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Within-Host Bacterial Diversity Hinders Accurate
Reconstruction of Transmission Networks from Genomic
Distance Data
Colin J. Worby*, Marc Lipsitch, William P. Hanage

Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

The prospect of using whole genome sequence data to investigate bacterial disease outbreaks has been keenly anticipated
in many quarters, and the large-scale collection and sequencing of isolates from cases is becoming increasingly feasible.
While sequence data can provide many important insights into disease spread and pathogen adaptation, it remains unclear
how successfully they may be used to estimate individual routes of transmission. Several studies have attempted to
reconstruct transmission routes using genomic data; however, these have typically relied upon restrictive assumptions, such
as a shared topology of the phylogenetic tree and a lack of within-host diversity. In this study, we investigated the potential
for bacterial genomic data to inform transmission network reconstruction. We used simulation models to investigate the
origins, persistence and onward transmission of genetic diversity, and examined the impact of such diversity on our
estimation of the epidemiological relationship between carriers. We used a flexible distance-based metric to provide a
weighted transmission network, and used receiver-operating characteristic (ROC) curves and network entropy to assess the
accuracy and uncertainty of the inferred structure. Our results suggest that sequencing a single isolate from each case is
inadequate in the presence of within-host diversity, and is likely to result in misleading interpretations of transmission
dynamics – under many plausible conditions, this may be little better than selecting transmission links at random. Sampling
more frequently improves accuracy, but much uncertainty remains, even if all genotypes are observed. While it is possible to
discriminate between clusters of carriers, individual transmission routes cannot be resolved by sequence data alone. Our
study demonstrates that bacterial genomic distance data alone provide only limited information on person-to-person
transmission dynamics.
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Introduction

Population genomic studies have become essential tools in

studying the global spread [1] and evolutionary adaptation [2] of

infectious agents. Falling costs and technological advances offer

the prospect of using whole pathogen genome sequences to inves-

tigate individual, localized outbreaks and identify chains of

transmission. The ability to identify infection routes would

contribute much to the understanding of transmission dynamics,

contact patterns in an at-risk population and the optimization of

infection control strategies [3]. However, until now, attempts to

estimate transmission networks have relied on sparse data and

simplifying assumptions, including genetically homogeneous car-

riage and/or transmission [4,5,6,7,8]. Within-host populations of

bacterial pathogens may be heterogeneous, as recent studies have

begun to show, and in such cases characterizing an infection by a

single isolate may be misleading. Aspects of bacterial carriage and

transmission are still poorly understood, making the interpretation

of genomic data collected from outbreaks far from straightforward.

As whole genome sequence data for bacterial pathogens become

ever more abundant, it is important to understand both the

potential and limitations associated with this information.

Bacterial genetic diversity within and between host
A bacterial population of size N , which is initially genetically

homogeneous, diversifies over time due to the random introduc-

tion of mutations at rate m per genome per generation. While there

are many measures of diversity, we consider the expected pairwise

genetic distance (eg. number of single nucleotide polymorphisms

(SNPs)) observed when sampling two random isolates from the

population;

w~
Xk

i~1

Xk

j~1

yijpipj ,

where yij is the genetic distance between variants i and j, whose

respective frequencies are pi,pj .

Under neutral assumptions, the expected pairwise SNP distance

at equilibrium is 2Nem [9], where Ne is the effective population

size, and m is the mutation rate. However, equilibrium dynamics

cannot typically be assumed for within-host carriage of a bacterial

pathogen. An initially clonal population takes a considerable

amount of time to reach equilibrium levels of diversity (Figure S1).
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Evidence has recently emerged that in some pathogens within-

host genetic diversity is common. In principle, an individual may

harbor a diverse pathogen population due to one or more of the

following: infection with a diverse inoculum, diversification of the

population due to mutation or other genetic change during

infection, and multiple infections from different sources. Studies of

Staphylococcus aureus have revealed carriage of multiple sequence

types, likely caused by independent transmission events [10,11], as

well as diversification over time in long-term carriers [12,13], and

the coexistence of several genotypes, differing by several SNPs

[14,15]. Streptococcus pneumoniae populations in an individual may

harbor genetically divergent lineages, as has long been appreciated

[16]. Within-host diversity of other bacterial pathogens has been

studied less frequently, although there is some evidence for

heterogeneous carriage of Helicobacter pylori [17], Pseudomonas

aeruginosa [18], Burkholderia dolosa [19] and Klebsiella pneumoniae [20].

A transmission event involves passing a sample (inoculum) of

bacteria from a carrier to a susceptible individual. This is an

example of a population bottleneck, as a small fraction of the

original population is allowed to independently grow and mutate

in a new environment. Assuming the inoculum is a random sample

of size greater than 1, it can be shown that the expected sample

diversity is equal to that of the original population regardless of the

size of the bottleneck (see Supporting Information). However, the

variance of the expected diversity is inversely proportional to the

size of the bottleneck (Figure S2), demonstrating that small

bottlenecks may generate considerably different levels of diversity

in the recipient due to stochastic effects. Estimating the bottleneck

size associated with transmission is challenging, not least because

estimates of pathogen diversity pre- and post-bottleneck will be

based on a finite sample, and will themselves be uncertain. A wide

bottleneck has previously been implicated in the transmission of

equine [21] and avian [22] influenza, while inoculum size for

bacterial pathogens may vary dramatically [23].

Inference of transmission routes
There have been several studies aiming to reconstruct

transmission links using genetic data. Many have relied on a

phylogenetic reconstruction of available isolates, under the

assumption that the transmission network will be topologically

similar to the estimated phylogeny [5,8,24,25,26]. However, the

phylogenetic tree will not generally correspond to the transmission

network based on samples collected during an outbreak

[27,28,29]. Furthermore, within-host diversity and heterogeneous

transmission – the transmission of a genetically heterogeneous

inoculum to a new host – will typically complicate such an ap-

proach, as isolates from one individual may potentially be

interspersed within the same clade as those from other carriers.

Under certain assumptions, the molecular clock can be used to

dictate the plausibility of a transmission event. As the estimated

time to the most recent common ancestor (TMRCA) between

isolates sampled from two carriers gets further from the estimated

time of infection, the probability of direct transmission falls, and a

cutoff can be specified, beyond which transmission is deemed

impossible (eg. [30]). This approach requires homogeneous

transmission and a robust estimate of the mutation rate. Other

network reconstruction approaches have used weighted graph

optimization [4], as well as Markov chain Monte Carlo (MCMC)

algorithms to sample over all possible transmission links [6,7].

Several variables may affect the outcome of such analyses.

Firstly, the method and frequency of sampling is of great

importance. Taking one sample per case ignores within-host

diversity and could lead to poor estimates of the genetic distance

between cases. Asymptomatic infections may not be detected, or

may only be detected long after the time of infection – this can

lead to greater uncertainty in the estimated network. Secondly, the

bottleneck size plays a crucial role in the amount of diversity

established in the newly infected host. Thirdly, the infectious

period affects the degree of diversity that may accumulate within-

host, and therefore gets passed on to susceptible individuals.

Using phylogenetic reconstruction as a means to estimate

transmission is often inappropriate [29], and even when combined

with additional analytical methods designed to infer transmission,

produces highly uncertain networks [31]. Furthermore, such

methodology typically cannot account for diverse founding

populations. We instead used a genetic distance-based approach

to determine how informative genomic data can be when used to

estimate routes of transmission. Many methods aiming to

reconstruct either phylogenetic trees or transmission networks

are based on a function of a pairwise genetic distance matrix.

These include graph optimization [4], the MCMC sampling

approaches [6,7], and various tree reconstruction methods (eg.

neighbor joining, unweighted pair group method with arithmetic

mean (UPGMA), minimum spanning tree). As such, we used a

generalized weighting function based on genetic distance to

reconstruct networks, in order to provide a framework flexible

enough to be similar (or, in some cases, equivalent) to these

methods. We investigated how accurately transmission networks

could be recovered, and how accuracy was affected by factors such

as bottleneck size, transmission rate and mutation rate. We

simulated disease outbreaks under a variety of scenarios, and

reflecting various sampling strategies. Our approach could

accommodate within-host diversity and variable bottleneck sizes,

in order to investigate their effect on network reconstruction. Full

details are given in Materials and Methods.

Results

Within-host diversity
We first simulated diversification within a single host, using S.

aureus as an example, and compared our findings with estimates of

diversity based on published samples. The expected genetic

pairwise distance for S. aureus carriage has been estimated at

4.12 SNPs [15]. S. aureus has a mutation rate of approximately

561024 per genome per bacterial generation (given a rate of

Author Summary

With the advent of affordable large-scale genome se-
quencing for bacterial pathogens, there is much interest in
using such data to identify who infected whom in a
disease outbreak. Many methods exist to reconstruct the
phylogeny of sampled bacteria, but the resulting tree does
not necessarily share the same structure as the transmis-
sion tree linking infected persons. We explored the
potential of sampled genomic data to inform the
transmission tree, measuring the accuracy and precision
of estimated networks based on simulated data. We
demonstrated that failing to account for within-host
diversity can lead to poor network reconstructions - even
with repeated sampling of each carrier, there is still much
uncertainty in the estimated structure. While it may be
possible to identify clusters of potential sources, identify-
ing individual transmission links is not possible using
bacterial sequence data alone. This work highlights
potential limitations of genomic data to investigate
transmission dynamics, lending support to methods
unifying all available data sources.

Within-Host Diversity Hinders Transmission Network Reconstruction

PLOS Computational Biology | www.ploscompbiol.org 2 March 2014 | Volume 10 | Issue 3 | e1003549



361026 per nucleotide per year [1,12] and a generation time of

30 minutes [32,33,34]). Nasal carriage of S. aureus has been

estimated to have an effective population size in the range 50–

4000 [12,15]. Figure 1 shows the accumulation of diversity over

time under these parameters. Our simulations indicate that if we

assume a host acquires a homogeneous transmission, the expected

colonization period required for previously observed levels of

diversity to emerge under neutral evolution is typically long (,1

year). While S. aureus may be carried for a number of years [35],

observing high diversity from recently infected individuals suggests

that alternative explanations may be more realistic. First, repeated

exposure to infection may result in the introduction of new strains

to a host, potentially resulting in rapid establishment of diversity.

Second, the transmitted inoculum may not be a single genotype,

but rather a sample of genotypes from the source. This was

investigated in detail in the next simulation experiments.

Transmission chains
We assessed the effect of bottleneck size in a disease outbreak by

firstly considering a simple transmission chain, where each infected

individual transmits to exactly one susceptible individual. We

considered an initial bacterial population of 10 genotypes, which

had an expected pairwise distance of 5 SNPs, which could

represent a long-term carrier, or the recipient of a diverse

infection. We then simulated a transmission event by selecting an

inoculum of size NB. We allowed the new founding population to

reach equilibrium population size and imposed another bottleneck

after 1000 generations. We repeated this process for 25 trans-

mission events. Figure S3 shows six realizations of our simulations

under different values of NB. Clearly, while diversity rapidly drops

away for small bottlenecks, larger sizes (.10 cells) allow diversity

to persist for several bottlenecks. With sufficient mutation between

transmission events, diversity can be maintained (Figure S4).

If bacterial specimens taken from disease carriers in an outbreak

are sequenced, we can attempt to estimate the routes of

transmission based on the genetic similarity of the isolates. There

are a number of additional factors that may inform our estimate of

the transmission route, such as location, contact patterns and

exposure time, but we examined the information to be gained

from sequence data alone. More than one isolate may be taken

from a carrier, sampled either simultaneously or at various time

points during infection, necessitating a choice of how to describe

the genetic distance between populations of isolates from two cases.

We considered both the mean pairwise distance and the centroid

distance to summarize the genetic distance between groups of

isolates, but found that both resulted in very similar network

reconstructions. Network edges were given a weighting which we

assume is inversely proportional to the genetic distance (see

Materials and Methods for detailed specification of weighting

functions).

The single transmission chain provides an idealized scenario to

reconstruct transmission links. Furthermore, we assumed that the

order of infection is known. As such, the potential source for each

individual i can only be one of the preceding i{1 generations,

which, intuitively at least, should become more genetically distant

as one goes farther back in time. Transmission events occur every

1000 bacterial generations, and one cell is selected randomly from

each individual’s bacterial carriage at regular intervals (possibly

more frequent than the transmission process) for sequencing.

Figure 2 shows reconstructed networks for a range of scenarios.

We repeated this for several simulations under each scenario, and

plotted receiver-operating characteristic (ROC) curves to assess

the accuracy of the reconstructed network (Figure 3). We observed

that there was an optimal bottleneck size in this setting which

allows the network to be resolved with a relatively high level of

accuracy; for the scenario considered here, networks reconstructed

using a bottleneck size of 10 clearly outperform those constructed

using both larger and smaller inoculum sizes. In this setting, larger

bottlenecks allow a very similar bacterial population to be

established within each new infective, while smaller bottlenecks

rapidly result in a single dominant strain being carried and

transmitted by the infected population. The optimal bottleneck

size depends on the outbreak size, as well as the expected change

in pathogen diversity within-host between time of infection and

onward transmission. We found that infrequent sampling (eg. one

sample per infected individual) can lead to a reconstruction that is

no better than selecting sources at random, and sometimes worse.

Epidemics
We next considered a more general susceptible-infectious-

removed (SIR) epidemic, in order to determine how network

accuracy is affected by transmission and mutation rate, and

sampling strategy. We again estimated the transmission network

based upon observed sequence data alone under the assumption

that the order of infection was known. Both the centroid and

pairwise distance metrics were used, but we found that the

performance of both was very similar. For this reason, all results

shown here have been derived using the pairwise distance

measure.

We simulated epidemics under a variety of scenarios and found

that generally for larger outbreaks, such that several infective

individuals were present at any one time, the power to determine

the routes of transmission was low. We supposed that we did not

know the infection or removal times, only observing the correct

order of infection. Table S1 gives area under the ROC curve

values for estimated networks based on a selection of simulated

datasets. In many cases, particularly for higher rates of infection

Figure 1. The development of diversity from an initial clonal
population, using parameter estimates for S. aureus. The
generation time was 30 minutes, the mutation rate was 3|10{6 per
site per year, and we used an effective population size in the range of
50–5000.
doi:10.1371/journal.pcbi.1003549.g001

Within-Host Diversity Hinders Transmission Network Reconstruction
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and removal, we found that the ROC curve indicated no

improvement on guessing transmission sources at random.

However, we saw that distinct groups of individuals, representing

large branches of the transmission network, may be distinguished

from one another, indicating that gross features of the transmission

network may be determined. Figure 4A shows a simulated

epidemic in which nodes are colored according to their observed

mean distance from the origin. Clearly later infections can be

discriminated from cases further in the past, but a great deal of

uncertainty exists among contemporary cases. Network recon-

struction was more successful in scenarios where higher diversity

could be established between host and recipient. As such, network

reconstruction improved for long carriage times, low transmission

rates, and high mutation rates (Table S1).

Network entropy may be used to evaluate the uncertainty

arising under the network reconstruction approach (see Materials

and Methods). As the outbreak progresses, the entropy of most nodes

increases and is only modestly lower than that obtained from

assigning an even probability to all preceding cases (Figure 4B).

However, certain nodes are markedly less uncertain than the

surrounding ones, indicating that for them, incorporating genetic

distance considerably reduces the uncertainty of who infected

them. In this outbreak, for example, the entropy distribution is

bimodal, with 99 of the 112 nodes having entropy within one bit of

random guessing.

In Figure 4, the infector of each node was identified with

probability proportional to the inverse of the genetic distance

between the populations, guaranteeing that some positive prob-

ability is assigned to the true infector. Entropy may be reduced

(possibly at the expense of lowering the estimated probability of

infection by the true infector) by increasing the relative probability

of infection from nodes that are genetically close. Importance of

similar nodes can be increased up to the point at which the closest

node is selected with certainty, and the maximum directed

spanning tree is selected, (equivalent to the SeqTrack method of

network reconstruction [4]), resulting in zero entropy. Figure 5

shows the same network estimated with a varying importance

factor. While some correct edges are estimated with a higher

probability, several false connections are also estimated with little

uncertainty. Precision is increased often at the expense of

accuracy, and indeed increasing the importance factor for this

network reduces the area under the ROC curve. Table S2 gives

values for the area under the ROC curve for estimated networks

under a particular simulated dataset, showing how accuracy

declines as closer nodes are weighted more heavily. The true

parent of a node has no guarantee of being the closest node, but is

likely to belong to a group of genetically similar potential sources.

Sampling
Sampling strategies play an important role in the accuracy of

the estimated network – while it is unsurprising that more frequent

sampling results in reduced uncertainty, it is notable that even with

perfect sampling, the uncertainty typically remains much too large

to identify individual transmission routes. Figure 6 shows the same

Figure 2. Estimated transmission networks, based on periodical sampling of isolates. The true transmission chain begins with individual
identified by the large red dot, and proceeds around the circle as directed by the black arrow. The first individual had a heterogeneous infection, with
an expected pairwise distance of 5 SNPs. Each network represents a single estimate of a simulation, with edge weighting proportional to the relative
probability of infectious contact, inversely proportional to the mean genetic distance between individuals. It was assumed that the order of infection
is known, such that the kth infection has k{1 potential sources.
doi:10.1371/journal.pcbi.1003549.g002
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simulated outbreak, colored according to two different sampling

strategies; firstly sequencing one isolate from each individual every

1000 bacterial generations, and secondly sequencing isolates ten

times at each time point. In each plot, an arbitrarily chosen

reference node is marked, to which each other node is compared.

The second plot shows that the ‘neighborhood’, to which the

reference node and its true source belong, may be discerned,

genetically distinct from the rest of the outbreak. Increasing

sampling frequency beyond this level does not considerably

improve discrimination.

Selecting a single isolate per individual typically leads to a

poor estimation of the transmission network. We found that the

initial genotype often persisted throughout an epidemic, and

remained the dominant genotype for a large number of infected

individuals. Selecting a single isolate from each infective would

result in a large number of individuals with an apparently

genetically identical infection, providing little information about

transmission. Multiple samples can reveal minor genotypes,

which may be more informative. We found that in most

reasonable settings, the reconstructed network based on single

isolates was uncertain and inaccurate, sometimes worse than a

random network.

Discussion

Our work suggests that under a range of plausible scenarios

considered here, it is not possible to determine transmission routes

based upon sampled bacterial genetic distance data alone. For

every infected individual in a large outbreak, there are several

other individuals harboring a similar pathogen population who

may be the true source of infection. Existing distance-based

methods typically assume that a single isolate is obtained from

each host, in which case the distance between hosts is simply the

number of SNPs separating the two isolates. Sampling only one

isolate per case can lead to poor estimates of genetic distance

between individuals, and therefore inaccurate identification of

transmission routes, often little better than assigning links at

random. Increasing the sampling to obtain more than one sample

per host may partially alleviate this problem; in this case, the

genetic distance between two hosts may be estimated as the mean

distance between isolates from one host and isolates from the

other. The amount of sampling required depends on what one

hopes to gain from the sequence data. Single isolates may be

sufficient to rule out infection sources for individuals, based on

large observed genetic distances. Repeated sampling may be used

Figure 3. ROC curves for estimated networks under various scenarios. Under each scenario, 25 datasets were simulated. Lighter lines
indicate the ROC curve for a particular replication, while the heavier lines indicate the mean ROC curve for a given scenario. The dashed line indicates
the ‘no information’ ROC curve, where sources are guessed at random. It was assumed that the order of infection is known, such that individual k has
k{1 potential sources (meaning that guessing sources at random produces an ROC curve above the diagonal). TPR: true positive rate; FPR: false
positive rate.
doi:10.1371/journal.pcbi.1003549.g003

Within-Host Diversity Hinders Transmission Network Reconstruction

PLOS Computational Biology | www.ploscompbiol.org 5 March 2014 | Volume 10 | Issue 3 | e1003549



to identify clusters of infected individuals who host very similar

bacterial populations, and therefore are likely to be close neighbors

in the transmission network. This allows us to investigate more

general trends in the progression of the outbreak, eg. spread

between communities or countries, while individual events remain

obscure.

A considerable degree of diversity is transmitted with even a

small inoculum from the source, under the assumption that the

inoculum is sampled randomly from the pathogen population

infecting the source. We believe that this highlights the importance

of establishing the degree of within-host diversity through multiple

samples before attempting to infer transmission routes. Such

sampling will also further our understanding of the transmission

bottleneck for bacterial pathogens, as well as the effective

population size.

Many of the parameters in our simulations are difficult to

estimate for bacteria in vivo, and as such, few estimates exist.

Moreover, population structure within a host may lead to

divergence between the census and effective population sizes in

each host [36]. To obtain results that would be widely applicable

in spite of these uncertainties, we simulated transmission and

carriage under a wide range of plausible parameter values for

bacterial pathogens. Bottleneck size is a key factor in the onward

transmission of diversity and network recovery – too small and

resulting infections are homogeneous, too large and recipients

share the same genotype distribution as the source.

In our inference of transmission routes, we have measured the

average genetic distance between individuals across the span of the

infectious period. If the removal rate is sufficiently low relative to

the mutation rate, the genetic makeup of the pathogen population

in an individual will vary considerably over time. As such, while a

source and recipient may be genetically similar at the time of

infection, the mean distance between observed samples may be

higher. It may be possible to either restrict or weight the range of

samples used in order to gauge the distribution of genotypes at a

particular time; however, this comes at the expense of excluding

potentially useful data. Using the mean genetic distance is not

unreasonable if the length of carriage is small compared to the

time required to accumulate significant diversity.

We have considered different sampling strategies, but have

supposed that a large coverage of the infected population can be

achieved. This may be reasonable for an outbreak in a small

community, but inevitably, there may still be some missing links,

especially when asymptomatic carriage could go undetected.

Furthermore, we assumed that the order of infections is known.

We have demonstrated that the reconstructed network accuracy is

typically poor, even in the best-case scenario of near perfect

observation.

We did not consider the possibility of repeated infectious

contact, leading to infection from multiple sources. This could

serve to increase the diversity within-host, further complicating the

inference of transmission routes. In many settings, it is reasonable

to assume that infectious individuals may come into contact with

each other, and potentially transmit. In the case of vector-borne

diseases, the vector (eg. a healthcare worker in nosocomial S. aureus

transmission) may transiently carry multiple strains collected from

one or more carriers, and pass this diversity on to recipients. If d is

the rate at which a novel SNP is introduced via reinfection, then

the equilibrium level of diversity is increased to 2Ne(mzd). If the

type(s) introduced upon reinfection are sufficiently dissimilar to the

existing population, it may be possible to infer reinfection events.

However, if the rate of infectious contact is high, most bacterial

populations may contain artifacts from several disparate sources,

preventing any kind of transmission analysis.

The ability to reconstruct transmission networks is dependent

on both data and methodological limitations. While we cannot

rule out the possibility of alternative methods using genetic

distance data to provide superior network reconstructions, the

framework we use here is flexible enough to investigate a range of

relationships between genetic distance and transmission, under the

widely used assumption that individuals hosting genetically similar

pathogens are more likely to have been involved in a transmission

event than those infected by more distantly related organisms.

Figure 4. (A) Simulated SIR epidemic in a population with 250
initial susceptibles and one infective with an initially clonal
infection. Samples were taken at random every 1000 generations from
each individual. The color of the node indicates its mean genetic
distance to the origin, based on observed sequences. Black nodes
indicate individuals whose infectious period did not coincide with a
sampling time. (B) The entropy for each node in an estimated
transmission network, plotted against time of infection. The dashed
line indicates the ‘no information’ case, in which sources are guessed at
random (based on the order of infection only). Data were simulated
with a mutation rate m~1|10{4 , transmission rate b~1|10{4 and
removal rate c~5|10{5 .
doi:10.1371/journal.pcbi.1003549.g004

Within-Host Diversity Hinders Transmission Network Reconstruction
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In this study, we have made a number of assumptions. Firstly,

we have used a discrete model of bacterial growth in which cells

simultaneously divide and die at generational intervals. We have

specified that a cell must divide or die at each generation, such that

persisting without reproduction is not possible. Under this model,

the effective population size is equal to the actual population size -

incorporating cell survival without reproduction would only serve

to reduce the effective population size, and therefore, the

accumulation of diversity. Secondly, we have assumed neutral

evolution; that is, there is no fitness advantage or cost associated

with any mutation. Selection is likely to decrease the amount of

instantaneous diversity within a population. The emergence of

fitter mutations is likely to reduce the expected diversity, since

fitter strains are more likely to tend towards fixation, eliminating

weaker variants and their associated diversity. However, the effect

of selective sweeps over time could increase the observed diversity

in a longitudinal sample. Thirdly, we have assumed that an

inoculum is composed of a random sample of bacteria from the

entire colony. If the inoculum is not a random sample, the degree

of diversity that is transmitted upon infectious contact may be

much smaller. The suitability of this assumption may vary

depending on the mode of transmission. However, we could

consider the bottleneck size used here to represent the effective

population size of the inoculum, rather than the true size. Finally,

Figure 5. A simulated infection network (A) is estimated using importance factors of v~5 (B) and v~1 (C). The color of edges
represents the probability of their existence, while the color of each node represents the highest probability assigned to any its potential sources
(thus red indicating near-certainty about the source of a node). Data were simulated with a mutation rate m~1|10{4 , transmission rate b~1|10{4

and removal rate c~5|10{5 .
doi:10.1371/journal.pcbi.1003549.g005

Figure 6. Simulated SIR epidemic in a population with 250 initial susceptibles and one infective with an initially clonal infection. A
node was chosen at random during the epidemic (‘reference’, shown as a red square), and all other nodes are colored according to the observed
mean genetic distance to the reference. (A) One isolate is sequenced from each individual. (B) Sampling occurs for all infectives every 100
generations. Data were simulated with a mutation rate m~5|10{4 , transmission rate b~3|10{4 and removal rate c~1|10{4 .
doi:10.1371/journal.pcbi.1003549.g006
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we have ignored the possibility of recombination. Further work

would be required to explore the effect of each of these aspects in

detail.

The observation of rare variants in cross-sectional samples from

individual hosts may offer an alternative approach to identifying

the transmission network. Each observation of a particular

genotype must arise from a shared ancestor, assuming homoplasy

is not possible. With perfect sampling, a genotype carried by only

two individuals under these conditions indicates a transmission

event between the pair. However, many isolates would need to be

sequenced to detect such variation which is by definition rare.

Such sampling is typically infeasible via standard genome

sequencing, although deep sequencing may reveal uncommon

SNPs, suggesting transmission between carriers. Metagenomic

sampling may potentially be of great use in such an approach.

Furthermore, such sampling may provide significant practical and

financial advantages over collection and sequencing several

individual samples. Future work may be conducted to investigate

the performance of such an approach under a variety of scenarios,

for viral as well as bacterial pathogens.

It may be possible to develop a genetic distance threshold such

that any observed pair of isolates exceeding this value are deemed,

to a given level of confidence, not to have arisen from directly

linked cases. Such a threshold will depend on the bottleneck size,

effective population size and mutation rate. As yet, no such limit

has been justified theoretically, and appropriate data to investigate

this are lacking.

This work highlights the need to better understand bacterial

carriage and transmission at a cellular and molecular level. As

yet, few studies have sequenced repeated samples from infected

people, so the scale of within-host diversity is still unclear.

Furthermore, key parameters such as effective population size

and inoculum size are either highly uncertain or unknown for

bacterial pathogens. If feasible, we recommend multiple isolates

be sequenced per individual when collecting data to assess

transmission routes.

While our work casts some doubt on the use of bacterial

sequence data to identify individual transmission routes, there is

certainly still much scope for its use in the analysis of disease

transmission dynamics. Uncovering clusters of genetically similar

isolates can be greatly informative for the spread of a disease

between various subpopulations, such as households, schools and

hospitals. By combining genomic data with additional informa-

tion, such as estimated infection and removal times, contact

patterns, social groups and geographic location, it may be possible

to narrow the pool of potential sources down considerably.

Genomic data and traditional ‘shoe-leather epidemiology’ meth-

ods may complement each other; each eliminating links that the

other cannot rule out.

Materials and Methods

Bacterial simulation
Our simulation studies were based around a discrete-time

bacterial fission model. We supposed that bacteria cells died at

random with probability n
2N

, where n is the bacterial population in

the previous generation, and N is the equilibrium population. The

remaining cells divided, creating a mutant daughter cell with

probability m, otherwise creating a genetically identical copy of the

parent cell. Mutations introduced one nucleotide substitution at a

random position in the genome, such that the genetic distance

from parent to mutant was always one SNP. Neutral evolution is

assumed. Under this model, the effective population size is equal

to the size of the population; that is, Ne~N [37]. In the event of

an infectious contact, an inoculum of size NB was separated from

the original population, and allowed to grow and diversify

independently. The inoculum was assumed to be a random

sample from the original population.

In the epidemic simulations, we used a standard SIR model, in

which each susceptible individual is exposed to an infection rate of

bI(t) at time t, where I(t) is the proportion of infected individuals

at time t. Infected individuals are then removed (through recovery

or death) at a rate c. As we operated in a discrete-time framework,

we used Poisson approximations to generate times of infection. For

generation t, a given susceptible individual avoids infection with

probability exp({bI(t)). An individual infected in generation t
may transmit to another individual from generation tz1 onwards.

The source of a new infection is chosen uniformly at random from

the pool of current infectives.

We assumed that the order of infection was known, and that all

infective individuals were observed. Failure to identify routes of

infection under these optimal conditions would provide little

confidence that this could be achieved in a real world setting,

where such information is rarely available.

Identifying transmission routes
The relationships between isolates may be considered either

directly from the sequence data, or from a matrix of observed

genetic distances. The former category encompasses methods

explicitly considering the evolutionary process, such as maximum

likelihood and parsimony tree construction. Neighbor joining,

UPGMA, minimum spanning tree construction and SeqTrack all

belong to the latter. In this study, we were primarily interested in

the relationship between individuals, rather than between bacterial

specimens, and as such, did not adopt a phylogenetic approach.

We instead weighted network edges according to the genetic

distance matrix, supposing that the likelihood of direct infection

having occurred was inversely related to the genetic distance.

Given the infective population is fully observed, a function may

be defined to provide weight to each potential network edge. We

assume this weight is inversely related to the genetic distance

between the two nodes. This distance may be specified in various

ways – here, we consider the mean genetic pairwise distance and

the distance between the centroid of each group.

Let r(i) denote the set of sequences observed from individual i,
then the mean genetic distance between i and j can be given as

Dpair(i,j)~

P
x[r(i)

P
y[r(j)

yxy

Dr(i)D:Dr(j)D
:

Alternatively, let f X
ik be the proportion of samples in r(i) with a

nucleotide X at locus k. The distance between the centroids of r(i)
and r(j) can be defined as

Dcentre(i,j)~
1

2

XG

k~1

X
X[fC,A,G,Tg

abs(f X
ik {f X

jk ),

where G is the genome length, and abs(:) returns the absolute

value. Unlike the pairwise distance, the centroid distance has the

desirable property that Dcentre(i,j)~0 for all r(i)~r(j); however,

the converse is not true.

We calculate the relative probability that a particular transmis-

sion event occurred by considering the inverse of the chosen

distance function D(i,j);
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rij~
c if D(i,j)~0,
1

D(i,j)
otherwise,

(

then we can define our weighting function as

wij~
rv

ijP
k[Sj

rv
kj

,

where c is a constant to determine the relative probability of a

connection between individuals with identical genotype distributions,

and v is a proximity factor by which the importance of close

connections may be increased or decreased. The set Sj is the

collection of potential sources that may infect person j. As v??, we

consider the closest node to be the source with probability 1 (in the

event of joint closest nodes, these are assigned equal probabilities).

This then resembles a maximum weighted network. While we cannot

rule out an alternative functional form providing an improved

network reconstruction performance, the framework we use here is

grounded in the assumption that genetically closer samples are more

likely to be epidemiologically linked, and can represent a variety of

relationships via specification of the parameters c and v. We used

c~100 and v~1 as baseline values, but explored variations of these

values to investigate a range of relationships.

If the order of infection is known, then as v??, the resulting

network is equivalent to the minimum directed spanning tree.

Edmonds’ algorithm finds a minimum directed spanning tree by

identifying the lowest weighted incoming edge is selected for each

node, before cycles in the graph are eliminated [38]. With a

known order of infection, there will be no cycles in the graph,

making the two approaches equivalent. This approach is

implemented in SeqTrack [4].

Throughout our simulations, we have defined the genetic

distance to be the number of SNPs between isolates. Equally, more

complex distance metrics may be employed, for example, allowing

transitions and transversions to have heterogeneous weighting

(eg. [7]).

Network accuracy and uncertainty
ROC curves indicate the accuracy of an estimated network,

compared to the true network. A large area under the ROC curve

indicates a good estimate of the true network [39].

We additionally considered the entropy of the estimated

structure, as a measure of network uncertainty. Let X be a

network with N nodes. We define the entropy of a network node

x[X to be

H(x)~{
X
y[X

wyx log2 wyx,

where wyx is the weight we assign to a directed edge existing from

y to x, and 0ƒ{H(x)ƒlog2(N{1). Highly negative entropy

signifies uncertainty surrounding the identity of the parent of the

node.

All simulations and analyses were performed using the statistical

software R 3.0.1. Epidemic networks were plotted using the igraph

package [40].

Supporting Information

Figure S1 The effect of population size and mutation
rate on the accumulation of within-host diversity. The

propagation of diversity in an initially clonal population. For

various mutation rates and population sizes, we simulated 100,000

generations of growth and recorded the expected pairwise

distance. For each scenario, we repeated the simulation 50 times,

plotting the mean diversity, and the 95% confidence interval.

(TIF)

Figure S2 Diversity arising after a bottleneck. The

observed diversity of a population having passed through

bottlenecks of various size. For each level, we simulated 1000

independent bottlenecks, and measured the Simpson’s diversity

index (green) and the expected pairwise distance (blue).

(TIF)

Figure S3 Stochastic realizations of a series of bottle-
necks on a diverse population. Six simulations of a chain of

bottleneck events. In each simulation, the initial population is

specified as ten genotypes in equal frequency, with an expected

pairwise distance of 5 SNPs. For each scenario, the upper graph

depicts the changing genotype frequencies across bottlenecks,

while the lower plot shows the expected pairwise distance.

(TIF)

Figure S4 The reduction in host diversity caused by
repeated bottlenecks. The effect of repeated bottlenecks on a

diverse population. For a given initial population of 10 genotypes,

with an expected pairwise distance of 5 SNPs, we passed a

population through a series of 25 bottlenecks of various sizes,

allowing 1000 generations of regrowth and mutation after each

event. For each scenario, we repeated the simulation 50 times,

plotting the mean diversity and the 95% confidence interval.

(TIF)

Table S1 Area under the ROC curve (AUC) for estimat-
ed transmission networks, based on simulated epidem-
ics for a range of parameter values. For all reconstructions,

it is assumed that the order of infection is known, but infection and

removal times are not known. Bold figures indicate values

exceeding the AUC for an uninformed network, given the correct

order of infection, which was approximately 0.66. The rate of

removal was specified such that R0~2.

(DOC)

Table S2 AUC for estimated transmission networks,
using various values of proximity factor v. The epidemic

considered here corresponds to that shown in figure 5.

(DOC)

Text S1 Demonstration that the expected sample
diversity is equal to original diversity, regardless of
the size of the bottleneck.

(DOC)
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