
Declarative Policies for Capability Control

Citation
Dimoulas, Christos, Scott Moore, Aslan Askarov, Stephen Chong. 2014. Declarative Policies
for Capability Control. Proceedings of the 2014 IEEE 27th Computer Security Foundations
Symposium: 3-17.

Published Version
doi:10.1109/CSF.2014.9

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12226019

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:12226019
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Declarative%20Policies%20for%20Capability%20Control&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=5b4c838fa29c146319c718d2fba8790a&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Declarative Policies for Capability Control
Christos Dimoulas
Harvard University

Scott Moore
Harvard University

Aslan Askarov
Harvard University

Stephen Chong
Harvard University

Abstract—In capability-safe languages, components can access
a resource only if they possess a capability for that resource. As a
result, a programmer can prevent an untrusted component from
accessing a sensitive resource by ensuring that the component
never acquires the corresponding capability. In order to reason
about which components may use a sensitive resource it is
necessary to reason about how capabilities propagate through
a system. This may be difficult, or, in the case of dynamically
composed code, impossible to do before running the system.

To counter this situation, we propose extensions to capability-
safe languages that restrict the use of capabilities according
to declarative policies. We introduce two independently useful
semantic security policies to regulate capabilities and describe
language-based mechanisms that enforce them. Access control
policies restrict which components may use a capability and are
enforced using higher-order contracts. Integrity policies restrict
which components may influence (directly or indirectly) the use
of a capability and are enforced using an information-flow type
system. Finally, we describe how programmers can dynamically
and soundly combine components that enforce access control or
integrity policies with components that enforce different policies
or even no policy at all.

Keywords-Capabilities; Capability policies; Information-flow
control; Language-based security.

I. INTRODUCTION

Capabilities are a popular mechanism for managing au-
thority in both historical and modern systems and lan-
guages (e.g., [1, 2, 3]). Authority is the right to use resources,
and capabilities reify authority as objects or nonces (un-
forgeable tokens). Capability safety requires that a component
must possess an appropriate capability in order to access a
resource. Capability-safe languages enforce capability safety
at the language level, ensuring that authority of language-
level components is conveyed exclusively via capabilities.
Appropriate design patterns for capabilities can enforce fine-
grained application-specific access control requirements, in-
cluding confinement and selective revocation [4].

However, in order to reason about which components may
exercise a given authority it is necessary to reason about how
capabilities and references to capabilities propagate through a
system. This in turn requires reasoning about the functionality
and implementation of the system. In the extreme, reasoning
about the use of a single capability may be as complicated as
reasoning about the implementation of an entire system [5].

This paper proposes two extensions to capability-safe lan-
guages that restrict the use of capabilities according to two
independently useful kinds of declarative fine-grained poli-
cies: access control policies and integrity policies. Declarative
policies for capabilities simplify reasoning about the correct

localStorageAdverts

Deadlines

Todos

Web page

deadlineStore

todoStore
ToDoList

DeadlineManager

AdService

Fig. 1. A mashup for writing scientific papers. The page layout is shown on
the left (which also depicts the DOM representation of the page). Rounded
boxes are components; arrows indicate object references.

use of capabilities by separating policy from implementation:
the components that may use or influence the use of a
given capability can be determined by examining the policy
associated with the capability, without needing to examine the
implementation of the entire system.

More specifically, access control policies restrict which
components may use a capability; integrity policies restrict
which components may influence the use of a capability. The
two extensions cover non-overlapping security requirements
and readily interoperate. In fact, the security guarantees can
be soundly enforced even when components that use our
extensions are composed with those that do not.

A. Example: securing a web mashup

Web mashups embed third-party code into a host web page.
For mashups to be useful, the embedded code needs to share
resources with the host page. Yet to avoid jeopardizing the
security of the host page, the programmer of the host page
needs to carefully restrict the authority of embedded code.
To help programmers resolve this tension, tools for “taming”
third-party JavaScript code, such as Caja [1] and JSand [6],
use JavaScript proxy technology [7, 8, 9] to enforce the
principles of object capabilities on mashups. Object-capability
systems [10] treat all object references as capabilities and
achieve capability safety by restricting object interactions
to message passing. However, capability safety alone is not
sufficient to guarantee security requirements of a mashup as
we demonstrate with the following example.

Figure 1 illustrates the page layout and object references
of a JavaScript mashup for authoring scientific papers. The
mashup incorporates two plugins: a to-do list plugin, called
ToDoList, and a plugin for managing upcoming conference
deadlines, called DeadlineManager. The deadline manager
also displays third-party advertisements via a component
called AdService. Both plugins generate content on the web

1Appeared in CSF 2014

1 var deadlineDOM = ...;
2 var todoDOM = ...;
3 var vStore = new VirtualStore(localStorage);
4 var deadlineStore = vStore.make(’deadlines’);
5 var todoStore = vStore.make(’todo’);
6 var deadlineManager =
7 new DeadlineManager(deadlineStore,deadlineDOM);
8 var todoList = new ToDoList(todoStore,todoDOM);
9

10 function VirtualStore(localStore) {
11 var store = localStore;
12 this.make = function (id) {
13 return {
14 put : function (key,value)
15 { store.put(id + ’.’ + key, value); },
16 get : function (key)
17 { store.get(id + ’.’ + key); },
18 del : function (key)
19 { store.removeItem(id + ’.’ + key); }
20 }; }
21 }

Listing 1. The host page delegates initial authority to the plugins.

page, and thus have references to DOM nodes corresponding
to portions of the page they use. DeadlineManager gives a
reference to a descendant DOM node to AdService to allow
it display advertisements.

Both plugins also need to maintain persistent state: the
list of to-do items and upcoming deadlines. HTML5 offers
a persistent local store via a simple key-value API, exposed
in JavaScript as the localStorage object. To avoid giving
the two components access to each other’s entries in the
local store, we can apply a standard object-capability design
pattern that provides ToDoList and DeadlineManager with
limited access to localStorage. Listing 1 sketches code
to do so.1 Constructor VirtualStore takes a capability
for localStorage and returns an object that can make
a new “namespace”: an object that provides limited access
to the local store by ensuring that all keys start with a
common prefix. The host page makes one separate namespace
(deadlineStore and todoStore) for each component.

Access control requirements. Consider the security re-
quirement that neither ToDoList nor DeadlineManager has
unrestricted access to the local store. Capability safety helps
us reason about this security requirement, but by itself is not
enough. What code must we trust in order to achieve this
requirement? To start with, we rely on the implementation of
VirtualStore to not propagate capability localStorage

to its clients. In addition, if there is other code in the system
that possesses capability localStorage and interacts with
ToDoList or DeadlineManager, then we must also trust that
this other code does not propagate the capability inappropri-
ately. In sum, to prohibit ToDoList and DeadlineManager

from using localStorage we may need to trust large por-
tions of the code base.

1For clarity, we do not show calls to an API such as Caja that enforces
capability safety. These calls do not change the structure of the mashup or
the interaction pattern between plugins and the host web page. We assume
that capability safety is enforced.

From a high-level viewpoint, this is a problem of ac-
cess control: components ToDoList and DeadlineManager

should not be allowed to directly use (a reference of) the
localStorage capability. In fact, the 2013 OWASP Top Ten
project ranks direct uses of objects without appropriate access
control checks the fourth most common security risk for web
applications [11]. To mitigate these pervasive vulnerabilities,
rather than trusting large portions of the code base, we
introduce and enforce declarative access control policies that
restrict which components may use a capability.
Integrity requirements. Consider an additional security
requirement that AdService must not affect the content of
the local store. If it could do so, it could perhaps cre-
ate “supercookies” that uniquely identify a computer. Al-
though enforcing the access control policy from the previ-
ous paragraph suffices to establish that AdService never
directly accesses the local store, AdService interacts with
DeadlineManager, which has limited access to the local
store. Therefore AdService may indirectly affect the local
store’s contents. As before, in order to exclude this possibility,
we may need to trust large amounts of code in the system:
specifically any code that can access localStorage and can
be influenced (directly or indirectly) by AdService.

This is a problem of information-flow control for integrity:
component AdService should not influence key-value pairs
in the local store, even though it needs to interact with
components that use the store. Thus, we introduce and enforce
information-flow control policies that ensure the integrity of
uses of capabilities (such as the integrity of localStorage
against the influence of AdService) without needing to trust
large portions of the code base.

While in general integrity policies are stronger than access
control policies, in many cases they may be too coarse
because they conflate direct and indirect uses of capa-
bilities. For instance, our mashup’s security requires that
localStorage adheres to both an access control and an
integrity policy: ToDoList or DeadLineManager should not
use localStorage and AdService should not influence
uses of localStorage. Separating the two kinds of policies
allows the specification of flexible security requirements for
capabilities.

B. Overview of approach

We propose two extensions to capability-safe languages that
allow programmers to annotate capabilities with declarative
policies restricting their use. An access control policy is a
white-list of components; when associated with a capability c,
only white-listed components are allowed to use c. An integrity
policy is also a white-list of components; when associated with
a capability c, only white-listed components are allowed to
(directly or indirectly) influence the use of c. For both access
control and integrity, we give a semantic definition and present
an enforcement mechanism that provably achieves security.

We enforce access control policies with higher-order con-
tracts [12]. Contracts provide a run-time mechanism to enforce
access control policies without modifying existing components

2

of the program. In the event of an attempted policy violation
(i.e., a component C tries to use a capability but C is not on
that capability’s white-list), the contract mechanism intervenes
and prevents the use. Moreover, the contract mechanism
accurately detects which component violates the policy [13],
simplifying debugging and auditing.

To enforce integrity policies, we must track and control
information-flow within the system. This requirement is be-
yond the grasp of higher-order contracts, so we use a security
type-system [14, 15]: a well-typed component is guaranteed
to use capabilities according to their integrity policies (i.e.,
only information from a capability’s white-listed components
influences the use of the capability).

These two independent enforcement mechanisms yield a
gradual path for increasing the security of programs com-
ponent by component. Programmers can start with a basic
program that meets capability safety and then add access
control policies to important capabilities and components. If
beneficial, the programmer can invest more time to isolate the
use of sensitive capabilities from external influences by adding
integrity policies to sensitive capabilities and type annotations
to sensitive components.

Our work makes the following contributions:

• We formalize capability safety using a simple calculus.
This general model is a sound basis for exploring capa-
bilities in a language-agnostic setting.

• We extend our model with declarative access control and
integrity policies for capabilities. This greatly simplifies
reasoning about the use of capabilities without needing
to trust large portions of the code base.

• We prove that we can soundly enforce these declarative
policies using higher-order contracts and a security type
system. Moreover, we show that these mechanisms can
be soundly composed.

• We use standard programming language abstractions and
techniques to both model and enforce the policies. This
bodes well for the practicality of both the security guar-
antees and enforcement mechanisms.

The rest of this paper is structured as follows. In Sec-
tion II, we present a core model of a capability-safe language.
Section III introduces access control policies for capabili-
ties, states the semantic guarantee, and shows how contracts
can enforce it. Section IV introduces integrity policies as a
noninterference guarantee [16] and gives a mechanism for
specifying and enforcing them. In Section V, we describe
how higher-order contracts allow the sound composition of
components with different policies, thus allowing correct en-
forcement of both access control policies and integrity policies
within a single system, despite the presence of untrusted code.
In Section VI we discuss how our model applies to real lan-
guages and how to implement our extensions to capability-safe
languages. Section VII reviews related work and Section VIII
concludes.

Terms e = v | x | e e | µx:τ.e

| e+ e | e− e | e∧ e | e∨ e
| zero?(e) | if e e e
| Kl(k e) | new | use(e)

Values v = b | λx:τ.e

b = 0 | 1 | − 1 | . . . | tt | ff
Labels k, l, p, q ∈ L
Types τ = Int | Bool | τ→τ | Cap

Fig. 2. CapPCF: source syntax

clientserver

with a capability c, an integrity policy allows only white-
listed components to (directly or indirectly) influence the use
of c.

For both access control and integrity policies, we give
a semantic security definition for the policy, and present an
enforcement mechanism that provably achieves security.

We enforce access control policies using higher-order
contracts [19]. Contracts provide a run-time mechanism to
enforce access control policies without modifying existing
components of the program. In the event of an attempted
policy violation (i.e., a component C is given a capability
but C is not on that capability’s white-list), the contract
mechanism will intervene and prevent propagation of the
capability. Moreover, the contract mechanism can accurately
pinpoint the component responsible for violating the pol-
icy [14], which simplifies debugging and auditing.

To enforce integrity policies, we must track and control
information-flow within the system. Higher-order contracts
are by themselves unable to precisely track information
flows.3 Instead, we use a security type-system [52, 43]
to enforce integrity policies: if a component type checks,
then the component is guaranteed to respect the restrictions
on the use of capabilities with integrity policies (i.e., only
information from a capability’s white-listed components are
allowed to influence the use of the capability).

Since it may be infeasible to require that all compo-
nents are well-typed under the security type system, we
use higher-order contracts to safely compose those that are
security-typed and those that are not. In this way, we can
monitor the weaker access control policy for all components
and preserve the stronger integrity properties of well-typed
components.
Contributions. Our work makes the following contribu-
tions to capability-safe languages.
• We introduce declarative access control policies that re-

strict the propagation of capabilities in a system. This
greatly simplifies reasoning about the propagation of
capabilities in a system: the owner of a capability simply
states a policy on the permitted propagation of capabilities
and relies on the enforcement mechanism to enforce it; the
owner does not need to trust other components to respect
the policy.

• We introduce declarative integrity policies that restrict
which components may influence the use of capabilities
in a system. This provides a much stronger guarantee than
just restricting the propagation of capabilities: it ensures
that the use of capabilities is independent of the actions
of untrusted components, even when trusted and untrusted
components must interact.

• We use standard programming language abstractions and
techniques to both model and enforce the policies.
Capability-safe languages are difficult to model and to
reason about (cf. [30]). It is unexpected yet beneficial
that techniques for modeling higher-order contracts are
suitable for cleanly modeling capability-safe languages.

3Recent results (e.g., [44, 4, 6]) have shown that it is possible to enforce
fine-grained information-flow using purely dynamic techniques; however
contracts are insufficient to enforce fine-grained information flow, since
contracts are present only at component boundaries.

Similarly, it is natural and intuitive (yet novel) to apply
information-flow control techniques to limit the use of
capabilities.
The use of standard language techniques (i.e., higher-
order contracts and security type systems) to enforce novel
security guarantees for capabilities is a benefit of our
approach, and bodes well for the practicality of both the
security guarantees and enforcement mechanisms.

The rest of this paper is structured as follows. In
Section II, we present a core model of a capability-safe
language, based on standard language models for higher-
order contracts [20, 13]. In Section III, we extend the capa-
bilities of our language with access control policies, state the
semantic guarantee, and show that contracts can enforce it.
Section IV introduces integrity policies as a noninterference
guarantee [21] and gives a mechanism for specifying and
enforcing them. In Section V, we describe how higher-
order contracts can be used to compose components that use
the different enforcement mechanisms, thus allowing correct
enforcement of both access control policies and integrity
policies within a single system, despite the presence of
untrusted code. In Section VI we discuss both how our
model applies to real languages, and how to implement our
extensions to capability-safe languages. Section VII reviews
related work and Section VIII concludes.

II. A CORE CALCULUS FOR CAPABILITIES
In order to give a formal exposition of our extensions to

capability-safe languages, we first present a formal model
of a language with capabilities. In this section we introduce
CapPCF, an extension of Plotkin’s strongly typed PCF [40].
We will show that CapPCF is capability-safe, and thus a
suitable foundation for us to present our extensions.

Figure 2 shows the source syntax of CapPCF, i.e., the
syntax used to write CapPCF programs. The semantics for
CapPCF will introduce some additional syntactic forms.

Terms e = v | x | e e | µx:⌅.e
| e + e | e� e | e⇧ e | e⌃ e
| zero?(e) | if e e e
| Kl(k e) | new | use(e)

Values v = b | �x:⌅.e
b = 0 | 1 | � 1 | . . . | tt | ff

Labels k, l, p, q ⌅ L
Types ⌅ = ⇤ | ⌅⇤⌅ | Cap

⇤ = Int | Bool

Fig. 2. CapPCF: source syntax

clientserver

Fig. 3. CapPCF: components, component boundaries and labels

CapPCF includes integers and booleans as base values,
function abstraction and application, recursive expressions

3

with a capability c, an integrity policy allows only white-
listed components to (directly or indirectly) influence the use
of c.

For both access control and integrity policies, we give
a semantic security definition for the policy, and present an
enforcement mechanism that provably achieves security.

We enforce access control policies using higher-order
contracts [19]. Contracts provide a run-time mechanism to
enforce access control policies without modifying existing
components of the program. In the event of an attempted
policy violation (i.e., a component C is given a capability
but C is not on that capability’s white-list), the contract
mechanism will intervene and prevent propagation of the
capability. Moreover, the contract mechanism can accurately
pinpoint the component responsible for violating the pol-
icy [14], which simplifies debugging and auditing.

To enforce integrity policies, we must track and control
information-flow within the system. Higher-order contracts
are by themselves unable to precisely track information
flows.3 Instead, we use a security type-system [52, 43]
to enforce integrity policies: if a component type checks,
then the component is guaranteed to respect the restrictions
on the use of capabilities with integrity policies (i.e., only
information from a capability’s white-listed components are
allowed to influence the use of the capability).

Since it may be infeasible to require that all compo-
nents are well-typed under the security type system, we
use higher-order contracts to safely compose those that are
security-typed and those that are not. In this way, we can
monitor the weaker access control policy for all components
and preserve the stronger integrity properties of well-typed
components.
Contributions. Our work makes the following contribu-
tions to capability-safe languages.
• We introduce declarative access control policies that re-

strict the propagation of capabilities in a system. This
greatly simplifies reasoning about the propagation of
capabilities in a system: the owner of a capability simply
states a policy on the permitted propagation of capabilities
and relies on the enforcement mechanism to enforce it; the
owner does not need to trust other components to respect
the policy.

• We introduce declarative integrity policies that restrict
which components may influence the use of capabilities
in a system. This provides a much stronger guarantee than
just restricting the propagation of capabilities: it ensures
that the use of capabilities is independent of the actions
of untrusted components, even when trusted and untrusted
components must interact.

• We use standard programming language abstractions and
techniques to both model and enforce the policies.
Capability-safe languages are difficult to model and to
reason about (cf. [30]). It is unexpected yet beneficial
that techniques for modeling higher-order contracts are
suitable for cleanly modeling capability-safe languages.

3Recent results (e.g., [44, 4, 6]) have shown that it is possible to enforce
fine-grained information-flow using purely dynamic techniques; however
contracts are insufficient to enforce fine-grained information flow, since
contracts are present only at component boundaries.

Similarly, it is natural and intuitive (yet novel) to apply
information-flow control techniques to limit the use of
capabilities.
The use of standard language techniques (i.e., higher-
order contracts and security type systems) to enforce novel
security guarantees for capabilities is a benefit of our
approach, and bodes well for the practicality of both the
security guarantees and enforcement mechanisms.

The rest of this paper is structured as follows. In
Section II, we present a core model of a capability-safe
language, based on standard language models for higher-
order contracts [20, 13]. In Section III, we extend the capa-
bilities of our language with access control policies, state the
semantic guarantee, and show that contracts can enforce it.
Section IV introduces integrity policies as a noninterference
guarantee [21] and gives a mechanism for specifying and
enforcing them. In Section V, we describe how higher-
order contracts can be used to compose components that use
the different enforcement mechanisms, thus allowing correct
enforcement of both access control policies and integrity
policies within a single system, despite the presence of
untrusted code. In Section VI we discuss both how our
model applies to real languages, and how to implement our
extensions to capability-safe languages. Section VII reviews
related work and Section VIII concludes.

II. A CORE CALCULUS FOR CAPABILITIES
In order to give a formal exposition of our extensions to

capability-safe languages, we first present a formal model
of a language with capabilities. In this section we introduce
CapPCF, an extension of Plotkin’s strongly typed PCF [40].
We will show that CapPCF is capability-safe, and thus a
suitable foundation for us to present our extensions.

Figure 2 shows the source syntax of CapPCF, i.e., the
syntax used to write CapPCF programs. The semantics for
CapPCF will introduce some additional syntactic forms.

Terms e = v | x | e e | µx:⌅.e
| e + e | e� e | e⇧ e | e⌃ e
| zero?(e) | if e e e
| Kl(k e) | new | use(e)

Values v = b | �x:⌅.e
b = 0 | 1 | � 1 | . . . | tt | ff

Labels k, l, p, q ⌅ L
Types ⌅ = ⇤ | ⌅⇤⌅ | Cap

⇤ = Int | Bool

Fig. 2. CapPCF: source syntax

clientserver

Fig. 3. CapPCF: components, component boundaries and labels

CapPCF includes integers and booleans as base values,
function abstraction and application, recursive expressions

3

Fig. 3. CapPCF: components, component boundaries and labels

II. A CORE CALCULUS FOR CAPABILITIES

In this section we introduce CapPCF, an extension of
Plotkin’s strongly typed call-by-value PCF [17]. We show
that CapPCF is capability-safe. This makes CapPCF a suit-
able foundation on which to develop further extensions in
Sections III–V.

Figure 2 shows the source syntax of CapPCF. In addition to
the standard constructs of PCF, CapPCF includes constructs to
designate boundaries between components and to create and
use capabilities.

Construct Kl(k e) defines a boundary between component e
and the context in which it appears. Label k is the server
label and identifies the component. Label l is the client
label and identifies the context in which the term appears.
Server and client labels on component boundaries represent
security principals in CapPCF. Figure 3 depicts component
composition and component boundaries in CapPCF.

We use component boundaries both to syntactically iden-
tify the origin of code (i.e., the component to which code
belongs) and (in following sections) to help restrict the use of
capabilities. In real languages, components may correspond
to functions or objects, and labels may correspond to names
or source locations of modules, classes, scripts or packages to
which the component belongs. We further discuss components
in real languages in Section VI but note here that component
boundaries in CapPCF are a modeling technique. In partic-
ular, programmers do not need to explicitly add component
boundary labels to their programs, as they can be constructed
automatically from the structure of the code.

Capabilities in CapPCF are abstract objects drawn from an
enumerable set. Term new creates a new abstract capability
and term use(e) uses a capability. To reason about how
capabilities are used in a CapPCF program, we record the uses
of capabilities in the usage trace of the program. Since our
goal is to investigate which parts of a program affect the use
of capabilities, abstract capabilities associated with a general
use operation are sufficient and reduce unnecessary clutter.

3

Values v = ... | γ
Capabilities γ = c | Gl{k γ }

Fig. 4. CapPCF: intermediate syntax

E = E e | v E | E + e | v+E | E − e | v−E
| E ∧ e | v ∧E | E ∨ e | v ∨E | use(E)

| zero?(E) | if E e e | Kl(kE)

Fig. 5. CapPCF: evaluation contexts

Abstract capabilities in CapPCF can be thought of as modeling
resources such as file-system entities, DOM nodes, or APIs
that interact with the external environment.

Note that CapPCF is a strongly typed language with a
standard type system, omitted here for conciseness. Types do
not have any runtime significance and type annotations can be
erased after type checking. Thus we ignore them throughout
the paper when discussing examples or the semantics of
CapPCF and its extensions unless needed.

A. Semantics of CapPCF

We define the behavior of CapPCF programs with a re-
duction semantics [18]. Figure 4 displays the intermediate
syntax of the language as an extension of its source syntax
and Figure 5 defines the evaluation contexts. A program state
is a pair 〈U, e〉 of a usage trace U and a term e.

Reduction relation → for CapPCF (Figure 6) extends the
standard rules of PCF with rules for the additional features of
our language: component boundaries and capabilities.

When a component calls a function f that belongs to another
component, the argument crosses the component boundary. To
express this, component boundary Kl(k f) around function f
reduces to the term λx.Kl(k f Kk(lx)). Note that the argu-
ment x is now wrapped in a component boundary that marks x
as originating from the client component: Kk(lx). This ensures
that when the function is applied, we correctly track the origin
of the actual argument.

When a component boundary wraps around a capabil-
ity Kl(k γ), it reduces to a guard Gl{k γ }. Guards are values,
and as such can migrate from one component to another.
In essence, they establish a proxy that mediates uses of an
abstract capability between the capability’s server and its
client. Thus, in CapPCF, capabilities include both abstract
capabilities c and guards Gl{k γ }. In the remainder of the paper,
unless otherwise indicated, we use the term “capability” to
refer to both abstract capabilities and guards.

Unlike component boundaries around functions and capa-
bilities, a component boundary around a base value, Kl(k b),
lets client l absorb b, i.e., the boundary disappears. This is
because we are not concerned with tracking the origin of base
values such as integers and booleans.

Reduction of term new creates a new capability c. Use of
a capability (use(γ)) records the use of capability c at the

〈U,E [· · ·]〉 → 〈U,E [· · ·]〉
Kl(k v) . λx.Kl(k v Kk(lx)) if v = λx.e
Kl(k γ) . Gl{k γ }
Kl(k b) . b

〈U,E [new]〉 → 〈U,E [c]〉 where c is fresh
〈U,E [use(γ)]〉 → 〈U :: c, E [γ]〉
where γ = Gln{kn ...Gl1{k1 c }...}

Fig. 6. CapPCF: reduction semantics

bottom of the stack of guards of γ (if any) by appending it to
the usage trace U , and evaluates to γ.

B. Ownership annotations

As mentioned above, we want to prove capability safety for
CapPCF, i.e., that a component can add a capability to the
usage trace only if it uses a capability the component created
or received from other components. To formalize this property,
we apply the standard technique of Dimoulas et al. [19] for
defining and establishing the correctness of contract systems.
In particular, we use ownership annotations as a mechanism to
describe which components possess which capabilities at every
step of program execution. An ownership annotation on a term
specifies the term’s originating component. By establishing
that ownership is invariant during execution of well-formed
programs, we show that components can possess only capabil-
ities that they create or obtain from other components through
component boundaries. Note that ownership annotations are a
modeling technique to establish capability safety, and do not
place any burden on either the programmer or the runtime of
a real language. The remainder of this section gives a brief
overview of the proof technique.2

As a first step, we extend the syntax of CapPCF with
ownership annotations |e|l, which indicates that component l
is the owner of term e. The extended syntactic categories of
terms, values, and capabilities each include their annotated
versions. Ownership annotations describe the ownership of
terms independently of component boundaries. Yet, in order
for these annotations to be meaningful, they need to agree with
the notion of ownership derived from component boundaries
in the source code. We express this as a well-formedness
relation on source terms, G; l e. Here, G is an environment
that associates variables to ownership labels. Term e is well
formed under environment G and owner l if its sub-terms are
also well-formed under the same owner and environment, with
two exceptions. The rules corresponding to these exceptions
appear in Figure 7.

First, the owner of a term changes when checking the well-
formedness of a term inside a component boundary. This is
reflected in the first rule in Figure 7. The owner of the term
that resides in the component boundary is the component with

2We refer the interested reader to Dimoulas et al. [13, 19] for a more
detailed explanation.

4

G; k e k 6= l

G; l Kl(k |e|k)

G] {x : l}; l e
G; l λx.e

G] {x : l}; l e
G; l µx.e

Fig. 7. CapPCF with annotations: well-formed source terms

El = El e | v El | El + e | v+El | El− e
| v−El | El ∧ e | v ∧El | El ∨ e | v ∨El

| zero?(El) | if El e e | Kk(lElo)

| Kk(pEl), l 6= lo | |Elo |l | |El|p, l 6= lo
Elo = [] | Elo e | v Elo | Elo + e | v+Elo

| Elo − e | v−Elo | Elo ∧ e | v ∧Elo

| Elo ∨ e | v ∨Elo | zero?(Elo) | if Elo e e

Fig. 8. CapPCF with annotations: evaluation contexts

server label k. The rule also requires that the term inside the
component comes with an explicit k ownership annotation.
This enforces that ownership annotations and labels on com-
ponent boundaries are in agreement.

Second, the bodies of (recursive) function abstractions are
checked for well-formedness under an environment extended
with the bound variable of the abstraction. This is reflected
in the last two rules in Figure 7. In the new environment, the
owner of the variable is the owner of the abstraction, reflecting
that the context of the abstraction provides the argument
applied to it. That is, whoever has the function can decide
what arguments to provide to it.

Finally, the well-formedness rules forbid ownership anno-
tations in any place except directly inside boundary terms,
which tightens the correspondence between annotations and
components in source code.

The second step for turning ownership annotations into a
mechanism for reasoning about ownership is to modify the
reduction relation of CapPCF so that it propagates ownership
annotations. To achieve that, we must also annotate evaluation
contexts with the label of the owner of the hole, i.e., the server
label of the component boundary or the ownership annotation
label that is closest to the hole (Figure 8). We use label lo to
denote the owner of the whole program and Elo for evaluation
contexts without either a component boundary or an ownership
annotation along the path to the hole.

With the annotated evaluation contexts in hand, we define
the reduction relation of CapPCF with annotations in Figure 9.
We use notation ||e||l to indicate that e is wrapped with zero
or more ownership annotations, all with label l, and e itself
does not have an ownership annotation:

||e||l iff |...|e|l...|l and e 6= |e′|k for any k.

We write l̄ to denote a set of labels. Note that the reduction
rules require that the redex have the same owner as the evalua-
tion context, either implicitly (through the lack of annotations)
or explicitly (with an annotation). Thus, program states where

〈U,El[· · ·]〉 → 〈U,El[· · ·]〉
||n1||l + ||n2||l . n where n1 + n2 = n
if ||tt||l e1 e2 . e1

||λx.e||l ||v||l . |{|v|l/x}e|l
µx.e . {|µx.e|l/x}e
Kl(k ||λx.e||p) . λx.Kl(k ||λx.e||p Kk(lx))
Kl(k γ) . Gl{k γ }
Kl(k ||b||p) . b

〈U,El[new]〉 → 〈U,El[|c|l]〉 where c is fresh
〈U,El[use(||γ||l)]〉→ 〈U :: c, E [||γ||l]〉
where γ = Gln{kn ||...Gl1{k1 ||c||m1 }...||mn }

Fig. 9. CapPCF with annotations: reduction semantics

terms have more than one owner (i.e., ownership annotations
with different labels) may get stuck. The absence of such stuck
states during the evaluation of well-formed terms indicates that
the semantics of CapPCF respects a “single-owner policy”:
each term is owned by a single label.

The rules for primitive operators, conditionals, capability
creation and capability use are straightforward. One point
worth mentioning is that when these terms produce base
values, these values are without ownership annotations and
implicitly acquire the owner of their context, which coincides
with the implicit owner of the operator. Also, new abstract
capabilities are explicitly annotated with the label of their
creator so that we can easily track their origin.

The rules for function application and the fix-point operator
are the most involved. They are the only rules in our model
where a term e flows from one context (the evaluation context)
into another (the abstraction body). We make this flow explicit
by wrapping e with the owner of the evaluation context before
installing e in the abstraction body.

The rules for component boundaries around functions and
capabilities do not manipulate ownership annotations, because
these rules do not cause values to cross component bound-
aries. Since ownership annotations and labels on component
boundaries both express the notion of ownership, keeping one
separate from the other makes reasoning about ownership in
terms of ownership annotations independent of component
boundaries. Therefore ownership annotations become a spec-
ification against which we can validate the way component
boundaries mark code ownership.

In contrast to the other rules for component boundaries, the
rule for component boundaries around base values, Kl(k ||b||p),
removes any ownership annotations around b and the sur-
rounding context implicitly adopts b. This is the only rule
that modifies the ownership of a term. Base values, unlike
functions or capabilities, do not encapsulate the right to use a
resource and thus the surrounding context can safely absorb
them.

5

C. Properties of CapPCF

Using ownership annotations, we can define a security
property for CapPCF. CapPCF is capability safe if and only
if a component can directly cause a capability to be recorded
in the usage trace only if it owns the capability or a guard
for the capability. We define capability safety formally as a
property of the Cap languages family, which includes CapPCF
and extended versions defined in later sections.

Definition 1 (Capability Safety). A Cap language is capability
safe iff for all terms e0 such that ∅; lo e0 and 〈∅, e0〉 ∗→
〈U :: c, e1〉, there exists v such that 〈∅, e0〉 ∗→ 〈U,El[use(v)]〉
∗→ 〈U :: c, e1〉, where v = ||Gln{kn ||...Gl1{k1 ||c||m1 }...||mn }||l

and ln = l (if it exists).

The definition states that whenever evaluation of a pro-
gram e0 reaches a state where it records the use of a capabil-
ity c, the previous state is a state 〈U, e〉 where a component
with label l uses capability c, either directly or through a
guard Gl{k γ }. If used directly, the component with label l
owns the capability; if used through a guard, the component
with label l owns the guard and the client label on the guard
is l.

An important prerequisite to showing that CapPCF satisfies
capability safety is the definition and proof of complete
mediation for CapPCF programs. In well-formed programs,
component boundaries are the only points where the owner
of an embedded term may differ from that of its containing
context. If the evaluation of a well-formed program does
not preserve this invariant, programs may get stuck. Thus
the absence of stuck states for all well-formed programs
establishes that component boundaries and guards separate
components throughout evaluation and completely mediate the
flow of values between components:

Definition 2 (Complete Mediation). A Cap language satisfies
complete mediation iff for all terms e0 such that ∅; lo e0

either 1) 〈∅, e0〉 ∗→ 〈U, v〉 or, 2) for all terms e1 and usage
trace U1 such that 〈∅, e0〉 ∗→ 〈U1, e1〉, there exists term e2

and usage trace U2 such that 〈U1, e1〉 → 〈U2, e2〉.
We can now prove that well-formed CapPCF programs do

not reach stuck states:3

Theorem 3. CapPCF satisfies complete mediation.

Complete mediation is sufficient to derive that CapPCF
meets capability safety:

Theorem 4. CapPCF is capability safe.

III. CONTROLLING WHO CAN USE CAPABILITIES

In this section we extend the capability-safe language Cap-
PCF with declarative access control policies that restrict who

3The proof is a simplification of the progress-and-preservation complete
monitoring proof of Dimoulas et al. [19]. We omit the details for conciseness.
It is also easy to prove that ownership annotations do not change the
meaning of well-formed programs, and thus results proved for CapPCF with
annotations can be transferred to CapPCF.

can use a capability. Recall the web mashup example from
the Introduction, and consider the following CapPCF term
virtualStore, which is a model of a VirtualStore function
that intends to limit access to the local store.4

virtualStore ≡ let localStore= ...

in λx.if (test x) use(localStore) ...

In this term, variable localStore represents the local store, and
virtualStore is a function that checks test to restrict the use
of localStore. Unfortunately, even though this code looks like
a reasonable attempt to restrict access to the local store, it
allows localStore to escape to clients of virtualStore (such
as the ToDoList and DeadlineManager components). This
is because use(localStore) evaluates to localStore, and thus
function virtualStore returns the localStore capability. As a
result, toDoList can use localStore directly once it provides
an argument that satisfies test:

toDoList ≡use(KtoDoList(virtualStore virtualStore) 42)

As the example demonstrates, capability safety alone is not
sufficient to guarantee restrictions on who can use capabilities.
Suppose we extend CapPCF with access control policies on
capabilities, and write cq̄ for abstract capability c with access
control policy q̄: the set of labels of components that are
allowed to use the capability. Intuitively, enforcing access
control means that if c has access control policy q̄, then the
only components that use cq̄ or a guard for cq̄ are components
with labels in the whitelist q̄. Formally:

Definition 5 (Access Control). A Cap language enforces
access control iff for every term e such that ∅; lo e, if

〈∅, e〉 ∗→ 〈U,El[use(v)]〉 → 〈U :: cq̄, E
l[v]〉

then v = ||Gln{ln−1 ...||Gl2{l1 ||cq̄||l1 }||l2 ...}||ln and l ∈ q̄.

CapPCF does not enforce access control. We extend Cap-
PCF to the language ac-CapPCF, which provides constructs to
attach and enforce access control policies on capabilities.

A. Semantics of ac-CapPCF

Figure 10 presents the source syntax of ac-CapPCF. We
replace CapPCF’s new construct with newq̄ that creates a new
capability with access control policy q̄. Term newq̄ evaluates
to an abstract capability cq̄ , i.e., an abstract capability with the
access control policy attached.

As we established in Section II, component boundaries are
sufficient to track the flow of capabilities (Definition 1 and
Theorem 4). Thus we use component boundaries, and the
complete mediation they provide, to enforce access control
policies in ac-CapPCF. In addition, each component boundary
Kl(k κ, e) is augmented with a contract κ. Contracts [20, 21]
are executable specifications that regulate the exchange of
values between components. In ac-CapPCF, contracts allow
components to specify additional access control policies on
capabilities they consume or return.

4The let x= e1 in e2 construct is syntactic sugar for (λx.e2) e1.

6

Types τ = ... | con(τ)

Contracts κ = base | κ 7→ κ | capp̄
base = int | bool

Terms e = ... | Kl(k κ, e) | newq̄

Fig. 10. ac-CapPCF: syntax

Terms e = ... | errorl
Capabilities γ = cq̄ | Gl{k γ, p̄}

Fig. 11. ac-CapPCF: intermediate syntax

There are three kinds of contracts. Contract κ1 7→ κ2 is
a contract for a function with contract κ1 for the argument
and contract κ2 for the result. Base contracts, ranging over
base, check base values. Capability contract capp̄ specifies an
access control policy on capabilities that flow through it.

With the exception of specifying capability policies, our
contracts are limited to type-like properties. It is straightfor-
ward to extend the contract language with arbitrary behavioral
contracts but we opt for a simple language to avoid clutter
from features that are orthogonal to our goals. An alert reader
may wonder why we choose a contract system instead of
an access control type system. As we show in Sections IV
and V, contracts offer advantages over type systems in our
setting: they allow the dynamic composition of components
that enforce different kinds of security policies on capabilities.
In addition, contracts require minimum modifications to source
code, i.e, annotations on new constructs, and otherwise treat
components as black boxes.

The intermediate syntax of ac-CapPCF is shown in Fig-
ure 11. As previously mentioned, abstract capabilities now
include an access control policy annotation: cq̄ . We also add
access control policies to guards: Gl{k γ, p̄}. If a contract fails
during execution, it evaluates to an error term errork, where
label k identifies the component that is responsible for the
contract breach in the blame assignment tradition of contract
systems [12].

Figures 12 and 13 show the changes to the evaluation
contexts and reduction rules of CapPCF that are necessary
to support access control policies and contract checking in ac-
CapPCF. The reduction rule for creating an abstract capability
now annotates the resulting capability with its access control
policy. Note that the policy annotation on an abstract capability
does not change after its creation.

Rules for component boundaries create new boundaries and
guards, as in CapPCF. A component boundary for a function,
Kl(k κ1 7→ κ2, v) applies contracts κ1 and κ2 to the argument
and the result of a function, respectively. A capability contract
capp̄ on a component boundary evaluates to a guard Gl{k γ, p̄}
with access control policy p̄. This policy further restricts who
may use the enclosed capability γ to components in p̄.

When a capability wrapped in a stack of guards is used,
the reduction rule checks that the client ln is allowed to
use capability γ according to the policies p̄i on the guards

E = ... | Kl(k κ,E)

Fig. 12. ac-CapPCF: evaluation contexts

〈U,E [· · ·]〉 → 〈U,E [· · ·]〉
Kl(k κ1 7→ κ2, v) . λx.Kl(k κ2, v Kk(lκ1, x))
Kl(k capp̄, v) . Gl{k v, p̄}
Kl(k base, b) . b

〈U,E [newp̄]〉 → 〈U,E [cp̄]〉 where c is free
〈U,E [use(γ)]〉 → 〈U :: cp̄, E [γ]〉

where γ = Gln{kn ...Gl1{k1 cp̄, p̄1 }..., p̄n }
if for all 1 ≤ i ≤ n, ln ∈ p̄i and ln ∈ p̄

〈U,E [use(γ)]〉 → errorq

where γ = Gln{kn ...Gl1{k1 cp̄, p̄1 }..., p̄n } and
q = lj , if for all j < i ≤ n, ln ∈ p̄i and ln 6∈ p̄j , or
q = k1, if for all 1 ≤ i ≤ n, ln ∈ p̄i and ln 6∈ p̄

Fig. 13. ac-CapPCF: reduction semantics

and the policy p̄ on the enclosed abstract capability: ln must
appear in all of the policies. Put differently, the access control
policy for the capability at the bottom of a stack of guards is
the intersection of all the policies in the stack. If the check
fails, the contract system raises a contract error blaming either
the client li of the topmost guard whose policy p̄i does not
contain ln or the server k1 if ln appears in each p̄i but not
in p̄. In the remainder of this section, we explain and establish
the correctness of this blame assignment strategy as part of a
complete monitoring property for ac-CapPCF, which in turn
is sufficient to show that ac-CapPCF correctly enforces access
control.

B. Obligation annotations in ac-CapPCF

To prove that ac-CapPCF satisfies the access control prop-
erty, we develop a variant of ac-CapPCF with ownership
annotations, and establish a new complete mediation property.
The revised property also guarantees the correctness of blame
assignment [13]. For this, we borrow obligation annotations
from Dimoulas et al. [19] in addition to ownership anno-
tations. Obligation annotations bcapp̄ck decorate capability
contracts in the source code, and indicate that component
with label k is responsible for uses of the corresponding
capability according to policy p̄. When the semantics reduces
component boundaries for capabilities to guards, it propagates
the obligation annotation on the capability contract to the
policy of the guard:

El[Kl(k bcapp̄cq, v)]→ El[Gl{k v, bp̄cq }]

Since the creation site of a capability also imposes an access
control policy on the resulting capability, we decorate the
policy with an obligation annotation too. Similar to capability
contracts, the reduction rule for new propagates the obligation

7

l ∈ q̄
G; l newbq̄cl

l; k B κ G; k e k 6= l

G; l Kl(k κ, |e|k)

Fig. 14. ac-CapPCF with annotations: well-formed source terms

l; k B base l; k B bcapp̄cl
k; l B κ1 l; k B κ2

l; k B κ1 7→ κ2

Fig. 15. ac-CapPCF with annotations: well-formed contracts

annotation to the policy on the abstract capability:

El[newbp̄ck]→ El[cbp̄ck]

We use obligation annotations to prove that in the event
of a contract breach, the correct component is blamed. In
order to program effectively with contracts, a programmer
must understand which contracts a component is responsible
for satisfying; obligation annotations are proof mechanisms
that express these responsibilities explicitly.

With the exception of obligation annotations, we can easily
adapt the well-formedness relation, evaluation contexts, and
reduction rules of CapPCF with annotations for ac-CapPCF
with annotations. We focus here only on the interesting parts of
the well-formedness relation that concern contracts, obligation
annotations and capability policies, and omit the other rules.

Figure 14 displays the new well-formedness rules for ca-
pability creation and component boundaries. The first rule
requires that the owner of a newp̄ construct is listed in the
access control policy, i.e., l ∈ newp̄. In addition, it expects
the owner of the creation site to appear as the obligation
annotation on the policy of new. This reflects that the creator
of a capability imposes the policy on it and must treat the
capability in a manner consistent with the policy. The second
rule, for component boundaries, is similar to the corresponding
rule in CapPCF with an additional requirement that contract κ
is well-formed: l; k B κ.

Figure 15 defines well-formedness for contracts l; k B κ.
Here, k is the label of the provider of the value that the
contract checks, and l is the label of the context that consumes
the value. Base contracts are trivially well-formed. Well-
formedness of capability contracts requires that the obligation
annotation must match the client l. This indicates that l
receives a capability under a particular policy and agrees to
treat it accordingly. Function contracts are well-formed when
their subcontracts are well-formed. Note that the rule for
function contract κ1 7→ κ2 flips the positions of k and l when
checking κ1. This switches responsibility between the client
and the server for the different subcontracts. This is consistent
with the label flipping that the reduction rule for function
component boundaries uses when constructing the component
boundary for the argument of the function.

C. Security of ac-CapPCF

We can now define and prove an extended complete medi-
ation property. The definition extends the complete mediation
property for CapPCF (Definition 2) with an additional case

that guarantees correct blame assignment for contract failures.
Namely, the contract system blames a component only for uses
of a capability that violate one of its obligations.

Definition 6 (Complete Mediation, revisited). A Cap language
satisfies complete mediation iff for all terms e0 such that
G; lo e0 either

1) 〈∅, e0〉 ∗→ 〈U, v〉 or,
2) for all e1 and U1 such that 〈∅, e0〉 ∗→ 〈U1, e1〉, there

exists e2 and U2 such that 〈U1, e1〉 → 〈U2, e2〉 or,
3) 〈∅, e0〉 ∗→ 〈U1, E

kn+1 [use(||v||kn+1)]〉 → 〈U2, error
q〉

where v =

Gkn+1{kn ||...Gk2{k1 ||cbp̄ck1 ||k1 , bp̄1ck2 }...||kn , bp̄nckn+1 },
n ≥ 1 and q = kj , 1 ≤ j ≤ n+ 1, if forall j < i ≤ n,
kn+1 ∈ p̄i and kn+1 6∈ p̄j or, q = k1, if forall 1 ≤ i ≤ n,
kn+1 ∈ p̄i and kn+1 6∈ p̄.

Notice that complete monitoring entails that the contract
system blames a component q in only two cases: 1) q uses
a capability via a guard while it agreed on a policy (that of
the guard) that does not include q or, 2) q obtains a capability
with a policy that does not include component m, passes it
to another component through a contract with a policy that
does include m and eventually, m uses this capability. The
latter also clarifies blame assignment when the policy on an
abstract capability, such as p̄ above, is violated: the creator
of the capability is blamed if they apply inconsistent policies
when creating and propagating the capability. Towards the end
of this section, we illustrate the blame behavior with concrete
examples.

The proof of complete mediation for ac-CapPCF is a
straight-forward application of the standard complete moni-
toring proof for contracts [19].

Theorem 7. ac-CapPCF satisfies complete mediation.

Using the complete mediation theorem, we establish that
ac-CapPCF is capability safe:

Theorem 8. ac-CapPCF is capability safe.

In addition, we define and prove for ac-CapPCF a revised
access control property for well-formed programs. The revised
version of access control (Definition 9) is stronger than the
initial one (Definition 5) and allows components to refine the
access control policies on capabilities: in addition to requiring
that the component l that uses a capability cp̄ appears in p̄, l
must also appear in each policy p̄i of the guards around c.

Definition 9 (Access Control, revisited). A Cap language
enforces access control iff for every term e such that ∅; lo e,
if 〈∅, e〉 ∗→ 〈U,El[use(v)]〉 → 〈U :: c, El[v]〉 then v =
||Gkn+1{kn ||...Gk2{k1 ||cbp̄ck1 ||l1 , bp̄1ck2 }...||kn , bp̄nckn }||kn+1 ,
l ∈ p̄, and for all 1 ≤ i ≤ n, we have l ∈ p̄i.
Theorem 10. ac-CapPCF enforces access control.

Revisiting the example from the beginning of this Section,
recall that function virtualStore uses capability localStore, but

8

incorrectly propagates it to clients. Assume that capability
localStore has access control policy {virtualStore} on it (i.e.,
only component virtualStore, the component that function
virtualStore belongs to, can access the capability). Consider
the following term, which shows component toDoList us-
ing the capability it extracts from the insecure virtualStore
function. Note that there is a component boundary between
components virtualStore and toDoList, i.e., the example term
belongs to toDoList.

use((KtoDoList(virtualStore int 7→ cap{virtualStore},

virtualStore)) 42)

Under ac-CapPCF semantics, this term raises a contract vi-
olation errortoDoList, because when component virtualStore
passes the localStore capability to component toDoList, it im-
poses the access control policy {virtualStore}, which forbids
toDoList to use the localStore capability.

The following term also evaluates to a contract violation.

use((KtoDoList(virtualStore int 7→ cap{virtualStore,toDoList},

virtualStore)) 42)

This term is the same as the previous one, except that the
access control policy on the capability contract for the value
returned by virtualStore is {virtualStore, toDoList} instead
of {virtualStore}. This time the capability contract fails and
blames virtualStore because virtualStore mislead toDoList
into violating the original policy on the capability by providing
it under a more permissive contract.

As a final remark in this section, notice that the blame
strategy of ac-CapPCF is not the only correct option. For
instance, instead of blaming the last component that disagrees
on the access control policy, a different semantics could blame
the first or all such components. We can easily modify the
reduction rule for use and the definition of complete moni-
toring to establish the correctness of the alternative semantics.
These changes do not affect the access control property. The
decision of which strategy is the most preferable is an issue of
design, rather than correctness, to be settled with programming
experience. In addition, it is worth mentioning that capability
contracts can accommodate different interpretations of the
access control policy than the one we adopt. For example,
we can obtain an interpretation reminiscent of history-based
access control [22] by requiring, upon the use of a capability
through a stack of guards, that not only the owner of the
use appears in all related policies but also the owners of the
guards. Similarly, imposing an inconsistent access control pol-
icy could cause a contract failure at the component boundary.
This gives rise to a less permissive interpretation of access
control but detects failures more quickly. Finally, by having
the component boundary for a capability check whether its
client label appears in the policy of the capability, capability
contracts can enforce the confidentiality of capabilities, i.e,
serve as a dynamic monitor for (explicit) information flow for
capabilities.

IV. CONTROLLING WHO INFLUENCES CAPABILITIES

Access control restricts which components may use a given
capability. However, even if a component is not allowed
to use a capability directly, it can still influence its use.
Recall the web mashup example from Section I, and that
DeadlineManager needed both to communicate with the
untrusted AdService and to use the local persistent store via
the VirtualStore component. Security of this web mashup
relied on AdService being unable to influence what key-value
pairs were stored, which intuitively requires restricting the flow
of information from AdService to the local store.

The following terms model DeadlineManager’s interac-
tion with both AdService and VirtualStore. First, we
redefine virtualStore so that it does not violate the access
control policy that localStore is not used outside virtualStore:

virtualStore ≡ let localStore= ...

in λx.if (test x) (use(localStore); tt) ...

The deadline manager term deadlineManager composes
virtualStore and an adService plugin:

deadlineManager ≡
(KdeadlineManager(virtualStore bool 7→ bool, virtualStore))
KdeadlineManager(adService bool, adService)

We assume that the code that defines abstract capability
localStore gives it an access control policy of {virtualStore},
which prevents adService from using it directly. However,
assuming that the evaluation of test depends on x, a boolean
value supplied by adService influences whether virtualStore
uses abstract capability localStore. Even though the access
control policy is not violated, we do not achieve the desired
security goal: ensuring the integrity of the uses of localStore.

In this section we present i-CapPCF, which extends ac-
CapPCF with integrity policies that restrict which components
may influence the use of a capability and uses an information-
flow type system [14, 15] to enforce these integrity policies.

An integrity policy q̄ is a whitelist of labels of components
that are allowed to influence the use of a capability. We extend
the new construct with integrity policy annotations: term
newp̄,q̄ creates a capability with access control policy p̄ and
integrity policy q̄. The i-CapPCF type system uses integrity
policy annotations to reject programs which use capabilities
inconsistently with respect to the associated integrity policies.

A. Integrity for capabilities

We formalize integrity for capabilities as an instance of
termination-insensitive noninterference [23]. Before diving in
to the formal definitions, we examine the intuition behind
integrity policies.

Given capability c with integrity policy q̄, we refer to the
components that are allowed to influence the use of c (i.e.,
components with labels q̄) as trusted, and refer to all other
components as untrusted. Given a collection of capabilities
c1 . . . cn, the trusted components are the union of the trusted

9

components of all the capabilities (i.e., a component is un-
trusted only if it is untrusted by all the capabilities).

Suppose we have a collection of capabilities c1 . . . cn and
two programs that differ only in the behavior of the untrusted
components. If both programs enforce integrity policies, and
both programs terminate, then their usage of capabilities
c1 . . . cn should be identical. This is because only trusted
components should influence the use of capabilities, and the
trusted components of both programs behave identically.

To formalize the notion of two programs being equivalent
in the behavior of trusted components, we first define term
equivalence up to a set of labels l̄.

Definition 11 (Term Equivalence up to l̄). Term equivalence
up to l̄ is the least congruence relation on terms l̄∼ such that
e1

l̄∼ e2 if e1 = Kp(k e′1) and e2 = Kp(k e′2) and k ∈ l̄.

That is, the term equivalence relation relates two terms if
they are different implementations of an untrusted component
(Kp(k e′1) l̄∼ Kp(k e′2) where k ∈ l̄), and is otherwise a homomor-
phism on term constructors (e.g., e1 + e2

l̄∼ e′1 + e′2 if e1
l̄∼ e′1

and e2
l̄∼ e′2).

Recall that a usage trace records the use of abstract capabili-
ties during program execution. Two usage traces are equivalent
up to a set of labels of untrusted components l̄ if the two traces
are equal after removing use of capabilities that are allowed
to be influenced by l̄.

Definition 12 (Usage Trace Equivalence up to l̄). Consider
usage traces U such that recorded capabilities are of the form
cp̄,q̄ where p̄ is the access control policy and q̄ the integrity
policy associated with the capability. Let JUKl̄ be the filter
that removes from U all capabilities cp̄,q̄ such that q̄ ⊆ l̄. Two
traces are equivalent up to l̄, denoted U1

l̄∼U2, iff JU1Kl̄ =
JU2Kl̄.

Using these definitions, we can now formally specify our
non-interference security property, that if two programs differ
only in the behavior of untrusted components, then their usage
of the trusted components’ capabilities should be identical.

Definition 13 (Integrity for Capabilities). Term e1 satisfies
integrity for capabilities if for all sets of component labels l̄
and for all terms e2 such that e1

l̄∼ e2, if 〈∅, e1〉 ∗→ 〈U1, v1〉
and 〈∅, e2〉 ∗→ 〈U2, v2〉 then U1

l̄∼U2.

A term e1 satisfies integrity for capabilities if for all sets of
labels of untrusted components l̄ and pairs of terms e1 and e2

that are equivalent up to l̄, e1 and e2 behave equivalently with
respect to the use of capabilities that do not trust l̄.

The deadlineManager example from the beginning of this
section does not satisfy Definition 13. Consider another ex-
pression that replaces the code of component adService such
that test returns ff. The two expressions are equivalent up to
{adService}, and both terminate. However, the original term
produces a trace that records the use of localStore, whereas
the modified term does not.

Types τ = σl̄

σ = Int | Bool | τ1 p̄→ τ2 | Capq̄

Fig. 16. i-CapPCF: types

B. Type-based enforcement

Language i-CapPCF extends ac-CapPCF with integrity poli-
cies, which are enforced with a standard type-and-effect
information flow type system [24, 25, 26]. The syntax and
semantics of i-CapPCF are essentially the same as ac-CapPCF,
though functions λ[p̄]x:τ.e come with an extra annotation p̄
and newp̄,q̄ terms specify both an access control policy p̄
and an integrity policy q̄. Similarly, a capability value cp̄,q̄ is
annotated with both the access control policy p̄ and integrity
policy q̄ from the term newp̄,q̄ that created it. Integrity policy
annotations are necessary only for type checking, do not affect
computation, and can be erased before evaluation. In fact, the
annotations on capabilities are necessary only for proving that
the type system correctly enforces the policies.

Note that integrity policies and access control policies are
distinct, as are their enforcement mechanisms. Using contracts
together with security types allows us to use a precise dynamic
enforcement mechanism with accurate blame assignment for
access control together with a precise static enforcement
mechanism for information flow control.

The type system is based on an integrity security lattice
(L,⊆) with sets of program component labels as the elements,
set union as the join and set intersection as the meet. The top
element > is the set of all component labels in a program; the
bottom element ⊥ is the empty set.

The syntax for types in i-CapPCF is shown in Figure 16.
Base types σ include integers, booleans, function types, and
capability types Capq̄ , where q̄ lists the component labels that
are allowed to influence the use of capabilities of this type.
Function types, τ1

p̄→ τ2 also have an extra annotation p̄ that
is a lower bound on the policies of any capabilities used by
the function body. The type-checker can extract p̄ from the
source code of functions λ[p̄]x:τ.e. Types τ in i-CapPCF are
annotated base types σl̄, where superscript l̄ is an upper bound
on the components that have influenced the values of this type.

The typing judgment has the form Γ, l̄ ` e : τ . Here, Γ is
a typing environment and l̄ is the program counter level: an
upper bound on the labels on components that influence the de-
cision to evaluate e. The typing rules are mostly standard [26].
Figure 17 presents the most interesting rules of our type system
and we discuss four of them here: the rules for type checking
capabilities and their creation and use, and the rules for type
checking component boundaries and guards.

The rule for using a capability, use(e), requires that any
component that could have influenced either the decision to
use the capability or which capability to use is allowed to do
so. That is, both the program counter level and the upper bound
on components that influence the result of e must be a subset
of integrity policy p̄. This prevents untrusted components from
using capabilities that originate from trusted contexts as well

10

Γ, l̄ ` e1 : (τa
p̄→ σr̄)q̄

Γ, l̄ ` e2 : τa
l̄ ∪ q̄ ⊆ p̄

Γ, l̄ ` e1 e2 : σr̄∪q̄

Γ, l̄ ` e : Capp̄q̄
p̄ ∪ l̄ ⊆ q̄

Γ, l̄ ` use(e) : Capp̄q̄

Γ] {x : τa}, p̄ ` e:τr

Γ, l̄ ` λ[p̄]x:τa.e : (τa
p̄→ τr)l̄

l̄ ⊆ q̄
Γ, l̄ ` newp̄,q̄ : Capl̄q̄

Γ, l̄ ∪ {k} ` e : τ ` κ : τ ′ ` τ ≤ τ ′
Γ, l̄ ` Kl(k κ, e) : τ

l̄ ⊆ q̄
Γ, l̄ ` cp̄,q̄ : Capl̄q̄

Γ, l̄ ∪ {k} ` e : Capq̄p̄

Γ, l̄ ` Gl{k e, l̄′ } : Capq̄p̄

Fig. 17. i-CapPCF: selected type-checking rules for terms

` int : Int> ` int : Bool> ` capl̄ : Cap>⊥

`− capl̄ : Cap⊥> `− int : Int⊥ `− int : Bool⊥

`− κ1 : τ1 ` κ2 : τ2

` κ1 7→ κ2 : (τ1
⊥→ τ2)>

` κ1 : τ1 `− κ2 : τ2

`− κ1 7→ κ2 : (τ1
>→ τ2)⊥

Fig. 18. i-CapPCF: contracts type-checking rules

as preventing the use of trusted capabilities in ways that are
influenced by untrusted values.

A new capability, newp̄,q̄ , has type Capl̄q̄ , where q̄ is the
specified integrity policy, and l̄ is the program counter level.
This captures the intuition that a component k that influences
the decision to create a capability (i.e., k is in the program
counter level l̄) influences the use of that capability. Moreover,
we require that l̄ is a subset of q̄, enforcing that the integrity
policy is an upper bound on which components may influence
the use of a capability. Similarly, the rule for an abstract
capability value cp̄,q̄ gives it type Capl̄q̄ and requires that l̄
is a subset of q̄.

Typing a component boundary Kl(k κ, e) requires typing the
body e. Server label k is added to the program counter level
used to type e, reflecting that the code of e is determined
by component k. The contract κ is given a type via relation
` κ : τ , which assigns to κ the most permissive type that is
consistent with the structure of κ. Figure 18 presents this
relation; it uses a helper relation `− κ : τ to type contracts
in negative positions of function contracts. The type of the
component body e must be a subtype of the type of contract κ,
indicated by the relation ` τ ≤ τ ′. The rule for guards is
a specialized version of the rule for component boundaries
that takes into account the capability type of the guarded
term. Notice that the access control policy does not affect the
typing judgment in accordance with our decision to separate
enforcement of access control and integrity policies.

Subtyping in our type system is mostly standard. Figure 19
presents the only non-standard rule in our system: subtyping
for capability types. The interesting part is the contravariance
of integrity policies: Capp̄q̄ is a subtype of Capp̄

′

q̄′ if integrity

q̄′ ⊆ q̄ p̄ ⊆ p̄′

` Capp̄q̄ ≤ Capp̄
′

q̄′

Fig. 19. i-CapPCF: subtyping rules

policy q̄′ is at least as restrictive as q̄, i.e., if q̄′ ⊆ q̄. Intuitively,
this means that if a capability’s integrity policy allows only
components q̄ to influence its use, it is sound to allow only
a subset of those components to influence its use. As a
consequence, Cap⊥> is the most permissive capability type,
and Cap>⊥ is the most restrictive (but uninhabited) type.

C. Security of i-CapPCF

As for ac-CapPCF, we prove that i-CapPCF is capability
safe and enforces access control:

Theorem 14. i-CapPCF is capability safe.

Theorem 15. i-CapPCF enforces access control.

Moreover, the type system of i-CapPCF enforces the in-
tegrity property for well-typed programs:

Theorem 16 (Integrity for Capabilities). If ∅, {lo} ` e1 : τ ,
for all terms e2 such that ∅, {lo} ` e2 : τ , and e1

l̄∼ e2, if
〈∅, e1〉 ∗→ 〈U1, v1〉 and 〈∅, e2〉 ∗→ 〈U2, v2〉 then U1

l̄∼U2.

Note that we consider only well-typed terms, since ill-typed
terms will not be executed. We prove this theorem using
a straightforward adaptation of Pottier and Simonet’s [25]
noninterference proof technique.

Revisiting the example from the beginning of the section
(now decorated with types), we can see that it does not
type check if localStore is annotated with the integrity policy
{virtualStore, deadlineManager}:

virtualStore ≡
let localStore:Cap

{virtualStore,deadlineManager}
{virtualStore,deadlineManager}= ...

in λ[{virtualStore,deadlineManager}]x:Bool{deadlineManager}.
if (test x) (use(localStore); tt) ...

deadlineManager ≡
(KdeadlineManager(virtualStore bool 7→ bool, virtualStore))
KdeadlineManager(adService bool, adService)

The culprit is the result of adService, which has type
Booll̄, where adService ∈ l̄. This type is incompatible with
the type of variable x, which may only be influenced by
deadlineManager.

V. COMBINING LANGUAGES

The languages of the previous three sections enforce in-
creasingly stronger policies about the use of capabilities:
CapPCF provides capability safety; ac-CapPCF adds access
control policies, dynamically enforced using contracts; and i-
CapPCF adds integrity policies, statically enforced using an
information-flow type system. However, a programmer must
apply significant effort to transform a CapPCF program into an

11

` cap? : Cap>⊥ `− cap? : Cap⊥>

〈U,E [· · ·]〉 → 〈U,E [· · ·]〉
Kl(k cap?, cp̄,) . Gl{k cp̄,, p̄}
Kl(k cap?, G

l′{k′ γ, p̄}) . Gl{k Gl′{k′ γ, p̄}, p̄}

Fig. 20. mix-CapPCF: the wild-card capability contract

i-CapPCF program that enforces access control and integrity
policies. In particular for integrity, this typically requires
prolific security annotations and an all-or-nothing trial and
error process until the type system admits the program [27]. As
a middle ground, the contracts of ac-CapPCF offer a smoother
transition: the programmer immediately obtains a working
ac-CapPCF program by adding contracts only on component
boundaries.

This section shows how the transition from CapPCF to
ac-CapPCF and i-CapPCF can be done gradually on a per
component basis: we demonstrate how components written
in any of the three languages can be composed to form a
complete system without violating the security policies of the
individual components.

First observe that we can rewrite any CapPCF component as
an ac-CapPCF component with the same behavior. Recall that
ac-CapPCF extends CapPCF with access control policy anno-
tations on capabilities and contracts on component boundaries.
We consider a CapPCF capability c to have access control
policy >, the set of labels of all components in a program. That
is, the default access control policy for a CapPCF capability
allows any component to use it. We can construct a contract for
every CapPCF component from its type. The only interesting
piece of this construction is the choice of white-list policies on
capability contracts. We handle this corner case by adding a
wild-card policy ? to ac-CapPCF that never leads to a contract
violation.

Let mix-CapPCF be a language that allows us to mix
components of ac-CapPCF and i-CapPCF. Except for type an-
notations and integrity policies on capabilities, ac-CapPCF and
i-CapPCF share the same syntax, and thus the two languages
share the same reduction relation after type erasure. Therefore
a mix-CapPCF program has a well defined meaning. We do
need to extend the reduction rules for component boundaries
with wild-card capability contracts, as shown in Figure 20, in
addition to typing rules for wild-card capabilities.

A. Typing component mixes

To ensure that mix-CapPCF satisfies integrity we must ex-
tend the i-CapPCF type system to handle mixed components.
Figure 21 displays new typing rules that allow secure mixing
of components. These rules describe how to type component
boundaries Kl(k κ, e) where the client label l indicates an i-
CapPCF component and the server label k indicates an ac-
CapPCF component. An ac-CapPCF component k embedded
in an i-CapPCF context l is well-typed as long as its i-CapPCF

l ∈ i-CapPCF k ∈ ac-CapPCF Γ ` e
Γ, l̄ ` Kl(k κ, e) : TJκK

l ∈ ac-CapPCF k ∈ i-CapPCF Γ,> ` e : TJκK
Γ ` Kl(k κ, e)

l ∈ ac-CapPCF k ∈ ac-CapPCF Γ ` e
Γ ` Kl(k κ, e)

Fig. 21. mix-CapPCF: type-checking rules for mixed components

TJintK = Int> TJboolK = Bool>

TJcapl̄K = Cap>> TJcap?K = Cap>>

TJκ1 7→ κ2K = (TJκ1K >→ TJκ2K)>

Fig. 22. mix-CapPCF: contracts to types translation

sub-components are well-typed. The judgment Γ ` e holds
for an ac-CapPCF term e if all i-CapPCF sub-components are
well-typed. The type of an ac-CapPCF component embedded
in an i-CapPCF context is obtained using the contract-to-
type translation operator TJκK that is presented in Figure 22.
This translation operator conservatively maps contracts to
types in a way that prevents capabilities with non-trivial
integrity policies propagating from i-CapPCF components to
ac-CapPCF components. Specifically, the translation operator
ensures that only capabilities with an integrity policy of >
(i.e., all components may influence the use of the capability)
may propagate across the component boundary. For functions,
it ensures that only capabilities with an integrity policy of >
may be used in the function body.

All ac-CapPCF terms are well-typed according to Γ ` e so
long as their subterms are well-typed, with the exception of
component boundaries where the component is an i-CapPCF
component. In that case, the i-CapPCF component e must
be well-typed according to judgment Γ,> ` e : TJκK. The
program counter level for the i-CapPCF component is >,
indicating that the decision to execute e may be influenced
by any and all components, since the ac-CapPCF component
does not track integrity. Note that the type of e uses the
contract-to-type translation operator TJκK, again ensuring that
only capabilities with an integrity policy of > may propagate
across the component boundary.

B. Security of mix-CapPCF

The language mix-CapPCF inherits capability safety and
access control enforcement from ac-CapPCF and i-CapPCF:

Theorem 17. mix-CapPCF is authority safe.

Theorem 18. mix-CapPCF enforces access control.

Based on the extended type-system, we can also show that
mix-CapPCF satisfies integrity for capabilities:

Theorem 19 (Integrity for Capabilities). If ∅, {lo} ` e1 : τ ,
for all terms e2 such that ∅, {lo} ` e2 : τ , and e1

l̄∼ e2, if
〈∅, e1〉 ∗→ 〈U1, v1〉 and 〈∅, e2〉 ∗→ 〈U2, v2〉 then U1

l̄∼U2.

12

In summary, CapPCF components can be easily converted
to ac-CapPCF components, and ac-CapPCF and i-CapPCF
components can be easily composed to conservatively enforce
both access control and integrity policies. This enables the
gradual addition of policies to a program.

VI. CAPABILITY CONTROL IN REAL LANGUAGES

We have shown how to extend capability safe languages
with declarative policies to restrict the use of capabilities. We
have done so in the context of a series of simple calculi:
CapPCF, ac-CapPCF, i-CapPCF, and mix-CapPCF. In this sec-
tion we discuss the connection between CapPCF and existing
capability-safe languages, and describe how standard, practical
language techniques can be used to extend these existing
capability-safe languages with access control and integrity
policies.

A. CapPCF as a model for capability-safe languages

Existing capability-safe languages, such as Caja, E, and
Joe-E, are object-oriented and capabilities are object refer-
ences. In contrast to traditional protection systems where
the subjects and objects of access are distinct [28], in these
object-capability languages the entities that use capabilities
and the targets of such uses are all objects. Objects play three
distinct roles in object-capability languages. First, they provide
services via their methods. Second, they act as consumers of
services. Third, they implement application-specific security
abstractions, which can be viewed as specialized consumers
that aggregate capabilities and expose restricted facets of their
services. Note that an object may perform all three roles.

Capability-safety gives some minimal security guarantees
for objects as services: invoking a service requires a reference
to the object and references propagate in the program only
via message passing or object initialization. Objects as security
abstractions provide additional guarantees by further mediating
accesses to services.

CapPCF concisely captures the salient details of capability-
safe languages even though we use a lambda-calculus based
model without objects. We don’t account for objects with
internal state, behavioral subtyping, or object extension, but
these features are orthogonal to our goals. To emphasize
the distinction between critical services of interest and other
services, security abstractions, and clients, CapPCF represents
the former as capabilities γ invoked with use(γ), and the latter
by lambda abstractions. This reduces clutter and allows us to
focus on these critical services. We can easily remove this
simplification by treating lambda abstractions as capabilities.

CapPCF and our security policies assume that programs
are composed of components with associated principals (the
component labels). In a capability-safe language, we can view
collections of objects as components associated with principals
or domains that indicate their origin. For example, in Caja
principals might denote source URLs, whereas in E or Joe-E
principals might denote packages or source files. Capability-
safe languages already provide mechanisms (such as loaders)
to create component boundaries and to attach principals to

components [29], and thus our technique of using syntactic
elements Kl(k e) to explicitly mark component boundaries is a
reasonable model of real languages.

Although our Cap family of calculi captures intuitive ideas
(components with boundaries between them, capabilities, ac-
cess control, integrity), a significant amount of technical
machinery is required to model them. We believe that this
is not an artifact of our formalism, but is innate to precisely
modeling these concepts: we use standard modeling techniques
from higher-order contracts and our formalism is of simi-
lar complexity to previous formal models of language-based
capabilities (e.g., [30]). Indeed, we believe that the use of
standard language techniques for modeling and enforcement
of novel security guarantees is a benefit of our approach, and
speaks to the practicality of both the security guarantees and
enforcement mechanisms.

B. Implementing capability control

Well-known programming language constructs and tech-
niques can be used to extend existing capability-safe languages
with access control policies and integrity policies.

Interposition for Access Control. Enforcing access control
policies in ac-CapPCF requires contracts that completely me-
diate access to a component. Object-capability-safe languages
typically already have constructs that achieve complete and
transparent mediation and interposition, e.g., membranes [10]
in E and Caja. Recent research [7] explores the addition of
such a feature to existing languages, and contract systems have
been implemented using membrane-like constructs [19, 31].
In addition, membranes have been used to equip Javascript
objects with contracts for path-based access control for method
invocation [32].

Enforcing Information Flow. Enforcement of integrity poli-
cies in i-CapPCF relies on an information-flow type system.
The addition of information-flow type systems to existing pro-
gramming languages is well studied (e.g., [33, 34]). Extensions
to information-flow type systems to improve practicality (such
as endorsement [35] and flow-sensitivity [36]) can be easily
incorporated into the type system of i-CapPCF. For dynamic
languages such as Javascript and Caja, run-time enforcement
mechanisms for information-flow control (e.g., [37, 38, 39])
offer an alternative enforcement mechanism for integrity poli-
cies.

VII. RELATED WORK

Capability-based security. Capabilities have been widely
used in operating systems to provide confinement and isola-
tion (e.g., [40, 2, 3]). Capability-safe languages and their de-
sign patterns can enforce a variety of security properties [10].

A number of capability-based languages and mechanisms
have been proposed to increase the security of browsers and
web applications. For example, early proposals for securing
mashups required third party code to conform to secure subsets
of JavaScript, such as Google’s Caja [1] and Yahoo’s AD-
safe [41] languages. More recently, Agten et al. [6] introduce

13

JSand, which sandboxes third-party scripts via client-side
enforcement of object-capability principles.

Other web application security tools rely on browser prim-
itives such as the same origin policy and iframes to provide
isolation [42, 43, 44, 45]. The use of browser mechanisms
for isolation is complementary to the use of capability-based
patterns for building fine-grained security abstractions. For ex-
ample, Meyerovich et al. [46] use iframes to provide isolation
between components, but introduce object views to enable
fine-grained sharing between components.
Correctness of capability-based security. Preventing se-
curity abstractions from leaking sensitive capabilities is a
recognized challenge for capability-based security. In early
capability-based operating systems [47], the confinement prob-
lem [48] led to the combination of capabilities and access
control policies. The ICAP system [49] uses access control
policies on capabilities to limit their propagation in distributed
systems. Our work is inspired by these early results, but
focuses on capability-safe languages.

Maffeis et al. [30] show that capability-safe languages such
as Caja are suitable for enforcing isolation properties as long as
components do not share capabilities. Others have studied how
to verify the security of capability-based abstractions where
components must communicate. For instance, Politz et al.
[50] use a type system to verify the confinement guarantees
provided by ADsafe. Our work also considers the security of
communicating components, but does so via declarative poli-
cies for the use of capabilities rather than excluding language
features. In contrast to our language-based approach, Murray
et al. [51, 52] and Spiessens [53] apply formal methods to
verify the security of specific object-capability design patterns.

Closer to our work, Taly et al. [54] develop a static analysis
for checking whether capability-based sandboxes properly
confine access to sensitive resources. However, their analysis
for access control depends on availability of the source code
and does not consider integrity requirements on the use of
capabilities. In a similar spirit, Barth et al. [55] and Finifter
et al. [56] add restricted access control checks to JavaScript
objects, but only for enforcing the same origin policy.

VIII. CONCLUSION

Capability-safe languages are a powerful tool for managing
resources. However, reasoning about the correctness of appli-
cations built using these languages requires reasoning about
implicit policies concerning the use of capabilities.

We extend capability-safe languages with declarative poli-
cies to simplify reasoning about the correct use of capabilities.
Access control policies restrict which components may use a
given capability. Integrity policies restrict which components
may influence the use of a capability. We demonstrate that
standard language-based techniques can soundly enforce these
policies (contracts and a security type system respectively).
Moreover, these enforcement mechanisms can be easily com-
posed, allowing the gradual incorporation of capability poli-
cies. Thus, this work provides firm theoretical foundations for
practical security extensions to capability-safe languages.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-
ments. This research is supported by the National Science
Foundation under Grants 1054172 and 1237235, and by the
Air Force Research Laboratory.

REFERENCES

[1] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay,
“Caja: Safe active content in sanitized JavaScript,” 2008, google
white paper.

[2] J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast
capability system,” in ACM Symposium on Operating Systems
Principles, 1999, pp. 170–185.

[3] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway,
“A taste of Capsicum: practical capabilities for UNIX,” Com-
munications of the ACM, vol. 55, no. 3, pp. 97–104, 2012.

[4] M. Miller, K.-P. Yee, and J. Shapiro, “Capability myths de-
molished,” Johns Hopkins University, Tech. Rep. SRL2003-02,
2003.

[5] S. Drossopoulou and J. Noble, “The need for capability poli-
cies,” in Formal Techniques for Java-like Programs Workshop,
2013, pp. 6:1–6:7.

[6] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet,
and F. Piessens, “JSand: Complete client-side sandboxing of
third-party JavaScript without browser modifications,” in Annual
Computer Security Applications Conference, 2012, pp. 1–10.

[7] T. H. Austin, T. Disney, and C. Flanagan, “Virtual values for
language extension,” in ACM SIGPLAN Conference on Object-
Oriented Programming Languages, Systems, Languages, and
Applications, 2011, pp. 921–938.

[8] T. Van Cutsem and M. Miller, “Proxies: Design principles
for robust object-oriented intercession APIs,” in Dynamic Lan-
guages Symposium, 2010, pp. 59–72.

[9] T. Van Cutsem and M. S. Miller, “Trustworthy proxies: Vir-
tualizing objects with invariants,” in European Conference on
Object-Oriented Programming, 2013.

[10] M. Miller, “Robust composition: Towards a unified approach
to access control and concurrency control,” Ph.D. dissertation,
Johns Hopkins University, 2006.

[11] “OWASP top 10 - 2013. The ten most critical
web application security risks,” OWASP The Open
Web Application Security Project, Tech. Rep., 2013.
[Online]. Available: http://owasptop10.googlecode.com/files/
OWASP%20Top%2010%20-%202013.pdf

[12] R. B. Findler and M. Felleisen, “Contracts for higher-order func-
tions,” in International Conference on Functional Programming,
2002, pp. 48–59.

[13] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen,
“Correct blame for contracts: No more scapegoating,” in ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2011, pp. 215–226.

[14] A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,” IEEE Journal on Selected Areas in Communica-
tions, vol. 21, no. 1, pp. 5–19, 2003.

[15] D. Volpano, G. Smith, and C. Irvine, “A sound type system
for secure flow analysis,” Journal of Computer Security, vol. 4,
no. 3, pp. 167–187, 1996.

[16] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in IEEE Symposium on Security and Privacy, 1982,
pp. 11–20.

[17] G. D. Plotkin, “LCF considered as a programming language,”
Theoretical Computer Science, vol. 5, no. 3, pp. 223–255, 1977.

[18] M. Felleisen, R. B. Findler, and M. Flatt, Semantics Engineering
with PLT Redex. MIT Press, 2009.

14

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf

[19] C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen, “Complete
monitors for behavioral contracts,” in European Symposium on
Programming, 2012, pp. 211–230.

[20] B. Meyer, “Design by contract,” in Advances in Object-Oriented
Software Engineering. Prentice Hall, 1991, pp. 1–50.

[21] ——, “Applying design by contract,” IEEE Computer, vol. 25,
no. 10, pp. 40–51, 1992.

[22] M. Abadi and C. Fournet, “Access control based on execution
history,” in Network and Distributed System Security Sympo-
sium, 2003, pp. 107–121.

[23] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands, “Termination-
insensitive noninterference leaks more than just a bit,” in
European Symposium on Research in Computer Security, 2008,
pp. 333–348.

[24] N. Heintze and J. G. Riecke, “The SLam calculus: program-
ming with secrecy and integrity,” in ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1998,
pp. 365–377.

[25] F. Pottier and V. Simonet, “Information flow inference for ML,”
ACM Transactions on Programming Languages and Systems,
vol. 25, no. 1, pp. 117–158, 2003.

[26] S. A. Zdancewic, “Programming languages for information
security,” Ph.D. dissertation, University of Pennsylvania, 2002.

[27] A. Askarov and A. Sabelfeld, “Security-typed languages for
implementation of cryptographic protocols: A case study,” in
European Symposium on Research in Computer Security, 2005,
pp. 197–221.

[28] B. Lampson, “Protection,” in International Conference on In-
formation Systems Security, 1971, pp. 437–443.

[29] M. S. Miller, J. E. Donnelley, and A. H. Karp, “Delegating
responsibility in digital systems: Horton’s “who done it?”,” in
HotSec, 2007, pp. 2:1–2:5.

[30] S. Maffeis, J. C. Mitchell, and A. Taly, “Object capabilities and
isolation of untrusted web applications,” in IEEE Symposium on
Security and Privacy, 2010, pp. 125–140.

[31] T. S. Strickland, S. Tobin-Hochstadt, R. Findler, and M. Flatt,
“Chaperones and impersonators,” in ACM SIGPLAN Conference
on Object-Oriented Programming Languages, Systems, Lan-
guages, and Applications, 2012, pp. 943–962.

[32] M. Kiel and P. Thiemann, “Efficient dynamic access analysis
using JavaScript proxies,” in Dynamic Languages Symposium,
2013.

[33] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom, “Jif: Java information flow,” 2001–2008, http://www.cs.
cornell.edu/jif.

[34] V. Simonet, “The Flow Caml System: documentation and user’s
manual,” INRIA, Technical Report, 2003.

[35] A. Sabelfeld and D. Sands, “Dimensions and principles of
declassification,” in IEEE Computer Security Foundations Sym-
posium, 2005, pp. 255–269.

[36] S. Hunt and D. Sands, “On flow-sensitive security types,” in
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 2006, pp. 79–90.

[37] T. H. Austin and C. Flanagan, “Permissive dynamic information

flow analysis,” in ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, 2010, pp. 3:1–3:12.

[38] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged
information flow for JavaScript,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2009,
pp. 50–62.

[39] D. Hedin and A. Sabelfeld, “Information-flow security for a
core of JavaScript,” in IEEE Computer Security Foundations
Symposium, 2012, pp. 3–18.

[40] J. B. Dennis and E. C. Van Horn, “Programming semantics for
multiprogrammed computations,” Communications of the ACM,
vol. 9, no. 3, pp. 143–155, 1966.

[41] D. Crockford. (2013) ADSafe. [Online]. Available: http:
//www.adsafe.org

[42] D. Akhawe, P. Saxena, and D. Song, “Privilege separation in
HTML5 applications,” in IEEE Symposium on Security and
Privacy, 2012.

[43] L. Ingram and M. Walfish, “Treehouse: JavaScript sandboxes to
help web developers help themselves,” in USENIX ATC, 2012.

[44] M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan, “AdJail:
Practical enforcement of confidentiality and integrity policies on
web advertisements.” in USENIX Security, 2010, pp. 371–388.

[45] H. J. Wang, X. Fan, J. Howell, and C. Jackson, “Protection and
communication abstractions for web browsers in MashupOS,”
in ACM Symposium on Operating Systems Principles, 2007, pp.
1–16.

[46] L. A. Meyerovich, A. P. Felt, and M. S. Miller, “Object views:
Fine-grained sharing in browsers,” in WWW, 2010, pp. 721–730.

[47] P. A. Karger, “Improving security and performance of capability
systems,” Ph.D. dissertation, University of Cambridge, 1988.

[48] B. W. Lampson, “A note on the confinement problem,” Com-
munications of the ACM, vol. 16, no. 10, pp. 613–615, 1973.

[49] L. Gong, “A secure identity-based capability system,” in IEEE
Symposium on Security and Privacy, 1989, pp. 56–63.

[50] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi,
“Type-based verification of JavaScript sandboxing,” in USENIX
Security, 2011.

[51] T. Murray, “Analysing object-capability security,” in Founda-
tions of Computer Security, Automated Reasoning for Security
Protocol Analysis and Issues in the Theory of Security, 2008,
pp. 177–194.

[52] T. Murray and G. Lowe, “Analysing the information flow
properties of object-capability patterns,” in IEEE Symposium
on Security and Privacy, 2009, pp. 81–95.

[53] A. Spiessens, “Patterns of safe collaboration,” Ph.D. disserta-
tion, Catholic University of Louvain, 2007.

[54] A. Taly, J. C. Mitchell, M. S. Miller, J. Nagra et al., “Auto-
mated analysis of security-critical JavaScript APIs,” in IEEE
Symposium on Security and Privacy, 2011, pp. 363–378.

[55] A. Barth, J. Weinberger, and D. Song, “Cross-origin JavaScript
capability leaks: Detection, exploitation, and defense,” in
USENIX Security, 2009, pp. 187–198.

[56] M. Finifter, J. Weinberger, and A. Barth, “Preventing capability
leaks in secure JavaScript subsets,” in Network and Distributed
System Security Symposium, 2010.

15

http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif
http://www.adsafe.org
http://www.adsafe.org

	Introduction
	Example: securing a web mashup
	Overview of approach

	A Core Calculus for Capabilities
	Semantics of CapPCF
	Ownership annotations
	Properties of CapPCF

	Controlling Who Can Use Capabilities
	Semantics of ac-CapPCF
	Obligation annotations in ac-CapPCF
	Security of ac-CapPCF

	Controlling Who Influences Capabilities
	Integrity for capabilities
	Type-based enforcement
	Security of i-CapPCF

	Combining Languages
	Typing component mixes
	Security of mix-CapPCF

	Capability Control in Real Languages
	CapPCF as a model for capability-safe languages
	Implementing capability control

	Related Work
	Conclusion

