing

on microsatellite stable/microsatellite-instability low colorectal

cancer (1,191 cases, 990 controls) reported no statistically

significant gene-diet interactions after replication in an indepen-

dent dataset [13]. The authors highlighted the need for

collaborative consortia to increase sample size, with central

quality control procedures and careful standardization and

harmonization of definitions and measurements. Hutter et al.,

using data from the Genetics and Epidemiology of Colorectal

Cancer Consortium (GECCO) on 7,106 colorectal cancer cases

and 9,723 controls from 9 studies focused on 10 previously

identified colorectal cancer-susceptibility loci and conducted a

systematic search for interaction with selected lifestyle and

dietary factors. The strongest statistical evidence was observed

for interaction for vegetable consumption and rs16892766,

located on chromosome 8q23.3 near the EIF3H and UTP23

genes (p = 1.3E-04) [14].

In this large combined analysis using GECCO from 10 case-

control and nested cohort studies comprising 9,287 colorectal

cancer cases and 9,120 controls, we build upon these previous

reports [13,14] to examine over 2.7 million common polymor-

phisms for multiplicative interactions with selected dietary factors

(red meat, processed meat, fiber, fruit and vegetables) and risk of

colorectal cancer. For our primary analyses we used conventional

case-control logistic regression that included an interaction term as

well as our recently developed Cocktail method, which integrates

several novel GxE methods to improve statistical power under

various scenarios [15].

Results

Characteristics of the 10 studies are described in Table S1.

Mean intake and quartile cut points of each dietary factor per

study are provided in Table S2 and S3. Across all studies we

observed an increase in colorectal cancer risk for red meat

consumption (ORper quartile = 1.15,p = 1.6E-18) and processed

meat consumption (ORper quartile = 1.11,p = 4.2E-09). Decreased

colorectal cancer risk was observed for vegetable intake

(ORper quartile = 0.93, p = 8.2E-05), fruit intake (ORper quartile

= 0.93, p = 1.9E-05) and fiber intake (ORper quartile = 0.91,

p = 5.6E-05, Figure 1).

Using conventional case-control logistic regression to test for

multiplicative interactions we identified a genome-wide significant

interaction between variants at chromosome 10p14 and processed

meat (Table 1). Within the 10p14 region rs4143094 showed the

most significant interaction with processed meat (ORinteraction for

each copy of T-allele and increasing quartile of processed

meat = 1.17, p = 8.73E-09, Table 1 and Figure 2), with no

evidence of heterogeneity (pheterogeneity = 0.78). This SNP

(rs4143094), as well as correlated SNPs surrounding the

rs4143094 SNP, indicate a strong signal peak in the 10p14

region near the GATA3 gene; as expected SNPs less correlated

with rs4143094 show less significant interactions (Figure 3).

Stratified by genotype, the risk for colorectal cancer associated

with each increasing quartile of processed meat was increased in

individuals with the rs4143094-TG and -TT genotypes

(OR = 1.20, 95% CI = 1.13–1.26 and OR = 1.39, 95%

CI = 1.22–1.59, respectively) and null in individuals with the

rs4143096-GG genotype (OR = 1.03, 95% CI = 0.98–1.07,

Table 2). Results are very similar for minimal and multivariable

adjusted ORs. In addition, the stratified results Table S4 show
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interaction results using one common reference group. This

common SNP (average allele frequency of T allele = 0.25) was

directly genotyped in most studies or imputed with high accuracy

(imputation r2.0.89). With the other dietary factors evaluated,

no interactions using the conventional case-control logistic

regression analysis reached the genome-wide significance thresh-

old (Table S5).

With the other dietary factors, no interactions with any of the

2.7M SNPs were statistically significant using the conventional

logistic regression analysis. Furthermore, we did not observe any

novel interactions using our Cocktail method or the two

exploratory statistical methods by Gauderman et al. [16] and

Dai et al. [17] (data not shown).

Discussion

Genome-wide scans have successfully identified numerous risk

loci for colorectal cancer; consortia pooling multiple studies for

increased statistical power have continued to identify additional

susceptibility loci [18–24]. However, only limited work has been

pursued at a genome-wide scale to identify gene-diet interactions.

Using individual-level data from ten studies with harmonized

dietary intake variables on a total of over 9,000 cases and 9,000

controls, we have conducted a genome-wide analysis for GxE

interactions. Using conventional statistical methods, as well as our

novel method aiming to improve statistical power, we provide

evidence for a novel interaction between rs4143094 and processed

meat intake.

The variants in the 10p14 region interacting with processed

meat consumption reside within and upstream of GATA binding

protein 3 (GATA3) gene. GATA3 has long been associated with T

cell development, specifically Th2 cell differentiation [25]. GATA3

is up-regulated in ulcerative colitis [26], which is associated with

increased risk of colorectal cancer [27]. However, the role of

GATA genes as transcription factors extends to epithelial structures

with a known role in breast, prostate and other cancers [28–30].

GATA factors are involved in cellular maturation with prolifer-

ation arrest and cell survival. Loss of GATA genes or silencing of

expression have been described for breast, colorectal and lung

cancers [30].

To further explore this locus, we evaluated the potential

functional impact of the most significant SNP in this locus as well

as correlated SNPs querying multiple bioinformatics databases,

such as Encode and NIH Roadmap (Table S6). The most

significant SNP rs4143094 is about 7.2 kb upstream of GATA and

resides in a 9.5 kb LD block (r2.0.8) containing 19 highly

correlated SNPs, including rs1269486, which shows the third most

significant interaction in this region (Table 1). The rs1269486

variant is located 1420 bases upstream of GATA3 in a region of

Figure 1. Associations between red and processed meat, vegetable, fruit and fiber intake and colorectal cancer risk. Odds ratios (ORs)
per quartile of increasing intake, lowest quartile = reference group, N = total number of subjects, case = number of cases.
doi:10.1371/journal.pgen.1004228.g001

Author Summary

High intake of red and processed meat and low intake of
fruits, vegetables and fiber are associated with a higher risk
of colorectal cancer. We investigate if the effect of these
dietary factors on colorectal cancer risk is modified by
common genetic variants across the genome (total of
about 2.7 million genetic variants), also known as gene-
diet interactions. We included over 9,000 colorectal cancer
cases and 9,000 controls that were not diagnosed with
colorectal cancer. Our results provide strong evidence for a
gene-diet interaction and colorectal cancer risk between a
genetic variant (rs4143094) on chromosome 10p14 near
the gene GATA3 and processed meat consumption
(p = 8.7E-09). This genetic locus may have interesting
biological significance given its location in the genome.
Our results suggest that genetic variants may interact with
diet and in combination affect colorectal cancer risk, which
may have important implications for personalized cancer
care and provide novel insights into prevention strategies.
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open chromatin (DNase I hypersensitivity) with histone methyla-

tion patterns consistent with promoter activity in a colorectal

cancer cell line (CACO2; Figure S1). As would be expected of a

promoter region, experimental evidence supports Pol2 binding

along with the transcription factors c-Fos, JunD, and c-Jun [31].

Many of the other SNPs upstream of GATA3 are located in

GATA3-antisense RNA1 (GATA3-AS1) (formerly FLJ45983).

GATA3-AS1 is a non-coding RNA that may regulate GATA3

transcript levels in the cell. Further studies are required to

elucidate the relationship between GATA3 and GATA3-AS1 and

determine whether variants in the 10p14 region cause perturba-

tions in regulation.

A plausible though speculative biological basis for our findings is

that processed meat triggers a pro-tumorigenic inflammatory or

immunological response [32] that may necessitate proper GATA3

transcription levels. Nonetheless, the precise mechanism by which

deregulation of GATA3 is linked to colorectal cancer upon

consumption of high levels of processed meat remains unclear.

Further study of the role of variants in GATA3 in colorectal cancer

will yield more insight into their functional significance.

The interaction between variants in locus 10p14 and processed

meat were identified by the conventional case-control logistic

regression analysis. This locus was not identified through our

Cocktail method or any of the other exploratory methods (Text S2).

However, this is not surprising given that the SNPs in this locus are

not strongly associated with colorectal cancer (p = 0.26 for

rs4143094) and not strongly correlated with processed meat

(p = 0.25 for rs4143094) and, accordingly, SNPs in this locus were

not prioritized in the Cocktail analysis. However, we were somewhat

surprised to not identify additional interactions with any of the

dietary factors using our Cocktail method, given the expected

improvement in power under various scenarios. We recognize that

the field of GxE analyses is at an early stage compared with studies

for marginal gene-diseases associations. It will be important to see

more large-scale empirical GxE studies to judge the impact and

potential power gain of the novel GxE methods.

Our analysis has some limitations and notable strengths. We

adopted a flexible approach to data harmonization of dietary

factors, in a similar fashion to those proposed by other projects

[33,34]. We focused on dietary variables that were collected in a

similar manner and allowed for harmonization across a large

subset of the studies. Ideally, our findings will be replicated in

other populations. While a substantial larger number of GWAS

have been conducted for colorectal cancer, limited studies have

collected information on processed meat and other dietary

variables. In the present study, we did not divide our large sample

into discovery and replication sets, as it has been shown that the

most powerful analytical approach is a combined analysis across

all studies [35]. This approach is increasingly used as more

samples with GWAS data are becoming available [36]. Impor-

tantly, we observed no evidence of heterogeneity in the estimates

by study, which suggests that results are consistent across studies.

We not only used the conventional case-control logistic

regression, but also took advantage of our recently developed

Cocktail method as a second primary analysis approach to

potentially improve statistical power. We note that even though for

the Cocktail method different interaction tests (case-only and case-

control) were used depending on the screening step, the overall

genome-wide type I error is controlled at 0.05 (genome-wide level

of a was set to 5E-08), just like the conventional case-control

method. As we investigated five dietary factors and used two

primary methods additional adjustment for multiple comparisons

may be warranted. However, we want to point out that the dietary

variables were correlated, e.g. correlation between fruits and
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vegetables was 0.38, between fruits and fiber was 0.52 or between

red and processed meat was 0.62 adjustments for these not

independent test is less straight forward. Similarly, the primary

methods are not independent from each other, for instance the

testing step of the Cocktail method used the case-control or case-

only testing, which are consistent or correlated with the

conventional case-control analysis. Accordingly, additional multi-

ple comparison adjustment for 5 variables and 2 tests would be too

conservative, nevertheless our interaction finding for 10p14 and

processed meat would likely remain marginally significant.

With the investment of large GWAS consortium built on well-

characterized studies, we are now well-positioned to identify

potential interactions between genetic loci and environmental risk

factors with respect to colorectal cancer risk. In this study, we have

identified a novel interaction between rs4143094 and processed

meat. This genetic locus may have interesting biological signifi-

cance given its proximity to genes plausibly associated with

pathways relevant to colorectal carcinogenesis. Nonetheless,

further functional analysis is required to uncover the specific

mechanisms by which this genetic locus modulates the association

between intake of processed meat and colorectal cancer risk.

Materials and Methods

Study participants
This analysis uses data from the Colon Cancer Family Registry

(CCFR) and the Genetics and Epidemiology of Colorectal Cancer

Consortium (GECCO, Text S1 and Table S1) as described

previously [14,37]. All cases were defined as colorectal adenocar-

cinoma and confirmed by medical records, pathologic reports, or

death certificate. All studies received ethical approval by their

respective Institutional Review Boards and participants gave

written informed consent.

Genotyping, quality assurance/quality control and
imputation

Average sample and SNP call rates, and concordance rates for

blinded duplicates have been previously published [37]. In brief,

genotyped SNPs were excluded based on call rate (,98%), lack of

Hardy-Weinberg Equilibrium in controls (HWE, p,161024), and

low minor allele frequency (MAF). We imputed the autosomal

SNPs of all studies to the CEU population in HapMap II. SNPs

were restricted based on per-study minor allele count .5 and

imputation accuracy (R2.0.3) to avoid missing any interactions.

After imputation and quality control (QC) analyses, approximately

2.7M SNPs were used in the analysis.

All analyses were restricted to individuals of European ancestry,

defined as samples clustering with the Utah residents with

Northern and Western European ancestry from the CEPH

collection (CEU) population in principal component analysis

[38], including the HapMap II populations as reference.

Harmonization of dietary factors
Information on basic demographics and environmental risk

factors was collected by using in-person interviews and/or

structured questionnaires, as detailed previously [39–48]. The

multi-step data harmonization procedure applied in this study is

described in detail by Hutter et al. [14]. Here we focus on selected

dietary variables for intake of red and processed meat, fruits,

vegetables (all measured in servings per day) and fiber (measured

as g/day). These variables were coded as sex- and study-specific

quartiles, where the quartile groups were coded 1 to 4 of the

quartile within the controls of each study and sex. For studies that

due to limited number of questions assessed dietary intake in

categories rather than as continuous variables and had less than 4

intake categories, we assigned these categories to the 2nd and 3rd or

1st to 3rd quartile, as appropriate. The lowest category of exposure

was used as the reference and each dietary factor was analyzed as

an ordinal variable (e.g., 1, 2, 3, 4) in the model. Data

harmonization was performed using SAS and T-SQL.

Statistical methods
Statistical analyses of all samples were conducted centrally at the

GECCO coordinating center on individual-level data to ensure a

consistent analytical approach. Unless otherwise indicated, we

adjusted for age at the reference time, sex (when appropriate),

center (when appropriate), total energy consumption (if available)

and the first three principal components from EIGENSTRAT to

account for potential population substructure. The dietary

variables were coded as described above. Each directly genotyped

SNP was coded as 0, 1, or 2 copies of the variant allele. For

imputed SNPs, we used the expected number of copies of the

variant allele (the ‘‘dosage’’), which has been shown to give

unbiased test statistics [49]. Genotypes were treated as continuous

variables (i.e. log-additive effects). Each study was analyzed

separately using logistic regression models and study-specific

results were combined using fixed-effects meta-analysis methods

to obtain summary odds ratios (ORs) and 95% confidence

intervals (CIs) across studies. We calculated the heterogeneity p-

values by Woolf’s test [50]. Quantile-quantile (Q-Q) plots were

assessed to determine whether the distribution of the p-values was

consistent with the null distribution (except for the extreme tail).

To test for interactions between SNPs and dietary risk factors,

we conduct two primary analyses: 1) conventional case-control

logistic regression analysis including a multiplicative interaction

term; 2)our newly developed Cocktail method [15]. For the

conventional logistic regression analysis, we modeled the SNP by

environment (GxE) interaction by the product of the SNP and the

dietary variable (which is in this study the E), adjusting for age, sex,

study site, energy, principal components and the main effects of

the SNP and dietary variable. Adjustment for additional variables,

smoking, alcohol, BMI and other dietary variables did not

Figure 2. Forest plot for meta-analysis of interaction analysis
for rs4143094 and processed meat. Odds ratios (ORs) and 95%
confidence intervals (95% CI) are presented for each additional copy of
the count (or tested) allele (T) and for each increasing quartile of
processed meat intake in the multiplicative interaction model. The box
sizes are proportional in size to the inverse of the variance for each
study, and the lines visually depict the confidence interval. Results from
the fixed-effects meta-analysis are shown as diamonds. The width of the
diamond represents the confidence interval.
doi:10.1371/journal.pgen.1004228.g002
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appreciably change the results. A two-sided p-value of 561028 for

a SNP-diet factor interaction was considered statistically signifi-

cant, yielding a genome-wide significance level 0.05

assuming about 1 million independent tests across the genome

(0.05/1,000,000 = 561028) [51–56].

Motivated by recent advances in methods development for

detecting GxE interaction [17,57–60], our second approach was

based on our recently developed Cocktail method. This statistical

method combines the most appealing aspect of several newly

developed GxE methods with the goal of creating a comprehensive

and powerful test for genome-wide detection of GxE [15]. In brief,

this method consists of two-steps: a screening step to prioritize

SNPs and a testing step for GxE interaction. Specifically, for the

screening step, we ranked and prioritized variants through a

genome-wide screen of each of the 2.7M SNPs (referred to as ‘‘G’’)

by the maximum of the test statistics from marginal association of

Gs on disease risk [58], and correlation between G and

environmental/dietary variable (E) in cases and controls combined

[59], a combination which allows for identifying variants with

different interaction patterns.

Based on the ranks of these SNPs from screening, we used a

weighted hypothesis framework to partition SNPs into groups with

higher ranked groups having less stringent alpha-level cut-offs for

interaction [60,61]. We followed the grouping scheme used by

Ionita et al. [61] such that for example, the first 3 groups consist of

5 SNPs (SNP 1 to 5), 10 SNPs (SNP 6 to 15) and 20 SNPs (SNP 16

to 36), and the corresponding cut-offs are agroup 1 = a/

(2*5) = 0.005, agroup 2 = a/(4*10) = 0.00125 and agroup 3 = a/

(8*20) = 0.0003, respectively, so on and so forth, to maintain the

overall genome-wide alpha level of 0.05. To avoid testing

correlated SNPs, we pruned SNPs based on proximity (exclude

any SNP within +/250 kb of the selected SNP) given that LD

pruning is difficult to implement for large number of SNPs. While

the choice of the group size is arbitrary our simulation study

showed that different group size did not impact the results

substantially, and importantly, we chose the group size before

looking at the results.

The second step of the Cocktail method is the testing step. We

tested each of the G’s for GxE interactions using the case-only

(CO) logistic regression test. The use of the CO test is justified

because we did not observe correlation between G and any of the

tested dietary factors, and it has been shown that under the

independence assumption the CO test provides substantial

efficiency gain over the conventional CC test [62]. Since the

CO is not independent of the correlation screening (a requirement

to avoid inflation of type I error rates) [63], we used CO test only

Figure 3. Regional association results for the interaction between processed meat and rs4143094 with surrounding SNPs. The top
half of the figure has physical position along the x-axis, and the 2log10 of the meta-analysis p-value of the interaction term on the y-axis. Each dot on
the plot represents the p-value of the interaction for one SNPxD in relation to colorectal cancer conducted across all studies. The most significant SNP
in the region (index SNP) is marked as a purple diamond. The color scheme represents the pairwise correlation (r2) for the SNPs across the region with
the index SNP. Correlation was calculated using the HapMap CEU data. The bottom half of the figure shows the position of the genes across the
region. These regional association plots are also known as LocusZoom plots.
doi:10.1371/journal.pgen.1004228.g003
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when the maximum screening test statistic came from the marginal

association, and the case-control test otherwise.

In Text S2, we describe two secondary statistical GxE methods

that we used to explore other novel GxE methods: the 2-step

method by Gauderman et al. method [16] and a 2 degree of

freedom joint test for marginal associations of G and GxE

interaction by Dai et al. [17]. All analyses were conducted using

the R programming language [64].
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Sébastien Küry, Stephane Bezieau, Graham Casey, Loic Le Marchand,

Eric Jacobs, Peter Campbell, Hermann Brenner, Jenny Chang-Claude,

Bette Caan, John Potter, Martha Slattery, Flora Qu, Jian Gong, Keith

Curtis, Li Hsu, Paul Auer, Riki Peters, Shuo Jiao, Tabitha Harrison, Yi

Lin, Andrew Chan, Brian Henderson, Laurence Kolonel, Gad Rennert,

Stephen Gruber, Jing Ma, Richard Hayes, Robert Schoen, Stephen

Chanock, Polly Newcomb, David Duggan and Emily White.

HPFS and NHS: We would like to acknowledge Patrice Soule and

Hardeep Ranu of the Dana Farber Harvard Cancer Center High-

Throughput Polymorphism Core who assisted in the genotyping for NHS

and HPFS,under the supervision of Dr. Immaculata Devivo and Dr. David

Hunter, Qin (Carolyn) Guo and Lixue Zhu who assisted in programming

for NHS and HPFS. We would like to thank the participants and staff of

the Nurses’ Health Study and the Health Professionals Follow-Up Study,

for their valuable contributions as well as the following state cancer

registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL,

IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH,

OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

PLCO: The authors thank Drs. Christine Berg and Philip Prorok,

Division of Cancer Prevention, National Cancer Institute, the Screening

Center investigators and staff or the Prostate, Lung, Colorectal, and

Ovarian (PLCO) Cancer Screening Trial, Mr. Tom Riley and staff,

Information Management Services, Inc., Ms. Barbara O’Brien and staff,

Westat, Inc., and Drs. Bill Kopp, Wen Shao, and staff, SAIC-Frederick.

Most importantly, we acknowledge the study participants for their

contributions to making this study possible.

PMH-CCFR: The authors would like to thank the study participants

and staff of the Hormones and Colon Cancer study.

WHI: The authors thank the WHI investigators and staff for their

dedication, and the study participants for making the program possible.

Author Contributions

Conceived and designed the experiments: JAB SIB HB BJC GC ATC JCC

SJC DD SG ELG RWH TAH RBH BEH MH JLH LH CMH MAJ LNK

Table 2. Association of processed meat and risk of colorectal cancer by genotype strata for rs4143094.

Adjustment factors rs4143094 N Case N Control Association per quartile of processed meat intake

OR 95% CI P value

Minimal* GG 3627 3986 1.03 0.98–1.07 0.28

TG 2428 2610 1.2 1.13–1.26 2.70E-10

TT 430 445 1.39 1.22–1.59 1.10E-06

Multivariable** GG 3542 3887 0.98 0.93–1.03 0.5

TG 2375 2547 1.14 1.08–1.22 1.18E-05

TT 418 439 1.36 1.18–1.56 1.35E-05

*Minimal adjusted models included age, sex, study site, energy and PCs.
**Multivariable adjusted models additionally included: BMI, smoking, alcohol and other dietary factors.
Multivariable-adjusted analysis is limited to samples with available data for all covariates used in the analysis.
doi:10.1371/journal.pgen.1004228.t002

Gene-Diet Interactions and Colorectal Cancer Risk

PLOS Genetics | www.plosgenetics.org 7 April 2014 | Volume 10 | Issue 4 | e1004228



LLM ML PAN UP JDP RES DS MLS SNT CMU BWZ. Performed the

experiments: DD. Analyzed the data: LH YL WJG SJ UP. Contributed

reagents/materials/analysis tools: SJ CQ KRC. Wrote the paper: JCF UP

LH. Collected phenotype data and biological samples and contributed

these as investigators for their respective study: SIB HB BJC GC ATC JCC

SJC SG ELG RWH RBH BEH MH JLH MAJ LNK LLM PAN JDP RES

DS MLS SNT EW BWZ. Critically reviewed the manuscript drafts and

approved the final manuscript: JCF LH CMH YL PTC JAB SIB SJ GC BF

ATC MC ML SG TAH LLM PAN MLS BJC CSC BWZ SAR HB ELG

KW JCC SJC KRC DD JG RWH RBH MH JLH MAJ LNK CQ AR

RES FRS DS DLS SNT MT GSW BEH CMU WJG JDP EW UP.

References

1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA

Cancer J Clin 62: 10–29.

2. Alexander DD, Cushing CA (2011) Red meat and colorectal cancer: a critical

summary of prospective epidemiologic studies. Obes Rev 12: e472–493.

3. Alexander DD, Miller AJ, Cushing CA, Lowe KA (2010) Processed meat and

colorectal cancer: a quantitative review of prospective epidemiologic studies.

Eur J Cancer Prev 19: 328–341.

4. van Duijnhoven FJ, Bueno-De-Mesquita HB, Ferrari P, Jenab M, Boshuizen

HC, et al. (2009) Fruit, vegetables, and colorectal cancer risk: the European

Prospective Investigation into Cancer and Nutrition. The American journal of

clinical nutrition 89: 1441–1452.

5. Wu QJ, Yang Y, Vogtmann E, Wang J, Han LH, et al. (2013) Cruciferous

vegetables intake and the risk of colorectal cancer: a meta-analysis of

observational studies. Annals of oncology : official journal of the European

Society for Medical Oncology/ESMO 24: 1079–1087.

6. Nomura AM, Hankin JH, Henderson BE, Wilkens LR, Murphy SP, et al. (2007)

Dietary fiber and colorectal cancer risk: the multiethnic cohort study. Cancer

causes & control : CCC 18: 753–764.

7. Park Y, Hunter DJ, Spiegelman D, Bergkvist L, Berrino F, et al. (2005) Dietary

fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort

studies. JAMA : the journal of the American Medical Association 294: 2849–

2857.

8. Dahm CC, Keogh RH, Spencer EA, Greenwood DC, Key TJ, et al. (2010)

Dietary fiber and colorectal cancer risk: a nested case-control study using food

diaries. Journal of the National Cancer Institute 102: 614–626.

9. Lin J, Zhang SM, Cook NR, Rexrode KM, Liu S, et al. (2005) Dietary intakes of

fruit, vegetables, and fiber, and risk of colorectal cancer in a prospective cohort

of women (United States). Cancer causes & control : CCC 16: 225–233.

10. Ollberding NJ, Wilkens LR, Henderson BE, Kolonel LN, Le Marchand L (2012)

Meat consumption, heterocyclic amines and colorectal cancer risk: the

Multiethnic Cohort Study. International journal of cancer Journal international

du cancer 131: E1125–1133.

11. Liu AY, Scherer D, Poole E, Potter JD, Curtin K, et al. (2013) Gene-diet-

interactions in folate-mediated one-carbon metabolism modify colon cancer risk.

Molecular nutrition & food research 57: 721–734.

12. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey AB, et al. (2008) Red

meat intake, doneness, polymorphisms in genes that encode carcinogen-

metabolizing enzymes, and colorectal cancer risk. Cancer epidemiology,

biomarkers & prevention : a publication of the American Association for

Cancer Research, cosponsored by the American Society of Preventive Oncology

17: 3098–3107.

13. Figueiredo JC, Lewinger JP, Song C, Campbell PT, Conti DV, et al. (2011)

Genotype-environment interactions in microsatellite stable/microsatellite insta-

bility-low colorectal cancer: results from a genome-wide association study.

Cancer epidemiology, biomarkers & prevention : a publication of the American

Association for Cancer Research, cosponsored by the American Society of

Preventive Oncology 20: 758–766.

14. Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, et al. (2012)

Characterization of gene-environment interactions for colorectal cancer

susceptibility loci. Cancer research 72: 2036–2044.

15. Hsu L, Jiao S, Dai JY, Hutter C, Peters U, et al. (2012) Powerful cocktail

methods for detecting genome-wide gene-environment interaction. Genetic

epidemiology 36: 183–194.

16. Gauderman WJ, Zhang P, Morrison JL, Lewinger JP (2013) Finding novel genes

by testing G6E interactions in a genome-wide association study. Genetic

epidemiology 37: 603–613.

17. Dai JY, Kooperberg C, Leblanc M, Prentice RL (2012) Two-stage testing

procedures with independent filtering for genome-wide gene-environment

interaction. Biometrika 99: 929–944.

18. Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, et al.

(2008) Genome-wide association scan identifies a colorectal cancer susceptibility

locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40: 631–

637.

19. Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, et al.

(2008) A genome-wide association study identifies colorectal cancer susceptibility

loci on chromosomes 10p14 and 8q23.3. Nat Genet 40: 623–630.

20. Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, et al.

(2007) A genome-wide association study shows that common alleles of SMAD7

influence colorectal cancer risk. Nat Genet 39: 1315–1317.

21. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, et al. (2007)

A genome-wide association scan of tag SNPs identifies a susceptibility variant for

colorectal cancer at 8q24.21. Nat Genet 39: 984–988.

22. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, et al. (2007)

Genome-wide association scan identifies a colorectal cancer susceptibility locus
on chromosome 8q24. Nat Genet 39: 989–994.

23. Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, et al. (2008)

Meta-analysis of genome-wide association data identifies four new susceptibility

loci for colorectal cancer. Nat Genet 40: 1426–1435.

24. Jia WH, Zhang B, Matsuo K, Shin A, Xiang YB, et al. (2012) Genome-wide
association analyses in east Asians identify new susceptibility loci for colorectal

cancer. Nature genetics 45: 191–196.

25. Hosoya T, Maillard I, Engel JD (2010) From the cradle to the grave: activities of
GATA-3 throughout T-cell development and differentiation. Immunol Rev 238:

110–125.

26. Christophi GP, Rong R, Holtzapple PG, Massa PT, Landas SK (2012) Immune

markers and differential signaling networks in ulcerative colitis and Crohn’s
disease. Inflammatory bowel diseases 18: 2342–2356.

27. Gupta RB, Harpaz N, Itzkowitz S, Hossain S, Matula S, et al. (2007)

Histologic inflammation is a risk factor for progression to colorectal neoplasia in
ulcerative colitis: a cohort study. Gastroenterology 133: 1099–1105; quiz 1340-

1091.

28. Chou J, Provot S, Werb Z (2010) GATA3 in development and cancer

differentiation: cells GATA have it! Journal of cellular physiology 222: 42–49.

29. Nguyen AH, Tremblay M, Haigh K, Koumakpayi IH, Paquet M, et al. (2013)
Gata3 antagonizes cancer progression in Pten-deficient prostates. Human

molecular genetics 22: 2400–2410.

30. Zheng R, Blobel GA (2010) GATA Transcription Factors and Cancer. Genes

Cancer 1: 1178–1188.

31. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, et al. (2013)
ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic acids

research 41: D56–63.

32. Hedlund M, Padler-Karavani V, Varki NM, Varki A (2008) Evidence for a
human-specific mechanism for diet and antibody-mediated inflammation in

carcinoma progression. Proceedings of the National Academy of Sciences of the

United States of America 105: 18936–18941.

33. Bennett SN, Caporaso N, Fitzpatrick AL, Agrawal A, Barnes K, et al. (2011)
Phenotype harmonization and cross-study collaboration in GWAS consortia: the

GENEVA experience. Genetic epidemiology 35: 159–173.

34. Fortier I, Doiron D, Burton P, Raina P (2011) Invited commentary:
consolidating data harmonization–how to obtain quality and applicability?

American journal of epidemiology 174: 261–264; author reply 265-266.

35. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more

efficient than replication-based analysis for two-stage genome-wide association
studies. Nature genetics 38: 209–213.

36. Pearce CL, Rossing MA, Lee AW, Ness RB, Webb PM, et al. (2013) Combined

and interactive effects of environmental and GWAS-identified risk factors in
ovarian cancer. Cancer epidemiology, biomarkers & prevention : a publication

of the American Association for Cancer Research, cosponsored by the American

Society of Preventive Oncology 22: 880–890.

37. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, et al. (2013)
Identification of Genetic Susceptibility Loci for Colorectal Tumors in a

Genome-Wide Meta-analysis. Gastroenterology 144: 799–807 e724.

38. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)
Principal components analysis corrects for stratification in genome-wide

association studies. Nat Genet 38: 904–909.

39. Newcomb PA, Baron J, Cotterchio M, Gallinger S, Grove J, et al. (2007) Colon

Cancer Family Registry: an international resource for studies of the genetic
epidemiology of colon cancer. Cancer Epidemiol Biomarkers Prev 16: 2331–

2343.

40. Slattery ML, Potter J, Caan B, Edwards S, Coates A, et al. (1997) Energy
balance and colon cancer–beyond physical activity. Cancer research 57: 75–80.

41. Christen WG, Gaziano JM, Hennekens CH (2000) Design of Physicians’ Health
Study II–a randomized trial of beta-carotene, vitamins E and C, and

multivitamins, in prevention of cancer, cardiovascular disease, and eye disease,
and review of results of completed trials. Annals of epidemiology 10: 125–134.

42. Prorok PC, Andriole GL, Bresalier RS, Buys SS, Chia D, et al. (2000) Design of

the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.
Controlled clinical trials 21: 273S–309S.

43. (1998) Design of the Women’s Health Initiative clinical trial and observational
study. The Women’s Health Initiative Study Group. Controlled clinical trials 19:

61–109.

44. Hoffmeister M, Raum E, Krtschil A, Chang-Claude J, Brenner H (2009) No
evidence for variation in colorectal cancer risk associated with different types of

postmenopausal hormone therapy. Clinical pharmacology and therapeutics 86:
416–424.

Gene-Diet Interactions and Colorectal Cancer Risk

PLOS Genetics | www.plosgenetics.org 8 April 2014 | Volume 10 | Issue 4 | e1004228



45. Brenner H, Chang-Claude J, Seiler CM, Rickert A, Hoffmeister M (2011)

Protection from colorectal cancer after colonoscopy: a population-based, case-
control study. Annals of internal medicine 154: 22–30.

46. Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Sebille V, et al. (2007)

Combinations of cytochrome P450 gene polymorphisms enhancing the risk for
sporadic colorectal cancer related to red meat consumption. Cancer epidemi-

ology, biomarkers & prevention : a publication of the American Association for
Cancer Research, cosponsored by the American Society of Preventive Oncology

16: 1460–1467.

47. Colditz GA, Hankinson SE (2005) The Nurses’ Health Study: lifestyle and health
among women. Nature reviews Cancer 5: 388–396.

48. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, et al. (1994)
Aspirin use and the risk for colorectal cancer and adenoma in male health

professionals. Annals of internal medicine 121: 241–246.
49. Jiao S, Hsu L, Hutter CM, Peters U (2011) The use of imputed values in the

meta-analysis of genome-wide association studies. Genetic epidemiology 35:

597–605.
50. Woolf B (1955) On estimating the relation between blood group and disease.

Ann Hum Genet 19: 251–253.
51. Risch N, Merikangas K (1996) The future of genetic studies of complex human

diseases. Science 273: 1516–1517.

52. (2005) A haplotype map of the human genome. Nature 437: 1299–1320.
53. (2007) Genome-wide association study of 14,000 cases of seven common diseases

and 3,000 shared controls. Nature 447: 661–678.
54. Hoggart CJ, Clark TG, De Iorio M, Whittaker JC, Balding DJ (2008) Genome-

wide significance for dense SNP and resequencing data. Genetic epidemiology
32: 179–185.

55. Pe’er I, Yelensky R, Altshuler D, Daly MJ (2008) Estimation of the multiple

testing burden for genomewide association studies of nearly all common variants.
Genetic epidemiology 32: 381–385.

56. Dudbridge F, Gusnanto A (2008) Estimation of significance thresholds for

genomewide association scans. Genetic epidemiology 32: 227–234.
57. Mukherjee B, Chatterjee N (2008) Exploiting gene-environment independence

for analysis of case-control studies: an empirical Bayes-type shrinkage estimator
to trade-off between bias and efficiency. Biometrics 64: 685–694.

58. Kooperberg C, Leblanc M (2008) Increasing the power of identifying

gene6gene interactions in genome-wide association studies. Genetic epidemi-
ology 32: 255–263.

59. Murcray CE, Lewinger JP, Gauderman WJ (2009) Gene-environment
interaction in genome-wide association studies. Am J Epidemiol 169: 219–226.

60. Roeder K, Wasserman L (2009) Genome-Wide Significance Levels and
Weighted Hypothesis Testing. Statistical science : a review journal of the

Institute of Mathematical Statistics 24: 398–413.

61. Ionita-Laza I, McQueen MB, Laird NM, Lange C (2007) Genomewide
weighted hypothesis testing in family-based association studies, with an

application to a 100K scan. American journal of human genetics 81: 607–614.
62. Piegorsch WW, Weinberg CR, Taylor JA (1994) Non-hierarchical logistic

models and case-only designs for assessing susceptibility in population-based

case-control studies. Statistics in medicine 13: 153–162.
63. Dai JY, Kooperberg C, Leblanc M (submitted) On two-stage hypothesis testing

procedures via asymptotically independent statistics. J R Stat Soc Series B Stat
Methodol.

64. (2010) R Development Core Team. R: A Language and Environment for
Statistical Computing. Vienna, Austria.

Gene-Diet Interactions and Colorectal Cancer Risk

PLOS Genetics | www.plosgenetics.org 9 April 2014 | Volume 10 | Issue 4 | e1004228


