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Abstract

We study various aspects of symmetry in four-dimensional de Sitter space (dS4). The

asymptotic symmetry group at future null infinity (I+) of dS4 is shown to be given by the

group of three-dimensional di↵eomorphisms acting on I+. However, for physics relevant to

an eternal observatory in dS4, we should instead impose unconventional future boundary

conditions at I+. These boundary conditions violate conventional causality, but we argue

the causality violations cannot be detected by any experiment in the observatory. As the

next step, we study the relevant dynamics in quantum dS4 by illuminating some previously

inaccessible aspects of the dS/CFT dictionary in the context of the higher spin dS4/CFT3

correspondence relating Vasiliev’s higher-spin gravity on dS4 to a Euclidean Sp(N) CFT3.

We found that CFT3 states created by operator insertions are found to be dual to (anti)

quasinormal modes (QNM) in the bulk. A R-norm is defined on the R3 bulk Hilbert space

and shown for the scalar case to be equivalent to both the Zamolodchikov and pseudounitary

C-norm of the Sp(N) CFT3. The QNMs are found to lie in two complex highest-weight

representations of the dS4 isometry group and form a complete orthogonal basis with respect

to the R-norm. The conventional Euclidean vacuum may be defined as the state annihilated

by half of the QNMs, and the Euclidean Green function is obtained from a simple mode

sum. Finally, as a step towards understanding non-linear dynamics of dS4 we study both
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linear and non-linear deformations of dS4 which leave the induced conformal metric and

trace of the extrinsic curvature unchanged for a fixed hypersurface. These deformations are

required to be regular at the future horizon of the static patch observer. When the slices

are arbitrarily close to the cosmological horizon, the finite deformations are characterized

by solutions to the incompressible Navier-Stokes equation.
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Chapter 1

Introduction and summary

1.1 Why de Sitter space?

There is perhaps no more exciting time than now! Since the discovery of the cosmic mi-

crowave background (CMB) roughly half a century ago, the field of observational cosmology

has provided us with incredibly more precise snapshots of the early universe. Recent ob-

servational detection of the primordial gravitational waves[1], if confirmed, will lend strong

support to the idea that the early universe underwent an inflationary phase, i.e. accelerat-

ing expansion. The simplest inflationary model includes a period of approximately de Sitter

phase whose gravitational (quantum) fluctuations presumably imprinted in the photons ob-

served in [1]. It is truly amazing that these data are telling us about the physics occurring

roughly 10�36 seconds after the beginning of our universe, i.e. about 14 billion years ago!

Fast-forwarding to the present day (and perhaps some time in the future), as if in a

deja vu, the universe appears to be expanding in a accelerating manner again [2, 3]. This

surprisingly discovery was no small feat and led to the 2011 Nobel Prize in Physics awarded
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to Perlmutter, Schmidt and Riess – the leaders of the Supernova Cosmology Project and

the High-Z Supernova Search Team. This observation suggests the possibility that we live

in a universe with a non-zero (but extraordinarily small) cosmological constant ⇤ ⇡ 10�120

in natural units. Understanding the origin of this (perhaps unnaturally) small value of the

cosmological constant has remained a challenge.

Given that de Sitter (dS) is relevant to the inflationary era as well as the future phase

of our universe, understanding dS quantum gravity is therefore of great importance. dS is

the most symmetric solution to Einstein’s gravity with a positive cosmological constant ⇤.

The scale-invariant isometry of de Sitter space already manifests itself as the scale-invariant

property of the CMB, while many on-going work attempt to extract interesting observational

consequences out of understanding the breaking of the full de Sitter isometry group. It is

therefore of immense observational interest to study quantum e↵ects in de Sitter space.

To do so, we first need to propose what are the sharp questions which we want to answer.

It is perhaps useful to first draw inspirations and lessons from the tremendous progress and

successes in the studies of quantum gravity in flat space and anti de Sitter space. In the

context of black hole physics, the Bekenstein-Hawking black hole entropy formula:

SBH =
kc3A

4~G (1.1.1)

is perhaps one of the most beautiful formulae in modern physics. In a single equation, it

ties together many areas of modern physics ranging from quantum mechanics and gravity

to statistical mechanics. Thus, understanding what black hole microstates are is of funda-

mental importance to unravel the quantum nature of spacetime. In the past few decades,

tremendous breakthroughs in string theories have allowed for successful tour de force count-

ing of black hole microstates[4]. Furthermore, the advent of the AdS/CFT correspondence

2
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has enabled us to map the counting of black hole microstates to the counting of states in a

CFT. We have also understood that the relevant dynamics for quantum gravy in flat space

and AdS space are the flat space S-matrix and AdS boundary correlators, which are the

observables in quantum gravity in the respective spacetime.

On the other hand, back to dS, there exists the de Sitter entropy formula, which in four

dimension reads

SBH =
3⇡kc3

~G⇤ . (1.1.2)

Similar to the black hole entropy formula, this de Sitter entropy formula contains not only

the important fundamental constants of nature, it also encodes information about the cos-

mological constant – one of the biggest challenge in the current study of our universe. In

contrast to black hole entropy, the nature of dS entropy is very mysterious. It is not even

clear what are the appropriate microstates (or degrees of freedom) one should count. Fur-

thermore, perhaps not unrelated, the proper characterization of dynamics in asymptotically

future de Sitter spacetimes - the analog of the S-matrix for asymptotically Minkowski space-

times or boundary correlators for asymptotically anti-de Sitter (AdS) spacetimes - remains

an open problem. These two big questions – what are the microstates in de Sitter entropy

formula and what are the relevant observables in quantum de Sitter space – will be the

central focus of this thesis. Our work provides some progress in answering these questions.

1.2 What is in this thesis?

In attacking any problem, it is important to understand what tools are available and

suitable for the problem at hand. In this section, we will briefly summarize what is in our

toolbox and then outline the main contents of this thesis and highlight how these tools will

3
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be featured.

Before diving into the big questions about de Sitter quantum gravity or entropy, we first

step back and understand the semi-classical structure of de Sitter space. The first tool that

we are going to use is the asymptotic symmetry group (ASG) analysis. Since we will review

this method in more details later on, here it is su�cient to comment that this particular

tool has yielded rich and powerful insights into how quantum gravity works in AdS [5] and

flat space [6, 7]. In AdS, the ASG analysis of [5] provided the first hint of AdS/CFT while

the flat space ASG analysis of [6, 7] yielded the infinite-dimensional BMS group, whose

consequences on the flat space S-matrix (and in particular the Weinberg’s soft-graviton

theorem) have recently been uncovered [8, 9, 10]. It is worth mentioning that the ASG

study of the near-horizon geometry of extremal Kerr black holes has revealed interesting

conformal structure, which might shed some light on the entropy counting of the extremal

Kerr black holes [11]. Since the ASG analysis is closely linked to what boundary conditions

are relevant to the dynamics that we are interested in, the study of appropriate boundary

conditions is an important element of the ASG analysis. Thus, in carrying out the ASG

analysis in de Sitter space, we will have to discuss appropriate boundary conditions in de

Sitter space.

Next, we bravely embark on a journey to explore some quantum questions in de Sitter

space. The tool that we need is holography. A framework where questions in dS quantum

gravity could be sharply addressed is the dS/CFT correspondence[12, 13]. The dS/CFT

proposal seeks to apply ideas and tools we have learnt from AdS/CFT to de Sitter space.

Although many aspects of AdS/CFT and dS/CFT seem similar, there are fundamental

di↵erences which render some basic entries in the dS/CFT dictionary not well-understood.

4
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For many years, the lack of microscopic realizations of dS/CFT has impeded progress to

answering many questions in dS/CFT; fortunately, recent advancement in the higher-spin

dS4/CFT3 correspondence [14] has provided us with a microscopic model to study issues

in dS concretely. We are able to elucidate new entries in the dS4/CFT3 dictionary and

understand that quasinormal modes play an essential and interesting role in the perturbative

modes of scalar fields. Understanding how to quantize quasinormal modes in the bulk is

then a needed step to further explore the structure of dS/CFT.

The last tool that we need is the recent idea which is called the fluid/gravity corre-

spondence. This idea proposes in a very concrete way that black hole horizon dynamics is

governed by the incompressible Navier-Stokes equation[15, 16, 17]. It provides a powerful

way to study the nonlinear dynamics of black hole horizons. Given the striking similarities

between the thermodynamics of a black hole horizon and a cosmological horizon, we will

extend the fluid/gravity correspondence to the case of a cosmological horizon. Furthermore,

we will see later that such fluid dynamics is closely tied to the de Sitter quasinormal modes,

thus understanding such nonlinear dynamics might prove to be useful in the context of

dS/CFT.

1.2.1 Structure of this thesis

This thesis consists of four main parts. Chapter 2 studies the asymptotic symmetry group

(ASG) at future null infinity (I+) of asymptotically four-dimensional de Sitter spacetimes

(dS4). It is shown to be given by the group of three-dimensional di↵eomorphisms acting

on I+. Finite charges are constructed for each choice of ASG generator together with a

two-surface on I+. A conservation equation is derived relating the evolution of the charges

5
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with the radiation flux through I+.

In Chapter 3, we then consider asymptotically future de Sitter spacetimes endowed with

an eternal observatory. In the conventional descriptions, the conformal metric at the future

boundary I+is deformed by the flux of gravitational radiation. We however impose an un-

conventional future “Dirichlet” boundary condition requiring that the conformal metric is

flat everywhere except at the conformal point where the observatory arrives at I+. This

boundary condition violates conventional causality, but we argue the causality violations

cannot be detected by any experiment in the observatory. We show that the bulk-to-bulk

two-point functions obeying this future boundary condition are not realizable as operator

correlation functions in any de Sitter invariant vacuum, but they do agree with those ob-

tained by double analytic continuation from anti-de Sitter space.

Having discussed issues related to symmetries and boundary conditions, in Chapter 4,

we move on to aspects of holography in de Sitter space. In particular, we want to under-

stand the details of dS/CFT dictionary. A recently conjectured microscopic realization of

the dS4/CFT3 correspondence relating Vasiliev’s higher-spin gravity on dS4 to a Euclidean

Sp(N) CFT3 is used to illuminate some previously inaccessible aspects of the dS/CFT dictio-

nary. In particular it is argued that states of the boundary CFT3 on S2 are holographically

dual to bulk states on geodesically complete, spacelike R3 slices which terminate on an S2

at future infinity. The dictionary is described in detail for the case of free scalar excitations.

The ground states of the free or critical Sp(N) model are dual to dS-invariant plane-wave

type vacua, while the bulk Euclidean vacuum is dual to a certain mixed state in the CFT3.

CFT3 states created by operator insertions are found to be dual to (anti) quasinormal modes

in the bulk. A ‘R-norm’, which involves reflection across the equator of a spatial S3 slice, is

6
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defined on the R3 bulk Hilbert space and shown for the scalar case to be equivalent to both

the Zamolodchikov and pseudounitary C-norm of the Sp(N) CFT3.

To further explore interesting features of the quasinormal modes, in Chapter 5 we study a

scalar field in dS4 whose quasinormal modes are singular on the past horizon of the south pole

and decay exponentially towards the future. These are found to lie in two complex highest-

weight representations of the dS4 isometry group SO(4, 1). The Klein-Gordon norm cannot

be used for quantization of these modes because it diverges. However the ‘R-norm’ for the

quasinormal modes is nonsingular. The quasinormal modes are shown to provide a complete

orthogonal basis with respect to the R-norm. Adopting the associated R-adjoint e↵ectively

transforms SO(4, 1) to the symmetry group SO(3, 2) of a 2+1-dimensional CFT. It is further

shown that the conventional Euclidean vacuum may be defined as the state annihilated by

half of the quasinormal modes, and the Euclidean Green function is obtained from a simple

mode sum. Quasinormal quantization contrasts with some conventional approaches in that

it maintains manifest dS-invariance throughout. The results are expected to generalize to

other dimensions and spins.

Finally, in chapter 6, we switch gear and study nonlinear dynamics of de Sitter horizon

to relate the quasinormal modes to the fluid modes in the fluid/gravity correspondence

applied to de Sitter horizon. There are (at least) two surfaces of particular interest in

eternal de Sitter space. One is the timelike hypersurface constituting the lab wall of a

static patch observer and the other is the future boundary of global de Sitter space. We

study both linear and non-linear deformations of four-dimensional de Sitter space which

obey the Einstein equation. Our deformations leave the induced conformal metric and

trace of the extrinsic curvature unchanged for a fixed hypersurface. This hypersurface is

7
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either timelike within the static patch or spacelike in the future diamond. We require the

deformations to be regular at the future horizon of the static patch observer. For linearized

perturbations in the future diamond, this corresponds to imposing incoming flux solely from

the future horizon of a single static patch observer. When the slices are arbitrarily close

to the cosmological horizon, the finite deformations are characterized by solutions to the

incompressible Navier-Stokes equation for both spacelike and timelike hypersurfaces. We

then study, at the level of linearized gravity, the change in the discrete dispersion relation

as we push the timelike hypersurface toward the worldline of the static patch. Finally, we

study the spectrum of linearized solutions as the spacelike slices are pushed to future infinity

and relate our calculations to analogous ones in the context of massless topological black

holes in AdS4.
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Chapter 2

Asymptotic Symmetries and Charges

Di↵eomorphisms are the basic symmetry of general relativity. In spacetimes with an

asymptotic boundary, there is an interesting subgroup of the di↵eomorphisms, often referred

to as the asymptotic symmetry group (ASG), which “acts nontrivially” on the boundary

data. The precise form of the ASG depends on the spacetime in question, the boundary

conditions, the dynamics and the precise definition of “acts nontrivially”. In some cases

charges can be associated with the asymptotic symmetries.

The subject of asymptotic symmetries began with the seminal work of Arnowitt, Deser

and Misner [18, 19] who showed that the ADM energy and momentum of an asymptotically

Minkowski spacetime are associated with asymptotic translations at spatial infinity. Bondi,

Metzner and Sachs (BMS) [6, 7, 20, 21] studied the asymptotic symmetries at future null

infinity1 (I+) and discovered an infinite-dimensional group known as the BMS group. The

structure at I+ is much more complicated than the one at spatial infinity because radiation

1 Our terminology is such that future null infinity means the conformal boundary where null geodesics
terminate while future timelike infinity is where timelike geodesics terminate.
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Chapter 2: Asymptotic Symmetries and Charges

can pass through I+. More recently [22, 23], integrable charges have been constructed which

are parameterized by both a choice of generator of the BMS group and a two-surface on

I+. These charges obey a conservation equation reflecting the possibility of radiation flux

at I+[24, 25].

In this chapter, we give a definition of the ASG for four-dimensional spacetimes, denoted

dS+, which are asymptotically de Sitter.2 Such spacetimes are of special interest because

they may include the one we inhabit. The asymptotic region I+ of such spacetimes is

a spacelike surface which coincides with future timelike infinity. Its structure is in some

ways similar to Minkowskian I+ because there is in general a nonzero radiation flux, and

an infinite-dimensional group is expected. We show that the ASG so defined is all of the

three-dimensional di↵eomorphisms acting on I+.3

A naive power-counting of fallo↵s of the relevant structures as I+ is approached indi-

cates that the charges associated with the ASG for dS+ should be divergent and depend

unpleasantly on the manner in which I+ is approached. However, adapting the results and

insights of a number of recent papers [23, 29, 30, 31], we find that finite charges which do

not depend on the approach to I+ can in fact be constructed. The resulting expression for

the charges (2.4.31) and their conservation equation (2.3.19) below are our main results.

Due to the fact that our solution space is radiative, a construction of Dirac brackets that

generate the associated symmetries and a Dirac bracket algebra would require an analysis

along the lines of [24] for the BMS charges (see also [32]).

2Our analysis here is local and does not take into considerations the global or topological properties of
I+. Interesting work related to such issues in asymptotically (global) de Sitter spacetimes includes references
such as [26, 27, 28].

3Although the considerations here are purely classical, we note in passing that the ASG defined here is
not necessarily a candidate symmetry group for a holographic dual for dS+ quantum gravity as the latter
may involve a di↵erent treatment of I+.
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Chapter 2: Asymptotic Symmetries and Charges

This chapter is organized as follows. In section 2.1, we discuss the asymptotic expansion

of dS+ spacetimes near future infinity. In section 2.2, we propose our definition for the ASG

of dS+. Finite charges for those di↵eomorphims tangent to I+ comprising the ASG are

constructed in section 2.3. These charges are refined using covariant phase space techniques

in section 2.4.

2.1 Boundary Conditions

We are interested in solutions of the Einstein equations with a positive cosmological

constant ⇤ ⌘ 3/`2:4

Rµ⌫ �
1

2
Rgµ⌫ = �

3

`2
gµ⌫ , (2.1.1)

where Rµ⌫ and R are the four-dimensional Ricci tensor and scalar. ` is also called the

de Sitter radius. The de Sitter space is the simplest solution of (2.1.1). More complicated

solutions often have singularities in either the future or the past. In this work, we are mainly

interested in solutions which are asymptotically future de Sitter, which we will refer to as

dS+ spacetimes. That is, they may be singular in the past, but in some sense approach pure

de Sitter in the future.

In order to define our notion of a dS+spacetime, we must specify boundary conditions.

We wish to make the boundary conditions relatively tight to simplify the calculations, while

still allowing for example the possibility of gravitational waves to reach I+. It was shown by

Starobinsky [33] that a very general class of excited de Sitter spacetimes can at late times

4We do not include additional matter in our discussions, although at the classical level the inclusion of
light matter to the analysis is straightforward.
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be put in the “Fe↵erman-Graham” (FG) form [34]

ds2

`2
= �d⌘2

⌘2
+

dxidxj

⌘2

⇣
g(0)ij + ⌘2g(2)ij + ⌘3g(3)ij + . . .

⌘
. (2.1.2)

Here I+ is ⌘ ! 0. Note that the term proportional to ⌘�1 is set to zero in these coordinates

using Einstein equations. For the purposes of this work, we take the definition of a dS+

spacetime to be any solution of the Einstein equation (2.1.1) with an expansion of the form

(2.1.2) with the g(k) smooth tensors on R3.

The Einstein equation imposes relations among the coe�cients in the FG expansion.

These include5

g(2)ij = Rij[g
(0)]� 1

4
R[g(0)]g(0)ij , (2.1.3)

rjg(3)ij = tr g(3)ij = 0 , (2.1.4)

where the covariant derivative and trace are defined with respect to g(0). Moreover, the

coe�cients g(k) of ⌘k�2 for k > 3 are then fully determined by g(0) and g(3). Hence, the data

characterizing the spacetime is a boundary metric g(0) and a traceless conserved tensor g(3).

Here, we note that g(3) has all the properties of a stress energy and we will show later (in

section 2.3) that it is proportional to the Brown-York stress tensor.

2.1.1 Conformal Slicing Transformations

The precise forms of the boundary data g(0) and g(3) depend on the precise choice of slices

labeled by constant ⌘ as I+is approached. Consider an infinitesimal slicing transformation

characterized by the di↵eomorphism ⌘ ! ⌘ � ⌘��(xi). In order to preserve the FG gauge

5The coe�cient g(2)ij is called the Schouten tensor which is important in the study of conformal tensors.

We thank the referee for pointing this out.
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(2.1.2), this must be accompanied by an ⌘-dependent di↵eomorphism tangent to the slice.

FG gauge-preserving slicing transformations are generated by the vector fields

⇠(��) = ⌘��(xk)@⌘ + `2
⇥
@j��(x

k)
⇤ Z ⌘ d⌘0

⌘0
gij(⌘0, xk)@i . (2.1.5)

These slicing transformations act as conformal transformations on the data at I+ according

to

�g(0)ij = 2��g(0)ij , (2.1.6)

�g(3)ij = ���g(3)ij . (2.1.7)

We see that g(0) transforms with weight 2 while g(3) transforms with weight -1. Hence,

the physical boundary data, which do not depend on a slicing choice near I+ are a confor-

mal metric of conformal weight 2 and a traceless symmetric conserved tensor of weight -1.

Henceforth, by boundary data we always mean physical boundary data in this sense.

2.2 The Asymptotic Symmetry Group

The ASG is defined as the quotient group

ASG ⌘ allowed di↵eomorphisms

trivial di↵eomorphisms
. (2.2.8)

In the present case, an allowed di↵eomorphism is any one which preserves the FG form

of every dS+ metric. We define the trivial di↵eomorphisms to be those which leave the

boundary data on I+ invariant.

The most general allowed di↵eomorphism is of the form

⇠ = �i(xk)@i + ⌘��(xk)@⌘ +
⌘2

2
g(0)ij@j��(x

k)@i +O(⌘4) , (2.2.9)
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Chapter 2: Asymptotic Symmetries and Charges

where here and hereafter i, j indices of g(k)ij are raised and lowered with g(0)ij .

As seen above, the ��-dependent terms do not change the boundary data. Moreover, the

subleading ⌘ terms fall o↵ so rapidly that they also do not change the boundary data. Hence,

only the first term in (2.2.9) is non-trivial, and the ASG is generated by di↵eomorphisms of

the form

⇠ASG = �i(xk)@i . (2.2.10)

Hence, the ASG is simply the di↵eomorphisms of R3.

The short and simple treatment we have given here parallels the one which originally

led to the BMS group as the ASG for the Minkowski space I+. A somewhat unsatisfactory

feature of this treatment is that it is not clear precisely what is non-trivial about the re-

maining R3 di↵eomorphisms. The best answer to this question is (and will be given below)

provided by a more elaborate discussion involving the construction of asymptotic charges

transforming non-trivially under the ASG. The trivial di↵eomorphisms are defined as those

whose associated charges or generators vanish when the constraints are applied. However,

when there are energy fluxes through the boundary, as is the case for I+ in either Minkowski

or de Sitter spacetimes, the charges will not be conserved and are rather subtle to define.

The definition of such charges for Minkowski I+[22, 23, 25] did not appear until several

decades after the original work of BMS and requires considerably more technology. Using

the vanishing of these charges as the definition of triviality, one indeed recovers the BMS

group.

Fortunately, the hard work which went into the definition of asymptotic charges at

Minkowski I+ along with the development of the covariant phase space formalism [29, 35]

can be readily adapted to the dS+ case. We will see in the following that defining a trivial

14



Chapter 2: Asymptotic Symmetries and Charges

di↵eomorphism as one whose associated charge vanishes happily leads back to the conclusion

stated above that the dS+ ASG is all of the di↵eomorphisms of R3.

2.3 Brown-York Charges

In this section, we will use the Brown-York formalism [36] to compute the charges asso-

ciated with the ASG generators (2.2.10) as well as their conservation laws.6

The Brown-York formalism as developed in [36] is relevant only for di↵eomorphisms

which do not move the boundary of a given hypersurface. They therefore cannot be used to

associate charges or determine triviality of the more general allowed di↵eomorphisms (2.2.9).

This requires not only the more fully developed but also the more complicated covariant

phase space formalism. We will see in the following section that in the end this leads back

to the same expression for the charges found more simply in this section.

2.3.1 Charges

The Brown-York stress tensor associated to a three-dimensional hypersurface ⌃, includ-

ing possible counterterms required for finiteness at I+ of dS+, is given by

Tij = �
1

8⇡G

✓
Kij �K�ij � c1

2

`
�ij � c2`Gij

◆
. (2.3.11)

Here �ij, Gij andKij are the induced intrinsic metric, Einstein tensor and extrinsic curvature

respectively of ⌃, while c1 and c2 are at this point arbitrary constants. This expression is

derived [36, 38, 39] by taking a variational derivative of the Einstein-Hilbert action plus

6For alternative definitions of charges in asymptotically de Sitter spacetimes, we refer the reader to [37]
and references therein.
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counterterms with respect to the induced metric at the boundary. The regularized action

whose variation gives (2.3.11) is

Stotal =
1

16⇡G

Z

M
d4x
p
�g
�
R [g]� 6/`2

�
+

Z

I+

LGH +

Z

I+

Lct , (2.3.12)

where the Gibbons-Hawking term LGH and the local boundary counterterms Lct are give by

LGH ⌘
1

8⇡G

p
�K [�] d3x, Lct ⌘

1

16⇡G

p
�
�
c2`

2R[�]� 4c1/`
�
d3x . (2.3.13)

Evaluating the on-shell Brown-York stress tensor at a surface of small constant ⌘ near

I+ of an arbitrary dS+ spacetime, one finds (along the lines of [40, 41, 42]):

Tij = � `

8⇡G


2

⌘2
(1� c1) g

(0)
ij + (3� 2c1) g

(2)
ij �

⇣
g(0)klg(2)kl

⌘
g(0)ij � c2Gij[g

(0)]

+⌘

✓
7

2
� 2c1

◆
g(3)ij

�
+O(⌘2) . (2.3.14)

In the hope of constructing finite charges at dS+, we choose c1 and c2 to make this expression

as small as possible for ⌘ ! 0. With the choice of

c1 = c2 = 1 , (2.3.15)

we arrive at

Tij = �
3⌘`

16⇡G
g(3)ij ⌘ ⌘T(0)ij , T i

i = riTij = 0 , (2.3.16)

where we have defined the O(1) part T(0)ij for convenience. Charges are associated with

a two-dimensional compact submanifold @⌃ of I+, which is a boundary of a noncompact

three-volume ⌃, together with a vector field ⇠ of the form (2.2.10) generating the ASG.

We define these charges by working on a hypersurface of small constant ⌘ and using a

submanifold @⌃⌘ of ⌃ that approaches the desired @⌃ on I+ for ⌘ ! 0 and is the boundary

of a noncompact hypersurface ⌃⌘ in dS+. The expression is

QBY
⇠

⇥
g(0), g(3), @⌃

⇤
= lim

⌘!0

Z

@⌃⌘

d2x
p
�ni⇠jTij . (2.3.17)
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O
ri

gi
n Radiation 

Fig. 2.1: Consider two spacelike slices ⌃1 and ⌃2 ending on @⌃1 and @⌃2. The di↵erence
between the Brown-York charge �QBY is given by the integral over the radiation flux F⇠
in the 3-volume (B12 in I+) bounded by @⌃1 and @⌃2. Here, the Penrose diagram depicts
a spacetime which tends to de Sitter space in the far future. The spacelike jagged line
represents the far past which could for example be the Big Bang.

ni here is tangent to ⌃⌘ and normal to @⌃⌘, while � is the induced metric on @⌃⌘. Finiteness

of the charges follows from the fact that ni ⇠ ⌘,
p
� ⇠ ⌘�2 and Tij ⇠ ⌘. This expression is

manifestly conformally invariant:

QBY
⇠

h
g(0)ij , g(3)ij

i
= QBY

⇠

h
⌦2g(0)ij ,⌦�1g(3)ij

i
. (2.3.18)

This is equivalent to the statement that the charges are independent of the precise manner in

which the surface @⌃⌘ is taken to the boundary dS+. When there are appropriate asymptotic

Killing vectors, these Brown-York charges reduce to the conserved Abbott-Deser charges [43].
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2.3.2 Conservation Equation

Consider two submanifolds @⌃1 and @⌃2 of I+ which bound two spacelike hypersurfaces

⌃1 and ⌃2. In general we do not expect that the charge associated to a generic vector

field ⇠ will be the same for @⌃1 and @⌃2, in part because energy and other fluxes can

leak out through the region B12 of I+ between them (see Fig. 2.1). Rather, we expect the

di↵erence in the charges to be related to a flux through this region. The formula for this is

straightforward to obtain:

�QBY ⌘
Z

@⌃2

d2x
p
�ni⇠jTij �

Z

@⌃1

d2x
p
�ni⇠jTij

= � 3`

32⇡G

Z

B12

g(3)ijL⇠g(0)ij

p
g(0)d3x

⌘
Z

B12

F⇠ , (2.3.19)

where we have integrated by parts and used rjTij = 0.

When ⇠ is an isometry of g(0), the flux vanishes. The form of (2.3.19) is reminiscent of

the analogous case in Minkowski space where F⇠ = � 1
32⇡GNab�ab✏(3) with �ab / L⇠gab and

Nab the Bondi news tensor [22, 23, 44]. In the BMS case, the flux vanishes whenever the

news tensor is zero, which is equivalent to the absence of radiation. In our context, we can

interpret g(3)ij as the ‘de Sitter news tensor’. When g(3)ij = 0, as in pure de Sitter, there is no

radiation and no flux. Indeed, adding a gravitational wave to pure de Sitter [45] gives rise

to a non-zero g(3)ij term which is recorded by the flux.

2.4 Covariant Phase Space Charges

In this section, we consider the charges given by the covariant phase space formalism

[23, 29, 35]. One advantage of these charges is that, in contrast to the Brown-York charges,
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they may be evaluated for di↵eomorphisms that are not tangent to I+.7

2.4.1 The Symplectic Form

In this section, we construct a symplectic form ! [�1g, �2g] for the phase space of initial

data on a hypersurface ⌃ ending on I+. The problem is to find an expression which is

finite for all on-shell deformations which preserve the FG form of the metric. A mathemat-

ically very similar problem was considered by Compère and Marolf in [30], who defined a

finite symplectic form for the case of Neumann, rather than the usual Dirichlet, boundary

conditions on the metric in anti-de Sitter space.

In the usual Einstein-Hilbert Lagrangian approach, one begins with the variation of the

four-form Lagrangian

�LEH [g] = d⇥EH [g, �g] , (2.4.20)

where the so-called presymplectic three-form ⇥EH [g, �g] is the remaining boundary term.

An expression for ⇥EH can be found in (A.2.9). From this presymplectic three-form we can

define the symplectic three-form !EH by

!EH [�1g, �2g] = �1⇥EH [g, �2g]� �2⇥EH [g, �1g] . (2.4.21)

The symplectic product associated to ⌃ is then

h�1g|�2giEH,⌃ =

Z

⌃

!EH [�1g, �2g] . (2.4.22)

From the explicit expression in appendix A.1 for !EH , one may readily verify that this

expression however is not in general finite for on-shell variations respecting our boundary

7In what follows, we evaluate all expressions on-shell.
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conditions (2.1.2). To remedy this we note that ⇥EH is ambiguous up to the addition of

an exact form dB. Finiteness can be restored by a judicious choice of B, which is in fact

canonically associated to the boundary counterterms added in the previous section to ensure

finiteness of the Brown-York stress tensor. The result is [30]

!mod [�1g, �2g] = !EH [�1g, �2g] + d!ct [�1�, �2�] , (2.4.23)

where � is the induced metric on the boundary of ⌃ and !ct is the symplectic form built

out of the counterterm action. Explicit expressions are given in appendix A.1. Using these

expressions, a computation essentially identical – up to a few sign changes – to the one

in [30] shows that the associated symplectic products are finite. Note however that local

conservation of the symplectic form (2.4.23) does not imply conservation of the symplectic

product (2.4.22) since physical excitations leak through I+.

2.4.2 Integrable Charges

Given a finite symplectic product, and an allowed di↵eomorphism ⇠ of the form (2.2.9),

the covariant phase space formalism provides a canonical construction of the charge di↵er-

ence between two solutions which di↵er by an amount �g.8 Define

kdS
⇠ [�g] = I⇠!mod [L⇠g, �g] , (2.4.24)

where the object I⇠ is a homotopy operator whose explicit form can be found in [29, 46].

The infinitesimal charge di↵erence for a two-dimensional compact hypersurface @⌃ in I+ is

then

�Q⇠ =

Z

@⌃

kdS
⇠ [�g] = �QBY

⇠ � 1

2

Z

@⌃

d2x
p
g(0)nk[g(0)]⇠kT

ij
(0)�g

(0)
ij . (2.4.25)

8For some details of the derivation, we refer the reader to appendix A.2 and [30].
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For future convenience, we introduce the three-form ⇥(0) through

Z

@⌃

i⇠⇥(0)[g
(0), �g(0)] ⌘ 1

2

Z

@⌃

d2x
p

g(0)nk[g(0)]⇠kT
ij
(0)�g

(0)
ij , (2.4.26)

where i⇠ is the interior product with respect to ⇠i. Notice that upon imposing Dirichlet

boundary conditions, i.e. that the variation of the boundary metric g(0) vanishes, the charges

are equivalent to those of the Brown-York formalism. However such a boundary condition

is inappropriate at the boundary of dS+ because it precludes, for example, gravity waves.

A second, related, issue concerning these charge di↵erences is that they are not integrable:

there is no unambiguous way to integrate the infinitesimal charge di↵erences up to a finite

one. The obstruction is visible in the non-vanishing commutator

(�1�2 � �2�1)Q⇠ = ��1
Z

@⌃

i⇠⇥(0)[g
(0), �2g

(0)]� (1$ 2) 6= 0 . (2.4.27)

Exactly the same problem is encountered in defining BMS type charges at I+ in Minkowski

space. In this context Wald and Zoupas [23] have proposed adding an additional boundary

term to the charges

�QWZ
⇠ = �Q⇠ +

Z

@⌃

i⇠⇥
WZ
⇥
g(0), �g(0)

⇤
. (2.4.28)

The ⇥WZ boundary term is designed to precisely cancel the term leading to non-integrability

in (2.4.27). We can immediately identify, exactly as in [23],

⇥WZ = ⇥(0) . (2.4.29)

As discussed in [23], the ⇥WZ term is related to the flux through:

F⇠ = ⇥
WZ
⇥
g(0), �⇠g

(0)
⇤
, (2.4.30)

in agreement with our earlier expression (2.3.19).
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Adding this term to the covariant phase space charge gives finally

�QWZ
⇠ = �QBY

⇠ =) QWZ
⇠ =

Z

@⌃

d2x
p
�ni⇠jTij . (2.4.31)

Hence, the covariant phase space charges, after a lengthy analysis, reduce precisely to those

of Brown and York. However, it can now be seen explicitly that the conformal slicing

transformations are indeed trivial, as earlier anticipated.
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Future Boundary Conditions

In this chapter, we consider asymptotically de Sitter (dS) spacetimes and endow them

with with an eternally-funded observatory whose fattened worldline is denoted WO. We use

the word observatory rather than observer to emphasize that we are considering an object

of finite extent in which arbitrary experiments can be performed and indefinitely repeated.

We explore herein the premise that these experiments comprise the basic dS observables,

and that correlators on the cylindrical boundary of WO play a role in dS dynamics in some

respects akin to the role played by correlators on the asymptotic cylindrical boundary of

AdS in AdS dynamics.1

Of course dS has an asymptotic future boundary - I+- which in some ways resembles

the asymptotic spatial boundary of AdS, with the role of space and time reversed. However

there are several key di↵erences between these boundaries. One is that correlators on I+of

dS cannot be measured by any physical experiment because all points on I+are causally

1This approach to dS has been advocated elsewhere including [47, 48, 49, 50, 51, 52]. One objection to
it is that an observatory which can record and store all such information must have an infinite number of
microstates, while de Sitter space itself might have only finitely many [53].
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disconnected.2 For this reason they are sometimes referred to as “metaobservables” [54]. A

second di↵erence is that Dirichlet-type boundary conditions on the metric and other fields

can be imposed at the asymptotic boundary of AdS, ensuring that no radiation passes out

of the boundary of the spacetime and the energy is conserved. Imposing such Dirichlet-type

boundary conditions at dS I+would violate causality and lead to inconsistencies with the

usual type of dS initial value formulation on complete spacelike slices. In general we expect

radiation can pass through I+and the charges are not conserved. The asymptotic structure

of dS was recently analyzed in [55], where it was shown that the asymptotic symmetry

group (ASG) is all the di↵eomorphisms tangent to I+, and the associated charges obey a

conservation law relating their variation to the radiation flux through I+. This is in marked

contrast to AdS where the ASG is the finite-dimensional (for D > 3) conformal group. The

dS case resembles more the case of Minkowski I+whose ASG is the infinite-dimensional

BMS group [6, 7].

In this work, however, we question the notion that one should think about dS dynamics

in terms of imposing initial data (or a quantum state) on a complete spacelike slice and then

evolving it to the future. While mathematically well-defined, this is highly unphysical, since

such slices necessarily contain causally disconnected regions. Hence the resulting spacetime

does not correspond to anything which could be physically measured.

Here we propose that initial data should instead be imposed on the boundary @WO of

the fattened observatory worldline. In the gravity sector, which is esentially all we consider

here, this means specifying the intrinsic metric and extrinsic curvature, subject of course

to the constraint equations, on the cylindrical timelike hypersurface @WO. Physically this

2This of course would not apply to an early-time approximately dS inflationary phase of our universe–see
below.
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means we are characterizing the spacetime by what passes in and out of the observatory

walls – clearly measurable data. To determine the bulk geometry, we must evolve radially

outward rather than forward in time.

The radial evolution of this initial data on @WO may fully determine the geometry within

the WO causal diamond but not on I+. We propose to fix the I+geometry by imposing

Dirichlet boundary conditions on the conformal metric everywhere except at the conformal

point PO whereWO reaches I+. This condition together with the @WO initial data remaining

data on I+- which turns out to be the conformal traceless part of the extrinsic curvature

- plausibly determines the entire spacetime.3 The main - if simple - point of this work is

that, while such a boundary condition is manifestly acausal, the causality violations are

apparently unobservable, i.e. they cannot be detected by any physical experiment in the

observatory. We show explicitly at the linearized level that the future boundary condition

imposes no acausal restriction on the initial data on @WO, and that these conditions together

determine the full dS geometry. We expect these results to extend beyond the linearized

level to a finite neighborhood of the vacuum dS geometry.

To understand why this is possible, consider a gravity wave produced at the observatory

which passes through the future WO horizon and reaches I+. Dirichlet boundary conditions

will acausally reflect it backward in time, but the reflected wave remains outside the WO

causal diamond. Another way of thinking of this is that the boundary condition acausally

places “de Sitter demons” outside the WO causal diamond. Every time a wave comes

out of the observatory, a de Sitter demon sends a finely-tuned wave to I+which interferes

destructively with the observatory wave so as to maintain the Dirichlet boundary condition

3In the case of vanishing cosmological constant, the problem of data on a worldtube and initial null slice
was formulated in a very similar fashion in [56].

25



Chapter 3: Future Boundary Conditions

on I+.

Going beyond pure gravity, we expect this type of boundary condition makes sense in

theories with no massive particles or black holes which are absolutely stable. Everything

must ultimately decay to massless particles. If a localized stable object reaches I+, the future

boundary condition cannot be maintained by the mechanism discussed here - although there

may be a generalization.

The theory of inflation proposes that our universe had a long era in which the geometry

was very close to dS with a large cosmological constant. The considerations of this work

do not directly apply to this era. We are metaobservers for this early dS phase: we can see

events which would have been forever causally disconnected had there been no exit from

inflation. Indeed the CMB and its fluctuations can be approximately thought of as the

correlation functions on the would-be I+of the early dS phase [57]. There is also no horizon

or Bekenstein-Hawking entropy associated to the early phase once the exit from inflation

into the present phase is taken into account. Clearly there are qualitative di↵erences between

an early-time and future asymptotic dS phases. It would be interesting to understand how

the description of one goes to the other as the lifetime of the phase becomes infinite.

The considerations of this work are purely classical and we do not attempt to define a

quantum theory consistent with the future boundary conditions. Nevertheless our observa-

tions may have implications for attempts to construct a holographic dual for dS quantum

gravity. This is of course a wide open problem. It is not even clear where the best home

for the dual is: I+, the horizon and @WO are among the possibilities. One might expect

the ASG for dS to be the symmetry group of the dual theory. Taken at face value, the

result of [55] that the ASG is all di↵eomorphisms of I+suggests that the dual should itself
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be a theory of gravity in one lower dimensions. This large ASG came from the absence of

I+boundary conditions in the usual approach. If we apply Dirichlet boundary conditions at

I+, as in the present work, the structure becomes very similar to that of AdS. Indeed the dS

two-point functions with these boundary conditions are precisely the analytic continuations

(in the cosmological constant) of the AdS two-point correlation functions, and transform

under the Euclidean conformal group SO(D, 1). This suggests that the holographic dual

is a conformal field theory without gravity, as envisioned in the dS/CFT correspondence

[12, 13]. Hence the boundary conditions proposed herein brings the structure of dS much

closer to that of AdS, and hopefully will be useful in adapting insights from AdS holography

to the dS context.

Our results resonate with a recent paper [58] considering future boundary conditions

for conformal gravity in dS. It was shown that they can be chosen to classically reduce dS

conformal gravity to dS Einstein gravity. This reduction however requires future boundary

conditions everywhere on I+and might be ruined by the exclusion of the point PO. Never-

theless our observations may be relevant to a better understanding of the relation between

conformal and Einstein gravity. Our picture may also bear some relation to Schrodinger’s

Z2 antipodal identification of dS [59, 60, 61, 62] or black hole final state boundary conditions

[63] and is in the spirit of black hole complementarity [64].

This chapter is organized as follows. In section 3.1, we consider as a warmup the case of

light scalars in dS3. Below a critical value of the mass these modes, like 4D gravitons, do not

oscillate at I+and can have a slow or fast exponential fallo↵. We show that, for any mode

sourced in the southern causal diamond, demons located in the causally complementary

northern diamond can excite a northern mode which will interfere with the southern mode
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in such a way that the total mode has only the fast-falling component near I+. The phase

of the northern demon mode depends on the mass, angular momentum and frequency of the

southern mode. In section 3.2, we show that northern demons in dS4 can similarly destroy

the slow falling components of gravity waves produced in the southern diamond. This means

that the conformal metric on I+retains its round shape, although the conformal extrinsic

curvature is altered by the wave. In section 3.3, we consider two-point functions in our

setup, returning for simplicity to the case of light dS3 scalars. We show that a unique sym-

metric two-point function is determined by demanding dS invariance, fast fallo↵ at I+and

Hadamard form of the coincident-point singularity. We further show that this two-point

function can not arise as the Wightman function of two scalar fields in any quantum state

defined on complete spacelike slices in dS, but does result from double analytic continuation

of the standard AdS scalar two-point function. Appendix B contains a construction of the

dS4 graviton modes in global coordinates, complementing the static patch analysis of section

3.2.

3.1 Warmup: light scalars in dS3

In this section we study light scalars with masses less than the critical value µ2 = ⇤/3.

The µ2 > ⇤/3 case was studied with similar conventions in [65]. The asymptotic behavior

of such light scalars resembles 4D gravitons in that they exponentially decay rather than

oscillate near I+. We use the metric in static patch coordinates:

ds2

`2
= �(1� r2)dt2 +

dr2

(1� r2)
+ r2d'2 . (3.1.1)
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where `2 = 3/⇤. The southern causal diamond associated to an observatory at the south

pole is described by r 2 [0, 1]. The northern causal diamond which will be populated by

demons is described by a second copy also with r 2 [0, 1]. We take time to run forward

in the southern diamond and backwards in the northern diamond so that @t is the globally

defined Killing vector. The future and past diamonds, containing I+ and I� respectively,

are described by r 2 [1,1]. In the future diamond, the spacelike t-coordinate runs from

north to south, whereas in the past diamond it runs south to north.

3.1.1 Northern and southern modes

The scalar field modes may be labeled by the angular momentum j in the � direction

and the frequency ! in time. The general solution of the scalar wave equation for mass

0 < µ2`2 < 1 in the southern patch is then given by:

�S(t, r,') =
X

j2Z,!>0

�
j!�

S
!j(t, r,') + ⇤!j�

S⇤
!j(t, r,')

�
, (3.1.2)

where the static patch modes smooth at the origin4 are:

�S
!j = e�i!t+ij' r|j|(1� r2)i!/2F (a, b; c; r2) , (3.1.3)

and the arguments of the hypergeometric function F (a, b; c; r2) are:

a ⌘ 1

2
(|j|+ i! + h+) , b ⌘ 1

2
(|j|+ i! + h�) , c ⌘ 1 + |j| . (3.1.4)

with

h± ⌘ 1±
p

1� µ2`2. (3.1.5)

4Other types of behavior at the origin might be considered depending on the nature of the observatory
stationed there.
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Note that h± are both real and positive in the mass range under consideration. There is

a similar expansion for the northern modes, since the northern patch is described by an

identical coordinate system with time running backwards.

Near the cosmological horizon

We now study the behavior of the static patch modes near the cosmological horizon

r = 1. In Kruskal coordinates:

r =
1 + UV

1� UV
, t =

1

2
log

✓
�U

V

◆
, (3.1.6)

the southern diamond is the region U > 0, V < 0 and the future (past) horizon is at V = 0

(U = 0). Using the hypergeometric identity:

F (a, b; c; z) =
�(c)�(c� a� b)

�(c� a)�(c� b)
F (a, b; 1 + a+ b� c; 1� z)

+
�(c)�(a+ b� c)

�(a)�(b)
(1� z)c�a�bF (c� a, c� b; c� a� b+ 1; 1� z) , (3.1.7)

the near horizon behavior is

�S
!j ⇠ eij'

⇥
↵!j(�V )i! + ↵�!jU

�i!
⇤
, (3.1.8)

with:

↵!j ⌘
�(1 + |j|)�(�i!)2i!

�
�
1
2(|j|� i! + h+)

�
�
�
1
2(|j|� i! + h�)

� . (3.1.9)

3.1.2 Future and past modes

In the future diamond, we can build �out±
j! modes that behave as ⇠ r�h± near I+.

Explicitly we find for the fast-falling out+ modes:

�out+
!j = e�i!t+ij' r�h+

✓
1� 1

r2

◆i!/2

F (a, 1� a⇤�;h+;
1

r2
) , (3.1.10)
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where a⇤� is given by taking the expression for a⇤ and replacing h+ with h�. For the slow-

falling out� modes we find:

�out�
!j = e�i!t+ij' r�h�

✓
1� 1

r2

◆�i!/2

F (a⇤�, 1� a;h�;
1

r2
) . (3.1.11)

Near the cosmological horizon

Once again, we can expand the above expressions for the outmodes near the cosmological

horizon. The Kruskal coordinates are now given by:

r =
1 + UV

1� UV
, t =

1

2
log

✓
U

V

◆
, (3.1.12)

where U > 0 and V > 0 in the future diamond. The out+ modes behave as:

�out+
!j ⇠ eij'

⇥
�!jV

i! + ��!jU
�i!
⇤
, (3.1.13)

with:

�!j =
�(h+)�(�i!)2i!

�
�
1
2(h+ � |j|� i!)

�
�
�
1
2(h+ + |j|� i!)

� . (3.1.14)

Similarly, the expansion of the out� modes near the cosmological horizon is as above, but

with �!j replaced by:

�!j =
�(h�)�(�i!)2i!

�
�
1
2(h� + |j|� i!)

�
�
�
1
2(h� � |j|� i!)

� . (3.1.15)

3.1.3 Matching the flux

When we send out a wave from the northern or southern patch, it will generically contain

both fast and slow-falling out modes. Matching the flux across the future horizon deter-

mines the Bogoliubov transformation relating the northern and southern modes to the ±out
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modes:5

�S
!j = A11

!j�
out�
!j + A12

!j�
out+
!j , (3.1.16)

�N
!j = A21

!j�
out�
!j + A22

!j�
out+
!j . (3.1.17)

with:

N!jA
11
!j = ↵�!j�!j , (3.1.18)

N!jA
12
!j = �↵�!j�!j , (3.1.19)

N!jA
21
!j = �↵!j��!j , (3.1.20)

N!jA
22
!j = ↵!j��!j . (3.1.21)

where N!j ⌘ �!j��!j � �!j��!j = i
p

1� µ2`2/!.

3.1.4 Demonic interference

Now we would like to demonstrate that the slow-falling piece of any southern mode at I+

by a wave produced by a de Sitter demon in the causally disconnected northern diamond.

More precisely, if the observatory excites a normalized southern mode �S
!j, the coe�cient of

the �out�
!j mode at I+ will be A11

!j. So the demon must excite a northern mode with Fourier

coe�cient �A11
!j/A

21
!j, to cancel the slow falling component of the incoming southern mode.

Then, the coe�cient of the fast falling mode out+ becomes:

A12
!j �

A11
!j

A21
!j

A22
!j =

�(1 + |j|)�
�
1
2(h+ � |j|+ i!)

�

�(h+)�
�
1
2(h� + |j|+ i!)

� . (3.1.22)

Alternatively, we can express the above as:

A12
!j �

A11
!j

A21
!j

A22
!j = A12

!j

�
1� ei�!j

�
, (3.1.23)

5For heavy modes, with µ` > 1, this can be found in [65].
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where:

tan (�!j/2) ⌘
sin
⇣
⇡
p
1� µ2`2

⌘
sinh (⇡!)

(�1)j + cos
⇣
⇡
p

1� µ2`2
⌘
cosh (⇡!)

. (3.1.24)

Thus, the full mode with no slow-falling behavior near I+ is given by:

�S
!j �

A11
j!

A21
j!

�N
!j , (3.1.25)

where:

�
A11

j!

A21
j!

=
�(12(h� + j � i!))�(12(h+ � j + i!))

�(12(h� + j + i!))�(12(h+ � j � i!))
= e�i�!j , (3.1.26)

and tan(�!j/2) ⌘ tan
⇣
⇡
2

⇣
j �

p
1� µ2`2

⌘⌘
tanh(⇡!/2).

3.2 Linearized gravity in dS4

We now consider the problem of linearized gravity in the static patch of dS4, following

the work of [66]. The 4D dS metric is :

ds2

`2
= �(1� r2)dt2 +

dr2

(1� r2)
+ r2d⌦2

2 , (3.2.27)

The linearized gravitational excitations can be parametrized by a transverse vector spherical

harmonic and a scalar spherical harmonic. Together, these constitute two degrees of freedom.

There is no transverse-traceless tensorial spherical harmonic for a two-sphere. Since the

computation is essentially identical for both types of harmonics, we only consider the vector

harmonics in what follows.
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3.2.1 Vector excitations

We can express [66] the vectorial perturbations in terms of a transverse vectorial spherical

harmonic Vi:

�gij = 2r2HT (r, t)Vij , i, j 2 {✓,�} , (3.2.28)

�gai = rfaVi , a 2 {t, r} . (3.2.29)

with all other components of �gµ⌫ vanishing. We have further defined:

Vij ⌘ �
1

2kV
(DiVj +DjVi) . (3.2.30)

The vectorial harmonics satisfy:

�
�S2 + k2

V

�
Vi = 0 , DjVj = 0 . (3.2.31)

The eigenvalues are given by k2
V = l(l+1)�1 with l = 1, 2, . . . being the angular momentum

on the S2. Thus, they constitute a single degree of freedom.

Upon defining a master variable �(r, t) ⌘ r�1⌦(r, t) and (fa+rDaHT/kV ) ⌘ r�1✏abDb⌦ ,

it is found in [66] that the equation satisfied by the master field � is given by:

⇤g(2)��
VV

(1� r2)
� = 0 =) �(1� r2)

d

dr

✓
(1� r2)

d�

dr

◆
+ VV� = !2� , (3.2.32)

with e↵ective potential:

VV =
(1� r2)

r2
�
k2
V + 1

�
. (3.2.33)

The box operator is the Laplacian corresponding to the two-dimensional metric gab with

a, b 2 {t, r}. We have further assumed an oscillatory time behavior �(r, t) = e�i!t'(r) for

the modes. For convenience, the subscript labels ! and l for the fields have been suppressed.
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3.2.2 Solution near the origin

The solution that is well behaved near r = 0 is:

'S(r) = rl+1(1� r2)�i!/2F
�
a, b; c; r2

�
, (3.2.34)

with

a =
1

2
(1 + l � i!) , b =

1

2
(2 + l � i!) , c =

3

2
+ l . (3.2.35)

Clearly, there are a set of northern modes defined in the northern patch which are equivalent

to the above, except that t runs backwards.

Near the cosmological horizon

Using hypergeometric identities, we can express the above in a way that makes manifest

its behavior near the cosmological horizon r2 = 1. Once again, we exploit equation (3.1.7).

Notice that in this case, c � a � b = i! and thus we find a linear combination of ingoing

and outgoing modes for '(r) near the cosmological horizon. We use the Kruskal coordinates

(3.1.6) in the southern diamond, with U > 0 and V < 0. Near the horizon where r ! 1

(and UV ! 0):

'S(r)e�i!t ⇠ ↵!l(�V )i! + ↵⇤
!lU

�i! . (3.2.36)

The coe�cients ↵!l are given by:

↵!l ⌘
�(3/2 + l)�(�i!)2i!

�
�
1
2(1 + l � i!)

�
�
�
1
2(2 + l � i!)

� . (3.2.37)
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3.2.3 Solution near I+

We can also build solutions which are smooth in the region r 2 [1,1] containing I+.

We find two linearly independent solutions:

'out� = (r2 � 1)�i!/2ri!F

✓
1

2
(1 + l � i!),

1

2
(�l � i!);

1

2
;
1

r2

◆
, (3.2.38)

'out+ = (r2 � 1)�i!/2r�1+i!F

✓
1

2
(1� l � i!),

1

2
(2 + l � i!);

3

2
;
1

r2

◆
.

(3.2.39)

Near I+ the solutions behave like 'out� ⇠ 1 and 'out+ ⇠ 1/r + O(1/r3) which implies

⌦ ⇠ r and ⌦ ⇠ 1 +O(1/r2). This in turn implies that the fallo↵s of the graviton itself, i.e.

r2HT (r, t), are given by ⇠ r2 and ⇠ r�1. Thus, as expected, there is a slow falling and fast

falling mode in accordance with the Starobinskii expansion [33].

Near the cosmological horizon

Once again, using the same hypergeometric identity (3.1.7), we can expand our solutions

near the cosmological horizon to find a linear combination of ingoing and outgoing modes.

Near the cosmological horizon UV ! 0, in the Kruskal coordinates (3.1.12) with U > 0 and

V > 0 we find:

'out�(r)e�i!t ⇠ �!lV
i! + �⇤

!lU
�i! , (3.2.40)

'out+(r)e�i!t ⇠ �!lV
i! + �⇤!lU

�i! . (3.2.41)

The coe�cients �!l and �!l are given by:

�!l ⌘
�(1/2)�(�i!)2i!

�
�
1
2(1 + l � i!)

�
�
�
1
2(�l � i!)

� , (3.2.42)

�!l ⌘
�(3/2)�(�i!)2i!

�
�
1
2(2 + l � i!)�

�
1
2(1� l � i!)

�� . (3.2.43)
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3.2.4 Matching the flux

The Bogoliubov transformation between the northern and southern modes and the out±

modes near I+ can now be obtained by matching the flux across the future horizons of the

two static patches. We find:

0

B@
�S
!l

�N
!l

1

CA = B!l

0

B@
�out+
!l

�out�
!l

1

CA . (3.2.44)

The matrix B!l is given by:

B!l =
1

(�⇤
!l�!l � �⇤!l�!l)

0

B@
B11 B12

B21 B22

1

CA = �2i!

0

B@
B11 B12

B21 B22

1

CA , (3.2.45)

with:

B11 = �↵⇤
!l�!l , (3.2.46)

B12 = ↵⇤
!l�!l , (3.2.47)

B21 = ↵!l�
⇤
!l , (3.2.48)

B22 = �↵!l�⇤!l . (3.2.49)

3.2.5 Demonic interference for gravitons

As in the case of the scalar fields, we can tune the demon modes from the northern patch

to cancel the non-normalizable graviton modes coming from the southern observatory. In

particular, suppose the southern observer sends a single southern mode 'S
!l, then its non-

normalizable component is ⇠ B12�out�. The northern demon will send in a mode with

coe�cient �B12/B22 = (�1)l to cancel out the non-normalizable piece. The resultant mode
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will only contain the �out+ (normalizable) mode whose coe�cient is given by:

B11 �
B12

B22
B21 =

i�
�
3
2 + l

�
�
�
1
2(1� l + i!)

�

!
p
⇡�
�
1
2(1 + l + i!)

� = B11

✓
1� B12B21

B22B11

◆
= 2B11 . (3.2.50)

since B12 B21/ (B22 B11) = �1 + 2 sin (l⇡)
sin (l⇡)+i sinh (⇡!) = �1. The full mode with no growing

behavior near I+is given by

�S + (�1)l �N (3.2.51)

We do not fully understand why this result is so much simpler than that for the light

scalar in dS3 studied in the previous section. The modes (3.2.51) are eigenmodes of the dS

anitipodal map and therfore must decay at I� as well as I+. In the appendix, we compute

the linearized graviton in global coordinates and verify this is indeed the case.

For completeness, we mention here that our result remains the same in the case of the

scalar harmonic perturbations, since the e↵ective equation VS governing the scalar master

function �S [66] is equivalent to VV (with l = 0, 1, 2, . . . in the scalar case).6

3.3 Analytic continuation AdS ! dS

In this section we discuss the bulk-to-bulk two-point functions G(x, x0) consistent with

our future boundary conditions. These are analogs of vacuum correlation functions, but

since we have not explored herein how to define a quantum theory with acausal boundary

conditions we can not realizeG(x, x0) as h0 |�(x)�(x0)| 0i. The allowed modes such as (3.1.25)

are not a complete set on a spacelike slice so we cannot use them to define a state |0i on a

such a slice. We regard this as a feature rather than a bug since, as we have argued, such a

state is unphysical!

6It would be interesting to understand whether such a demonic interference can elucidate the boundary
conditions imposed at future infinity for the de Sitter-like spacetimes studied in [31, 67, 68].
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Nevertheless a suitable two-point function G(x, x0) can be fully determined for x 6= x0

(i.e. up to an i" prescription not considered here) from general principles: the equation of

motion for each argument, dS invariance, fast-falling boundary conditions at I+ and the

Hadamard form of the short distance singularity. dS-invariance implies G can be written

purely in terms of the quantity

P (x, x0) = cos
d(x, x0)

`
(3.3.52)

where the geodesic distance d(x, x0) between x and x0 is imaginary for timelike separations.

To be explicit in planar coordinates

ds2dS =
`2

⌘2
�
�d⌘2 + dx1

2 + dx2
2

�
(3.3.53)

one has

P (x, x0) =
⌘2 + ⌘02 � (x1 � x0

1)
2 � (x2 � x0

2)
2

2⌘⌘0
. (3.3.54)

For the example of a scalar of mass µ in dS3, G obeys:

(1� P 2)@2PG(P )� 3P@PG(P )� µ2`2G(P ) = 0 . (3.3.55)

The solutions to the above equation are hypergeometric functions which generally involve

both fallo↵s near I+. Choosing the solution which is only fast-falling near I+ gives us:

G(P ) = N

✓
2

1 + P

◆h+

F

✓
h+, h+ � 1

2 ; 2h+ � 1;
2

1 + P

◆
, (3.3.56)

where N is a normalization factor. This has singularities at both the coincident point

limit P (x, x) = 1 as well as the antipodal point limit P (x, xA) = �1. The singularity for

antipodally located points reflects the acausal character of our construction.

39



Chapter 3: Future Boundary Conditions

In the standard quantum formulation, the scalar Wightman function in the Euclidean

vacuum, which is the only solution to (3.3.55) with no singularities at the antipodal point,

is given by [65]:

GE(P ) =
�(h+)�(h�)

(4⇡)3/2�(3/2)
F

✓
h+, h�;

3

2
;
1 + P

2

◆
. (3.3.57)

We can write our fast-falling two-point function G in terms of GE(P ) and its antipodal

cousin GE(�P ) as:

G(P ) = GE(P )� e�i�GE(�P ) , � ⌘ ⇡(1�
p
1� µ2`2) (3.3.58)

provided we take the so-far undetermined normalization factor to be

N = � i2�2h+

2⇡
. (3.3.59)

This clearly guarantees that the short distance singularity of G has the canonical Hadamard

form.

The standard quantum formulation of a scalar in dS admits a one parameter family

of dS-invariant vacua often referred to as ↵-vacua. With the exception of the Euclidean

vacuum, the Wightman function for all of these vacua has antipodal singularities, and the

short-distance singularity does not take the Hadamard form. Our Green function (3.3.58)

is not the Wightman function in any of the dS ↵-vacua.

This is related to the observation [65, 69] that, although the double analytic continu-

ation of AdS Wightman functions are some kind of dS two-point functions, they are not

interpretable as Wightman functions in any dS-invariant state. Instead, they are precisely

the two-point functions (3.3.58). To see this note that the Wightman function GAdS(x, x0)

for a scalar of mass µAdS in AdS3 with radius `AdS obeys

(1� P 2
AdS)@

2GAdS(PAdS)� 3PAdS@G(PAdS) + µ2
AdS`

2
AdSGAdS(PAdS) = 0 . (3.3.60)
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with

PAdS = cos
idAdS

`AdS
(3.3.61)

constructed from the geodesic distance dAdS between two points (x, x0) in AdS3. Explicitly

in Poincare coordinates,

ds2AdS =
`2AdS

z2
�
dz2 � dt2 + dy2

�
, (3.3.62)

we have PAdS(x, x0) = (z2 + z02 � (t � t0)2 + (y � y0)2)/(2zz0). Under double analytic

continuation z ! ⌘, t! x1, y ! ix2 together with `AdS ! i`, we have ds2AdS ! ds2dS and

PAdS ! P . Taking

PAdS = P, `AdS = i`, µAdS = µ, GAdS = G, (3.3.63)

then (3.3.60) becomes exactly (3.3.55). The Hadamard-normalized solution picked out by

the standard fast spatial fallo↵ in AdS is then

GAdS(PAdS) = N

✓
2

1 + PAdS

◆h+

F

✓
h+, h+ � 1

2 ; 2h+ � 1;
2

1 + PAdS

◆
, (3.3.64)

where here h+ = 1 +
p

1 + µ2
AdS`

2
AdS. Hence double analytic continuation maps the stan-

dard AdS Wightman function to the two-point function (3.3.58) consistent with future dS

boundary conditions.

Note that both the dS and AdS two-point function have singularities at P = �1 which

does not correspond to coincident (or null-separated) points. As discussed above, for the

dS case this is an acausal singularity for spacelike antipodally separated points. In AdS,

P = �1 corresponds to two noncoincident, timelike separated points connected by a light

ray which is reflected o↵ of the AdS boundary.

41



Chapter 4

State/Operator Correspondence in

Higher-Spin dS/CFT

The conjectured dS/CFT correspondence attempts to adapt the wonderful successes

of the AdS/CFT correspondence to universes (possibly like our own) which exponentially

expand in the far future. The hope [12, 70, 54, 57, 71] is to define bulk de Sitter (dS)

quantum gravity in terms of a holographically dual CFT living at I+ of dS, which is the

asymptotic conformal boundary at future null infinity. A major obstacle to this program

has been the absence of any explicit microscopic realization. This has so far prevented the

detailed development of the dS/CFT dictionary. This situation has recently been improved

by an explicit proposal [14] relating Vasiliev’s higher-spin gravity in dS4 [72, 73] to the dual

Sp(N) CFT3 described in [74]. In this chapter, we will use this higher-spin context to write

some new entries in the dS/CFT dictionary.

The recent proposal [14] for a microscopic realization of dS/CFT begins with the dual-

ity relating the free (critical) O(N) CFT3 to higher-spin gravity on AdS4 with Neumann

42



Chapter 4: State/Operator Correspondence in Higher-Spin dS/CFT

(Dirichlet) boundary conditions on the scalar field. Higher-spin gravity - unlike string theory

[70] - has a simple analytic continuation from negative to positive cosmological constant ⇤.

Under this continuation, AdS4 ! dS4 and the (singlet) boundary CFT3 correlators are sim-

ply transformed by the replacement of N ! �N . These same transformed correlators arise

from the Sp(N) models constructed from anticommuting scalars. It follows that the free

(critical) Sp(N) correlators equal those of higher-spin gravity on dS4 with future Neumann

(Dirichlet) scalar boundary conditions (of the type described in [75]) at I+.

This mathematical relation between the bulk dS and boundary Sp(N) correlators may

provide a good starting point for understanding quantum gravity on dS, but so far important

physical questions remain unanswered. For example we do not know how to relate these

physically unmeasurable correlators to a set of true physical observables or to the dS horizon

entropy. These crucial entries in the dS/CFT dictionary are yet to be written.

As a step in this direction, in this chapter we investigate the relation between quantum

states in the bulk higher-spin gravity and those in the boundary CFT3. Bulk higher-spin

gravity has fields of �s with all even spins s = 0, 2, ...., which are dual to CFT3 operators

Os with the same spins. In the CFT3, we can also associate a state to each operator by

the state-operator correspondence. One way to do this is to take the southern hemisphere

of S3, insert the operator Os at the south pole, and then define a state  s
S2 as a functional

of the boundary conditions on the equatorial S2. For every object in the CFT3, we expect

a holographically dual object in the bulk dS4 theory. This raises the question: what is the

bulk representation of the spin-s state  s
S2?

In Lorentzian AdS4 holography, the state created by a primary operator O in the CFT3

on S2 has, at weak coupling, a bulk representation as the single particle state of the field �
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dual to O with a smooth minimal-energy wavefunction localized near the center of AdS4.

The form of the wavefunction is dictated by the conformal symmetry.

In dS4 holography, the situation is rather di↵erent. States in dS4 quantum gravity are

usually thought of as wavefunctions on complete spacelike slices which are topologically S3.1

These do not seem to be good candidates for bulk duals to  s
S2 because, among other reasons,

they are not associated to any S2 in I+. However, dS4 also has everywhere spacelike and

geodesically complete R3 slices which end at an S2 in I+. Here we propose a construction of

the bulk version of  s
S2 on these slices, again as single particle states whose form is dictated

by the conformal symmetry. Interestingly, the classical wavefunction for the particle turns

out to be the (anti) quasinormal modes for the static patch of de Sitter, as constructed in

[76, 77].2

This relation between bulk and boundary states has a potentially profound nonperturba-

tive consequence briefly mentioned in section 4.3.1 [79]. The operator O0 dual to a scalar �

is bilinear in boundary fermions and hence obeys (O0)
N
2 +1 = 0. Under bulk-boundary dual-

ity this translates into an N
2 -adicity relation for �: one cannot put more than N

2 bulk scalar

quanta into the associated quasinormal mode. Further investigation of this dS exclusion

principle is deferred to later work.

We also construct a norm for these bulk states and show that it is the Zamolodchikov

norm on S3 of the CFT3 operator Os. Explicit formulae are exhibited only for the scalar

s = 0 case but we expect the construction to generalize to all s.

This chapter is organized as follows. In section 4.1, we revisit the issue of the usual

1As explained in [57, 71], such states do play an important role in dS/CFT, but as generating functions
for correlators rather than as duals to CFT3 states on S2. The relation between the R3 and S3 bulk states
in our example is detailed below.

2We are grateful to D. Anninos for pointing this out [78].

44



Chapter 4: State/Operator Correspondence in Higher-Spin dS/CFT

global dS-invariant vacua for a free massive scalar field, paying particular attention to the

case of m2`2 = 2 (where ` is the de Sitter radius) arising in higher spin gravity. The invariant

vacua include the familiar Bunch-Davies Euclidean vacuum |0Ei, as well as a pair of |0±i

of in/out vacua with no particle production. As the scalar field acting on |0�i (|0+i) obeys

Dirichlet (Neumann) boundary conditions on I+, these are related to the critical (free)

Sp(N) model. Generically all dS-invariant vacua are Bogolyubov transformations of one

another, but we find that atm2`2 = 2 the transformation is singular and the in/out vacua are

non-normalizable plane-wave type states. In section 4.2, we use the conformal symmetries to

find the classical bulk wavefunctions associated to an operator insertion on I+, and note the

relation to (anti) quasinormal modes. The construction uses a rescaled bulk-to-boundary

Green function defined with Neumann or Dirichlet I+ boundary conditions. We also show

that the Klein-Gordon inner product of these wavefunctions agrees with the conformally-

covariant CFT3 operator two-point function. In section 4.3, we consider the Hilbert space

on R3 slices ending on an S2 on I+. This Hilbert space was explicitly constructed in [80] for

a free scalar on hyperbolic slices ending on I+. There are two such Hilbert spaces, which we

denote the northern and southern Hilbert space, which live on spatial R3 slices extending

to the north or south of the S2. The northern and southern slices add up to a global

S3. Hence the tensor product of the northern and southern Hilbert spaces is the global

Hilbert space on S3, much as the left and right Rindler Hilbert spaces tensor to the global

Minkowski Hilbert space. We show that the global |0±i vacua are simple tensor products

of the northern and southern Dirichlet and Neumann vacua. We then use symmetries to

uniquely identify the states of the southern Hilbert space with those of the free and critical

Sp(N) models on an S2. This leads directly to the dS exclusion principle. We further
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construct an inner product for the southern Hilbert space which agrees, for states dual

to I+ operator insertions, to the conformal two-point function on I+. In section 4.4 we

discuss the restriction of Euclidean vacuum to a southern state and recall from [80], that

this is a mixed state which is thermal with respect to an SO(3, 1) Casimir. It would be

interesting to relate this result to dS entropy in the present context. In section 4.5 we show

that the standard CFT3 state-operator correspondence maps the known pseudo-unitary C-

norm of the Sp(N) model to the Zamolodchikov two-point function. This completes the

demonstration that the bulk states on R3
S have the requisite properties to be dual to the

boundary Sp(N) CFT3 states on S2. Speculations are made on the possible relevance of

pseudo-unitarity to the consistency of dS/CFT in general. Appendix C.1 gives some explicit

formulae for the SO(4, 1) Killing vectors of dS4.

4.1 Global dS vacua at m2`2 = 2

In this section we describe the quantum theory of a free scalar field � in dS4 with wave

equation

(r2 �m2)� = 0, (4.1.1)

and mass

m2`2 = 2. (4.1.2)

This is the case of interest for Vasiliev’s higher-spin gravity. While there have been many

general discussions of this problem, peculiar singular behavior as well as simplifications

appear at the critical value m2`2 = 2 which are highly relevant to the structure of dS/CFT.

A parallel discussion of de Sitter vacua and scalar Green functions in the context of dS/CFT
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was given in [65]. However that paper in many places specialized to the large mass regime

m2`2 > 9
4 , excluding the region of current interest. The behavior in the region m2`2 < 9

4

divides into three casesm2`2 > 2, m2`2 = 2 andm2`2 < 2. Much of the structure we describe

below pertains to the entire range m2`2 < 9
4 with an additional branch-cut prescription for

the Green functions.

4.1.1 Modes

We will work in the dS4 global coordinates

ds2

`2
= �dt2 + cosh2 td2⌦3 = �dt2 + cosh2 t

⇥
d 2 + sin2  

�
d✓2 + sin2 ✓d�2

�⇤
, (4.1.3)

where ⌦i ⇠ ( , ✓,�) are coordinates on the global S3 slices. Following the notation of [65]

solutions of the wave equation can be expanded in modes

�Lj(x) = yL(t)YLj(⌦) (4.1.4)

of total angular momentum L and spin labeled by the multi-index j. The spherical harmonics

YLj obey

Y ⇤
Lj(⌦) = (�)LYLj(⌦) = YLj(⌦A),

D2YLj(⌦) = �L(L+ 2)YLj(⌦),Z

S3

p
hd3⌦Y ⇤

Lj(⌦)YL0j0(⌦) = �L,L0�j,j0 ,

X
Y ⇤
Lj(⌦)YLj(⌦

0) =
1p
h
�3(⌦� ⌦0), (4.1.5)

where
p
h and D2 are the measure and Laplacian on the unit S3, ⌦A is the antipodal point

of ⌦, and here and hereafter
P

denotes summation over all allowed values of L and j. The

time dependence is then governed by the second order ODE

@2t yL + 3 tanh t@tyL +

✓
m2`2 +

L(L+ 2)

cosh2 t

◆
yL = 0. (4.1.6)
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Neumann and Dirichlet modes

Eq. (4.1.6) has the real solutions

y±L = 2L+h±+
1
2 (L+ 1)±

1
2 coshL te�(L+h±)tF (L+

3

2
, L+ h±, h± �

1

2
;�e�2t) (4.1.7)

where

h± ⌘
3

2
±
r

9

4
�m2`2. (4.1.8)

We are interested in m2`2 = 2, which implies

h� = 1, h+ = 2, (4.1.9)

and

y±L =
(�i)

1
2±

1
22Lp

1 + L
coshL te�(L+1)t


1

(1� ie�t)2L+2 ⌥
1

(1 + ie�t)2L+2

�
. (4.1.10)

The modes behave near I+ as e�h±t

t ! 1,

y�L ! (2(L+ 1)�
1
2 )e�t +O(e�3t) Neumann,

y+L ! (4(L+ 1)
1
2 )e�2t +O(e�4t) Dirichlet. (4.1.11)

Accordingly we refer to the + modes as Dirichlet and the � modes as Neumann. We have

normalized so that the Klein-Gordon inner product is

h�+
Lj|��

L0j0iS3 ⌘ i

Z

S3

d3⌃µ�+⇤
Lj

 !
@µ�

�
L0j0 = i�LL0�jj0 , (4.1.12)

with d3⌃µ the induced measure times the normal to the S3 slice.

Under time reversal

y±L (t) = ±(�)Ly±L (�t), (4.1.13)
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so that

�±
Lj(x) = ±�±

Lj(xA) = (�)L�±⇤
Lj (x), (4.1.14)

where the point xA is antipodal to the point x. This implies that an incoming Dirichlet

(Neumann) mode propagates to an outgoing Dirichlet (Neumann) mode. This is not the

case for generic m2 and, as will be seen below, allows for Dirichlet and Neumann vacua with

no particle production.

Euclidean modes

Euclidean modes are defined by the condition that when dS4 is analytically continued to

S4 they remain nonsingular on the southern hemisphere. In other words

yEL (t = �
i⇡

2
) = nonsingular. (4.1.15)

One finds that the combination

yEL =
y�L + iy+Lp

2
=

2L+1

p
2L+ 2

coshL te�(L+1)t

(1� ie�t)2L+2 (4.1.16)

is nonsingular at t = �i⇡/2. Hence y⌥L are simply the real and imaginary parts of the yEL .

(4.1.13) and (4.1.14) imply the relations

yE⇤
L (t) = (�)L+1yEL (�t) (4.1.17)

�E
Lj(xA) = (�)L+1�E⇤

Lj (x). (4.1.18)

h�E
Lj|�E

L0j0iS3 = �LL0�jj0 (4.1.19)
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4.1.2 Vacua

In the quantum theory � is promoted to an operator which we denote �̂ obeying the

equal time commutation relation

[�̂(⌦, t), @t�̂(⌦
0, t)] =

ip
h cosh3 t

�3(⌦� ⌦0). (4.1.20)

Defining annihilation and creation operators

aELj = h�E
Lj|�̂iS3 , aE†

Lj = �h�E⇤
Lj |�̂iS3 , (4.1.21)

the global Euclidean (or Bunch-Davies) vacuum is defined by

aELj|0Ei = 0. (4.1.22)

We normalize so that h0E|0Ei = 1. For any m2 there is a family of dS-invariant vacua labeled

by a complex parameter ↵. They are annihilated by the normalized Bogolyubov-transformed

oscillators

a↵Lj =
1p

1� e↵+↵⇤

⇣
aELj � e↵

⇤
aE†
Lj

⌘
. (4.1.23)

We are interested in the vacua annihilated by the Dirichlet or Neumann modes for the case

of m2`2 = 2, which correspond to e↵ = ±1. In that case the Bogolyubov transformation

is singular. Nevertheless we can still construct non-normalizable plane-wave type vacua as

follows.

The field operator may be decomposed as

�̂ = �̂+ + �̂�, (4.1.24)

where �̂± ⇠ e�h±t near I+. The squeezed states

|0±i = e±
1
2
P

(�)L(aE†
Lj )

2 |0Ei (4.1.25)
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then obey

�̂�|0�i = 0 Dirichlet, (4.1.26)

�̂+|0+i = 0 Neumann. (4.1.27)

Since only Dirichlet (Neumann) modes act non-trivially on |0�i (|0+i) we refer to it as the

Dirichlet (Neumann) vacuum. These vacua are dS invariant. With the conventional norm,

�̂± are hermitian and their eigenstates are non-normalizable. Generalized dS non-invariant

plane-wave type Neumann states with nonzero eigenvalues for �̂+

�̂+|�+i = �+|�+i (4.1.28)

are constructed as

|�+i = e�h�+|�̂�iS3 |0+i. (4.1.29)

�+ here is an arbitrary solution of the classical wave equation, which can be parameterized

by an arbitrary function �+(⌦) on I+

t!1, �+(⌦, t)! �+(⌦)e�h+t. (4.1.30)

The states are delta-functional normalizable with respect the usual inner product

h�+|�+0i = �
⇣
�+ � �+0

⌘
, (4.1.31)

where the delta function integrates to one with the measure

D�+ ⌘
Y

L,j

dc+Ljp
⇡
, �+(x) =

X
c+Lj�

+
Lj(x). (4.1.32)

The c+Lj satisfies the reality condition c+⇤
Lj = c+Lj(�)L. One may similarly define generalized

Dirichlet states obeying

�̂�|��i = ��|��i. (4.1.33)
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The Euclidean vacuum can be expressed in terms of |0±i as

|0E >=

Z
D�±e⌥

1
16

R
d3⌦d3⌦0�±(⌦)�⌥(⌦,⌦0)�±(⌦0)|�±i, (4.1.34)

where

�±(⌦,⌦
0) = ⌥

X
Y ⇤
Lj(⌦)YLj(⌦

0)(2L+ 2)±1 =
1

22⌥1⇡2

1

(1� cos⇥3)
h±

,

cos⇥3(⌦,⌦
0) ⌘ cos cos 0 + sin sin 0(cos ✓ cos ✓0 + sin ✓ sin ✓0 cos (�� �0)).

(4.1.35)

�± are the (everywhere positive) two-point functions for a CFT3 operator with h+ = 2 and

h� = 1.3 These satisfy

�
Z p

hd3⌦00�+(⌦,⌦
00)��(⌦

00,⌦0) =
1p
h
�3(⌦� ⌦0). (4.1.36)

We also have the relations

|�+i = 1

N0

Z
D��eh�

�|�+iS3 |��i, N0 ⌘
Y

L,j

p
2, (4.1.37)

h��|�+iS3 =
1

N0
eh�

�|�+iS3 . (4.1.38)

In particular

h0�|0+iS3 =
1

N0
. (4.1.39)

The Wightman function in the Euclidean vacuum is

GE(x; x
0) =

X
�E
Lj(x)�

E⇤
Lj (x

0)

=
X

(�)L+1�E
Lj(x)�

E
Lj(x

0
A)

3Here, we regulate the expressions of �± as sums over the spherical harmonics by introducing e�L✏ in
each term in the sum and take the limit of ✏! 0 at the end after the summation.
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= 1
2

X
(�)L

�
��
Lj(x)�

�
Lj(x

0) + �+
Lj(x)�

+
Lj(x

0) + i�+
Lj(x)�

�
Lj(x

0)� i��
Lj(x)�

+
Lj(x

0)
�
.

(4.1.40)

In terms of the dS-invariant distance function

P (t,⌦; t0,⌦0) = cosh t cosh t0 cos⇥3(⌦,⌦
0)� sinh t sinh t0, (4.1.41)

this becomes simply

GE(x; x
0) =

1

8⇡2

1

1� P (x; x0)
, (4.1.42)

with the usual i✏ prescription for the singularity.

4.2 Boundary operators and quasinormal modes

According to the dS4/CFT3 dictionary, for every spin zero primary CFT3 operator O of

conformal weight h there is a bulk scalar field � with mass m2`2 = h(3�h). Boundary corre-

lators of O are then related by a rescaling to bulk � correlators whose arguments are pushed

to the boundary at I+. As in AdS/CFT, a particular classical bulk wavefunction of � can

be associated to a boundary insertion of O (at the linearized level) by symmetries: it must

scale with weight h under the isometry corresponding to dilations, obey the lowest-weight

condition, and be invariant under rotations around the point of the boundary insertion.

The resulting wavefunction is a type of bulk-to-boundary Green function. Interestingly[78],

the (lowest) highest-weight modes can also be identified as (anti) quasinormal modes for

the static patch of de Sitter, as constructed in [76, 77]. In this section we determine this

wavefunction explicitly, regulate the singularities, generalize it to multi-particle insertions

and define a symplectic product. In the following section we will then use these classical

objects to construct the associated dual bulk quantum states and their inner products.
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4.2.1 Highest and lowest weight wavefunctions

In this subsection we give expressions for the classical wavefunctions, associated to low-

est (highest) weight primary operator insertions at the south (north) pole of I+ in terms of

rescaled Green functions in the limit that one argument is pushed to I+. These wavefunc-

tions each comes in a Neumann and a Dirichlet flavor, denoted �±
lw(x) (�

±
hw(x)) depending

on whether the weight of the dual operator insertion is h+ or h�.

The relevant Green functions are4

G±(x; x
0) ⌘ GE(x; x

0)±GE(x; x
0
A) =

1

8⇡2

✓
1

1� P (x; x0)
± 1

1 + P (x; x0)

◆
(4.2.43)

with GE the Wightman function for the Euclidean vacuum given in equation (4.1.42). G�

(G+) obeys Neumann (Dirichlet) boundary conditions at I+ away from x = x0. These are for

m2`2 = 2 the Green functions with future boundary conditions as discussed in [75]. We have

normalized them so that they have the Hadamard form for the short-distance singularity.

In the Neumann case we begin with G�, which is (using the mode decomposition (4.1.40))

given by

G�(x; x
0) =

X
(�)L

�
��
Lj(x)�

�
Lj(x

0) + i�+
Lj(x)�

�
Lj(x

0)
�
. (4.2.44)

From this we construct the rescaled Green function

��
lw(x; t

0) = eh�t0G�(x; t
0,⌦SP ), (4.2.45)

in which the second argument is placed at the south pole ⌦SP where  0 = 0. One may then

check that (ignoring singularity prescriptions)

��
lw(x) ⌘ lim

t0!1
��

lw(x; t
0) =

1

2⇡2(sinh t� cos cosh t)
. (4.2.46)

4 Note that G+(G�) is even (odd) under the antipodal map. Combinations of the Euclidean Green
function with such properties have been previously studied in the context of elliptic Z2-identification of de
Sitter space [60, 61, 62] which may be related to our construction.
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Using (4.2.44) and the asymptotics (4.1.11) one finds that near I+(not ignoring singularities)

��
lw(x) = 8

X
(�)L

✓
e�t

2L+ 2
YLj(⌦)YLj(⌦SP ) + ie�2tYLj(⌦)YLj(⌦SP ) +O(e�3t)

◆

= 8e�t��(⌦,⌦SP ) + 8i
e�2t

p
h
�3(⌦� ⌦SP ) +O(e�3t) (4.2.47)

Let us now confirm that ��
lw(x) has the same symmetries as an insertion of a primary

operator O(⌦SP ) at the south pole of I+. First we note that the choice of a point on I+

breaks SO(4, 1) to SO(3) ⇥ SO(1, 1). Both ��
lw(x) and O(⌦SP ) are manifestly invariant

under the SO(3) spatial rotations. The generator of SO(1, 1) dilations, denoted L0, acts on

O(⌦SP ) as

[L0,O(⌦SP )] = h�O(⌦SP ). (4.2.48)

In the bulk it is generated by the Killing vector field

L0 = cos @t � tanh t sin @ , (4.2.49)

where the south pole is  = 0. dS invariance implies

(L0 � L0
0)G�(x, x

0) = 0. (4.2.50)

It follows from this together with the definition (4.2.46) that the wavefunction obeys

L0�
�
lw(x) = h��

�
lw(x). (4.2.51)

By construction it obeys the wave equation

(r2 �m2)��
lw(x) = 0. (4.2.52)

Acting on SO(3) invariant symmetric functions we have

`2r2 = �L0(L0 � 3) +M�kM+k, (4.2.53)
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where the 6 Killing vector fields M±k (given in Appendix C.1 ) are the raising and lowering

operators for L0 and we sum over k. It then follows that

M�kM+k�
�
lw(x) =

�
m2`2 � h�(3� h�)

�
��

lw(x) = 0, (4.2.54)

and hence

M+k�
�
lw(x) = 0. (4.2.55)

which corresponds to the lowest-weight condition for the O

[M+k,O(⌦SP )] = 0. (4.2.56)

It may be shown that these symmetries uniquely determine the solution. Hence ��
lw is

identified as the classical wavefunction associated to the insertion of the primary O at the

south pole.

A parallel argument leads to the dual of a highest weight operator insertion at the north

pole . The wavefunction is

��
hw(x; t

0) = lim
t0!1

eh�t0G�(x; t
0,⌦NP ). (4.2.57)

This obeys the relations

M�k�
�
hw(x) = 0, L0�

�
hw(x) = �h��

�
hw(x), (4.2.58)

and has the asymptotic behavior

��
hw(x) = 8e�t��(⌦,⌦NP ) + 8i

e�2t

p
h
�3(⌦� ⌦NP ) +O(e�3t). (4.2.59)

Similar formulae apply to the Dirichlet case by beginning with G+ in the above con-

struction and replacing +$ �. For example

�+
hw(x) = �8e�2t�+(⌦,⌦NP )� 8i

e�t

p
h
�3(⌦� ⌦NP ) +O(e�3t). (4.2.60)
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We see from the above that the highest-weight wavefunction is smooth on the future

horizon of the southern static patch dS4, and hence related to the quasinormal modes found

in [76, 77]. The lowest quasinormal mode which is invariant under the SO(3) of the static

dS4 is exactly the ��
hw with h� = 1 while the second lowest SO(3)-invariant quasinormal

mode corresponds to �+
hw with h+ = 2. Lowest weight states are smooth on the past horizon

and hence related to anti-quasinormal modes.

4.2.2 General multi-operator insertions

In the preceding subsections we found the bulk duals of primary operators inserted at

the north/south pole in the coordinates (4.1.3). This can be generalized to insertions at

an arbitrary point on I+ with a general time slicing near I+. Let us introduce coordinates

x ⇠ (yi, t) such that near I+

ds24 ! �dt2 + e2thij(y)dy
idyj, i, j = 1, 2, 3. (4.2.61)

The dual wavefunction is then the t0 !1 limit of the rescaled Green function, denoted by

�±
y1(x) = lim

t0!1
eh±t0G±(x; t

0, y1). (4.2.62)

For the special cases of operator insertions at the north or south pole in global coordinates

these reduce to our previous expressions. Note that coordinate transformations of the form

t! t+ f(y) induce a conformal transformation on I+

hij ! e2f(y)hij, �±
y1(x)! eh±f(y)�y1(x), (4.2.63)

as appropriate for a conformal field of weight h±. Hence the relative normalization in (4.2.46)

will depend on the conformal frame at I+.
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One may also consider multi-operator insertions such as O(y1)O(y2) in the CFT3 at I+.

At the level of free field theory considered here these are associated to a bilocal wavefunction

in the product of two bulk scalar fields

�y1(x1)�y2(x2). (4.2.64)

We will use �⌦ to denote these wavefunctions when working in global coordinates (4.1.3).

We note that in such coordinates near I+ for an insertion at a general point

�±
⌦1
(t,⌦) = ⌥8e�h±t�±(⌦,⌦1)⌥ 8i

e�h⌥t

p
h
�3(⌦� ⌦1) +O(e�3t). (4.2.65)

4.2.3 Klein-Gordon inner product

We wish to define an inner product between e.g. two Neumann wavefunctions ��
⌦1

and

��
⌦2
. Later on we will compare this to the inner product on the CFT3 Hilbert space and

the two-point function of O on S3. One choice is to take a global spacelike S3 slice in the

interior and define the Klein-Gordon inner product

⌦
��

⌦1
|��

⌦2

↵
S3 ⌘ i

Z

S3

d3⌃µ��⇤
⌦1

 !
@µ�

�
⌦2
. (4.2.66)

This integral does not depend on the choice of S3 which can be pushed up to I+. One may

then see immediately from (4.2.65) that there are two nonzero terms proportional to ��

giving

⌦
��

⌦1
|��

⌦2

↵
S3 = 16��(⌦1 � ⌦2) (4.2.67)

One may also define an inner product not on global spacelike S3 slices, but on a spacelike

R3 slice which ends on an S2 on I+. The result is invariant under any deformation of the S2

which does not cross the insertion point. To be definite, we take the S2 to be the equator,
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⌦1 to be in the northern hemisphere and ⌦2 to be in the southern hemisphere, and the slice

to be R3
S which intersects the south pole. One then finds, pushing R3

S up to the southern

hemisphere of I+

⌦
��

⌦1
|��

⌦2

↵
R3

S
⌘ i

Z

R3
S

d3⌃µ��⇤
⌦1

 !
@µ�

�
⌦2

= 8��(⌦1 � ⌦2). (4.2.68)

Similarly, the inner product between two Dirichlet wavefunctions is given by

⌦
�+

⌦1
|�+

⌦2

↵
R3

S
= �8�+(⌦1 � ⌦2). (4.2.69)

4.3 The southern Hilbert space

We now turn to the issue of bulk quantum states. Quantum states in dS are often

discussed, as in section 4.1, in terms of a Hilbert space built on the global S3 slices. The

structure of the vacua and Green functions for such states was described in section 4.1.

However dS has the unusual feature that there are geodesically complete topologically R3

spacelike slices which end on an S2 in I+, which we will typically take to be the equator.

Examples of these are the hyperbolic slices, the quantization on which was studied in detail

in [80]. We will see that the quantum states built on these R3 slices are natural objects in

dS/CFT. An S2 in I+ is in general the boundary of a “northern” slice, denoted R3
N and a

“southern” slice denoted R3
S. The topological sum obeys R3

S [R3
N = S3. Hence the relation

of the southern and northern Hilbert spaces on R3
S and R3

N to that on S3 is like that of the

left and right Rindler wedges to that of global Minkowski space. It is also like the relation

of the Hilbert spaces of the northern and southern causal diamonds to that of global dS.

However the diamond Hilbert spaces in dS quantum gravity are problematic in quantum

gravity with a fluctuating metric because it is hard to find sensible boundary conditions.
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A strong motivation for considering the R3
S,N slices comes from the picture of a state in

the boundary CFT3. The state-operator correspondence in CFT3 begins with an insertion

of a (primary or descendant) operator O at the south pole of S3, and then defines a quantum

state as a functional of the boundary conditions on an S2 surrounding the south pole. For

every object in the CFT3, we expect a holographically dual object in the bulk dS4 theory.

The dual bulk quantum state must somehow depend on the choice of S2 in I+. Hence it is

natural to define the bulk state on the R3 slice which ends on this S2 in I+. This is how

holography works in AdS/CFT: CFT states live on the boundaries of the spacelike slices

used to define the bulk states.

4.3.1 States

In order to define quantum states on R3
S, we first note that modes of the scalar field

operator �̂(⌦, t) are labeled by operators �̂±(⌦) defined on I+ via the relation

lim
t!1

�̂(⌦, t) = e�h+t�̂+(⌦) + e�h�t�̂�(⌦). (4.3.70)

They satisfy the following commutation relation

h
�̂+(⌦), �̂�(⌦0)

i
=

8ip
h
�3(⌦� ⌦0). (4.3.71)

We may then decompose these I+ operators as the sum of two terms

�̂±(⌦) = �̂±
N(⌦) + �̂

±
S (⌦) (4.3.72)

where the first (second) acts only on R3
N (R3

S). Defining the northern and southern Dirichlet

and Neumann vacua by

�̂±
N |0±Ni = 0, �̂±

S |0±S i = 0, (4.3.73)
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it follows from the decomposition (4.3.72) that the global vacua have a simple product

decomposition5

|0±i = |0±Ni|0±S i. (4.3.74)

Excited southern states may then be built by acting on one of these southern vacua with

�̂S. We wish to identify these states with those of the CFT3 on S2.

In the higher-spin dS/CFT correspondence there are actually two CFT3’s living on I+:

the free Sp(N) model, associated to Neumann boundary conditions, and the critical Sp(N)

model, associated to Dirichlet boundary conditions. Since the field operators �̂S acting on

|0+S i (|0�S i) obeys, according to equation (4.1.26), Neumann (Dirichlet) boundary conditions

near the southern hemisphere of I+, it is natural to identify

|0+S i ⇠ free Sp(N) vacuum

|0�S i ⇠ critical Sp(N) vacuum. (4.3.75)

Next we want to consider excited states and their duals. To be specific we consider the

Neumann theory built on |0+S i. Parallel formulae apply to the Dirichlet case. Operator

versions of the classical wavefunctions ��
⌦(x) are constructed as

�̂�
⌦S
⌘
D
��

⌦S
|�̂
E

R3
S

, (4.3.76)

where ⌦S is presumed to lie on the southern hemisphere. We can make a quantum state

|⌦�
S i ⌘ �̂�

⌦S
|0+S i = �̂�(⌦S)|0+S i, (4.3.77)

5Of course a general quantum state on S3 is a sum of products of northern and southern states, and
reduces to a southern density matrix, not a pure state, after tracing over the northern Hilbert space. We
shall see this explicitly below for the case of the Euclidean vacuum.
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where in the last line we used (4.2.65). By construction this will be a lowest weight state,

and we therefore identify it as the bulk dual to the CFT3 state created by the primary

operator O dual to the field �.

This connection leads to an interesting nonperturbative dS exclusion principle [79]. The

operator O has a representation in the Sp(N) theory as

O = ⌦AB⌘
A⌘B, A,B = 1, ...N, (4.3.78)

where ⌘A are N anticommuting real scalars and ⌦AB is the quadratic form on Sp(N). It

follows that

ON
2 +1 = 0. (4.3.79)

Bulk-boundary duality and the state-operator relation described above then implies the

nonperturbative relation
h
�̂±(⌦)

iN
2 +1

= 0. (4.3.80)

Hence the quantum field operators �̂±(⌦) are N
2 -adic. One is not allowed to put more than

N
2 quanta in any given quasinormal mode. This is similar to the stringy exclusion principle

for AdS [81] and may be related to the finiteness of dS entropy. Nonperturbative phenomena

due to related finite N e↵ects in the O(N) case have been discussed in [82]. We hope to

investigate further the consequences of this dS exclusion principle.

4.3.2 Norm

Having identified the bulk duals of the boundary CFT3 states, we wish to describe the

bulk dual of the CFT3 norm. The standard bulk norm is defined by �(x) = �†(x). However

this norm is not unique. It has been argued for a variety of reasons beginning in [54] that
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it is appropriate to modify the norm in the context of dS – see also [65, 83]. Here we have

the additional problem that this standard norm is divergent for states of the form (4.3.77).

We now construct the modified norm for states on RS
3 by demanding that it is equivalent to

the CFT3 norm. The construction here generalizes to dS4 the one given in [65] for dS3.

The bulk action of dS Killing vectors Kµ
A@µ on a scalar field is generated by the integral

over any global S3 slice

L̂A =

Z

S3

d3⌃µTµ⌫K
⌫
A, (4.3.81)

where Tµ⌫ is the bulk stress tensor constructed from the operator �̂. If we take �̂†(x) = �̂(x),

then L̂A = L̂†
A which is not what we want. The CFT3 states are in representations of

the SO(3, 2) conformal group. These arise from analytic continuation of the 10 SO(4, 1)

conformal Killing vectors on S3 which are the boundary restrictions of the bulk dS4 Killing

vectors Kµ
A@µ. Usually, the standard CFT3 norm has a self-adjoint dilation operator L0

generating �i sin @ as well as 3 self-adjoint SO(3) rotation operators Jk. The remaining

6 raising and lowering operators L±k arising from the Killing vectors iM±k (described in the

Appendix C.1) then obey L†
±k = L⌥k in the conventional CFT3 norm.

To obtain an adjoint with the desired properties, we define the modified adjoint

�̂†(x) = R�̂(x)R = �̂(Rx), (4.3.82)

where here and hereafter † denotes the bulk modified adjoint. The reflection operator R is

the discrete isometry of S3 which reflects through the S2 equator R( , ✓,�) = (⇡ �  , ✓,�)

along with complex conjugation. In particular, it maps the south pole to the north pole

while keeping the equator invariant. This implies that L0 (generating iL0) and Jk are self
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adjoint while

L†
±k = �i

Z

S3

d⌃µ(x)Tµ⌫(Rx)M ⌫
±k(x) = �i

Z

S3

d⌃µ(x)Tµ⌫(x)M
⌫
±k(Rx) = L⌥k. (4.3.83)

Hence we have constructed an adjoint admitting the desired SO(3, 2) action. We do not

know whether or not it is unique.

The action of R maps an operator defined on the southern hemisphere to one defined on

the southern hemisphere of I+ according to

�̂±†(⌦) = �̂±(⌦R), (4.3.84)

Hence the action of R exchanges the northern and southern hemispheres, and maps a south-

ern I+ state to a northern one. Therefore it cannot on its own define an adjoint within the

southern Hilbert space. For this we must combine (4.3.82) with a map from the north to the

south. Such a map is provided by the Euclidean vacuum. The global Euclidean bra state

(constructed with the standard adjoint) can be decomposed in terms of a basis of northern

and southern bra states

h0E| =
X

m,n

EmnhmS|hnN |. (4.3.85)

We then define the modified adjoint of an arbitrary southern state | Si by

| Si† ⌘ h0E|R| Si. (4.3.86)

We will denote the corresponding inner product by an S subscript

h 0
S| SiS ⌘ (| 0

Si†)| Si. (4.3.87)

For example choosing the basis so that

R|mSi = |mNi (4.3.88)
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we have

hmS|nSiS = Enm. (4.3.89)

In particular one finds

h0+S |0+S iS = h0E|(|0+S iR|0+S i) = 1. (4.3.90)

Let us now compute the norm of the southern state |⌦�
S i in (4.3.77). The action of R

gives a northern state which we will denote |R⌦�
S i. The norm is then

h⌦�
S |⌦�

S iS = h0E|(|⌦�
S i|R⌦�

S i) = h0E|�̂�(⌦S)�̂
�(R⌦S)|0+i. (4.3.91)

Using the relation

|0E >= N0e
� 1

16

R
d3⌦d3⌦0�̂+(⌦)��(⌦,⌦0)�̂+(⌦0)|0�i (4.3.92)

we find

h⌦�
S |⌦�

S iS = 8��(⌦S, R⌦S). (4.3.93)

This is proportional to the S3 two-point function of a dimension h� primary at the points

⌦S and R⌦S. The analogous computation in the Dirichlet theory gives

h⌦+
S |⌦+

S iS = �8�+(⌦S, R⌦S). (4.3.94)

4.4 Boundary dual of the bulk Euclidean vacuum

In the preceding section we have argued that dS/CFT maps CFT3 states on an S2 in I+

to bulk states on the southern slice ending on the S2. A generic state in a global dS slice

does not restrict to a pure southern state. However we can always define a density matrix

by tracing over the northern Hilbert space. In particular, such a southern density matrix ⇢ES

can be associated to the global Euclidean vacuum |0Ei. The choice of an equatorial S2 in I+
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breaks the SO(4, 1) symmetry group down to SO(3, 1), which also preserves the hyperbolic

slices ending on the S2. ⇢SE must be invariant under this SO(3, 1). In fact ⇢SE follows from

results in [80]. Writing the quadratic Casimir of SO(3, 1) as C2 = �(1 + p2), it was shown,

in a basis which diagonalizes p, that

⇢SE = N1e
�2⇡p, (4.4.95)

where N1 is determined by tr⇢SE = 1. It would be interesting to investigate this further and

compute the entropy S = �tr⇢SE ln ⇢SE in the Sp(N) model.

4.5 Pseudounitarity and the C-norm in the Sp(N) CFT3

In this section we consider the Sp(N) model (where N is even) and compare the norms

to those computed above. The action is

ISp(N) =
1

8⇡

Z
d3x

⇥
�ij�ab@i�̄

a@j�
b +m2�̄�+ � (�̄�)2

⇤
, (4.5.96)

where �a(a = 1, . . . , N2 ) is a complex anticommuting scalar and �̄� ⌘ �ab�̄a�b. This has a

global Sp(N) symmetry and we restrict to Sp(N) singlet operators.6 For the free theory

m = � = 0 while the critical theory is obtained by flowing to a nontrivial fixed point �F .

The Sp(N) theory is not unitary in the sense that in the standard norm following from

(4.5.96) one has that [74]

H 6= H† (4.5.97)

and h 0| i is not preserved. Nevertheless, as detailed in [74], there exists an operator C

with the properties

C†C = C2 = 1, C�†C = �, CH†C = H, C|0i = |0i. (4.5.98)

6The U(N2 ) theory has the same action but is restricted only to U(N2 ) singlets.
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To write it in real fields, for e.g., in the case of Sp(2), writing the real and imaginary part of

� as ⌘1 and ⌘2, the action of C becomes ⌘2 = C⌘†1C. One may then define a “pseudounitary”

C-inner product

h 0| iC ⌘ h 0|C| i (4.5.99)

which is preserved under hamiltonian time evolution. Such hamiltonians are pseudoher-

mitian and are similar to those studied in [84]. We note that the norm is not positive

definite.

Inserting an operator Oi constructed from �a at the south pole gives a functional of the

boundary conditions on the equatorial S2 which we define as the state |Oii. This is the

standard state-operator correspondence. An inner product for such states associated to Oi

and Oj can be defined by the two point function with Oi at one pole and Oj at the other.

It follows from (4.5.98) that this is the C-inner product for the states |Oii and |Oji:

hOi|OjiC = hOi|C|Oji = hOi
†COji = hOiOji. (4.5.100)

In the last line, we used the fact that the (singlet) currents in the Sp(N) models satisfy

COi
†C = Oi since C (�̄�)† C = �̄�. For primary operators of weight hi we then have [14]

hOi|OiiC = �N�hi(⌦NP ,⌦SP ). (4.5.101)

Hence it is the C-norm which maps under the state-operator correspondence to the Zamolod-

chikov norm defined as the Euclidean two point function on S3. As seen in [14] this C-norm

then agrees with the bulk inner product (4.3.93)-(4.3.94) of the dual state for the scalar

case.7 Moreover, as the bulk and CFT3 norms assign the same hermiticity properties to the

7A factor of ih explained in [14] relating operator insertions to bulk fields makes the two-point function
(4.3.93) negative.
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SO(4, 1) generators, this result will carry over to descendants of the primaries. A general-

ization of this construction to all spins seems possible.

One of the puzzling features of dS/CFT is that the dual CFT cannot be unitary in the

ordinary sense. This is not a contradiction of any kind because unitarity of the Euclidean

CFT is not directly connected to any spacetime conservation law. At the same time quan-

tum gravity in dS – and its holographic dual – should have some good property replacing

unitarity in the AdS case. It is not clear what that good property is. The appearance of

a pseudounitary structure in the case of dS/CFT analyzed here is perhaps relevant in this

regard.
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dS Quasinormal Mode Quantization

In this chapter, we present a new and potentially useful approach to an old problem:

the quantization of a scalar field in four-dimensional de Sitter spacetime (dS4), which has

an SO(4, 1) isometry group. One standard approach begins with the spherical harmonics of

the S3 spatial sections, and proceeds by solving the wave equation for the time-dependent

modes. Linear combinations of these modes that are nonsingular under a certain analytic

continuation are then identified as the Euclidean modes and used to define the quantum

Euclidean vacuum. The vacuum so constructed exhibits manifest SO(4)-invariance and can

also be shown to possess the full SO(4, 1) symmetry of dS4. Another common approach

singles out the southern causal diamond and relies on a special Killing vector field, denoted

L0, which generates southern Killing time and whose corresponding eigenmodes have real

frequency !. This construction displays manifest SO(3)⇥SO(1, 1) symmetry and again leads

to the dS-invariant Euclidean vacuum. The modes employed in these and similar construc-

tions are not in SO(4, 1) multiplets and hence SO(4, 1)-invariance of the final expressions

is nontrivial. For example, the action of the dS4 isometries on the southern diamond L0
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eigenmodes shifts the frequency by imaginary integer multiples of 2⇡/` (where ` is the dS

radius) while the usual southern diamond modes all have real frequencies.

It is natural to adopt scalar modes which lie in highest-weight representations of SO(4, 1)

and therefore boast manifest dS-invariance. These turn out to be nothing but the quasinor-

mal modes of the southern diamond, which have complex L0 eigenvalues and comprise four

real or two complex highest-weight representations.1 They are singular on the past horizon

and decay exponentially towards the future, as opposed to the conventional southern dia-

mond modes which oscillate everywhere. In order to quantize in a quasinormal mode basis,

a norm is needed. The singularities on the past horizon render the Klein-Gordon norm

singular, which is presumably why the quasinormal modes have not typically been used for

quantization. However a variety of other equally suitable norms have been employed for

various reasons in dS [61, 62, 54, 89, 65, 60, 90]. One of them – the so called R-norm [90]

– di↵ers from the Klein-Gordon norm by the insertion of a spatial reflection through the

equator of the S3 slice, thereby exchanging the north and south poles. We demonstrate that

the R-norm is finite for quasinormal modes and hence suitable for quantization. We also

show that the Euclidean vacuum has the simple and manifestly dS-invariant definition as

the state annihilated by two of the four sets of quasinormal modes. Moreover the Euclidean

Green function is shown, as anticipated in [77], to be obtainable from a simple sum over the

quasinormal modes. We caution the reader that quasinormal modes have singularities on the

past horizon which we regulate with an i✏-prescription. Our statements about completeness

and mode sums depend on taking the ✏! 0 limit at the end of our calculations.

The real Killing vectors which generate the dS isometries have an SO(4, 1) Lie bracket

1Interesting work on the normalizability and completeness of quasinormal modes for black holes can be
found in [85, 86, 87, 88].
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algebra and are antihermitian with respect to the Klein-Gordon norm. However they have

mixed hermiticity under the R-norm. Multiplication by appropriate factors of i produces

complex Killing vector fields which are antihermitian under the R-norm. The Lie algebra

of these R-antihermitian vector fields turns out to generate SO(3, 2), which is precisely the

symmetry group of a 2+1-dimensional CFT, and the transformed notion of hermiticity is

exactly the one conventionally employed when studying CFT3 on the Euclidean plane [65].

Hence this SO(4, 1) ! SO(3, 2) transformation, and the use of quasinormal modes, fits

naturally within the dS4/CFT3 correspondence [54, 70, 12, 57, 71, 14].2

This chapter is organized as follows. In section 5.1, we begin by reviewing the standard

global S3 modes and the construction of Euclidean modes and Green functions. In section

5.2, we show that the quasinormal modes comprise the highest-weight modes and their

descendants, specializing for simplicity to the case of conformal mass m2`2 = 2. Then in

section 5.3, the modified R-norm and its properties are presented. Next, in section 5.4

we prove that half the quasinormal modes are Euclidean modes and demonstrate their

completeness by deriving the Euclidean Green function from a quasinormal mode sum. In

section 5.5, we generalize these results to the case of light scalars with m2`2  9/4.

Finally, in section 5.6, we isolate quasinormal modes that vanish in the northern or

southern diamonds – the analogues of Rindler modes in Minkowski space – and present a

complete set of quasinormal modes in the southern diamond. These might eventually be

useful for understanding the thermal nature of physics in a single dS causal diamond, but

we do not pursue this direction further herein.

2For every bulk scalar � one expects a dual operator O in the boundary CFT3. The bulk state with
one quantum in the lowest quasinormal mode is dual to the CFT3 state associated to an O insertion at the
north pole of the S3 at I+, and the descendants fill out SO(3, 2) representations on both sides of the duality
[90].
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In addition, in Appendix C.1 we provide the explicit forms of dS4 Killing vectors as well

as their commutation relations. This is followed by Appendix C.2, which computes the norm

of spherically symmetric descendants using the SO(4, 1) algebra, and Appendix C.3, which

provides details on the Euclidean two-point function evaluated on the south pole observer’s

worldline.

We expect our discussion to generalize to the case of heavy scalars with m2`2 > 9/4 as

well as other dimensions and spin.

5.1 SO(4)-invariant global mode decomposition

In this section we describe the standard dS4 mode decomposition in terms of the spherical

harmonics of the S3 spatial sections. These modes are regular everywhere on dS4 and

sometimes referred to as ‘global modes’.

We will work in the dS4 global coordinates x = (t, , ✓,�) with line element

ds2

`2
= �dt2 + cosh2 t d⌦2

3 = �dt2 + cosh2 t
⇥
d 2 + sin2  

�
d✓2 + sin2 ✓ d�2

�⇤
, (5.1.1)

where ⌦ = ( , ✓,�) are coordinates on the global S3 slices. We denote the north and south

pole by

⌦SP ⇠  = 0, ⌦NP ⇠  = ⇡. (5.1.2)

In this coordinate system, the dS-invariant distance function P (x; x0) is given by

P (t,⌦; t0,⌦0) = cosh t cosh t0 cos⇥3(⌦,⌦
0)� sinh t sinh t0, (5.1.3)

where ⇥3(⌦,⌦0) denotes the geodesic distance function on S3 and

cos⇥3(⌦,⌦
0) = cos cos 0 + sin sin 0 [cos ✓ cos ✓0 + sin ✓ sin ✓0 cos(�� �0)] . (5.1.4)
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Following the notation of [90], solutions of the wave equation

�
r2 �m2

�
� = 0 (5.1.5)

may be expanded in representations of the SO(4) rotations of the S3 spatial slice at fixed t:

�Lj(x) = yL(t)YLj(⌦). (5.1.6)

These have total SO(4) angular momentum L and spin labeled by the multi-index j. The

S3 spherical harmonics YLj obey the identities

Y ⇤
Lj(⌦) = (�)LYLj(⌦) = YLj(⌦A),

D2YLj(⌦) = �L(L+ 2)YLj(⌦),Z

S3

d3⌦
p
h Y ⇤

Lj(⌦)YL0j0(⌦) = �L,L0�j,j0 ,

X
Y ⇤
Lj(⌦)YLj(⌦

0) =
1p
h
�3(⌦� ⌦0), (5.1.7)

where ⌦A denotes the antipodal point of ⌦, while
p
h = sin2  sin ✓ and D2 are the measure

and Laplacian on the unit S3, respectively. Here and hereafter,
P

denotes summation over

all allowed values of L and the multi-index j. The time dependence yL(t) is then governed

by the di↵erential equation

@2t yL + 3 tanh t @tyL +


m2`2 +

L(L+ 2)

cosh2 t

�
yL = 0. (5.1.8)

The general solution has the I+ fallo↵

yL ! e�h±t, h± =
3

2
±
r

9

4
�m2`2. (5.1.9)

For the time being, we restrict our attention to the case m2`2 = 2, which corresponds to a

conformally coupled scalar with

h+ = 2, h� = 1. (5.1.10)
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The case of generic mass is qualitatively similar but with algebraic functions replaced by

hypergeometric ones. We give the correspondingly more involved formulae in section 5.5.

The so-called Euclidean modes, which define the vacuum, are those which remain non-

singular on the southern hemisphere when dS4 is analytically continued to S4. In other

words, they are defined by the condition

yEL

✓
t = � i⇡

2

◆
= nonsingular. (5.1.11)

Explicitly, these modes are [90]:

yEL =
2L+1

p
2L+ 2

coshL t e�(L+1)t

(1� ie�t)2L+2
. (5.1.12)

Note that they are singular on the northern hemisphere at t = i⇡/2. In terms of the

Klein-Gordon inner product on global S3 slices,

h�1,�2iKG ⌘ i

Z

S3

d3⌃µ �⇤
1

 !
@µ�2, (5.1.13)

we have normalized the modes such that

⌦
�E

Lj,�
E
L0j0
↵
KG

= �LL0,jj0 . (5.1.14)

Using these modes, one can define the Euclidean vacuum by the condition

D
�E

Lj, �̂
E

KG
|0Ei = 0, (5.1.15)

where �̂ is the quantum field operator. Since the modes �E
Lj are not SO(4, 1)-invariant, it is

not immediately obvious that the Euclidean vacuum is dS-invariant, but this can be checked

explicitly. The Wightman function is

GE(x; x
0) ⌘ h0E| �̂(x)�̂(x0) |0Ei =

X
�E

Lj(x)�
E⇤
Lj (x

0). (5.1.16)
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Using the i✏-prescription, this may be expressed in terms of the dS-invariant distance func-

tion P (x; x0) as

GE(x; x
0) =

1

8⇡2

1

1� P (x; x0) + is(x; x0)✏
, (5.1.17)

where s(x; x0) > 0 if x lies in the future of x0 and s(x; x0) < 0 otherwise.

If we rewrite P (x; x0) in terms of the coordinates X on the embedding 5D manifold with

Minkowski spacetime metric ⌘ (in which dS4 is just the hyperboloid ⌘µ⌫XµX⌫ = `2), then

we can represent s(x; x0) by [91]

s(X;Y ) ⌘ X0 � Y 0. (5.1.18)

Note that this is exactly the same as sending X0 � Y 0 ! X0 � Y 0 � i✏, since this latter

choice of i✏-prescription shifts P (X;Y ) = ⌘µ⌫XµY ⌫/`2 as follows:

P (X;Y )! P (X;Y )� i✏(X0 � Y 0). (5.1.19)

dS4 has 10 real Killing vectors which, letting k 2 {1, 2, 3}, we will refer to as the dilation

L0, the 3 boosts Mk �M�k and the 6 SO(4) rotation generators Jk and Mk +M�k. Their

explicit forms are given in Appendix C.1. The global modes indexed by L transform in

the (L,L) representation of SO(4) with quadratic Casimir L(L + 2), but they are not in

definite SO(4, 1) representations. In particular, acting arbitrarily many times with the L0

raising or lowering operators M±k gives a nonzero result, so they are in representations

with unbounded L0. In the next section we discuss a dS4 mode decomposition using the

highest-weight representations of SO(4, 1).
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5.2 SO(4, 1)-invariant quasinormal modes

In this section we describe the SO(4, 1)-invariant mode decomposition in terms of (anti-)

quasinormal modes. We begin by defining

G±(x; x
0) ⌘ GE(x; x

0)±GE(x; x
0
A) (5.2.20)

=
1

8⇡2


1

1� P (x; x0) + i(X0 �X 00)✏
± 1

1 + P (x; x0) + i(X0 +X 00)✏

�
,

where xA denotes the antipodal point of x. These Green functions fall o↵ like e�2h±t as both

arguments are taken to I+. Next we introduce ‘⌦-modes’ as follows:

�±
⌦(x) ⌘

⇡p
h±

lim
t!1

eh±tG±(x;⌦, t). (5.2.21)

The normalization factor was chosen for future convenience.

In terms of the global coordinates, the ⌦-modes take the explicit form

��
⌦(x) =

1

2⇡

1

[sinh t� i✏� cosh(t) cos⇥3(⌦, x)]
(5.2.22)

=
1

2⇡

1

[sinh t� cosh t cos⇥3(⌦, x)]
� i

2 cosh t
�(tanh t� cos⇥3(⌦, x)),

�+
⌦(x) = � 1p

2⇡

1

[sinh t� i✏� cosh(t) cos⇥3(⌦, x)]
2 (5.2.23)

= � 1p
2⇡

1

[sinh t� cosh t cos⇥3(⌦, x)]
2 �

ip
2 cosh2 t

�0(tanh t� cos⇥3(⌦, x)).

The delta-functions above are normalized as one-dimensional delta-functions, that is, such

that
R1
�1dy �(y) = 1. The ⌦-modes can be expanded in terms of the Euclidean global SO(4)

modes as follows:

��
⌦(x) =

p
8⇡
X

1p
L+ 1

Y ⇤
Lj(⌦)

�
�E

Lj(x),

�+
⌦(x) = �i

p
16⇡

Xhp
L+ 1Y ⇤

Lj(⌦)
i
�E

Lj(x). (5.2.24)
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The lowest-weight and highest-weight modes are respectively given by [90]

�±
lw(x) ⌘ �±

⌦SP
(x), �±

hw(x) ⌘ �±
⌦NP

(x). (5.2.25)

By construction, the modes �±
hw are eigenfunctions of L0 with eigenvalues �h± and are

annihilated by M�k for each k 2 {1, 2, 3}. The descendants of the highest-weight modes are

obtained by acting with the M+k, for any k 2 {1, 2, 3} (see Appendix C.1):

M+K�
±
hw(x) ⌘M+k1 · · ·M+kn�

±
hw(x), (5.2.26)

where K is a multi-index denoting the set {k1, . . . , kn}.

The southern causal diamond (sometimes called the static patch) is the intersection of

the causal past and future of the south pole. The highest-weight states are smooth ev-

erywhere in this diamond except for the past horizon where they are singular, and they

decay exponentially towards the future. Therefore they, together with all their descendants

appearing in (5.2.26) and their complex conjugates, comprise the quasinormal modes of the

southern diamond. The lowest-weight states (with their descendants and complex conju-

gates) are singular on the future horizon and are the antiquasinormal modes of the southern

diamond. To emphasize this we adopt the notation

�±
QN(x) ⌘ �±

hw(x) = �
±
⌦NP

(x), �±
AQN(x) ⌘ �±

lw(x) = �
±
⌦SP

(x). (5.2.27)

At this point we have eight highest-weight representations of SO(4, 1), with elements

M+K�
+
QN , M+K�

�
QN , M+K�

+⇤
QN , M+K�

�⇤
QN ,

M�K�
+
AQN , M�K�

�
AQN , M�K�

+⇤
AQN , M�K�

�⇤
AQN . (5.2.28)

We shall see below that this is an overcomplete set: only the first or second row of modes is

needed to obtain a complete basis.
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5.3 R-norm

We wish to expand the scalar field operator in the (anti-)quasinormal modes. Towards

this end it is useful to introduce an inner product. The Klein-Gordon norms of the ⌦-modes

are

⌦
�±

⌦1
,�±

⌦2

↵
KG

= ⌥16⇡2

h±
�±(⌦1,⌦2),

⌦
�+

⌦1
,��

⌦2

↵
KG

= �
⌦
��

⌦1
,�+

⌦2

↵
KG

=
16⇡2

p
2

ip
h
�3(⌦1 � ⌦2), (5.3.29)

where

�±(⌦,⌦
0) =

1

22⌥1⇡2

1

(1� cos⇥3)h±
(5.3.30)

denote the two-point functions for a CFT3 operators with dimensions h±. These satisfy

�
Z

d3⌦00
p
h �+(⌦,⌦

00)��(⌦
00,⌦0) =

1p
h
�3(⌦� ⌦0). (5.3.31)

The norm of a highest-weight quasinormal mode is obtained by setting ⌦1 = ⌦2 = ⌦NP ,

which is evidently divergent. Hence the Klein-Gordon norm is not suitable for quantization

of the quasinormal modes.

Alternate norms have been employed in de Sitter spacetime for a variety of reasons

[54, 89, 65, 60, 90]. Here, following [90], a useful ‘R-norm’ can be defined by inserting a

reflection R on S3 across the equator:

R : ( , ✓,�) ! (⇡ �  , ✓,�),

h�1,�2iR ⌘ h�1, R�2iKG . (5.3.32)

With respect to this R-norm,

⌦
�±

⌦1
,�±

⌦2

↵
R
= ⌥16⇡2

h±
�±(⌦1, R⌦2). (5.3.33)
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In particular, the norms of the highest-weight quasinormal modes are simply

⌦
�+

QN ,�
+
QN

↵
R
= �1,

⌦
��

QN ,�
�
QN

↵
R
= 1,

⌦
�+

QN ,�
�
QN

↵
R
= 0, (5.3.34)

while the R-inner product between a quasinormal mode and the complex conjugate of any

quasinormal mode vanishes.

Changing the norm a↵ects the hermiticity properties of the 10 real Killing vector fields

which generate the dS4 isometries. Under the Klein-Gordon norm, their adjoints are

hL0f, giKG = hf,�L0giKG , hJkf, giKG = hf,�JkgiKG ,

hM⌥kf, giKG = hf,�M⌥kgiKG , (5.3.35)

so that the Killing generators are all antihermitian. However, under the modified R-norm,

hL0f, giR = hf, L0giR , hJkf, giR = hf,�JkgiR , hM⌥kf, giR = hf,M±kgiR .

(5.3.36)

To recover antihermitian generators in the R-norm, one must sendMk+M�k ! i(Mk+M�k)

and L0 ! iL0 while keeping the rest of the generators the same. The Lie bracket algebra of

the antihermitian vector fields is then SO(3, 2) rather than SO(4, 1). See Appendix C.1 for

more details.

Interestingly SO(3, 2) is the symmetry group of a CFT in 2+1 dimensions. This suggests

that the quantum states on which these generators act could belong to a 2 + 1-dimensional

CFT, which fits in nicely with the dS4/CFT3 conjecture.

Using (5.3.36) we can compute the norm of the descendants. For example, the norm of

the first descendant is (not summing over k)

⌦
M+k�

±
QN ,M+k�

±
QN

↵
R
=
⌦
�±

QN ,M�kM+k�
±
QN

↵
R
= 2h±

⌦
�±

QN ,�
±
QN

↵
R
. (5.3.37)
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Observe that under this R-norm, the descendants of �+
QN are orthogonal to those of ��

QN .

For the SO(3)-symmetric states, we provide the exact formula in Appendix C.2.

5.4 Completeness of quasinormal modes

In this section we show that the quasinormal modes

�
M+K�

�
QN , M+K�

�⇤
QN , M+K�

+
QN , M+K�

+⇤
QN

 
(5.4.38)

form a complete set in the sense that the Euclidean Green function can be written as a

simple sum over such modes. In particular, the antiquasinormal modes are not needed.

First we note from (5.2.24) that the quasinormal modes can be written as linear combi-

nations of the global Euclidean modes, without using their complex conjugates. Therefore

they are themselves Euclidean modes, and the Euclidean vacuum obeys

D
M+K�

±
QN , �̂

E

R
|0Ei = 0. (5.4.39)

Note that this relation, unlike the corresponding one for the global Euclidean modes, is

manifestly dS-invariant because the quasinormal modes lie in representations of SO(4, 1).

Let us now assume that we can expand the field operator in the presumably complete

basis (5.4.38):

�̂ =
X

K,K0

⇣
N+

KK0

D
M+K�

+
QN , �̂

E

R
M+K0�+

QN �N+
K0K

D
M+K�

+⇤
QN , �̂

E

R
M+K0�+⇤

QN

+N�
KK0

D
M+K�

�
QN , �̂

E

R
M+K0��

QN �N�
K0K

D
M+K�

�⇤
QN , �̂

E

R
M+K0��⇤

QN

⌘
,

(5.4.40)

where the N±
KK0 are defined through

X

K0

N±
KK0

⌦
M+K0�±

QN ,M+L�
±
QN

↵
R
= �KL. (5.4.41)
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Then, using (5.4.39), the quasinormal mode Green function is given by

G(x; x0) =
X

K,K0

�+
K(x)�

+⇤
K0 (Rx0)N+

KK0 +
X

K,K0

��
K(x)�

�⇤
K0 (Rx0)N�

KK0 , (5.4.42)

where �±
K ⌘M+K�

±
QN .

A demonstration that the function G(x; x0) so obtained is indeed the standard Euclidean

Green function GE(x; x0) implies that the quasinormal modes in (5.4.38) form a complete

basis, in the sense that they satisfy

i�3(⌦� ⌦0) =
p
�nµ

X

K,K0

N+
KK0

⇥
�+⇤

K (t,⌦)rµ�
+
K0(t, R⌦0)� �+

K(t,⌦)rµ�
+⇤
K0 (t, R⌦0)

⇤

+(+$ �) (5.4.43)

0 =
X

K,K0

N+
KK0

⇥
�+

K(t,⌦)�
+⇤
K0 (t, R⌦0)� �+⇤

K (t,⌦)�+
K0(t, R⌦0)

⇤
+ (+$ �) ,

on a constant time slice with normal vector nµ and induced metric �µ⌫ . Indeed, these

two equations can be used to construct a retarded Green function, which in turn provides

a solution to the wave equation with arbitrary initial data. Hence any suitably smooth

solution to the wave equation can be decomposed on a Cauchy surface in terms of such a

set of modes.

First, we would like to evaluate the sum (5.4.42) for the case (x; x0) = (t,⌦SP ; t0,⌦SP )

where both points lie on the south pole observer’s worldline. The functions �±
K(t,⌦SP ) are

nonzero only for spherically symmetric descendants Ln
+1�

±
QN(t,⌦) where L⌥1 ⌘

3X

k=1

M⌥kM⌥k.

The norm for such states is calculated in Appendix C.2 and is given by

⌦
Ln
+1�

±
QN , L

m
+1�

±
QN

↵
R
=
�(2 + 2n)�(2h± + 2n� 1)

�(2h± � 1)

⌦
�±

QN ,�
±
QN

↵
R
�nm, (5.4.44)

while the modes at ⌦ = ⌦SP are given by

Ln
+1�

�
QN(t,⌦SP ) =

�(2n+ 2)

2⇡

e�nt

(e+t � i✏)n+1 ,
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Ln
+1�

+
QN(t,⌦SP ) = ��(2n+ 3)

2
p
2⇡

e�nt

(e+t � i✏)n+2 . (5.4.45)

Using

⇣
Ln
+1�

�
QN(t, R⌦SP )

⌘⇤
= �Ln

+1�
�
QN(�t,⌦SP )

⇣
Ln
+1�

+
QN(t, R⌦SP )

⌘⇤
= Ln

+1�
+
QN(�t,⌦SP ), (5.4.46)

the full sum (5.4.42) is

G(t,⌦SP ; t
0,⌦SP ) = � 1

4⇡2

1X

k=0

(
(2k + 1)e�k(t�t0)

[(e+t � i✏) (e�t0 � i✏)]k+1 +
(2k + 2)e�k(t�t0)

[(e+t � i✏) (e�t0 � i✏)]k+2

)

= � 1

16⇡2

1

sinh2[(t� t0)/2]� i✏s̃(x; x0)
, (5.4.47)

where

s̃(x; x0) ⌘ sinh t� sinh t0

1 + et0�t
. (5.4.48)

Noting that for small ✏, s̃(x; x0) is equivalent to s(x; x0) defined in (5.1.18), it follows that

this Green function agrees with that in (5.1.17) on the south pole observer’s worldline. Since

the construction of our Green function is dS-invariant3, agreement on this worldline implies

that this Green function equals the Euclidean one on any two timelike separated points.

For spacelike separated points, we find from (5.4.42) that

G(t,⌦SP ; t
0,⌦NP ) =

1

8⇡2 [1 + cosh (t+ t0)]
= GE(t,⌦SP ; t

0,⌦NP ). (5.4.49)

By dS-invariance, we can extend this to any two spacelike-separated points. This concludes

the proof that the quasinormal Green function (5.4.42) is indeed the Euclidean Green func-

tion.

3This follows from the fact that the Green function is just a position-space representation of the projection
operator onto the highest-weight representation of the three-dimensional conformal group characterized by
the highest-weight �h, as can be seen by writing out this projection as a sum over complete states of the
representation and using the definition of SO(4, 1) generators.
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5.5 Results for general light scalars (m2`2 < 9/4)

In the general case of a light scalar with m2`2 < 9/4, we can write out the explicit form

of the Euclidean two-point function as (see for instance [65])

GE(x; x
0) =

�(h+)�(h�)

16⇡2
F


h+, h�, 2,

1 + P (x; x0)� is(x; x0)✏

2

�
, (5.5.50)

where

h± =
3

2
± µ, µ =

r
9

4
�m2`2. (5.5.51)

The asymptotic behaviors of the Euclidean Green function are:

lim
t0!1

GE(t,⌦; t
0,⌦NP ) =

�(h� � h+)�(h+)

24�2h+⇡2�(2� h+)

e�h+t0

(sinh t� i✏+ cosh t cos )h+
+ (h+ $ h�),

lim
t0!1

GE(t,⌦;�t0,⌦SP ) = e�i⇡h+
�(h� � h+)�(h+)

24�2h+⇡2�(2� h+)

e�h+t0

(sinh t� i✏+ cosh t cos )h+

+(h+ $ h�). (5.5.52)

Note that in dealing with the branch-cut of GE(t,⌦; t0,⌦0), we go under (above) it when

t > t0 (t < t0) in accordance with the i✏-prescription.

Let us define G± as

G±(x; x
0) ⌘ GE(x; x

0)� ei⇡h⌥GE(x; x
0
A). (5.5.53)

These satisfy the future boundary conditions in Ref. [75] in the region P < �1. Now, we

define the highest-weight modes as

�±
QN(x) ⌘ lim

t0!1
eh±t0G±(t,⌦; t

0,⌦NP ). (5.5.54)

The �±
QN are explicitly given by

�±
QN(x) =

1

4⇡5/2

�(⌥µ)�(h±) (1� e⌥2⇡iµ)

[sinh t� i✏+ cosh t cos ]h±
=

1

4⇡5/2

�(⌥µ)�(h±) (1� e⌥2⇡iµ)

coshh± t [tanh(t� i✏) + cos ]h±
.

(5.5.55)
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The asymptotic behavior of the modes as t!1 is

lim
t!1

�±
QN(t,⌦) =

23�h±

p
⇡
�(⌥µ)�(h±)

�
1� e⌥2⇡iµ

�
�±(⌦,⌦NP )e

�h±t ⌥ 4i

µ

�3(⌦� ⌦NP )p
h

e�h⌥t.

(5.5.56)

We have defined4

�±(⌦,⌦
0) =

23(h±�1)

⇡
�(2� 2h±) sin (h±⇡)

X �(h± + L)

�(h⌥ + L)
YLj(⌦)Y

⇤
Lj(⌦

0)

=
1

25�2h±⇡2

1

[1� cos⇥3(⌦,⌦0)]h±
, (5.5.58)

which satisfy

⇡2

8 cos2 (⇡µ)�(2� 2h+)�(2� 2h�)

Z
d3⌦00

p
h �+(⌦,⌦

00)��(⌦
00,⌦0) =

1p
h
�3(⌦� ⌦0).

(5.5.59)

The norm is easily evaluated at I+ to be

⌦
�±

⌦1
,�±

⌦2

↵
R

=
25�h±

p
⇡
�(⌥µ)�(h±) sin

2(⇡µ)�±(⌦1, R⌦2),

⌦
�±

⌦1
,�⌥

⌦2

↵
R

= ±4i

µ

�
1� e±2⇡iµ

� �3(⌦1 �R⌦2)p
h

. (5.5.60)

As such, we find that the R-norms of the quasinormal modes are

⌦
�±

QN ,�
±
QN

↵
R
= �(⌥µ)�(h±)

sin2(⇡µ)

⇡5/2
,

⌦
�+

QN ,�
�
QN

↵
R
= 0. (5.5.61)

The rest of the discussion on the induced norms of the descendants carries over from the

m2`2 = 2 case.

4Here, a useful identity on S3 is

[1� cos⇥3(⌦,⌦
0)]

�h
= 22+h⇡ sin (⇡h)�(2� 2h)

X �(L+ h)

�(3 + L� h)
YLj(⌦)Y

⇤
Lj(⌦

0). (5.5.57)
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Next, we follow our previous strategy of showing that the mode sum and the Euclidean

Green function agree on the south pole observer’s worldline. Again, we evaluate

Ln
+1�

±
QN(t,⌦SP ) =

�(⌥µ)(1� e⌥2⇡iµ)

4⇡5/2

�(2n+ 3)�(h± + n)

2�(n+ 2)

e�nt

(et � i✏)n+h±
. (5.5.62)

As before, the norm for such states is

⌦
Ln
+1�

±
QN , L

n
+1�

±
QN

↵
R
=
�(2 + 2n)�(2h± + 2n� 1)

�(2h± � 1)

⌦
�±

QN ,�
±
QN

↵
R
. (5.5.63)

Note that
⇣
Ln
+1�

±
QN(t, R⌦SP )

⌘⇤
= ei⇡h±Ln

+1�
±
QN(�t,⌦SP ). (5.5.64)

The quasinormal mode Green function (5.4.42) is then

G(t,⌦SP ; t
0,⌦SP ) =

1X

n=0

"
c+n e

�n(t�t0)

[(et � i✏) (e�t0 � i✏)]n+h+
+

c�n e
�n(t�t0)

[(et � i✏) (e�t0 � i✏)]n+h�

#
(5.5.65)

where

c±n = � e�i⇡h±

2⇡2 sin (±⇡µ)
�(32 + n)�(h± + n)

�(1 + n± µ)�(1 + n)
. (5.5.66)

In Appendix C.3, we show that on the south pole observer’s worldline, this Green function

is equal to the Euclidean Green function. Thus by dS-invariance of both Green functions,

they agree for any two timelike separated points in dS4.

For spacelike separated points, we consider the Euclidean Green function with one point

at the south pole and the other point at the north pole. One notices that

GE(t,⌦SP ; t
0,⌦NP ) = GE(t,⌦SP ; t

0,⌦SP )|t0!�t0+i⇡. (5.5.67)
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Since these points are spacelike separated, we do not have to worry about the i✏-

prescription and the Green function is real. If we had evaluated the quasinormal mode

Green function G(t,⌦SP ; t0,⌦NP ), then we would have obtained the same sum as in (5.5.65),

provided that we sent t0 ! �t0 and removed the phase e�i⇡h± from the coe�cients (5.5.66).

This is equivalent to sending t0 ! �t0 + i⇡ and hence by dS-invariance we have proved

that for any two spacelike separated points, the quasinormal mode Green function is the

Euclidean Green function.

5.6 Southern modes and T-norm

In this section we find quasinormal modes that vanish in the northern or southern dia-

monds – the analogues of Rindler modes in Minkowski space. We begin with the expression

(5.5.55) for the lowest-weight mode

�±
QN(x) =

1

4⇡5/2

�(⌥µ)�(h±) (1� e⌥2⇡iµ)

[sinh t� i✏+ cosh t cos ]h±
. (5.6.68)

For generic mass �±
QN(x) has a branch cut on the past horizon of the southern observer

at tanh t = � cos . We have chosen the phase convention so that the denominator is real

above the past horizon. Crossing the past horizon gives an extra phase of ei⇡h± . It follows

that the southern mode

�±
QN,S(x) ⌘ �±

QN(x) + �
±⇤
QN(x) (5.6.69)

vanishes below the past horizon. Similarly the northern mode

�±
QN,N(x) ⌘ ei⇡h±�±

QN(x) + e�i⇡h±�±⇤
QN(x). (5.6.70)
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vanishes above the past horizon. The R-norms between these modes are

⌦
�±

QN,S,�
±
QN,S

↵
R

=
⌦
�±

QN,N ,�
±
QN,N

↵
R

=
⌦
�±

QN,N ,�
⌥
QN,N

↵
R

=
⌦
�⌥

QN,S,�
⌥
QN,S

↵
R

= 0,

⌦
�±

QN,N ,�
±
QN,S

↵
R

= �2i sin(⇡h±)
⌦
�±

QN ,�
±
QN

↵
R

= �2i sin(⇡h±)�(⌥µ)�(h±)
sin2(⇡µ)

⇡5/2
.

(5.6.71)

On the other hand, the R-norm for the global quasinormal modes is closely related to time-

reflection:

⌦
f,�±

K

↵
R
= e�i⇡h±

⌦
f, T�±⇤

K

↵
KG

, T : t! �t. (5.6.72)

While the R-norm has no analogue in the static patch, the T-norm is easily generalizable to

the southern diamond as

⌦
�±

K ,�
±
K0

↵
T,B3

S
⌘
⌦
T�±⇤

K ,�±
K0

↵
KG,B3

S
, (5.6.73)

where B3
S denotes the integral over a complete slice in the southern diamond. We have

⌦
�±

QN,S, T�
±
QN,S

↵
T,B3

S

=
⌦
�±

QN,S, T�
⌥
QN,S

↵
T,B3

S

=
⌦
�±

QN,S,�
⌥
QN,S

↵
T,B3

S

= 0,

⌦
�±

QN,S,�
±
QN,S

↵
T,B3

S

= 2i sin(⇡h±)�(⌥µ)�(h±)
sin2(⇡µ)

⇡5/2
. (5.6.74)
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Fluid/Gravity Correspondence of dS

Horizon

Any de Sitter static observers find themselves surrounded by a cosmological horizon

whose size is set by the value of the cosmological constant. The nature of this horizon

is rather enigmatic given that an observer can never reach her cosmological horizon – it

is always at a finite fixed distance away from her. Thus, unlike a black hole, the static

patch horizon is not localized in some finite region of space. On the other hand, it behaves

classically, and to an extent quantum mechanically, very much like a black hole horizon. For

instance there is a temperature and entropy associated with the cosmological horizon [47].

One of the main challenges confronted by theorists is to uncover the nature of the holo-

graphic principle in the context of asymptotically de Sitter universes. One may be inclined

to propose that de Sitter holography should only describe a single patch, given that this is

the region of space accessible to a single observer [51, 49, 83, 92, 53, 93, 94, 52, 48, 95, 75, 77].

In fact, the observer’s worldline in the static patch resembles in many ways the boundary
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of anti-de Sitter space (in the presence of an eternal black hole) and may constitute the

ultraviolet regime of the fundamental description [48, 75, 77], perhaps in a way related to

matrix theory. In such a case, the dynamics of the cosmological horizon would constitute

the deep infrared behavior of the putative worldline theory very much like the near horizon

dynamics of a black hole in anti-de Sitter space constitutes the deep infrared behavior of

the dual conformal field theory. Such behavior rather universally takes the form of fluid

dynamics.

There have been several attempts to relate general relativity to fluid mechanics dating

back to the 1970s with the black hole membrane paradigm [96, 97, 98] (see [99] for an ap-

plication to de Sitter space). The membrane paradigm focuses on the observation that the

equations governing the dynamics of horizon surfaces in general relativity can be written

in a form analogous to that of the Navier-Stokes equation of fluid mechanics. However,

whilst finding a striking analogy, the central equation of the membrane paradigm is of-

ten referred to as the Damour-Navier-Stokes equation, highlighting the fact that it di↵ers

from the Navier-Stokes equation in key ways. Building on this, recent papers [15, 16, 17]

constructed a setup where near horizon dynamics in gravity precisely relates the Einstein

equation to the incompressible Navier-Stokes equation. These studies were also inspired by

analyses of connections between gravity and fluid mechanics in the context of the AdS/CFT

correspondence [100, 101, 102] and the low energy limit of the dual field theory. Given the

striking similarities between the thermodynamics of a black hole horizon and a cosmological

horizon, it is natural to extend such a fluid/gravity correspondence to include spacetimes

with a cosmological horizon.

Yet another natural location for a definition of quantum gravity in de Sitter space is
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the spacelike boundary at future infinity, known as I+ [103, 12, 70, 54, 57, 71, 55]. The

‘metaobservables’ on I+ are given by correlators between causally disconnected points. In

a sense, we are metaobservers of the ‘would be’ I+ of the inflationary de Sitter era. Such

metaobservables are conjectured to constitute the correlation functions of a lower dimen-

sional non-unitary Euclidean conformal field theory. Recently, an exact example of this

dS/CFT correspondence was proposed in [14]. It is not at all clear how the physics of the

static patch observer is captured by the theory at I+. The static patch observer can at

most observe a single point (or tiny region) of I+ where her worldline intersects the future

boundary. Thus, from the static patch observer’s point of view, fixing the geometry outside

her future horizon is akin to fixing a gauge since it will never a↵ect the physics she observes

[75]. In particular, one might envision fixing the geometry near I+ by fixing the data on a

spacelike slice in the future diamond and allowing only flux originating from a single static

patch to come through. This is somewhat analogous to the boundary condition that there

is no incoming flux from the past horizon of a black hole. It may then be speculated that

the existence of a finite number of ‘holographic reconstructions’ of a static patch observer

in the dual CFT at I+ would be a manifestation of the finiteness of the de Sitter entropy.1

After reviewing the classical geometry of de Sitter space, the first part of this chapter will

explore some of the classical features of the cosmological horizon as viewed by an observer

in a purely de Sitter universe – the static patch observer. We examine the Einstein equation

both linearly and non-linearly and uncover that the solutions are characterized by solutions

to the incompressible Navier-Stokes equation on a two-sphere.2 This same equation recently

1This may ultimately be related to the mysterious use of the Cardy formula for ‘counting’ the de Sitter
entropy in some lower dimensional examples [65, 68].

2As in [17], we analyze the metric through the first three orders in a near-horizon expansion. A gen-
eralization of the all-orders proof of [104] might be possible in our case, but we will not attempt to do so
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appeared in the context of the Schwarzschild black hole [17] and requires the velocity field

vi(⌧,⌦j) where ⌦i = {✓,�} and the pressure P (⌧,⌦j) to satisfy

@⌧v
i +ri

S2P + vjrj
S2v

i � ⌫
�
r2

S2vi +Ri
jv

j
�
= 0 , ri

S2vi = 0 (6.0.1)

where ⌫ is the viscosity. Indices are raised and lowered with respect to the round metric gij

on the S2 of radius rS for which Rij(= gij/r2S) is the Ricci tensor. At the linearized level,

this is done by imposing Dirichlet boundary conditions on a timelike surface arbitrarily

close to the cosmological horizon and the absence of incoming flux from the past horizon of

the static patch. These boundary conditions resemble the solipsistic boundary conditions

of [77], which allow for an examination of the isolated static patch dynamics, unperturbed

by external sources from the past horizon. We find that the linearized solutions must

obey the dispersion relation of the incompressible, linearized (pressureless) Navier-Stokes

equation (6.2.19). At the non-linear level, again in a near cosmological horizon expansion,

we impose (conformal) Dirichlet boundary conditions on a timelike slice and regularity

of the solutions as they approach the future horizon. By (conformal) Dirichlet boundary

conditions, we mean analysing perturbations which leave the induced geometry on a fixed

timelike hypersurface of constant extrinsic curvature unchanged up to a conformal factor.3

Then, we comment briefly on the possibilities of deforming this non-linear fluid by placing

a small black hole at the origin of the static patch. In an attempt to connect our fluid

dynamical modes to the analogous excitations of the worldline, which are the quasinormal

modes, we return to the linearized analysis to study how the linearized dispersion relation

varies as we push the surface from the cosmological horizon to the worldline.

herein.

3Henceforth, in the non-linear analysis, we will refer to these boundary conditions as Dirichlet boundary
conditions.
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In the second part of the chapter we make some mathematical observations about space-

like slices foliating the region outside the future horizon of the static patch. We examine

the behavior of linearized solutions to the Einstein equation near, but outside, the future

cosmological horizon. Our solutions are subjected to Dirichlet boundary conditions on a

fixed spacelike surface and to contain incoming flux solely from a single static patch ob-

server. We find a discrete set of modes obeying the dispersion relation of the linearized

Navier-Stokes equation, where the time coordinate has become the non-compact spacelike

coordinate moving us along the spacelike slice. The non-linear solutions to the Einstein

equation which satisfy Dirichlet boundary conditions on the spacelike slice and which are

regular at the horizon from which flux is coming, are indeed characterized by solutions to

the incompressible Navier-Stokes equation. The Navier-Stokes equation uncovered here on

the spacelike slice is equivalent to that discussed in the context of the timelike surface,

except that the sign of the viscosity is flipped. We end by noting that the setup of the

problem in this future diamond of de Sitter space, and in particular the pole structure at

I+, is connected by an analytic continuation to analogous problems in Lorentzian AdS4 with

hyperbolic slicing.

6.1 Geometry and Framework

In what follows we will study the geometries of several patches of de Sitter space pertinent

to our analysis. Instead of the global patch of de Sitter space containing the past and future

infinities, denoted by I� and I+, we will focus on patches that are more suited to the

description of local observers.
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6.1.1 The Static Patch

The four-dimensional static patch metric solves the Einstein equation in the presence of

a cosmological constant ⇤ > 0,

Gµ⌫ ⌘ Gµ⌫ + ⇤gµ⌫ = 0 (6.1.2)

and is given by:

ds2 = �
�
1� (r/`)2

�
dt2 +

�
1� (r/`)2

��1
dr2 + r2d⌦2

2 , (6.1.3)

where r 2 [0, `], t 2 R and d⌦2
2 is the round metric on S2. The quantity ` is the de Sitter

length and is related to the cosmological constant as ⇤ = +3/`2. The above metric covers a

quarter of the global de Sitter geometry, it describes the intersection of the future and past

causal diamonds of a constant r worldline beginning at I� and ending at I+. We call this

the Southern patch of de Sitter space.

One notices that r = ` corresponds to a cosmological event horizon, beyond which events

are forever out of causal contact from the Southern observer. The Killing vector @t becomes

null at r = ` and the above coordinate system breaks down.

The Southern patch can be smoothly connected to another region covering an additional

quarter of de Sitter space, by continuing the above metric to r 2 [`,1]. For r > `, t becomes

a spacelike coordinate and r becomes timelike. We can consider gluing two such regions,

one behind the past cosmological horizon, known as the past diamond containing I�, and

the other beyond the future cosmological horizon, known as the future diamond containing

I+.

The remaining quarter of the global de Sitter space is given by an additional static patch

system known as the Northern patch. The Southern and Northern patches each intersects
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I± at a single point. In figure 6.1 we demonstrate the several patches discussed above in a

Penrose diagram.

Fig. 6.1: Penrose diagram of de Sitter space indicating the various static patches and fu-
ture/past diamonds.

6.1.2 Null Foliations

It will be convenient to introduce an additional coordinate system which smoothly cov-

ers both the Southern patch and the future diamond. This is achieved by the following

coordinate transformation:

`du = dt� dr

(1� (r/`)2)
, v =

r

`
, (6.1.4)

leading to the metric

ds2

`2
= �(1� v2)du2 � 2dudv + v2d⌦2

2 . (6.1.5)

Up to a constant time shift we find u` = t� ` tanh�1 r/`. Constant u surfaces are null lines

emanating from the origin at v = 0 and ending at I+ where v =1. The norm of the Killing

vector @u changes sign at v = 1.
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S
.
P
.

Fig. 6.2: Penrose diagram of de Sitter space indicating constant ⇢ (red) and ⌧ (gray diagonal)
slices.

6.1.3 Approaching the Horizon

Finally, we would like to introduce a dimensionless parameter ↵ > 0 allowing us to

approach the cosmological horizon. In order to achieve this, we rescale time to u = ⌧/2↵

and define ⇢ = (1� v)/2↵. As we take the limit ↵! 0, we redshift time and for any finite

⇢, v will be forced to lie near the cosmological horizon. The metric is given by:

ds2

`2
=
⇣
� ⇢
↵
+ ⇢2

⌘
d⌧ 2 + 2d⌧d⇢+ (1� 2↵⇢)2 d⌦2

2 . (6.1.6)

The coordinate range of ⇢ covering the Southern patch is given by ⇢ 2 [0, 1/2↵] and the

norm of @u vanishes at ⇢ = 0. The constant ⇢ and ⌧ surfaces are shown in figure 6.2.

As opposed to the Schwarzschild case, where a similar expansion would continue for

indefinite powers of ↵, the above expansion terminates at order O(↵3). This is due to the

absence of a term ⇠ 2M/r in the g⌧⌧ component. We could of course add such a term,

which would correspond to introducing a small mass or black hole centered at the origin of

the static patch.
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6.2 Incompressible Fluids

Having specified the geometry relevant to our problem, we proceed to discuss the nature

of perturbations solving the Einstein equation with positive ⇤ near the cosmological horizon.

We begin with a linearized analysis.

6.2.1 Linearized Analysis

Linearized gravity about spherically symmetric spaces with non-zero cosmological con-

stant was examined in [105, 106]. The two gravitational degrees of freedom transform as

a (divergenceless) vector and a scalar under the SO(3) symmetry of the S2. There is no

transverse-traceless tensorial spherical harmonic for a two-sphere. Let us work in a gauge

where �gij = 0 for xi 2 {⌦}. The metric vector perturbations can be expressed as:

�git = Vi ⇥
�
1� (r/`)2

�
(1 + r@r)�v , (6.2.7)

�gir = Vi ⇥
r

(1� (r/`)2)
@t�v . (6.2.8)

The vector spherical harmonic Vi satisfies the following relations on the unit two-sphere:

�
r2

S2 + k2
V

�
Vi = 0 , ri

S2Vi = 0 , (6.2.9)

with eigenvalues are k2
V = l(l+1)� 1 and l = 1, 2, . . . The master field �v obeys the master

equation:
✓
r2

g(2) �
l(l + 1)

r2

◆
�v = 0 , (6.2.10)

where g(2) corresponds to the two-dimensional de Sitter static patch. A similar result holds

for the scalar perturbations, which we discuss in appendix D.1.
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The solutions to the above equation were analyzed in [75] and are found to be hy-

pergeometric functions. For our purposes we would like to obtain the linearized solu-

tions in the null coordinate system (6.1.5). Assuming a Fourier decomposition in time,

�v = e�2i↵!t(⌧,⇢)/`'v(⇢), the equation of motion becomes:

�
4⇢2 (1� ↵⇢)2 @2⇢ + 4⇢ (1� ↵⇢) (1� 2↵⇢) @⇢+

4↵2(1� 2↵⇢)2!2 � 4↵⇢ (1� ↵⇢) (k2
V + 1)

(1� 2↵⇢)2

◆
'v = 0 . (6.2.11)

The two linearly independent solutions for l > 1 are given by:

'out
v = ⇢�i↵!

2F1

⇥
a1, b1; c1;↵⇢(�1 + 2↵⇢)�1

⇤
(1� ↵⇢)�i↵! (1� 2↵⇢)2i↵! , (6.2.12)

'in
v = ⇢+i↵!

2F1

⇥
a2, b2; c2;↵⇢(�1 + 2↵⇢)�1

⇤
(1� ↵⇢)�i↵! , (6.2.13)

with:

a1 = �l � 2i↵! , b1 = 1 + l � 2i↵! , c1 = 1� 2i↵! ; (6.2.14)

a2 = �l , b2 = 1 + l , c2 = 1 + 2i↵! . (6.2.15)

The superscripts ‘out’ and ‘in’ indicate that the mode is purely outgoing at the future horizon

or purely incoming from the past horizon. The above expressions are linearly independent

solutions for (ci � ai � bi) = 2i↵! /2 Z (see [107]). In the case where (ci � ai � bi) = 2i↵!

is an integer, logarithmic solutions will appear. Given that a2 and b2 are integers 'in
v is in

fact a finite polynomial for 2i↵! /2 Z, as it can be shown that the hypergeometric series

terminates. For l = 1, the linearized perturbations become time independent and are like

the introduction of a small amount of angular momentum (we discuss this case in appendix

D.2).
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The linearized purely outgoing metric components (6.2.7) in the (⌧, ⇢)-coordinate system

become:

�gouti⌧ = 2Vi ⇥ e�i!⌧ ⇢i↵!+1(1� ↵⇢)�i↵!+1

✓
1� (1� 2↵⇢)

2↵
@⇢

◆
'out
v , (6.2.16)

�gouti⇢ = �2↵Vi ⇥ e�i!⌧

✓
1� ↵⇢
⇢

◆�i↵! ✓
1� i!(1� 2↵⇢)

2⇢(1� ↵⇢)

◆
� (1� 2↵⇢)

2↵
@⇢

�
'out
v .

(6.2.17)

Both �gouti⌧ and �gouti⇢ are regular at the future horizon ⇢ = 0.

6.2.2 Linearized Fluid Modes

Having written down the linearized solutions, we now discuss the choice of boundary con-

ditions. We impose Dirichlet boundary conditions on a given timelike hypersurface at some

fixed ⇢, and without loss of generality, we choose the location of this timelike hypersurface

to be at ⇢ = 1. Taking ↵ ! 0 pushes this hypersurface arbitrarily near the cosmological

horizon and thus allows us to probe the near horizon dynamics.

Our particular Dirichlet boundary condition, shown in figure 6.3, is that the linearized

perturbations are purely outgoing and leave the intrinsic geometry of the ⇢ = 1 hypersurface

unchanged.4 Imposing �gouti⌧ (⇢ = 1) = 0 enforces a discrete dispersion relation, which to

leading order in ↵ is given by:

!f = �i (l(l + 1)� 2) , l = 1, 2, . . . (6.2.18)

We interpret these linearized modes as fluid modes of the velocity field vi of the incompress-

4This is the simplest choice of Dirichlet boundary conditions and thus allows for a clear analysis. In
general, we can choose more involved Dirichlet boundary conditions on the ⇢ = 1 hypersurface.
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Fig. 6.3: Our boundary conditions for the linearized modes are such that the induced metric
on the ⇢ = 1 slice is unchanged and there is no incoming flux from the past horizon.

ible, linearized (pressureless) Navier-Stokes equation on a sphere:

@⌧vi = ⌫
�
r2

S2vi +Rijv
j
�
, ri

S2vi = 0 , (6.2.19)

where the viscosity ⌫ = 1. The incompressibility of the fluid is equivalent to the vanishing

divergence of Vi, which can be seen by identifying vi ⇠ e�i!⌧Vi. We further note that the

explicit modes (6.2.16) with ! = !f decay in time and are regular at the future horizon

⇢ = 0.5

By arguments similar to those in [15], one expects that the result ⌫ = 1 corresponds

to a ratio of shear viscosity to entropy density which is 1/4⇡. This suggests that the

incompressible fluid we have found near the de Sitter horizon shares this feature with the

fluids found near the Schwarzschild, Rindler and planar AdS black hole horizons [15, 16, 17,

108] (see also [99]).

There is also a decoupled set of scalar excitations which transform as scalars under

5If these modes are taken back in time to t ! �1 they diverge and the perturbative solution is no
longer reliable. As usual we only consider wavepackets of the linearized solutions which are finite for all
asymptotia.
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the SO(3) of the S2. However, the incompressibility condition implies that we could only

consider the spherically symmetric scalar mode, which reduces the fluid vector field to a

trivial one(see appendix D.1). We will not consider such modes in what follows and simply

set them to zero in the linearized analysis.

6.2.3 Non-linear Analysis

Having analyzed the linearized case, we now turn to the question of non-linear deforma-

tions. The analysis follows directly the Schwarzschild case analyzed in [17].6 In particular,

in this non-linear analysis, we impose the (conformal) Dirichlet boundary conditions on the

hypersurface as in [17].

To be precise, we will consider the following finite deformation of the static patch geom-

etry as an expansion in ↵:7

ds2

`2
= � ⇢

↵
d⌧ 2 (6.2.20)

+ ⇢2d⌧ 2 + 2d⌧d⇢+ d⌦2
2 + (1� ⇢)

⇥
v2d⌧ 2 � 2vid⌧dx

i
⇤
� 2⇢Pd⌧ 2

+ ↵
h
(�4⇢+ 2P ) d⌦2

2 + (1� ⇢)vivjdxidxj

�
�
⇢2 � 1

� �
r2vi +Rjiv

j
�
d⌧dxi � 2vid⇢dx

i +
�
v2 + 2P

�
d⌧d⇢+ 2 (1� ⇢)�(↵)

i d⌧dxi
i

+ ↵2
⇣
4⇢2d⌦2

2 + 2g(↵
2)

⇢i dxid⇢+ g(↵
2)

ij dxidxj
⌘
+ . . . .

The vi, P and �(↵)
i are functions of (⌧,⌦i) only while the g

(↵2)
i⇢ and g

(↵2)
ij are functions of

(⌧, ⇢,⌦i). We have chosen a gauge where g⇢⇢ = 0. As boundary conditions we require the

6It should be noted that we have presented a more complete linearized analysis than would be possible
for the Schwarzschild case, given the existence of exact linearized solutions in dS4.

7When writing out the metric (6.2.20) we have omitted the metric components g
(↵)
⌧⌧ , g

(↵2)
⌧⌧ , g

(↵2)
⇢⌧ , g

(↵2)
i⌧

and higher order contributions since these do not a↵ect the Einstein equation to the order that we consider.
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perturbations to preserve the induced metric on the hypersurface ⇢ = 1

ds23d =

✓
� 1

↵
+ 1

◆
d⌧ 2 + (1� 2↵)2 d⌦2

2 , (6.2.21)

up to a conformal factor

1 + 2↵P +O(↵2) . (6.2.22)

We also study perturbations such that this hypersurface has constant mean extrinsic curva-

ture and that the solution is regular at the future horizon ⇢ = 0. These boundary conditions

are the natural extension of the boundary conditions imposed on the linearized fluid modes

of the last section.

We now examine the conditions on the deformation parameters imposed by the Einstein

equation with a positive cosmological constant Gµ⌫ = 0 up to and including O(↵0). We

further assume that the only excited field is the metric. The first non-trivial condition

appears at O(↵�1). Here, for G⌧⌧ = 0 to be satisfied, the velocity field vi is required to

be incompressible. At the next order O(↵0), the non-trivial equations are G⌧⌧ = G⌧ i = 0.

From the G⌧ i = 0, it follows that the (vi, P ) need to satisfy the non-linear incompressible

Navier-Stokes equation (6.0.1) on a unit S2. Our result is in complete accordance with the

linearized analysis.8

From the G⌧⌧ = 0 Einstein equation at O(↵0) we find the requirement

ri
S2�

(↵)
i = 2@⌧P + @⌧ (v

2) + total derivatives on the 2-sphere. (6.2.23)

8We would not expect to see the pressure in the linearized analysis since at the linear level vector and
scalar representations of SO(3) decouple. This is no longer the case at second order in perturbation theory
where we expect the equation for the vector representation to be a↵ected by scalars as in the non-linear
case. As in the linearized analysis, we have not considered sound modes, which would contribute to the
divergence of vi.
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The above relation implies:

@⌧

✓Z
v2d⌦2

◆
= �2@⌧

✓Z
Pd⌦2

◆
. (6.2.24)

There is a similar condition between the velocity and pressure fields in the Schwarzschild

case [17]. Such an integral relation can be compared to changes in the horizon area. This

component of the Einstein equation also determines a scalar function involving g(↵
2)

⇢i , g(↵
2)

ij .

6.2.4 Deformations of the Fluid

A natural question to ask about the fluid is whether one can deform it. In this section,

we discuss two simple examples of possible deformations of the fluid.

The first is given by adding a small non-rotating black hole of mass M at the origin

of the static patch. This changes the �gtt = grr components of the metric (6.1.3) to

V (r) = 1 � (r/`)2 � 2M/r. For positive values of M , adding the black hole has the e↵ect

of pulling in the cosmological horizon and thus decreasing its size. For small " ⌘ M/`,

the new position of the cosmological horizon is given by rcos = `(1 � ") to leading order.

In the analogous case of the Schwarzschild black hole, placing a mass at the center of the

static patch corresponds to extracting some mass from the black hole, thus shrinking its

horizon. The mass deformation we have described preserves the spherical symmetry of

the background and thus the near horizon dynamics are expected to be governed by the

Navier-Stokes equation on a sphere.

A slightly more involved deformation corresponds to placing a small rotating mass at

the origin of the static patch. This will cause the cosmological horizon itself to rotate. The

function determining the positions of the horizons is now given by:

V (r) = (1 + (a/r)2)
�
1� (r/`)2

�
� 2M/r . (6.2.25)
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As with the mass term, adding angular momentum shrinks the cosmological horizon. To

lowest order in small " and small � ⌘ (a/`)2 we find that:

rcos = `

✓
1� "(1� �)� 3

2
"2 +O("3, "2�, "�2, �3)

◆
. (6.2.26)

The angular momentum of the space-time becomes Q@� = �aM/ (1 + (a/`)2). It should be

noted that a finite deformation with angular momentum will also deform the sphere into a

spheroidal surface. Thus we lose spherical symmetry and it might be possible that the near

horizon dynamics is no longer governed by the Navier-Stokes equation on the round metric

of S2.

6.3 Pushing the Timelike Surface

So far we have analyzed the behavior near the cosmological horizon. Another timelike

surface of interest in the static patch is given by the observer’s worldline at r = 0.9 Returning

to the analysis of linearized gravity, if we impose Dirichlet boundary conditions leaving the

worldline unperturbed for purely outgoing modes, we obtain another set of discrete modes

known as quasinormal modes (see for example [76]). In the original static patch coordinates

(6.1.3) these are given (for the vector modes) by:

!n` = �i (n+ l + 1) , n = 0, 1, 2, . . . (6.3.27)

Due to the fact that l � 1, a gapless mode is absent in the above spectrum of quasinormal

modes. This is in contrast to the fluid modes (6.2.18) which have !f = 0 at l = 1. The

9Due to its resemblance with the boundary of AdS in the presence of an eternal black hole, recent work
has emphasized the potential importance of the worldline as a candidate for the ultraviolet (holographic)
description of the static patch [48, 77]. Although such a holographic duality is far from clear, one expects
that the infrared behavior must give rise to the Navier-Stokes equation described in the former section.
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gapless mode is absent due to the fact that the ! = 0, l = 1 perturbation diverges on the

worldline, as shown in appendix D.2. It reappears in the spectrum as soon as we ‘pu↵ up’

the thickness of the worldline.

6.3.1 ‘Flowing’ the Dispersion Relations

Our aim is to study the behavior of perturbative data on constant r surfaces as we push

them from the horizon toward the worldline. There is a clear distinction between the lowest

n = 0 quasinormal modes (6.3.27) and the fluid modes (6.2.18). Given a constant r slice at

some position r = rc we impose Dirichlet boundary conditions leaving the induced metric

on the r = rc unchanged. This constant r surface is directly analogous to the timelike

hypersurface at ⇢ = 1 considered above. Furthermore, we require that the modes are purely

outgoing. As before, these two conditions will only be satisfied for a discrete set of modes,

but the dispersion relation will now depend on the dimensionless parameter x = rc/`. For

the surface near the horizon we have x ! 1 and as we approach the worldline we have

x ! 0. For general x, the problem cannot be approached analytically and we must resort

to numerics.

The dispersion relation corresponds to the pole structure of the Green’s function of the

vector modes on the particular cuto↵ surface. Thus, naturally, a flow of the dispersion

relation corresponds to a flow of the Green’s function itself. For an incompressible fluid on

an S2 described by (6.0.1) we can readily obtain the tree level retarded Green’s function of

vi (see for example [109]).

To perform the analysis, it is in fact more convenient to use the (⌧, ⇢)-coordinate system

introduced in (6.1.6). To study di↵erent timelike hypersurfaces we fix ⇢ = 1 and tune ↵ from
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the horizon at 0 to the worldline at 1/2. We must then study for what values of (complex)

! the purely outgoing solutions �gouti⌧ in (6.2.16) vanish at the ⇢ = 1 hypersurface. It is rela-

tively straight forward to compute the corrections to the dispersion relation perturbatively

in ↵. For instance, to linear order in ↵ we find:10

⌫ = 1 +
↵

2

�
5 + 3k2

V

�
. (6.3.28)

Expression (6.3.28) is only reliable for l2 . 2/3↵.

6.3.2 Numerical Results
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Fig. 6.4: Flow of frequency spectrum i!` vs l as we move away from rc ⇡ 0 toward the
cosmological horizon.

Since we impose Dirichlet boundary conditions at ⇢ = 1, ↵ parametrizes the location of

our cuto↵ surface rc with respect to the cosmological horizon. The relation is given by

↵ =
`� rc
2`

=
1� x

2
. (6.3.29)

10It is amusing to note that such a correction could be obtained by adding a suitable forcing term to our
incompressible Navier-Stokes equation [109].
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As we move rc away from the cosmological horizon, we expect to deviate from our quadratic

dispersion relation (6.2.18). Generically when searching for zeros of �gouti⌧ (⇢ = 1) in (6.2.16)

for arbitrary but fixed rc and l, one runs the risk of finding any one of a tower of such zeros

(see (6.3.27) for example).
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Fig. 6.5: Flow of frequency spectrum i!` vs l as we approach rc = `. Points obeying the
fluid dispersion relation are represented in blue.

106



Chapter 6: Fluid/Gravity Correspondence of dS Horizon

In order to make our analysis clear, we perform a search for the lowest lying zeros at a

given rc and l and do not present the rest of the tower. In the plots in figures 6.4 and 6.5

we have not searched for the l = 1 mode as this is where ! = 0 and therefore our solutions

'out
v and 'in

v degenerate. We cover this case in appendix D.2. In what follows we will only

examine the case of pure (negative) imaginary ! given that both the quasinormal modes

(6.3.27) and the fluid modes (6.2.18) obey this property. It would be interesting to extend

the analysis to general ! in the lower complex plane.

We now describe how the spectrum behaves as we approach rc = `. As a reference,

we also present the results for rc close to the pole rc = 0 in figure 6.4 where the linear

dispersion relation is apparent. As rc is increased, we start to observe a deviation from the

linear behavior and the poles start to cluster into staircase-like behavior. For rc close to the

horizon, starting from the plot at the top left corner of figure 6.5, we note that there are (at

least) three distinct sets of modes separated by large gaps. The l = 2 mode lies on the fluid

dispersion relation line (meaning that it satisfies the dispersion relation given by (6.2.18)

with quartic corrections as in (6.3.28)), whereas the rest do not. As we move rc closer to the

horizon, we see that the non-fluid modes get pushed higher and in the fourth plot, the l = 3

mode is plucked down to the fluid line. This happens once again for the l = 4 mode near

rc = 0.9865` whereas the non-fluid modes keep getting pulled higher. The reason for these

jumps is that the lowest lying zeroes of �gouti⌧ are modified discontinuously as a function of rc

as is visually depicted in figure D.1 of appendix D.3. Finally, we find that arbitrarily close

to the horizon the dispersion relation lies entirely on the fluid dispersion relation (6.2.18)

computed analytically.

As a check of our analysis in the previous section, in figure 6.6 we show that the correction
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Fig. 6.6: Flow of fluid mode frequencies with fit lines. The gray line is given by i!` =
(l(l + 1)� 2) while the orange line is given by i!` = ⌫(↵) (l(l + 1)� 2) with ⌫(↵) given
by (6.3.28). Note that the orange line fits the data better away from rc = ` and the gray
and orange lines coincide at the horizon, as expected.

at O(↵) of the fluid viscosity gives the correct behavior for the fluid mode frequencies for

small but nonzero ↵. Notice that the orange line in figure 6.6 fits the data better than the

gray line for rc parametrically displaced from the cosmological horizon. The orange line is

precisely the dispersion relation corrected to O(↵) in our analysis of linear perturbations of

the background metric of the static patch. The gray line does not include O(↵) corrections.

It is interesting to note that all observed spectra of i!` are monotonically increasing

functions of l. This is a feature that we may expect by continuity away from the modes

analytically computed at rc = `, but holds as we push rc a finite amount from the surface,

even when jumps occur.
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6.4 Incompressible Fluids on Spacelike Slices?

So far we have discussed several aspects of the static patch, which is the region accessible

to a single observer. We would now like to briefly discuss some aspects of the future dia-

mond. After all, future infinity is clearly a viable candidate location for the non-perturbative

definition of an asymptotically de Sitter universe. Ordinarily, we would not associate the

dual theory on I+ with the static patch observer. On the other hand, if we impose boundary

conditions where there is no incoming flux from the Northern diamond, such that all data

reaching I+ is coming from a single static patch one might conceive of such a relation.11

In this section we will make some simple mathematical observations about the behavior of

metric deformations on a spacelike slice just outside the cosmological horizon.

6.4.1 Linearized Analysis

Our aim is to solve the linearized equations in the future diamond, imposing Dirichlet

boundary conditions on a constant r surface arbitrarily close to the cosmological horizon.

In order to choose an appropriate near horizon coordinate system we begin with the fu-

ture diamond, described by (6.1.3) with r 2 [`,1]. As before, we introduce the following

coordinate transformation:

t

`
=

1

2↵
⌧̃ � 1

2
log
�
�⇢̃ (1� ↵⇢̃)�1� , r = `(1� 2↵⇢̃) . (6.4.30)

In what follows we will drop the tildes. The metric becomes:

ds2

`2
=
⇣
� ⇢
↵
+ ⇢2

⌘
d⌧ 2 + 2d⌧d⇢+ (1� 2⇢↵)2 d⌦2

2 . (6.4.31)

11Such ‘holographic projections’ of the static patch observer were also considered in the rotating Nariai
geometry [110, 31, 67]. In that case a near cosmological horizon limit allowed for an isolated space-time
whose (spacelike) boundary is of the same type as the spacelike slice we are discussing here.
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Taking ↵! 0 with ↵ > 0, constant ⇢ slices for ⇢ < 0 now correspond to spacelike slices just

above the cosmological horizon. This slice receives data from the future horizons of both the

Southern and Northern patches. If we are to isolate one of the observers, say the Southern

observer, we must impose that the incoming flux from the Northern static patch vanishes,

as shown in figure 6.7.

Fig. 6.7: Our boundary conditions for the linearized modes are such that the induced metric
on the ⇢ = �1 slice is unchanged and there is no incoming flux from the Northern static
patch.

The vector mode with vanishing flux from the Northern patch is generated by a master

field �S
v = e�2i↵!t(⌧,⇢)/`'S

v , with:

'S
v = (�⇢)�i↵!

2F1

⇥
a1, b1; c1;↵⇢(�1 + 2↵⇢)�1

⇤
(1� ↵⇢)�i↵!(1� 2↵⇢)2i↵! , (6.4.32)

where

a1 = �l � 2i↵! , b1 = 1 + l � 2i↵! , c1 = 1� 2i↵! . (6.4.33)

The linearized metric deformation is given by:

�gSi⌧ = 2Vi ⇥ e�i!⌧ (�⇢)i↵!+1(1� ↵⇢)�i↵!+1

✓
1� (1� 2↵⇢)

2↵
@⇢

◆
'S
v , (6.4.34)

�gSi⇢ = �2↵Vi ⇥ e�i!⌧

✓
1� ↵⇢
�⇢

◆�i↵! ✓
1� i!(1� 2↵⇢)

2⇢(1� ↵⇢)

◆
� (1� 2↵⇢)

2↵
@⇢

�
'S
v .

(6.4.35)
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Demanding that the above vector modes vanish at the spacelike ⇢ = �1 hypersurface in

the limit where ↵! 0 gives the discrete relation:

!sf = +i (l(l + 1)� 2) , l = 1, 2, . . . (6.4.36)

This is precisely the same dispersion relation that was found earlier in (6.2.18) for the

Lorentzian hypersurface but with ⌫sf = �1.12 To linear order in ↵ we find:

⌫sf = �1 + ↵

2

�
5 + 3k2

V

�
. (6.4.37)

It is not hard to show perturbatively in ↵ that ⌫sf (↵) = �⌫(�↵). Upon evaluating the

linearized metric modes on the ‘spacelike fluid’ frequencies (6.4.36) we find that the vector

modes are regular as we approach the ⇢! 0 horizon.

6.4.2 Non-linear Analysis

We would now like to perform a non-linear analysis of the metric deformations in an ↵

expansion, again in the context of the spacelike slices. The cuto↵ surface will now be at

⇢ = �1. Non-linear deformations analogous to those presented for timelike slicings are:

ds2

`2
= � ⇢

↵
d⌧ 2 (6.4.38)

+ ⇢2d⌧ 2 + 2d⌧d⇢+ d⌦2
2 + (1 + ⇢)

⇥
v2d⌧ 2 � 2vid⌧dx

i
⇤
+ 2⇢Pd⌧ 2

� ↵
h
(4⇢+ 2P ) d⌦2

2 � (1 + ⇢)vivjdx
idxj

+
�
⇢2 � 1

� �
r2vi +Rjiv

j
�
d⌧dxi + 2vid⇢dx

i �
�
v2 + 2P

�
d⌧d⇢+ 2 (1 + ⇢)�(↵)

i d⌧dxi
i

+ ↵2
⇣
4⇢2d⌦2

2 + 2g(↵
2)

⇢i dxid⇢+ g(↵
2)

ij dxidxj
⌘
+ . . . .

12We note that a time-reversal ⌧ ! �⌧ transformation leads to vi ! �vi and thus introduces a sign
change to the viscosity term ⌫sf in the non-linear Navier-Stokes equation (6.0.1). Thus, one can interpret
a negative viscosity fluid as a time-reversed version of a positive viscosity fluid. We thank R. Loganayagam
for pointing this out to us.
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On the spacelike slice at ⇢ = �1, the internal geometry is conformally equal to

ds23d =

✓
1

↵
+ 1

◆
d⌧ 2 + (1 + 2↵)2 d⌦2

2 , (6.4.39)

with a conformal factor

1� 2↵P +O(↵2) . (6.4.40)

Similarly to the timelike case, for this metric to solve the Einstein equation through O(↵0),

(vi, P ) are required to solve the incompressible Navier-Stokes equation:

@⌧v
i + vjrj

S2v
i +ri

S2P � ⌫sf
�
r2

S2vi +Ri
jv

j
�
= 0 (6.4.41)

with

⌫sf = �1 . (6.4.42)

Note again that the viscosity ⌫sf has changed sign from the fluid on the timelike slices. By

integrating the G⌧⌧ = 0 condition at O(↵0) over the sphere, we again find the constraint

that

@⌧

✓Z
v2d⌦2

◆
= �2@⌧

✓Z
Pd⌦2

◆
. (6.4.43)

Hence the structure of the Einstein equation with positive cosmological constant on the

timelike slice near the cosmological horizon with the specified boundary conditions is closely

mimicked in this spacelike context.

6.4.3 Pushing the Spacelike Slice to I+

We now wish to push the spacelike slice all the way to I+ and study the constraints on

!. We impose fast-falling Dirichlet boundary conditions at I+ and no incoming flux from

the Northern patch.
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Reverting to static patch (r, t)-coordinates, the solutions �v(r, t) = e�i!t'v(r) analogous

to (6.2.12) and (6.2.13) near I+ were computed in [75] and are given by:

'�
v =

✓
r2

`2
� 1

◆�i!`/2 ⇣r
`

⌘i!
2F1

✓
a1; b1; c1;

`2

r2

◆
, (6.4.44)

'+
v =

✓
r2

`2
� 1

◆�i!`/2 ⇣r
`

⌘�1+i!`

2F1

✓
a2; b2; c2;

`2

r2

◆
, (6.4.45)

with

a1 =
1

2
(1 + l � i!`) , b1 =

1

2
(�l � i!`) , c1 =

1

2
; (6.4.46)

a2 =
1

2
(1� l � i!`) , b2 =

1

2
(2 + l � i!`) , c2 =

3

2
. (6.4.47)

As we approach I+ in the limit r !1 we find '�
v ⇠ 1 and '+

v ⇠ `/r. Note that (c2� a2�

b2) = i!`. In order to eliminate deformations of the conformal metric at I+ we switch o↵

the slow falling mode '�
v .

Our task is to eliminate the incoming Northern flux upon turning on '+
v . It is not hard

to see that this will require (c2 � a2 � b2) = i!` to be an integer. We must further ensure

that metric fluctuations are analytic for i!` 2 Z+. To achieve this, we must eliminate the

logarithmic term in the hypergeometric identity (D.4.10). This implies that either

a2 = �n1 or b2 = �n2 , ni = 0, 1, 2, . . . (6.4.48)

It turns out that of the two possibilities, only the second one is su�cient to eliminate the

Northern incoming flux. In the first case, we have to impose a further inequality n1 � l,

whose origin is explained in appendix D.4. Hence, defining n1 ⌘ l+ ñ1, ñ1 = 0, 1, 2, . . . and

imposing no further condition on the integer n2, we obtain the following conditions:

!I+

n ` = �i(2ñ1 + 1 + l) , ñ1 = 0, 1, 2, . . . (6.4.49)

!I+

n ` = �i(2n2 + 2 + l) , n2 = 0, 1, 2, . . . (6.4.50)
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which combines into one single tower of modes

!I+

n ` = �i(n+ l + 1) , n = 0, 1, 2, . . . (6.4.51)

Curiously, and perhaps interestingly, this is exactly the same set of modes as the quasinormal

mode spectrum (6.3.27) in the Southern patch.

6.4.4 Topological Black Holes in AdS4

In fact, the above calculation is mathematically equivalent to the computation of quasi-

normal modes for the massless topological black hole in AdS4 [111, 112, 113] (see also [114])

upon continuing k2
V ! �k2

V . This is due to the fact that the metric of the massless topo-

logical AdS4:

ds2 = �
 
�1 +

✓
r̃

`AdS

◆2
!
dt̃2 +

 
�1 +

✓
r̃

`AdS

◆2
!�1

dr̃2 + r̃2dH2
2 (6.4.52)

is related to the static patch metric by an analytic continuation. The two-dimensional

space: dH2
2 = (d⇠2+sinh2 ⇠d�̃2) is the standard metric on the hyperbolic two-manifold. The

analytic continuation from the static patch metric (6.1.3) to the above metric is given by:

`! i`AdS , t! it̃ , r ! ir̃ , ✓ ! i⇠ , �! �̃ . (6.4.53)

An observer in the massless topological AdS4 geometry observes a Hawking temperature

given by T = 1/2⇡`AdS. If one considers compact quotient of H2, there is a finite entropy

proportional to (`AdS/`P )2 associated with the horizon at r̃ = `AdS. We also expect such

mathematical similarities to hold between the boundary correlators near the boundary of

topological AdS4 black holes and those near I+ (using the boundary conditions discussed

above). It is also interesting to note that at the non-linear level one can add negative
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energy to (6.4.52) and create spherically symmetric asymptotically AdS4 topological black

holes. This occurs up to a critical negative mass, for which one finds a solution interpolating

between AdS4 near the boundary and AdS2 ⇥H2 [111]. Similarly, adding su�cient mass to

the static patch leads to the Nariai solution which interpolates between dS4 near I+ and

dS2 ⇥ S2. We hope to further uncover this map in future work, as it may provide insight

into the nature of the static patch observer.
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Appendix A

The Symplectic Form and Covariant

Phase Space Charges

A.1 The Symplectic Form

The symplectic form for the Einstein-Hilbert Lagrangian is given by1

!µ
EH [�1g, �2g] = �P µ⌫��✏⇣ (�2g��r⌫�1g✏⇣ � (1$ 2)) , (A.1.1)

where the tensor density P µ⌫��✏⇣ is given by:

P µ⌫↵��� =
@

@g��,↵�

�LEH

�gµ⌫
, (A.1.2)

where LEH ⌘
p�gR[g]/16⇡G. More explicitly, P µ⌫↵��� is given by:

P µ⌫↵��� =

p�g
32⇡G

�
gµ⌫g�(↵g�)� + gµ(�g�)⌫g↵� + gµ(↵g�)⌫g��

�gµ⌫g��g↵� � gµ(�g�)(↵g�)⌫ � gµ(↵g�)(�g�)⌫
�
. (A.1.3)

1For asymptotically de Sitter spacetimes obeying the Fe↵erman-Graham form, one can show that the
Iyer-Wald [23] and Barnich-Brandt constructions [29] of the symplectic form are equivalent.
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The symplectic form for the counterterm action Sct in four-dimensions can be expressed

in terms of the three-dimensional symplectic form of the Einstein-Hilbert Lagrangian as

follows:

!ct [�1�, �2�] = !(3)
EH [�1�, �2�] . (A.1.4)

In the FG gauge, variations of the metric reduce to variations of the induced metric � at

the boundary and the pullback of the (d + 1)-dimensional symplectic structure !EH to the

spatial slice ⌃ can be expressed in terms of the d-dimensional symplectic structure !(d)
EH as

follows:

!EH [�1g, �2g] =
1

⌘
!(d)
EH [�1�, �2�] . (A.1.5)

Expanding !(d)
EH on-shell using the FG expansion (2.1.2) yields

!(d)
EH [�1�, �2�] = ⌘2�d!(0)EH

⇥
�1g

(0), �2g
(0)
⇤
+

⌘4�d!(2)EH

⇥
�1g

(0), �2g
(0)
⇤
+O

�
⌘5�d

�
. (A.1.6)

A.2 Covariant Phase Space Charges

In this appendix, we provide some details on the charges. We begin with the expression

for the charge

�Q⇠ ⌘
Z

@⌃

kdS
⇠ [�g] , (A.2.7)

where kdS
⇠ [�g] was given in (2.4.24). In direct analogy to [30], we find

�Q⇠ = ��
Z

@⌃

K⇠ [g] +

Z

@⌃

i⇠⇥EH [g, �g] +

Z

@⌃

!ct[L⇠g, �g] , (A.2.8)

where @⌃ is a compact two-dimensional submanifold of I+ and

⇥EH [g, �g] ⌘
p�g
96⇡G

⇥
gµ⌫r��g�⌫ � g↵�rµ�g↵�

⇤
✏µ�⇢�dx

�dx⇢dx� . (A.2.9)
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The K⇠[g] term is the usual Komar term [115]:

K⇠[g] ⌘ �
p�g
64⇡G

[rµ⇠⌫ �r⌫⇠µ] ✏µ⌫��dx
�dx� . (A.2.10)

The counter terms are related to ⇥EH by the following condition:

⇥EH [g, �g]|I+ = �LGH + ��ij
�Lct

��ij
� 1

2

p
g(0)T ij

(0)�g
(0)
ij d3x . (A.2.11)

We further define the pre-symplectic form ⇥ct[�, ��] which is related to the counterterm

symplectic structure !ct and counterterm Lagrangian as:

d⇥ct ⌘ �Lct � ��ij
�Lct

��ij
, !ct[�1�, �2�] = �1⇥ct[�, �2�]� �2⇥ct[�, �1�] . (A.2.12)

Combining the above, we obtain

�Q⇠ = �

Z

�⌃

(�K⇠ + i⇠LGH + i⇠Lct �⇥ct[�, �⇠�])�
Z

@⌃

i⇠⇥(0)[g
(0), �g(0)] . (A.2.13)

It then follows from a straightforward calculation that (A.2.13) leads to

�Q⇠ = �QBY �
Z

@⌃

i⇠⇥(0)[g
(0), �g(0)] . (A.2.14)
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Graviton in Global Coordinates

We consider the global patch of dS4:

ds2

`2
= �d⌧ 2 + cosh2 ⌧d⌦2

3 , (B.0.1)

covering the full space. In global conformal coordinates one has:

ds2

`2
=

1

cos2 T

⇥
�dT 2 + d⌦2

3

⇤
. (B.0.2)

We take the parametrization of the three-sphere to be

d⌦2
3 =

1

(1� r2)
dr2 + r2d⌦2

2 , r 2 [0, 1] . (B.0.3)

and defined cosT ⌘ (cosh ⌧)�1. Gravitational perturbations about this background has

been analysed in [116]. In their notation, a(T ) ⌘ (cosT )�1.

We focus on the tensor harmonics Y(T )ij of the three-sphere, obeying the transverse-

traceless condition. These give rise to 2 independent degrees of freedom. The equation to

be solved is given by [116]:

�Rij �
3

`2
�gij = 0 . (B.0.4)

119



Appendix B: Graviton in Global Coordinates

Parametrizing the perturbation as �gij = 2a(T )2H(T )Y(T )ij, the linearized Einstein’s equa-

tion becomes:

0 = H 00 + 2⌦H 0 + 2⌦0H + 4⌦2H +
�
k2
T + 6

�
H � 6a2H (B.0.5)

) 0 = H 00 + 2 tanTH 0 +
�
2 + k2

T

�
H (B.0.6)

with ⌦(T ) ⌘ a0(T )/a(T ) and k2
T = l (l + 2)� 2 , l = 1, 2, . . .

The two independent solutions are then given by:

H(0) = F

✓
�1

2 �K,�1
2 +K;�1

2
;

1

cosh2 ⌧

◆
(B.0.7)

H(3) =
1

cosh3 ⌧
F

✓
1�K, 1 +K;

5

2
;

1

cosh2 ⌧

◆
, (B.0.8)

where:

K ⌘
p
k2
T + 3

2
. (B.0.9)

Recall that �gij ⇠ a2H(⌧) = (cosh ⌧)2 H(⌧), we note the following Starobinskii fall-o↵s [33]

near I+:

a(⌧)2H(0) ⇠ e2⌧ + . . . , (B.0.10)

a(⌧)2H(3) ⇠ e�⌧ + . . . , (B.0.11)

while at I� a similar behavior is observed:

a(⌧)2H(0) ⇠ e2⌧ + . . . , (B.0.12)

a(⌧)2H(3) ⇠ e�⌧ + . . . (B.0.13)

The first mode is growing both at I+and I� and the second mode is decaying at both

boundaries. This is due to the fact that these solutions only depend on ⌧ through cosh ⌧

which is invariant under time reversal ⌧ ! �⌧ . Hence the decay behavior near one boundary

is the same as the behavior near the other boundary.
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Killing Vectors and Massive Green’s

Function

C.1 dS4 Killing vectors

In global coordinates (t, , ✓,�), the dS4 metric reads

ds2 = �dt2 + cosh2 t d⌦2
3, d⌦2

3 ⌘ d 2 + sin2  
�
d✓2 + sin2 ✓d�2

�
(C.1.1)

with 10 Killing vectors:

L0 = cos @t � tanh t sin @ ,

M⌥1 = ± sin sin ✓ sin� @t + (1± tanh t cos ) sin ✓ sin� @ 

+(cot ± tanh t csc )(cos ✓ sin� @✓ + csc ✓ cos� @�),

M⌥2 = ± sin sin ✓ cos� @t + (1± tanh t cos ) sin ✓ cos� @ 

+(cot ± tanh t csc )(cos ✓ cos� @✓ � csc ✓ sin� @�),

M⌥3 = ± sin cos ✓ @t + (1± tanh t cos ) cos ✓ @ � (cot ± tanh t csc ) sin ✓ @✓,
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J1 = cos� @✓ � sin� cot ✓ @�,

J2 = � sin� @✓ � cos� cot ✓ @�,

J3 = @�. (C.1.2)

Their non-zero commutators are:

[Ji, Jj] =
3X

k=1

✏ijkJk, [Ji,M±j] =
3X

k=1

✏ijkM±k,

[L0,M±i] = ⌥M±i, [M+i,M�j] = 2L0�ij + 2
3X

k=1

✏ijkJk. (C.1.3)

As expected, these are the relations which define the SO(4, 1) algebra. The commutators on

the first line indicate that the Ji generate an SO(3) subalgebra, under which the M+i and

the M�i transform as vectors. The second line implies that for each i 2 {1, 2, 3}, the Killing

vectors M±i and L0 form an SO(2, 1) subalgebra satisfying (not summing over i)

[M+i,M�i] = 2L0, [L0,M±i] = ⌥M±i. (C.1.4)

The scalar Laplacian is a Casimir operator. It reads:

`2r2 = �L0(L0 � 3) +
3X

i=1

M�iM+i + J2. (C.1.5)

The convention is that J2 = �L(L + 1) on the spherical harmonics YLj. The conformal

Killing vectors of the S3 are given by the restriction of dS4 Killing vectors on I+:

L0 = � sin @ ,

M⌥1 = (1± cos ) sin ✓ sin� @ + (cot ± csc )(cos ✓ sin� @✓ + csc ✓ cos� @�),

M⌥2 = (1± cos ) sin ✓ cos� @ + (cot ± csc )(cos ✓ cos� @✓ � csc ✓ sin� @�),

M⌥3 = (1± cos ) cos ✓ @ � (cot ± csc ) sin ✓ @✓,

J1 = cos� @✓ � sin� cot ✓ @�,
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J2 = � sin� @✓ � cos� cot ✓ @�,

J3 = @�. (C.1.6)

To relate the above de Sitter generators to the embedding coordinates X defined by

⌘µ⌫X
µX⌫ = `2, (C.1.7)

where ⌘ has signature (4, 1) and the usual Lorentz generators are given by

Mµ⌫ = Xµ @⌫ �X⌫ @µ, (C.1.8)

with commutators

[Mµ⌫ ,M↵�] = ⌘↵⌫Mµ� � ⌘↵µM⌫� � ⌘�⌫Mµ↵ + ⌘�µM⌫↵, (C.1.9)

we have for i, j, k 2 {1, 2, 3}

L0 = M40,

M⌥k = M4k ⌥M0k,

Ji = �✏ijkMjk. (C.1.10)

The standard Klein-Gordon adjoint acts as:

M †
µ⌫ = �Mµ⌫ , (C.1.11)

where the adjoint is defined in the standard way as
⌦
f,M †g

↵
KG
⌘ hMf, giKG. The action

of R on the Killing vectors is:

L0 ! �L0, Jk ! Jk, M±k ! �M⌥k, (C.1.12)

or equivalently, for j, k 2 {1, 2, 3},

M40 ! �M40, M4k ! �M4k, M0k !M0k, Mjk !Mjk. (C.1.13)
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In the R-norm, if we define M †R as
⌦
f,M †Rg

↵
R
⌘ hMf, giR then

M †R
40 = M40, M †R

4k = M4k, M †R
0k = �M0k, M †R

jk = �Mjk. (C.1.14)

With respect to the R-norm, the antihermitian generators are iM40, iM4k, M0k and Mjk.

On the other hand, we have from (C.1.9) that for i, j, k 2 {1, 2, 3}, XXX while the Mjk obey

the usual SO(3) algebra. Now, if we sent M40 ! iM40 and M4k ! iM4k, we would get the

same algebra but with ⌘44 ! �⌘44. This demonstrates that the insertion of R in the norm

transforms SO(4, 1) into SO(3, 2).

C.2 Norm for spherically symmetric states

Consider the operator L⌥1 ⌘
P3

k=1 M⌥kM⌥k, which evidently satisfies [Jk, L⌥1] = 0.

Defining |h+ ni ⌘ Ln
+1 |hi, where |hi is the spherically symmetric highest-weight state with

L0 |hi = �h |hi and J2 |hi = 0, we have

[L+1, L�1] |h+ ni = 4L0

�
2L2

0 + 2r2 � 3
�
|h+ ni . (C.2.15)

The Casimir is

r2 = �L0(L0 � 3) +M�kM+k + J2 = �L0(L0 + 3) +M+kM�k + J2 (C.2.16)

and r2 |h+ ni = �h(h� 3) |h+ ni. Then using

[L�1, L+1] |h+ ni = 4(h+ 2n)(8n2 + 8nh+ 6h� 3) |h+ ni , (C.2.17)

it is straightforward to show that

hh|Ln
�1L

n
+1 |hi = 4n(n+ h� 1)(2n+ 1)(2n+ 2h� 3) hh|Ln�1

�1 Ln�1
+1 |hi

=
�(2 + 2n)�(2h+ 2n� 1)

�(2h� 1)
hh|hi . (C.2.18)
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C.3 Green function at the south pole

We wish to evaluate the sum (5.4.42) over the quasinormal modes for the massive case,

G(t,⌦SP ; t
0,⌦SP ) =

h�
et � i✏

� ⇣
e�t0 � i✏

⌘i�h+X

n

c+n


e�(t�t0)

(et � i✏) (e�t0 � i✏)

�n

+
h�
et � i✏

� ⇣
e�t0 � i✏

⌘i�h�X

n

c�n


e�(t�t0)

(et � i✏) (e�t0 � i✏)

�n
(C.3.19)

where

c±n = ± e�i⇡h±

(�2⇡2) sin (⇡µ)

�(32 + n)�(h± + n)

�(1 + n± µ)�(1 + n)
. (C.3.20)

Each sum combines into a hypergeometric function with argument shifted by ✏

2 sin(⇡µ)G(t,⌦SP ; t
0,⌦SP )

=
e�i⇡h+

[(et � i✏) (e�t0 � i✏)]h+

�
�
3
2

�
�(h+)

(�⇡2)�(1 + µ)
F


h+,

3

2
; 1 + µ;

e�(t�t0)

(et � i✏) (e�t0 � i✏)

�

� e�i⇡h�

[(et � i✏) (e�t0 � i✏)]h�

�
�
3
2

�
�(h�)

(�⇡2)�(1� µ)
F


h�,

3

2
; 1� µ;

e�(t�t0)

(et � i✏) (e�t0 � i✏)

�
.

(C.3.21)

Kummer’s quadratic transformation

F


↵, �, 2�,
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with

z ⌘ e�(t�t0)/2

[(et � i✏) (e�t0 � i✏)]1/2
(C.3.23)

allows us to rewrite the hypergeometric functions in the more recognizable form

2 sin(⇡µ)G(t,⌦SP ; t
0,⌦SP ) = e�i⇡h+R�h+H+(P✏)� e�i⇡h�R�h�H�(P✏) (C.3.24)

where H± are analytical continuations of the Green functions G± we defined in (5.5.53) to

the region P > 1:

H±(x; x
0) = GE(x; x

0)� e�i⇡h⌥GE(x; x
0
A). (C.3.25)
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They are explicitly given by

H±(P✏) =
�(⌥µ)�(h±) sin(±⇡µ)

21+2h±⇡5/2

✓
2

1 + P

◆h±

F


h±, h± � 1; 2 (h± � 1) ,

2

1 + P✏

�
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with the argument

2

1 + P✏
⌘ 4z

(1 + z)2
(C.3.27)

while R is some correction factor

R ⌘ z
�
et � i✏
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⌘
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�
et � i✏
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Note that when ✏! 0, this correction R! 1 and z ! e�(t�t0).

Also, observe that (C.3.27) implies that

P✏ =
1

2

✓
z +

1

z
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Away from the singularity at t = t0, we can set ✏ to zero so that

G(t,⌦SP ; t
0,⌦SP ) =

e�i⇡h+H+(P )� e�i⇡h�H�(P )

2 sin(⇡µ)
= GE(t,⌦SP ; t

0,⌦SP ). (C.3.30)

The singularity structure for G can be also analyzed from (C.3.24). The correction factor R

is regular near the singularity, while the G±(P ) have poles when P approaches 1. Expanding

(C.3.29) to first order in ✏ yields

P✏ = cosh(t� t0)� i✏ sinh(t� t0)

✓
e�t + et

0

2

◆
= P � i✏ŝ(x, x0) (C.3.31)

with

ŝ(x, x0) ⌘ sinh(t� t0)

✓
e�t + et

0

2

◆
. (C.3.32)

The singularity structure therefore is the same as in definition (5.5.50) for the Euclidean

Green function up to redefinition of ✏ by some positive function.
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Appendix D

dS Fluid/Gravity

D.1 Scalar Perturbations

Gravitational perturbations in static dS4 consist of a scalar and vector mode of the

SO(3) of the two-sphere. There are no tensor modes in four dimensions. Scalar harmonic

perturbations can be reduced to a single Ishibashi-Kodama master field [105, 106], which

obeys the same e↵ective equation as that of the vector perturbations except that the angular

number l begins at l = 0 (instead of l = 1 in the vector case).

An incompressible fluid requires a divergenceless velocity field vi. The scalar harmonic

allows only the possibility vi / Si ⌘ �riS. S is the scalar harmonic on the sphere which

satisfies:

�
r2

S2 + k2
S

�
S = 0 , k2

S = l(l + 1) , l = 0, 1, 2, . . . (D.1.1)

Imposing incompressibility leads to

ri
S2vi / r2

S2S = �k2
SS (D.1.2)
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which vanishes for kS = 0, i.e. the spherically symmetric mode l = 0. In this case vi = 0

and we are left with a trivial fluid.

Thus, in the case of an incompressible fluid, the scalar mode only consists of trivial fluids.

It would be interesting to investigate the case of a compressible fluid which allows for sound

modes.1

D.2 The l = 1 Vector Perturbation

Gravitational vector perturbations with l = 1 di↵er from l > 2. We follow the discussion

in [105, 106]. In addition to equation 6.2.9, spherical vector harmonics satisfy the following

equation:

�
r2

S2 + k2
V � 3

�
Vij = 0 , Vij ⌘ �

1

2kV
[DiVj +DjVi] , (D.2.3)

where Di ⌘ (rS2)i. For k
2
V �3  0 it can be shown that Vij vanishes and therefore, V i must

be a Killing vector on the sphere. In this case, we parametrize the perturbations as:

�gai = rfaVi, (D.2.4)

where xa = {t, r} and xi = {✓,�}. Given that Vij = 0 implies �gij = 0, we can no longer fix

the gauge freedom by imposing �gij = 0. Instead, we will fix the gauge fr = 0. From [106],

using the only gauge invariant object Fab:

r�1Fab = Da

✓
fb
r

◆
�Db

✓
fa
r

◆
, Da ⌘

�
rg(2)

�
a

(D.2.5)

the Einstein equation imply that Fab is:

Fab =
3J

r3
✏ab (D.2.6)

1In [15], it was shown for planar horizons that the speed of sound for the scalar sound mode goes to
infinity and e↵ectively decouples from the non-relativistic fluid sector.
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with J constant. In the case of a perturbation about a spherically symmetric black hole,

this corresponds to giving it a small amount of angular momentum [106].

We can study the r dependence of the metric components. Given that the connection

term will drop out due to anti-symmetrization, we can replace the covariant derivatives with

ordinary derivatives and find:

� 3J

r4
= @r

✓
ft
r

◆
. (D.2.7)

The above integrates to

ft(r) = J

✓
1

r2
� r

r3c

◆
, (D.2.8)

where we have set Dirichlet boundary conditions on �git at r = rc. Hence, the perturbed

metric reads

ds2 = ds20 + J


1

r
� r2

r3c

�
Vi(✓,�)dtdx

i (D.2.9)

with Vi a Killing vector on S2.

D.3 Mind the Gap

Looking at the last two plots in figure 6.5, we see that as we move the cuto↵ surface away

from the cosmological horizon, the zeroes for l = 9 and l = 10 modes jump discontinuously.

We would like to describe how this behavior arises. Recall that our goal was to find the

lowest lying zero of �gouti⌧ (⇢ = 1) as a function of ! on the negative imaginary axis as we

move rc. Notice in figure D.1 that as we move rc to smaller values, the lowest lying zero

disappears and the new lowest lying zero is at a finite distance away in frequency space.

129



Appendix D: dS Fluid/Gravity

200 400 600 800 1000
iw{

-200

-100

100

200

300

400

500
dgit

rc=0.999 {

200 400 600 800 1000
iw{

-200

-100

100

200

300

400

500
dgit

rc=0.998 {

200 400 600 800 1000
iw{

-200

-100

100

200

300

400

500
dgit

rc=0.997 {

200 400 600 800 1000
iw{

-200

-100

100

200

300

400

500
dgit

rc=0.996 {

Fig. D.1: Flow of �gouti⌧ (⇢ = 1) for l = 10 as we move rc away from the cosmological horizon.
We wish to find frequencies that make this function vanishes. As we vary rc the zero jumps.

D.4 Hypergeometric Gymnastics

For (c� a� b) positive integer the following relation holds [117]:

2F1 (a; b; c; z) =
�(c� a� b)�(c)

�(c� b)�(c� a)

c�a�b�1X

n=0

(a)n(b)n
(1 + a+ b� c)nn!

(1� z)n

+ (z � 1)c�a�b �(c)

�(a)�(b)

1X

n=0

(c� b)n(c� a)n
n!(n+ c� a� b)!

[kn � log(1� z)] (1� z)n , (D.4.10)

where (a)n ⌘ �(a+ n)/�(a) are the Pochhammer symbols and

kn =  (n+ 1) +  (n+ 1 + c� a� b)�  (n+ c� a)�  (n+ c� b) (D.4.11)

with  (z) = d log�(z)/dz.
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We treat the case covered by equation (D.4.10) as it is relevant to the text. To eliminate

the log terms, we require 1/�(a)�(b) = 0. In the case of a = �n1, n1 = 0, 1, 2, . . ., if c�b > 0

(which in the spacelike case becomes n1 � l), then the whole second sum vanishes and we

get [118]:

2F1 (a; b; c; z) =
�(c� a� b)�(c)

�(c� b)�(c� a)
2F1 (a; b; 1� c; 1� z) (D.4.12)

which goes to a constant as r ! 1 (here z = `2/r2) and translates into the modes with no

incoming flux from the Northern patch. So, these are the modes we want.2

In the other regime c � b  0, the first sum vanishes completely due to the gamma

function’s poles. Naively, we would think that the whole expression is zero, however, the

second term contains a divergent term  (n + c � b) in the sum that will cancel out the

divergence in 1/�(a) for n  �(c� b). then we actually have

 (n+ c� b)

�(a)
⇠ �(�a+ 1) (D.4.13)

leading to[118]:

2F1 (a; b; c; z) ⇠
�(c)�(�a+ 1)

(c� a� b)!�(b)
(1� z)c�a�b

2F1 (c� b; c� a; 1 + c; 1� z) . (D.4.14)

This implies that the '+
v tends to (r2 � 1)i!/2 (as r ! 1) which is an incoming wave from

the Northern patch and should be excluded.

2In the case of b = �n2, n2 = 0, 1, 2, . . ., the analogous inequality in the first regime is c � a > 0.
However, our parameters imply that c� a > 0 is always true. Thus we are always in this first regime which
gives the modes that we want and there is no further restriction on n2.
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