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We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger
Greenberger-Horne-Zeilinger (GHZ) states, that achieves the best clock stability allowed by quantum
theory up to a logarithmic correction. The simultaneous interrogation of the laser phase with such a
cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables
Heisenberg-limited operation while extending the Ramsey interrogation time beyond the laser noise
limit. We compare the new protocol with state of the art interrogation schemes, and show that
entanglement allow a significant quantum gain in the stability for short averaging time.
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High precision atomic frequency standards form a cor-
nerstone of precision metrology, and are of great impor-
tance for science and technology in modern society. Cur-
rently, atomic clocks based on optical transitions achieve
the most precise [1, 2] and accurate [3, 4] frequency refer-
ences. Additionally, the development of optical frequency
combs [5–8] – establishing a coherent link between the op-
tical and radio frequencies – enabled the application of
optical frequency standards to a wide range of scientific
and technological fields including astronomy, molecular
spectroscopy and global positioning systems (GPS).

The improvement of frequency standards using quan-
tum resources, such as entanglement [9–13], has been
actively explored in recent years. A characterization of
the improvement obtainable by using entanglement re-
quires a detailed investigation of the decoherence present
in the system. Previous studies have focused on two kind
of noise sources: i) single particle decoherence resulting
from the interaction of the atoms with the environment
and ii) fluctuation in the local oscillator (LO) used to in-
terrogate the atoms. It is well know that fully entangled
states (e.g., Greenberger-Horne-Zeilinger (GHZ) states)
allow for improved spectroscopic sensitivity, but in the
same way that these states benefit from their increased
sensitivity in the laser interrogation, they are generi-
cally prone to various types of noise sources canceling
any quantum gain. It has therefore been long believed
that such states fail to increase clock stability in the
standard Ramsey type protocol regardless of the noise
model being used [12, 14–16]. On the other hand, it
has been shown that for clocks with local oscillator (LO)
noise limited stability, the use of moderately squeezed

∗These authors contributed equally to this work

atomic states can yield a modest improvement over the
standard quantum limit (SQL) [10, 11]. A recent study
demonstrated further that, in principle, highly squeezed
states could achieve Heisenberg-limited stability using
a complex adaptive measurement scheme [13]. At the
same time, it has been shown that the single particle
decoherence-limited regime can be reached for long aver-
aging time at a logarithmic cost in the number of qubits
by interrogating uncorrelated atomic ensembles for suit-
ably chosen times [17, 18].

In this Letter, we introduce a protocol involving groups
of sequentially larger GHZ states to estimate local oscil-
lator deviations from the atomic reference in a manner
reminiscent of the phase estimation algorithm [19]. Fur-
thermore, we unify previous treatments of decoherence
for atomic clocks and incorporate previous proposals in-
volving uncorrelated atoms to effectively narrow the LO
linewidth [17, 18] and thereby identify ultimate limits to
the stability of atomic clocks based on entangled atoms.
The central results of our work are illustrated in Fig. 1,
which compares the performance of the proposed pro-
tocol with other known approaches as a function of av-
eraging time. Specifically, for LO-noise limited clocks,
the proposed quantum protocol is found to be nearly
optimal, realizing the Heisenberg limit of clock stabil-
ity up to a logarithmic correction in the particle num-
ber. Importantly, it reaches the fundamental noise floor
(dashed line) resulting from individual dephasing of the
clock qubits N times faster than the best known clas-
sical schemes, where N is the total number of particles
employed.

The central idea of our approach can be understood as
follows. In modern atomic clocks, the frequency of a LO
is locked to an ultra-narrow optical (or radio-frequency)
transition of the clock atoms serving as the frequency
reference. The long-term stability of such a clock af-
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FIG. 1: Allan deviation σy for different protocols as a func-
tion of averaging time τ , normalized to the standard quantum
limit, for γLO/γind = 103. The solid black line corresponds to
the standard scheme using a single uncorrelated ensemble. It
fails to reach the fundamental noise floor set by the atomic
transition linewidth (cf. Eq. (5), broken line). A more so-
phisticated classical scheme which uses exponentially increas-
ing Ramsey times in each cycle [17, 18] allows to extend the
regime of linear scaling with 1/τ up to the point where the
bound (5) is met. In comparison, the proposed cascaded GHZ
protocol (blue solid curves) enables an ∼ N times faster con-
vergence. For short averaging times the stability is enhanced
by a factor

√
N as compared to classical protocols.

ter a given total averaging time τ is directly related to
the precision by which the accumulated laser phase rel-
ative to the atoms can be determined. To this end, in
the standard Ramsey protocol, the phase is repeatedly
measured over cycle times T < τ , followed by a cor-
rection of the laser frequency according to the measure-
ment outcome. Since each Ramsey sequence introduces
measurement noise, it is optimal to extend the Ram-
sey time T as much as possible, ideally to its maximum
value T → τ . A single GHZ state consisting of N en-
tangled atoms – whose state after the interrogation is
|GHZ〉T ∝ |0〉⊗N + exp(−iNΦLO)|1〉⊗N – accumulates
the laser phase (denoted by ΦLO) N times faster than
an uncorrelated state. Thus, in principle, it allows to
measure the phase with the best precision allowed by
quantum mechanics [20]. However, fluctuations in the
laser frequency account for the fact that the laser phase
we aim to measure is a random variable with a probabil-
ity distribution that grows in width as we increase the
Ramsey time T . Whenever the laser phase realized in a
particular Ramsey cycle induces a full phase wrap on the
state [i.e., the atomic phase NΦLO /∈ [−π, π)] a subse-
quent measurement yields a 2π error in the estimation of
the true laser phase. For a single GHZ state this accounts
for a strict limitation on the maximally allowed Ramsey
time in order to limit the initial variance of ΦLO, and the
resulting laser stability is found to yield no improvement
over classical protocols [16].

To address this problem, we use a protocol reminiscent
of the phase estimation algorithm [19] that allows a direct
assessment of the number of 2π phase wraps during the

interrogation, thus enabling the Ramsey time to extend
to its maximum value to guarantee optimal laser stability.
Let us assume for the moment that the accumulated laser
phase after the interrogation time T lies in the interval
ΦLO ∈ [−π, π), and has an exact binary representation

(ΦLO + π)/2π =
∑M
j=1 Zj/2

j , with digits Zj ∈ {0, 1}
(both conditions will be relaxed below). One can then
readily show, that a GHZ state consisting of 2M−1 atoms
picks up the phase ΦM−1 = 2M−1ΦLO mod [−π, π) =
π(ZM − 1). Thus, by measuring if the phase is 0 or π,
the last digit of the laser phase can be determined. How-
ever, as stated above, without knowledge of the remain-
ing digits (i.e., the number of phase wraps) this informa-
tion is useless. In our protocol, these digits are found
by an additional simultaneous interrogation with succes-
sively smaller GHZ states of 2M−2, 2M−3, . . . entangled
atoms (see Fig. 2). Each of these states picks up a phase
proportional to its size Φj = 2jΦLO mod [−π, π), and in
analogy to the first state this phase gets a contribution of
π(Zj−1). By distinguishing whether the phase is shifted
by π or not, we can thus determine the value of the bit Zj .
The combined information provides an estimate with an
accuracy given by the largest GHZ state, while the cas-
cade increases the total number of atoms employed only

modestly by a factor of two:
∑M−1
j=0 2j ≈ 2M = 2×2M−1.

However, in the limit of large averaging times, the as-
sumption ΦLO ∈ [−π, π) is not justified anymore. Here,
the optimal Ramsey time T ∼ τ can attain values that
induce phase wraps of the laser itself, causing the bi-
nary representation of the laser phase to contains digits
Zj 6= 0 for j ≤ 0 which are inaccessible to the technique
discussed so far. To achieve the optimal laser stability
in this regime, we extend the cascade to the classical
domain, and employ additional groups of uncorrelated
atoms that interrogate the laser with successively de-
creasing interrogation times, or alternatively, using dy-
namical decoupling techniques [17, 18, 21]. Each of these
ensembles acquires a phase that again is reduced by mul-
tiples of two from the laser phase, and thus, following the
arguments from above, allows one to gain information on
the lower digits Zj with j ≤ 0. The information of all dig-
its combined provides the total number of phase wraps,
which in turn yields a Heisenberg-limited estimate of the
laser phase. By this, the protocol effectively eliminates
all limitations arising from the LO noise, and allows the
Ramsey time to extend to its optimal value to achieve the
best laser stability allowed by quantum mechanics (up to
a logarithmic correction as shown below).

In the following, we provide a detailed derivation of
the above results. Modern clocks periodically measure
the fluctuating LO frequency ω(t) against the frequency
standard ω0 of a given ensemble of clock atoms (qubits)
to obtain an error signal. After each Ramsey cycle of
duration T [i.e., at times tk = kT (k = 1, 2 . . .)], the
measurement data yield an estimate of the relative phase

ΦLO(tk) =
∫ tk
tk−T dt [ω(t) − ω0] accumulated by the LO.

This estimate in turn is used to readjust the frequency
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of the LO: ω(tk)→ ω(tk)− αΦest
LO(tk)/T , where Φest

LO(tk)
represents a suited estimator of the phase ΦLO(tk) [22],
and α < 1 is an suitably chosen gain.

The stability of the actively stabilized LO after a total
averaging time τ is characterized by the Allan deviation
(ADEV) which is directly proportional to the measure-
ment uncertainty ∆ΦLO(tk) after each Ramsey cycle [23],

σy(τ) ≡ 1

ω0τ

√√√√τ/T∑
k=1

τ/T∑
l=1

T 2〈δω̄kδω̄l〉 ≈
1

ω0

√
τT

[∆ΦLO(T )].

(1)
Here, δω̄k = ΦLO(tk)/T is the average detuning of the
(stabilized) LO during the kth cycle. To obtain Eq. (1)
we use the fact that after the frequency feedback the de-
tuning averages become approximately uncorrelated for
realistic laser spectra, 〈δω̄kδω̄l〉 ≈ 〈δω̄2〉δkl [4, 18, 24].
Other noise sources (such as the bias of the linear esti-
mator, the Dick effect, or a sub-optimal gain α [25]) are
not fundamental, and neglected in the following.

The ultimate precision by which the accumulated
Ramsey phase after each cycle can be estimated is in
principle (i.e., in the limit of small phases) determined by
the Cramér-Rao bound [20, 26] which, e.g., is achieved by
the use of GHZ states. However, as a consequence of the
LO frequency fluctuations, in general, large phases can
occasionally be acquired, leading to uncontrolled phase
wraps of the atomic phase, Φ(tk) = NΦLO(tk) /∈ [−π, π).
To suppress these events, the cycle time T has to be
chosen such that the prior distribution of Φ is well lo-
calized within [−π, π). This limits the maximally al-
lowed Ramsey time to a value Tmax ∼ γ−1

LO/N
2, where

we assumed a white frequency noise spectrum of the LO,
Sω(f) = γLO (for 1/f -noise one finds the less stringent
condition Tmax ∼ γ−1

LO/N). In most cases, this value
lies below the optimal (i.e., maximal) value implied by
Eq. (1) T ∼ τ , resulting in a laser stability for GHZ states
which shows no improvement over the stability achieved
with uncorrelated atoms [12, 16].

However, unlike the individual particle noise result-
ing in the finite atom linewidth γind, the LO frequency
fluctuations affect all clock atoms alike, and this collec-
tive noise does not represent a fundamental metrological
limitation. Assuming for the moment that the prior dis-
tribution of the LO phase ΦLO after the Ramsey time
is localized in [−π, π) (we will relax this condition be-
low), we can use groups of GHZ states of varying size to
measure the ΦLO in a binary representation, as discussed
above. In general, however, the phase does not have an
exact binary representation ending at the digit ZM . We
therefore employ n0 duplicates of the GHZ states at each

level of the cascade (n0 = N/
∑M−1
j=0 2j ≈ N/2M ) to

improve the precision. In the case where all digits Zj
(j = 1 . . . ,M − 1) are determined correctly according to
the relation

Zj = [2(Φj−1 + π)− (Φj + π)]/2π, (2)

the last group (j = M − 1) then yields a Heisenberg-

FIG. 2: The proposed clock operation scheme employs M
different groups of clock atoms prepared in correlated states
of varying size to interrogate the relative phase ΦLO of the LO
field. A single group j contains n0 independent instances of
GHZ-like states, each entangling 2j qubits, and therefore ac-
cumulating a phase Φj = 2jΦLO mod [−π, π] during a single
cycle. Each group is then used to measure this phase, which
gives a direct estimate on the digit Zj+1 in a binary represen-
tation of the LO phase (ΦLO + π)/2π = (0.Z1Z2Z3 . . .). This
estimate is subsequently used to feedback the LO frequency.
This clock operation protocol achieves the best stability al-
lowed by quantum mechanics up to a logarithmic correction.

limited estimate of the LO phase with accuracy
(∆ΦLO)pr = 1/(2M−1√n0) = 2

√
n0/N , and with a Ram-

sey time that can exceed the laser noise limit Tmax.
However, in general the estimation of the binary dig-

its Zj is not perfect. A rounding error occurs whenever
|Φest
j−1 − Φj−1| > π/2 (where Φest

j represents a suitable
estimator derived from the n0 measurement outcomes),
leading to a wrong digit Zj . The variance contribu-
tion of such an event to the total measurement uncer-
tainty is (2π2−j)2. Since these errors are small and in-
dependent, we can approximate their total variance con-

tribution by the sum (∆ΦLO)2
re = Pre

∑M−1
j=1 (2π2−j)2.

The corresponding probability in a single cycle is Pre =
2
∫∞
π/2

dφ ρ(φ), where ρ(φ) is the Gaussian probability dis-

tribution of the error Φest
j − Φj with a width propor-

tional to 1/
√
n0 [23]. Consequently, rounding errors can

be exponentially suppressed by choosing a sufficiently
large value for n0, and for Pre � 1, the total mea-
surement uncertainty of this estimation scheme is thus
(∆ΦLO)2 = (∆ΦLO)2

pr + (∆ΦLO)2
re. In [23] we show that

the optimal allocation of resources is achieved for the
choice nopt

0 ∼ 16
π2 log (N) for which rounding errors are

negligible, yielding the total measurement accuracy

∆ΦLO ≈ (∆ΦLO)pr =
8

π

√
log(N)/N. (3)

This measurement precision obtains the fundamental
Cramer-Rao bound (up to a logarithmic correction re-
sulting from the cost to suppress rounding errors) despite
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it being applicable to a general (typically large) phase.
So far we have assumed that ΦLO ∈ [−π, π) in each

cycle. However, for realistic laser noise spectra there is
always a finite probability that the LO phase ΦLO lies
outside the interval [−π, π) after the interrogation time.
Such phase wraps of the laser phase itself add to the
final measurement uncertainty in Eq. (3) by the amount
(∆ΦLO)2

slip = (2π)2Pslip. The corresponding probability

after a single Ramsey cycle is Pslip = 2
∫∞
π
dφ ρLO(φ),

where ρLO is the Gaussian prior distribution of ΦLO. Its
width depends directly on the product γLOT , which puts
a constraint on the maximally allowed Ramsey time T ≤
π2

4 γ
−1
LO[log(γLOτN)]−1, and thus the achievable ADEV

σy (∝ 1/
√
T ) as we demonstrate in [23].

As discussed above, this does not represent a funda-
mental limitation as we can extend the scheme by adding
additional classical measurements with a shorter Ramsey
periods (or alternatively, by employing dynamical decou-
pling techniques) [17, 18, 21] to assess the number of
phase slips of the laser phase itself . . . Z−3Z−2Z−1Z0.
As demonstrated in [23] this allows extending the Ram-
sey time by a factor k adding only a negligible number
of atoms N∗ ≈ 8

π2 log
(
kN2

)
log2(k)� N .

With all phase wraps counted correctly, the Ramsey
time is only limited by individual noise processes. The
finite linewidth of the atomic clock transition γind gives
rise to the fundamental constraint T ≤ γ−1

ind/2
M−1. For

averaging times smaller than this value, τ ≤ γ−1
ind/2

M−1,
we can choose T ≈ τ , and using the optimized value for
n0 found above the resulting clock stability is obtained
from Eq. (1)

σy(τ)(1) ≈ 2

ω0τ

√
nopt

0

N
≈ 8

πω0τ

√
log(N)

N
. (4)

It scales linearly with the averaging time τ , and realizes
the Heisenberg bound of laser stability up to a logarith-
mic correction. In contrast, in the regime τ ≥ γ−1

ind/2
M−1,

T is limited by the presence of individual particle noise
to a value T ≈ γ−1

ind/2
M−1 = 2γ−1

indn0/N , and we find

σy(τ)(2) ≈ 1

ω0

√
γind

τN
. (5)

Eq. (5) represents the fundamental noise floor for laser
stability resulting from quantum metrological bounds in
the presence of individual particle noise [30]. As we have
seen, the proposed protocol reaches this optimal value
rapidly after the averaging time τ0 ∼ γ−1

indlog(N)/N (cf.
Fig. 1), N/log(N) times faster than any classical scheme.

In the following, we benchmark the stability of our
protocol against different approaches by comparing the
lowest achievable ADEV as a function of averaging time τ
(cf. Fig. 1). First, we consider the standard procedure in
which all atoms are interrogated in an uncorrelated fash-
ion. The scheme is identical to N independent measure-
ments of ΦLO, and therefore the ADEV is limited by the
standard quantum limit: σy ∼ 1

ω0τ
√
N

for τ < γ−1
LO. Since

the Ramsey time is limited by the LO noise to T < γ−1
LO

due to uncorrected phase wraps, this naive protocol fails
to achieve the fundamental bound Eq. (5) in the long
time limit τ > γ−1

LO, and we find the suboptimal ADEV

σy(τ) ∼ 1
ω0

√
γLO

τN . Second, we discuss the recently pub-
lished classical protocol which interrogates the LO with
uncorrelated atoms for exponentially increasing Ramsey
times in each cycle [17, 18]. This protocol can be under-
stood as the classical part of the cascaded interrogation
proposed here (j ≤ 0). It eliminates the constraint of
the LO linewidth, and allows to extend the interrogation
time T to its maximum value, enabling a linear scaling
with τ up to the point where the fundamental bound (5)
is reached. However, using an uncorrelated interrogation,
the scheme displays a standard-quantum-limited scaling
(i.e. ∝ 1/

√
N), for short averaging times.

The above analysis illustrates the quantum gain of
the proposed clock operation protocol using cascaded
GHZ states. As compared to the best known classical
scheme, our scheme provides a

√
N/log(N) enhancement

for short averaging times. As a result it reaches the fun-
damental noise floor for laser stability in the presence of
single particle decoherence [Eq. (5)] ∼ N/log(N) times
faster. In the limit of N → ∞, our scheme attains this
optimal stability allowed by quantum mechanics for all
values of τ . This results identifies the possible advantage
of using entanglement previously debated in the litera-
ture [9–14, 16, 31]: While the long term limitation may
be set by atomic decoherence, entangled atoms reaches
this limit faster thus improving the bandwidth of the sta-
ble oscillator. Our results motivate the development of
atomic clocks based on entangled ions and neutral atoms.
Furthermore this motivates and lays the foundations for
a network of quantum clocks which operates by interro-
gating entangled states of all atoms in the network collec-
tively, therefore achieving a stability set by the Heisen-
berg limit of all atoms [32]. Such a network can be used
to construct a real-time world clock. Modifications of the
scheme, such as employing optimized numbers of copies
on each level of the cascade, or conditional rotations of
the measurement basis, might allow to overcome the log-
arithmic correction in the achievable stability, and are
subject to future investigations.

We are grateful to Till Rosenband and Johannes Bor-
regaard for enlightening discussions. This work was
supported by NSF, CUA, ITAMP, HQOC, JILA PFC,
NIST, DARPA QUSAR, the Alfred P. Sloan Founda-
tion, the Quiness programs, ARO MURI, and the ERC
grant QIOS (grant no. 306576); MB acknowledges sup-
port from NDSEG and NSF GRFP.

SUPPLEMENTARY INFORMATION

Appendix A: Figure of merit: Allan-variance

Provided N qubits, we aim to devise an efficient in-
terrogation scheme that provides input for the feedback
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mechanism, using Ramsey spectroscopy. After the kth
Ramsey cycle, of length T , an estimate Φest

LO(tk) is ob-
tained for the accumulated phase of the LO, ΦLO(tk) =∫ tk
tk−T dt δω(t), (tk = kT , k = 1, 2 . . . , and δω(t) = ω(t)−
ω0), which differs from the real value by ∆ΦLO(tk) =
Φest

LO(tk) − Φreal
LO (tk). Using the obtained estimate, the

feedback mechanism corrects the phase or frequency of
the LO after every cycle, and thus creates a LO signal
with better stability. The figure of merit for stability is
the Allan-variance, σ2

y(τ) = 1
ω2

0
〈δω̄2(t0)〉t0 where δω̄(t0)

denotes the time-average of δω(t0 + t) over t ∈ [0, τ ],
where τ is the available averaging time, 〈 〉t0 stands for
time-average over t0, which is much longer than τ , ω0

is the frequency of the chosen clock transition. Conse-
quently, one readily shows that the Allan variance can
be written as,

σ2
y(τ) =

1

ω2
0τ

2

τ/T∑
i=1

τ/T∑
j=1

〈
∆ΦLO(t0 + iT )∆ΦLO(t0 +jT )

〉
t0
.

(A1)
By assuming that ∆ΦLO is a stationary random process,
we substitute the average over t0 with the average over
many realizations. With the notation ∆ΦLO(t0 + jT ) =
∆ΦLO,j , we can write this average as

〈∆ΦLO,i∆ΦLO,j〉 ≈ 〈∆Φ2
LO〉δij , (A2)

where we further used a white noise assumption, such
that phase accumulations in consecutive Ramsey cycle
are approximately uncorrelated. Also for realistic 1/f
laser noise spectra, numerical studies show that this fac-
torization assumption leads to only negligible corrections.
Earlier results show that this is the case for initial LO
frequency noise spectra, Sν(f) that are less divergent
than 1/f2 at low frequencies [24]. As a result, the Allan-
variance simplifies to,

σ2
y(τ) =

1

ω2
0τT
〈∆Φ2

LO〉, (A3)

linking the achieving stability directly to the fre-
quency measurement uncertainty during the interroga-
tion. Eq. (A3) serves as our starting point in finding the
optimal measurement protocol that minimizes σ2

y(τ) for
fixed N and τ . In the following, we investigate and com-
pare different classical and quantum mechanical strate-
gies for the interrogation of the (from cycle to cycle fluc-
tuating) quantity ΦLO, and we demonstrate that the pro-
posed interrogation protocol using cascaded GHZ states
is optimal up to a logarithmic correction.

Appendix B: Single-step Uncorrelated ensemble

First, we consider the case of naive interrogation using
a Ramsey protocol with N uncorrelated atoms.

1. Sub-ensembles and projection noise

Single ensemble Ramsey spectroscopy is limited to es-
timating either the real or the imaginary part of eiΦLO .
However, by dividing the available qubits into two sub-
ensembles, X and Y , preparing their individual qubits in
different states,

X : [|0〉+ |1〉]/
√

2, (B1)

Y : [|0〉+ i|1〉]/
√

2, (B2)

and performing the same Ramsey measurement on them,
we can get estimates on both the real and imaginary
parts of eiΦLO and deduce the value of ΦLO up to 2π
shifts, instead of π. At the end of the free evolution time,
each qubit in ensemble X (Y ) is measured in the x-basis

(|±〉 = [|0〉 ± |1〉]/
√

2) and yields the ’+’ outcome with
probability px = [1− cos ΦLO]/2 (py = [1− sin ΦLO]/2).

After performing the measurement with N total
qubits, we obtain Φest

LO from the estimates of px and py.
Since both provide information on Φest

LO equivalent of N/2
measurement bits, this results in a total information of
N measurement bits, which gives an uncertainty of

〈∆Φ2
LO〉pr =

1

N
, (B3)

up to 2π phase shifts, that are fundamentally unde-
tectable. This method is identical to the one described
in [17].

2. Effects of laser fluctuations: Phase slip errors

Random fluctuations in the laser frequency (charac-
terized by the laser spectrum noise spectrum Sν(f) =
2γLO/f) result in the fact that the laser phase itself
has to be considered as a random variable after each
cycle. Whenever in a given cycle the phase ΦLO(tk)
falls outside the interval [−π, π], the aforementioned tech-
nique leads to an estimate deviating from the true value
by ∼ 2π. As the variance s2 of the prior distribution
of ΦLO grows with the interrogation time T (one finds
s2 = γLOT (s2 = (γLOT )2) for a white (1/f) noise fre-
quency spectrum, where γLO denotes the laser linewidth
of the free-running (non-stabilized) LO) these undetected
phase slips pose a fundamental limitation on the allowed
Ramsey time T , and thus on the overall achievable laser
stability.

If we assume a constant rate of phase diffusion, result-
ing in a Gaussian prior distribution of ΦLO, the prob-
ability of a phase slip single cycle of length T can be
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estimated as

Pslip = 2

∞∫
π

dΦreal
LO

1√
2πs2

exp

[
− (Φreal

LO )2

2s2

]
(B4)

= 1− erf

(
π√
2s

)
=

(√
2s

π3/2
+O(s2)

)
exp

[
− π2

2s2

]
, (B5)

where erf denotes the error function. As a phase slip
in an early Ramsey cycle will remain undetected in the
following cycles, its error contribution will accumulate
over the total averaging time τ , in the worst case by
a factor τ/T . Using this upper bound, and assuming
Pslip � 1 we write the variance contribution of phase
slips as

〈∆Φ2
LO〉slip =(2π)2 τ

T
Pslip (B6)

≈(2π)2 τ

T

√
2

π3/2

√
γLOT exp

[
− π2

2γLOT

]
,

where the (2π)2 prefactor sets the absolute contribution
of a manifested slip event to ±2π, and in the second step
we approximated Pslip with the first term of its asymp-
totic series from Eq. (B5).

3. Optimal Ramsey time

While (A3) suggests increasing Ramsey times improve
the laser stability, we have seen in the previous section
that they also lead to an increased occurrence of phase
slips yielding a significant contribution to the measure-
ment uncertainty.

In order to find the optimal Ramsey time we add the
contributions from quantum projection noise [Eq. (B3)]
and phase slip noise [Eq. (B6)] under the assumption
that the probability of phase slips is small, and obtain
an expression for the Allan-variance,

σ2
y(τ) =

1

ω2
0τ

Γ, (B7)

where

Γ =
1

TN
+
√

32π
τγ

1/2
LO

T 3/2
exp

[
− π2

2γLOT

]
. (B8)

In order to find the optimal Ramsey time Topt, that min-
imizes Γ, we introduce the new variable x = 2

π2 γLOT ,
and write

Γ =
2

π2

γLO

Nx
+

16

π5/2

τγ2
LO

x3/2
e−1/x. (B9)

Taking the derivative with respect to x results in

d

dx
Γ = − 2

π2

γLO

Nx2
+

16

π5/2
τγ2

LO

(
−3

2

1

x3/2
+

1

x7/2

)
e−1/x,

(B10)

which, after using the (self-consistent) assumption
xopt � 1, results in the following transcendental equa-
tion for xopt,

x
3/2
opt = ((8/

√
π)γLOτN)e−1/xopt . (B11)

Below, we provide the derivation of the asymptotic solu-
tion,

xopt = [log((8/
√
π)γLOτN)]−1 ≈ [log(γLOτN)]−1,(B12)

yielding directly

Topt ≈ γ−1
LO

π2

2
[log(γLOτN)]−1. (B13)

Self-consistently we confirm that already for values
γLOτN ≥ 104, the approximation in Eq. (B6) is well jus-
tified, so that the above value represents a true local min-
imum. For larger values of T the phase slip errors grow
rapidly, and numerical studies confirm that Eq. (B13)
indeed represents a global minimum.

The optimal interrogation time is mainly set by the
LO coherence time γ−1

LO, and shows a weak dependence
on the total number of qubits N , and the averaging
time τ (Note, that if we model the LO with a 1/f fre-
quency noise spectrum, only the exponent of the log term
changes to −1/2 in this result). Using this optimized
Ramsey time we find for the minimal value of Γ is

Γmin =
2

π2

γLO

Nxopt
+

16

π5/2

τγ2
LO

x
3/2
opt

e−1/xopt (B14)

=
2

π2

γLO

N

(
1

xopt
+ 1

)
(B15)

≈ 2

π2

γLO log(γLOτN)

N
. (B16)

This result is valid as long as the averaging time τ is
longer than the proposed Topt from Eq. (B13). If this is
not the case, then Topt = τ , the phase slip noise becomes
negligible, and we end up with

Γmin =
1

τN
. (B17)

We approximate the crossover region (around τ ∼ γ−1
LO)

by adding leading terms from Eq. (B16) & (B17) and
obtain

[σy(τ)]min ≈
1

ω0

√
Nτ

√
1

τ
+

2

π2
γLO log(γLOτN). (B18)

In summary, in the region τ < Topt, the LO noise is
negligible leading to a linear scaling of the ADEV with
the total averaging time τ . For large averaging times
τ > Topt, phase slips of the laser phase pose a limitation
to the maximal possible Ramsey time which results in
a 1/
√
τ scaling of the laser stability. Since we employ

uncorrelated atoms, the ADEV displays in both regimes
the 1/

√
N scaling of the standard quantum limit (SQL).

As modern atomic clocks typically are laser noise lim-
ited, γLO � γind (where γind represents the clock atom
linewidth), we neglected the effects of individual atomic
dephasing in the above considerations.
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Appendix C: Cascaded interrogation using GHZ
states

In this Section, we discuss the possibility of using quan-
tum correlated states, namely GHZ states of the form

[|0〉+ eiχ|1〉]/
√

2, (C1)

where |0〉 and |1〉 are product states of all qubits being
in |0〉 or |1〉, respectively, and χ will be referred to as the
phase of the GHZ state. Such a state, once prepared, is
more sensitive to the accumulated phase of the LO, ΦLO,
by a factor of N ′, the number of qubits entangled: N∏
j=1

Ûj

[|0〉+ eiχ|1〉
]
/
√

2 = [|0〉+ei(χ+N ′ΦLO)|1〉]/
√

2,

(C2)

where Ûj = |0〉〈0| + eiΦLO |1〉〈1| is the time propagation
operator for the interrogation time acting on the jth
qubit. This property promises an enhancement in phase
resolution, and therefore a better stability for quantum
clocks.

1. Parity measurement

Using the idea with the two sub-ensembles [see
Eq. (B1) and (B2)], we imagine dividing the qubits
into two equal groups, and preparing two separate GHZ
states:

|X〉 := [|0〉+ |1〉]/
√

2, (C3)

|Y 〉 := [|0〉+ i|1〉]/
√

2, (C4)

each entangling N ′ qubits. After the free evolution time,
we imagine measuring each qubits in the x-basis (|±〉 =

[|0〉 ∓ |1〉]/
√

2) separately. In this basis, the above states
are written as[(

|+〉 − |−〉√
2

)⊗N ′
+ eiφν

(
|+〉+ |−〉√

2

)⊗N ′]
/
√

2,

(C5)
where φν = χν + N ′ΦLO, for ν ∈ {x, y} and χx = 0,
while χy = π/2 for the two groups, respectively. The
above state can be written as

1

2(N ′+1)/2

∑
q∈{+,−}×N′

 N ′∏
j=1

qj

+ eiφν

 |q1, q2, . . . qN ′〉.

(C6)
Once the qubits are measured one by one, the probability
to measure a certain outcome q = (q1, q2, . . . qN ′), (qj ∈
{+,−}) is

P(q) =
1

2N ′+1
|1 + p(q)eiφν |2, (C7)

where p(q) =
∏N ′

j=1 qj is the parity of the sum of all
measurement bits. This parity is the observable that is

sensitive to the accumulated phase, since its distribution
is

P(p = ±1) =
1± cos(φν)

2
. (C8)

This is identical to the parity measurement scheme de-
scribed in [15]. By interrogating n0/2 instances of |X〉
and |Y 〉, respectively, we can measure the phase of the
GHZ state, N ′ΦLO, with uncertainty 1/

√
n0, since each

instance provides a single measurement bit, which can
be combined the same way as we described in the case
of uncorrelated ensembles. The resulting measurement
uncertainty, ∆ΦLO, is

〈∆Φ2
LO〉pr =

1

(N ′)2n0
=

n0

N2
, (C9)

which is a factor ofN/n0 smaller than the variance contri-
bution of projection noise for the uncorrelated ensemble
protocol, (N = n0N

′).

2. Failure of the maximally entangled GHZ

Motivated by the increased phase resolution provided
by the interrogation of GHZ states, we evaluate the sta-
bility of such a protocol. We find that it fails to provide
improvement compared to the single-step uncorrelated
protocol due to an increased phase slip rate. This is in
agreement with earlier results [12, 16].

The probability, that the phase accumulated by |X〉
(|Y 〉) during the interrogation time T , N ′ΦLO lies outside
the interval [−π, π], is

Pslip = 2

∞∫
π/N ′

dΦreal
LO

1√
2πγLOT

exp

[
− (Φreal

LO )2

2γLOT

]
, (C10)

which, due to the much lower slipping threshold of π/N ′

[instead of π in the uncorrelated case, compare Eq. (B4)]
will become significant for much shorter T cycle times.
The resulting variance contribution (following the same
argument as before) is

〈∆Φ2
LO〉slip =

=
√

32π
τ

T

√
γLOTN

′ exp

[
− π2

2γLOT (N ′)2

]
.(C11)

Neglecting the individual qubit noise by the same argu-
ment as before, we simply add the contributions from
Eq. (C9) and Eq. (C11) to obtain the Allan-variance,
σ2
y(τ) = 1

ω2
0τ

Γ, where

Γ =
1

NN ′T
+
√

32π
τγ

1/2
LO

T 3/2
N ′ exp

[
− π2

2γLOT (N ′)2

]
.

(C12)
After optimizing T , we find

Topt ≈
π2

2

1

γLO(N ′)2

1

log[γLOτN(N ′)3]
, (C13)
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which results in the minimal Allan-variance,

[σy(τ)]min ≈
1

ω0

√
2

π

√
γLON ′ log[γLOτN(N ′)3]

τN
, (C14)

which is at least a factor of
√
N ′ bigger than the smallest

obtainable Allan-variance with the single-step uncorre-
lated protocol [Eq. (B16)]. In case of a 1/f LO frequency
noise spectrum, Topt ∝ 1

N (up to logarithmic terms), and
the resulting Allan-variance is equal to Eq. (B16), up to
logarithmic corrections, yielding effectively no advantage
over the uncorrelated scheme.

3. Cascaded GHZ scheme

As demonstrated in the previous Section, single GHZ
states fail to improve clock stability because the increase
in sensitivity to the laser detuning, at the same time,
leads to a drastic increase of phase slip errors originat-
ing from laser frequency fluctuations. These fluctuations,
however, affect all clock qubits in identical manner, and
therefore represents a collective noise. As such (and un-
like, e.g., the individual dephasing of the clock qubits),
they do not represent a fundamental limitation for the
phase estimation. In the following, we show that this
problem can be efficiently addressed using a cascade of
GHZ states of varying sizes (and classical states with
varying interrogation times) in an incoherent version of
the phase estimation algorithm [19]. To this end, we
reformulate the problem of estimating ΦLO in a more
suitable language.

The laser phase after a given Ramsey cycle can be ex-
pressed in a base-D numeral system as

(ΦLO + π)/2π =

∞∑
j=−∞

Zj/D
j , (C15)

with base-D digits Zj ∈ {0, 1, . . . , D− 1}. Let us for the
moment assume that the laser phase ΦLO ∈ [−π, π], such
that (ΦLO + π)/2π =

∑∞
j=1 Zj/D

j ≡ 0.Z1Z2Z3 . . ..
Provided with N qubits, we imagine dividing them into

M different groups, the jth group (j = 0, 1, . . .M − 1)
contains n0 instances of GHZ states with Dj number of
entangled qubits. One readily shows that a GHZ state
consisting of DM−1 particles picks up the phase

ΦM−1 = DM−1ΦLO mod [−π, π] (C16)

= 2π(0.ZMZM+1ZM+2 . . .)− π, (C17)

which depend only on digits ZM and higher of the laser
phase to be measured. This insensitivity of the GHZ
state with regard to the lower digits Z1 to ZM−1 re-
states the problems of phase slips. Only if the latter
are known, a measurement of the phase of the GHZ
state ΦM−1 yields useful information to determine ΦLO.
In other words, the natural number Z1Z2 . . . ZM−1 rep-
resents the number of phase slips of the largest group

of GHZ states (j = M − 1). These lower digits can
be determined one by one from the accumulated phases
Φj = DjΦLO mod [−π, π] of the smaller GHZ ensembles
j = 0, . . . ,M − 2 by using the relation

[D(Φj−1 + π)− (Φj + π)]/(2π) (C18)

= (Zj .Zj+1Zj+2 . . .)− (0.Zj+1Zj+2 . . .) = Zj .

Combining all measurement results we find that the
best estimate for ΦLO is given by

Φest
LO = 2π

M−1∑
j=1

Zest
j /Dj + Φest

M−1/D
M−1, (C19)

the precision of which is mostly determined by the un-
certainty of the phase of the last group (j = M − 1),
which contains the GHZ states with the most entangled
qubits. Since there are n0 independent instances of these
GHZ states, their phase is known up to the uncertainty,

〈∆Φ2
M−1〉pr = 1

n0
≈ δDM−1

N , where δ = D
D−1 , and there-

fore we find

〈∆Φ2
LO〉pr =

〈∆Φ2
M−1〉pr

D2(M−1)
=
n0δ

2

N2
. (C20)

This would be the total uncertainty if we could tell with
certainty that all phase slips of the lower levels had been
detected correctly. However, the occurrence of an error
in the estimation of any Zj (in the following referred to
as rounding error) has non-zero probability.

4. Rounding errors: finding the optimal n0

If Φj is determined with poor precision, the estimate
of Zj+1 will have a significant uncertainty, causing the
final estimate of ΦLO to be uncertain as well. Whenever
|Φest
j − Φreal

j | > π/D, we make a mistake by under- or
overestimating the digit Zj+1. To minimize the effect
of this error, we need to optimize how the qubits are
distributed on various levels of the cascade. In other
words, for a given total particle number N and basis D
we need to find the optimal value of n0, the number of
copies of GHZ states in each step [33].

The probability that a rounding error occurs during
the estimation of Zj is

Pre = 2

∞∫
π/D

dφ ρ(φ− Φreal
j ) ≤ 2

∞∫
π/D

dφn
3/2
0 exp

[
−n0φ

2

2

]

≈ 2

π
n

1/2
0 D exp

[
−n0π

2

2D2

]
, (C21)

where φ = Φest
j−1 − Φreal

j−1, and ρ is the conditional dis-

tribution of Φest
j−1 for given Φreal

j−1. The employed upper
bound is obtained in the last section, with the assumption
γLO/γind � N/n0 (γind is the individual qubit dephas-
ing rate), so that the projection noise is the dominant
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noise term. Due to the fixed value of n0 accross different
levels of the cascade, this probability is independent of
j, however the phase shift imposed on ΦLO by a mani-
fested rounding error of Zj is 2πD−j (j = 1, . . .M − 1),
as rounding errors early in the cascade are more harm-
ful than later ones. This results in the total variance
contribution,

〈∆Φ2
LO〉re = Pre

M−1∑
j=1

(2πD−j)2 (C22)

≈ 8π

√
N

δ
D−

M−3
2 exp

[
−n0π

2

2D2

]
1

D2 − 1
. (C23)

By adding the two error contributions from Eq. (C20)
and Eq. (C22), we obtain the total uncertainty, 〈∆Φ2

LO〉
and the corresponding Allan-variance [according to
Eq. (A3)]

σ2
y(τ) =

1

ω2
0τ

[
δ

NTDM−1

+
8π

T

√
N

δ
D−

M−3
2 exp

[
−n0π

2

2D2

]
1

D2 − 1

]

=:
1

ω2
0τ

[Γ1 + Γ2] (C24)

We find the optimal value of n0 by minimizing this

quantity. Introducing the new variable x ≡ 2D2

n0π2 , and

using n0 ≈ N/(δDM−1) we write

Γ1 +Γ2 =
2

π2

δ2D2

N2Tx
+

√
128D2

T (D2 − 1)

1

x1/2
exp

[
− 1

x

]
(C25)

Taking the derivative with respect to x and equating
it with 0, while using the (self-consistent) assumption
xopt � 1, results in the condition Γ2 ≈ xoptΓ1 � Γ1 and
the transcendental equation

x
1/2
opt ≈

√
32π2N2

δ2(D2 − 1)
exp

[
− 1

xopt

]
(C26)

for xopt. The asymptotic solution in the case of xopt � 1
is

xopt ≈

[
log

( √
32π2N2

δ2(D2 − 1)

)]−1

∼
[
log
(
N2
)]−1

,(C27)

yielding directly the optimal number of instances of GHZ
states per level

nopt
0 ∼ 2

π2
D2 log

(
N2
)
. (C28)

This choice guarantees rounding errors yield a negligible
contribution to the total measurement uncertainty, and
we find for the corresponding value of Γ1 + Γ2

[Γ1 + Γ2]min ≈Γ1(xopt) (C29)

=
nopt

0 δ2

N2T
∼ 2

π2

δ2D2

N2T
log
(
N2
)
,

where the factor δ = D/(D − 1) ∈ (1, 2]. Obviously, the
use of a binary basis (D = 2) is optimal, and the effect
of rounding errors lead to a logarithmic correction to the
Heisenberg limit.

5. Phase slip errors: limitations to the Ramsey
time T from laser noise

Although the cascade is designed to detect phase slips
at levels j = 1, 2 . . .M − 1, when we relax the condition
ΦLO ∈ [−π, π], and allow ΦLO ∈ (−∞,+∞), the possible
phase slips of level j = 0 (Z0) remains undetected. Once
this happens, it introduces a 2π phase shift in ΦLO, and
therefore contributes to its overall uncertainty with

〈∆Φ2
LO〉slip = (2π)2 τ

T
Pslip =

=
√

32π
τγ

1/2
LO

T 1/2
exp

[
− π2

2γLOT

]
, (C30)

where we assumed γLOT � 1. This adds an extra noise
term Γ3 := 〈∆Φ2

LO〉slip/T to the already optimized [Γ1 +
Γ2]min expression, yielding

[Γ1 + Γ2]min + Γ3 =

=
2

π2

δ2nopt
0

N2y
+

16

π5/2
τγ2

LO

1

y3/2
exp

[
−1

y

]
, (C31)

where y = 2
π2 γLOT . After taking the derivative with

respect to y and equating it with zero, the assumption
yopt � 1 results in the condition Γ3 ≈ yopt[Γ1 +Γ2]min �
[Γ1 + Γ2]min and the following transcendental equation,

y
3/2
opt ≈

8γLOτN
2

√
πδ2nopt

0

exp

[
− 1

yopt

]
, (C32)

for yopt. The asymptotic solution is

yopt =

[
log

(
8γLOτN

2

√
πδ2nopt

0

)]−1

∼
[
log
(
γLOτN

2
)]−1

(C33)

Topt =
π2

2

yopt

γLO
∼ π2

2

[log(γLOτN
2)]−1

γLO
(C34)

in the realistic limit of γLOτN
2 � 1. The corresponding

minimal value of Γ1 + Γ2 + Γ3 is[
[Γ1+Γ2]min + Γ3

]
min
≈ Γ1(xopt, yopt) =

nopt
0 δ2

N2Topt

(C35)

∼ γLO
4δ2D2

π4

log(γLOτN
2) log(N2)

N2
. (C36)

Since Γ3 grows exponentially with T , interrogation
times exceeding Topt drastically reduce the resulting laser
stability. For averaging times τ > Topt this limit on the
maximal interrogation time imposed by phase slip errors,
leads to sub-optimal values of the ADEV σy(τ) ∝ 1/

√
τ
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according to Eq. (B7) & (C36). However, this limita-
tion can be overcome as we demonstrate in the following
section.

If the averaging time τ is shorter than the interrogation
time suggested by Eq. (C34), Γ3 is negligible compared
to Γ1, and the corresponding effective linewidth is

[Γ1 + Γ2]min + Γ3 ≈
nopt

0 δ2

N2T
=

2

π2

δ2D2

N2T
log
(
N2
)
, (C37)

and the real optimum is at T = τ . The resulting τ−1

scaling indicates that this is the noise-free measurement
regime, and results in a Heisenberg-limited ADEV (up to

the logarithmic correction arising from nopt
0 ).

6. Extending the Ramsey time beyond the laser
noise limit

As we have seen in the previous Section, for long
τ > Topt, the cascaded GHZ scheme is limited by the
LO linewidth γLO yielding a sub-optimal laser stability
[Eq. (C36)]. In the following we demonstrate a method
to efficiently circumvent this problem, by employing ad-
ditional classical interrogations with varying (effective)
interrogation times [17, 18]. This allows us to directly
assess the digits Z0, Z−1, Z−2 . . . , thus effectively coun-
tering the problem of phase slips on this level. As such it
represents a direct extension of the cascaded GHZ states
scheme in the classical domain.

We assume we have additional M∗ groups of n∗0 par-
ticles at our disposal. Using dynamical decoupling
techniques [21], we realize that each ensemble (j =
−1,−2 . . . ,−M∗) during the interrogation picks up a
phase Φj = DjΦLO mod [−π, π] (alternatively, this can
be achieved by choosing varying interrogation times for
each ensemble according to Tj = DjT , for j < 0 [17]).
This implies that these ensembles evolve successively
slower for decreasing j, and thus, in the spirit of the
section on cascaded GHZ, directly assess the digits left
from the point in the D-numeral representation of ΦLO

[compare Eq. (C15)] according to Eq. (C18), where we
now allow negative values of j.

If all digits are correctly estimated, this accounts for
all phase slips up to the last ensemble j = −M∗. One
readily shows in an analogous calculation to the one in
the section on phase slip errors that for such a procedure
with M∗ classical stages the optimal Ramsey time (i.e.,
the optimized interrogation time of the GHZ states) is
exponentially prolonged

T
(M∗)
opt = DM∗Topt. (C38)

Note, that here we assumed that the total number of
particles employed in the classical part of the scheme is
negligible with regard to the total number of particles,
N∗ = M∗n∗0 � N . This is a well justified assumption, as
in order to prolong the optimal Ramsey time by a factor
of k from the original optimum Topt we need a logarithmic

number of groups only, M∗ ≈ logD(k), as implied by
Eq. (C38). Furthermore, following the argumentation
outlined in the section on rounding errors, we find that
only

n∗0 ≥
2

π2
D2 log

(
kN2

)
, (C39)

particles per level are sufficient to ensure that the round-
ing errors induced by the classical part of the cascade
(j < 0) are negligible.

As seen in the previous Section, when the optimal

Ramsey time exceeds the averaging time, T
(M∗)
opt ≥ τ

the effective linewidth is given by Eq. (C37) (assuming
N∗ � N), as we can neglect the phase slips contribu-
tion to the measurement uncertainty (Γ3). Extending
the Ramsey time to its then optimal (i.e., maximal) value
T ∼ τ we find the ADEV [compare Eq. (B7)]

[σy(τ)]min ≈
1

ω0

δ
√
nopt

0

Nτ
(C40)

≈
√

2√
πω0

Dδ

Nτ

√
log (N2). (C41)

This result illustrates that the presented clock protocol
achieves Heisenberg-limited clock stability up to a loga-
rithmic correction arising from the number of atoms nec-
essary to compensate for rounding and phase slip errors.
The number of particles needed for the extension of the
Ramsey time beyond the laser noise limit Topt ≈ γ−1

LO is
given as N∗ ≈ 2

π2D
2 log

(
kN2

)
logD(k) and thus negli-

gible compared to the total particle number N . For the
optimal choice of basis D = 2 the constant factor reduces
to Dδ = 4.

The above procedure of interrogation with varying
Ramsey times (for the groups j < 0) can be understood
as a classical pre-narrowing of the laser linewidth [17] to
a value that eliminates the threat of phase slips, before
application of the quantum protocol.

7. Individual qubit noise and final result

Up to this point we have neglected individual particle
dephasing. However, as we increase the Ramsey time
beyond the laser noise limit T > γ−1

LO we need to consider
their effect.

In general, the clock atoms are subject to individ-
ual decoherence processes characterized by the atomic
linewidth γind (� γLO). For the group with the largest
GHZ states in our scheme this leads to an uncertainty
contribution of 〈∆Φ2

M−1〉dephasing = DM−1γindT/n0

which results in the measurement uncertainty

〈∆Φ2
LO〉dephasing =

γindT

n0DM−1
≈ δγindT

N
, (C42)

which represents a fundamental noise floor in the
form of the effective linewidth contribution Γ4 =
〈∆Φ2

LO〉dephasing/T .
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By adding Eq. (C37) and Γ4, we obtain an approxima-
tion of the total ADEV under single particle noise,

[σy(τ)]min ≈
δ

ω0

√
τN

[
1

TDM−1
+ γind

]1/2

,(C43)

where we used n0 = N/δDM−1. This equation suggests
that the quantum gain in the estimation becomes lost if
T ∼ (γindD

M−1)−1. This is a well known result [14], and
in fact represents a fundamental limitation of the maxi-
mal Ramsey time allowed in the presence of single parti-
cle noise [30]. We approximate the crossover between the
regimes τ < (γindD

M−1)−1 (τ > (γindD
M−1)−1), where

Eq. (C43) is dominated by the first (second term) by
taking T = τ , and rewrite DM−1 in terms of the total
particle number N to arrive at the final equation charac-
terizing the stability of the cascaded GHZ scheme

[σy(τ)]min

≈ 1

ω0

√
τN

[
1

τN

2δ2D2

π2
log(N2) + δγind

]1/2

.

(C44)

Again, for the choice of a binary basis D = 2 the constant
factor is given as δD = 4.

In summary, we find that the cascaded GHZ scheme
enables an optimal, Heisenberg-limited laser stability for
short averaging times τ up to a logarithmic correction.
This stability reaches the fundamental noise floor given
by the single particle dephasing for averaging times τ0 ≈
(γindD

M−1)−1. Note, that in the limit N → ∞ this
crossover value goes to zero, and the clock stability is
given by the best possible stability allowed by quantum
mechanics for all τ . In comparison, classical protocols
reach this fundamental limit in the best case [17] at the
fixed time τ ≈ γ−1

ind. For averaging times larger than

this value τ ≥ γ−1
ind the quantum protocol does not offer

an advantage over an optimal classical protocol due to
fundamental quantum metrological bounds [30].

Appendix D: Analytic solution of xn = A exp[−1/x]

To carry out direct optimization of the Allan variance,
we need to be able to solve transcendental equations of
the following form

xn = A exp

[
− 1

x

]
. (D1)

In this Section we obtain an analytic formula for the so-
lution of this equation over the domain x ∈ [0,∞), in the
limiting case of A� 1, where n is real. The sign of n de-
termines the number of solutions: In case of n > 0, there
are three solutions: xs,0 = 0, xs,1 � 1 and xs,2 � 1. In
case of n ≤ 0, there is always a single solution, xs,1 � 1.
We are going to focus on the xs,1 =: xs solution, and give
upper and lower bounds, such that xl ≤ xs ≤ xu, and
xu/xl → 1 as A→∞.

The general method of Taylor-expanding the right side
of Eq. (D1) around x = 0 fails due to the non-analytic
property of e−1/x function at zero, and forces us to choose
an alternate route. Here, we use a recursion formula, and
prove its stability around xs. Rearranging Eq. (D1) and
turning it into a recursion f yields

xk =
1

logA− n log xk−1
=: f(xk−1), (D2)

The iteration of f is stable around the fixed point
(f(xs) = xs), if and only if 1 > |f ′(xs)| = xs|n|, which
is true in the limit xs � 1. Stability implies that the fix
point can be obtained as the limit

xs = lim
k→∞

xk = lim
k→∞

f [k](x0), (D3)

if the x0 starting point is sufficiently close to xs, where
f [k] denotes k iterations of f .

In case of n ≤ 0, f ′(xs) = nxs ≤ 0 therefore [f [k](x0)−
f [k−1](x0)] is an alternating sequence and we can quickly
obtain upper (xu) and lower (xl) bounds by applying the
recursion f twice on x0 = 1:

xl = x1 =
1

logA
, xu = x2 =

1

logA+ n log logA
,

(D4)
In case of n > 0 and x0 = 1, f [k](xs) is monotonically

decreasing (since f ′(xs) > 0), and we can safely choose
the upper bound xu = x2. To obtain a lower bound, we
introduce a new variable ξ = − log x, and write Eq. (D2)
as

ξk = log logA+ log

(
1 +

n

logA
ξk−1

)
(D5)

≤ log logA+
n

logA
ξk−1 =: g(ξk−1), (D6)

where we used that log(1 + y) ≤ y, ∀y ∈ R+ and g
is a new recursion. Since g is a monotonically increas-
ing function, the inequality holds for multiple iterations,
ξk ≤ g[k](ξ0), and eventually give the upper bound,
− log xs = ξs ≤ limk→∞ g[k](ξ0). In the limit of A � 1,
we can assume n

logA < 1, and the sequence of iterations

of g becomes convergent. Due to its simple form, we can
evaluate its limit in a closed form, which results in the
following upper bound for ξs and the corresponding lower
bound for xs.

ξs <
log logA

1− n
logA

, → xs >

(
1

logA

) 1
1− n

logA

. (D7)

We can obtain an even better (and more conventional)
lower bound by applying f once more:

xl = f

[(
1

logA

) 1
1− n

logA

]
=

1

logA+ 1
1− n

logA
n log logA

(D8)
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For both signs of n, xl logA → 1, xu logA → 1, and
xu/xl → 1 as A→∞, from which we conclude that

lim
A→∞

(xs logA) = 1. (D9)

For large enough A, we can approximate xs with
[logA]−1, and the relative error is bounded by |n| log logA

logA .

Appendix E: Upper bound on the tail of the
distribution of the estimated phase

The probability of rounding errors is given an upper
bound in order to obtain a more tractable form for opti-
mization.

1. Upper bound on the tail of the binomial
distribution

Here we derive an upper bound for the binomial dis-
tribution

P(k) =

(
n

k

)
pk(1− p)n−k. (E1)

Central limit theorem implies that for large enough n,
P(k) can be approximated with the normal distribution,
N (np, np(1 − p)), however, one can be concerned with
the fact that this underestimates the tail of P(k). Here
we give F (k) as a strict upper bound on P(k),

P(k) < F (k) = exp

[
−2(n− 1)

(
k

n
− p
)2
]
. (E2)

To see that F (k) is indeed an upper bound of P(k)
for all n, p and k, let us examine the logarithm of the
binomial distribution P(k = ny),

L(y) = log

(
n

ny

)
+ ny log p+ n(1− y) log(1− p), (E3)

where 0 ≤ y ≤ 1. The properties, we are interested in,
are

• L(y) < 0 for all y, since P(k) < 1,

• ∂
∂yL(y)

∣∣∣
y=p

= 0, and positive for y < p and nega-

tive for y > p, since L(y) = max at y = p.

• ∂2

∂y2L(y) = ∂2

∂y2

(
n
ny

)
= −n2

(
ψ1[1 + n(1 − y)] +

ψ1[1 + ny]
)

, where ψ1(x) = d
dx log Γ(x), the first

polygamma function.

By analyzing the series expansion of ψ1(1 + η) for large
and small η arguments,

ψ1(1 + η) =
1

η
− 1

2η2
+O(η−3) η � 1

ψ1(1 + η) =
π2

6
− 2.404η +

π4

30
η2 +O(η3) η � 1,

one can show that ∂2

∂y2L(y) is always negative and has a

global maximum at y = 1/2, where it takes the value

∂2

∂y2
L(y)

∣∣∣∣
y=1/2

= −4(n− 1)−O(n−1). (E4)

Therefore the constant function f ′′(y) = −4(n− 1) is an

upper bound of L′′ = ∂2

∂y2L. Now, let us integrate both

L′′ and f ′′ twice, and choose the integration constants,
so that L(y) < f(y). Since L′(y = p) = 0,

L′(y) <

y∫
p

dζ f ′′(ζ) = −4(n− 1)(y − p), (E5)

which is chosen to be f ′(y), and since L(p) < 0,

L(y) <

y∫
p

dζ L′(ζ) <

y∫
p

dζ f ′(ζ) = −2(n− 1)(y − p)2,

(E6)
which is chosen to be f(y). Consequently

P(ny) = exp[L(y)] < exp[f(y)] = F (ny). (E7)

2. Upper bound on the distribution of the
estimated phase

Here we give an upper bound on the distribution of
the Ramsey phase Φ, as determined by estimating cos Φ
and sin Φ from two sub-groups of GHZ states (X,Y ),
each providing n/2 measurement (parity) bits. Qubits

in group X are prepared in [|0〉 + |1〉]/
√

2 =: |+〉, and
measured in |+〉 with probability px = [1 + cos Φ]/2 after
time T , while qubits in ensemble Y are prepared in [|0〉+
i|1〉]/

√
2, and measured in |+〉 with probability py = [1+

sin Φ]/2 after time T . The number of |+〉 outcomes kx
and ky from groups X and Y , respectively are binomial
random variables with the distribution

P(kν) =

(
n/2

kν

)
pkνν (1− pν)n/2−kν , (E8)

where ν ∈ {x, y}. Using the upper bound from Eq. (E2),
and noting that n/2 > 1 we can give the following upper
bound on the joint distribution of kx and ky,

P(kx, ky) < exp

[
−n

2

(
2kx
n
− px

)2

− n

2

(
2ky
n
− py

)2
]
.

(E9)
Let us introduce the polar coordinates r, ϕ: r cosϕ =
2kx
n −

1
2 and r sinϕ =

2ky
n −

1
2 , and smear the distribution

into a continuous density function ρ(r, ϕ), and its upper
bound accordingly:

ρ(r, ϕ) <
n2

4
r exp

[
−n

2

(
r2 − 2r cos(ϕ− Φreal) + 1

)]
.

(E10)
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The marginal distribution of r is independent of Φreal,
which means that r does not hold any information about
Φreal. The upper bound on the marginal distribution of
ϕ can be written as

ρ(ϕ) <

(
n

4
+
n3/2
√
π√

32

)
exp

[
−n

2
sin2(ϕ− Φreal)

]
(E11)

∼ n3/2 exp
[
−n

2
(ϕ− Φreal)2

]
, (E12)

where in the second line we assumed |ϕ−Φreal| � 1, and
n� 1. This result is an upper bound on the distribution

of ϕ, which we are going to use to give an upper bound
on the rounding error probability,

Pre = 2

∞∫
π/D

dϕ ρ(ϕ+ Φreal). (E13)

The rigorous upper bound on the tail of ρ is provided by
Eq. (E12), as long as π/D � 1, and n� 1.
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and A. Imamoğlu, Phys. Rev. A 74, 032316 (2006).
[30] B. M. Escher, R. L. de Matos Filho, and L. Davidovich,

Nature Physics 7, 406 (2011).
[31] D. Meiser, J. Ye, M. J. Holland. New J. Phys. 10, 073014

(2008).
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