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THE IMPACT OF RADIOCARBON DATING ON OLD WORLD ARCHAEOLOGY: 
PAST ACHIEVEMENTS AND FUTURE EXPECTATIONS

O Bar-Yosef
Peabody Museum, Department of Anthropology, Harvard University, Cambridge, Massachusetts 02138, USA. 
Email: obaryos@fas.harvard.edu.

INTRODUCTION

Half a century since radiocarbon was first used in the archaeology of the Old World, it seems that the
expectations of W F Libby may be becoming a reality. In 1952 (Libby 1952:97), he wrote:

Archaeologists, geologists and palynologists are continually searching for the means to improve methods
of counting time. The . . . relative chronologies lack precision and direct correlation with the calendar,
except when they may be checked with, . . . for example, the calendar based on tree-ring counts.

Two achievements that have gone some way towards realizing this goal are the use of accelerator
mass spectrometry (AMS) techniques (e.g. Taylor 1997) and of calibration curves (e.g. Stuiver et al.
1993, 1998). We are still only at the threshold of seeing the impact of these two crucial advances on
some strongly debated archaeological issues. 

Since the end of the 18th century, some basic questions that cannot be answered without accurate
dates have been at the heart of archaeological research. Practice has demonstrated that the long
sequence of human evolution, from the time hominids created durable remains, the early coloniza-
tion of Eurasia or even the first dispersals of Modern humans, are beyond the upper reach of 14C
techniques. 

During the last five decades, traditional 14C dating techniques have made numerous contributions to
the archaeology of the Old World. These are evidenced in a vast literature that reports and discusses
the evolution of social and cultural entities recorded from over the last 40,000 years. Terminologies
may vary across Eurasia and Africa, but in the most encompassing definitions, this is a world that
shifted from foraging lifestyles to farming and herding modes of production, which were then fol-
lowed by the emergence of urbanism and the ensuing industrial revolution. 

During these 50 years, archaeologists, geoarchaeologists, and archeobotanists have used the ser-
vices of an ever-increasing number of 14C laboratories. In many of them, one notes a growing aware-
ness of the need for the active participation of an experienced field archaeologist throughout the
entire process, from collecting the samples and the gathering of relevant information, through labo-
ratory operations, and the final evaluation and write-up of the results. While all this is known to the
readers, and the contributions that are being made to various archaeological questions are important,
there are, in the author’s view, two major concerns in Old World archaeology that are of common
interest to a majority of archaeologists and world historians. The advancements in dating these past
events or processes will have a far-reaching impact on the interpretation of cultural history.

The two main problems are the transition from the Middle to the Upper Paleolithic, a cultural revo-
lution which has also been labeled a “creative explosion” (Pfeiffer 1982), and the origin of plant cul-
tivation in the two presumed centers of early agriculture, namely, the Levant in Western Asia and the
middle Yangtze region of China. Precise dating of archaeological contexts and assemblages of
plants and animal bones derived from well-excavated sites in these two centers will undoubtedly
facilitate the resolution of long-lasting debates concerning the “where” and “when” issues of these
events. The more controversial aspect of both inquiries, the “why” question, will undoubtedly



24 O Bar-Yosef

remain open to scholarly opinions as diverse as there are approaches to world cultural history. Each
of these major transitions is summarized below, followed by a brief discussion incorporating future
expectations.

The Middle to Upper Paleolithic Revolution

Almost no one is seeking the origins of the Middle/Upper Paleolithic revolution in Western Europe,
although everyone, including the media, is using the archaeological record from this region to char-
acterize the differences between two populations—the Neandertals and Cro-Magnons. Most writers
who present their views on this transition consider it to be a technological and cultural revolution
(e.g. Gilman 1984; Gamble 1986; Mellars 1989; White 1989; Stringer and Gamble 1993; Mellars
1996a, 1996b; Mithen 1996; Marshack 1997; White 1997). A few follow the suggestion (Klein
1995, 1999) that it was triggered by a neurological change in the “near-Modern Humans” some
50,000 years ago, which has recently gained further support from a genetic study (Quintana-Murci
et al. 1999). However, there are others (e.g. Clark 1997; Straus 1997) who regard the transition as a
gradual change that took place on a regional scale. Several scholars suggest that the latest West
European Neandertals had demonstrated their innovative capacities before encountering the incom-
ing Cro-Magnons. The arguments for one or another of the alternative interpretations rely heavily on
the available 14C dates, a proposed synchronization between TL, ESR and 14C dates, and the drive
to reach a calendrical chronology (D’Errico et al. 1998; Zilhão and D’Errico 1999a contra Mellars
et al. 1999; see also Van der Plicht 1999 contra Van Andel 1998).

Elsewhere, I have suggested that by employing models that explain the Neolithic revolution we may
gain insights into the techno-cultural revolution that occurred some 50,000–40,000 years earlier
(Bar-Yosef 1992, 1994, 1998c). This analytical procedure would be similar to employing studies of
the Industrial Revolution as sources for testing hypotheses concerning the Neolithic revolution. 

The common denominators for all three of these revolutions include the emergence of new technol-
ogy in a “core area,” and its dispersal (with or without the cultural baggage) by migrating groups, or
by diffusion. Study of the historical process can determine “where” and “when” techno-cultural
changes occurred and how long it took for the ensuing diffusion, migration, and impacts to affect the
neighboring regions. The “why” question remains within the domain of speculation. In all cases, the
precise dates play an important role, and it is in this field that the various dating techniques can make
major contributions.

Currently, there are only a few archaeological indications that East Africa (Ambrose 1998a, 1998b;
Klein 1999), South Africa, the Nile Valley (Van Peer 1998), or the Levant (Sherratt 1997) may have
been the original locus of the Middle/Upper Paleolithic revolution. Other proposals point in the
direction of central Asia or Anatolia (e.g. Otte 1998). The paucity of field research in East Africa
and dated sites in the Nile Valley, however, must leave all options open.

Most late Middle Paleolithic or Mousterian sites in the Levant and Northeast Africa are dated at 60
to 50/45 ka BP on the basis of thermoluminescence (TL) and electron spin resonance (ESR) mea-
surements as well as 14C dates >46,000 BP (Bar-Yosef et al. 1996; Bar-Yosef 1998a; Van Peer
1998). Culturally, the end of the Levantine Middle Paleolithic is marked by the appearance of Early
Upper Paleolithic (EUP) assemblages in several sites (Figure 1). When assemblages of both periods
are compared across the chronological boundary, the change seems to represent a technological rev-
olution (e.g. Marks 1993; Bar-Yosef 1998c). The paucity of bone and/or antler objects and the rarity
of marine shell beads from EUP contexts have made the lithic assemblages the main source of infor-
mation.
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The image of the pan-Levantine EUP lithic industries is rather complex, mainly due to the small
number of sites, the chronological ambiguities (on which future work is required), and the presence
of particular local tool types that make long distance correlations uncertain. The main sites are
Ksar ‘Akil (Lebanon), Emireh cave and Boker Tachtit (Israel), Umm el Tlel (Syria), and Üçagizli
(Turkey) (Garrod 1955; Marks 1983; Ohnuma 1988; Bourguignon 1996; Kuhn et al. 1999).

Boker Tachtit, in the Negev Highlands, which dated to 47 and 46 ka BP (Marks 1983), has produced
cores and their refitted blanks (Volkman 1983) that demonstrate the change in how the flint knappers
conceived the volume of the flint nodule. Levallois points, typological markers of the late Mouste-
rian, were now shaped by bi-directional detachments, thus differing from their predecessors. The
shift in methods of stone tool production possibly responded to a change in hafting projectiles, and
the invention of spear throwers. Other special projectile points are known as Emireh points—the
common tool type in Emireh cave and Boker Tachtit. 

In Ksar ‘Akil, Lebanon, manufacturers preferred simpler points and special scrapers known as
“chamfered pieces”, where the working edge was shaped by a side blow (Newcomer 1970; Bergman
et al. 1988; Ohnuma and Bergman 1990). Similar tools were found in Abri Antelias, a neighboring
site with one Emireh point, and in Abu Halka, some 30 km further north. Interestingly, the EUP of
Haua Fteah cave in Cyrenaica (Libya), named the Dabban culture, is also rich in chamfered pieces,

Figure 1 Map of Western Eurasia and North Africa indicating dates of the Latest Mousterian (in boxes) and Early
Upper Paleolithic in various regions. The dates are a combination of TL, ESR, and radiocarbon uncalibrated readings.
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although the precise nature of the relationship between the Libyan sites and those in Lebanon is as
yet unknown (McBurney 1967). 

In northeast Syria, the site of Umm el Tlel produced an industry of points and blades made by uni-
directional percussion. All the stone tools are, without a doubt, from the Upper Paleolithic, although
the special Emireh point and the chamfered pieces are absent (Bourguignon 1996). Interestingly, the
AMS date for layer III2A is 34,530 ± 750 BP (Gif A–93216) and the TL date is 36 ± 2.5 ka (Gif A-
93215).

Additional assemblages were uncovered in Üçagizli and Kanal caves (Kuhn et al. 1999), where a
blade-based industry resembles that of Umm el Tlel, with end scrapers, burins, and retouched
blades. The presence of marine shell beads is noteworthy. Two AMS dates of 39,400 ± 1200 BP
(AA-27994) and 38,900 ± 1100 BP (AA-27995) place the assemblage from Üçagizli within the
range of the EUP industries of the Levant. 

It is generally agreed that 14C dates earlier than 30,000 BP should be considered as recording mini-
mal ages. However, Van Andel (1998) has suggested that dates older than 38/39 ka BP are again
closer to the real ages and do not underestimate the true age, as is the case for dates younger than
30 ka. Van der Plicht (1999) disagrees. Additional uncertainties arise from the use of different labo-
ratories and the possible contamination of charcoal by bioturbation. In this respect, advancements in
dating techniques in recent years should allow us to synchronize TL, ESR, and 14C dates from late
Middle and EUP sites in the Levantine sequence. Unfortunately, the size of the time difference
between the uncalibrated 14C years and TL and ESR years has various estimates. The proposal that
14C dates in this range (earlier than 30 ka) are younger than the TL and ESR ages only by 3–4 ka
(Mellars et al. 1999 and references therein), is in need of further testing. In one case, the 14C dates
from Umm el Tlel are only about 2 ka younger than the TL date, and lie within the standard devia-
tion of the latter.

Another proposal to combine the results of the two dating techniques was undertaken in Kebara cave
(Bar-Yosef et al. 1996). TL measurements place the upper part of the Mousterian sequence in
Kebara at 48.3 ± 3.5 ka (Valladas et al. 1987), although there are no secure dates for the latest occu-
pation. The EUP assemblages, which are definitely younger than the phase containing the Emireh
points, were 14C dated to 43/42 ka. It was therefore suggested that a cautious estimate of 46/45 ka
BP for the MP/UP transition seems reasonable, and the gap in the Kebara sequence from 46/45 ka
to 43 ka lends credence to the 14C dates for the Boker Tachtit Level 1 (47 and 46 ka; Marks 1983). 

Another option in dating the boundary between the Middle and the Upper Paleolithic in the Levant
is to employ the dates available for the Ksar ‘Akil sequence. Mellars and Tixier (1989), similarly to
McBurney in his study of the cave of Haua Fteah (Libya), estimated the rate of sedimentation for
this site. Eleven AMS readings of charcoal samples from Ksar ‘Akil, in addition to the previously
obtained 14C dates, allowed them to estimate the cultural transition as taking place around 50 ka.
Surprisingly, the U-series disequilibrium dates on two bone samples produced earlier, by scientists
who cautioned against accepting them without reservation (Van der Plicht et al. 1989), provided
similar results. The bone dates are given as “surface” and “bulk” material, and are as follows: for
layer XXVI (youngest Mousterian level) 47 ± 9 ka (G-88174S) and 19 ± 5 ka (G-88173B); and for
layer XXXII (Mousterian) 51 ± 4 (G-88177S) and 49 ± 5 (G-88178B).

The situation in the Taurus and on the Anatolian plateau is poorly known (Yalçinkaya et al. 1993;
Otte et al. 1995; Kozlowski 1998), with the exception of the latest Mousterian layers at Karain cave
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(Antalya province), which were ESR dated to 62.0 ± 10.1 to 71.6 ± 11.4 ka (EU), or 65.5 ± 10.6 to
74.4 ± 11.8 ka (LU) (Çetin et al. 1994). No dates are available for the EUP in this vast region.

The state of dating in the Zagros, where several cave sites have been excavated, is not much better
(Solecki 1963, 1964; Dibble 1993; Dibble and Holdaway 1993; Solecki and Solecki 1993). The 14C
results of 46 and 50 ka from layer D in Shanidar, where several of the Neandertal remains were
uncovered, could be argued as simply minimal dates, or as indicating the persistence of the Middle
Paleolithic in this mountainous region. The Upper Paleolithic industry known as the Baradostian is
dated by a series of readings to 33–28 ka, and in Yafteh cave to the same range (Smith 1986). The
absence of the EUP from this site and the other known caves lends temporary support to this inter-
pretation. Further north, in the Caucasus region, similar Mousterian industries seem to be of the
same, late age (Kozlowski 1998; Golovanova et al. 1999; Figure 1).

Broadening the geographic scope of the present overview, namely, the dating of the late Middle
Paleolithic and EUP, introduces additional evidence for what may have been a patchy colonization
of Cro-Magnons across Eurasia (Figure 1). In Crimea, producers of the Mousterian industry sur-
vived until 29 ka BP, and the early EUP—dated to 30 ka BP—is interpreted as demonstrating a short
coexistence of two populations (Marks and Chabai 1998; Rink et al. 1998). In Greece, the late
Mousterian is dated to 32–30 ka BP by a series of 14C dates from Theopetra cave in Thessaly, sup-
ported by the earliest dates for the EUP in Klisoura cave 1, in the Argolid (Karkanas 1999;
Kyparissi-Apostolika 1999; Koumouzelis et al. forthcoming). The late survival of Neandertals is
also evidenced in the direct dates of the human bones from Vindija cave in Croatia, which place
these relics at 28 ka BP (Smith et al. 1999). 

On the other hand, an EUP industry known as the Bohunician is dated in Bohemia to 40–36 ka BP
(Svoboda and Simán 1989). Further west, the earliest Aurignacian in northeast Spain dates to 40–37
ka BP (e.g. Bischoff et al. 1989, 1994; Cabrera and Bernaldo de Quirós 1996; Straus 1996; Mellars
et al. 1999). The persistence of the Mousterian in southern Italy (Kuhn and Bietti, forthcoming) and
in Iberia south of the Ebro valley until about 30 ka BP is, in most cases, founded on numerous 14C
dates for the late Mousterian and EUP (Raposo and Santonja 1995; Barton et al. 1999; Zilhão and
D’Errico 1999a, 1999b; Carbonell et al. forthcoming). Figure 1 presents an overall geographic sum-
mary. Although boundaries between the Neandertal and Cro-Magnon territories are not marked, the
question is raised of whether Neandertal populations across southern Europe continued to be in
touch with each other after 40–38 ka BP, or became isolated groups. Small populations, as modeled
by Zubrow (1989), if not intermarrying with incoming groups, could disappear within a relatively
short period.

There is little doubt today that the rapid cultural changes through the Upper Paleolithic times reflect
the results of a major revolution. There were significant technological and social changes, but they
are not easy to decipher, due to the grosgrain of chronological resolution as presented above. As
with other revolutions, the nature of the changes is better documented after a certain lapse of time,
when the new cultural expressions stand in contrast to those of pre-revolutionary times. In the case
of the European sequence, the proliferation of lithic blade industries, antler and bone tools, mobile
art objects, and cave art (in the Franco-Cantabrian region) gives a good example. In the Near East—
despite the more ephemeral character of the Upper Paleolithic sites—the evolved blade technology,
the appearance of grinding tools, and the modest use of bone, antler and marine shells mark the cul-
tural shift. That the change was rapid is clearly demonstrated by the radiometric scale. From 270/
250 ka through 48/46 ka BP, Mousterian lithic industries were pre-eminent, while from 45/42 ka BP
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onwards, laminar industries formed the basic stone tool-kits, and involved the use of various raw
materials, while the appearance of imagery was seen.

Origins of Agriculture in Western Asia

The agricultural revolution, or as it is known in the archaeological literature, the “Neolithic Revolu-
tion”, is a topic that has attracted historians, archaeologists and botanists since the 19th century. The
impact of plant cultivation by sedentary communities on human diets and rates of reproduction is
considered the crucial threshold that caused rapid population growth in many parts of the world dur-
ing the Holocene (e.g. Bar-Yosef 1998c; Cohen 1977; Harris 1998a, 1998b; Smith 1998). 

As with all important past revolutions, the emergence of plant cultivation some 11,000 years ago,
followed by animal domestication, is evaluated on the basis of its outcome. Gradualists see the cul-
tural and socio-economic changes as a slow process that took thousands of years to complete. Others
view the change as radical and rapid. The question of “why” a particular change took place is often
the most debated. Once there are records based on field and laboratory observations, however,
archaeologists tend to agree on the “when” and “where” aspects of the studied revolution. It is in
both these aspects that AMS 14C measurements, especially when calibrated, can revolutionize past
understandings and pose additional challenges.

The Fertile Crescent of western Asia and the Yangtze River valley are considered the two oldest cen-
ters of the transition to agriculture in the Old World (Smith 1998). Like other major revolutions in
history, the Neolithic revolution began in a core area. The locus of early cultivation practiced by
Neolithic villagers is still uncertain. Past hypotheses placed incipient farming in the natural habitat
of cereals (Braidwood 1975), or at the edges of the main distribution of the progenitors, namely, in
the marginal belt where foragers experienced decreasing yields in plant food resources in the face of
prolonged worsening of environmental conditions (e.g. Binford 1968; Flannery 1973). 

Archeobotanical evidence of carbonized plant remains from Neolithic sites in the Levant points to
the location in which cultivation began (e.g. Harris and Hillman 1989; Miller 1992, 1997; Hillman
1996; Heun et al. 1997; Harris 1998a). There is little doubt today that systematic cultivation and har-
vesting in the same fields year after year resulted in the domestication of plant species (Zohary
1989; Zohary and Hopf 1994; Bar-Yosef and Meadow 1995; Harris 1996a, 1996b, 1998b). Once
communities of cultivating foragers were established, the domestication of goats and sheep was ini-
tiated (Legge 1996), followed later by cattle and pigs (Uerpmann 1989). 

The search for the earliest farming communities began with the pioneering project of R Braidwood
(1952, 1973, 1983), which targeted the hilly flanks of the Zagros, where wild cereal species grow
today. His choice relied on botanical surveys that mapped the distribution of the various Cerealia
species across western Asia (Harlan and Zohary 1966; Harlan 1977; Zohary and Hopf 1994). Unfor-
tunately, at the time these surveys were conducted, the impact on the vegetation of Terminal Pleis-
tocene–Early Holocene climatic fluctuations was not taken into account, a fact realized only later
(Wright Jr 1993).

In the late 1990s, archaeologists and archeobotanists began to create an evolutionary scenario based
on various kinds of data sets. First, information retrieved from pollen cores and the deep-sea cores
from the Eastern Mediterranean provides the distribution of the paleo-phytogeographical belts
(Van Zeist and Bottema 1991; Roberts and Wright Jr 1993; Baruch 1994; Bottema 1995; Rossignol-
Strick 1995, 1997; Hillman 1996). Adopting the correction for hard-water effects on 14C dates in
inland lakes, proposed by Rossignol-Strick (1995), established sound correlations between marine
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and terrestrial pollen cores. According to this scheme, the Younger Dryas is signified by the abun-
dance of Chenopodiaceae, followed by an increase in deciduous oak pollen that marks the early mil-
lennia of the Holocene and reflects the increase in annual precipitation.

Second, there is a general agreement on the identification of the Younger Dryas, whether in marine
sediments, lake cores, or speleothems (Wright Jr 1993; Rossignol-Strick 1995; Hillman 1996; Land-
mann et al. 1996; Bar-Mathews et al. 1997, 1999; Lemcke and Sturm 1997; Fontugne et al. 1999;
Frumkin et al. 1999). The conditions prevailing during the Younger Dryas are crucial in interpreting
the archaeological remains, and, unfortunately, the dating of this period in the Near East is not with-
out difficulties. According to the ice cores, the Younger Dryas lasted from 12.9 to 11.6 ka (Alley et
al. 1993; Mayewski et al. 1996), while in the varve sequence of Lake Van in eastern Turkey (Lemcke
and Sturm 1997), this cold and dry period was longer by around 800 years. 

The third source of data is carbonized plant remains, which indicate “where” within the region var-
ious seeds were collected (Hillman et al. 1989; Hillman 1996; Kislev 1997). The seeds, if in secure
archaeological context, often provide more precise dates for the “when” question, especially
through AMS measurements. Although the number of directly dated seeds is currently rather small,
the growing awareness among archaeologists and archeobotanists that this is the way forward facil-
itates the testing of several hypotheses in the near future. Meanwhile, available charcoal dates
already provide an interesting picture, whether at the level of a particular site, or across a micro-
region such as the Jordan Valley (Figures 2–5).

A brief summary of the paleoclimatic sequence of the Terminal Pleistocene, following the Last Gla-
cial Maximum (LGM), would begin with an increase of annual precipitation and a slow temperature
rise from around 15,500 BP. The typical eastern Mediterranean cycle of wet, cold winters and dry,
hot summers was established during this period and not later, as was suggested previously (McCor-
riston and Hole 1991; Wright Jr 1993). The rapid expansion of oaks (mainly the deciduous Q. ith-
aburensis), olives, and pistachio (which is always misrepresented in the samples due to low pollen
production), as well as the cereals, which were present in the region from 19,000 BP, testify to this
annual climatic pattern (Baruch and Bottema 1991). 

The ensuing changes are recorded in the terrestrial pollen diagrams and were plotted fairly recently
by Hillman (1996) as two vegetation maps for Western Asia, for 13 and 11 ka BP (uncalibrated),
respectively. These maps, although based on the terrestrial pollen cores (see above), demonstrate the
expansion of three plant associations as follows: 1) forests and woodland in the Mediterranean
coastal plain and hilly ranges, 2) oak-terenbinth, a mosaic of woodland and open areas dominated by
annual grasses further inland, and 3) terenbinth-almond woodland-steppe that phases into the deser-
tic Saharo-Arabian associations (Zohary 1973). 

The natural stands of wild cereals are within the last two belts and often appear as grasses in the oak
parkland. The expansion of the Mediterranean vegetation and especially of the natural habitats of the
cereals resulted from increases in rainfall and temperatures. The prevailing climatic conditions of the
Bölling/Allerød (ca. 15,000–13,000 cal BP) favored the growth of C3 plants (Sage 1995), used by
Levantine foragers from at least 19,000 BP onwards (Kislev et al. 1992). The improved conditions
seem to have served as an impetus for intensive exploitation of cereals and legumes, as well as fruit
trees and acorns. The archaeological evidence indicates an increase in sedentism, a broad-based
economy relying on extensive exploitation, and the emergence of a complex hunter-gatherer society
known as the Natufian culture (Figures 2–3; Henry 1989; Belfer-Cohen 1991; Bar-Yosef 1998b). 
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The proliferation in recent years in the number of 14C dates reveals that the dry and cold climate of the
Younger Dryas was probably the main cause for the initiation of systematic cultivation (Bar-Yosef
and Belfer-Cohen 1992; Moore and Hillman 1992; Bar-Yosef 1998a; Hole 1998). The crisis of the
Younger Dryas, which lasted for about 1300 ± 70 yr (Alley et al. 1993; Mayewski et al. 1993), was
due to its effect on the vegetation of Western Asia. It stopped the advance of the woodland into higher
altitudes inland (in the Taurus and Zagros Mountains) and reduced the belt of oak and terenbinth.
This reconstructed scenario is supported by the identification of carbonized plant remains from
Mureybet (Van Zeist 1986; Van Zeist and Bakker-Herres 1986) and Abu Hureyra (Hillman et al.
1989; Moore and Hillman 1992; Figures 3–5), where cereals decreased; and Halan Çemi, which, on
a more eastward tributary of the Tigris, by that time had no cereals present (Rosenberg et al. 1995).

Human acts are seen as the results of social decisions. It is hypothesized that the determining decision
in favor of intentional cultivation was taken in the face of decreasing yields of cereals in the wild

Figure 2 Calibrated generalized chronology for the Terminal Pleistocene and Early
Holocene of the Levant, indicating both uncalibrated and calibrated BP dates. The figure
demonstrates that the Earliest Neolithic actually began during the Younger Dryas.
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stands, in combination with the recognition that other economic solutions, such as becoming more
mobile, given the regional population densities, were not the optimal way to minimize risk. The
assumed depletion in the natural yields is a testable hypothesis. It relies on the slight decrease in
atmospheric CO2 values during the Younger Dryas as the limiting factor in the distribution of the oak-
terenbinth belt, and in particular, in the declining annual returns among C3 plants such as the cereals,
which had become a major source of carbohydrates for Levantine foragers (Bar-Yosef and Meadow
1995). The paleo-phytogeographical reconstruction points to a relatively narrow strip in the Levant
in which the progenitors of most cereal species grew (Hillman 1996). This belt, although a series of
delineated areas (Van Andel and Runnels 1995) also known as the “Levantine Corridor,” became the
locus in Western Asia in which the first agricultural communities were founded (Figure 4; Bar-Yosef
and Meadow 1995; Bar-Yosef 1998c). The decision for economic change was probably not an easy
one. It entailed the re-organization of the division of labor, seasonal scheduling of work, allocation of
energy expenditure at different times of the year, and the like. However, the stable provision of a sta-
ple food meant an increase in the fertility rates, which, despite rising infant and toddler deaths (evi-
denced in burials), resulted in relatively rapid population growth (Bentley et al. 1993; Bentley 1996). 

The return to increasing CO2 levels and higher annual amounts of precipitation during the early
Holocene provided conditions suitable for successful cultivation (e.g. Araus et al. 1999). Hence,
early farming communities—known archaeologically in the Levant as Pre-Pottery Neolithic A
(PPNA)—and particularly their descendants—during the Pre-Pottery Neolithic B (PPNB)—flour-
ished (Figure 5). The ensuing off-shoot villages resulted in emigration and demic-diffusion into
Europe, the Mediterranean islands, northeast Africa, and southern and central Asia (Ammerman and
Cavalli-Sforza 1984; Wetterstrom 1993, 1998; Van Andel and Runnels 1995; Meadow 1998). At the
same time, the wetter and warming climate of the early Holocene facilitated the larger geographic
dispersal of the wild-cereal progenitors, at later times reaching the current distribution. 

Figure 3 Calibrated dates for the Natufian (both Early and Late) and the Harifian (a desertic entity in the Negev and northern
Sinai). A general correlation between the onset of the Bölling/Allerød and the emergence of the Natufian culture is suggested,
as is the contemporaneity of the Natufian and Harifian with the Younger Dryas.
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DISCUSSION

In the previous sections, only two issues from the endless number of archaeological investigations
were chosen for presentation. In both cases the demand and need for accurate dating have a major
impact on the social interpretation of the data. However, there are other domains in which AMS 14C
measurements seem to revolutionize our interpretations, and one of these is the study of cave art.
This is not only a subject that continues to interest specialists, but is also a topic in art history, and
continues to be studied by students of human cognition and its intricate evolution. Even a cursory
survey will demonstrate that brain scientists and social psychologists, among others, cite and inter-
pret prehistoric cave art (mostly from the Franco-Cantabrian region) as evidence for symbolic
behavior. In addition, mobile objects that fall under the category of imagery are being considered as
such (e.g. Marshack 1972, 1997; Donald 1991; Mithen 1996; Conkey et al. 1997; Deacon 1997;
Klein 1999). It is, therefore, worth noting that direct AMS dating of samples carefully removed from
paintings has enabled investigators to test previous hypotheses concerning their age, and in particu-
lar, to confirm that the earliest cave paintings, in the site of Grotte Chauvet, date back to 32–30 ka
and in Cosquer Cave to 28–26 ka (Clottes et al. 1995; Clottes 1996a, 1996b). These dates tally well
with the even older mobile art objects and body decorations known from the Aurignacian, and sup-
port the contention that this culture differs entirely from the Mousterian and thus signifies the
techno-cultural revolution of the Middle to Upper Paleolithic. 

Another well-known historical example is the dating of the famous Shroud stored in the Cathedral
of St John the Baptist in Turin, Italy. In this case, the three series of AMS dates carried out indepen-

Figure 4 Calibrated dates of Early Neolithic sites in the Jordan Valley and the neighboring hilly areas indicate that the large
communities such as Jericho, Netiv Hagdud, and Gilgal were probably the result of the emergence of intentional cultivation
during or immediately at the end of the Younger Dryas.
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dently by three laboratories support the history of this object as first noted in the mid-14th century
AD. The calibrated 14C dates suggested a range of the late 13th to 14th centuries AD (Damon et al.
1989; Taylor 1997). 

The calibration of conventional 14C ages has already had some major impacts in archaeology. The
first all-encompassing attempt to evaluate the impact of the calibration curve on archaeological inter-
pretations was made by Renfrew (1973). In this influential survey, the chronological paradigm of
G Childe—which was based on artifact and assemblage correlations across the Mediterranean and
Europe—was used, with the Egyptian timetable as a basic yardstick. However, when the available
14C dates for various cultural manifestations from Greece through Britain were calibrated, non-diffu-
sionist explanations were put forward. Today, correlations between Egypt and Greece are considered
well established. Models based on diffusion and migrations are back in fashion (e.g. Anthony 1990),
and like other explanations, propose that the expansion of farming from the Near East to Western
Europe can be correlated with the dispersal of Indo-European languages (Renfrew 1987).

Chronologies earlier than the third millennium BC in the Near East are dependent on 14C dates.
Time estimates employed by archaeologists to evaluate whether a socioeconomic or cultural change
was rapid or slow relied until now on non-calibrated 14C dates. Correlations with Ice Core chronol-
ogy, which is calendrical, require the calibration of dates derived from archaeological contexts. This
would, for example, be the only way to test hypotheses that climatic changes triggered cultural
changes in a given region. However, everyone who uses the calibration curve is familiar with the
existence of “plateaux” when even a date with a rather small standard deviation could indicate sev-
eral potential calendrical dates (e.g. Hajdas et al. 1995). Unfortunately, the time of the origins of
agriculture also seems to coincide with one of these plateaux.

Figure 5 The radiocarbon calibrated chronology of Abu Hureyra on the Middle Euphrates River (Moore et al. 1986), from
which carbonized plant assemblages were recovered. The dates indicate that the emergence of the farming community was
either during or at the beginning of the PPNB. 
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Archaeologists should be able, in forthcoming years, to resolve the issue of chronological ambigu-
ities. A potential way to overcome the problem of a “plateau” in the calibration curve is to obtain
past climatic information from well-stratified, dated samples. Previous work has demonstrated that
carbonized plants preserve the original ratios of 16O/18O and 12C/13C (Marino and DeNiro 1987;
Marino and McElroy 1991). Similar investigations in the Near East provided promising results. For
example, wood samples from the first century AD rampart in Masada, or on carbonized cereal grains
from PPNB Tel Halula indicate the wetter climate or higher level of water availability during the
lifetime of the plants (Araus et al. 1999; Yakir et al. 1994). This approach requires that carbonized
seeds be collected with special attention paid to their stratigraphic position from sites that span the
time of the Late Natufian and Early Neolithic, that is, from 13,000 to about 10,000 BP (calibrated).
The isotopic information from a stratified sequence could be then compared with the climatic curve
of the ice cores, although it is expected that the 14C dates will fluctuate between older and younger
readings (e.g. Hajdas et al. 1998). Such a research project would force archaeologists to indulge in
an as yet very uncommon standard of behavior: that of publishing the sections of the sites and indi-
cating from where the samples were taken (see for example Bar-Yosef et al. 1996). This kind of
information, when accompanied by a report on the site’s micromorphology, a study that would clar-
ify the amount of disturbance, often of biogenic origins, would enable readers to evaluate the integ-
rity of the so-called “archaeological context” (Courty et al. 1989; Goldberg and Bar-Yosef 1998).
The cumulative experience of field archaeologists indicates that “clean” contexts are not easy to
trace in Early Neolithic sites, however, given their potential in resolving important historical ques-
tions, the additional efforts would be worthwhile.

In sum, the last decade of 14C dating has already made a significant impact on archaeological and
historical interpretations. In an atmosphere of improved cooperation between scientists and archae-
ologists, new avenues of research can bring us revolutionary answers to old questions. 

REFERENCES

Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC,
Grootes PM, White JWC, Ram M, Waddington ED,
Mayewski, PA. 1993. Abrupt increase in Greenland
snow accumulation at the end of the Younger Dryas
event. Nature 362:527–9.

Ambrose SH. 1998a. Chronology of the Later Stone Age
and food production in East Africa. Journal of Ar-
chaeological Science 25:377–92.

Ambrose SH. 1998b. Late Pleistocene human population
bottlenecks, volcanic winter, and differentiation of
modern humans. Journal of Human Evolution 34(6):
623–51.

Ammerman AJ, Cavalli-Sforza, LL. 1984. The Neolithic
transition and the genetics of populations in Europe.
Princeton: Princeton University Press. 176 p.

Anthony DW. 1990. Migration in archaeology: the baby
and the bathwater. American Anthropologist 92(4):
895–914.

Araus JL, Febrero A, Catala M, Molist M, Voltas J, Ro-
magosa I. 1999. Crop water availability in early agri-
culture: evidence from carbon isotope discrimination
of seeds from a tenth millennium BP site on the Euph-
rates. Global Change Biology 5:201–12.

Bar-Yosef O. 1992 The role of Western Asia in modern
human origins. Philosophical Transactions of the

Royal Society, B (London) 337:193–200.
Bar-Yosef O. 1994. The contributions of southwest Asia

to the study of the origin of modern humans. In: Ni-
tecki MH, Nitecki DV, editors. Origins of Anatomi-
cally Modern Humans. New York: Plenum Press. p
23–66.

Bar-Yosef, O. 1998a The Chronology of the Middle Pa-
leolithic of the Levant. In: Akazawa T, Aoki K, Bar-
Yosef O, editors. Neandertals and modern humans in
western Asia. New York: Plenum Press. p 39–56.

Bar-Yosef O. 1998b. The Natufian culture in the Le-
vant—threshold to the origins of agriculture. Evolu-
tionary Anthropology 6(5):159–77.

Bar-Yosef O. 1998c. On the nature of transitions: the
Middle to Upper Palaeolithic and the Neolithic Revo-
lution. Cambridge Archaeological Journal 8(2):141–
63.

Bar-Yosef O, Arnold, M, Belfer-Cohen A, Goldberg P,
Housley R, Laville H, Meignen L, Mercier N, Vogel
JC, Vandermeersch B. 1996. The dating of the Upper
Paleolithic layers in Kebara Cave, Mount Carmel.
Journal of Archaeological Science 23:297–306.

Bar-Yosef O, Belfer-Cohen A. 1992. From foraging to
farming in the Mediterranean Levant. In: A. Gebauer
B, Price TD, editors. Transitions to agriculture in pre-



Impact on Old World Archaeology 35

history. Madison: Prehistory Press. p 21–48.
Bar-Yosef O, Meadow RH. 1995. The origins of Agricul-

ture in the Near East. In Price TD, Gebauer AB, edi-
tors. Last hunters, first farmers: new perspectives on
the prehistoric transition to agriculture. Santa Fe:
School of American Research Press. p 39–94.

Barton RNE, Currant AP, Fernandez-Jalvo Y, Finlayson
JC, Goldberg P, Macphail R, Pettitt PB, Stringer CB.
1999. Gibraltar Neanderthals and results of recent ex-
cavations in Gorham’s, Vanguard and Ibex Caves. An-
tiquity 73(279):13–23.

Baruch U. 1994 The late Quaternary pollen record of the
Near East. In: Bar-Yosef O, Kra RS, editors. Late
Quaternary chronology and paleoclimates of the east-
ern Mediterranean. Tucson and Cambridge: Radio-
carbon and the Peabody Museum of Archaeology and
Ethnology, Harvard University. p 103–20.

Baruch U, Bottema S. 1991. Palynological evidence for
climatic changes in the Levant ca. 17,000-9,000 B.P.
In: Bar-Yosef O, Valla FR, editors. The Natufian cul-
ture in the Levant. Ann Arbor: International Mono-
graphs in Prehistory. p 11–20.

Belfer-Cohen, A. 1991 The Natufian in the Levant. An-
nual Review of Anthropology 20:167–86.

Bentley GR. 1996. How did prehistoric women bear
“Man the Hunter”? Reconstructing fertility from the
archaeological record. In Wright RP, editor. Gender
and archaeology. Philadelphia: University of Pennsyl-
vania. p 23–51.

Bentley GR, Goldberg T, Jasienska G. 1993. The fertility
of agricultural and non-agricultural traditional societ-
ies. Population Studies 47:269–81.

Bergman CA, McEwen E, Miller R. 1988. Experimental
archery: projectile velocities and comparison of bow
performances. Antiquity 62(237):658–70.

Binford SR. 1968. Early Upper Pleistocene adaptations
in the Levant. American Anthropologist 70(4):707–
17.

Bischoff JL, Ludwig K, Garcia JF, Carbonell E, Vaquero
M, Stafford TW Jr, Jull AJT. 1994. Dating of the basal
Aurignacian sandwich at Abric Romaní (Catalunya,
Spain) by radiocarbon and Uranium-series. Journal of
Archaeological Science 21(4):541–52.

Bischoff JL, Soler M, Maroto J, Julià R. 1989. Abrupt
Mousterian/Aurignacian boundary at c. 40 ka bp: Ac-
celerator 14C dates from L’Arbreda Cave (Catalunya,
Spain). Journal of Archaeological Science 16:563–76.

Bottema S. 1995. Holocene vegetation of the Van area:
Palynological and chronological evidence from
Sögütlü, Turkey. Vegetation History and Archaeobot-
any 4:187–93.

Bourguignon L. 1996 Un Mousterien tardif sur le site
d’Umm el Tlel (Bassin d’El Khowm, Syrie)? Exem-
ples des niveaux IIBase’ et III2A’. In: Carbonell E, Va-
quero M, editors. The last Neandertals, the first ana-
tomically modern humans. Tarragona: Universitat
Rovira i Virgili. p 317–36.

Braidwood RJ. 1952. The Near East and the foundations
for civilization. Eugene: Condon Lectures, Oregon
State System of Higher Education.

Braidwood RJ. 1973. The early village in Southwestern
Asia. Journal of Near Eastern Studies 32(1–2):34–9.

Braidwood RJ. 1975. Prehistoric men. 8th edition. Glen-
view (Illinois): Scott, Freeman and Company.

Braidwood RJ. 1983. The Hilly Flanks and beyond: es-
says on the prehistory of southwestern Asia presented
to Robert J. Braidwood, November 15, 1982. Chicago:
Oriental Institute of the University of Chicago. 

Cabrera V, Bernaldo de Quirós F. 1996. The origin of the
Upper Palaeolithic: a Cantabrian perspective. In: Car-
bonell E, Vaquero M, editors. The last Neandertals,
the first anatomically modern humans. Tarragona:
Universitat Rovira i Virgili. p 251–65.

Carbonell E, Vaquero M, Maroto J, Rando JM, Mallol C.
A Geographic Perspective on the Middle to Upper Pa-
leolithic Transition in the Iberian Peninsula. In: Bar-
Yosef O, Pilbeam D, editors. The geography of Nean-
dertals and modern humans in Europe and the Greater
Mediterranean. Cambridge: Peabody Museum Press.
Forthcoming.

Çetin O, Özer AM, Wieser A. 1994. ESR dating of tooth
enamel from Karain excavation (Antalya, Turkey).
Quaternary Geochronology (Quaternary Science Re-
views) 13:661–9.

Clark GA. 1997. The Middle-Upper Paleolithic transi-
tion in Europe: an American perspective. Norwegian
Archaeological Review 30:25–53.

Clottes J. 1996a. Recent studies on Palaeolithic art. Cam-
bridge Archaeological Journal 6(2):179–89.

Clottes J. 1996b. Thematic changes in Upper Palaeolithic
art: a view from the Grotte Chauvet. Antiquity 70:276–
88.

Clottes J, Chauvet J-M, Brunel-Deschamps E, Hillaire C,
Daugas J-P, Arnold M, Cachier H, Evin J, Fortin P,
Oberlin C. 1995. Les peintures paléolithiques de la
Grotte Chauvet-Pont-d’Arc, à Vallon-Pont-d’Arc
(Ardèche, France): datations directes et indirectes par
la méthode du radiocarbone. Comptes-rendus de l’Ac-
adémie des Sciences de Paris 320(IIa):1133–40.

Cohen MN. 1977. The food crisis in prehistory: overpop-
ulation and the origins of agriculture. New Haven:
Yale University Press.

Conkey MW, Soffer O, Stratmann D, Jablonski NG, ed-
itors. 1997. Beyond art: Pleistocene image and sym-
bol. San Francisco: California Academy of Sciences.

Courty MA, Goldberg P, Macphail R. 1989. Soils and mi-
cromorphology in archaeology. Cambridge: Cam-
bridge University Press.

D’Errico F, Zilhão J, Julien M, Baffier D, Pelegrin J.
1998. Neanderthal acculturation in Western Europe?
A critical review of the evidence and its interpretation.
Current Anthropology 39 (Supplement):S1–S44.

Damon PE, Donahue DJ, Gord BH, Hatheway AL, Jull
AJT, Linick TW, Sercelo PJ, Toolin LJ, Bronk CR,



36 O Bar-Yosef

Hall ET. 1989. Radiocarbon dating the shroud of
Turin. Nature 337:611–5.

Deacon T. 1997. The symbolic species: the co-evolution
of language and the brain. New York: Norton. 

Dibble HL. 1993. Le Paléolithique moyen récent du Za-
gros. Bulletin de la Société Préhistorique Française
90(4):307–12.

Dibble HL, Holdaway SJ. 1993. The Middle Paleolithic
industries of Warwasi. In: Olszewski DI, Dibble HL,
editors. The Paleolithic prehistory of the Zagros-Tau-
rus. Philadelphia: The University Museum, Univer-
sity of Pennsylvania. p 75–100.

Donald M. 1991. Origins of the modern mind. Cam-
bridge: Harvard University Press. 

Flannery KV. 1973. The origins of agriculture. Annual
Review of Anthropology 2:271–310.

Gamble, C. 1986 The Palaeolithic settlement of Europe.
Cambridge: Cambridge University Press. 

Garrod DAE. 1955. The Mugharet el Emireh in lower
Galilee: type station of the Emiran industry. Journal of
the Royal Anthropological Institute 85:141–62.

Gilman A. 1984. Explaining the Upper Palaeolithic rev-
olution. In: Springs E, editor. Marxist perspectives in
archaeology. Cambridge: Cambridge University
Press. p 115–26.

Goldberg P, Bar-Yosef O. 1998. Site formation processes
in Kebara and Hayonim Caves and their significance
in Levantine prehistoric caves. In: Akazawa T, Aoki
K, Bar-Yosef O, editors. Neandertals and modern hu-
mans in western Asia. New York: Plenum Press. p
107–25.

Golovanova LV, Hoffecker JF, Kharitonov VM, Ro-
manova GP. 1999. Mezmaiskaya Cave: a Neanderthal
occupation in the Northern Caucasus. Current Anthro-
pology 40(1):77–86.

Hajdas I, Bonani G, Bodén P, Peteet DM, Mann DH.
1998. Cold reversal on Kodiak Island, Alaska, corre-
lated with the European Younger Dryas by using vari-
ations of atmospheric 14C content. Geology 26(11):
1047–50.

Hajdas I, Ivy-ochs S, Bonani G. 1995. Problems in the
Extension of the Radiocarbon Calibration Curve (10–
13 Kyr BP). Radiocarbon 37(1):75–9.

Harlan JR. 1977. The origins of cereal agriculture in the
Old World. In: Reed CA, editor. Origins of agricul-
ture. The Hague, Paris: Mouton Publishers. p 357–83.

Harlan JR, Zohary D. 1966. Distribution of wild wheat
and barley. Science 153:1074–80.

Harris D, editor. 1996a. The origins and spread of agri-
culture and pastoralism in Eurasia. London: UCL
Press.

Harris DR. 1996b. The origins and spread of agriculture
and pastoralism in Eurasia: an overview. In: Harris
DR, editor. The origins and spread of agriculture and
pastoralism in Eurasia. London: UCL Press. p 552–
73.

Harris DR. 1998a. The origins of agriculture in southwest

Asia. The Review of Archaeology 19(2):5–12.
Harris DR. 1998b. The spread of Neolithic agriculture

from the Levant to western central Asia. In: Damania
AB, Valkoun J, Willcox G, Qualset CO, editors. The
origins of agriculture and crop domestication.
Aleppo, Syria: ICARDA. p 65–82.

Harris DR, Hillman GC, editors. 1989. Foraging and
farming: the evolution of plant exploitation. London:
Unwin Hyman. 

Henry DO. 1989. From foraging to agriculture: the Le-
vant at the end of the Ice Age. Philadelphia: University
of Pennsylvania Press. 

Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Ac-
cerbi M, Borghi B, Salamini F. 1997. Site of einkorn
wheat domestication identified by DNA fingerprint-
ing. Science 278:1312–4.

Hillman G. 1996. Late Pleistocene changes in wild plant-
foods available to hunter-gatherers of the Northern
Fertile Crescent: possible preludes to cereal cultiva-
tion. In Harris D, editor. The origins and spread of ag-
riculture and pastoralism in Eurasia. London: UCL
Press. p 159–203.

Hillman, GC, Colledge S, Harris DR. 1989. Plant food
economy during the Epi-Palaeolithic period at Tell
Abu Hureyra, Syria: Dietary diversity, seasonality and
modes of exploitation. In: Harris DR, Hillman GC, ed-
itors. Foraging and farming: the evolution of plant ex-
ploitation. London: Unwin Hyman. p 240–66.

Hole F. 1998. The spread of agriculture to the eastern arc
of the Fertile Crescent: food for the herders. In: Dam-
ania AB, Valkoun J, Willcox G, Qualset CO, editors.
The origins of agriculture and crop domestication.
Aleppo, Syria: ICARDA. p 83–92.

Karkanas P. 1999. Lithostratigraphy and micromorphol-
ogy of Theopetra Cave deposits, Thessaly, Greece:
some preliminary results. In: Bailey G, Adam E, Pa-
nagopoulou E, Perlès C, Zachos K, editors. The palae-
olithic archaeology of Greece and adjacent areas.
Proceedings of the ICOPAG Conference, Ioannina.
London: British School at Athens. p 240–51.

Kislev M. 1997. Early agriculture and paleoecology of
Netiv Hagdud. In: Bar-Yosef O, Gopher A, editors. An
Early Neolithic village in the Jordan Valley Part I: the
archaeology of Netiv Hagdud. Cambridge: Peabody
Museum of Archaeology and Ethnology, Harvard
University. p 209–36.

Kislev ME, Nadel D, Carmi I. 1992. Epi-Palaeolithic
(19,000 B.P.) cereal and fruit diet at Ohalo II, Sea of
Galilee, Israel. Review of Palaeobotany and Palynol-
ogy 71:161–6.

Klein RG. 1995. Anatomy, behavior, and modern human
origins. Journal of World Prehistory 9(2):167–98.

Klein RG. 1999. The human career: human biological
and cultural origins. 2nd edition. Chicago: University
of Chicago Press.

Koumouzelis M, Ginter B, Kozlowski JK, Kazior B,
Sobczyk K, Kaczanowska M, Pawlikowski M, Bar-



Impact on Old World Archaeology 37

Yosef O, Albert RM, Litynska-Zajac M, Stworzewicz
E, Wojtal P, Lipecki G, Tomek T, Bochenski ZM, Paz-
dur A. Cave 1, Klisoura Gorge: the first Aurignacian
sequence in Greece. Journal of Field Archaeology.
Forthcoming.

Kozlowski JK. 1998. The Middle and the Early Upper
Paleolithic around the Black Sea. In: Akazawa T, Aoki
K, Bar-Yosef O, editors. Neandertals and modern hu-
mans in western Asia. New York: Plenum Press. p
461–82.

Kuhn SL, Bietti A. The Late Middle and Early Upper Pa-
leolithic in Italy. In Bar-Yosef O, Pilbeam D, editors.
The geography of Neandertals and modern humans in
Europe and the greater Mediterranean. Cambridge:
Peabody Museum Press. Forthcoming.

Kuhn SL, Stiner MC, Güleç E. 1999. Initial Upper Palae-
olithic in south-central Turkey and its regional con-
text: a preliminary report. Antiquity 73(281):505–17.

Kyparissi-Apostolika N. 1999. The Palaeolithic deposits
of Theopetra Cave in Thessaly (Greece). In: Bailey G,
Adam E, Panagopoulou E, Perlès C, Zachos K. The
Palaeolithic archaeology of Greece and adjacent ar-
eas. Proceedings of the ICOPAG Conference, Ioan-
nina. London: British School at Athens. p 232–9.

Legge T. 1996. The beginning of caprine domestication
in Southwest Asia. In: Harris D, editor. The origins
and spread of agriculture and pastoralism in Eurasia.
London: UCL Press. p 238–62.

Lemcke G, Sturm M. 1997. "∂18O and Trace element
measurements as proxy for the reconstructions of cli-
mate changes at lake Van (Turkey): preliminary re-
sults. In: Dalfes HN, Kukla G, Weiss H, editors. Third
Millennium BC climate change and Old World col-
lapse. Berlin: Springer-Verlag. p 653–78.

Libby WF. 1952. Radiocarbon dating. 1st edition. Chi-
cago: University of Chicago Press.

Marino BD, DeNiro MJ. 1987. Isotopic analysis or ar-
chaeobotanicals to reconstruct past climates: effects of
activities associated with food preparation on carbon,
hydrogen and oxygen isotope ratios of plant cellulose.
Journal of Archaeological Science 14:537–48.

Marino BD, McElroy MB. 1991. Isotopic composition of
atmospheric CO2 inferred from carbon in C4 plant cel-
lulose. Nature 349:127–31.

Marks A, editor. 1983. Prehistory and paleoenviron-
ments in the Central Negev, Israel. Volume III. Dallas:
Southern Methodist University Press.

Marks AE. 1993. The early Upper Paleolithic: the view
from the Levant. In: Knecht H, Pike-Tay A, White R.
Before Lascaux: the complete record of the early Up-
per Paleolithic. Boca Raton: CRC Press. p 5–22.

Marks AE, Chabai VP, editors. 1998. The Middle Pale-
olithic of Western Crimea. Volume 1. Liège: ERAUL.

Marshack A. 1972. The roots of civilization: the cogni-
tive beginnings of man’s first art, symbol, and nota-
tion. New York: McGraw-Hill.

Marshack A. 1997. “Paleolithic image making and sym-

boling in Europe and the Middle East: A comparative
review,” In: Conkey M, Soffer O, Stratmann D,
Jablonski NG, editors. Beyond art: Pleistocene image
and symbol. San Francisco: Memoirs of California
Academy of Sciences. p 53–91.

Mayewski PA, Meeker LD, Whitlow S, Twickler MS,
Morrison MC, Alley RB, Bloomfield R, Taylor K.
1993. The atmosphere during the Younger Dryas. Sci-
ence 261:195–7.

Mayewski PA, Twickler MS, Whitlow SI, Meeker LD,
Yang Q, Thomas J, Kreutz K, Grootes PM, Morse DL,
Steig EJ. 1996. Climate change during the last degla-
ciation in Antarctica. Science 272:1636–8.

McBurney CBM. 1967. The Haua Fteah (Cyrenaica)
and the Stone Age of the south-east Mediterranean.
Cambridge: Cambridge University Press. 

Meadow RH. 1998. Pre- and Proto-Historic Agricultural
and Pastoral Transformations in Northwestern South
Asia. The Review of Archaeology 19(2):12–22.

Mellars P. 1989. Technological changes at the Middle-
Upper Palaeolithic transition: Economic, social and
cognitive perspectives. In: Mellars P, Stringer C, edi-
tors. The human revolution: behavioural and biologi-
cal perspectives on the origins of modern humans. Ed-
inburgh: Edinburgh University Press. p 338–65.

Mellars P. 1996a. The Neanderthal legacy: an archaeo-
logical perspective from Western Europe. Princeton:
Princeton University Press.

Mellars P 1996b. Symbolism, language, and the Nean-
derthal mind. In: Mellars P, Stringer C, editors. Mod-
elling the early human mind. Cambridge: McDonald
Institute of Archaeological Research. p 15–32.

Mellars P, Otte M, Straus L, Zilhão J, D’Errico F. 1999.
The Neanderthal problem continued. CA Forum on
Theory in Anthropology. Current Anthropology 40(3):
341–64.

Mellars P, Tixier J. 1989. Radiocarbon accelerator dating
of Ksar Aqil (Lebanon) and the chronology of the Up-
per Paleolithic sequence in the Middle East. Antiquity
63:761–8.

Miller NF. 1992. The Origins of Plant Cultivation in the
Near East. In: Cowan CW, Watson PJ, editors. The or-
igins of agriculture: an international perspective.
Washington DC: Smithsonian Institution Press. p 39–
58.

Miller NF. 1997. The macrobotanical evidence for vege-
tation in the Near East, c. 18,000/16,000 BC to 4,000
BC. Paléorient 23(2):197–208.

Mithen S. 1996. The Prehistory of the mind: a search for
the origins of art, religion, and science. London:
Thames and Hudson.

Moore AMT, Hillman GC. 1992. The Pleistocene to Ho-
locene transition and human economy in southwest
Asia: the impact of the Younger Dryas. American An-
tiquity 57(3):482–94.

Moore AMT, Gowlett JAJ, Hedges REM, Hillman GC,
Legge AJ, Rowley-Conwy PA. 1986. Radiocarbon ac-



38 O Bar-Yosef

celerator (AMS) dates for the Epipaleolithic settle-
ment at Abu Hureyra, Syria. Radiocarbon 28(3):
1068–76. 

Newcomer MH. 1970. The chamfered pieces from Ksar
Akil. Bulletin of the Institute of Archaeology 8,9:177–
91.

Ohnuma K. 1988. Ksar Akil, Lebanon: a technological
study of the earlier Upper Palaeolithic levels at Ksar
Akil. Volume III: Levels XXV–XIV. Oxford: British
Archaeological Reports.

Ohnuma K, Bergman CA. 1990. A technological analysis
of the Upper Palaeolithic Levels (XXV–VI) of Ksar
Akil, Lebanon. In: Mellars P, editor. The emergence of
modern humans. Edinburgh: Edinburgh University
Press. p 91–138.

Otte M, editor. 1998. Préhistoire d'Anatolie: genèse de
deux mondes. Anatolian prehistory: at the crossroads
of two worlds. Volume II. Liège: ERAUL.

Otte M, Yalçinkaya I, Taskiran H, Kozlowski JK, Bar-
Yosef O, Noiret P. 1995. The Anatolian Middle Pale-
olithic. Journal of Anthropological Research 51:287–
99.

Pfeiffer JE. 1982. The creative explosion: an inquiry into
the origins of art and religion. New York: Harper and
Row.

Quintana-Murci L, Semino O, Bandelt H-J, Passerino G,
McElreavey K, Santachiara-Benerecetti AS. 1999.
Genetic evidence of an early exit of Homo sapiens sa-
piens from Africa through eastern Africa. Nature Ge-
netics 23(4):437–41.

Raposo L, Santonja M. 1995. The earliest occupation of
Europe: the Iberian peninsula. In: Roebroeks W, Van
Kolfschoten T, editors. The earliest occupation of Eu-
rope. Leiden: University of Leiden. p 7–25.

Renfrew C. 1973. Before civilization: the radiocarbon
revolution and prehistoric Europe. London: Jonathan
Cape. 

Renfrew C. 1987. Archaeology and language: the puzzle
of Indo-European origins. Cambridge: Cambridge
University Press.

Rink WJ, Lee HK, Rees-Jones J, Goodger KA. 1998.
Electron spin resonance (ESR) and mass spectromet-
ric U-series (MSUS) dating of teeth in Crimean Pale-
olithic site: Starosele, Kabazi II, and Kabazi V. In:
Marks AE, Chabai VP, editors. The middle Paleolithic
of western Crimea. Volume 1. Liège: ERAUL. p 323–
40.

Roberts N, Wright HE Jr. 1993. Vegetational, lake level,
and climatic history of the Near East and southwest
Asia. In: Wright JE Jr. Kutzbach JE, Web T III, Rud-
diman F, Street-Perrott FA, Bartlein PJ, editors. Glo-
bal changes since the last glacial maximum. Minneap-
olis: University of Minnesota Press. p 194–220.

Rosenberg M, Nesbitt RM, Redding RW, Strasser TF.
1995. Hallan Çemi Tepesi: some preliminary observa-
tions concerning early Neolithic subsistence behav-
iors in eastern Anatolia. Anatolica 21:1–12.

Rossignol-Strick M. 1995. Sea-land correlation of pollen
records in the eastern Mediterranean for the glacial-in-
terglacial transition: biostratigraphy versus radiomet-
ric time-scale. Quaternary Science Reviews 14:893–
915.

Rossignol-Strick M. 1997. Paléoclimat de la Méditer-
ranée orientale et de l’Asie du Sud-Ouest de 15 000 à
6 000 BP. Paléorient 23(2):175–86.

Sage RF. 1995. Was low atmospheric CO2 during the
Pleistocene a limiting factor for the origin of agricul-
ture? Global Change Biology 1:93–106.

Sherratt A. 1997. Climatic cycles and behavioural revo-
lutions: the emergence of modern humans and the be-
ginning of farming. Antiquity 71:271–87.

Smith AB. 1998. Keeping people on the periphery: the
ideology of social hierarchies between hunters and
herders. Journal of Anthropological Archaeology
17(2):201–15.

Smith FH, Trinkaus E, Pettitt PB, Karavanic I, Paunovic
M. 1999. Direct radiocarbon dates for Vindija G1 and
Velika Pecina Late Pleistocene hominid remains. Pro-
ceedings of the National Academy of Sciences 96(22):
12281–6.

Smith PEL. 1986. Paleolithic archaeology in Iran. Phil-
adelphia: The American Institute of Iranian Studies
and the University Museum, University of Pennsylva-
nia. 

Solecki RS. 1963. Prehistory in Shanidar Valley, north-
ern Iraq. Science 139:179–93.

Solecki RS. 1964. Shanidar Cave, a Late Pleistocene site
in northern Iraq. Report of the VIth International Con-
gress on Quaternary, Warsaw, 1961. p 413–23.

Solecki RS, Solecki RL. 1993. The pointed tools from the
Mousterian occupations of Shanidar Cave, Northern
Iraq. In: Olszewski DI, Dibble HL, editors. The Pale-
olithic prehistory of the Zagros-Taurus. Philadelphia:
The University Museum, University of Pennsylvania.
p 119–46.

Straus LG. 1996. Continuity or rupture; convergence or
invasion; adaptation or catastrophe; mosaic or mono-
lith: views on the Middle to Upper Paleolithic transi-
tion in Iberia. In: Carbonell E, Vaquero M, editors. The
last Neandertals, the first anatomically modern hu-
mans. Tarragona: Universitat Rovira i Virgili. p 203–
18.

Straus LG. 1997. The Iberian situation between 40,000
and 30,000 BP in light of European models of migra-
tion and convergence. In: Clark GA, Willermet CM,
editors. Conceptual issues in modern humans origins
research. New York: Aldine de Gruyter. p 235–52.

Stringer C, Gamble C. 1993. In search of the Neander-
thals. London: Thames and Hudson.

Stuiver M, Long A, Kra RS, editors. 1993. Calibration
1993. Radiocarbon 35(1):1–244.

Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS,
Hughen KA, Kromer B, McCormac G, Van der Plicht
J, Spurk M. 1998. INTCAL98 radiocarbon age calibra-



Impact on Old World Archaeology 39

tion, 24,000–0 cal BP. Radiocarbon 40(3):1041–84.
Svoboda J, Simán K. 1989. The middle-upper Paleolithic

transition in southeastern central Europe (Czechoslo-
vakia and Hungary). Journal of World Prehistory 3:
283–322.

Taylor RE 1997 Radiocarbon Dating. In: Taylor RE, Ait-
ken MJ editors. Chronometric dating in archaeology.
New York: Plenum Press. p 65–96.

Uerpmann HP. 1989. Problems of archaeo-zoological re-
search in Eastern Arabia. Oman Studies LXIII:163–8.

Valladas H, Joron JL, Valladas G, Arensburg B, Bar-
Yosef O, Belfer-Cohen A, Goldberg P, Laville H,
Meignen L, Rak Y. 1987. Thermoluminescence dates
for the Neanderthal burial site at Kebara in Israel. Na-
ture 330:159–60.

Van Andel TH. 1998. Middle and Upper Palaeolithic en-
vironments and the calibration of 14C dates beyond
10,000 BP. Antiquity 72(275):26–33.

Van Andel TH, Runnels CN. 1995. The earliest farmers
in Europe. Antiquity 69(264):481–500.

Van der Plicht J. 1999. Radiocarbon calibration for the
Middle/Upper Palaeolithic: a comment. Antiquity
73(279):119–123.

Van der Plicht J, Van der Wijk A, Bartstra GJ. 1989. Ura-
nium and thorium in fossil bones: activity ratios and
dating. Applied Geochemistry 4:339–42.

Van Peer P. 1998. The Nile Corridor and the Out-of-Af-
rica model: an examination of the archaeological
record. Current Anthropology 39: supplement, 1998
June. S115–S140.

Van Zeist W. 1986. Some aspects of Early Neolithic plant
husbandry in the Near East. Anatolica 15:49–67.

Van Zeist W, Bakker-Herres JAH. 1986. Archaeobotani-
cal Studies in the Levant. III. Late Paleolithic Murey-
bet. Palaeohistoria 26:171–99.

Van Zeist W, Bottema S. 1991. Late Quaternary vegeta-
tion of the Near East. Weisbaden: Dr. Ludwig Reichert
Verlag. 

Volkman P. 1983. Boker Tachtit: core reconstructions. In:
Marks AE, editor. Prehistory and paleoenvironments
in the Central Negev, Israel. Dallas: Southern Meth-
odist University Press. p 127–90.

Wetterstrom W. 1993. Foraging and farming in Egypt:
the transition from hunting and gathering to horticul-
ture in the Nile valley. In: Shaw T, Sinclair P, Andah
B, Okpoko A, editors. The archaeology of Africa:
food, metals and towns. London: Routledge. p 165–
226.

Wetterstrom W. 1998. The origins of agriculture in Af-
rica: with particular reference to sorghum and pearl
millet. Review of Archaeology 19(2):30–47.

White R. 1989. Production complexity and standardiza-

tion in early Aurignacian bead and pendant manufac-
ture: evolutionary implications. In: Mellars P, Stringer
C, editors. The human revolution: behavioural and bi-
ological perspectives on the origins of modern hu-
mans. Edinburgh: Edinburgh University Press. p 366–
90.

White R. 1997. Substantial acts: from materials to mean-
ing in Upper Paleolithic representation. In: Conkey
MW, Soffer O, Stratmann D, Jablonski HG, editors.
Beyond art: Pleistocene image and symbol. San Fran-
cisco: Memoirs of the California Academy of Sci-
ences. p 93–121

Wright HE Jr. 1993. Environmental determinism in Near
Eastern prehistory. Current Anthropology 34(4):458–
69.

Yakir D, Issar A, Gat J, Adar E, Trimborn P, Lipp J. 1994.
13C and 18O of wood from the Roman siege rampart in
Masada, Israel (AD 70–73): evidence for a less arid
climate for the region. Geochimica et Cosmochimica
Acta 58(16):3535–9.

Yalçinkaya I, Otte M, Bar-Yosef O. Kozlowski J, Léotard
JM, Taskiran H. 1993. The excavations at Karain
Cave, south-western Turkey: an interim report. In:
Olszewski DI, Dibble HL, editors. The Paleolithic
prehistory of the Zagros-Taurus. Philadelphia: The
University Museum of the University of Pennsylva-
nia. p 100–6.

Zilhão J, D’Errico F. 1999a. Reply in Mellars et al.: the
Neanderthal problem, continued. CA Forum on The-
ory in Anthropology. Current Anthropology 40(3):
355–64.

Zilhão J, D’Errico F. 1999b. The chronology and taphon-
omy of the earliest Aurignacian and its implications
for the understanding of Neanderthal extinction. Jour-
nal of World Prehistory 13(1):1–68.

Zohary D. 1989. Domestication of the Southwest Asian
Neolithic crop assemblage of cereals, pulses, and flax:
the evidence from the living plants. In: Harris DR,
Hillman GC, editors. Foraging and farming: the evo-
lution of plant exploitation. London: Unwin Hyman. p
358–73.

Zohary D, Hopf M, editors. 1994. Domestication of
plants in the old world. 2nd edition. Oxford: Claren-
don Press. 

Zohary M. 1973. Geobotanical foundations of the Middle
East. Stuttgart: Springer Verlag.

Zubrow E. 1989. The demographic modelling of Nean-
derthal extinction. In: Mellars P, Stringer C, editors.
The human revolution: behavioural and biological
perspectives in the origins of modern humans. Edin-
burgh: Edinburgh University Press. p 212–31.




	Introduction
	The Middle to Upper Paleolithic Revolution
	Origins of Agriculture in Western Asia

	Discussion
	REFERENCES

