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Progression-free survival as a surrogate endpoint for overall survival
in glioblastoma: a literature-based meta-analysis from 91 trials
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Background. The aim of this study was to determine correlations between progression-free survival (PFS) and the objective response rate
(ORR) with overall survival (OS) in glioblastoma and to evaluate their potential use as surrogates for OS.

Method. Published glioblastoma trials reporting OS and ORR and/or PFS with sufficient detail were included in correlative analyses using
weighted linear regression.

Results. Of 274 published unique glioblastomatrials, 91 were included. PFS and OS hazard ratioswere stronglycorrelated;R2 … 0.92 (95%
confidence interval [CI], 0.71–0.99). Linear regression determined that a 10% PFS risk reduction would yield an 8.1%+0.8% OS risk
reduction. R2 between median PFS and median OSwas 0.70 (95% CI, 0.59–0.79), with a higher value in trials using Response Assessment
in Neuro-Oncology (RANO; R2 … 0.96, n … 8) versus Macdonald criteria (R2 … 0.70; n … 83). No significant differences were demonstrated
between temozolomide- and bevacizumab-containing regimens (P … .10) or between trials using RANO and Macdonald criteria (P … .49).
The regression line slope between median PFS and OS was significantly higher in newly diagnosed versus recurrent disease (0.58 vs 0.35,
P … .04). R2 for 6-month PFS with 1-year OS and median OS were 0.60 (95% CI, 0.37–0.77) and 0.64 (95% CI, 0.42–0.77), respectively.
Objective response rate and OS were poorly correlated (R2 … 0.22).

Conclusion. In glioblastoma, PFS and OS are strongly correlated, indicating that PFS may be an appropriate surrogate for OS. Compared
with OS, PFS offers earlier assessment and higher statistical power at the time of analysis.

Keywords: glioblastoma, meta-analysis, overall survival, progression-free survival, regression, response rate, surrogate endpoint.

Traditionally, the success of new cancer treatments is gauged by
their ability to improve overall survival (OS) in large, randomized,
phase III trials. However, the use of OS as the primary endpoint is
often limited by long trial times and confounding effects of post-
protocol events, such as subsequent therapies. It is thus helpful
to identify and validate surrogate endpoints to facilitate efficacy
evaluation and drug approval. Proposed surrogates for OS include
progression-free survival (PFS), time to progression, and objective
response rate (ORR).1–6Progression-free survival has many advan-
tages over OS, including earlier assessment of efficacy, greater
statistical power at the time of analysis, and lack of influence
from postprogression therapies.

The relationshipbetweenPFSandOShasbeenstudied invarious
tumors. Results vary greatly by tumor type, with some reinforcing
PFS as a good surrogate endpoint for OS and others indicating
weak PFS/OS correlation; it has been shown that PFS may be an ap-
propriate surrogate for OS in colorectal cancer1,5 but may not be a
good surrogate in breast cancer.7,8

Glioblastoma is a highly aggressive form of cancer that repre-
sents 15.8% of all brain and CNS tumors.9 Despite decades of re-
search into its treatment, prognosis remains poor, with median
OS of only 12–14 months.10 While the introduction of temozolo-
mide (TMZ), an oral alkylating agent, into first-line standard of
care11 achieved some survival improvement, nearly all patients
relapse and treatment options are limited for recurrent patients,
with no accepted standard of care.12 There is therefore an unmet
need for effective, novel therapies for glioblastoma. However,
with fewer than 20 000 new cases diagnosed in the United
States each year,9 glioblastoma occurs much less frequently
than other cancers, and consequently patient accrual is low in glio-
blastoma studies. Thus, the use of trial endpoints that require pro-
longed periods of follow-up or mix varying treatments into the
primary endpoint are particularly undesirable in glioblastoma
studies.

WhilePFS representsanattractivepotential surrogateendpoint,
the relationship between PFS and OS has not been extensively
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analyzed in glioblastoma. A recent pooled analysis13 focused on
phase I and single-arm phase II trials, with specific treatments,
and evaluated the PFS/OS correlation at the individual level in 5
glioblastoma trials. While good individual-level correlation was
demonstrated, the small sample sizes precluded any conclusions
regarding correlation at trial level. Our analysis evaluates the valid-
ity of PFS and ORR as surrogate endpoints for OS using a
meta-analysis of completed published phase II and III glioblast-
oma trials and consideration of a greater range of variables than
previously evaluated.

Materials and Methods
Literature Search and Data Extraction
Completed phase II, III, and IV trials in glioblastoma published between
January 1, 1991 and June 4, 2012 were identified through a systematic
search on MEDLINE/PubMed and Trialtrove (Citeline) using the following
keywords: “oncology and CNS” OR “glioblastoma” OR “GBM” OR “glioblast-
oma multiforme” AND “survival” OR “PFS” OR “progression free survival” OR
“progression-free survival” OR “overall survival” OR “OS” OR “progression”.
Relevant sources identified in the bibliographies of reviewed papers were
also included. Publications reporting PFS and OS data from unique glioblast-
oma trials utilizing standard tumor response criteria were included.
Abstracts and other nonjournal publications were included if sufficient
detail was provided. Duplicate publications of the same trial, pediatric
studies, non–English language papers, sources lacking methodology
detail, and review/summary papers were excluded. The analysis was per-
formed using the original authors’ and per protocol endpoint definitions.
When available, hazard ratios (HRs) for PFS and OS were recorded. Treat-
ment, patient, and clinical endpoint data from each study were included
in the database. Endpoints of interest were OS, PFS, and ORR. Due to the
small number of glioblastoma trials available, the analysis was not
limited to randomized trials, and studies with mixed high-grade glioma
(World Health Organization [WHO]14 grades III and IV) patient populations
were included; these patients were denoted as “All” in the database, since
they contained both glioblastoma and anaplastic glioma histologic
subpopulations.

Statistical Methods and Analysis
Weighted linear regression analysis through the origin of the plot was used
to evaluate correlation between the following pairs of endpoints: (i) HR in
PFS and OS, (ii) median PFS (mPFS) and median OS (mOS), (iii) ORR and
mOS, (iv) 6-month PFS and mOS, and (v) 6-month PFS and 1-year OS. Pear-
son’s R2 coefficient was used as a correlation measure between these end-
points.An R2 value ofgreater than0.9 is an indicator fora strongcorrelation,
0.89 to 0.6 for a good to moderate correlation, and below 0.6 for a weak
correlation. Points were weighted by the number of patients in the
intent-to-treat population. Linear scale or log scale was selected based
on the data distribution. Confidence intervals (CIs) for R2 and the weighted
fit were calculated using a bootstrapping method (resampling 1000 times)
assuminga samplesize of 60 patients in additional trials (meansample size
per arm in the included glioblastoma trials).

Differences in the PFS/OS correlations by response criteria that include
tumor response and clinical symptomatology (Macdonald,15 Response As-
sessment in Neuro-Oncology [RANO]16), treatments (TMZ- or bevacizumab
[BEV]-containing regimens), line settings (newly diagnosed, recurrent), and
histology (glioblastoma only, mixed high-grade glioma populations) were
evaluated using analysis of covariance for weighted linear regression.
Glioblastoma-only trials were classified as those with �95% glioblastoma
histology in actual accrual. Statistical analyses were performed using R
2.14.2.17 Lead-time that could be gained by using PFS instead of OS as

the endpoint was calculated as mOS minus mPFS for each arm and com-
pared with other cancer types. Digitization was performed using Plot Digit-
izer 2.6.2 (plotdigitizer.sourceforge.net).

Results
Database
A total of 274 references were identified in the initial search. After
review, 183 were excluded: 139 due to insufficient information or
publication type, 11 due to lack of survival data, 9 review/
summary papers, 8 pediatric studies, 8 similar papers for the
same studies, and 8 due to nonstandard criteria, unclear method-
ology, or non-English language. Ninety-one unique trials were eli-
gible for the meta-analysis, including 7125 patients and 115
study arms (Table 1).18–108 Of these, 2 were published in nonjour-
nal sources: 1 abstract60 and 1 trial summary.45 Eleven HR pairs for
PFS and OS were available from 10 trials;18,22,33,58,63,73,78,84,86,94

historical data were used for the control arm to calculate HR in
3 single-arm trials,33,63,73 but in each case, the historical patient
population had similar baseline and treatment characteristics
compared with the study population. None of these 10 trials con-
tained any agents targeting vascular endothelial growth factor
(VEGF) or VEGF receptor (VEGFR).

Correlation Between HR for PFS and OS
R2 was 0.92 (95% CI, 0.71–0.99) for the weighted linear regression
of HR in OS as a function of HR in PFS (Fig. 1), indicating strong cor-
relation. Linear regression demonstrated that a 10% risk reduction
for PFS would yield an 8.1%+0.8% risk reduction for OS.

Correlation Between Median PFS and OS
There was a good correlation between mPFS and mOS, with an R2

of 0.70 (95% CI, 0.59–0.79; Fig. 2A). There was no significant
difference in the slope of the regression line between trials using
Macdonald and RANO response criteria (P … .49), with good correl-
ation between mPFS and mOS observed with both (Fig. 2B). Some
trials (eg, Friedman et al.67) used criteria that were similar to
RANO and thus were classified as RANO criteria. When the correl-
ation between mPFS and mOS was evaluated by treatments,
R2 was 0.70 (95% CI, 0.50–0.85) and 0.75 (95% CI, 0.60–0.86)
for TMZ-containing and non-TMZ-containing regimens, respectively
(Fig. 2C). No significant difference in the slope of the regression line
was demonstrated between these 2 treatment types (P … .10).
There was no significant difference in the slope of the regression
line between mPFS and mOS for BEV-containing and non-BEV-
containing treatments (P … .46), with good correlation between
mPFS and mOS observed with both (R2 [95% CI]: 0.95 [0.65–0.99]
vs 0.70 [0.56–0.80]; Fig. 2D). A significant difference in the slope of
the regression line between mPFS and mOS was demonstrated
between line settings (newly diagnosed vs recurrent, P … .04;
Fig. 2E) and between histology types (glioblastoma only vs mixed
histology, P … .02; Fig. 2F). When the correlation between mPFS
and mOS was evaluated in trials conducted at different time
periods (1991 to present), no significant difference in the slope of
the regression line was demonstrated.
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Correlation Between Other Endpoints and OS
Objective response ratewaspoorlycorrelatedwithmOS(R2 … 0.22;
Fig. 3). For 6-month PFS versus 1-year OS (by study arm), R2 was
0.60 (95% CI, 0.37–0.77), indicating a moderate correlation
between the 2 survival rates (Fig. 4A). The correlation between
6-month PFS and mOS yielded an R2 of 0.64 (95% CI, 0.42–0.77;
Fig. 4B).

Lead-time Analysis
The lead-time that could be gained by using PFS instead of OS as
the endpoint averaged 7.4 months (max 17.6 mo) and 4.2
months (max 8.1 mo) in newly diagnosed and recurrent cases,

respectively (Fig. 5). The lead-time increased with increasing
mOS: for newly diagnosed cases, it increased from 6–7 months
for a mOS of 1 year to �9–10 months for a mOS of 1.5 years; for
recurrent patients, it increased from 3–4 months for a mOS of
half a year to �5–6 months for a mOS of 9 months.

Discussion
This is asystematic evaluation ofwhether PFS is anappropriatesur-
rogateendpoint for OS inglioblastomaclinical trials. Weassembled
the largest literature glioblastoma trial database to date, which
included almost all published glioblastoma trials (phase II and
beyond) since 1991, as well as the latest advances in treatment

Table 1. Summary of data included in literature database

Trial Arm Patients (ITT) References

Phase
II 84 99 5161 18–21,23,24,26–37,39–59,61–77,79–85,87–93,95–108
III 7 16 1964 22,25,38,60,78,86,94

Maintenance
Yes 16a 19 1357 32,33,38,49,61,63,64,66,73,78,80,81,87,99,104,107
No 76a 96 5768 18–31,34–37,39–48,50–60,62,65,67–72,74–77,79,82–86,88–98,

100–103,105,106,108
Treatment

Temozolomide containing 37 40 2555 18,21,23,27,30,31,33,34,37,43,44,48,49,52,55,62,63,69,
73–75,78–81,83,84,87,95,96,98,99,101,104,106,107

Bevacizumab containing 12 15 678 51,67,70,71,76,88,91,93,99,104,106,107
Randomized

Yes 13 30 3128 18,22,25,38,58,60,67,78,79,84,86,94,96
No (single arm) 78 85 3997 19–21,23,24,26–37,39–57,59,61–66,68–77,80–83,85,87–93,95,97–108

Treatment line setting
Newly diagnosed 30 35 2412 20,25,27,28,32,33,36,38,39,40,43,45,49,54,55,62,63,65,73,74,78,80,81,87,98,

99,103,104,107,108
Recurrent 57 75 4049 18,19,21,23,24,26,29,30,34,35,41,42,44,46–48,50–53,56–58,60,61,64,

66–72,75–77,79,82–86,88–97,100–102,105,106
Adjuvant/neoadjuvant 2 3 586 22/31
Unknown 2 2 78 37,59

Histology
Glioblastoma 55 72 3722 22,24,26,27,29,30,32,33,35–39,45,46,48,49,51,53–56,59–61,63–69,71–74,

76,79,82,85,87–89,92–94,98,99,101–107
Grade III + IV (mixed grouping) 36 43 3403 18–21,23,25,28,31,34,40–44,47,50,52,57,58,62,70,75,77,78,80,81,

83,84,86,90,91,95–97,100,108
OS data available (glioblastoma)

49 63 3494 22,26,27,29,32,33,35–39,49,51,53–56,59,61,63–69,71–74,76,79,82,85,
87–89,92–94,98,99,101–107

PFS data available (glioblastoma)
Macdonald 41 52 2352 22,24,26,27,30,33,35–37,39,45,46,48,51,53–56,59–61,63–65,68,69,

72–74,79,82,85,87–89,92,98,101–103,105
RANO 6 7 277 71,76,93,104,106,107
Levin 2 3 336 94,99
RECIST 2 2 107 29,66
WHO 1 2 167 67
Unknown/unclear 3 6 483 32,38,49

Abbreviation: ITT, intent-to-treat.
aOne trial78 had both a maintenance arm and a nonmaintenance arm.
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and clinicalmanagement ofglioblastoma, suchastrials evaluating
targeted therapies and trials using RANO criteria. Our analysis
demonstrated a good correlation between HR of PFS and OS and
between median PFS and OS, with a 10% risk reduction for PFS
yielding an 8.1%+0.8% risk reduction for OS. Objective response
rate and OS were poorly correlated.

There are several advantages of using PFS as a surrogate end-
point for OS. Firstly, PFSoffers the opportunity forearlyassessment.
We demonstrated that a significant lead-time benefit is achieved
using PFS instead of OS as an endpoint in glioblastoma. Notably,
the lead-time in newly diagnosed glioblastoma is comparable to

that in metastatic colorectal carcinoma (mean �8.5 mo, max
�13.8 mo) based on digitized data.1 Secondly, delaying progres-
sion may represent a clinically significant benefit for glioblastoma
patients. Glioblastoma is a highly infiltrative and destructive
tumor that generates significant peritumoral edema and mass
effect. Progressive underlying tumor is frequently associated with
new or worsening neurologic deficits, which may in turn impact
overall function and quality of life. Thirdly, PFS offers higher statis-
tical power, since more PFS events usually have occurred by the
time of analysis than OS events, especially given the significant
PFS lead-time in glioblastoma. Notably, in our analysis, the
observed percent risk reduction for PFS was higher than the
percent risk reduction for OS, indicating that PFS is a more sensitive
endpoint for treatment effect. Finally, PFS is independent of subse-
quent postprogression treatment.

However, the use of PFS is associated with several limitations
that must also be considered. Firstly, it is important to standardize
response criteria; a number of standard criteria are being used in
glioblastoma trials and have been used in trials building the basis
of our knowledge, such as Macdonald, Levin, Response Evaluation
Criteria In Solid Tumors (RECIST), and RANO. Secondly, the discrep-
ancy between the time of clinical event (progression or death) and
radiologic assessment could be a confounding factor, and there-
fore the time interval between clinical and radiologic assessments
should be minimized and consistent across studies. Thirdly, the as-
sociation between radiologic progression, clinical benefit, and
quality of life remains open for discussion.

The debate about the definition of a valid surrogate endpoint is
ongoing, with many proposals under consideration.109 For
example, it has been proposed that the conclusion of the statistical
test based on the surrogate endpoint should be consistent with
that based on the gold standard endpoint, and/or the treatment
effect on the surrogate endpoint should predict the treatment
effect on the gold standard endpoint.110 –112 However, there is a
general consensus that there should be good correlation
between the surrogate and the gold standard endpoints and that
the treatment effect on the gold standard endpoint should be cap-
tured by the surrogate endpoint.113

Our analysis demonstrated that the percentage risk reduction
calculated from the HR of PFS is highly correlated with the percent-
age risk reduction calculated from the HR of OS in glioblastoma
trials, indicating that the treatment effect on PFS can predict the
treatment effect on OS in glioblastoma. A great portion (92%) of
variability in OS difference can be explained by the PFS difference
(R2 … 0.92). Notably, the 95% CI and prediction interval were rela-
tively narrow. Median PFS and OS were also well correlated (R2 …
0.70). Taken together, these results lend substantial support to
the use of PFS as a surrogate endpoint for OS in glioblastoma trials.

While the validity of PFS as a surrogate for OS can be demon-
strated in some tumor types, the effect is not consistent.1,5,7,8

Broglio et al6 attributed differences to variations in survival post-
progression (SPP), where SPP is the time difference between OS
and PFS. Overall survival in cancers with long SPPs are more
affected by the presence of confounding factors and therefore
demonstrate weaker correlations with PFS. Glioblastoma patients
have a median SPP of around 7 months,114 and therefore the PFS
versus OS correlation should be fairly strong. Our analysis supports
this premise.

Although sample sizes were small in ouranalysis, everyattempt
wasmade tostandardize the data, withexclusionof trials including

Fig. 1. Correlation in treatment effects (HR) between PFS and OS. The linear
regression shown in this and subsequent figures is all weighted by trial size.
Thesizesof the symbolsare proportional to the numberof patients included
in the trial for this and subsequent figures. Treatments (year of publication)
are: 1. procarbazine vs TMZ (2000)18; 2. carmustine plus radiotherapy (RT)
with or without cisplatin (2003)22; 3. cis-retinoic acid vs thalidomide, both
in combination with TMZ and RT (2005)33; 4. cilengitide 500 mg vs
2000 mg (2008)58; 5. TMZ plus RT with or without pegylated liposomal
doxorubicin (2009)63; 6. erlotinib vs thalidomide/cis-retinoic acid, all in
combination with TMZ and RT (2009)73; 7. RT with or without TMZ
(2009)78; 8. procarbazine, lomustine, and vincristine vs TMZ (2010)84; 9.
TMZ 200 mg/m2 for 5 days versus 100 mg/m2 for 21 days (2010)84; 10.
hydroxyurea with or without imatinib (2010)86; 11. enzastaurin vs
lomustine, modified Levin criterion (2010).94 All trials used Macdonald or
RANO criteria except for number 11.
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Fig. 2. (A) Correlation between mPFS and mOS bystudyarm. (B) Correlation between mPFSand mOS in trials using Macdonald or RANO criteria for response
evaluation.All RANOtrialscontainBEVtest regimens,andthe3BEV-containing trialsusingMacdonaldcriteriaare indicated inblue. Thereare83armsusing
Macdonald criteria (red circle or square) and 8 arms (7 unique trials) using RANO criteria (black circle or square). (C) Correlation between mPFS and mOS
separated by treatment (TMZ [red] vs non-TMZ [black]). Trials included used the Macdonald/RANO criteria for tumor assessment. (D) Correlation
between mPFS and mOS separated by treatment (BEV [red] vs non-BEV [black]). Trials included used the Macdonald/RANO criteria for tumor
assessment. (E) Correlation between mPFS and mOS separated by line settings (newly diagnosed vs recurrent). (F) Correlation between mPFS and mOS
separated by histology (glioblastoma only vs mixed histology). Abbreviation: PI, prediction interval.
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insufficient methodological detail and those not utilizing standar-
dized response assessment and study endpoints.

The effects of TMZ and BEV on the correlation between mPFS
and mOS were selected for study because these 2 treatments
appeared most often in the literature, and too few trials report
other specific treatments. Interestingly, despite differing mechan-
isms of action, these treatments demonstrated consistent correla-
tions between mPFS and mOS. Although the small sample number
in our analysis precludes any definitive conclusions with regard to
treatment effect, the results warrant future studies.

Historically, it has been shown that patients with anaplastic
glioma (WHO grade III) have a much better prognosis and sur-
vival115 than patients with glioblastoma. It would be logical to
assume that amixedgrade III–IVgroup would havebetter survival
because the anaplastic glioma patients’ survival would increase
the median values for the entire group. Our results confirmed this
assumption: the slope of the regression line between mPFS and
mOS is significantly higher in trials with mixed grade III–IV
glioma compared with glioblastoma only. However, the difference
was marginal. Possible explanations for this observation may
include the fact that the lower left corner data points, which re-
present the mixed histology group, also represent recurrent trials
(poor PFS and OS) predominantly, and most recurrent glioma
patientshaveprogressed fromgrade III toglioblastoma.Converse-
ly, data in the upper right corner (high PFS, high OS) represent
newly diagnosed cases predominantly and support a trend
toward better OS for mixed patients (better prognosis) compared
with glioblastoma-only patients.

The accrual period in the trials included in this analysis ranged
from 1991 to the present. During this period, advances have

been made in manyaspects of glioblastomaclinical management,
such as diagnostics, surgical and imaging technology, treatments,
recurrence monitoring, and standard supportive care. However,
the correlation betweenmedian PFS and OS seemsto be consistent
across different time periods, which supports the applicability of
these results to future trials.

There was only a moderate correlation between 6-month PFS
and mOS, which is consistent with the results of Ballman et al,116

who investigated the relationship between 6-month PFS and
1-year OS in phase II glioblastoma trials. However, it is impossible
in our analysis to identify at which time point the PFS rate would be
a good predictor for OS because most trials report only 6-month
PFS and mPFS and individual patient data are not available to us.
In addition, ORR and OS were poorly correlated (R2 … 0.22).

The applicability of our estimate of the linear relationship
between the HR of OS and HR of PFS for trials evaluating anti-VEGF

Fig. 3. Correlation between ORR and median OS. Abbreviation: PI,
prediction interval.

Fig. 4. (A) Correlation between 6-month PFS and 1-year OS. (B) Correlation
between 6-month PFS and median OS. Abbreviation: PI, prediction interval.
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agents (ie, agentstargetingVEGForVEGFR)mayrequire further val-
idationbecausenoneof the trials in theHRcorrelationanalysis con-
tained an anti-VEGF agent, such as BEV (an anti-VEGF antibody) or
cediranib (a VEGFR tyrosine kinase inhibitor). VEGF blockade
decreases vascular permeability and normalizes vascular perfu-
sion and the blood–brain barrier, often causing decreased contrast
enhancement on MRI examinations without affecting the under-
lying tumor, a phenomenon called pseudoresponse.117 In con-
trast, radiochemotherapy could induce an inflammatory reaction
(edema) and abnormal vessel permeability, causing new or
increased contrast enhancement without affecting the underlying
tumor, a phenomenon called pseudoprogression.118 Furthermore,
radiochemotherapies preceding or following anti-VEGF therapies
could further complicate MRI evaluation given the rapid onset of
pseudoprogression and pseudoresponse. Therefore, models
based purely on radiochemotherapies should not be extrapolated
to anti-VEGF therapies without cautious validation.

There are some limitations in our analysis. Notably, we used lit-
erature instead of individual patient data, and HRs were reported in
only a small number of studies due to lack of large, phase III, ran-
domized glioblastoma trials. Furthermore, modifications to the
standard response criteria were made in some trials, and details
of treatments after progression were rarely reported, making it dif-
ficult to assess the potential confounding effects of subsequent
treatments and crossover therapies on OS. The number of
studies incorporating the RANO criteria was also small. Although
these criteria have not been formally validated, they importantly
address the phenomenon of pseudoprogression and pseudore-
sponse.16 Although we noted a consistent relationship between
mPFS and mOS regardless of radiologic assessment methods,
future analyses may further evaluate this relationship in more
trials incorporating the RANO criteria.

In conclusion, our meta-analysis of 91 unique glioblastoma
trials demonstrated a strong correlation between improvements
in PFS and OS. There is also a good correlation between median
PFS and OS in glioblastoma trials, regardless of response criteria,
treatment, line settings, and histology. However, poor correlation
was observed between ORR and OS, indicating that a high ORR
may not translate into improved OS. Together these findings indi-
cate that PFS may be an appropriate surrogate for OS in glioblast-
oma trials. Compared with OS, PFS offers the opportunity for
earlier assessment of efficacy and higher statistical power, so es-
tablishment of these correlations may facilitate interpretation of
interim analyses and future trial design.
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