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The design of phononic crystals and acoustic metamaterials with tunable and adap-

tive wave properties remains one of the outstanding challenges for the development

of next generation acoustic devices. We report on the numerical and experimental

demonstration of a locally resonant acoustic metamaterial with dispersion character-

istics which autonomously adapt in response to changes of an incident aerodynamic

flow. The metamaterial consists of a slender beam featuring a periodic array or

airfoil-shaped masses supported by a linear and torsional springs. The resonance

characteristics of the airfoils lead to strong attenuation at frequencies defined by the

properties of the airfoils and the speed on the incident fluid. The proposed concept

expands the ability of existing acoustic bandgap materials to autonomously adapt

their dispersion properties through fluid-structure interactions, and has the potential

to dramatically impact a variety of applications, such as robotics, civil infrastructures,

and defense systems.
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I. INTRODUCTION

Metamaterials are engineered micro-structural assemblies that exhibit unique properties

not observed in nature or in their constituent materials1. An important characteristic of

acoustic metamaterials is their ability to tailor the propagation of elastic waves through

bandgaps − frequency ranges of strong wave attenuation. Bandgaps are either the result

of wave scattering at periodic impedance mismatch zones (Bragg scattering)2, or can be

generated by resonating units within the medium3. While Bragg-type bandgaps have been

successfully exploited in phononic crystals to filter, localize and guide acoustic waves4, locally

resonant metamaterials are capable of generating low frequency attenuation zones3 which

have been primarily exploited for vibration and noise radiation control applications5,6.

Most of the metamaterial configurations proposed so far operate at fixed frequency ranges

and it is often impractical, if not impossible, to tune and control their bandgaps after the as-

sembly of the system. In an effort to design tunable materials, it has been shown that Bragg-

type bandgaps can be controlled through changes in the periodic modulation of impedance

mismatch within the medium7–9, while in locally resonant metamaterials tuning of function-

alities is typically achieved by controlling the natural frequency of the resonating units5,10,11.

However, these approaches require either a significant amount of energy for actuation which

can seriously compromise the major functionality of the structure, or complex hardware

architectures which hinder their implementation.

Inspired by the ability of many living organisms, including fishes, insects and bacteria of

sensing the surrounding fluid environment to direct their response12–14, here we report on

a new acoustic metamaterial which exploits fluid-structure interactions to self-regulate its

wave propagation characteristics. We consider a locally resonant metamaterial comprising

an elastic beam and a periodic array of airfoil-shaped mechanical resonators bonded along

its length. The airfoils generate strong attenuation in the beam at frequencies that depend

both on their mechanical properties and the speed of the incident fluid flow. Therefore a

flow impinging on the system provides the enabling mechanism to alter the bandgaps of the

system and achieve unusual wave mechanics. This concept can be considered as an exam-

ple of an adaptive locally resonant metamaterials capable of self-regulating its dispersion

properties in response to variations in the local environment.
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II. CONCEPT AND MATERIALS

The considered acoustic metamaterial (Fig. 1a) consists of an aluminum beam of thickness

t=1.27 mm and width w=2.54 mm with a periodic arrangement of six airfoil resonators

(Fig. 1b) equally-spaced along its length (60 mm apart). The resonating units comprise a flap

FIG. 1. Harnessing fluid-structure interactions to design self-regulating acoustic meta-

materials. a, One-dimensional (1D) metamaterial consisting of an aluminum beam with a periodic

array of airfoil resonators bonded along its length. Here, we investigate the effect of the incident

air speed V∞ on the dynamic response of the metamaterial. b, The resonating unit comprises a

thin aluminum bender connected to a rigid flap. The unit is modeled as a rigid airfoil with pitch

(θ) and heave/plunge (h) degrees of freedom.

connected to a thin elastic bender. A 3D printer (Objet-500 Connex) is used to fabricate the

flaps out of an acrylic-based prototyping material (Young’s modulus E∼3 GPa and density

ρ=1050 kg/m3) with a NACA 0012 profile. The flap features a rectangular planform with

semi chord b=10 mm and span s=45 mm. Given the modest size of and loads acting on the

flaps they are considered as rigid in the following analysis. A 11 mm wide rectangular cutout

is realized at the flap’s midspan near the leading edge to host a metallic hinge connecting
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the flap and the bender. The hinge, machined form solid aluminum, allows for rotation of

the flap along its span-wise axis (pitch motion), and is connected to the flexible bender using

a small amount of superglue (Locktite). The benders are made out of aluminum (Young’s

modulus E=69 GPa, and density ρ=2700 kg/m3) and manually cut from a 0.38 mm thick

plate into strips of width wb=10 mm. Five through-thickness holes with diameter d=1.0 mm

are realized (10 mm apart) along its centerline to adjust its bending stiffness. The bender

is connected to the main beam by means of a small socket-head hexagonal screw passing

through such holes.

III. AEROELASTIC RESPONSE OF THE RESONATING UNIT

The coupled aero-elastic behavior of the system, although well understood15, is investi-

gated here both numerically and experimentally to provide insights into the self-regulating

mechanism of the metamaterial.

We consider a single aerodynamic resonator with mass ma and polar moment of inertia

Ia which is connected to the primary structure through a flexible bender hinged at the

flap’s midspan (Fig. 1b). The bender is modeled as a linear spring with elastic constant

kh = 3EIb/L
3
b , Lb and EIb being the length and bending stiffness of the bender, respectively

(Fig. 1b). A torsional spring with stiffness kθ is introduced to account for any mechanical

interference in the hinge. Denoting with θ(t) and h(t) the pitch and plunge degrees of

freedom of the flap (Fig. 1b), the governing equations of the system are obtained as:

maḧ+ma b (e− a) θ̈(t) + khh = L,

ma b (e− a) ḧ(t) + Iaθ̈(t) + kθθ(t) = M+ b

�
1

2
+ af

�
L, (1)

where b, e and a respectively define the semi chord, center of mass and pivoting point of the

flap (Fig. 1b). Moreover, L and M denote the aerodynamic lift force and moment acting

on the airfoil. Here, the classical finite-state induced flow theory by Peters et al.16 is used

to approximate the unsteady aerodynamic loads of the inviscid, incompressible flow. The
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force and moment acting on the aerodynamic surface are given by

L = πρ∞sb
2
�
ḧ(t) + V∞θ̇(t)− baθ̈(t)

�
+

2πρ∞sV∞b

�
ḣ(t) + V∞θ(t) + b

�
1

2
− a

�
θ̇(t)− 1

2
bTλ(t)

�
,

M = −πρ∞sb
3

�
1

2
ḧ(t) + V∞θ̇(t) + b

�
1

8
− a

2

�
θ̈(t)

�
, (2)

where ρ∞ = 1.225 kg/m3 is the free stream air density, s the airfoil span, and λ is a vector

containing the Np = 6 induced flow terms λn (n = 1, . . . Np). The evolution of the state

vector λ(t) is expressed in terms of Np first-order ordinary differential equations as

A λ̇(t) +
V∞

b
λ = c

�
ḧ(t) + V∞θ̇(t) + b

�
1

2
− a

�
θ̈(t)

�
, (3)

where A, b and c denote arrays of known coefficients16. Substituting Eqs. (2) and (3) into

Eq. (1) and introducing the state vector y(t) = [u(t) u̇(t) λ(t)]T with u(t) = [h(t) θ(t)]T ,

the governing equations of the aeroelastic system can be conveniently rewritten in state

space form as

ẏ(t) = Γ(V∞)y(t). (4)

The effect of the air speed V∞ on the natural frequencies of the system is investigated

calculating the eigenvalues of Γ(V∞).

Results of this analysis are shown in Fig. 2a,b for airfoils with Lb=50 mm (Fig. 2a) and

95 mm (Fig. 2b). At zero windspeed (i.e. V∞=0) the system features two well distinct

natural frequencies associated with the heave and pitch degrees of freedom of the flap. The

pitch frequency monotonically increases for increasing values of V∞, while the opposite trend

is observed for the frequency associated with the heave mode. Results also show that after a

critical speed (∼15 m/s in Fig. 2a and ∼5 m/s in Fig. 2b) the two resonance frequencies of

the airfoil coalescence, generating a dynamic instability of the resonator commonly known

as flutter 15. Above this critical speed the dynamics of the flap becomes highly nonlinear17

and the study of this regime falls outside the scope of the present investigation. Finally,

comparison of the results obtained for the two bender configurations shows that higher

values of Lb increase the compliance of the bender which in turn lowers both the natural

frequencies of the flap and its flutter airspeed.

Wind tunnel experiments have also been conducted to validate the predictions of the

model. Frequency response measurements of the bender-flap resonator are conducted in a

5



FIG. 2. Numerical and experimental results illustrating the aeroelastic behavior of

the resonating unit. a,b, Comparison between the numerical (dashed lines) and experimental

(markers) results showing the effect of V∞ on the natural frequencies of the resonators for two

configurations characterized by Lb=50 mm (a) and Lb=95 mm (b).

low-speed wind tunnel in order to estimate the variation of the system’s natural frequencies

as a function of the imposed airspeed. Tests are repeated for increasing values of the airspeed

form 10 m/s to 14 m/s for the first sample (Lb=50 mm), and from 0 m/s to 4 m/s for the

second sample (Lb=95 mm). The chosen values of V∞ coincide with the ones adopted for the

transmission test on the finite-size beam (discussed in Section IV). The natural frequencies

of the bender-airfoil system, estimated from the resonant peaks of the measured frequency

response function, are presented in Fig. 2 showing excellent agreement with the adopted

model. Note that for the bender with Lb=95 mm measurements can only characterize

the highest resonance frequency (associated with the heaving mode), since the adopted

experimental apparatus has modest accuracy at frequencies below 5 Hz.
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IV. SELF-REGULATING ACOUSTIC METAMATERIAL

A. Analysis and testing of the periodic beam

The aero-elastic behavior of the airfoil units is exploited to generate locally resonant

bandgaps in the beam at frequencies which can be controlled through the speed of the

incident flow. Finite element analyses are conducted to identify the bandgaps’ frequency

ranges in the beam and their dependence on V∞. Analyses are performed through the

application of Bloch’s theorem18 to a unit cell of the periodic assembly comprising a portion

of the main beam and one airfoil resonator attached to it (see Fig. 1a). The main beam and

the bender are modeled using Euler-Bernoulli beam elements, while Eqs. (1-3) are used to

describe the rigid body dynamics of the flap and its interaction with the surrounding fluid.

Bloch-Floquet quasi-periodic conditions18,19 are applied to the finite element equations of

motion of the unit cell20 leading to a standard eigenvalue problem which is solved for the

complex propagation constant µ(ω) of the system20. The real part of µ, known as attenuation

constant, denotes the rate of exponential decay that a wave experiences as it propagates

through the medium. Wave propagation is therefore possible within frequency bands where

µ is purely imaginary, while bandgaps occur at frequencies characterized by a non zero

attenuation constant.

The tunable properties of the metamaterial are also verified experimentally through wave

transmission tests performed on the finite-size sample shown in Fig. 1. The sample is po-

sitioned inside the test section of a low-speed wind tunnel (Engineering Laboratory Design

Inc.) which is manually set to operate at a given airspeed. The beam is clamped at one

end and free to vibrate at the opposite end (see Fig. 3a). An electrodynamic shaker (model

K2025E013 from The Modal Shop) provides a random (broadband) input to the beam

through a load cell (208C01 PCB Piezotronics) located near the clamp. The dynamic re-

sponse of the metamaterial is measured in terms of a transmission coefficient defined as

the ratio between the acceleration signals measured at the two ends of the beam using two

identical accelerometers (352C22 PCB Piezotronics). Measurements are recorded using a

NI-cDAQ-9174 acquisition system and related software.
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B. Results and discussion

Numerical and experimental results for the case with Lb=50 mm are reported in Figs. 3b and c

showing the evolution of the attenuation constant and transmission coefficient as a function

of the frequency of wave propagation for different wind speeds V∞ = 10, 12, 14 m/s. Results

FIG. 3. Self-regulating attenuation properties. a, Schematic of the experimental setup used

to characterize the dynamic response of the system. b and d, Attenuation constant of the beam

computed for Lb=50 mm (b) and Lb=95 mm (d). Peaks of the attenuation constant identify

frequency regions of strong wave attenuation (bandgaps) which occur in the vicinity of the pitch

and plunge resonance frequencies of the corresponding airfoils shown in Fig. 2a,b. Results computed

for different flow velocities show that the bandgaps tend to coalesce as V∞ increases, and that they

fully coalesce at the flutter speed. c and e, Transmission coefficient measured on the finite size

beam with six airfoil resonators attached along its length. The presence of bandgaps is indicated

by frequency regions where the transmission coefficient suddenly drops (valleys) about 15 dB. The

experimental results (c,e) are in excellent agreement with the trend predicted by FE analysis (b,d).

indicate that the system features two distinct frequency bandgaps, identified by peaks of

the attenuation constant and corresponding valleys of the transmission coefficient. These

occur in the vicinity of the pitch and plunge resonance frequencies of the corresponding

8



airfoils shown in Fig. 2a, confirming the locally-resonance nature of the attenuation regions.

Remarkably, because of the modal behavior of the resonating unit, an increase in V∞ re-

sults in a shift of the bandgaps frequencies, which gradually approach each other. These

results clearly demonstrate the self-regulating properties of the structure whose bandgaps

autonomously adapt to different flow speeds. The analysis is conducted up to a maximum

speed V∞=14 m/s after which the model predicts the onset of a flutter instability of the

airfoils. Interestingly, for this value of V∞ the two bandgaps of the system merge in a single

broad attenuation region centered at ∼35 Hz (see Fig.3b).

To demonstrate the robustness of the proposed concept, in Figs. 3d and e we report the

results corresponding to a longer bender (Lb=95 mm). As shown in Fig. 3d, a more flexible

connection between the airfoils and the main beam lowers the airfoils resonance frequencies

between to 2 Hz and 10 Hz. Because of the modest accuracy of the experimental apparatus

at frequencies below 5 Hz, the experimental results presented in Fig. 3e only capture the

highest bandgap associated with the heaving mode of the airfoil. It is also worth noting

the excellent agreement between the numerical results and the experimentally identified

bandgaps occurring at frequencies centered in the vicinity of the attenuation peaks predicted

by the numerical analysis, which also coincide with the natural frequencies associated with

the pitch and plunge motion of the airfoils (Fig.2b).

Although this study is conducted on a one-dimensional configuration realized at the

centimeter scale, the proposed concept has the potential to be extended to arbitrary two-

and three- dimensional configurations and to a broader range of length scales. In particular,

in Fig. 4 we investigate numerically the relationship between the resonance frequency of

the airfoils, their overall length scale and the incident airspeed V∞. Since the aerodynamic

model adopted in this study assumes an inviscid and irrotational flow16, our analysis correctly

captures the response of systems characterized by Reynolds numbers (Re) approximately

greater than 100 (i.e. Re > 102). Remarkably, our results indicate that the flow regime

remains inviscid and irrotational even when the overall size of the system is reduced at

the sub-millimeter length scale, although this will inevitably affect its frequency range of

operation.
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FIG. 4. Scaling properties of the proposed concept. Numerical results indicating the rela-

tionship between the first natural frequency of a resonating unit, the overall length scale of the

resonator, and the magnitude of the incident air speed V∞. The thick-dashed line represents con-

figurations characterized by Re> 102. Below this line the flow regime can be considered as inviscid

and irrotational, so that the elastic and aerodynamic behavior of the airfoil resonators is accurately

predicted by the present model, regardless of the specific scale of the system.

V. CONCLUDING REMARKS

We have investigated fluid-structure interactions in locally resonant materials and shown

how they can be exploited to design structures with self-regulating dispersion properties.

Our results demonstrate that the airspeed impinging on the system provides an effective

mechanism to autonomously alter its bandgaps frequency ranges without resorting to ad-

ditional stimuli. This intriguing dynamic behavior is enabled by the use of airfoil-type

resonating units that behave as aeroelastic systems subjected to modal convergence. A

combination of numerical and experimental analyses is used to illustrate the concept and to

gain insights into the correlation between the aeroelastic behavior of the resonators and the

dynamic properties of the periodic system.

By harnessing fluid-structure interactions, we expand the capabilities of existing acous-

tic bandgap materials and design systems capable of sensing the surrounding environment

and change their dynamic response accordingly. This concept has the potential to dramat-
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ically impact a variety of applications, such as robotics, civil infrastructures, and defense

systems. For example, the proposed mechanism can lead to the design of sustainable and

self-regulating vibration suppression devices capable of autonomously tracking and control-

ling the dynamic response of structures over a broad range of operative conditions. Fur-

thermore, the growing opportunities offered by novel micro-fabrication techniques allows its

integration with other micro-scale devices leading to complex hierarchical systems capable

of self-responding to local environmental variations. Finally, the possibility of extending the

concept to two- and three-dimensional configurations, promises the development of novel

self-adaptive coatings for stress wave management applications.
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