
Using electronic health record data to develop 
inpatient mortality predictive model: Acute 
Laboratory Risk of Mortality Score (ALaRMS)

Citation
Tabak, Ying P, Xiaowu Sun, Carlos M Nunez, and Richard S Johannes. 2014. “Using electronic 
health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of 
Mortality Score (ALaRMS).” Journal of the American Medical Informatics Association : JAMIA 21 
(3): 455-463. doi:10.1136/amiajnl-2013-001790. http://dx.doi.org/10.1136/amiajnl-2013-001790.

Published Version
doi:10.1136/amiajnl-2013-001790

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12152985

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:12152985
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Using%20electronic%20health%20record%20data%20to%20develop%20inpatient%20mortality%20predictive%20model:%20Acute%20Laboratory%20Risk%20of%20Mortality%20Score%20(ALaRMS)&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=b7cf96503735ef1e60826efa0996a4da&department
https://dash.harvard.edu/pages/accessibility


Using electronic health record data to develop
inpatient mortality predictive model: Acute
Laboratory Risk of Mortality Score (ALaRMS)
Ying P Tabak,1 Xiaowu Sun,1 Carlos M Nunez,1,2 Richard S Johannes1,3

▸ Additional material is
published online only. To view
please visit the journal online
(http://dx.doi.org/10.1136/
amiajnl-2013-001790).
1Department of Clinical
Research, CareFusion, San
Diego, California, USA
2The Biomedical Informatics
Research Center at San Diego
State University, San Diego,
California, USA
3Harvard Medical School and
Brigham and Women’s
Hospital, Boston,
Massachusetts, USA

Correspondence to
Dr Ying P Tabak, Scientific
Research/Biostatistics, Clinical
Research, CareFusion, 3750
Torrey View Court, San Diego,
CA 92130, USA;
ying.tabak@carefusion.com

Received 7 March 2013
Revised 4 September 2013
Accepted 19 September 2013
Published Online First
4 October 2013

To cite: Tabak YP, Sun X,
Nunez CM, et al. J Am Med
Inform Assoc 2014;21:
455–463.

ABSTRACT
Objective Using numeric laboratory data and
administrative data from hospital electronic health record
(EHR) systems, to develop an inpatient mortality
predictive model.
Methods Using EHR data of 1 428 824 adult
discharges from 70 hospitals in 2006–2007, we
developed the Acute Laboratory Risk of Mortality Score
(ALaRMS) using age, gender, and initial laboratory
values on admission as candidate variables. We then
added administrative variables using the Agency for
Healthcare Research and Quality (AHRQ)’s clinical
classification software (CCS) and comorbidity software
(CS) as disease classification tools. We validated the
model using 770 523 discharges in 2008.
Results Mortality predictors with ORs >2.00 included
age, deranged albumin, arterial pH, bands, blood urea
nitrogen, oxygen partial pressure, platelets, pro-brain
natriuretic peptide, troponin I, and white blood cell
counts. The ALaRMS model c-statistic was 0.87. Adding
the CCS and CS variables increased the c-statistic to 0.91.
The relative contributions were 69% (ALaRMS), 25%
(CCS), and 6% (CS). Furthermore, the integrated
discrimination improvement statistic demonstrated a 127%
(95% CI 122% to 133%) overall improvement when
ALaRMS was added to CCS and CS variables. In contrast,
only a 22% (CI 19% to 25%) improvement was seen
when CCS and CS variables were added to ALaRMS.
Conclusions EHR data can generate clinically plausible
mortality predictive models with excellent discrimination.
ALaRMS uses automated laboratory data widely available
on admission, providing opportunities to aid real-time
decision support. Models that incorporate laboratory and
AHRQ’s CCS and CS variables have utility for risk
adjustment in retrospective outcome studies.

INTRODUCTION
Mortality predictive models incorporating objective
clinical data enhance clinical validity. With the
deployment of electronic health record (EHR)
systems, clinical data, especially numeric laboratory
data, are becoming widely automated. Rapid assess-
ment of clinical severity using EHR data available
at the time of admission may aid decision support
and improve healthcare quality. Previous studies
have demonstrated that laboratory data contribute
most to predicting mortality in hospitalized patients
in both disease-specific and generic models in the
US patient population.1–6 Studies from other coun-
tries have also demonstrated the high predictive
value for laboratory data.7–9

The disease-specific risk adjustment model is devel-
oped for patients with specific clinical conditions (eg,

pneumonia, septicemia, heart failure, acute myocar-
dial infarction).4–6 Although disease-specific models
are commonly used for outcome studies and hospital
profiling, their application is limited to high-volume
clinical conditions, while low-volume clinical condi-
tions are less studied. Furthermore, disease specific
models usually rely on discharge principal diagnosis
for disease classification, which limits real-time
applications because discharge diagnoses are not
available until after patients are discharged from the
hospital.
The generic approach generates one predictive

model for all pertinent patients, such as all patients
admitted to intensive care units (ICUs). For example,
the Acute Physiology and Chronic Health Evaluation
(APACHE IV) and Simplified Acute Physiology Score
(SAPS) are developed and applied to all patients
admitted to ICUs.1 2 A newer generic model, the
Laboratory-based Acute Physiology Score (LAPS),
and the COmorbidity Point Score (COPS), were
developed for all patients admitted to acute-care hos-
pitals,3 and used outpatient laboratory data from the
24 h preceding the index hospitalization and diagno-
sis data from the 12 months preceding the index hos-
pitalization as predictor variables. This requires
highly integrated inpatient and outpatient electronic
systems, which are currently less available than
inpatient data only. Furthermore, studies incorporat-
ing classification of clinical conditions as covariates
in the model tend to use proprietary classification
systems, which are not in the public domain.2–4 6

The objectives of our study were twofold: (1) use
EHR data available at the time of inpatient admission
to develop an Acute Laboratory Risk of Mortality
Score (ALaRMS), to serve as a potential real-time
decision support tool for patients admitted to acute
care hospitals; and (2) add administrative data avail-
able after patient discharge to the ALaRMS model to
serve as a risk adjustment tool for retrospective
inpatient outcome studies. To facilitate the standard-
ization, reproducibility, and public access, we used
the clinical classification algorithms of diagnoses in
the public domain by the Agency for Healthcare
Research and Quality (AHRQ).10 11

METHODS
Data
We used one of the clinical research databases from
CareFusion (San Diego, California, USA (formerly
Cardinal Health/MediQual/MedisGroups)). This
database has been used for research since the late
1980s and the data collection system has been fully
described elsewhere.4 6 12–19 We used data from the
EHR systems of 70 hospitals for all consecutively
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hospitalized patients from 2006 through 2008. The laboratory
data included numeric laboratory test results and collection times.
A total of 23 numeric laboratory test results were included:
serum chemistry (alphabetically ordered: albumin, aspartate trans-
aminase, alkaline phosphatase, blood urea nitrogen (BUN),
calcium, creatinine, glucose, potassium (K), sodium (Na), and
total bilirubin); hematology and coagulation parameters (bands,
hemoglobin, partial thromboplastin time, prothrombin time inter-
national normalized ratio (PT INR), platelets, and white blood
cell count (WBC)); arterial blood gas (partial pressure of carbon
dioxide (PCO2), partial pressure of oxygen (PO2), and pH
value); cardiac markers (brain natriuretic peptide (BNP), creatine
phosphokinase MB (CPK MB), pro-BNP, and troponin I).

The database also included imported hospital administrative
data comprising demographics, discharge disposition (which
identifies inpatient mortality status), principal diagnosis, and up
to 24 secondary diagnosis codes from the index hospitalization.
We used discharges in 2006 and 2007 as the derivation cohort
and discharges in 2008 as the validation cohort. A total of 95%
of patients had laboratory data on the day of admission for both
cohorts. For patients with multiple laboratory assessments on
the admission day, we used the first reported value.

Model development and validation
Step 1: develop and validate ALaRMS
We fit a logistic regression model using age, gender, and the first
laboratory test results on the day of admission as candidate pre-
dictor variables and inpatient mortality as the outcome variable.
We partitioned age into 5-year increments with age <30 years
as the reference group. We partitioned each laboratory variable
into multiple discretion levels based on the distribution of
laboratory values and their associated mortality rates, and desig-
nated the laboratory range associated with the lowest mortality
rate as the reference group. We examined mortality rates for
patients with missing values for each laboratory assessment and
collapsed them into the corresponding reference group because
their observed mortality rate was most comparable with that of
the reference group.

We converted the final laboratory model to an integer score
system (ALaRMS) using a method described in the Framingham
Study.20 Specifically, we identified the variable with the smallest
coefficient in the final multivariable model and applied it as the
denominator. Then we divided each of the remaining regression
coefficients in the model by this denominator and rounded the
resulting quotient to the nearest whole number (integer), which
formed the score weight for that variable. We then calculated
each person’s overall risk score by summing the points across all
variables present. Converting model coefficients into a score
system makes the risk adjustment model easy to understand and
implement. We validated the ALaRMS using the validation
cohort.

Step 2: fit ALaRMS+CCS+CS model
We summed all applicable laboratory points into a single
ALaRMS value for each patient, and then fit a logistic regression
model with the stepwise approach. We used the ALaRMS score
as a continuous candidate variable along with candidate covari-
ates of principal diagnosis-based clinical categories and secondary
diagnosis-based comorbidity categories. We adopted AHRQ’s
clinical classification software (CCS)11 and comorbidity software
(CS)10 as standard classification tools. The CCS collapses over
14 000 ICD-9-CM diagnosis codes (International Classification
of Diseases, 9th revision, Clinical Modification) into 285

clinically meaningful categories. The CS grouped selected second-
ary diagnosis codes into 30 comorbidity categories.

Step 3: validate ALaRMS+CCS+CS model
We validated the ALaRMS+CCS+CS model using the valid-
ation cohort. Specifically, we used the ALaRMS+CCS+CS
model coefficients generated from the derivation cohort to
score the validation cohort. We used the c-statistic and the
Hosmer–Lemeshow statistic to evaluate the model fit.

Analysis on the relative importance of ALaRMS versus CCS
and CS variables
We calculated the relative unique contributions of ALaRMS,
CCS, and CS using methods described in previous research.2 3 6

Specifically, we calculated changes in the model fit log likelihood
value when each group of variables was retained and then
removed from the full model.

To further evaluate the relative importance of ALaRMS versus
CCS and CS variables in the mortality predictive models, we
conducted the following additional analyses: (1) we fit four indi-
vidual models using age and gender alone, laboratory variables
alone, CCS alone, and CS alone, and compared the c-statistics;
(2) we compared the cumulative change in the c-statistics by
reversing the order of ALaRMS and the CCS and CS variables;
(3) and we conducted integrated discrimination improvement
(IDI) analysis, which assesses the new model’s ability to improve
the integrated sensitivity without sacrificing the integrated
specificity.21

Sensitivity analysis
To test whether our model could be applied to different types
of patients, we conducted sensitivity analyses on model fit to
different subgroups by patient age, medical versus surgical
status, hospital teaching status, number of beds, and urban–rural
status.

All analyses were conducted using SAS V.9.01. The study was
approved by the New England Institutional Review Board/
Human Subjects Research Committee (Wellesley, Massachusetts,
USA) and conducted in compliance with the Health Insurance
Portability and Accountability Act (HIPAA), and the Helsinki
Declaration.

RESULTS
Patient characteristics
The derivation cohort comprised 1 428 824 discharges and
34 147 deaths (2.4% mortality rate) (table 1). Median age was
63 (IQR: 45, 78), and 58.9% were women. Approximately
83.6% were white, 7.9% were black, and 8.5% were other race/
ethnicity. For payers, 37.7% were Medicare, 8.7% were
Medicaid, and the rest (53.6%) were private or other payers.
Approximately 64.1% of discharges were from teaching (n=36)
and 35.9% were from non-teaching (n=34) hospitals; 52.6% of
discharges were from small and medium (bed size ≤300) and
47.4% were from large hospitals (bed size >300); 83.9% were
from urban and 16.1% were from rural hospitals. The valid-
ation cohort comprised 770 523 discharges and 18 456 deaths
(2.4% mortality rate), with similar patient characteristics.

ALaRMS model
Age was a significant mortality predictor (table 2). Compared
with patients aged less than 30 years (reference age group with
OR of 1.00 and risk point weight of 0), patients aged between 30
and 35 had a moderate increase in mortality risk (3 points), and
patients aged between 35 and 39 old had a steep increase in
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mortality risk (10 points). Thereafter, the mortality risk increased
2–4 additional points consecutively for every 5-year increment.

The laboratory covariates with the highest mortality impact
(risk scores≥10; approximate ORs ≥2) were albumin ≤2.4 g/dL,
pro-BNP >18 000 pg/mL, BUN >55 mg/dL, arterial pH ≤7.2,
arterial pH 7.21–7.30, arterial pH 7.31–7.35, PO2 ≤50 mmHg,
PO2 >140 mmHg, bands >32%, platelets ≤115 000 cells/mm3,
WBC >19 800 cells/mm3, and troponin I >0.3 ng/mL or CPK
MB >34 ng/mL (table 2). Detailed ALaRMS model parameters
with 95% CIs are presented in online supplementary appendix
A. The ALaRMS model c-statistic was 0.87 with good model cali-
bration (figure 1A). The predicted probability of mortality risk
ranged from 0.004% to 99.3%. Mean ALaRMS score was 36
(SD 21); median was 36 (IQR 22, 49). The results for the valid-
ation cohort were similar (figure 1A).

ALaRMS+CCS and CS model
In addition to the ALaRMS variables, the logistic regression
model yielded 35 CCS and 9 CS significant covariates (table 3).
Every point increase in ALaRMS score resulted in an approxi-
mately 6% increase in mortality risk (OR 1.057; 95% CI 1.056
to 1.058). The principal diagnosis-based CCS variables with
ORs >2.00 included cardiovascular disease, major organ, hema-
tologic, or metastatic cancers, brain or multiple traumas, and
severe infectious diseases (eg, septicemia, HIV). Only one sec-
ondary diagnosis-based comorbidity variable (metastatic cancer)
in the CS had an OR >2.00. Adding CCS and CS variables

increased the model c-statistic from 0.87 to 0.91. When the
ALaRMS+CCS and CS model coefficients were applied to the
2008 validation cohort, the model c-statistic was 0.90. The
model exhibited good calibration for both the derivation and
validation cohorts (figure 1B).

Analysis on the relative importance of ALaRMS versus CCS
and CS variables
The relative contributions to the model predictive ability were
69% for ALaRMS, 25% for CCS, and 6% for CS. The c-
statistics were 0.704 for model with age and gender variables
alone, 0.843 for laboratory variables alone, 0.776 for CCS vari-
ables alone, and 0.713 for CS variables alone.

The c-statistic improved from 0.838 to 0.907 when ALaRMS
was added to the CCS and CS model (table 4). In contrast, the
c-statistic improved from 0.868 to 0.907 when CCS and CS
variables added to ALaRMS.

The IDI analysis revealed that adding ALaRMS on top of
CCS and CS variables improved the IDI by 127% (95% CI
122% to 133%) (table 4). In contrast, adding CCS and CS vari-
ables on top of ALaRMS only improved the IDI by 22% (95%
CI 19% to 25%).

Sensitivity analyses on model applicability to subgroups of
patients
The ALaRMS+CCS+CS model exhibited excellent discrimin-
ation for age, teaching status, size (number of beds), location,

Table 1 Patient characteristics by derivation and validation cohorts

Variable

Derivation cohort (2006–2007) Validation cohort (2008)

Discharges, n (%) Mortality, n (%) Discharges, n (%) Mortality, n (%)

Total 1 428 824 34 147 (2.4) 770 523 18 456 (2.4)
Age
Age, median (IQR) 63 (45, 78) 63 (45, 78)
Age <65 744 160 (52.1) 7961 (1.1) 405 566 (52.6) 4444 (1.1)
Age ≥65 684 664 (47.9) 26 186 (3.8) 364 957 (47.4) 14 012 (3.8)

Gender

Men 579 562 (41.2) 16 797 (2.9) 318 966 (41.6) 9282 (2.9)
Women 849 262 (58.9) 17 350 (2.0) 451 557 (58.4) 9174 (2.0)

Race/ethnicity
White 1 177 959 (83.6) 28 774 (2.4) 600 305 (78.3) 14 740 (2.5)
Black 110 565 (7.9) 2182 (2.0) 63 908 (8.3) 1191 (1.9)
Other 140 300 (8.5) 3191 (2.3) 106 310 (13.4) 2525 (2.4)

Payer
Medicare 531 347 (37.7) 19 552 (3.7) 271 342 (35.4) 9947 (3.7)
Medicaid 122 650 (8.7) 1197 (1.0) 70 193 (9.2) 715 (1.0)
Private or other 774 827 (53.6) 13 398 (1.7) 428 988 (55.5) 7794 (1.8)

Teaching status
Teaching 915 321 (64.1) 22 004 (2.4) 496 452 (64.4) 12 132 (2.4)
Non-teaching 513 503 (35.9) 12 143 (2.4) 274 071 (35.6) 6324 (2.3)

Number of beds
≤300 751 677 (52.6) 16 868 (2.2) 400 131 (51.9) 8543 (2.1)
>300 677 147 (47.4) 17 279 (2.6) 370 392 (48.1) 9913 (2.7)

Urban/rural status
Urban 1 198 334 (83.9) 28 768 (2.4) 655 528 (85.1) 15 845 (2.4)
Rural 230 490 (16.1) 5379 (2.3) 114 995 (14.9) 2611 (2.3)

Medical/surgical discharges
Medical 939 081 (65.7) 26 621 (2.8) 514 932 (66.8) 14 519 (2.8)
Surgical 489 743 (34.3) 7526 (1.5) 255 591 (33.2) 3937 (1.5)
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and medical versus surgical subgroups (table 5). The c-statistic
for all subgroup analyses ranged from 0.86 to 0.94 and the cali-
brations were good (figure 2).

DISCUSSION
Using over 2 million discharges from the EHR systems with
numeric laboratory results, we demonstrated that the laboratory

results obtained first on the day of admission can generate a
clinically valid mortality predictive model with excellent predict-
ive ability (the c-statistic of 0.87). ALaRMS may have utility for
real-time decision support because it uses only EHR data available
at the time of admission. The large sample size enabled precise par-
ameter estimates as indicated by narrow CIs. We further demon-
strated that AHRQ’s standard principal diagnosis-based classification

Table 2 Acute Laboratory Risk of Mortality Score (ALaRMS)

Age 18–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89 >89
Score 0 3 10 13 17 20 23 25 27 30 32 35 38 42

Gender Female Male
Score 0 2

Albumin (g/dL) ≤2.4 2.5–2.7 2.8–3 3.1–3.3 >3.3
Score 14 7 4 1 0

AST (U/L) ≤30 31–40 41–60 61–100 >100
Score 0 2 4 6 9

Total bilirubin (mg/dL) ≤1.4 1.5–2 >2.0
Score 0 1 4

Calcium (mg/dL) ≤7.9 8–8.4 8.5–10.1 >10.1
Score 4 1 0 3

Creatinine (mg/dL) ≤2.0 >2.0
Score 0 1

pro-BNP (pg/dL) ≤8000 8001–18 000 >18 000
Score 0 5 10

BNP ≤1200 1201–2400 >2400
Score 0 2 4

Glucose (mg/dL) ≤70 71–135 136–165 >165

Score 7 0 2 5
K (mEq/L) ≤3.2 3.3–4.9 5–5.3 >5.3

Score 3 0 2 3
Na (mEq/L) ≤130 131–135 136–143 144–145 >145

Score 4 1 0 4 9
Alkaline phos (U/L) ≤115 116–220 221–630 >630

Score 0 2 5 8
BUN (mg/dL) ≤25 26–30 31–40 41–55 >55

Score 0 4 6 8 10
pH Arterial ≤7.2 7.21–7.3 7.31–7.35 7.36–7.48 >7.48

Score 21 13 10 0 8
PO2 Arterial (mm Hg) ≤50 50.1–55 55.1–140 >140

Score 12 9 0 12
pCO2 Arterial (mm Hg) ≤35 36–50 >50

Score 9 0 7
PTT ≤22 23–45 45.1–55 >55

Score 3 0 3 4
PT INR ≤1.1 1.11–1.4 1.41–2 2.1–5 >5

Score 0 4 7 5 8
Bands (%) ≤6 7–13 14–32 >32

Score 0 6 9 12
Hemoglobin (g/dL) ≤10 11–18 >18

Score 2 0 4
Platelets (109/L) ≤115 115.1–150 150.1–420 >420

Score 10 2 0 2
WBC (1000/mm3) ≤4.3 4.4–10.9 11–14.1 14.2–19.8 >19.8

Score 4 0 4 7 12
Troponin I (ng/mL) ≤0.04 0.05–0.1 0.11–0.2 0.21–0.3 >0.3
CPK MB (ng/mL)* ≤2 3–5 6–10 11–34 >34

Score 0 2 4 8 13

Reference range for each variable is presented in bold.
*Use troponin I when available; otherwise use CPK MB.
AST, aspartate transaminase; Alkaline phos, alkaline phosphatase; BNP, brain natriuretic peptide; BUN, blood urea nitrogen; CPK MB, creatine phosphokinase MB; PCO2, partial
pressure of carbon dioxide in arterial blood; PO2, partial pressure of oxygen in arterial blood; pro-BNP, pro-brain natriuretic peptide; PTT, partial thromboplastin time; PT INR,
prothrombin time international normalized ratio; WBC, white blood cell count.
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(CCS) and secondary diagnosis-based comorbidity (CS) can be
incorporated and further improve model c-statistic from 0.87 to
0.91. The model that incorporated CCS and CS may be useful for
retrospective outcome studies where post-discharge administrative
data are available.

Value of numeric laboratory data
Laboratory results obtained at admission provide the data for
objective assessment of patients with acute clinical presentation.
ALaRMS used only age, gender, and the initial laboratory test
results, which are most widely automated and commonly avail-
able at the time of admission. This enables near real-time risk
stratification that may be useful in aiding disease management.
Patients who present with severely deranged laboratory results
have higher ALaRMS scores, indicating higher mortality risk.
Conversely, patients who present without abnormal laboratory
results have lower ALaRMS scores, indicating lower mortality
risk. Hence, ALaRMS can provide a near real-time aggregated
assessment of severity in acute-care settings when discharge
diagnosis data are not yet available. The potential utility in real-
time settings needs to be validated in future prospective studies.

For retrospective outcome studies and benchmarking, a valid
risk adjustment model enhances clinical validity. The ALaRMS
plus CCS and CS model minimizes potentially unfair risk adjust-
ment due to up-, under-, or mis-coding. Since the ALaRMS
score carries the largest proportion of the total weight in the
risk adjustment model, which is consistently demonstrated in c-
statistic, log likelihood, and IDI analysis, it would be desirable
to incorporate it into the risk adjustment strategies. This would
represent another meaningful use of information technology in
the healthcare settings.

Laboratory data are quantitative, providing more precise and
graded information on clinical severity. The graded relationship
between degree of abnormality of the laboratory measures and
risk of mortality is not captured with diagnosis code-based
dichotomous variables, even when these diagnosis codes are
coded accurately. This explains in part the robust finding that the
laboratory and physiology data contribute most to the predictive
ability of the model in disease-specific and generic mortality pre-
dictive models among inpatient and ICU patient populations.2–4 6

Laboratory results are parsimonious and potentially cost-
efficient as relatively few laboratory test results (23 in our

Figure 1 Hosmer–Lemeshow
calibration plot for: (A) the ALaRMS
model; (B) the ALaRMS+CCS+CS
model. ALaRMS, Acute Laboratory Risk
of Mortality Score; CCS, clinical
classification system; CS, comorbidity
software.
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ALaRMS model) are needed to assess the major organ/system
functions that keep patients alive. The objective, quantitative, and
parsimonious nature of numeric laboratory data exhibited high
predictive ability as shown in the ALaRMS model. Although not
directly comparable, the ALaRMS model’s c-statistic of 0.87
represents higher model discrimination than the c-statistics of
0.70, 0.71, and 0.72 achieved by the congestive heart failure,
acute myocardial infarction, and pneumonia models derived from
administrative claims that are currently used by the Centers for

Medicare and Medicaid Services (CMS) in the USA for the
Hospital Compare website.22–24 Nevertheless, it should be
emphasized that our model predicted inpatient mortality and the
CMS models predicted 30-day mortality, hence the absolute c-
statistic is not directly comparable. Our full model (ALaRMS
+CCS and CS) achieved a c-statistic of 0.91, which is slightly
higher than the c-statistic of 0.88 previously reported in a risk
adjustment model using pre-admission laboratory and administra-
tive data for inpatient population.3

Table 3 ALaRMS+CCS+CS model

Variable
Discharge, n (%)
(n=1 428 824)

Unadjusted mortality,
n (%) (n=34 147)

Multivariable adjusted
OR (95% CI)

ALaRMS score, continuous variable (per 1 point increment) 1.06 (1.06 to 1.06)

Clinical classification software (CCS) variables
CCS100 Acute myocardial infarction 35 421 (2.5) 2213 (6.2) 2.58 (2.44 to 2.71)
CCS102 Non-specific chest pain 39 691 (2.8) 15 (0.0) 0.07 (0.04 to 0.12)
CCS103 Pulmonary heart disease 8818 (0.6) 275 (3.1) 1.93 (1.70 to 2.19)
CCS108 Congestive heart failure; non-hypertensive 58 501 (4.1) 1852 (3.2) 1.58 (1.50 to 1.67)
CCS109 Acute cerebrovascular disease 25 956 (1.8) 2334 (9.0) 8.41 (8.00 to 8.84)
CCS114 Peripheral and visceral atherosclerosis 9632 (0.7) 367 (3.8) 2.63 (2.35 to 2.95)
CCS115 Aortic, peripheral, and visceral artery aneurysms 5636 (0.4) 476 (8.4) 4.81 (4.32 to 5.34)
CCS12 Cancer of esophagus 811 (0.1) 72 (8.9) 5.52 (4.26 to 7.16)
CCS122 Pneumonia (except that caused by tuberculosis

or sexually transmitted disease)
44 365 (3.1) 1680 (3.8) 1.64 (1.55 to 1.73)

CCS129 Aspiration pneumonitis; food/vomitus 10 372 (0.7) 1186 (11.4) 3.15 (2.93 to 3.38)
CCS13 Cancer of stomach 1277 (0.1) 93 (7.3) 3.47 (2.76 to 4.36)
CCS131 Respiratory failure; insufficiency; arrest (adult) 17 462 (1.2) 3140 (18.0) 3.24 (3.08 to 3.41)
CCS133 Other lower respiratory disease 5579 (0.4) 217 (3.9) 2.85 (2.47 to 3.29)
CCS14 Cancer of colon 5723 (0.4) 211 (3.7) 2.03 (1.76 to 2.36)
CCS145 Intestinal obstruction without hernia 15 040 (1.1) 396 (2.6) 1.98 (1.78 to 2.20)
CCS159 Urinary tract infections 21 548 (1.5) 217 (1.0) 0.55 (0.48 to 0.63)
CCS16 Cancer of liver and intrahepatic bile duct 966 (0.1) 101 (10.5) 2.99 (2.39 to 3.75)
CCS17 Cancer of pancreas 1948 (0.1) 164 (8.4) 2.46 (2.07 to 2.93)
CCS19 Cancer of bronchus; lung 7968 (0.6) 849 (10.7) 6.70 (6.19 to 7.26)
CCS2 Septicemia (except in labor) 31 452 (2.2) 4917 (15.6) 2.82 (2.70 to 2.95)
CCS203 Osteoarthritis 43 389 (3.0) 42 (0.1) 0.18 (0.13 to 0.24)
CCS205 Spondylosis; intervertebral disc disorders; other back problems 35 984 (2.5) 48 (0.1) 0.27 (0.20 to 0.36)
CCS233 Intracranial injury 8882 (0.6) 703 (7.9) 7.13 (6.53 to 7.78)
CCS234 Crushing injury or internal injury 4062 (0.3) 179 (4.4) 2.93 (2.48 to 3.47)
CCS249 Shock 133 (0.0) 46 (34.6) 6.11 (3.99 to 9.38)
CCS27 Cancer of ovary 831 (0.1) 53 (6.4) 6.26 (4.65 to 8.42)
CCS35 Cancer of brain and nervous system 1650 (0.1) 61 (3.7) 5.05 (3.88 to 6.57)
CCS38 Non-Hodgkin lymphoma 2626 (0.2) 215 (8.2) 5.47 (4.70 to 6.37)
CCS39 Leukemia 1784 (0.1) 262 (14.7) 6.45 (5.57 to 7.47)
CCS40 Multiple myeloma 857 (0.1) 73 (8.5) 5.10 (3.94 to 6.60)
CCS42 Secondary malignancies 13 815 (1.0) 1140 (8.3) 4.97 (4.64 to 5.33)
CCS43 Malignant neoplasm without specification of site 184 (0.0) 31 (16.8) 10.86 (7.1 to 16.6)
CCS5 HIV infection 1255 (0.1) 102 (8.1) 6.44 (5.13 to 8.08)
CCS50 Diabetes mellitus with complications 19 795 (1.4) 172 (0.9) 0.47 (0.41 to 0.55)
CCS85 Coma; stupor; and brain damage 829 (0.1) 87 (10.5) 5.76 (4.43 to 7.48)
Comorbidity software (CS) variables

Congestive heart failure 117 594 (8.2) 9271 (7.9) 1.48 (1.44 to 1.53)
Depression 150 995 (10.6) 3018 (2.0) 0.80 (0.77 to 0.83)
Hypertension 677 039 (47.4) 18 104 (2.7) 0.75 (0.74 to 0.77)
Metastatic cancer 33 342 (2.3) 2751 (8.3) 2.16 (2.06 to 2.26)
Other neurological disorders 94 647 (6.6) 4386 (4.6) 1.37 (1.32 to 1.42)

Pulmonary circulation disease 25 575 (1.8) 2234 (8.7) 1.46 (1.39 to 1.54)
Renal failure 135 725 (9.5) 8127 (6.0) 1.18 (1.14 to 1.22)
Solid tumor without metastasis 28 198 (2.0) 1506 (5.3) 1.51 (1.43 to 1.61)
Weight loss 35 984 (2.5) 3836 (10.7) 1.56 (1.50 to 1.63)

ALaRMS, Acute Laboratory Risk of Mortality Score.
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Value of using standard clinical classification system in the
public domain
Adopting a standard clinical condition classification system is
critical because it allows for public access, enables future valida-
tions using different datasets, and offers opportunities to further
improve the risk adjustment model through refinement of the
laboratory score algorithms and code-based clinical condition
classification system. The AHRQ’s CCS has undergone multiple

revisions and is updated annually to reflect ICD-9-CM
updates,11 and is perhaps the most feasible clinical classification
system available to the public.

Principal diagnosis-based groups are especially important for
a generic risk adjustment model because general patient popula-
tions are heterogeneous. As in our model, patients with princi-
pal diagnoses (primary reason for the index hospitalization) of
major acute clinical conditions of vital organs/systems (eg,

Table 4 Integrated discrimination improvement (IDI)

Model c-Statistic

IDI

Died in hospital (n=34 147) Live discharge (n=1 394 677)

Discrimination
slope IDI (95% CI)

Integrated
sensitivity (IS)

Standard
deviation (IS)

Integrated
1-specificity (IP)

Standard
deviation (IP)

Adding ALaRMS to CCS and CS
CCS and CS 0.838 0.0910 0.0974 0.0223 0.0398 0.0688
CCS and CS+ALaRMS 0.907 0.1766 0.197 0.0202 0.0515 0.1564
Difference 0.0855 0.1759 −0.0021 0.0398 0.0876 0.0876 (0.0858

to 0.0895)
% Improvement by adding
ALaRMS (95% CI)

94% 9% 127%
(122%, 133%)

Adding CCS and CS to ALaRMS
ALaRMS 0.868 0.1496 0.1894 0.0208 0.046 0.1287
ALaRMS+CCS and CS 0.907 0.1766 0.197 0.0202 0.0515 0.1564
Difference 0.027 0.0944 −0.0007 0.0276 0.0277 0.0277 (0.0267

to 0.0287)
% Improvement by adding
CCS and CS (95% CI)

18% 3% 22%
(19%, 25%)

Calculation of % of improvement:
Adding ALaRMS to CCS&CS:
DSCCS&CS=ISCCS&CS−IPCCS&CS=0.0910−0.0223=0.0688
DSCCS&CS+ALaRMS=ISCCS&CS+ALaRMS−IPCCS&CS+ALaRMS=0.1766−0.0202=0.1564
IDI of adding ALaRMS=DSCCS&CS+ALaRMS−DSCCS&CS=0.1564−0.0688=0.0876
% of improvement by adding ALaRMS=IDI/DSCCS&CS=0.0876/0.0688=127%
Adding CCS&CS to ALaRMS:
DSALaRMS=ISALaRMS−IPALaRMS=0.1496−0.0208=0.1287
DSALaRMS+CCS&CS=ISALaRMS+CCS&CS−IPALaRMS+CCS&CS=0.1766−0.0202=0.1564
IDI of adding CCS&CS=DSALaRMS+CCS&CS−DSALaRMS=0.1564−0.1287=0.0277
% improvement of adding CCS&CS=IDI/DSALaRMS=0.0277/0.1287=22%
ALaRMS, Acute Laboratory Risk of Mortality Score; CCS, clinical classification system; CS, comorbidity software; IS, integrated sensitivity=mean predicted probability of mortality in the
group of patients died in hospital; IP, integrated 1-specificity=mean predicted probability of mortality in the group of patients discharged live; Discrimination slope, IS−IP; IDI,
integrated discrimination improvement=(IS [new]−IS [old])−(IP [new]−IP [old]).

Table 5 Sensitivity analysis: model discrimination for subgroups

Variable

Derivation cohort Validation cohort

Number of discharges
Model
c-statistic Number of discharges

Model
c-statistic

Total 1 428 824 0.907 770 523 0.903
Age
Age <65 744 160 0.939 405 566 0.935
Age ≥65 684 664 0.863 364 957 0.856

Teaching status
Teaching 915 321 0.903 496 452 0.900
Non-teaching 513 503 0.910 274 071 0.904

Number of beds
≤300 751 677 0.909 400 131 0.903
>300 677 147 0.907 370 392 0.903

Urban/rural status
Urban 1 198 334 0.908 655 528 0.903
Rural 230 490 0.905 114 995 0.900

Medical/surgical discharges
Medical 939 081 0.903 514 932 0.897
Surgical 489 743 0.910 255 591 0.910
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cardiovascular or neurologic systems, cancers of major organs/
systems, dissimilated cancers) have high mortality risk. In con-
trast, clinical conditions involving less-vital organs/systems (eg,
joint and muscular system) or less-acute diagnosis (eg, unspecific
chest pain) have lower mortality risk. These results are valid
clinically and are consistent with the mortality statistics reported
by the National Center for Health Statistics.25

Among secondary diagnosis-based comorbidity variables,
metastatic cancer carried the highest independent risk of mortality.
Other comorbid conditions tended to be either statistically insignifi-
cant or carry less independent weight because they are likely
accounted for by ALaRMS physiology parameters. The
less-prominent contributions of secondary diagnosis-based comorbid
conditions are consistent with previous risk adjustment models that
incorporated physiology data.1–4 6

Limitations
Our study has limitations. First, although our dataset comprised
over 2 million discharges from 70 hospitals from the northeast

region, it is not geographically representative of the US patient
population. Further validation of this model is needed when
data from a more representative patient population become
available in the future. Second, we did not include vital sign and
altered mental status data in the physiology risk score because
our goal was to develop a model using only data that are cur-
rently widely available in hospital EHR systems. Inclusion of
vital signs and mental status requires incorporating nursing
notes or other more complex electronic medical records
systems, which are not as widely available as numeric laboratory
data in acute-care hospital settings. At the time when vital sign
and mental status data are widely captured electronically across
hospitals, it would be important to incorporate them into the
physiology score because of their clinical face validity. Third, we
did not incorporate AHRQ’s procedure groups in our model
because many of the procedures are diagnostic in nature. For
procedure groups indicating treatment, it is not possible to dis-
tinguish whether a treatment procedure was implemented early
at admission as planned or at a later hospital stay after patients

Figure 2 Hosmer–Lemeshow calibration plot for subgroup patients: (A) age 65 or older versus age younger than 65; (B) discharges from teaching
versus non-teaching hospitals; (C) medical versus surgical discharges; (D) discharges from large (>300 beds) versus small/medium-sized (≤300 beds)
hospitals; (E) discharges from urban versus rural hospitals.
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possibly developed complications. The latter should not be
included as a risk adjustor because it would give credit (higher
expected mortality rates) to hospitals with potentially substand-
ard care if they have more potential complications requiring
procedural treatments after admission. On the other hand, omit-
ting procedure categories is unlikely to have a large impact on
the model predictive ability because planned treatment proce-
dures would likely be correlated with principal diagnosis cat-
egories. For example, patients receiving cardiac operations
would likely have cardiac disease diagnoses, which have already
been included in the model. Their acute clinical presentation
and severity would have been largely taken into account with
ALaRMS. As further evidence, the high c-statistic of our model
(ranged from 0.90 to 0.91, nearly identical for medical and sur-
gical patients) indicated excellent predictive ability for both
medical and surgical patients in our sensitivity analysis.

Significance of the study
The data derived from an EHR typically covers many broad
domains. Numeric laboratory data are objective and quantitative
in nature, which are desirable features in predictive modeling.
The objective nature ensures the data reliability and reproduci-
bility. The quantitative nature enables precise estimation of the
graded relationship of the degree of physiologic derangement
and the risk of inpatient mortality. Furthermore, numeric
laboratory data are perhaps most scalable among all EHR
domains due to the objective and quantitative nature. While the
health informatics field has devoted considerable effort to
extract data from free text reports or expensive but infrequently
used tests, it is worthwhile to examine the utility of the most
commonly measured, most scalable, and perhaps the least
expensive data domains. This is particularly true in regard to
real-time decision support and outcome studies, which often
require a large scale implementation at a low cost.

CONCLUSIONS
Admission laboratory physiologic data captured in the hospital
EHR systems provide objective, precise, and parsimonious
assessment of acute clinical severity and are highly predictive of
inpatient mortality risk in hospitalized adult patients. Relying
only on data available at the time of admission, ALaRMS may
have utility in aiding real-time disease management.
Incorporating AHRQ’s standardized clinical classification
systems (CCS and CS) further improves model predictive power
and facilitates public access to the risk adjustment algorithms.
Using a completely automated EHR dataset available on admis-
sion, ALaRMS can be implemented for real-time decision
support. The full model incorporating CCS and CS may be cost-
efficient to implement for large-scale retrospective studies on
inpatient outcomes. These would represent meaningful use of
health information technology.
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