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Abstract

Disease surveillance is the continuous collection, analysis, and interpretation of

health-related data. Information gained from routine HIV disease surveillance is vital to

national program managers deciding to implement new prevention or treatment

programs. In this dissertation, we describe methods for estimation of HIV incidence and

the prevalence of HIV drug resistance.

HIV incidence estimation is critical for identifying at-risk populations for targeted

interventions and measuring the effectiveness of these interventions. We provide an

in-depth literature review of the available options for estimating HIV incidence,

including cross-sectional assays. Next, we describe a novel cross-sectional assay for HIV

incidence estimation that discriminates between recent and long-term infections on the

basis of within-host viral diversity. Diversity is measured using a version of Shannons

entropy that we adapt to improve discriminatory ability. These adaptations include

breaking the within-host sequence alignment into smaller sections to allow for more

nuanced detection of within-host variability, and we suggest an algorithm for adjusting

for multiple HIV infections using clustering methods.

HIV drug resistance surveillance guides national programmatic managers

identifying effective treatment regimens for HIV-infected individuals in their countries.

We describe a large-scale consulting project with the World Health Organization to

redesign their guidance for pre-treatment and acquired HIV drug resistance surveillance

in low- and middle-income countries. Our consulting work prompted a variety of
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interesting statistical questions that we address in a series of papers. We describe a novel

method for calculating sample sizes for two-stage clustered surveys in which the finite

population correction can be applied. Our method results in a sometimes dramatic

decrease in sample size while still achieving the desired precision. We introduce a novel

acquired HIV drug resistance outcome for measuring viral load suppression that

incorporates information on patient loss-to-follow-up. This outcome has increased

epidemiological utility over previously used outcomes. Finally, we evaluate methods for

confidence interval estimation for proportions measured in surveys and provide

recommendations for their use.

iv



Contents

Title page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 The challenges of HIV incidence estimation 6

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Cross-sectional assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Diversity-based assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Adapting entropy to measure within-host viral diversity for use in a cross-
sectional HIV-1 incidence assay 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 WHO HIV drug resistance surveillance consulting project report 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Pre-treatment drug resistance (PDR) . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Acquired drug resistance (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

v



5 The use of the finite population correction in survey design for national disease
surveillance 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Prediction of fpc effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Sample size calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Development of a viral load suppression measure adjusted for non-retention
for the surveillance of acquired HIV drug resistance 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Motivation for adjusted VLS outcome . . . . . . . . . . . . . . . . . . . . . . 95

6.3 ADR survey implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 ADR survey design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Evaluating confidence interval methods for binomial proportions in clustered
surveys 111

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Confidence interval methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Truncation and degenerate intervals . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Appendices 137

A.1 The use of the finite population correction in survey design for national
disease surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Development of a viral load suppression measure adjusted for non-retention
for the surveillance of acquired HIV drug resistance . . . . . . . . . . . . . . 147

References 152

vi



List of Figures

3.1 Highlighter plot example of sectioned entropy procedure. The alignment
of sequences within a host is subdivided into sections of a pre-determined
length. Entropy is measured within each section, and the overall entropy
score is a weighted average of the section-specific entropy measures. . . . . 24

3.2 Highlighter plot example of adjustment for multiplicity of infection pro-
cedure. Within each section, clustering methods are applied to separate
sequences within a host into distinct sub-lineages. Entropy is measured
within each sub-lineage and combined across sub-lineages. . . . . . . . . . . 25

3.3 Entropy score trajectories and LOESS line for the env gene of 42 acutely and
recently HIV-infected subjects. (a) Whole alignment approach. (b) Section-
ing procedure is applied with L = 500 without adjustment for multiplicity
of infection. (c) Sectioning procedure is applied with L = 250 without ad-
justment for multiplicity of infection. (d) Sectioning procedure is applied
with L = 50 without adjustment for multiplicity of infection. . . . . . . . . . 28

3.4 Entropy score trajectories and LOESS line for the env gene of 42 acutely and
recently HIV-infected subjects. (a) Sectioning procedure is applied with
L = 250 without adjustment for multiplicity of infection. (b) Sectioning
procedure is applied with L = 250 with adjustment for multiplicity of in-
fection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Q10 trajectories and LOESS line for the env gene of 42 acutely and recently
HIV-infected subjects. (a) All trajectories. (b) Detail. . . . . . . . . . . . . . . 31

7.1 Confidence interval coverage probability versus true prevalence of out-
come (0.01 to 0.99) for n = 30 PSUs, m = 7 SSUs per PSU, and ICC = 0.15.
All methods are shown with unadjusted and adjusted intervals. (a) Wald,
(b) Wilson, (c) Clopper-Pearson, (d) Jeffreys, (e) Agresti-Coull, (f) Logit, (g)
Arcsine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Average coverage vs. average width plot. n = 30, m = 7, ICC = 0.15 . . . . 131

7.3 Confidence interval coverage probability versus true prevalence of out-
come (0.01 to 0.99) comparing adjusted Wilson with and without trunca-
tion for n = 30, m = 7, ICC = 0.005 . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Average coverage vs. average width plot for mixture distribution . . . . . . 133

vii



List of Tables

3.1 Estimated area under the curve for discriminating between infections ¡180
and 180 days post-seroconversion on the basis of within-host viral diversity
in env. Diversity is measured using whole alignment entropy, sectioned
entropy, or position entropy, either adjusted or unadjusted for multiplicity
of infection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Sampling strategy for both time points . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Average CI width for sampling n = 15 and n = 20 clinics in Scenario 1 . . . 84

5.2 Average CI width for sampling n = 15 clinics in Scenario 2 . . . . . . . . . . 85

5.3 Average CI width for sampling n = 10 clinics in Scenario 3 . . . . . . . . . . 86

5.4 Average CI width for sampling n = 5 clinics in Scenario 4 . . . . . . . . . . . 86

5.5 Average CI width for sampling n = 50 and n = 60 clinics in Scenario 5 . . . 87

5.6 Average CI width for sampling n = 10 clinics in Scenario 6 . . . . . . . . . . 87

6.1 Large country simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Small country simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Results of Truncation Example . . . . . . . . . . . . . . . . . . . . . . . . . . 124

viii



To my best friend and future husband, Ethan.

ix



Acknowledgments

I would like to take this time to briefly thank those who have been most influential in my

academic career.

To my advisor, Marcello Pagano, thank you for the outstanding mentorship. It has been

a pleasure working with you and learning from you. I would also like to acknowledge

Victor De Gruttola and Vladimir Novitsky for their contributions to this dissertation and

for the knowledge that they shared with me. From the WHO HIV Drug Resistance Team,

I thank Silvia Bertagnolio, Jhoney Barcarolo, and Michael Jordan, and I look forward to

our continued collaboration.

To my classmates, Shira Mitchell, Mark Meyer, and Stacey Ackerman-Alexeeff, thank you

for your companionship throughout this process. To my closest friends, Megan Scarbor-

ough, Sarah Taylor, Stephanie Santarpio, thank you for keeping the fun in these past few

years. To my parents and sister, thank you for your incredible love and support. To Ethan

Dean, my future husband, none of this would have been possible without you.

This work was supported by NIH grants T32AI07358 and RO1AI097015.

x



1. Introduction



My doctoral dissertation focuses on two important aspects of HIV-1 disease surveillance:

incidence estimation and monitoring of drug resistance. Disease surveillance is the con-

tinuous collection, analysis, and interpretation of health-related data, and disease surveil-

lance is critical for public health practice. Information gained from surveillance is vital

to national public health managers deciding to implement new prevention or treatment

programs. Because HIV/AIDS disproportionately affects under-served populations, lo-

gistical simplicity and low cost are very important factors in evaluating these surveillance

methods. Surveillance must be sufficiently feasible to be regularly executed in low- and

middle-income countries. Otherwise, countries may not implement these methods and

will lack the data necessary to make informed programmatic decisions.

In the Chapters 2 and 3, we describe our methods for estimation of HIV-1 incidence.

Incidence measures the rate of recent infections, and it is critical for understanding trans-

mission dynamics, identifying at-risk populations for targeted interventions, measuring

the effectiveness of community-level interventions, and calculating sample size require-

ments for randomized trials. In Chapter 2, we provide an in-depth literature review of

available options for estimating HIV incidence, emphasizing the serious challenges in

this field. Standard follow-up of an HIV-negative cohort is prohibitively expensive, lo-

gistically complicated, and subject to biases. Other methods that involve repeated preva-

lence surveys require a variety of assumptions and are only applicable in generalized

epidemics. Ultimately, cross-sectional surveys that discriminate between recent and long-

term infections using a host or viral marker are most appealing. The majority of existing

assays measure immunological factors, but these assays have drawbacks including sub-

type variability and individuals who never test as long-term on the assay despite many

years of HIV infection (long-term non-progressors). Diversity-based assays are an emerg-

ing alternative; they rely on the immense increase in viral diversity that occurs within a

host over the course of an infection.

In Chapter 3, we describe a novel assay for discriminating between recent and long-term

infections using viral diversity. We adapt an existing diversity measure known as Shan-
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non’s entropy. Entropy is a concept from information theory, and it is used to measure the

variability in a multinomial outcome. After a person is infected with HIV, the virus mu-

tates resulting in a diverse range of sequence patterns within a single individual. Here,

the multinomial outcome of interest is each unique viral sequence pattern within an in-

dividual. In our paper, we demonstrate that by dividing the sequence alignment into

smaller sections before calculating entropy, we increase the discriminatory ability of the

assay as measured by the area under the receiver operator characteristic curve. In addi-

tion, we introduce a method for adjusting for the presence of multiple infections. Multiple

infections confound the relationship between time since infection and diversity because

individuals recently infected with multiple viruses can have high diversity. We use clus-

tering methods to separate viral lineages and measure within-lineage entropy rather than

overall entropy.

In the Chapter 4, we describe a large-scale consulting project with the World Health Orga-

nization (WHO) to redesign their guidance for HIV drug resistance surveillance in low-

and middle-income countries. This guidance for surveillance in patients initiating treat-

ment (pre-treatment resistance) and patients on treatment (acquired drug resistance) will

be adapted by countries into fully realized survey protocols. These protocols will then

be implemented by the countries with limited support from the WHO. Thus, simplicity

and feasibility are critical for determining the success of this guidance. Nonetheless, we

emphasize the importance of collecting representative data and analyzing the data in a

statistically rigorous fashion. In a report included in this dissertation, we describe the

surveys and the statistical decisions made during the consulting process, focusing pri-

marily on sample size calculations and survey analysis. Guidance for the two surveys is

currently being published by the WHO.

Our consulting work prompted a variety of interesting statistical questions which we ad-

dress in a series of papers. In Chapter 5, we describe a novel method for calculating

sample sizes for two-stage clustered surveys in which the finite population correction

will be applied. We demonstrate dramatic decreases in sample size requirements while
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still achieving the desired precision. This paper has important implications for disease

surveillance in small countries or countries with concentrated epidemics. Using previ-

ously available methods, sample size requirements can be larger than the total eligible

population size in some countries. As a result, these countries do not feel able to properly

implement the survey and may not conduct the survey at all. Our method empowers

small countries to design drug resistance surveys that will work in their unique setting.

The sample size procedure introduced in the paper is already being implemented as a

core element of the WHO’s HIV drug resistance surveillance guidance.

In Chapter 6, we introduce a novel outcome for the acquired drug resistance survey. The

acquired drug resistance survey includes a cross-sectional assessment of viral load in pa-

tients on antiretroviral therapy for 12± 3 months. As this measure excludes patients who

have died or been lost to follow-up, it is biased relative to the population-level prevalence

of viral load suppression. As a result, this measure can be misleading in the absence of

representative data on patient retention. A country may have high viral load suppres-

sion among retained patients, but they may have many patients lost to follow-up. If that

country implemented a program to improve patient retention, they may actually observe

a decrease in viral load suppression among retained patients because they have captured

some of the sickest patients who would have otherwise been lost. Through consulta-

tion with the WHO’s HIV drug resistance steering group, we constructed a new measure

of population-level viral load suppression that assumes that all patients who are lost to

follow-up are not virally suppressed. The outcome can be interpreted as a lower bound of

viral load suppression, and it has improved epidemiological utility over the unadjusted

outcome. In the paper, we derive the properties of this outcome, including point and

standard error estimators. We also derive the expected precision of this outcome under a

set of assumptions and assess sensitivity to these assumptions through a series of simu-

lations.

In Chapter 7, we evaluate methods for confidence interval estimation for proportions

measured in surveys. Extensive literature has demonstrated that the Wald interval per-
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forms poorly in the independent and identically distributed setting. Alternative meth-

ods, including the Wilson, Jeffreys, and Agresti-Coull intervals, perform much better.

The Clopper-Pearson, or ‘exact,’ interval is another popular option, although it tends to

be unnecessarily wide and conservative. There is very little peer-reviewed evaluation of

these intervals in survey settings. In our paper, we describe seven methods for calculat-

ing confidence intervals for proportions, including adaptions of the Jeffreys and Agresti-

Coull intervals that have never been applied in the existing literature. For each method,

we describe an approach that does and does not incorporate the design degrees of free-

dom into the calculations, suggesting a framework to increase logical consistency across

formulations. We evaluate these methods via an extensive simulation study. We demon-

strate the importance of adjusting for the design degrees of freedom, and we show that

the modified Jeffreys and Wilson intervals perform best in terms of confidence interval

length and coverage. Finally, we address the topic of truncation, in which the effective

sample size from a clustered survey is not allowed to exceed the actual survey sample

size. We describe a discrepancy in the existing literature on truncation and provide our

recommendations for this setting.
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2. The challenges of HIV incidence estimation
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2.1 Background

The ability to accurately estimate incidence, or the risk of acquiring infection within a

given period of time, is a critical component of any human immunodeficiency virus type

1 (HIV-1) disease surveillance program. A reliable estimate of incidence in a given pop-

ulation allows investigators to understand transmission dynamics, evaluate the perfor-

mance of prevention programs, and identify high-risk populations so as to efficiently

utilize resources (Rutherford et al., 2000). Accurate incidence estimates are also critical

when calculating sample size requirements during the design phase of prevention tri-

als. Despite the importance of this indicator, it is extremely difficult to estimate HIV-1

incidence in practice (Family Health International, 2009). Methods currently available in-

clude direct observation of a seronegative cohort, back-calculation methods, modeling the

epidemic in the general population using serial prevalence surveys, and cross-sectional

assays which rely on the evolution of host or viral markers. All existing methods have se-

rious limitations, and the search for an estimator which is both unbiased and logistically

feasible continues.

Direct observation of a seronegative cohort was once considered the ‘gold standard’ for

the measurement of HIV-1 incidence. In practice, this method is rarely used because it

requires enormous sample sizes, making it both logistically complicated, prohibitively

expensive, and unsustainable even in resource-rich settings (Family Health International,

2009). Furthermore, there is potential for selection and follow-up bias because those who

are willing to enroll in such a trial and who are not lost to follow-up may not be represen-

tative of the general population. Brookmeyer et al. calculated two estimates of incidence

for two STD clinics in India (Brookmeyer et al., 1995). The cohort-based estimate was

markedly less than the combined cohort/cross-sectional estimate, and the difference in

these estimates was supported by significant behavioral differences between those who

returned for follow-up and those who did not. Since individuals enrolled in a prevention

trial are counseled on risk reduction, it is reasonable to expect their HIV-1 incidence to
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be lower than that of the general population. Thus, direct observation of a seronegative

cohort is not an appropriate ‘gold standard’ for the estimation of HIV-1 incidence.

Until the mid-1990s, incidence could be back-calculated from AIDS surveillance data

using an estimate of the distribution of the viral incubation period (Brookmeyer, 1991).

Back-calculation methods from AIDS diagnoses require reliable disease surveillance data

as well as an accurately described incubation period (Gail and Brookmeyer, 1988). Be-

cause of the widespread use of highly active antiretroviral treatment (HAART), this

method is no longer in use, but some researchers use back-calculation from other events

besides AIDS diagnoses. Extended back-calculation models have been described using

a dichotomous measure of disease severity at time of HIV diagnosis (Hall et al., 2008),

CD4 cell count (Satten and Longini, 1994; Taffe et al., 2008), and the joint distribution of

two HIV antigens (Sommen et al., 2010). These methods require many assumptions, most

notably regarding testing behavior since they back-calculate from time of first positive an-

tibody test (Karon et al., 2008). Because of the large amount of individual level variability

in CD4 and HIV antigen trajectories as well as the necessity for assumptions about homo-

geneity of testing behavior across individuals and time, these back-calculation methods

are not ideal for the estimation of HIV-1 incidence.

An alternative method infers incidence from changes in age-specific seroprevalence mea-

sured by serial surveys. The method works by dividing up the general population into

age cohorts so that these cohorts can be tracked through time across repeated surveys;

given the prevalence at the time of the last survey, the method accounts for deaths us-

ing assumptions about age-specific mortality, and then it calculates the number of new

infections that must have occurred in each cohort to achieve the observed prevalence in

the current survey (Hallett et al., 2008). The method can only be applied to generalized

epidemics in which large-scale demographic surveys are routinely carried out, and it can-

not be used to calculate incidence in sub-epidemics, such as among injection drug users

(Rehle et al., 2010). The accuracy of the estimate depends on the reliability of the sero-

prevalence surveys, which can be biased if they do not explicitly account for differential

8



testing refusal, underrepresentation of mobile groups (Marston et al., 2008), and internal

migration (Hallett et al., 2008). Estimation of age-specific mortality is further complicated

by the roll-out of HAART and requires additional assumptions regarding age-specific

treatment initiation and the effect of treatment on survival (Rehle et al., 2010). Com-

puter packages, such as the Spectrum package (Stover, 2004; Stover et al., 2010), have

been developed to model age-specific incidence, but their results are only as good as the

seroprevalence data and assumptions on which they rely (Ghys et al., 2004). Thus, while

these models may serve as useful tools for understanding transmission dynamics, their

usefulness for accurately estimating incidence is limited (Sakarovitch et al., 2007).

2.2 Cross-sectional assays

Cross-sectional assays for recent HIV-1 infection are the most promising methods for inci-

dence estimation; they are cheaper, simpler, and prone to less bias than direct observation

of a cohort, and they require many fewer assumptions than back-calculation methods or

computer models. These assays distinguish between recent and long-term infections on

the basis of a host or viral marker; when the marker is below some threshold, the infec-

tion is classified as ‘recent’, and when the marker is above that threshold, the infection

is classified as ‘long-term.’ Incidence can be calculated from a cross-sectional survey as

I = P/ω where P is the prevalence of recent infections within the at-risk population (i.e.

excluding long-term infections), and ω is the mean duration of the period when an infec-

tion is classified as ‘recent’, also called the window period (Rothman et al., 2008). This

estimator assumes constant incidence during the period before the survey at least as long

as the maximum plausible window period (Brookmeyer and Quinn, 1995). It also re-

quires an accurate estimate of the mean window period in the population of interest, and,

as a result, makes the implicit assumption that all individuals with HIV infection have

markers that will eventually cross the ‘recent/long-term’ threshold (Wang and Lagakos,

2009). Most existing assays rely on markers of evolution of the host immune system in
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response to HIV infection, though recent papers describe novel assays which exploit viral

characteristics.

The first cross-sectional assay for recent infection was described in 1995 by Brookmeyer

and Quinn (1995). The assay relies on the presence of detectable p24 antigenemia during

the period before seroconversion. The survey first identifies and excludes all antibody

positive individuals, and then all antibody negative individuals are tested for p24. This

assay is not in use for two primary reasons: 1) the window period for p24 antigenemia

is very short (approximately 22.5 days from the first report), and 2) the assay is used to

test antibody negative individuals. Even in a high prevalence setting, this assay will re-

quire enormous sample sizes to detect enough recent infections for a precise estimate of

incidence. The assay also has low sensitivity among individuals in the process of sero-

conversion (antibody indeterminate) (Hecht et al., 2002). A similar assay was developed

using detectable HIV-1 RNA during the pre-seroconversion period. While this assay has

better sensitivity and a slightly longer mean window period (Le Vu et al., 2009), it still re-

quires the testing of large samples of antibody negative individuals. Some authors have

proposed pooling algorithms for RNA testing to reduce costs (Brookmeyer, 1999; Quinn

et al., 2000), but, even with these cost-saving measures, the assay remains much more

expensive than an assay which is conducted using only antibody positive samples.

The first test intended for use in seropositive individuals was described by Janssen et al.

(1998). By varying the laboratory procedure for the traditional antibody assay (higher

dilution, shorter incubation time, higher cutoff), they created a less-sensitive, or detuned,

assay, subsequently referred to as the Serological Testing Algorithm for Recent HIV Se-

roconversion (STARHS). As antibody levels increase during the early stages of infection,

seroconversion on the sensitive assay precedes seroconversion on the less-sensitive as-

say, and the time between these two events is described by the mean window period (129

days (95% CI: 109-149 days) in the initial report of a subtype B cohort (Janssen et al., 1998)).

While this assay has significant advantages over p24 and RNA testing in terms of cost and

feasibility, additional studies quickly identified its numerous limitations; the assay suffers
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from low internal consistency as demonstrated by high coefficients of variation (>20%),

most likely because of the magnitude of the dilution (1:20,000) (Kothe et al., 2003); the

mean window period varies by HIV-1 subtype (Parekh et al., 2001; Wilson et al., 2004;

Young et al., 2003); the assay can misclassify those with advanced infection (Guy et al.,

2005; Parekh et al., 2001; Rawal et al., 2003; Wilson et al., 2004), those on antiretroviral

treatment (ART) (Killian et al., 2006; Rawal et al., 2003), and ‘elite suppressors’ (Laeyen-

decker et al., 2008); and there is evidence of individuals whose markers never cross the

less-sensitive threshold regardless of the length of follow-up (Young et al., 2003). As a

result, STARHS has low specificity which can lead to greatly overestimated measures of

incidence.

With the specific goal of addressing the subtype variability observed for STARHS, the

CDC developed the BED capture enzyme immunoassay (BED-CEIA) using gp41 se-

quences from HIV-1 subtypes B, E, and D (Parekh et al., 2002). The assay measures the

ratio of HIV-specific immunoglobulin G (IgG) to total IgG, a proportion which generally

increases during the first two years after seroconversion (Parekh and McDougal, 2001).

While this assay has advantages over STARHS, including higher internal consistency

(Dobbs et al., 2004), lower cost, and commercial availability, a variety of studies have

demonstrated that the BED-CEIA has many of the same weaknesses as its predecessor,

including a non-zero fraction of the population who persistently test as ‘recent’ despite

demonstrated long-term infection (Hargrove et al., 2008; Karita et al., 2007), misclassi-

fication of those with advanced infection (Karon et al., 2008; Marinda et al., 2010), and

misclassification of those on ART (Marinda et al., 2010). Furthermore, the mean window

period varies widely by subtype, either because of viral or host immunological factors

(Karita et al., 2007; Parekh et al., 2011). As a result, in 2005 UNAIDS recommended that

the BED-CEIA not be used in routine HIV-1 surveillance, including absolute incidence

estimation or monitoring trends (UNAIDS Reference Group on Estimates Modeling and

Projections, 2005).

Because of its poor specificity, using the BED-CEIA in a high prevalence setting can lead to
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significant overestimation of incidence (Sakarovitch et al., 2007). A variety of estimators

have been proposed which adjust for imperfect sensitivity, short-term specificity (relating

to infections of duration longer than the window period ω but less than 2ω), and long-

term specificity (relating to infections of duration greater than 2ω). The first adjusted es-

timator, proposed by McDougal et al. (2006), required calibration of four parameters: the

mean window period ω, sensitivity σ, short-term specificity ρ1, and long-term specificity

ρ2. This formula was further simplified by Hargrove et al. (2008) assuming that σ = ρ1,

yielding only three parameters for calibration. McWalter and Welte (2008) constructed

an estimator that makes fewer assumptions than either McDougal or Hargrove and re-

quires calibration of only two parameters: the mean window period ω and long-term

specificity ρ2 (McWalter and Welte, 2009). Given the proportion of seropositive individ-

uals that register under the assay threshold P0, the true proportion of recent infections is

PT = P0+ρ2−1
ρ2

. This adjusted prevalence can then be plugged into the traditional incidence

formula I = PT/ω. Their estimator coincides with the maximum likelihood estimator

derived by Wang and Lagakos (2009).

Despite the mathematical justification for the McWalter/Welte estimator, the use of ad-

justments for cross-sectional incidence estimates is hotly debated (i.e. which one, if any)

(Brookmeyer, 2009a,b; Hargrove, 2009; McDougal, 2009; Welte et al., 2009). Following the

2005 UNAIDS statement discouraging use of the BED-CEIA, the Global AIDS Coordina-

tor stated that the assay may be used as long as appropriate adjustments are made (Of-

fice of Global AIDS Coordinator, 2006). In practice, these adjustments rely on accurate,

locally-derived estimates of the calibration parameters (Barnighäusen et al., 2008, 2010;

Kim et al., 2010; World Health Organization, 2009b), and if these calibration parameters

vary significantly between populations or across time, it is unlikely that the BED-CEIA

will be of practical use (Hallett et al., 2009; Welte et al., 2010). One alternative proposed by

Wang and Lagakos is an augmented cross-sectional design which longitudinally follows

individuals who test as recent on the BED-CEIA with the goal of calculating an internal

estimate of long-term specificity; this method has the logistical challenges associated with

12



individual follow-up, though to a much lesser extent than a complete cohort study, and

may be difficult to implement in practice (Wang and Lagakos, 2010). Overall, despite the

initial promise of the BED-CEIA, extensive research has demonstrated that it is difficult

to obtain accurate estimates of HIV-1 incidence using this assay alone.

Besides the STARHS and BED-CEIA, a variety of other assays have been developed to

exploit maturation of the host immune system during HIV-1 infection. Among the most

commonly used is the Avidity Index developed in 2003 (Suligoi et al., 2003). While the

original paper claimed that the assay was robust to ART use and the presence of advanced

disease, subsequent studies have disproved these claims (Chawla et al., 2007; Sakarovitch

et al., 2007; Selleri et al., 2007). The IDE-V3 assay developed in 2005 measures antibodies

specific to four HIV-1 antigens, including the immunodominant epitope of gp41 (IDE)

and V3 peptides (Barin et al., 2005). This assay, also referred to as the enzyme immunoas-

say for recent infection (EIA-RI), is not appropriate for individuals initiated on ART dur-

ing early infection (Barin et al., 2005) and has overall low sensitivity (Le Vu et al., 2009;

Sakarovitch et al., 2007); there is also preliminary evidence of subtype variability (Le Vu

et al., 2009). Other assays include the anti-p24 IgG3 assay (Wilson et al., 2004), the line im-

munoassay (Schüpbach et al., 2007), the particle agglutination assay (Hong et al., 2007),

and a new multi-subtype avidity-based assay developed by the CDC (Wei et al., 2010).

These assays are summarized in a review paper by the WHO Working Group on HIV

Incidence Assays (Busch et al., 2010). Overall, I believe that future evaluation of these im-

munoassays will reveal many of the same drawbacks as the existing immunoassays, in-

cluding low specificity and subtype variability. While immunoassays provide important

information regarding duration of infection, I do not think that they alone can provide

accurate and reliable estimates of HIV-1 incidence.
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2.3 Diversity-based assays

An emerging alternative to immunoassays are diversity-based assays which exploit the

increase in viral diversity that occurs during the early stages of HIV-1 infection. The

majority of infections are seeded by a single founder virus (Keele, 2010), resulting in an

initial viral population with zero diversity. Because of the high error rate of the reverse

transcriptase enzyme (Ji and Loeb, 1994) and the rapid turnover rate in vivo (Ho et al.,

1995; Wei et al., 1995), the virus is able to rapidly diversify within its new host (Coffin,

1995). There is strong evidence that viral genetic diversity increases linearly with time

during this initial phase of HIV-1 infection (Frost et al., 2005; Kearney et al., 2009; Lee

et al., 2008, 2009; Shankarappa et al., 1999). This accumulation of mutations has also been

described using a Poisson distribution (Keele et al., 2008; Lee et al., 2009; Leitner and

Albert, 1999). The envelope (env) gene, which codes for the viral surface proteins that

interact with the host immune system, has the greatest potential for diversity within the

HIV-1 genome. Variability in env is adaptive in that it helps the virus evade host im-

mune pressures (Holmes et al., 1992). In fact, unlike other regions of the genome, there is

compelling evidence that env is under positive, or diversifying, selection, promoting vari-

ability in the host viral population rather than selecting for only the ‘fittest’ quasispecies

(Bonhoeffer et al., 1995; Ganeshan et al., 1997; Overbaugh and Bangham, 2001; Piantadosi

et al., 2009; Poss et al., 1998; Yamaguchi and Gojobori, 1997). Overall, diversity-based as-

says of recent infection are promising because of the immense within-host variability of

the HIV-1 genome.

A variety of diversity-based assays have been described in the recent literature. There is

one which uses the fraction of ambiguous nucleotide calls obtained during bulk sequenc-

ing of the pol gene as a proxy for overall diversity (Kouyos et al., 2011; Wilson et al., 2011;

Andersson et al., 2013). Using a Swiss subtype B cohort, they found evidence that this

fraction increases linearly during the first eight years of infection (Kouyos et al., 2011).

The advantage of this type of test is that it is easily implementable as bulk sequencing of
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this region is already part of standard genotypic resistance testing procedures. It also has

certain disadvantages: nucleotide ambiguity is inherently a binary measure and may not

adequately describe the diversity present at a particular position; the lower limit of detec-

tion is typically 20% (Kouyos et al., 2011), meaning the assay will underestimate diversity

if there are minority quasispecies in the population; and, while diversity in pol correlates

with diversity in other regions, genetic bottlenecking could occur in response to selective

pressures, thereby reducing specificity. Another recent assay suggests measuring diver-

sity in multiple regions of the genome, including env, pol, and gag, to increase robustness

against such genetic bottlenecking (Cousins et al., 2011). This assay uses high resolution

melting (HRM), which measures diversity without sequencing using the melting charac-

teristics of DNA duplexes (Towler et al., 2010). Again, the advantage of this assay is its

implementability, being in a 96-well plate format and taking only a few minutes to run.

A disadvantage not addressed is the likely increased sensitivity to insertions/deletions

that DNA-duplex-based assays, such as the heteroduplex mobility assay (HMA), exhibit

(Delwart et al., 2002, 1994, 1993; Sagar et al., 2004). Most of all, none of the diversity-based

assays described thus far are able to distinguish between single-virus long-term infections

and multiple-virus recent infections.

The presence of infections seeded by multiple founder viruses provides a significant chal-

lenge for diversity-based assays. Though the majority of infections are thought to be

founded by a single virus, a non-negligible proportion are founded by two or more viri-

ons. This proportion appears to be related to mode of infection (Ritola et al., 2004; Tem-

pleton et al., 2009), and there may exist effect modifiers, such as the presence of inflamma-

tory genital infections (Abrahams et al., 2009; Haaland et al., 2009). Various studies have

yielded a remarkably consistent estimate of 80% of heterosexual transmissions involving

single virus transmission (Abrahams et al., 2009; Grobler et al., 2004; Keele et al., 2008;

Salazar-Gonzalez et al., 2008), although there may be a higher risk for male-to-female

versus female-to-male transmission (Delwart et al., 2002; Long et al., 2000). Many reports

from men who have sex with men have demonstrated very little multiplicity of infection
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(Delwart et al., 1997; Gottlieb et al., 2004; Shankarappa et al., 1998), though this has not

been consistent across all studies (Kearney et al., 2009; Ritola et al., 2004). As might be ex-

pected because of the lack of a mucosal barrier, parenteral transmission, such as through

injection drug use, is associated with a much higher proportion of multiple infections (Bar

et al., 2010; Templeton et al., 2009). Simple measures of diversity, such as the fraction of

ambiguous nucleotides or the HRM score, cannot discriminate between single and multi-

ple infections; as a result, they will suffer from reduced sensitivity because recent multiple

infections will appear long-term by virtue of their high levels of diversity. Since the un-

derlying proportion of multiple infections is related to mode of transmission, which may

vary across samples, it is unlikely that these incidence estimates can be reliably adjusted

for their imperfect sensitivity.

Overall, multiply infected individuals have high viral diversity, even at the earliest

stages of infection. Interestingly, there is evidence to suggest that the individual lineages

founded by each of the separate virions have very low initial diversity. This has been

recognized in studies which have sequenced quasispecies from individuals recently in-

fected with multiple viral strains (Long et al., 2000; Salazar-Gonzalez et al., 2008). These

sublineages conform to a Poisson distribution when analyzed individually (Keele et al.,

2008). Thus, the challenges associated with multiplicity of infection may be overcome if

the viral population can be separated into related sublineages and the diversity measured

within these clusters.

The most recent diversity-based assay described in the literature uses features of the dis-

tribution of pairwise Hamming distances of env sequences (Park et al., 2011). These se-

quences are obtained using single genome amplification and direct sequencing, a method

which reduces Taq polymerase errors, Taq polymerase mediated template switching, and

non-proportional representation of target sequences (Keele et al., 2008). The authors use

the tenth percentile of the distance distribution to discriminate between recent and long-

term infections, with the reasoning that the proportion of similar sequences will decline

with time. Their method appears to be robust to a variety of different factors, including
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viral subtype and multiplicity of infection. No studies have yet evaluated these claims

using different data sets (Allam et al., 2011).

2.4 Discussion

Despite the immense effort to develop an accurate and reliable estimator for HIV-1 inci-

dence, no method has emerged that is sufficiently sensitive, specific, and robust to differ-

ences in host and viral characteristics. Cross-sectional assays, which require the fewest

assumptions and are logistically most feasible, are likely to be the best option, but they are

not without their challenges. Immunoassays, such as the BED-CEIA and the Avidity In-

dex, suffer from low specificity resulting from ART use, chronic disease, and the presence

of long-term non-progressors in the population. Diversity-based assays are emerging as

a new alternative to immunoassays. Because of the added complication of multiplicity

of infection, simple measures of diversity are unlikely to be successful in distinguishing

between recent and long-term infections. I believe that sequencing of the viral popula-

tion using single genome amplification and direct sequencing will be necessary to fully

characterize the diversity within an individual. Eventually, these assays will need to be

evaluated for their performance in the presence of ART and chronic infection. Overall,

it is unlikely that a single assay will work well enough for use in research or routine

surveillance; thus, focus is now shifting to multiassay algorithms (MAAs) which incor-

porate different measures, such as viral characteristics, host immune response, and use

of antiretrovirals (Brookmeyer et al., 2013a,b; Moyo et al., 2014). An accurate measure of

viral diversity could be incorporated as a refining step at the end of such an algorithm to

improve HIV-1 incidence estimation (Cousins et al., 2014).
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Abstract

HIV-1 incidence can be estimated using cross-sectional assays that discriminate between

recent and long-term infections on the basis of host or viral characteristics. Because of the

limitations of existing immunological assays, assays measuring within-host viral diver-

sity are potentially useful because diversity generally increases with time since infection.

One such assay described in the literature is the 10th percentile (Q10) of the within-host

pairwise Hamming distance distribution. A standard measure of viral diversity is Shan-

nons entropy which either quantifies the variability in the sequence patterns within the

alignment or summarizes the variability at each position in the gene/region. We propose

subdividing the gene/region of interest into sections of moderate length and calculating

entropy as a weighted average of the entropy in each section. Such a method is hampered

when an individual has been multiply infected. To overcome this shortcoming, we pro-

pose a clustering based method that separates the sample into unique sub-lineages before

measuring entropy, if there is evidence of multiple infections. To evaluate our approach,

we analyze envelope sequence data from a longitudinal subtype C infection cohort in

Botswana comprised of 8 acute and 34 recent infections. Sequences were obtained using

single genome amplification followed by direct sequencing. We demonstrate that using

sections of moderate length and adjusting for multiple infections results in significantly

improved discriminatory ability of the assay relative to either pre-existing entropy-based

measure (using the whole alignment or each position) or the Q10 method.

3.1 Introduction

An accurate estimator of HIV-1 incidence is critical for understanding transmission dy-

namics, evaluating the performance of prevention programs, and identifying high-risk

populations for targeted interventions (Rutherford et al., 2000). Cross-sectional surveys

for incidence estimation are promising for a variety of reasons, including increased feasi-
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bility and reduced selection bias as compared to direct observation of an HIV-1 negative

cohort (Brookmeyer and Quinn, 1995). To accurately estimate incidence cross-sectionally,

an assay must be able to distinguish between recent and long-term infections on the basis

of a measured host or viral marker. Current HIV incidence assays that rely on changes

in host immunological factors during early stages of infection, such as the BED-CEIA

(Parekh et al., 2002) and the Avidity Index (Suligoi et al., 2003), have critical limitations,

including misclassification of those with advanced infection (Karon et al., 2008; Marinda

et al., 2010), misclassification of those on ART (Marinda et al., 2010), and variability in

performance across subtypes (Karita et al., 2007; Parekh et al., 2011).

An emerging alternative to immunoassays are diversity-based assays that exploit the in-

crease in viral diversity that occurs during the early stages of HIV-1 infection. Numerous

studies have demonstrated that within-host viral diversity increases over the course of

HIV infection (Frost et al., 2005; Kearney et al., 2009; Lee et al., 2008, 2009; Shankarappa

et al., 1999); thus, within-host viral diversity is a potential predictor of time since infection.

A range of diversity-based assays have been described in the recent literature, including

a measure of the fraction of ambiguous nucleotide calls obtained during bulk sequencing

(Kouyos et al., 2011) and a high-resolution melting (HRM) assay that measures diver-

sity without sequencing using the melting characteristics of DNA duplexes (Towler et al.,

2010). These assays are readily implementable, but one key limitation is their inability to

accurately classify individuals recently infected with multiple viruses. While the initial

diversity in a single infection is zero, this initial diversity can be very high when there are

multiple founding viruses, thereby confounding the relationship between diversity and

time since infection. It is estimated that 20% of heterosexual infections are founded by

multiple viruses (Abrahams et al., 2009; Keele et al., 2008; Salazar-Gonzalez et al., 2008),

with higher rates observed for parenteral infections (Bar et al., 2010; Templeton et al.,

2009). Another recently described diversity-based assay uses the 10th percentile of the

distribution of within-host pairwise Hamming distances obtained via single genome am-

plification (Park et al., 2011). The authors suggest that this method has high sensitivity
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and specificity and is robust to the presence of multiple infections.

We propose an alternative measure of within-host viral diversity also using data from

single genome amplification and direct sequencing. Our measure is an adaptation of a

standard measure of viral diversity – normalized Shannons entropy. Entropy is a concept

from information theory that measures variability in a multinomial outcome (Shannon,

1948). There are two common ways in which entropy is calculated for viral sequences. In

the first approach, the multinomial outcomes are the observed viral sequence patterns in

an alignment (henceforth referred to as the whole alignment approach) (Sato et al., 1998;

Wang et al., 1998). Entropy (H) can be defined as:

H = −
(

1

logN

) n∑
i=1

pi log pi

where N is the total number of sequences, n is the number of distinct sequence patterns,

and pi is the proportion of sequences consisting of each distinct sequence pattern. The

measure is normalized by the quantity logN , which is the maximal entropy for a set of N

sequences. Entropy is equal to 0 when all sequences are identical and is equal to 1 when

all sequences are distinct.

The second approach entails calculating the entropy at position j, where n is the number

of distinct bases (or amino acids) at each position and pij is the prevalence of base i (or

amino acid i) at position j; the entropy of the alignment is then the average entropy over

all positions (henceforth referred to as the position approach) (Korber et al., 1994).

We argue that it is possible to improve the ability of entropy to discriminate between

recent and long-term infections by modifying how the quantity is calculated. We demon-

strate that the whole alignment approach described above is not well-suited for discrim-

ination because, by this definition, two sequences varying by only a single nucleotide

have distinct patterns. As a result, this method is not sufficiently nuanced to measure the

range of similarities that can occur between sequences. In addition, we demonstrate that

the second version of Shannons entropy the position approach is also not well-suited for

discrimination because it over-represents highly correlated positions. We propose a novel
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method that subdivides the viral gene into smaller sections, calculates entropy in each in-

dividual section, and combines results across all sections. The optimal section length is

a compromise between the two extreme lengths defined by the whole alignment and the

position methods, and can be determined by its discriminating capabilities.

As can be anticipated, a multiply-infected individual will exhibit more variability than a

singly-infected individual, both infected at the same time, and as a result, judging time

since infection by looking at the diversity will be complicated by the multiplicity of the

infection. To address this problem, we also propose an approach for identifying multi-

ple infections using standard clustering techniques. We suggest that viral diversity be

measured within distinct sub-lineages rather than across all sequences to reduce the con-

founding effect of multiple infections. This approach is motivated by evidence that the

separate sub-lineages in a multiple infection evolve independently (Keele et al., 2008).

Thus, the diversity within each sub-lineage may be comparable to the diversity accumu-

lated within a single infection. We evaluate our proposed methods using data from a

primary HIV-1 subtype C infection cohort in Botswana (Novitsky et al., 2009). The cohort

includes eight acutely infected and thirty-four recently infected individuals followed lon-

gitudinally through 500 days post-seroconversion. We demonstrate improved discrimi-

natory ability of our approach when comparing it to the 10th percentile (abbreviated as

Q10) (Park et al., 2011) of the pairwise Hamming distance distribution.

3.2 Materials and methods

3.2.1 Sequence data

We analyze viral sequences from the Tshedimoso study, a primary HIV-1 subtype C in-

fection cohort in Botswana comprised of eight acutely infected individuals (Fiebig stage

II) and thirty-four recently infected individuals (Fiebig stage IV or V) (Novitsky et al.,

2009). For acutely infected subjects, time of seroconversion was estimated as the mid-
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point between the last seronegative test and the first seropositive test; for recently infected

patients, time of seroconversion was estimated using Fiebig staging (Fiebig et al., 2003).

Subjects were followed longitudinally through 500 days post-seroconversion. At each

time point, sequences from the envelope gene were obtained using single genome am-

plification followed by direct sequencing (Novitsky et al., 2009). After aligning the se-

quences, hypermutants were removed from the sample using Hypermut 2.0 (Rose and

Korber, 2000). The total length of the alignment was 1377 nucleotides. Only samples with

at least 5 sequences collected were considered for analysis. The 42 subjects were observed

at a total of 197 time points with a median of 11 sequences per time point (range 5, 32).

From the aligned sample of HIV-1 viral sequences, for each subject at each time point we

calculate the 10th percentile of the pairwise Hamming distance distribution (Q10).

3.2.2 Proposed method

Our methods require an aligned sample of HIV-1 viral sequences obtained cross-

sectionally from a single host. Each sequence can represent a single region, multiple

regions, a single gene, or multiple genes. For the sequences to be representative of the un-

derlying viral population, they are obtained using single genome amplification followed

by direct sequencing.

(1) Sectioned entropy

Given an alignment of sequences with multiple sequences per individual, we subdivide

the aligned sample into smaller sections. For each individuals set of aligned sequences,

we calculate the entropy separately for each section, and then we average across the sec-

tions to obtain an overall score (see Figure 3.1). By calculating diversity in this way, iso-

lated polymorphisms do not disproportionately contribute to entropy because they are

countered by the lack of diversity in other sections. The score is a weighted average with

weights equal to the length of the section (after removing all gap-only sites in the sam-
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ple). The length and location of these sections can be determined in a variety of ways. We

select a simple division of the sample into approximately even sections of L nucleotides,

testing a variety of values for L (ranging from 50 to 500), but the method can easily be

adapted for more biologically motivated divisions, such as breaking up the sample into

functional domains, or flexible weighting of regions.

Figure 3.1: Highlighter plot example of sectioned entropy procedure. The alignment of sequences
within a host is subdivided into sections of a pre-determined length. Entropy is measured within
each section, and the overall entropy score is a weighted average of the section-specific entropy
measures.

(2) Adjusting for multiplicity of infection

Next, we propose an algorithm to reduce confounding due to the presence of multiple

infections. Multiple infections can be characterized by a high degree of clustering among

the sequences within a patient. After dividing the alignment into sections, we test each

individuals sequences for the presence of multiple infections using clustering methods.

If present, we separate the sample into distinct sub-lineages, measure the entropy in each

sub-lineage, and combine information across sub-lineages to obtain the entropy for that

section (see Figure 3.2). By measuring entropy within sub-lineages rather than across

sub-lineages, we reduce the risk of over-estimating diversity at early stages of infection

when we would expect low variability within sub-lineages but potentially high variability

across sub-lineages. Because within-host recombination can dilute the strength of cluster-

ing, clustering is assessed in each section separately to allow sequences within an indi-

vidual to group with different sub-lineages across sections. The clustering procedure is
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repeated for all sections, and the overall score is the average entropy across all sections.

Figure 3.2: Highlighter plot example of adjustment for multiplicity of infection procedure. Within
each section, clustering methods are applied to separate sequences within a host into distinct sub-
lineages. Entropy is measured within each sub-lineage and combined across sub-lineages.

To test for the presence of clustering within an individual in an aligned section, we use

Hamming Distance (or any other genetic distance metric) to calculate a matrix of pair-

wise distances for all of the sequences within a host, and then we compare the maximum

observed pairwise distance to a moderately low threshold (3%) because sequences with

a maximum pairwise distance below this are unlikely to be multiply infected. Among

sequences with a sufficiently high maximum pairwise distance we use an automatable

procedure employing a measure known as the silhouette width to determine the opti-

mal number of clusters given the observed data (Kaufman and Rousseeuw, 1990). This

procedure can return a value of 1, 2, 3 or 4 clusters, with 1 cluster indicating no signifi-

cant clustering. To apply this procedure, first use the k-means algorithm on the matrix of

within-host pairwise distances to cluster sequences into k = 2, 3, and 4 groups (Kaufman

and Rousseeuw, 1990). For each value of k, calculate the average silhouette width. Sil-

houette width is a measure of the adequacy of clustering that can take values between 0

and 1, with an average silhouette width above 0.70 indicating a strong structure. Average

silhouette width maximizes when the number of clusters is optimal. Silhouette width is

defined as:

s(i) =
b(i)− a(i)

max[a(i), b(i)]

where, for sequence i, a(i) is the average distance to other sequences in its cluster, and

b(i) is the average distance to sequences in the nearest cluster, with nearest defined as
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having the minimum average distance to sequence i. The average silhouette width is

the average over all sequences i. Since silhouette width is not calculated for k = 1, the

optimal number of clusters k∗ is the value of k that yields the maximum silhouette width,

conditional on that maximum being above 0.70; otherwise, k∗ is equal to 1.

Given the calculated number of clusters k∗ for that section, we subdivide the sequences

into sub-lineages using k-means clustering. We then measure entropy in each sub-lineage,

and these entropy scores are pooled across sub-lineages, weighting proportional to the

number of sequences in each sub-lineage minus 1 (since diversity is trivially zero from

a sample of size 1 and should not contribute to the overall diversity). Letting HK be the

entropy in the kth sub-lineage, the overall entropy in that section is:

H =

∑k∗
k=1(nk − 1)Hk∑k∗
k=1(nk − 1)

As before, the overall entropy score is a weighted average of the entropy values across all

sections, weighted by section length.

3.2.3 Statistical analyses

We calculate each approachs discriminatory ability at 180 days post-seroconversion via

the area under the curve (AUC) of the receiver operator characteristic (ROC) curve and

an associated 95% confidence interval. We employ a non-parametric approach to adjust

for clustering of the data by subject because subjects are observed repeatedly over time

(Obuchowski, 1997). To directly compare two different approaches using the same sample

of clustered data, we apply a similar method to calculate the absolute difference in AUC

and a 95% confidence interval for this difference (Obuchowski, 1997).The analyses were

carried out using R (R Core Team, 2012).
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3.3 Results

For all subjects at all time points, we calculate entropy using the whole alignment ap-

proach, the position approach, and the section approach, dividing the alignment into

sections roughly of length L = 50 through L = 500 nucleotides (in increments of 50) with

and without adjusting for multiplicity of infection using the Silhouette method described.

In Figure 3.3 we plot entropy score trajectories for each of the 42 subjects against time

since seroconversion using whole alignment entropy (L = 1377) and sectioned entropy

for three additional values of L (50, 300, and 500 nucleotides) without adjusting for mul-

tiplicity of infection (plotted with LOESS curve 95% confidence band). Although there is

heterogeneity in the level of diversity across individuals, the trajectories tend to increase

with time for all measures. The whole alignment approach attains a maximal value even

at the earliest time points for some samples. After introducing sectioning, the entropy

scores decrease and are less likely to attain the maximal value. As a result, we observe

a more pronounced relationship between time and diversity. When the sections are very

small (i.e., L = 50), the entropy scores tend to be lower because there are more gene

regions with few or no mutations.

In Figure 3.4 we plot diversity trajectories for each of the 42 subjects using Shannons

entropy forL = 250 with and without adjustment for multiplicity of infection against time

since seroconversion. The adjustment method results in slightly decreased variability in

the trajectories, as evidenced by a tightening of the 95% confidence interval band. Even

after adjusting for multiplicity of infection, some early infections with high entropy scores

persist.

Table 3.1 summarizes the results of the clustered ROC analyses measuring discriminatory

ability at 180 days post-seroconversion using the whole alignment approach, the posi-

tion approach, and the section approach, dividing the alignment into sections of length

L = 50 through L = 500 nucleotides (in increments of 50) with and without adjusting for
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(a) Whole Alignment Entropy
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(b) Sectioned Entropy, L=500
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(c) Sectioned Entropy, L=300
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(d) Sectioned Entropy, L=50
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Figure 3.3: Entropy score trajectories and LOESS line for the env gene of 42 acutely and recently
HIV-infected subjects. (a) Whole alignment approach. (b) Sectioning procedure is applied with
L = 500 without adjustment for multiplicity of infection. (c) Sectioning procedure is applied with
L = 250 without adjustment for multiplicity of infection. (d) Sectioning procedure is applied with
L = 50 without adjustment for multiplicity of infection.
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(a) Sectioned Entropy, L=250 
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(b) Sectioned Entropy, L=250 

 Adjusted for Multiplicity of Infection
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Figure 3.4: Entropy score trajectories and LOESS line for the env gene of 42 acutely and recently
HIV-infected subjects. (a) Sectioning procedure is applied with L = 250 without adjustment for
multiplicity of infection. (b) Sectioning procedure is applied with L = 250 with adjustment for
multiplicity of infection.

multiplicity of infection using the Silhouette method described. Note that the Silhouette

method is not applied to the position approach because clustering cannot be assessed in

a region of length L = 1. Among the methods considered, the minimal AUC is 68.3% for

the whole alignment approach adjusting for multiplicity of infection, and the maximal

AUC is 79.3% for the sectioned entropy approach with L = 250 adjusting for multiplic-

ity of infection. The AUCs for the whole alignment approach are lower than any AUC

obtained via the sectioned approach. With one exception (L = 50 with adjustment), all

combinations of the sectioned approach have a significantly higher AUC than the whole

alignment approach. The AUCs for the position approach are lower than any AUC ob-

tained via the section approach. This difference is statistically significant for L = 150,

200, and 250 (without adjustment) and L = 250 (with adjustment). Note that statistical

significance is determined using the matched AUC procedure described previously; thus,

certain approaches do not achieve statistical significance despite having higher AUC val-

ues. Furthermore, the statistical procedure incorporates the observed covariance between

the approaches. Because the approaches use the same underlying data, the covariance can
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be very high. Thus, a significant difference can be detected between methods even when

there is a lot of overlap in the confidence intervals.

Table 3.1: Estimated area under the curve for discriminating between infections ¡180 and 180 days
post-seroconversion on the basis of within-host viral diversity in env. Diversity is measured using
whole alignment entropy, sectioned entropy, or position entropy, either adjusted or unadjusted for
multiplicity of infection.

Not Adjusted for Adjusted for

Multiplicity of Infection Multiplicity of Infection

AUC 95% CI AUC 95% CI

Whole Alignment (L = 1377) 68.8% (61.5%, 76.0%) 68.3% (61.0%, 75.6%)

Sectioned (L = 500) 77.8%* (70.8%, 84.8%) 78.3%* (71.5%, 85.2%)

Sectioned (L = 450) 78.0%* (71.0%, 85.0%) 78.9%* (71.9%, 85.8%)

Sectioned (L = 400) 77.8%* (71.0%, 84.7%) 78.6%* (71.8%, 85.5%)

Sectioned (L = 350) 77.8%* (70.9%, 84.7%) 78.3%* (71.7%, 85.0%)

Sectioned (L = 300) 76.8%* (69.8%, 83.8%) 77.4%* (70.3%, 84.4%)

Sectioned (L = 250) 78.4%*† (71.3%, 85.6%) 79.3%*† (72.3%, 86.2%)

Sectioned (L = 200) 77.9%*† (70.7%, 84.9%) 79.0%* (72.0%, 86.0%)

Sectioned (L = 150) 77.9%*† (70.5%, 85.2%) 78.8%* (71.9%, 85.6%)

Sectioned (L = 100) 76.7%* (69.4%, 83.9%) 78.2%* (71.0%, 85.4%)

Sectioned (L = 50) 76.2%* (68.6%, 83.8%) 74.7% (66.9%, 82.4%)

Position (L = 1) 73.7% (66.1%, 81.3%) n/a n/a

* indicates that the AUC is significantly higher than that of the unadjusted whole alignment approach.
† indicates that the AUC is significantly higher than that of the unadjusted position approach.

In Figure 3.5 we plot diversity trajectories for each of the 42 subjects using the Ham-

ming Distance Q10 approach. Q10 tends to increase with time since seroconversion in

this population. We observe some individuals with high measurements at early time

points. These patients are almost exclusively patients with documented multiple infec-

tions (Novitsky et al., 2011). The sample includes one very high outlier at 469 days post-
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seroconversion for a patient with a multiple infection. There are also patients with low

values of Q10 persisting beyond 300 days post-seroconversion. The AUC for the Q10

method in this sample is 74.5% with 95% confidence interval (67.2%, 81.9%). The whole

alignment approaches (unadjusted and adjusted) have a significantly lower AUC than

the Q10 method. Nearly all combinations of the sectioned approach have a significantly

higher AUC than the Q10 method (unadjusted L = 200, 250, 350, 400, 450, and 500, and

adjusted L = 100, 150, 200, 250, 350, 400, 450 and 500). The maximal difference is with

the sectioned entropy with L = 250 and adjusting for multiplicity of infection; here the

absolute difference is 4.7%, with 95% confidence interval (1.9%, 7.5%).

(a) Hamming Distance Q10
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(b) Hamming Distance Q10 (detail)
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Figure 3.5: Q10 trajectories and LOESS line for the env gene of 42 acutely and recently HIV-infected
subjects. (a) All trajectories. (b) Detail.

3.4 Discussion

We propose a new measure of within-host HIV-1 viral diversity for use in cross-sectional

incidence estimation. To generate this measure, we describe two simple adjustments to

Shannons entropy with the goal of improving our ability to discriminate between infec-

tions before and after 180 days post-seroconversion. For the first proposed adjustment,
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we divide the alignment into sections of length L (recommended L = 250) and calculate

overall entropy as an average of the section-specific entropy values. For the second ad-

justment, we use clustering methods to separate samples into distinct viral sub-lineages

before measuring entropy. Both of these adjustments improve the discriminatory abil-

ity of entropy as evidenced by changes in AUC. We evaluate an existing diversity-based

measure using the 10th percentile (Q10) of the within-subject pairwise Hamming distance

distribution. We found that most combinations of sectioned entropy had significantly im-

proved discriminatory ability over Q10 in this cohort of acutely and recently infected

subtype C patients from Botswana.

The results of our research provide insight into the relationship between diversity and

the size of the gene/region of interest. Traditionally, entropy is either measured as the

variability in the patterns in the whole alignment, or entropy can be calculated as the av-

erage entropy over all positions in the gene/region. Both of these approaches represent

extreme values for L, the length of the region in which we calculate entropy; in the for-

mer, L is equal to the total length of the gene/region; in the latter, L is equal to 1. Our

research suggests that the optimal L is a compromise between these two extremes. If L is

too large, we fail to capture similarities between sequences, and a sample can reach max-

imal entropy even if it is very homogeneous. If L is too small, we over-represent highly

correlated polymorphisms, leading to undesirable behavior of the measure and poorer

prediction. If we select a larger L, related mutations that fall in the same section do not

contribute disproportionately to overall diversity.

There are limitations to this method. First, there is heterogeneity in the accumulation of

diversity across individuals. As a result, this method is unlikely to be useful for predict-

ing time since infection in individuals (i.e. clinical use), but it has applicability at the

population-level, such as in the estimation of HIV-1 incidence. Second, this method re-

quires single genome amplification and direct sequencing for each sample, tools which

are expensive and time-intensive. We believe that (1) the financial and labor costs will

decrease as technology improves, and (2) that the lack of reliable alternatives at any cost,
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despite the importance of the problem, suggests that this research is worth pursuing. In

addition, we propose that this assay is best used as part of a multi-assay algorithm (MAA)

in which patients are screened using less expensive cross-sectional assays, such as viral

load testing, BED-CEIA, or antibody avidity (Brookmeyer et al., 2013a); thus, genotyp-

ing would only be necessary for the small fraction of individuals who test as recent on

all screening assays, and the measurement of diversity would be a refining step in the

algorithm.

An additional limitation is that, while the adjustment for multiplicity of infection does

slightly improve measurement of some multiple infections, some early infections have

persistently high diversity levels even after adjustment. These cases tend to be individu-

als infected with multiple related viruses (Novitsky et al., 2011) that do not clearly cluster

and are very difficult to distinguish from long-term single infections without additional

information. Furthermore, inter-lineage recombination does occur in multiple infections.

The motivation for evaluating clustering in each section rather than evaluating clustering

in the entire alignment is the presence of recombination, which results in recombinant

sequences clustering with different sub-lineages in different regions. Dividing the sam-

ple into sections before measuring clustering reduces the impact of recombination, but

recombination breakpoints which do not fall exactly in line with section breakpoints can

weaken the approach. We tested incorporating information on estimated recombination

breakpoints as identified by the program RDP3 (Martin et al., 2010), but this adds an ad-

ditional layer of complexity without improving overall performance (data not shown).

There may be a better way to incorporate this information.

Our procedure can be generalized for other methods of measuring diversity. For example,

the discriminatory ability of Q10 may improve if the gene/region is first divided into

smaller sections and/or separated into distinct sub-lineages using clustering methods.

This question merits further investigation.
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Abstract

In this report, we describe our large-scale consulting project for the World Health Orga-

nization (WHO), focusing on the statistical challenges that arose and solutions identified.

The WHO is currently in the process of redesigning their guidance for the surveillance

of HIV drug resistance (HIVDR) in low- and middle-income countries. The guidance

describes recommendations for monitoring two aspects of HIVDR that are of interest to

country program directors: (1) resistance in individuals starting antiretroviral therapy

(ART), referred to as pre-treatment drug resistance (PDR), and (2) resistance in individu-

als on ART for at 12± 3 months and ≥ 48 months, referred to as acquired drug resistance

(ADR). Descriptions of our proposed approach for these two surveys is currently being

prepared for publication by the WHO, and the methodology described within will then

be adapted by in-country researchers into survey design protocols that will meet the par-

ticular needs of that country.

4.1 Introduction

In our work as statistical consultants designing surveillance systems for HIV drug resis-

tance in low- and middle-income countries, we faced a variety of challenges. The first

major challenge is the likely limited technical capacity of in-country researchers who

will be executing these surveys. Thus, the survey design, implementation, and analy-

sis must be exceedingly simple. The second major challenge is the extreme diversity of

HIV epidemics across all low- and middle-income countries. Among the countries we

have consulted with, one country has more than 4,000 HIV sites, while another has only

5. Some countries have generalized HIV epidemics, while others have epidemics that are

highly concentrated among particular risk groups. Some countries have electronic medi-

cal records that have detailed information on all patients that can be queried at a national

level, while others have paper-based systems that cannot be accessed without visiting
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each site individually. Thus, it is important that the design is sufficiently flexible that it

can be adapted for use in any country. The third major challenge is feasibility. The pro-

posed designs can not be too costly or logistically complicated. Longitudinal follow-up,

which was an element of the previous version of these protocols, is no longer considered

feasible. For small countries, the designs cannot require sampling more patients than

would be eligible during the survey period. Feasibility is critical because it can be the dif-

ference between the survey being implemented, or not. These are just some of the many

challenges that arose during this consulting process.

Ultimately, our goal is to improve the ability of program managers to make informed deci-

sions about their country’s prevention and treatment programs through the use of surveil-

lance data with sufficient precision and quality. To elevate the quality of the surveillance

data, we employ principled statistical methodology and epidemiological expertise while

being mindful of the constraints described above. Where possible, we opted for the sim-

plest methodology without sacrificing rigor. We recognize that if we were to make the de-

sign more complex, we could get closer to the ideal statistical result. In practice, though,

the more complex the design, the less likely that the survey will be done properly and

the less likely that the survey will be done at all. We developed Excel-based tools with

limited input required by the user to assist in the survey design process, and, with only

few exceptions, we developed primary outcomes that can be easily analyzed in Stata or

other survey-based statistical software. Our goal is to empower in-country researchers to

collect and analyze their own data with limited external assistance to build capacity to

make decisions about their national HIV programs.

The core of this report is divided into two sections, covering each of the survey design

protocols. We focus on the statistical challenges and our proposed solutions. Some solu-

tions are standard, while others required development of new methodology. We describe

all in turn.
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4.2 Pre-treatment drug resistance (PDR)

Section 4.2.1: Background

Section 4.2.2: Survey overview

Section 4.2.2.1: Sampling frame Construction

Section 4.2.2.2: Site stratification

Section 4.2.2.3: Site sampling

Section 4.2.2.4: Patient sampling

Section 4.2.3: sample size calculations

Section 4.2.3.1: Effective sample size

Section 4.2.3.2: Design effect due to clustering of the outcome by site

Section 4.2.3.3: Design effect due to imperfect information weighting

Section 4.2.3.4: Calculating the sample size

Section 4.2.3.5: Incorporating the finite population correction

Section 4.2.3.6: Sample size calculations when all sites are sampled

Section 4.2.4: Data analysis

Section 4.2.4.1: Site sampling weight

Section 4.2.4.2: Outcome 1a

Section 4.2.4.3: Outcomes 1b and 1c

Section 4.2.4.4: Outcomes 2a, 2b, and 2c
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Section 4.2.4.5: Regional aggregation

4.2.1 Background

In high-income countries, physicians can identify appropriate treatment regimens for pa-

tients initiating antiretroviral therapy (ART) using results from routine genotypic HIV

drug resistance testing. In low- and middle-income countries, the current cost of geno-

typic testing is prohibitive. Thus, a public health approach must be applied in which

all patients are initiated on a single first-line regimen. Nationally representative surveil-

lance of HIVDR in populations initiating ART is critical to inform the selection of an

effective first-line regimen. HIVDR among patients initiating ART may be attributable to

transmitted drug resistance, meaning that patients are infected with an already resistant

viral strain, or resistance may be acquired due to previous exposure to ARV, in the con-

text of prevention of mother to child transmission (PMTCT) programs, pre-exposure pro-

phylaxis (PrEP), post-exposure prophylaxis (PEP), or previous disclosed or undisclosed

antiretroviral therapy. Regardless of the origin of the drug resistance mutations, it is

important for a country to understand both the prevalence and type of drug resistance

circulating because of the important country and global implications for population-level

treatment outcomes.

In the previous surveillance methodology described by the WHO in 2006, the pre-

treatment resistance survey and the acquired drug resistance survey were part of a single

longitudinal survey (Jordan et al., 2008). After an initial pilot testing period, the WHO

recommended that 10 to 15 representative ART sites be sampled, and one third of these

sites be surveyed each year on a three-year cycle. The survey conducted at each site was

a longitudinal survey following patients through the first 12 months of therapy. Patients

were assessed for HIVDR prior to ART initiation and at 12 months (or before the switch

to second-line therapy). We discuss the baseline survey here and reserve discussion of

the 12 month follow-up survey for the section on acquired drug resistance.
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Between 2006 and 2010, forty surveys were performed in 12 countries using this standard-

ized protocol (World Health Organization, 2012a, p. 29). During survey implementation,

a variety of challenges emerged. First and foremost, the longitudinal nature of the survey

made it logistically challenging, especially in settings with decentralized service-delivery

models and in areas of concentrated or low prevalence epidemics (World Health Organi-

zation, 2012b, p. 7). Secondly, the duration of the survey meant that it took at least a year

and a half from survey initiation until results were available (World Health Organization,

2012a, p. 32). The lag was too long to provide timely information to ART program man-

agers. Another challenge of the previous survey was the lack of standardized guidance

on how to sample sites in a representative fashion. A pilot study in Namibia was run in

which sites were classified based on region and disease burden (high/low), and only one

site was sampled per stratum. Design choices like this make surveys less efficient.

To increase survey feasibility, the WHO decided to replace the single longitudinal study

with two cross-sectional surveys (World Health Organization, 2012b, p. 7); the first is a

survey of patients initiating treatment to measure pre-treatment drug resistance (PDR),

and second is a survey of patients on treatment for at least 12±3 and ≥48 months to

measure acquired drug resistance (ADR). They approached us for statistical guidance as

they developed these protocols. In the following section, we describe the proposal for the

PDR survey. The ADR survey is described in Section 4.3.

4.2.2 Survey overview

For the surveillance of pre-treatment drug resistance (PDR), we propose a two-stage clus-

tered survey where the primary sampling units (PSUs) are sites where patients initiate

ART, and the secondary sampling units (SSUs) are patients initiating treatment at these

sites during the 6 month survey period. The survey duration was chosen to be six months

because it is short enough to provide timely information to program managers but long

enough so that small countries can enroll enough eligible patients. Sites are selected pro-
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portional to some measure of size, as described in Section 4.2.2.1, using systematic sam-

pling, as described in Section 4.2.2.3. Eligible patients initiating therapy are enrolled at

each sampled site until a predetermined patient quota is achieved, as described in Sec-

tion 4.2.2.4. These patients are asked about any prior exposure to antiretroviral drugs

(ARVs), and specimen samples are genotyped to test for the presence of HIV drug resis-

tance mutations. After the site-specific quota is achieved, sites continue to screen patients

for presence and type of prior exposure, as described in Section 4.2.2.4.

The primary outcomes of the survey are listed below. Outcome 1 measures HIV drug

resistance among different groups of patients. Outcome 2 measures the prevalence of

prior exposure to ARVs.

1a. Prevalence of HIV drug resistance among all initiators, regardless of prior exposure

to ARVs

1b. Prevalence of HIV drug resistance among ART initiators without prior exposure to

ARVs

1c. Prevalence of HIV drug resistance among individuals initiating ART with NNRTI-

based regimens without prior exposure to ARVs

2a. Proportion of all ART initiators without prior exposure to ARVs

2b. Proportion of all ART initiators with prior exposure to ARVs

2c. Proportion of all ART initiators with unknown prior exposure to ARVs

These outcomes were determined through discussions involving the WHO and partners.

They were selected because of their relevance to national program managers.
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4.2.2.1 Sampling frame construction

Prior to sampling sites, the country must construct their sampling frame. The sampling

frame is a list of all ART sites in the country where patients initiate treatment and the

relative sizes of these sites. Ideally, site size is estimated as the number of treatment

initiators observed at that site during a recent time period, such as the previous 6 months.

If sampling is performed proportional to the number of initiators enrolled at each site

during a previous time period, we refer to this as Probability Proportional to Size, or

PPS, sampling. Technically, the sampling is PPES (Probability Proportional to Estimated

Size) because the number of initiators enrolled at each site is expected to vary over time

(Yansaneh, 2005, p. 17), but we refer to it as PPS to distinguish it from the other option we

present. If information on the number of initiators enrolled at each site during a previous

time period is not available, the country can perform Probability Proportional to Proxy

Size, or PPPS, sampling. In PPPS sampling, the proxy measure is some measure of site

size, generally the number of patients enrolled at that site during a recent time period.

This will not be exactly proportional to the number of initiators, but it is a reasonable

alternative that will distinguish between large, medium, and small sites. We expect PPPS

sampling to be less efficient than PPS sampling. We describe how the choice between PPS

and PPPS affects the sample size calculations during our discussion of the design effect

(see Section 4.2.3.3).

To improve feasibility of the survey, we provide guidance for the exclusion of sites that

are either very small or difficult to access. Very small sites are sites that would initiate

very few patients during the 6 month period. Difficult to access sites are sites that the

country decides a priori that they would not reasonably be able to include if selected

during sampling. This might include sites located in areas of political instability or in very

remote geographic areas. Though it could induce bias to exclude either very small sites

or difficult to access sites, it is better to encourage countries to make these assessments

prior to sampling and to do so in a principled way. We suggest that sites that are excluded
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should not represent more than 10% of the patient population. Thus, if more than 10% of

the patient population is treated at very small sites, then at least some of these sites should

be included in the sampling frame. The 10% threshold was identified as a compromise

to improve feasibility while limiting bias. If the absolute difference in PDR prevalence

between the excluded sites and included sites is 10% (which would be very high in this

setting), the absolute bias would be no more than 1%.

4.2.2.2 Site stratification

We did not actively encourage stratification (also referred to as explicit stratification), in

which separate sampling frames are constructed for each stratum. While we recognize

that stratification can improve the efficiency of the survey, our decision stemmed from a

variety of factors. The primary reason is the broad range of potential stratifying factors.

Countries with generalized epidemics may be interested in very different factors than

countries with concentrated epidemics, and so on. To provide usable statistical guidance

and tools for survey design for all of the possible scenarios that may arise would place

too much of a burden on the WHO. Suggesting a standard and relatively simple strategy

increases the likelihood that the survey will be designed properly while also limiting

dependence on external assistance. Other reasons for not encouraging stratification are

the fact that it can be difficult to proportionally allocate sites to strata when there are few

sites being sampled overall or when there are many strata. The extreme is the setting

when one site per stratum is sampled, in which the efficiency gain from stratification is

more or less lost because standard variance estimation becomes impossible. Finally, from

the existing surveys, there was no evidence that pre-treatment drug resistance varied

widely on any site-level factor (urban vs. rural, etc). Thus, it would be hard to justify the

additional complexity without some suggestions of a gain in precision.

Nonetheless, we do provide some guidance on how to perform stratification for countries

interested. This is available in one of the report annexes. We emphasize the importance of
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limiting the number of stratifying variables, combining similar strata if any one stratum is

too small, and sampling at least two sites per stratum. In our guidance, we describe how

to perform sample size calculations by allocating the effective sample size proportionally

to the strata. If the primary goal of the country is just to guarantee a certain degree of

regional representation (i.e. at least one site per region), we provide a short method that

can be used to assess how many sites must be sampled to guarantee at least one site per

region when using systematic sampling with implicit stratification (see Section 4.2.2.3).

Briefly, the method shows countries how to check that the systematic sampling interval

is smaller than the size of the smallest region. If so, then each region will be sampled at

least once regardless of the systematic sampling random starting point. If the sampling

interval is too large, then either more sites must be sampled or small regions should be

combined with other similar regions.

4.2.2.3 Site sampling

In the first stage of sampling, it is recommended that 15-40 sites are sampled via system-

atic sampling using probabilities proportional to estimated site size (Wolter, 2007, sect.

8.6). This will lead to a nationally representative selection of sites in the country. The

exact number of sites to be sampled should be determined by the country. The number

is a compromise between efficiency (it is more statistically efficient to sample more sites)

and feasibility (it is more logistically complicated and expensive to sample more sites).

In countries where there are 15 or fewer sites, all sites should be included in the survey.

The survey is then a one-stage stratified survey of patients within sites, which is more ef-

ficient than a two-stage clustered survey. In countries where there are more than 15 sites,

these countries have the option of including all sites or taking a sub-sample (the standard

design described above).

Systematic sampling was selected because it is routinely used in surveys in the devel-

oping world (Family Health International, 2000, p. 38). It also has the added benefit
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of allowing countries to employ implicit stratification to improve representativeness. In

implicit stratification, the systematic sampling frame is ordered on some factor before

sampling. We suggest ordering by geographic region and also size within geographic

region. In this way, there is an increased likelihood that sites will be sampled from each

of the geographic regions. One negative consequence of systematic sampling is that, in

some countries, large sites may be sampled more than once. In this case, we ask that sites

just sample proportionally more patients from these sites.

4.2.2.4 Patient sampling

In the sites sampled, consecutive eligible patients initiating ART on or after a pre-

defined survey start date are enrolled until the predetermined sample size for each site

is achieved. We assume that consecutive patients are independent and that there are no

time trends during the 6 month period. All individuals initiating ART are eligible to be

enrolled, irrespective of their prior ART history. Specimens are collected from enrolled

patients prior to ART initiation, and these specimens are sent to the laboratory for HIV

drug resistance genotyping. Each site should contribute roughly the same number of

specimens to the sample. In practice, this may not occur because of laboratory failure or

sites being too small to achieve the predetermined sample size. This is accounted for in

the survey weights (see Section 4.2.4.2).

After the predetermined sample size is achieved, sites must continue to screen initiators

for prior ARV exposure. The goal of this continued screening process is two-fold. First

of all, this improves the precision of Outcomes 2a, 2b, and 2c, which measures the pro-

portion of patients in each prior ARV exposure category. Second and more importantly,

the estimated site sizes used for systematic sampling were approximations to improve

the efficiency of sampling. In order to appropriately adjust the survey sampling weights,

the sampled sites must report the actual number of ART initiators observed during the 6

month survey period. Thus, even if a site is able to achieve its patient enrollment quota in
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one day, it must continue to screen initiators for 6 months. Because of serious push-back

from collaborators and funding partners, a compromise was reached that sites can screen

initiators for a minimum of 3 months and then extrapolate to determine the 6 month eli-

gible population size. This requires the assumption that there are no changes in the rate

of ART initiation over the 6 month survey period.

4.2.3 Sample size calculations

The survey sample size is powered to achieve sufficiently precise results for Outcome

1b, which is the prevalence of HIV drug resistance among initiators without prior expo-

sure to ARVs. A confidence interval of half-width of ±5% is suggested as an appropriate

compromise between feasibility and precision.

Below we provide a comprehensive description of our proposed sample size calculations

and justifications for assumed values and methods used. Nonetheless, it is not necessary

for in-country researchers to understand the methodology below to generate an appropri-

ate survey design. To improve feasibility, Excel-based tools for sample size calculations

were constructed. These tools require limited user input, with the majority of assumed

values internalized in locked cells. We believe this will reduce the likelihood of miscalcu-

lations during the survey design process.

4.2.3.1 Effective sample size

To determine the necessary sample size for the survey, we start by determining the ef-

fective sample size for estimating the prevalence of HIV drug resistance among initiators

sampled. The effective sample size refers to the number of patients, keff , we would need

to sample to achieve a desired confidence interval half-width if we were conducting a

simple random sample. The effective sample size is determined by the prevalence of the

outcome and the desired width of the confidence interval. The effective sample size is

then multiplied by the estimated design effect to yield the actual sample size of the sur-
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vey.

Note: Because the method for calculating a confidence interval in the setting of clustered

surveys uses a t distribution with degrees of freedom equal to the design degrees of free-

dom (Korn and Graubard, 1999, p. 62), our effective sample size is also a function of the

number of sites sampled. When the design degrees of freedom are large (around 40 or

greater), it is standard to assume that z0.975 ≈ tdf,0.975 as this simplifies calculations. This

is only appropriate when the design degrees of freedom are large. Since this design re-

quires sampling of around 15-40 sites, the design degrees of freedom will be small, and

it is thus inadvisable to make this simplification. The consequence of using this simplifi-

cation would be an underestimation of the total sample size required to achieve a given

confidence interval half-width.

To determine the effective sample size, consider the following formula for a Wald-type

confidence interval. Here, p̃DR refers to the assumed prevalence of HIVDR among initia-

tors. Available evidence suggests that it is reasonable to conservatively assume an esti-

mated prevalence of HIVDR among all treatment initiators of 10%. This figure, which is

greater than the 5% generally reported in the literature, including in the 2012 WHO HIV

Drug Resistance Report, is used as a conservative measure of expected HIVDR preva-

lence because higher levels of pretreatment HIVDR – approximating 10% – have been

documented in some regions. n refers to the number of sites sampled, and df are the

design degrees of freedom:

95% CI =

(
p̃DR − tdf,0.975

√
p̃DR(1− p̃DR)

keff
, p̃DR + tdf,0.975

√
p̃DR(1− p̃DR)

keff

)

The design degrees of freedom are defined as df = (# of sites sampled) – (# strata) (Korn

and Graubard, 1999, p. 62). If stratification is not used, df = n− 1. The half-width of this

confidence interval is:
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L = tdf,0.975

√
p̃DR(1− p̃DR)

keff

The effective sample size can be calculated using the following formula:

keff =
t2df,0.975p̃DR(1− p̃DR)

L2

keff should be rounded up to the nearest integer.

The effective sample size must be inflated by the design effect to determine the actual

sample size The elements of the study design that contribute to the design effect are (1)

clustering of the outcome by site (DEFFclust, see Section 4.2.3.2), and (2) imperfect in-

formation from using data from a previous year or from a slightly different population

(DEFFinfo, see 4.2.3.3).

4.2.3.2 Design effect due to clustering of the outcome by site

It is first necessary to calculate the design effect due to clustering of the outcome. The

similarity of HIVDR outcomes of initiators within sites is measured via the intracluster

correlation coefficient, or ICC. Ifm is the number of patients sampled per site and ICCDR

is the estimated intracluster correlation for the HIVDR outcome, the design effect due to

clustering can be estimated using the following formula:

DEFFclust = 1 + (m− 1)ICCDR

In order to estimate the ICC, global data from WHO’s HIV Drug Resistance Report 2012

were used. For each site in each country, the estimated probability of drug resistance for

treatment initiators was used to calculate the ICC using an analysis of variance estimator

(Ridout et al., 1999). Although ICC is defined as capturing the clustering of outcomes by
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sites within the same country, sites in the data-set were collapsed across different coun-

tries.

For the outcome of pre-treatment HIVDR, the estimated ICC using data from the 2012

WHO Drug Resistance Report is ICCDR,raw = 0.005. The observed prevalence of pre-

treatment HIVDR in the global data is 4.5%. As the assumed prevalence of HIVDR among

initiators is 10%, and since the ICC and prevalence are generally correlated, the ICC

was adjusted to reflect the assumed prevalence (Guillford et al. 2005). To perform this

adjustment, a linear model predicting natural log of ICC by the natural log of prevalence

was applied. The equation is

ICCDR = exp

{
0.91× ln

[
p̃DR
0.045

]}
× ICCDR,raw

It is important to note that there are limitations to these estimates. First of all, the ICC

estimates are based on only the data available in the global report. A 95% confidence in-

terval can be constructed for ICCDR,raw using Searle’s method (Searle, 1971; Ukoumunne,

2002), and the resulting interval extends from 0.000598 to 0.0131; thus, the interval is very

wide, reflecting the uncertainty in the estimate. Thus, as the survey is implemented, it is

important that the data obtained be used to better inform the estimate of ICC for future

iterations of the survey.

4.2.3.3 Design effect due to imperfect weighting information

As described in Section 4.2.2.1, countries may either use PPS or PPPS sampling. The sur-

vey is maximally efficient when the estimated site sizes are perfectly proportional to the

true site sizes. Otherwise, there is an inflation in the variance. To estimate the effect of

imperfect information on the design effect, we use a formula estimating the variance con-

tribution for disproportionate weights (Kalton et al., 2005, eq. 23). The design effect can

be approximated by DEFFinfo = 1 + cv2(weights), where cv() refers to the coefficient
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of variation and weights are the survey weights. For PPS sampling, it is estimated that

DEFFinfo = 1.10. For PPPS sampling, it is estimated that DEFFinfo = 1.50. This cor-

responds to inflating the sample size by 10% and 50%, respectively, to account for the

imperfect information. These numbers were calculated from observing the differences in

population sizes between treatment initiators and patients on ART at sites in an African

country over a two year period. These numbers are approximations, and the true values

may also be very country specific. As the survey is carried out, it is recommended that

these values be re-evaluated and adjusted as necessary for future iterations of the survey.

The design effect is also influenced by other sources of variability. For example, different

sites will have different levels of genotyping failure. This will induce additional variabil-

ity in the weights. It is estimated that this source of design effect will be small, so it is

ignored in the calculations to increase the simplicity of the design.

4.2.3.4 Calculating the sample size

The design effect for HIVDR is estimated using the following formula (Park and Lee,

2004):

DEFF = DEFFclust ×DEFFinfo

Given the calculated effective sample size (keff , see Section 4.2.3.1), intracluster correla-

tion (ICC, see Section 4.2.3.2), and design effect due to imperfect information (DEFFinfo,

see Section 4.2.3.3), solve the following equation for m, the number of initiators to be

sampled per site:

m =
1− ICCDR[
n

DEFFinfokeff
− ICCDR

]
If such an m does not exist, or if the calculated value of m is too large to be practical in

a particular setting, consider increasing the number of sites sampled, n. Because of the
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design effect, sampling a larger number of sites will require fewer samples per site, and

it will also require a smaller overall sample size

The sample size needs to be adjusted for two additional parameters: (i) Laboratory fail-

ure when genotyping. Based on data from the 2012 WHO HIV Drug Resistance Report,

the expected genotyping failure rate is assumed to be 10%. Thus, we need to divide the

required sample size by 0.90. (ii) Expected proportion of initiators without prior expo-

sure to ARVs. In order to retain statistical power at the analysis stage when considering

only patients without prior ARV exposure, the sample size needs to be adjusted for the

expected proportion of initiators without prior ARV exposure. It is assumed that 75% of

initiators will have not had prior exposure to ARVs, so we need to divide the required

sample size by 0.75. This should be the last step in the sample size calculations.

msamp =
m

0.90× 0.75

4.2.3.5 Incorporating the finite population correction

Countries can apply the finite population correction at the analysis stage to reflect the fact

that either a significant portion of sites in the sampling frame are included in the sample

or that a significant portion of eligible patients within a particular site are included in

the sample; the result is a reduction in the variance (see Chapter 5 for a more in-depth

discussion of this topic). Currently, the standard method for performing sample size cal-

culations in small countries that will be applying the finite population correction is to

reduce the effective sample size (World Health Organization, 2009a). We demonstrate

that this method can be inaccurate and lead to an overestimate of the sample size.

We show that the formula for the design effect due to clustering can be revised to incor-

porate the predicted effect of the finite population corrections which will be applied at

the analysis stage. The design effect due to clustering in the absence of finite population
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corrections is DEFFclust = 1 + (m − 1)ICCV LS where m is the number of patients sam-

pled per site and ICC is the intracluster correlation. For a country with N total sites in

the sampling frame and an average of M eligible patients per site, it can be shown that

the design effect due to clustering can be approximated by Chapter 5:

DEFFclust ≈
(
1− m

M

)
+

[(
1− n

N

)
m−

(
1− m

M

)]
ICCDR

The average number of eligible patients per site can be estimated as the total number of

eligible patients (estimated from available data) divided by the total number of sites in

the sampling frame (M = M/N where M =
∑N

i=1Mi). It can be shown that the neces-

sary number of patients per site to be sampled per site to achieve a desired precision is

(Chapter 5):

m =
1− ICCDR

n
DEFFinfokeff

− ICCDR
(
1− n

N

)
+ N

M
(1− ICCDR)

The sample size must then be adjusted for expected genotyping failure and the expected

proportion of initiators without prior exposure to ARVs.

4.2.3.6 Sample size calculations when all sites are sampled

If all sites in the sampling frame will be included in the survey, the following modifica-

tions can be made to the sample size calculations (using notation previously described).

Briefly, the survey effective sample size is calculated, and this effective sample size is

multiplied by a design effect due to imperfect information, the expected laboratory fail-

ure, and the expected proportion of initiators without prior ARVs exposure. It is not

necessary to multiply the calculations by a design effect due to clustering because all sites

in the sampling frame are included in the survey. The effective sample size necessary to

achieve a confidence interval of half-width L is:
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keff =
3.84p̃DR(1− p̃DR)

L2

If the finite population correction is incorporated into the calculations (where M is the to-

tal eligible population size in the country), then the effective sample size can be calculated

using the following equation (Lohr, 2010, eq. 2.25):

keff =
M × 3.84p̃DR(1− p̃DR)

L2 ×M + 3.84p̃DR(1− p̃DR)

Because information on patient enrollment from a prior time period will be used to al-

locate the sample, it is recommended that the sample size be inflated slightly to account

for imperfect information; this is equivalent to adjusting for a design effect for dispropor-

tionate weighting (see 4.2.3.3). Next, the sample size should be inflated by the amount of

expected laboratory success rate (90%) and the expected proportion of initiators without

prior ARV exposure (75%). Thus, the actual sample size for the PPS-equivalent design is:

kact =
keff ×DEFFinfo

0.90× 0.75

The actual sample size is then allocated to the sites proportional to the number of eligible

patients expected to be observed during the survey period. For each site, the sample size

of that site is equal to the total sample size, kact, times expected patient accrual at that site

divided by the expected patient accrual for all sites included in the survey. For example,

if 25% of patients in a country attend a particular site, 25% of the sample size should be

allocated to that site. The per site sample sizes are rounded to the nearest whole number.

4.2.4 Data analysis

Data analysis is conducted using a design-based framework. We calculate each of the out-

comes as a ratio, where the denominator is an estimate of the number of eligible patients
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in the country during the survey period, and the numerator is an estimate of the number

of such patients with the outcome of interest.

Directions for the data analysis are provided for the Stata SVY package in Stata (Stat-

aCorp, 2013). Support includes detailed instructions on how to enter the data into a

spreadsheet, step-by-step directions for reading the data into Stata, and step-by-step di-

rections for analyzing the data using drop-down menus with limited use of the command

line. We also provide a sample data set and a worked out example.

Even if Stata is not used to conduct the analysis, the Stata SVY manual section on Variance

Estimation contains all necessary formulae for calculating the prevalence, variance, and

95% confidence interval of each outcome (StataCorp, 2013).

4.2.4.1 Site sampling weight

Once an appropriate design is identified, sites will be sampled using either PPS or PPPS

systematic sampling. In PPS, site size is estimated using prior data on the number of

initiators by site. In PPPS, site size is estimated using prior data on the number of patients

on ART by site. For site i, the estimated site size in the sampling frame (from either PPS

or PPPS) is denoted as M̃i. If the predetermined number of sites to be selected is n? (note

that this may be different from the number of unique sites sampled, n, because sites may

be sampled twice), the probability that a site is selected is equal to n?M̃i divided by the

total size of all sites in the sampling frame, M̃ =
∑N

j=1 M̃j . Thus, the site sampling weight

is equal to the following, where SI = M̃/n? is the sampling interval from systematic

sampling:

wsite,i =
M̃

n?M̃i

=
SI

M̃i

If all sites are included in the survey, the site sampling weight is equal to 1 for all sites.

If a stratified survey is conducted, site weights should be constructed separately for each
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sampling frame.

As described in Section 4.2.2.4, Mi is a count of the number of eligible patients attending

site i observed during the 6 month survey period.

4.2.4.2 Outcome 1a

Outcome 1a is the overall prevalence of HIVDR among all ART initiators, regardless of

prior ARV exposure. The site sampling weight is defined in Section 4.2.4.1. The patient

sampling weight for all initiators in site i is defined as Mi divided by the number of

initiators with genotyped data available from that site, mi. The overall weight is the

product of the site and patient sampling weights:

w1i = wsite,i ×
Mi

mi

For a setting without stratification, the prevalence, p̂1a, is estimated using a ratio, letting

t̂i indicate the number of initiators observed with HIVDR at site i:

p̂1a =

∑n
i=1w1it̂i∑n
i=1w1imi

=
T̂

M̂

The denominator of the ratio, M̂ , is an estimate of the total number of individuals initiat-

ing ART during the 6 month survey period in the country. (If sites are excluded from the

sampling frame, it is technically an estimate of the number of eligible individuals in sites

in the sampling frame.) The numerator, T̂ , is an estimate of the total number of these ART

initiators with any HIVDR mutations.

The variance is calculated using Taylor series linearization. Briefly, the variance of the

ratio is expressed as a linear combination of the variance of the numerator, the variance

of the denominator, and the covariance of the two (Lohr, 2010, sect. 9.1). The variance of

the numerator total is (StataCorp, 2013, sect. variance estimation, eq. 2):
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v̂ar(T̂ ) =
(
1− n

N

) n

n− 1

n∑
i=1

w1it̂i −
1

n

n∑
j=1

w1j t̂j

2

+
n

N

n∑
i=1

(
1− mi

Mi

)
m2
i

mi − 1

t̂i
mi

(
1− t̂i

mi

)

The variance of the denominator total and the covariance term follow similarly, and they

are described in the Stata documentation. The formulae are also generalized for surveys

with stratification. The variance of p̂1a is the following (StataCorp, 2013, p. 187):

v̂ar(p̂1a) =
1

M̂2

{
v̂ar(T̂ )− 2

T̂

M̂
ĉov(T̂ , M̂) +

T̂ 2

M̂2
v̂ar(M̂)

}

A 95% confidence interval can be calculated using a standard Wald formula or by a Logit

transformation (see Chapter 7 for more details). The latter is currently the default in Stata.

4.2.4.3 Outcomes 1b and 1c

Outcome 1b and Outcome 1c are subpopulation analyses of Outcome 1a. Outcome 1b is

the prevalence of HIVDR among ART initiators without prior exposure to ARVs. Data

analysis is conducted using the same sampling weights described for Outcome 1a. The

population is restricted to patients without prior exposure to ARVs using the subpopu-

lation command in Stata (StataCorp, 2013, sect. subpopulation estimation). Briefly, the

difference between a subpopulation analysis and a conditional analysis is that the former

sets survey weights equal to zero for those not in the subpopulation and the latter entirely

excludes these patients entirely (West et al., 2008). This distinction is relevant when a site

has, by chance, no initiators eligible for the subpopulation analysis.

4.2.4.4 Outcomes 2a, 2b, and 2c

Outcomes 2a, 2b, and 2c are the prevalence of no prior exposure, yes prior exposure,

and unknown prior exposure to ARVs, respectively, among all ART initiators. The site
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sampling weight is defined in Section 4.2.4.1. The patient sampling weight for site i is

defined asMi divided by the number of initiators with recorded exposure status available

from that site. The overall weight is the product of the site and patient sampling weights.

The prevalence of each category is estimated using a ratio.

4.2.4.5 Regional aggregation

The WHO desired a framework for aggregating data across countries in a similar region

to increase precision. For example, for the global report, the WHO may aggregate data on

the prevalence of HIVDR among patients from Latin American countries with prior ex-

posure to prevention of mother to child transmission (PMTCT) drugs. Aggregating data

requires the assumption that the survey designs are comparable; specifically, the surveys

should be conducted in a relatively limited time frame in order for their aggregation to

be defensible because of possible time trends.

This analysis can be readily achieved by treating countries as fixed strata and analyzing

the data using a combined ratio estimate (Särndal et al., 2013, eq. 7.3.13) (Wu, 1985). We

provide the methodology for aggregating data across H countries (indexed h = 1, . . . , H).

The outcome for country h is the following:

p̂h =
T̂h

M̂h

The aggregated point estimate, p̂, is the following:

p̂ =
T̂

M̂
=

∑H
h=1 T̂h∑H
h=1 M̂h

Essentially, the point estimate combines information across countries, weighting by the

size of the eligible population, M̂h, as estimated by their national survey. In addition, this

approach does not require the eligible population sizes to be known with certainty. The

variance of p̂ can be calculated using Taylor Series linearization (as in Section 4.2.4.2):
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v̂ar(p̂) =
1

M̂2

{
v̂ar(T̂ )− 2

T̂

M̂
ĉov(T̂ , M̂) +

T̂ 2

M̂2
v̂ar(M̂)

}

As we assume that the surveys are independent across countries:

v̂ar(T̂ ) =
H∑
h=1

v̂ar(T̂h)

v̂ar(M̂) =
H∑
h=1

v̂ar(M̂h)

ĉov(T̂ , M̂) =
H∑
h=1

ĉov(T̂h, M̂h)

One additional issue is data sharing. If all of the raw data is available from each coun-

try, this analysis can be easily conducted in Stata treating country as a fixed stratification

variable. As it is unlikely that all countries will share their raw data, the WHO can still

perform this aggregation procedure as long as they have the following elements for their

outcome of interest: (1) T̂h, (2) M̂h, (3) v̂ar(T̂h), (4) v̂ar(M̂h), and (5) ĉov(T̂h, M̂h). These

values can be readily returned from Stata using the total commands in the SVY frame-

work (StataCorp, 2013). Thus, this represents only a few additional commands beyond

the standard analysis for each outcome of interest in the global report (see Section 4.3.4).

4.3 Acquired drug resistance (ADR)

Section 4.3.1: Background

Section 4.3.2: Survey overview

Section 4.3.2.1: Sampling frame Construction

Section 4.3.2.2: Site stratification
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Section 4.3.2.3: Site sampling

Section 4.3.2.4: Patient sampling for viral load suppression/HIVDR

Section 4.3.2.5: Patient sampling for retention

Section 4.3.3: Sample size calculations

Section 4.3.3.1: Calculating the sample size for viral load suppression survey

Section 4.3.3.2: Calculating the sample size for retention survey

Section 4.3.3.3: Predicted precision of adjusted viral load suppression outcome

Section 4.3.4: Data analysis

Section 4.3.4.1: Site sampling weight

Section 4.3.4.2: Outcomes 1a, 1b, and 1c

Section 4.3.4.3: Outcome 2a

Section 4.3.4.4: Outcome 2b

Section 4.3.4.5: Outcomes 3a, 3b, and 3c

Section 4.3.4.6: Outcome 4a

Section4.3.4.7: Regional aggregation

4.3.1 Background

As described in Section 4.2.1, in an effort to improve feasibility, the WHO has opted to

replace the previously recommended single longitudinal survey of patients from baseline

through 12 months on therapy with two cross-sectional studies. The first cross-sectional

study is a baseline survey to assess pre-treatment drug resistance (PDR) among patients
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initiating ART (see Section 4.2 for comprehensive description of the PDR survey). The

second cross-sectional study is a survey of patients on ART to assess acquired drug resis-

tance (ADR). We describe the ADR survey in this section.

In the previously used longitudinal protocol, patients were assessed for HIVDR prior to

ART initiation and at 12 months (or before the switch to second-line therapy). Because of

the longitudinal nature of the survey, some patients transferred out, died, stopped ther-

apy, or were lost to follow-up before the survey end date. At the 12 month time point,

the primary outcomes were (1) HIV drug resistance prevention (defined as viral load <

1000 copies/mL), (2) HIV drug resistance, and (3) possible drug resistance (included in

this category are people lost to follow-up, individuals who stopped antiretroviral ther-

apy, those for whom drug resistance cannot be assessed, and those with viral load greater

than 1000 copies/mL 12 months after therapy initiation but no drug resistance mutations

detected). These outcomes excluded patients with documented transfer to other sites and

documented deaths. Deaths were excluded because it was assumed that individuals who

died within 12 months of the start of treatment were unlikely to have died because of

drug-resistant HIV (Jordan et al., 2008, box 4). Outcomes were calculated as raw per-

centages among the relevant populations, and there was no adjustment for weighting or

clustering.

By using a cross-sectional design, the survey has increased feasibility, and it can be

adapted to include patients on therapy for longer periods of time; this would not be

possible with a longitudinal study. Nonetheless, cross-sectional studies have important

limitations. A cross-sectional survey excludes patients who are no longer receiving ART

at the study site and therefore cannot be observed because they have died, been lost to

follow-up or have stopped treatment. This “survivor bias” can significantly impact the in-

terpretation of the primary outcome. Without accounting for within country or country-

to-country variability in retention patterns, there are many important confounding fac-

tors, making it challenging to meaningfully a) assess changes in the national estimate of

observed viral load suppression (VLS, viral load < 1000 copies/mL) over time, b) com-
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pare these estimates against a global standard, or c) compare estimates across countries.

We describe our approach adjusting for this survivor bias in Section 4.3.2.

The updated acquired drug resistance survey includes outcomes related to viral load sup-

pression, HIV drug resistance and retention outcomes. These are important outcomes

for the monitoring of acquired HIV drug resistance. For patients achieving viral load

suppression, it is assumed that, because the treatment regimen is successful, there is no

”effective” drug resistance. If a country observes suboptimal levels of virological sup-

pression, they may initiate additional investigations to identify the source of these fail-

ures. In addition, information on retention is collected to improve the epidemiologic

utility of the viral load suppression outcome. Among patients with virological failure,

the country is also interested in the proportion of patients failing first-line ART without

evidence of drug resistance mutations; patients failing therapy without evidence of resis-

tance mutations would benefit from programmatic measures aimed at improving adher-

ence, whereas a high proportion of patients failing with drug resistance mutations might

suggest a need for a change in first- or second-line treatment regimens (World Health

Organization, 2012b).

4.3.2 Survey overview

The acquired drug resistance (ADR) survey protocol has significant overlap with the (pre-

treatment drug resistance) PDR survey protocol, and we refer readers to equivalent sec-

tions in the PDR portion of this document to reduce redundancy. For ADR surveillance,

we propose a two-stage clustered survey where the primary sampling units (PSUs) are

sites where adult patients receive ART, and the secondary sampling units (SSUs) are eli-

gible patients receiving treatment at these sites during the 6 month survey period. Similar

to the PDR survey protocol, sites are selected proportional to some measure of size using

systematic sampling (see Sections 4.2.2, 4.3.2.1 and 4.3.2.3). Patient eligibility is deter-

mined by duration on therapy. The WHO has identified an early and a late time point
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for the ADR survey. The early time point targets adults who have been on ART for 12

(±3) months during the survey period, and the late time point targets adults who have

been on ART for at least 48 months. These time points were selected based on clinical

relevance, consistency with a the previous survey and a preexisting 12 month retention

indicator, and feasibility; it can be difficult to enroll patients if the time windows are too

narrow. Countries may choose to conduct the survey at a single time point or both time

points simultaneously. This decision will depend on budget and programmatic needs.

For the measurement of viral load suppression and drug resistance outcomes, eligible

patients on ART are enrolled at each sampled site until a predetermined patient quota

is achieved for each time point, as described in Section 4.3.2.4. These patients are asked

about any prior exposure to antiretroviral drugs (ARVs), and specimen samples are geno-

typed to test for the presence of HIV drug resistance mutations. After the site-specific

quota is achieved, sites continue to screen patients for presence and type of prior expo-

sure, as described in Section 4.2.2.4.

Because of the limitations of cross-sectional data described in Section 4.3.1, we have con-

vinced the WHO of the importance of collecting data on retention. Data collection will be

done by a retrospective chart review among patients at the sites sampled, and we adopt

the preexisting PEPFAR/UNGASS indicator definition of 12 month retention (UNAIDS,

2011, sect 4.2). Currently, the indicator is measured via census only, and thus represen-

tative data on retention is very rarely available from low- and middle-income countries.

If analyzed properly, the survey yields a nationally representative estimate of retention

without requiring a census. For the early time point, we propose a method for combining

information on patient VLS and retention into a new outcome that we argue has improved

epidemiologic utility. The motivation, definition, and properties of this outcome are de-

scribed in an additional paper (Chapter 6). Briefly, if we assume that all patients who

are lost to follow-up are not virologically suppressed, we can estimate population-level

VLS as the product of VLS observed among retained patients and the prevalence of reten-

tion. We do not collect data on retention for the late time point because it is open-ended,

61



and thus the expected prevalence of retention is not meaningful because eventually all

patients are lost to follow-up or die.

The primary outcomes of the survey are listed below. Outcome 1 measures HIV drug

resistance among different groups of patients. Outcome 2 measures the prevalence of

prior exposure to ARVs.

1a. Prevalence of VLS (VL < 1000 copies/mL) among individuals on ART

1b. Prevalence of VLS among individuals on first-line ART

1c. Prevalence of VLS among individuals on NNRTI-based first-line ART

2a. Nationally representative measure of retention at 12 months (early time point only)

2b. Prevalence of VLS among individuals on ART, adjusted for retention (early time point

only)

3a. Prevalence of HIVDR among individuals on ART with VL > 1000 copies/mL

3b. Prevalence of HIVDR among individuals on first-line ART with VL > 1000

copies/mL

3c. Prevalence of HIVDR among individuals on NNRTI-based first-line ART with VL >

1000 copies/mL

4. Prevalence of HIVDR among individuals on ART

These outcomes were determined through discussions involving the WHO and partners.

They were selected because of their relevance to national program managers.

4.3.2.1 Sampling frame construction

Prior to sampling sites, the country must construct their sampling frame. The sampling

frame is a list of all ART sites in the country where patients receive treatment and the
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relative sizes of these sites. The relative size of the sites is equal to the number of pa-

tients on treatment at the site during a previous time period. We refer to this method of

sampling as Probability Proportional to Proxy Size, or PPPS, sampling (also described in

Section 4.2.2.1). Countries with sites that opened recently may have few or no patients on

treatment for ≥ 48 months. If a country is only implementing the survey at the later time

point, the country can choose to exclude sites that are not expected to observe patients

on treatment for ≥ 48 months from the sampling frame. If a country is implementing

both time points, we propose a stratification scheme to limit patient under-enrollment

(see Section 4.3.2.2).

As described for the PDR survey, we provide guidance for the exclusion of sites that are

either very small or difficult to access (see Section 4.2.2.1).

4.3.2.2 Site stratification

As described for the PDR survey, we do not actively encourage explicit stratification (see

Section 4.2.2.2). One important exception is if a country has many recently opened ART

sites and is planning to implement both survey time points. In this setting, the country

risks sampling many recently opened ART sites and significantly under-enrolling patients

for the late time point. To avoid this scenario, we provide statistical guidance for a strati-

fied design in which sites are grouped into two categories indicating their ability to enroll

patients on treatment for ≥ 48 months. In practice, this grouping will likely separate re-

cently opened (new) sites and old sites. From the old sites, patients are enrolled for both

the early (12±3 months) time point and the late (≥ 48 months) time point (see Table 4.1).

From the new sites, patients are enrolled for only the early time point. Thus, to identify

a suitable strategy, the country first identifies a design such that they can enroll sufficient

patients on treatment for ≥ 48 months among the old sites only. Then, the country iden-

tifies how many additional new sites they must sample to have a reasonable stratified

design for the early time point. This can be achieved via an already developed Excel-base
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Table 4.1: Sampling strategy for both time points

Early Time Point Late Time Point

12±3 mos. ≥ 48 mos.

New Sites First Stratum n/a

Old Sites Second Stratum Only Stratum

sample size calculator.

4.3.2.3 Site sampling

Site sampling is conducted in the same manner as described for PDR (see Section 4.2.2.3).

4.3.2.4 Patient sampling for viral load suppression/HIVDR

In the sites sampled, consecutive eligible patients on ART for 12 ± 3 or ≥ 48 months

(depending on which time points are implemented) on or after a pre-defined survey start

date are enrolled until the predetermined sample size for each time point at each site is

achieved. Specimens are collected from enrolled patients, and these specimens are sent

to the laboratory for viral load testing. Specimens with viral load > 1000 copies/mL are

sent to the laboratory for HIV drug resistance genotyping.

After the predetermined sample size is achieved, sites must continue to screen patients to

assess their eligibility for the survey. As described for the PDR survey, the primary goal is

to determine the total number of eligible patients observed at that site during the survey

period for proper weighting (see Section 4.2.2.4). For the early time point, this is the total

number of unique patients on treatment for 12± 3 months observed at the site during the

6 month survey period. For the late time point, this is the total number of unique patients

on treatment for ≥ 48 months observed at the site during the 6 month survey period. As

for the PDR survey, we require that screening continues for a minimum of three months

regardless of the time necessary to complete enrollment.
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4.3.2.5 Patient sampling for retention

For the early time point only, in order to obtain a measure of retention for patients on

treatment, countries perform a retrospective chart review at the sites sampled. To conduct

this chart review, countries list patients at the site who will have been on therapy for

exactly 12 months during the survey period. The total number of eligible records at that

site must be recorded. Next, a random sample of these patients is selected for assessment

of retention. This sample can be obtained via systematic sampling (e.g., every 10th record

beyond a random start point) (Lohr, 2010, sect. 2.7). 12 month retention is defined as the

patient being retained on ART at exactly 12 months after treatment initiation (UNAIDS,

2011, sect. 4.2). Patients who have stopped treatment, died, or been lost to follow-up are

not considered retained. Patients with documented transfer to another site are excluded

from the sample. The inherent assumption is that these transferred patients have the

same prevalence of retention and viral load suppression after transferring care as patients

who did not transfer, and excluding them from the sample will properly implement these

assumptions.

4.3.3 Sample size calculations

The survey sample size is powered to achieve sufficiently precise results for Outcome 1b,

which is the prevalence of VLS among individuals on first-line ART. If the early time point

sample is conducted, the survey is also powered to achieve sufficiently precise results for

Outcome 2a, which is the prevalence of 12-month retention among all individuals. For

both outcomes, a confidence interval of half-width of ±5% to ±6% is suggested as an

appropriate compromise between feasibility and precision. The survey is not powered

to achieve sufficiently precise results for Outcome 3a, which is the prevalence of HIV

drug resistance outcomes among patients failing therapy. While this was originally the

outcome of interest, the sample sizes were prohibitively large because this outcome is

only measured among patients with viral suppression failure, which is approximately
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15% to 30% of the population, depending on the time point. This population also excludes

all viral amplification and genotyping failures. As a result, the overall sample sizes must

be very large to collect usable data on a sufficient number of patients failing therapy.

As described for the PDR survey, sample size tools are available for countries designing

these surveys (see Section 4.2.3).

4.3.3.1 Calculating the sample size for viral load suppression survey

Sample size calculations for the viral load suppression portion of the survey proceed sim-

ilarly to those described for the PDR survey (see Section 4.2.3).

To calculate the effective sample size for the early time point, the suggested assumed

prevalence of VLS is p̃V LS = 0.85 with suggested precision L = 0.05 (see Section 4.2.3.1).

For the late time point, the suggested assumed prevalence of VLS is p̃V LS = 0.70 with

suggested precision L = 0.06.

In order to estimate the intracluster correlation, global data from WHO’s Global HIVDR

Report 2012 were used (WHO 2012a, table 9). For each site in each country, the estimated

probability of viral load suppression was calculated at the 12 month time point after cen-

soring patients with documented transfer to another site. As before, ICC is estimated

using an analysis of variance estimator (see Section 4.2.3.2). Using the raw data, with

observed prevalence of viral load suppression of 89% at 12 months after treatment initi-

ation, the estimated ICC is very low (ICCV LS,raw = 0.0032). The 95% confidence interval

for this quantity is -0.001425 to 0.01339; thus, the interval is very wide, reflecting the un-

certainty in the estimate. For the assumed prevalence of 85% at the 12-24 month time

point, the multiplicative factor is 1.34, resulting in an estimated ICC of ICCV LS,early =

1.34 × 0.0032 ≈ 0.004. As the assumed prevalence of viral load suppression for the 48+

month time point is 70%, the estimated ICC is ICCV LS,48+ = 2.15× 0.0032 ≈ 0.008.

As PPPS sampling is used for this survey, the estimated design effect due to dispropor-
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tionate weighting is DEFFinfo = 1.50 (see Section 4.2.3.3).

To calculate the necessary sample size, the same procedure described in Section 4.2.3.4

can be used. For the ADR survey, the sample size needs to be adjusted for two additional

parameters (note that this is in lieu of adjusting for genotyping failure and prevalence

of prior ARV exposure as described for the PDR survey): (i) Laboratory failure when

measuring viral load. For example, if we expect a 15% amplification failure rate, we need

to divide the required sample size by 0.85. (ii) Expected proportion of patients sampled

receiving a first-line regimen. In order to retain statistical power at the analysis stage

when considering patients on first-line regimen only, the sample size needs to be adjusted

for the expected proportion of patients sampled receiving a first-line regimen. For the

sake of simplicity, it is assumed that 95% of patients sampled will be receiving a first-line

regimen.

The same procedure for incorporating the finite population correction into sample size

calculations can be used for the ADR survey (see Section 4.2.3.5).

If all sites in the sampling frame will be included in the survey, the same procedure de-

scribed for the PDR survey can be applied (see Section 4.2.3.6). The necessary assumed

values for each time point are provided in this section.

4.3.3.2 Calculating the sample size for retention survey

The same procedure described for the viral load suppression outcome can be used to

calculate necessary sample sizes to achieve a particular confidence interval width for the

estimated retention at 12 months (see Section 4.3.2.4). The following parameters should

be used: estimated prevalence of retention at 12 months is assumed to be 85%, i.e. p̃RET =

0.85. The estimated intracluster correlation coefficient from global data is ICCRET,raw =

0.0713 with an observed prevalence of 12 month retention of 76.6%. For the assumed

prevalence of 85% at the 12 month time point, the estimated ICC is ICCRET = 0.667 ×

0.0713 ≈ 0.0475. The assumed DEFFinfo = 1.5 because PPPS sampling is used.
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After performing the necessary calculations, the sample size should be adjusted for the

expected prevalence of documented transfer, assumed to be 5%, since these patients will

be censored from the calculations. Thus, the sample size should be divided 0.95. If de-

sired, the finite population correction can be incorporated using the formulas described

above. The total eligible population size is an estimate of the number of patients who

initiated therapy 12 months prior to survey initiation.

4.3.3.3 Predicted precision of adjusted viral load suppression outcome

Given a particular sample size for the viral load measure, and given a particular sample

size for the retention measure, the predicted variance and confidence interval width for

the adjusted viral load suppression outcome (Outcome 2b) can be calculated; assumptions

and derivations are provided in Chapter 6. Let m be the number of patients sampled per

site for the viral load suppression measure (excluding amplification failures), let s be the

number of patients per site for the retention measure (excluding documented transfers),

and let M be the total number of patients who initiated treatment in the year prior to the

survey initiation.

Without applying the finite population corrections, the predicted variance is the follow-

ing:

V ar(p̂ADJ) ≈
1

n

{[
ICCV LS +

1

m
(1− ICCV LS)

]
p2RETpV LS(1− pV LS)

+

[
ICCRET +

1

s
(1− ICCRET )

]
p2V LSpRET (1− pRET )

+

[
ICCV LS +

1

m
(1− ICCV LS)

] [
ICCRET +

1

s
(1− ICCRET )

]
×pV LS(1− pV LS)pRET (1− pRET )

}

If the finite population corrections are applied, the predicted variance is the following:
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V ar(p̂ADJ) ≈
1

n

{[
ICCV LS +

(
1

m
− N

M

)
(1− ICCV LS)

]
p2RETpV LS(1− pV LS)

+

[
ICCRET +

(
1

s
− N

S

)
(1− ICCRET )

]
p2V LSpRET (1− pRET )

+

[
ICCV LS +

(
1

m
− N

M

)
(1− ICCV LS)

]
×
[
ICCRET +

(
1

s
− N

S

)
(1− ICCRET )

]
×pV LS(1− pV LS)pRET (1− pRET )

}

The predicted confidence interval half-width is then tn−1,0.975
√
var(p̂ADJ). Generaliza-

tions for stratified data or settings where all sites are included are described in Chapter

6.

4.3.4 Data analysis

Data analysis for the ADR survey has the same key features as the PDR survey (see Sec-

tion 4.2.4). The key difference is that Stata cannot directly calculate Outcome 2b, which is

the adjusted VLS measure. Nonetheless, we have provided directions for how to conduct

this data analysis in Stata with a few additional commands. A worked out example is

provided in the guidance. Data analysis is conducted using a design-based framework.

We calculate each of the outcomes as a ratio, where the denominator is an estimate of the

number of eligible patients in the country during the survey period, and the numerator

is an estimate of the number of such patients with the outcome of interest.

4.3.4.1 Site sampling weight

The calculation of the site sampling weight follows the same procedure as described for

PDR (see Section 4.2.4.1)
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As described in Section 4.3.2.4, Mi is a count of the number of eligible patients for the

VLS/HIVDR survey attending site i observed during the 6 month survey period. As

described in Section 4.3.2.5, Si is a count of the number of eligible records for retention

review at site i.

4.3.4.2 Outcomes 1a, 1b, and 1c

Outcome 1a measures population-level viral load suppression (VL<1000 copies/mL)

among individuals who have been on ART for 12±3 (or ≥ 48) months and who have

been retained in care. Outcome 1a, therefore, is not adjusted to take into account the pro-

portion of people who no longer attend sites because they have been lost to care, have

died or have stopped treatment. The site sampling weight is defined in Section 4.3.4.1.

The patient sampling weight for site i is defined as Mi divided by the number of patients

on treatment for 12 (or ≥48) months with amplified viral load data available from that

site, mi. The overall weight is the product of the site and patient sampling weights:

w1i = wsite,i ×
Mi

mi

The point estimator, variance estimator, and confidence interval estimator are as de-

scribed in Section 4.2.4.2.

Outcomes 1b and 1c are subpopulation analyses of Outcome 1a (see Section 4.2.4.3).

4.3.4.3 Outcome 2a

Outcome 2a measures population-level retention at 12 months (see Section 4.3.1). The site

sampling weight is defined in Section 4.3.4.1. The patient sampling weight for site i is

defined as Si divided by the number of patients on treatment for 12 (or≥48) months with

amplified viral load data available from that site, si. The overall weight is the product

of the site and patient sampling weights. The point estimator, variance estimator, and
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confidence interval estimator are as described in Section 4.2.4.2.

4.3.4.4 Outcome 2b

Outcome 2b measures viral load suppression (VL<1000 copies/mL) at 12 months among

individuals sampled, adjusted for non-retention. This estimator assumes that all patients

who are not retained in care at 12 months are not achieving viral load suppression. The

adjusted proportion of patients on treatment for 12 months with viral load suppression

is estimated using a ratio estimator. Ratio estimators are used to construct prevalence

estimates in settings where both the numerator (total number of patients on treatment

for 12 months in the country with viral load suppression) and the denominator (total

number of patients on treatment for 12-24 months who are still retained in care in the

country) must be estimated. The following formula for a ratio estimator is used, where

p̂V LS,i is a site-specific estimate of VLS (Outcome 1a), and p̂RET,i is a site-specific estimate

of retention (Outcome 2a):

p̂ADJ =

∑n
i=1wsite,iSip̂V LS,ip̂RET,i∑n

i=1wsite,iSi

The associated variance estimator is described in Chapter 6.

4.3.4.5 Outcomes 3a, 3b, and 3c

Outcome 3a measures the prevalence of HIV drug resistance among individuals sampled

on ART for 12±3 (or≥ 48) months with viral loads greater than 1000 copies/mL. Outcome

3a is a subpopulation analysis of the overall data because the population is restricted to

those individuals without viral load suppression. The site sampling weight is defined

in Section 4.3.4.1. The patient sampling weight is the same as defined for Outcome 1a

(see Section 4.3.4.2). For all HIV drug resistance outcomes, we must also define a non-

response weight to compensate for genotyping failure. For all individuals with observed
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genotype, their non-response sampling weight is defined as the number of patients with

observed viral load failure at their site divided by the number of patients with observed

viral load failure and observed genotype at their site. The non-response weight assumes

that genotyping failure is unrelated to the presence of HIV drug resistance mutations. For

all individuals with missing genotype, their non-response sampling weight is missing.

For all individuals with viral load suppression, their non-response weight is equal to 1.

The overall weight is the product of the site, patient and non-response sampling weights.

For Outcome 3a, the population is restricted to patients without viral load suppression

using the subpopulation command in Stata (see Section 4.2.4.3). To analyze Outcomes 3b

and 3c, users can input additional subpopulation specifications using the “and” operator.

4.3.4.6 Outcome 4

Outcome 4 is the prevalence of HIV drug resistance among all individuals sampled on

ART for 12±3 (or ≥ 48) months. Data analysis is conducted using the same sampling

weights described for Outcome 3a (see Section 4.3.4.5), though the population is not re-

stricted for Outcome 4. The point estimator, variance estimator, and confidence interval

estimator are as described in Section 4.2.4.2.

4.3.4.7 Regional aggregation

Results can be aggregated as described in Section 4.2.4.5.

4.4 Discussion

In the above document we describe our proposed methodology for the surveillance of

pre-treatment drug resistance (PDR) and acquired drug resistance (ADR) in low- and

middle-income countries. This work is the product of a large-scale consultation project
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with the World Health Organization. This methodology is currently being published by

the WHO and will be implemented by countries this year. We believe that the proposed

methodology is statistically rigorous while still maintaining feasibility. We have already

received very positive feedback from partners that the methods are intuitive and repre-

sent a significant improvement over previous versions.
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Abstract

The finite population correction (fpc) is a factor that can be applied to deflate the variance

in settings where a large fraction (>5%) of the eligible population is included in a survey.

It is appropriate to the use the fpc when the results of the survey will not be generalized

beyond the eligible population. For countries conducting national disease surveillance

to inform programmatic function, the fpc can dramatically reduce the variance of survey

outcomes. When designing a survey, the fpc can be ignored or a simple fpc represent-

ing the fraction of the eligible survey population sampled can be incorporated into the

sample size calculations. Applying the fpc results in a decrease in the survey sample

size while still achieving the desired precision. We propose a novel method for calculat-

ing the sample size for a two-stage clustered survey that predicts the magnitude of the

first- and second-stage fpcs as elements of the design effect. The result is an even greater

decrease in required sample size. Via a series of simulations, we demonstrate that our

proposed sample size calculation method achieves the desired precision even when the

required sample size is dramatically smaller than that returned by the existing methods.

Our method has important implications for surveillance in resource-limited settings in

which reducing the overall survey cost and increasing feasibility are especially critical to

national program managers.

5.1 Introduction

When conducting national disease surveillance in a small country, the finite population

correction factor (fpc) can have a dramatic effect on the estimated precision of surveillance

outcomes. The fpc is used to reflect the fact that samples are taken without replacement

from a finite population. The fpc is equal to one minus the fraction of the population

sampled, and it ordinarily multiplies the variance estimator (Lohr, 2010, eq. 2.9). If only

a small proportion of the population is sampled, the fpc will be approximately one and
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can safely be ignored; otherwise, the variance will be reduced. The fpc is useful when the

sample size is large relative to the population size (say, >5%). It is appropriate to use the

fpc when survey results will not be generalized beyond the eligible survey population

(Kish, 1965, sect. 2.3). For national disease surveillance, survey results are only used for

monitoring programmatic function, and thus the fpc is appropriate in this setting. For

in-country researchers with limited technological expertise, the statistical software Stata

allows users to specify the fpc at each level of sampling when analyzing multi-stage sur-

veys (StataCorp, 2013). The resulting standard error estimates are reduced accordingly,

with the first stage finite population correction reducing the estimated first stage variance,

and so on.

When planning to conduct disease surveillance to estimate the prevalence of an outcome

by using a two-stage clustered survey, one must calculate the sample size required to

achieve a certain precision. This effort is, of course, complicated by the fact that the preci-

sion is affected by the prevalence being estimated. One common approach is to assume a

value for the prevalence, possibly based on historical or other relevant information, and

first calculate the required sample size as if one were taking a simple random sample with

replacement. This sample size, known as the effective sample size, is then multiplied by

an estimate of the design effect to yield the actual survey sample size. We can thus see that

the design effect measures the relative variance of a survey with a particular design, such

as a two-stage clustered survey, as compared to a simple random sample (Kish, 1995).

In a small country, the actual sample sizes calculated using this approach may be exces-

sively large, approaching or even exceeding the total number of eligible survey partic-

ipants. One common solution is to calculate the effective sample size assuming that a

simple random sample is conducted without replacement. The simple random sample

variance is deflated by an fpc equal to one minus the effective sample size divided by the

total size of the eligible population (World Health Organization, 2009a). This smaller ef-

fective sample size is then multiplied by the design effect, resulting in an overall smaller

actual survey sample size. In small countries, the actual sample size calculated with the
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fpc may be significantly smaller than the one without, reflecting the fact that a significant

proportion of the total eligible population will be included in the survey.

In this report, we describe an alternative approach for performing sample size calcula-

tions for two-stage clustered surveys. Rather than adjusting with a single fpc equal to

one minus the effective sample size divided by the total population size, we propose an

approach that more accurately mirrors the ultimate survey analysis in which an fpc is

applied at each stage of the design. We demonstrate how to predict the magnitude of the

first and second stage fpcs and how they can then be incorporated into the sample size

calculations. As might be expected, the result is an even greater decrease in the estimated

sample size while still preserving the overall desired precision. We demonstrate, by sim-

ulation, that the standard approach with a single fpc tends to overestimate the sample

size necessary to achieve a particular precision. This work is motivated by the develop-

ment of a generalizable survey protocol for HIV drug resistance surveillance in low- and

middle-income countries. In resource limited settings, cost and feasibility are major fac-

tors in survey design; thus an approach that yields smaller sample sizes while preserving

overall precision is desirable and has great applicability. In Section 5.2, we describe our

calculations for the prediction of the effect of the finite population correction on variance

estimation. In Section 5.3, we discuss three methods for sample size calculations for two-

stage clustered surveys. In Section 5.4, we describe a simulation study to compare these

three methods. Finally, we discuss our conclusions in Section 5.5.

5.2 Prediction of fpc effect

5.2.1 Notation

Divide a population into N primary sampling units (PSUs), and Mi secondary sampling

units (SSUs) within each PSUi, i ∈ 1, . . . , N with overall population size M =
∑N

i=1Mi.

Let pi indicate the PSU mean of the outcome of interest in PSUi. Thus, the overall preva-
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lence is p =
∑N

i=1
Mi

M
pi.

To estimate p, we perform a two-stage clustered survey using probability proportional to

size (PPS) sampling in which larger PSUs are more likely to be sampled, and an equal

number of SSUs are sampled from each PSU, expecting that the smallest PSU is larger

than the required sample size per PSU. n PSUs and m SSUs per PSU are sampled without

replacement. Let t̂i indicate the number of successes among the m SSUs sampled from

PSUi, and thus the observed prevalence of the outcome is p̂i = t̂i/m. Letting w be the

sampling weight for each SSU selected (constant across all PSUs and SSUs), we construct

a ratio estimator p̂ defined below (Lohr, 2010, eq. 6.33):

p̂ =

∑n
i=1wt̂i∑n
i=1wm

5.2.2 Infinite population setting

The variance of this estimator can be decomposed into two parts, with the first corre-

sponding to sampling n of N total PSUs using PPS sampling, and the second correspond-

ing to sampling m of Mi total SSUs from each selected PSU using simple random sam-

pling. Assuming that n � N and m � Mi ∀i and that Mi and pi are independent, the

variance can be approximated as follows, where V arPSU measures the variance of the

PSU means (see Appendix A.1.1):

V ar(p̂) =

(
1

n

)
V arPSU +

(
1

nm

)
p(1− p) [1− ICC]

The intracluster (or intraclass) correlation coefficient (ICC) provides a quantitative mea-

sure of the similarity between SSUs within PSUs (Ridout et al., 1999). The numerator of

the ICC represents the between PSU variability, and the denominator represents the sum

of the between PSU and within PSU variabilities (Donner and Koval, 1980, p. 1). In order

to calculate variances, we assume an underlying beta-binomial model for the data; in the
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first stage the PSU means are sampled from a beta distribution, and the second stage SSU

outcomes are sampled from a binomial distribution with the PSU mean generated in the

first stage. The ICC for the beta-binomial data is equal to the following, where V arPSU

is the between PSU variability (variance of the beta distribution) (Ridout et al., 1999) (see

Appendix A.1.2):

ICC =
V arPSU
p(1− p)

(5.1)

With this definition of ICC, we then calculate the design effect, which is the ratio of the

variance of the estimate of population prevalence under the survey to the variance of an

estimate of population prevalence under a simple random sample. In this paper, when

we refer to design effect, we are referring to what Kish calls DEFT 2 (Kish, 1995) because

our denominator is the variance of a simple random sample with replacement. Thus,

the design effect can be approximated by the following well-known equation (Appendix

A.1.3):

DEFT 2 (p̂) = 1 + ICC [m− 1]

5.2.3 Finite population setting

When the sampling fractions are non-negligible, one can incorporate fpcs into the cal-

culations. For the first stage of sampling, express the first-stage fpc as (1 − n/N); this

is consistent with Stata’s method of analyzing the data. Stata assumes a simple random

sample of PSUs. In reality, our sample uses PPS sampling at the first stage. Alternative

finite population corrections are described elsewhere (Wolter, 2007, chap. 8, eq. 8.7.6).

For simplicity and consistency with Stata, we employ the generally more conservative

first stage fpc of (1 − n/N) (a direct comparison of this approach and the most popular
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alternative fpc is described in Appendix A.1.4), although it would be straightforward to

change the first stage finite fpc in the design and analysis. For the second stage of sam-

pling, we express the second-stage fpcs as (1 − m/Mi) for each i, which is appropriate

because SSUs are sampled with equal probability.

We can predict the approximate variance of this estimator including fpcs as follows (see

Appendix A.1.5):

var (p̂) ≈
(
1

n
− 1

N

)
V arPSU +

(
1

nm
− 1

nM

)
p(1− p) [1− ICC]

We can then calculate the associated design effect (see Appendix A.1.6), whereM =M/N

is the average PSU size:

DEFT 2(p̂) ≈ (1−m/M) + ICC
[
(1− n/N)m− (1−m/M)

]
Thus, the predicted first stage fpc (1 − n/N) and predicted second stage fpc and second

stage fpc (1 − m/M) can be expressed as part of the design effect. Calculation of these

predicted fpcs does not require additional prior information over the standard method

for incorporating the finite population correction, which requires knowledge of the total

population size M and total number of PSUs N . If the sampling fraction is negligible

during both stages of sampling, the design effect simplifies to the familiar expression for

the design effect of a clustered survey, i.e., 1 + ICC [m− 1].

5.3 Sample size calculations

The variance of the estimator under discussion directly impacts the sample size required

to reach a desired precision, which is an important consideration at the design stage of

the survey. Here we present three methods for calculating the sample size for a two-stage

clustered survey. The first does not incorporate any fpc (assumes an infinite population).
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The second incorporates a single population-level fpc. The third is the method we pro-

pose, and it incorporates both first- and second-stage fpcs.

As stated previously, to perform sample size calculations, we require prior information

about the outcome. For estimating prevalence, we require an assumed value for the

prevalence, p, and some measure of the intracluster variability of the outcome, such as

the ICC. If the prevalence is unknown, we can assume that it is equal to p = 0.50. The

ICC can be challenging to estimate in practice. If prior data are available, the ICC can be

estimated using an ANOVA estimator (Ridout et al., 1999). Otherwise, we recommend

surveying the literature to identify a reasonable value. To design the survey, one must

also specify the desired precision; this is generally defined as a desired half-width L for a

95% confidence interval with quantile q (example: 1.96 or tdf (0.975) where df refers to the

design degrees of freedom for the survey (Korn and Graubard, 1999, p. 62)). This infor-

mation is combined to calculate the effective sample size, keff . As mentioned previously,

the effective sample size is then multiplied by the design effect to yield the actual sample

size of the survey, kact.

5.3.1 Method 1: No finite population correction

For the first sample size calculation method (denoted with a subscript 1), if no fpc is used,

we can determine an expression for m1, the number of SSUs required per PSU when

sampling n PSUs (see Appendix A.1.7):

m1 =
q2p(1− p) [1− ICC]
L2n− q2p(1− p)ICC

For this and all other methods, the per PSU sample size m1 should be rounded up to

the nearest whole number. Note that the quantile q used for the 95% confidence interval

is left general. Because the method for calculating a confidence interval in the setting

of clustered surveys uses a t-distribution with degrees of freedom equal to the design
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degrees of freedom (Korn and Graubard, 1999, p. 62), our effective sample size is also

a function of the number of PSUs sampled. When the design degrees of freedom are

large (around 40 or greater), it is standard to assume that z0.975 ≈ tdf,0.975 as this simplifies

calculations. When sampling only a few PSUs, the design degrees of freedom will be

small, and it is thus inadvisable to make this simplification. The consequence of using this

simplification would be an underestimation of the total sample size required to achieve a

given confidence interval half-width.

5.3.2 Method 2: Finite population correction in effective sample size

In the second method (denoted with a subscript 2), a finite population correction is ap-

plied while solving for the effective sample size. This method is used frequently in prac-

tice when conducting surveillance in low- and middle-income countries (Yansaneh, 2005,

p. 26)(World Health Organization, 2009a, p. 29). We can determine an expression for m2,

the number of SSUs required per PSU when sampling n PSUs (see Appendix A.1.7):

m2 =
q2p(1− p)M [1− ICC]

n [L2M + q2p(1− p)]− q2p(1− p)M [ICC]

5.3.3 Method 3: Finite population corrections at each stage of sampling

In the third method (denoted with a subscript 3), we incorporate first- and second-stage

finite population correction factors into the design effect estimate. Using this method, we

can determine an expression form3, the number of SSUs required per PSU when sampling

n PSUs (see Appendix A.1.7):

m3 =
q2p(1− p)M [1− ICC]

L2nM + q2p(1− p)− q2p(1− p)M [ICC]
[(
1− n

N

)
+ 1

M

]
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5.4 Simulations

We directly compare these three sample size calculation methods using a simulation

study, varying the size and distribution of the population, the intracluster correlation

coefficient, and the desired precision. We focus on the selection of HIV clinics (which

are our PSUs) within a country for the purpose of estimating national HIV drug resis-

tance prevalence. For each simulation, we generate N PSUs with Mi SSUs in each PSUi.

We then simulated the outcomes using a beta-binomial distribution, for which PSUi has

prevalence pi drawn from a Beta(α, β) distribution, and each of the secondary sampling

units (SSUs) in that PSU are drawn from a Bernoulli distribution with success probability

pi. To simulate data with a particular overall prevalence p and intracluster correlation

ICC, the parameters from the Beta distribution must equal the following (Ridout et al.,

1999, p. 138):

α =

[
1− ICC
ICC

]
p

β =

[
1− ICC
ICC

]
(1− p)

To simulate two stage cluster sampling, we randomly sample n PSUs using probability

proportional to size (PPS) sampling without replacement; then, we randomly sample m

SSUs from each selected PSU using simple random sampling without replacement. If m

is larger than the number of SSUs in the selected PSU, sampling stops after all available

SSUs are included. For each simulated cluster sample, we calculate the estimated preva-

lence, p̂, which is the mean of the observed data since the overall design is PPS and the

data is self-weighting. If any clinics under-enroll, making the design no longer epsem,

mi may vary across clinics and the sampling weights wi for each individual will be equal

within clinics but not across clinics. The slightly more general formula below can be used

to estimate the prevalence:
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p̂ =

∑n
i=1wit̂i∑n
i=1wimi

Following the Stata SVY documentation (StataCorp, 2013, “variance estimation”), an es-

timator of the variance can be written as:

v̂ar(p̂) =
(
1− n

N

) 1

M̂2

n

n− 1

n∑
i=1

w2
i

(
t̂i − p̂mi

)2
+

1

M̂2

n

N

n∑
i=1

(
1− mi

Mi

)
mi

mi − 1
w2
i {mip̂i(1− p̂i)}

This variance has associated 95% Wald confidence interval:

[
p̂− tn−1,0.975

√
v̂ar(p̂), p̂+ tn−1,0.975

√
v̂ar(p̂)

]
We ran 25,000 iterations for each of six scenarios. The confidence interval (CI) width

reported is the average confidence interval half-width over the 25,000 iterations.

Scenario 1 (moderate ICC, small number of large clinics): ICC = 0.01, p = 0.80, desired

CI width is ±5% (L = 0.05). N = 30 clinics, each of size Mi = 100. M = 3000.

Table 5.1: Average CI width for sampling n = 15 and n = 20 clinics in Scenario 1

Method 1 Method 2 Method 3

Design CI Width Design CI Width Design CI Width

n = 15 m1 = 25 ±0.0403 m2 = 22 ±0.0433 m3 = 18 ±0.0485

kact1 = 375 kact2 = 330 kact3 = 270

n = 20 m1 = 17 ±0.0427 m2 = 15 ±0.0458 m3 = 13 ±0.0496

kact1 = 340 kact2 = 300 kact3 = 260
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The per clinic sample size is smaller for Method 3 (our proposed method) than for Meth-

ods 1 (no fpc) and 2 (simple fpc), thus representing a great savings in cost and time. This

saving is quite sizable when only n = 15 clinics are sampled, requiring 60 fewer samples

overall than the simple fpc method The sample sizes calculated from Method 3 result in

confidence intervals at approximately the desired±5% precision. Because they are larger,

the sample sizes calculated from Methods 1 and 2 yield confidence intervals narrower

than the prescribed ±5%.

Scenario 2 (moderate ICC, large number of small clinics): ICC = 0.01, p = 0.80, desired

CI width is ±5% (L = 0.05). N = 100 clinics, each of size Mi = 30. M = 3000.

Table 5.2: Average CI width for sampling n = 15 clinics in Scenario 2

Method 1 Method 2 Method 3

Design CI Width Design CI Width Design CI Width

n = 15 m1 = 25 ±0.0274 m2 = 22 ±0.0320 m3 = 14 ±0.0479

kact1 = 375 kact2 = 330 kact3 = 210

Again, the per clinic sample size is smaller for Method 3 (m3 = 14 for n = 15) than for

Methods 1 and 2 (m1 = 25 and m2 = 22, respectively for n = 15). Note that Methods 1

and 2 result in the same sample sizes for Scenarios 1 and 2 as they have the same ICC, p,

desired CI width, and, for Method 2, total population size. For Method 3, the sample sizes

are different for Scenario 1 (m3 = 18 for n = 15) as compared to Scenario 2 (m3 = 14 for

n = 15). The required sample size for Method 3 is smaller when there are many smaller

clinics (Scenario 2) as compared to fewer larger clinics with the same overall population

size (Scenario 1).

Scenario 3 (moderate ICC, moderate number of variable sized clinics): ICC = 0.01, p =

0.80, desired CI width is ±5% (L = 0.05). N = 50 clinics. PSU sizes were drawn from a

gamma distribution (shape parameter equal to 2, scale parameter equal to 100. PSU sizes

below 50 or above 1000 were discarded. The PSU sizes were then shifted by subtracting
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45 from each to achieve some very small PSU sizes.) The simulated PSU sizes ranged

from 5 SSUs to 955 SSUs, with an average size of 180 SSUs. M = 8978.

Table 5.3: Average CI width for sampling n = 10 clinics in Scenario 3

Method 1 Method 2 Method 3

Design CI Width Design CI Width Design CI Width

n = 10 m1 = 49 ±0.0415 m2 = 46 ±0.0426 m3 = 36 ±0.0477

kact1 = 490 kact2 = 460 kact3 = 360

In this scenario, the clinic sizes vary widely. Again, Method 3 (our proposed method)

results in the overall smallest sample size by a sizable amount while still achieving the

desired precision.

Scenario 4 (moderate ICC, moderate number of small clinics, low desired precision):

ICC = 0.01, p = 0.80, desired CI width is ±15% (L = 0.15). N = 50 clinics. each of

size Mi = 30. M = 1500.

Table 5.4: Average CI width for sampling n = 5 clinics in Scenario 4

Method 1 Method 2 Method 3

Design CI Width Design CI Width Design CI Width

n = 5 m1 = 13 ±0.1102 m2 = 12 ±0.1170 m3 = 9 ±0.1426

kact1 = 65 kact2 = 60 kact3 = 45

In this scenario, very low precision is desired ±15%, resulting in very low sample sizes

for all methods. Method 3 still achieves the desired precision with the smallest overall

sample size.

Scenario 5 (high ICC, large number of large clinics): ICC = 0.2, p = 0.80, desired CI

width is ±5% (L = 0.05). N = 100 clinics, each of size Mi = 100. M = 10000. Note: for
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n = 50, Methods 1 and 2 return negative sample sizes, indicating that there is no feasible

per-clinic sample size that would achieve the desired precision.

Table 5.5: Average CI width for sampling n = 50 and n = 60 clinics in Scenario 5

Method 1 Method 2 Method 3

Design CI Width Design CI Width Design CI Width

n = 50 m1 = n/a n/a m2 = n/a n/a m3 = 8 ±0.0505

kact1 = n/a kact2 = n/a kact3 = 400

n = 60 m1 = 24 ±0.0338 m2 = 20 ±0.0349 m3 = 5 ±0.0509

kact1 = 1440 kact2 = 1200 kact3 = 300

In this scenario, the ICC is very high (0.2). Note that Methods 1 and 2 are unable to cal-

culate per clinic sample sizes until over n = 50 clinics are sampled. When n = 60, the dif-

ference in overall sample size between Method 2 and Method 3 is immense (kact2 = 1200

and kact3 = 300, respectively), though the differences in confidence interval width are not

similarly extreme. The CI width for Method 3 is slightly above 5% for these simulations.

Scenario 6 (zero ICC, small number of large clinics): ICC ≈ 0, p = 0.80, desired CI width

is ±5% (L = 0.05). N = 30 clinics, each of size Mi = 100. M = 3000. Note: simulated ICC

is 10−12 because ICC must be strictly positive for beta-binomial simulations.

Table 5.6: Average CI width for sampling n = 10 clinics in Scenario 6

Method 1 Method 2 Method 3

Design CI Width Design CI Width Design CI Width

n = 10 m1 = 33 ±0.0406 m2 = 30 ±0.0435 m3 = 25 ±0.0492

kact1 = 330 kact2 = 300 kact3 = 250

In this scenario, the ICC is effectively zero. Note that when the ICC is zero, we might

expect DEFT 2 = (1− nm/M). Alternatively, Method 3 predicts DEFT 2 = (1 −m/M),
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which is not the design effect that would result from a simple random sample. Nonethe-

less, in this setting, Method 2 overestimates the sample size to achieve a confidence in-

terval width of ±5%, while the average confidence interval resulting from Method 3 is

under ±5%.

5.5 Discussion

We describe three methods for calculating sample sizes for probability proportional to

size (PPS) two-stage clustered surveys used for national disease surveillance. In all meth-

ods we assume that we know the actual prevalence and the ICC, thus these elements

must be estimated from previously available data. In Method 1, no adjustment for the

effect of a finite population is made at the design stage. The finite population correction

can be readily applied at the analysis stage, but the end result is overestimation of the

sample size, and thus a greater cost of the survey, in order to achieve the desired preci-

sion. In Method 2, a standard adjustment for the finite population is made at the design

stage. This is achieved by incorporating a finite population correction into the calculation

of the effective sample size. Method 2 results in smaller sample sizes than Method 1, but

in many cases the numbers are quite similar. The resulting confidence intervals tend to be

narrower than planned for, but wider than the confidence intervals yielded from Method

1. Finally, we present Method 3, which adjusts for the finite population correction at the

first and second stages of sampling. These corrections are incorporated into the estimate

of the design effect using a formula derived in Section 2. The resulting sample sizes are

smaller than those from Methods 1 and 2, especially when fewer PSUs are sampled, but

the confidence intervals seem to perform well; they tend to be at or slightly smaller than

the desired width.

Further, we observe that Method 1 returns the same sample size for all scenarios with

the same prevalence, ICC, desired precision, and number of clinics sampled. Method 2

returns the same sample size for all scenarios with the elements listed for Method 1, plus
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the same overall population size. In contrast, Method 3, our proposed method, returns

different sample sizes depending on the composition of the population size. The sample

size is larger for countries with few larger clinics (Scenario 1) than for countries with

many smaller clinics (Scenario 2). Method 3 performs well when the clinics vary in size

(Scenario 3) and when the desired precision is so low that the overall sample size is small

(Scenario 4). We also evaluated the methods in scenarios with high and low ICCs. When

the ICC was high (Scenario 5), Methods 1 and 2 return impossible sample sizes if the

number of clinics sampled are too few, while Method 3 returns a realistic sample size that

performs reasonably well. When more clinics are sampled in that particular scenario, the

sample sizes for Method 3 are drastically smaller than the sample sizes for Methods 1 and

2. Finally, when the ICC is effectively zero (Scenario 6), Method 3 performs well, even

though the predicted design effect does not reduce to the finite population correction of a

simple random sample.

We can identify a few limitations to this method. First of all, it adds a slight layer of

complexity to the sample size calculations; nonetheless, these are easily coded into user-

friendly calculators using software such as Excel. Another limitation is that the finite

population correction is a simplified way to analyze data sampled without replacement,

and there is a wealth of literature on more technically correct methods for analyzing such

data, especially for PPS sampling of PSUs (Särndal et al., 2013, chap. 4). Nonetheless, one

of the major goals when prescribing methods to be used in the field is to simplify wher-

ever possible. The simplicity of approximations vastly outweighs any risk of inefficiency

or the introduction of a slight theoretical bias. Furthermore, in practice one very often

uses the ubiquitous systematic sampling scheme for the sampling of PSUs, potentially

with implicit stratification by geographic region; this approach does not lend itself well

to standard “without replacement” methodologies (Wolter, 2007, sect. 8.6).

On the other hand, we believe that this methodology for calculating sample size for a two-

stage clustered survey has many significant advantages. The greatest of these is the ability

to realize cost-savings at the design stage – and, in some cases, these savings may be sig-
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nificant when compared to the standard method for incorporating the finite population

correction – and yet they retain their accuracy. For resource-limited small countries, this

can represent immense savings. For example, for the surveillance of HIV drug resistance,

each SSU sampled is a patient whose viral strain must be genotyped, which is an expen-

sive procedure. By improving feasibility, we increase the likelihood that these surveys

will actually be implemented in the first place, which is important as they can provide

valuable information to national program directors. Outside of the HIV drug resistance

surveillance setting, this methodology could be applied to other national surveillance ac-

tivities in resource-limited settings, and the formulae can also be readily adapted for use

with continuous variables or stratification.
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Abstract

The World Health Organization is redesigning their guidance for the surveillance of ac-

quired HIV drug resistance in low- and middle-income countries. This paper focuses on

designing such a survey. The previous survey was a longitudinal survey of HIV-infected

patients during the first 12 months of treatment, but this has been replaced by a cross-

sectional survey of patients on treatment for 12± 3 months for reasons of feasibility. There

are important limitations of cross-sectional surveys. One of the key survey outcomes for

this survey is the prevalence of viral load suppression (VLS, defined as viral load < 1000

copies/mL) among patients on antiretroviral therapy for 12± 3 months. Because the pop-

ulation observable from a cross-sectional survey excludes patients who have died or have

been lost to follow-up, observed VLS has limited epidemiologic utility for national HIV

program managers. We highlight the importance of measuring 12 month retention to

assist in the interpretation of observed VLS results. In addition, we propose a novel ad-

justed VLS measure that incorporates data on site-specific retention by assuming that all

patients who have been lost to follow-up are not virally suppressed. We believe that this

adjusted VLS measure has improved utility for assessing changes in VLS over time within

a country, across countries, and relative to a global standard.

6.1 Introduction

In the last ten years, low- and middle-income countries have been able to significantly ex-

pand access to antiretroviral therapy (ART) for their HIV-infected populations. Treatment

efficacy is affected by HIV drug resistance (HIVDR) that is transmitted via infection or ac-

quired via drug selective pressure. As genotyping for HIVDR mutations is prohibitively

expensive in many settings, countries can implement sampling surveys to obtain na-

tionally representative estimates of factors associated with acquired HIVDR. Acquired

HIVDR (ADR) is defined as any drug resistance mutation that emerges under the selec-
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tive pressure of ART (World Health Organization, 2012a). There are various ways that

a patient may develop HIVDR mutations, including suboptimal adherence to treatment

regimens, treatment interruption, inadequate plasma drug concentrations, or the use of

suboptimal drugs or drug combinations (World Health Organization, 2012a). National

program managers can use information from ADR surveys to identify gaps in service de-

livery and to assess the expected effectiveness of available first- and second-line regimens

(World Health Organization, 2012a).

The newly revised WHO protocol for ADR surveillance in low- and middle-income coun-

tries includes a cross-sectional survey of patients on treatment for 12± 3 months. The

primary outcome is the prevalence of viral load suppression (VLS, defined as viral load<

1000 copies/mL) among patients retained on treatment (observable patients), and one of

the secondary outcomes is the prevalence of HIVDR mutations among patients with viral

suppression failure. Observed VLS is the primary outcome because it is a key indicator

of program performance at 12 months. Patients who are virally suppressed do not have

effective drug resistance (McMahon et al., 2013). In addition, viral suppression failure in

a patient may be attributable to either the existence of HIVDR mutations or to personal or

programmatic failures such as poor adherence or treatment stock-outs. These 12 month

viral suppression and drug resistance outcomes provide important feedback to national

HIV program managers.

The previous WHO protocol to study this issue was a longitudinal survey following a

cohort of patients receiving ART during their first 12 months on treatment (World Health

Organization, 2012c). The WHO abandoned the previous protocol because of the logisti-

cal complexity associated with a longitudinal survey that requires following a cohort for

12 months and the long lag between survey initiation and availability of results (World

Health Organization, 2012b). In contrast to a longitudinal survey that requires a group

of patients to be assessed continuously over time, a cross-sectional study only observes

patients at a particular point in time; clearly, this is much less expensive than a contin-

uously ongoing study, but a cross-sectional survey excludes patients who are no longer
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receiving ART at the study site and therefore cannot be observed because they have died,

been lost to follow-up or have stopped treatment. This survivor bias can significantly

impact the interpretation of the primary outcome. Without accounting for within country

or country-to-country variability in retention patterns, there are many important con-

founding factors, making it challenging to meaningfully a) assess changes in the national

estimate of observed VLS over time, b) compare these estimates against a global standard,

or c) compare estimates across countries.

In this paper, we discuss the epidemiologic limitations of observed VLS in the absence

of complete data on retention, and we propose a new outcome that attempts to correct

this bias by combining observed cross-sectional VLS with data on patient ART retention.

Retention needs to be estimated using a second site-specific sample survey of patient

records. This then leads to an adjusted outcome that has improved utility in that it can

be more meaningfully compared across time and to a global standard. This adjusted out-

come is akin to a lower bound of 12 month viral suppression because it assumes that all

patients who are not retained are not virally suppressed.In our experience, the percentage

of patients with documented transfer is very low in low- and middle-income countries.

The treatment of documented transfers is described in Section [sub:Retention]. The pri-

mary advantage of this framework is that it measures an outcome that is very similar to

that originating from a longitudinal study (i.e. prevalence of VLS among patients who

initiated treatment 12 months prior) using a cross-sectional study.

We also describe how the ADR survey framework can be used to develop a nationally

representative estimate of 12 month retention. Currently, 12 month retention is a recom-

mended UNGASS/PEPFAR indicator, though its suggested implementation is via census.

Using a sampling framework can drastically increase the feasibility and acceptability of

this important indicator.

In Section 6.2, we provide motivation for the adjusted VLS outcome. In Section 6.3, we

provide a framework and the necessary formulae for the analysis of adjusted VLS. In Sec-
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tion 6.4, we provide formulae for approximating the precision of adjusted VLS to inform

survey design. In Section 6.5, we describe a simulation study to evaluate the robustness

of our results. In Section 6.6, we discuss the conclusions we can draw from this study.

6.2 Motivation for adjusted VLS outcome

The goal of this survey is to observe VLS patterns a year after patients have been placed

on treatment. The available primary outcome of this survey is VLS among observable

patients retained on ART for 12±3 months. Because this outcome is measured via a cross-

sectional survey, it has important epidemiological limitations. If one only observes those

patients remaining on treatment at a particular site, countries with the worst retention

may appear to have the highest observed VLS because the sickest patients have been lost

to follow-up or died. On the other hand, a country that makes a concerted effort to im-

prove retention may experience a decrease in observed VLS because these newly retained

patients may be failing therapy more so than those who were retained in the past. Thus, it

is not meaningful to compare observed VLS over time even within the same country if re-

tention patterns change over time1. Observed VLS from a cross-sectional survey provides

incomplete information about program performance if a measure of retention is not in-

corporated into the evaluation. As a result, we measure 12 month retention in a nationally

representative fashion using methodology consistent with an existing UNGASS/PEPFAR

indicator (UNAIDS, 2011, sect. 4.2). Furthermore, we propose an adjusted VLS measure

that incorporates information on retention; this measure makes two assumptions: (i) all

patients who are lost to follow-up or die are not virally suppressed; and (ii) all patients

who are documented to have transferred care to another site are assumed to have the

same rate of VLS and retention as other patients.

Using a simple law of total probability, an estimate of the overall prevalence of VLS can

be written as follows:
1This is an example of the Neyman incidence-prevalence bias
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Pr(V LS) = Pr(V LS|Retained) Pr(Retained)

+Pr(V LS|Not Retained) Pr(Not Retained)

= Pr(V LS|Retained) Pr(Retained) + 0

= Pr(V LS|Retained) Pr(Retained)

Thus, observed VLS, i.e., Pr(V LS|Retained), and retention, i.e.,Pr(Retained), can be mul-

tiplied to yield an estimate of the overall prevalence of VLS, adjusted for non-retention.

We recommend calculating adjusted VLS at the level of a site administering ART by mul-

tiplying a site-level estimate of unadjusted VLS (censoring documented transfers) and

a site-level estimate of retention. These site-level adjusted VLS estimates are then com-

bined across sites, weighting by site size, resulting in an overall estimate of VLS adjusted

for non-retention. In summary, we extract those who are documented transfers and as-

sume they behave the same as other patients. We then assume that those lost to follow-up

and those who die are failures. In this way, we have imputed or measured an outcome

for sampled patients who initiated therapy a year earlier. In fact, the adjusted VLS mea-

sure is very similar to one of the primary outcomes of the previous longitudinal survey,

HIV drug resistance prevention (World Health Organization, 2012a, annex 1, sect. 8).

HIV drug resistance prevention is defined as as the proportion of patients who initiated

therapy who are virally suppressed at 12 months. Within this indicator is the inherent as-

sumption that all patients who have been lost to follow up or died have failed. Thus, we

can readily argue that adjusted VLS is measuring the same population quantity as HIV

drug resistance prevention, but adjusted VLS requires only cross-sectional information.
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6.3 ADR survey implementation

6.3.1 Survey design overview

The proposed survey is a two-stage clustered survey of (1) sites administering ART in

the country, and (2) patients on treatment for 12±3 months during a pre-defined survey

period lasting 6 months. The primary sampling units (PSUs) are the sites. The secondary

sampling units (SSUs) are eligible patients.

To perform the ADR survey, n of N total sites are selected using probability proportional

to size (PPS) sampling without replacement in which larger sites are thus more likely to

be sampled, and then the same number of patients are included from each chosen site.2

The sizes of the sites are estimated using available proxy information, such as the number

of patients on treatment during the previous year at those sites. Because these sizes will

likely differ from the actual sizes of the eligible population (i.e., patients on treatment for

12±3 months during the survey period), we refer to this type of sampling as probability

proportional to proxy size (PPPS) sampling. For the i ∈ 1, ..., n sites sampled, the PSU

sampling weight is equal to the inverse of the probability that the site is selected into the

sample SI , i.e. wPSU,i = [Pr (i ∈ SI)]−1.

6.3.2 Observed VLS

Once n sites have been sampled, eligible patients are consecutively enrolled at each of

these sites for the measurement of observed VLS. The target number of patients to be

sampled from each site is m, as determined by the desired precision of the observed VLS

outcome, but the actual number sampled may vary across sites because of differential

laboratory failure or under-enrollment, for example. Among the mi individuals sampled

at site i, t̂i is the number of patients achieving VLS. Thus, the observed prevalence of VLS

2One such method for conducting sampling is PPS systematic sampling; the advantage of this option is
an increase in ease of implementation (Wolter, 2007, sect. 8.6).
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among patients retained on therapy at site i is p̂V LS,i = t̂i/mi.

In order to appropriately weight the estimator, it is important that the site screen patients

to determine the total number of eligible patients observed during the 6 month survey

period; we refer to the observed eligible population size of site i as Mi. The SSU sam-

pling weight, wSSU,V LS,i, is equal to the inverse of the probability that patients from site

i are selected into the sample. Since we assume that patients are randomly selected with

equal probability (no time trend over the survey period), wSSU,V LS,i =Mi/mi. The overall

sampling weight for patients with observed viral load data is wV LS,i = wPSU,iwSSU,V LS,i.

A nationally representative estimate of observed VLS prevalence is a ratio with numerator

equal to an estimate of the total number of patients in the country on treatment for 12±3

months who are still retained in care and are achieving viral load suppression (T̂ ); the

denominator is an estimate of the total number of patients in the country on treatment

for 12-24 months who are still retained in care (M̂ ). The point estimator and linearized

variance estimator (with finite population corrections consistent with those in Stata’s SVY

command) are as follows (Lohr, 2010, eq. 6.33) (StataCorp, 2013):

T̂ =
n∑
i=1

wV LS,it̂i

M̂ =
n∑
i=1

wV LS,imi

p̂V LS =
T̂

M̂

v̂ar(p̂V LS) =
(
1− n

N

) 1

M̂2

n

n− 1

n∑
i=1

w2
V LS,i

(
t̂i − p̂V LSmi

)2
+

1

M̂2

n

N

n∑
i=1

(
1− mi

Mi

)
m2
i

mi − 1
w2
V LS,ip̂V LS,i (1− p̂V LS,i)

A 95% confidence interval can be calculated using a Wald-type interval for a proportion.
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p̂V LS ± tn−1,0.975
√
v̂ar(p̂V LS)

The survey analysis can be readily modified for settings when the sites are stratified prior

to sampling or all sites are included in the sample StataCorp (2013).

6.3.3 Retention

In order to obtain a measure of retention for patients on treatment, we can perform a ret-

rospective chart review at the same n sites sampled. We list patients who initiated therapy

during a pre-defined sampling window, and a random sample of these patients is selected

for assessment of retention. This sample can be obtained via systematic sampling (e.g.,

every 10th record beyond a random start point) (Lohr, 2010, sect. 2.7). 12 month retention

is defined as the patient being retained on ART at exactly 12 months after treatment initi-

ation (UNAIDS, 2011, sect. 4.2). Patients who have stopped treatment, died, or been lost

to follow-up are not considered retained. Patients with documented transfer to another

site are excluded from the sample. The inherent assumption is that these transferred pa-

tients have the same prevalence of retention and viral load suppression after transferring

care as patients who did not transfer, and excluding them from the sample will properly

implement these assumptions.

The target number of patients to be sampled from each site is s as determined by the

desired precision of the estimate of 12 month retention. The number of charts reviewed

may vary across sites. Among the si patients sampled from site i (excluding documented

transfers), ûi is the number of patients retained on treatment at 12 months. Thus, the

observed prevalence of 12 month retention among patients at site i is p̂RET,i = ûi/si.

In order to appropriately weight the estimator, it is important that the site determines the

total number of eligible patients for the retrospective chart review; we refer to the total

number of eligible patient records at site i as Si. The SSU sampling weight wSSU,RET,i
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is equal to the inverse of the probability that patients from site i are selected into the

sample. Since we assume that patients are randomly selected with equal probability,

wSSU,RET,i = Si/si. The overall sampling weight for patients with retention data (ex-

cluding documented transfers) is wRET,i = wPSU,iwSSU,RET,i.

A nationally representative estimate of 12 month retention is a ratio with numerator equal

to an estimate of the total number of patients retained on treatment for 12 months who

initiated during a pre-defined sampling window (Û ); the denominator is an estimate of

the total number of patients who initiated treatment during a pre-defined sampling win-

dow (Ŝ). The point estimator and linearized variance estimator (with finite population

corrections consistent with those in Stata’s SVY command) are as follows (Lohr, 2010, eq.

6.33) (StataCorp, 2013):

Û =
n∑
i=1

wRET,iûi

Ŝ =
n∑
i=1

wRET,isi

p̂RET =
Û

Ŝ

v̂ar(p̂RET ) =
(
1− n

N

) 1

Ŝ2

n

n− 1

n∑
i=1

w2
RET,i (ûi − p̂RET si)

2

+
1

Ŝ2

n

N

n∑
i=1

(
1− si

Si

)
s2i

si − 1
w2
RET,ip̂RET,i (1− p̂RET,i)

A 95% confidence interval can be calculated using a Wald-type interval for a proportion.

p̂RET ± tn−1,0.975
√
v̂ar(p̂RET )

The survey analysis can be readily modified for settings when the sites are stratified prior

to sampling or all sites are included in the sample (StataCorp, 2013).
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6.3.4 Adjusted VLS

At each of the n sites sampled for the survey, we can estimate the site-specific adjusted

VLS prevalence as the product of site-specific observed VLS and site-specific 12 month re-

tention. We then weight the site results by the number of patients who initiated therapy at

each site (Si for site i). The adjusted VLS measure can be estimated as a ratio with numer-

ator being an estimate of the total number of patients in the country retained on treatment

for 12 months with viral load suppression (V̂ ); the denominator is an estimate of the total

number of patients who initiated treatment during a pre-defined sampling window (Ŝ).

(Note: this is equivalent to Ŝ calculated for the retention denominator.) The point estima-

tor and linearized variance estimator (with finite population corrections consistent with

those in Stata’s SVY command) are as follows (see Appendix A.2.1):

V̂ =

n∑
i=1

wPSU,iSip̂V LS,ip̂RET,i

Ŝ =
n∑
i=1

wPSU,iSi

p̂ADJ =
V̂

Ŝ

v̂ar(p̂ADJ) =
1

Ŝ2

(
1− n

N

) n

n− 1

n∑
i=1

(wPSU,iSi)
2 (p̂V LS,ip̂RET,i − p̂ADJ)

2

+
1

Ŝ2

n

N

n∑
i=1

(wPSU,iSi)
2

{
p̂2V LS,i

(
1− si

Si

)
p̂RET,i (1− p̂RET,i)

si

+p̂2RET,i

(
1− mi

Mi

)
p̂V LS,i (1− p̂V LS,i)

mi

−
(
1− mi

Mi

)
p̂V LS,i (1− p̂V LS,i)

mi

(
1− si

Si

)
p̂RET,i (1− p̂RET,i)

si

}

A 95% confidence interval can be calculated using a Wald-type interval for a proportion.

p̂ADJ ± tn−1,0.975
√
v̂ar(p̂ADJ)
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6.4 ADR survey design

Prior to implementing the survey, countries must determine a suitable design that will be

a compromise between desired precision and logistical/financial feasibility. Guidance on

how to calculate sample size requirements to achieve a certain precision, for the observed

prevalence of VLS, p̂V LS , is described elsewhere (see Chapter 5). The same procedure

can be used to calculate sample size requirements to achieve a certain precision for the

retention measure, p̂RET . Given the sample sizes identified for the viral load suppression

and retention portions of the survey, it is useful for countries to predict the precision of

the adjusted VLS measure, p̂ADJ .

With some assumptions, we derive estimates of the variance of the adjusted VLS measure

that can be used to predict the expected confidence interval width resulting from a survey

with a particular combination of sample sizes for VLS and retention. These approxima-

tions assume that site size, site-specific prevalence of observed VLS, and site-specific re-

tention are independent. Sensitivity to these assumptions is evaluated in our simulations

in Section 6.5. For the derivations and simulations, we assume probability proportional to

size (PPS) sampling, in which the actual site sizes are known, although we acknowledge

that generally this information will not be available prior to site sampling. In this case,

the predicted variances below should be multiplied by an additional design effect due to

disproportionate weighting, often expressed as 1+ cv2(weights), where cv(·) indicates the

coefficient of variation (Park and Lee, 2004, eq. 2.2).

For an infinite population, the variance of p̂ADJ can be approximated using Equation 6.1,

requiring the parameters for the survey design (n sites sampled, m VLS patients sampled

per clinic, and s retention records sampled per clinic), an estimate of the prevalence of

observed VLS (pV LS), an estimate of the intracluster correlation coefficient for observed

VLS (ICCV LS), an estimate of the prevalence of retention (pRET ), and an estimate of the

intracluster correlation coefficient for retention (ICCRET ). Note that all of these elements

are already required for the design and implementation of the surveys for observed VLS
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(p̂V LS) and retention (p̂RET ). When a subset of sites are sampled in the absence of stratifi-

cation, the predicted variance is as follows (see Appendix A.2.2):

V ar(p̂ADJ) ≈
1

n

{[
ICCV LS +

1

m
(1− ICCV LS)

]
p2RETpV LS(1− pV LS)

+

[
ICCRET +

1

s
(1− ICCRET )

]
p2V LSpRET (1− pRET )

+

[
ICCV LS +

1

m
(1− ICCV LS)

] [
ICCRET +

1

s
(1− ICCRET )

]
×pV LS(1− pV LS)pRET (1− pRET )

}
(6.1)

For a finite population with N total sites, M =
∑N

i=1Mi total patients eligible for viral

load suppression testing, and S =
∑N

i=1 total records eligible for retention estimation, the

variance of p̂ADJ can be approximated by Equation (see Appendix A.2.3):

V ar(p̂ADJ) ≈
1

n

{[
ICCV LS +

(
1

m
− N

M

)
(1− ICCV LS)

]
p2RETpV LS(1− pV LS)

+

[
ICCRET +

(
1

s
− N

S

)
(1− ICCRET )

]
p2V LSpRET (1− pRET )

+

[
ICCV LS +

(
1

m
− N

M

)
(1− ICCV LS)

]
×
[
ICCRET +

(
1

s
− N

S

)
(1− ICCRET )

]
×pV LS(1− pV LS)pRET (1− pRET )

}
(6.2)

The corresponding predicted confidence interval half-width using a Wald-type interval

for a proportion is:

tn−1,0.975
√
V ar(p̂ADJ)

103



6.5 Simulations

6.5.1 Simulation set-up

We evaluate these methods by simulating data within a hypothetical large country and a

hypothetical small country. In both cases, we assume that the national prevalence of VLS

among retained patients is pV LS = 85%, and the national prevalence of 12-month retention

is pRET = 85%. Site-specific prevalence of VLS, pV LS,i, is drawn from a Beta(αV LS, βV LS)

for i = 1, ..., N sites in the country. The parameters of the beta distribution are the follow-

ing, where ICCV LS = 0.0043 is the intracluster correlation of observed VLS:

αV LS =

[
1− ICCV LS
ICCV LS

]
pV LS

βV LS =

[
1− ICCV LS
ICCV LS

]
(1− pV LS)

Similarly, site-specific retention, pRET,i, is drawn from a Beta(αRET , βRET ) for i = 1, ..., N

sites in the country. The parameters of the beta distribution are the following, where

ICCRET = 0.0476 is the intracluster correlation of 12-month retention:

αRET =

[
1− ICCRET
ICCRET

]
pRET

βRET =

[
1− ICCRET
ICCRET

]
(1− pRET )

The assumed values described above are identical to those used in the proposed ADR

surveillance guidance. Their justification is described elsewhere (see Chapter 4).

To simulate the patient outcomes of the Si eligible records that can be reviewed for re-

tention in a site, we assign Mi = SipRET,i as retained, and we assign the remaining

Si(1 − pRET,i) as not retained. Among the Mi retained patients, we assign MipV LS,i as

virally suppressed, and we assign the remaining Mi(1− pV LS,i) as not virally suppressed.
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To simulate two stage cluster sampling, we randomly sample n of N sites using proba-

bility proportional to size (PPS) sampling without replacement; sampling is proportional

to the number of eligible records at each site, Si. For the observed VLS outcome, we

randomly assess the VLS outcomes of m retained patients from each selected site us-

ing simple random sampling without replacement. If m is larger than the number of

retained patients in the selected site, sampling stops after all available patients are in-

cluded. Sampling for the retention outcome proceeds similarly, with s patient records

being sampled from each selected site. For the purposes of this simulation, m and s are

selected to achieve confidence intervals of ±5% around p̂V LS and p̂RET (see Chapter 4).

For each simulated cluster sampled, we estimate the adjusted VLS prevalence, standard

error, and 95% confidence interval as using the formulas provided in Section 6.3.4. We

repeat the simulations 10,000 times. We calculate the true value of the adjusted VLS out-

come, which is pADJ =
∑N

i=1 SipV LS,ipRET,i

/
S. We report the average point estimate from

the 10,000 simulations. We calculate the simulation standard error, which is the standard

deviation of the 10,000 simulated prevalence estimates. We report the average estimated

standard error and average confidence interval (CI) width. The average confidence in-

terval width should be compared to the predicted CI width as calculated by Equation

6.2.

Unlike the proposed ADR surveillance guidance, we do not incorporate adjustments for

laboratory failure, the proportion of patients on first-line regimens, documented transfer,

and disproportionate weighting as these are not features of the simulation. Details of how

to accommodate these design features is described elsewhere (see Chapter 4). Briefly, the

design effect is multiplied by an inflation factor to account for disproportionate weight-

ing, and the sample size is inflated by dividing by the expected proportion of eligible

patients (eg. divide by 0.90 if 10% laboratory failure is expected).
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6.5.2 Large country

We simulate a large country, with N = 2000 sites and an average of approximately 200

eligible records per site. This hypothetical country is intended to be similar to large coun-

tries in Sub-Saharan Africa with generalized epidemics. The site sizes are sampled from a

truncated gamma distribution scaled to have mean 200; simulated sizes ranged from ap-

proximately 40 to 1000 patients per site. The proposed design requires sampling n = 20

sites, m = 12 observed patients for VLS assessment, and s = 21 patient records for reten-

tion assessment. The predicted CI width by Equation 6.2 is ±5.87%.

To challenge the assumptions of the derivations, data are simulated in a variety of ways.

(1) Site size (Si), site-specific observed VLS (pV LS,i), and site-specific retention (pRET,i)

are mutually independent. (2) pRET,i is independent of pV LS,i and Si, but Si and pV LS,i

are sorted so they have perfect positive rank correlation; this corresponds to larger sites

having better VLS among retained patients. (3) Same as setting (2), except Si and pV LS,i

have perfect negative rank correlation; this corresponds to smaller sites having better VLS

among retained patients. (4) pV LS,i is independent of pRET,i and Si, but Si and pRET,i are

sorted so they have perfect positive rank correlation; this corresponds to larger sites hav-

ing better patient retention. (5) Same as setting (4), except Si and pRET,i have perfect neg-

ative rank correlation; this corresponds to smaller sites having better retention. (6) Si is

independent of pV LS,i and pRET,i, but pV LS,i and pRET,i are sorted so they have perfect pos-

itive rank correlation; this corresponds to sites with higher VLS having higher retention.

(7) Same as setting (6), except pV LS,i and pRET,i have perfect negative rank correlation; this

corresponds to sites with higher VLS having lower retention.

The estimator has little to no bias in the settings we investigate. The estimated standard

error using the variance estimator in Section 6.3.4 is close to the simulated standard error

in all settings, but it tends to be a slight underestimate. The average CI width is roughly

similar to the predicted CI width in all settings. The average CI width is especially large

in two settings; these settings are when site size is negatively correlated with retention
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Table 6.1: Large country simulation results

Truth Estimated Simulation SE Estimated SE Average CI Width

pADJ p̂ADJ V ar(p̂ADJ) v̂ar(p̂ADJ) Predicted ±5.87%

(1) (Si ⊥ pV LS,i ⊥ pRET,i) 0.716 0.716 0.0282 0.0281 ±5.89%

(2) (+Si,+pV LS,i) 0.727 0.727 0.0284 0.0280 ±5.86%

(3) (+Si,−pV LS,i) 0.704 0.704 0.0291 0.0286 ±5.98%

(4) (+Si,+pRET,i) 0.754 0.754 0.0270 0.0266 ±5.56%

(5) (+Si,−pRET,i) 0.673 0.673 0.0300 0.0295 ±6.18%

(6) (+pV LS,i,+pRET,i) 0.716 0.716 0.0308 0.0301 ±6.30%

(7) (+pV LS,i,−pRET,i) 0.716 0.716 0.0269 0.0262 ±5.47%

(Setting 5) and when observed VLS and retention are positively correlated (Setting 6).

The average CI width is especially low in two settings; these settings are when site size

is positively correlated with retention (Setting 4) and when observed VLS and retention

are negatively correlated (Setting 7). When retention is independent of both site size and

observed VLS (Settings 1, 2, and 3), the predicted CI width performs well.

6.5.3 Small country

We simulate a small country, with N = 50 sites and an average of approximately 20 eligi-

ble records per site. This hypothetical country is intended to be similar to small countries

in Latin America with concentrated epidemics. The site sizes are sampled from a trun-

cated gamma distribution scaled to have mean 20; simulated sizes range from approx-

imately 4 to 90 patients per site. The proposed design requires sampling n = 20 sites,

m = 8 observed patients for VLS assessment, and s = 9 patient records for retention as-

sessment. (Note that small sites will under-enroll patients.) The predicted CI width by

Equation 6.2 is ±6.01%.

We observe a slight bias in the mean point estimate, with the maximal bias being 2.0%

(Setting 5). For all settings, the estimated standard error using the variance estimator in

Section 6.3.4 is close to the simulated standard error, but it tends to underestimate the
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Table 6.2: Small country simulation result

Truth Estimated Simulation SE Estimated SE Average CI Width

pADJ p̂ADJ V ar(p̂ADJ) v̂ar(p̂ADJ) Predicted ±6.01%

(1) (Si ⊥ pV LS,i ⊥ pRET,i) 0.700 0.701 0.0281 0.0279 ±5.84%

(2) (+Si,+pV LS,i) 0.720 0.720 0.0278 0.0276 ±5.79%

(3) (+Si,−pV LS,i) 0.697 0.703 0.0283 0.0281 ±5.89%

(4) (+Si,+pRET,i) 0.750 0.742 0.0257 0.0254 ±5.33%

(5) (+Si,−pRET,i) 0.659 0.679 0.0281 0.0284 ±5.94%

(6) (+pV LS,i,+pRET,i) 0.712 0.710 0.0286 0.0282 ±5.91%

(7) (+pV LS,i,−pRET,i) 0.714 0.713 0.0262 0.0258 ±5.41%

standard error slightly more than in the large country setting. The average CI width is

below the predicted width of ±6.01% in all settings. The mean confidence intervals have

similar trends in relative width as described for the hypothetical large country (i.e., widest

for Settings (5) and (6), narrowest for Settings (4) and (7), and moderate for Settings (1),

(2), and (3).

6.6 Discussion

The measurement of VLS among HIV-infected patients retained on ART for 12±3 months

using a cross-sectional study has severe epidemiological limitations. It excludes patients

who have died or been lost to follow-up since ART initiation. Thus, because of the con-

founding, it is not meaningful to compare measures of observed VLS over time or across

regions if mortality or retention rates have changed. We describe the importance of col-

lecting data on retention and incorporating it into the calculation of what is a key indicator

of national HIV program performance. We describe an approach for developing a more

epidemiologically meaningful measure of VLS in HIV-infected patients. In this approach,

representative data on retention is combined with representative data on observed VLS.

For patients who die or are lost to follow-up, we assume that they are not virologically

suppressed. We refer to this measure as adjusted VLS, although it is akin to a lower-bound
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of VLS.

We develop formulae that can be used to approximate the variance of adjusted VLS under

a set of simplifying assumptions (Section 6.4). These formulae assume PPS sampling, and

they should be supplemented by an additional design effect factor to account for the

expected disproportionate weighting due to imperfect prior information on site size (see

Chapter 4, suggests multiplying by 1.50). These formulae can assist program managers

when they are determining the necessary sample sizes for the VLS and retention portions

of the ADR survey.

In Section 6.5, we describe our simulation study, assessing this outcome in a hypothetical

large and a hypothetical small country under a variety of different assumptions. In small

countries, the point estimate can have slight bias. This is not surprising as the point

estimate is calculated as a ratio estimate, which is known to be slightly biased but is

used because of its lower mean square error (Lohr, 2010, sect. 4.1.2). The standard error

estimator tends to slightly underestimate the variability, but it seems to work well in

all of the different simulated settings, regardless of country size and of the correlation

between site size, prevalence of observed VLS, and retention. The predicted confidence

interval width is similar to the observed confidence interval width even when some of

the assumptions are severely violated.

We can identify a few limitations to this method. It makes the strong assumption that all

patients who are not retained on therapy are not virologically suppressed. In the absence

of data on missing patients, this is likely the most reasonable assumption available. Data

from a study in urban Malawi reported, among lost patients, 30% had died (Tweya et al.,

2013). Among those who were still alive, 44% had stopped taking ART entirely. Thus,

for these segments of the population, assuming that these patients are not virologically

suppressed (with death defined as a virological failure) seems reasonable. On the other

hand, for the remaining 56% of living patients who reported still taking ART by sourcing

drugs from other sites, using alternative ART sources, or making brief ART interruptions,
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the assumption that none of these patients are suppressed may be overly pessimistic. This

highlights the limitation that the proposed method is unable to detect undocumented,

or ‘silent,’ transfers out of the site. This limitation stems from the larger challenge of

properly estimating retention in resource-limited settings, and it is also a limitation of

the previously used longitudinal survey. Thus, while it affects the interpretation of this

measure, it is not a failure of the method itself. An additional limitation is the increased

complexity of the analysis formulae and the approximation formulae, although these can

be readily coded into any statistical software package or spreadsheet-based program.

Overall, we believe that this adjusted VLS measure has increased epidemiological util-

ity over the observed, on-site VLS measure, and, in fact, it is very similar to the HIV

drug resistance prevention measure previously described for the longitudinal acquired

drug resistance protocol. To achieve a VLS measure with improved utility, we highlight

the importance of collecting representative data on retention for the interpretation of ac-

quired drug resistance outcomes in patients on therapy for a fixed amount of time. The

benefit of the adjusted VLS measure is that it fits into the existing design-based survey

analysis framework, requiring only small modifications to the variance estimator. This

measure can be calculated from survey data collected on observed VLS and retention at

no additional cost. Because it can be compared within countries over time, across coun-

tries, and to a global standard, it is an important and useful addition to the acquired HIV

drug resistance surveillance guidance.
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7. Evaluating confidence interval methods for binomial
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Abstract

In survey settings, a variety of methods for constructing confidence intervals for propor-

tions are available; these methods include the standard Wald method, a class of modi-

fied methods that replace the sample size with the survey effective sample size (Wilson,

Clopper-Pearson, Jeffreys, and Agresti-Coull), and transformed methods (Logit and Arc-

sine). We describe these seven methods, two of which have not been previously evalu-

ated in the literature (the modified Jeffreys and Agresti-Coull intervals). For each method,

we describe a formulation that does and does not adjust for the design degrees of free-

dom. We suggest a definition of adjusted effective sample size that induces equivalency

between different confidence interval expressions. We also expand on an existing frame-

work for truncation that can be used when data appears to be more efficient than a simple

random sample or when data has zero standard error and/or a point estimate of 0 or 1.

We compare these methods using a simulation study modeled after the 30x7 design for

immunization surveys. Our results confirmed the importance of adjusting for the design

degrees of freedom. As expected, the Wald interval performed very poorly, frequently

failing to achieve the nominal coverage level. For similar reasons, we do not recom-

mend the use of the Arcsine interval. When the intracluster correlation coefficient is high

and the prevalence p < 10% or > 90%, the Agresti-Coull and Clopper-Pearson intervals

perform best. In other settings, the Clopper-Pearson interval is unnecessarily wide. In

general, the Logit, Wilson, Jeffreys and Agresti-Coull intervals perform well, though the

Logit interval can be too wide. The Wilson interval performed best when a non-unimodal

distribution was assumed for the simulations.

7.1 Introduction

A very important and useful inferential tool is the confidence interval. If the outcome

of interest is discrete, a complication arises when one attempts to calculate an exact pre-
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determined level of confidence (see Brown, Cai, and DasGupta, 2001, for an overview).

When dealing with surveys, the data analysis must adjust for any clustering, stratifica-

tion, or weighting used in the design. The standard and popular 95% confidence interval

for a proportion in a survey setting is a Wald-based interval. In the independent and

identically distributed (IID) setting, it has been extensively demonstrated that the Wald

interval performs poorly for proportions, especially when the proportion is close to 0 or

1 and/or the sample size is small (Agresti and Coull, 1998; Brown et al., 2001). Coverage

can be below the nominal 95% level. Also, the Wald interval can have limits below 0 or

above 1, which is inappropriate for a proportion.

In the IID setting, other confidence interval methods for proportions exhibit more desir-

able qualities. Intervals constructed using the Wilson (quadratic), Jeffreys (beta binomial)

or Clopper-Pearson (binomial) methods cannot have limits outside of the 0 to 1 range.

Also, these intervals, along with the Agresti-Coull interval (modified Wald), tend to have

coverage closer to the nominal 95% level, though the Clopper-Pearson interval can be un-

necessarily conservative. The general conclusion is that the Wilson and Jeffreys intervals

provide the best balance of confidence interval width and coverage, with the Agresti-

Coull interval also performing well when the sample size is sufficiently large (Brown

et al., 2001).

It is reasonable to infer that the Wald interval would also perform poorly in the complex

survey setting when the expected proportion is close to 0 or 1 and/or the sample size is

small, and this has been demonstrated in a few simulation studies (Korn and Graubard,

1998; Sukasih and Jang, 2005; Feng and Sitter, 2008). A variety of alternative methods for

confidence interval construction for proportions have been described, including modifi-

cations of standard methods replacing the sample size with the survey effective sample

size or transforming the proportion to a different scale. Literature on the topic is largely

limited to conference proceedings (Kott et al., 2001; Curtin et al., 2006; Rust and Hsu, 2007;

Feng and Sitter, 2008) and a publicly available masters thesis (Feng, 2006), with very few

reports appearing in peer-reviewed journals (Kott and Carr, 1997; Korn and Graubard,
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1998; Gray et al., 2004, being notable exceptions). We intend to remedy this situation

in this paper where we assess a number of methods, including some that have not been

previously applied either in simulation studies or in practice.

In addition, we discuss the existing framework for adjusting these intervals for the sur-

vey design degrees of freedom. The design degrees of freedom, denoted dfdesign, is tra-

ditionally equal to the number of primary sampling units minus the number of strata

(Korn and Graubard, 1999, p. 62). While there is no formal theoretical justification for the

design degrees of freedom, empirical evidence from the Wald interval suggests that ac-

counting for this design feature can improve the performance of the confidence interval

(Korn and Graubard, 1998). For each interval method in this paper, we describe alter-

native formulations with and without a degrees of freedom adjustment. We describe a

novel method for incorporating the design degrees of freedom into the effective sample

size that induces equivalency between different expressions. We also provide an in-depth

discussion of truncation, a procedure by which data expected to be no more efficient than

a simple random sample is truncated so that the design effect is equal to 1. We describe

our recommendations for handling truncation and the related concept of ‘degenerate data

to improve logical consistency in the framework.

The goal of this paper is to summarize the methods available for confidence interval con-

struction for proportions in complex surveys, study approaches for incorporating the de-

sign degrees of freedom into interval construction, describe a logically consistent frame-

work for data truncation, evaluate the methods using a simulation study based on the

popular 30x7 survey design, and provide practical guidance based on the performance of

the intervals. In Section 7.2, we describe the confidence interval methods considered. In

Section 7.3, we discuss our framework for truncation and handling ‘degenerate’ data. In

Section 7.4, we describe our simulation study and the results. In Section 7.5, we discuss

our conclusions.
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7.2 Confidence interval methods

7.2.1 Method categories

We divide the confidence interval methods we evaluate into three categories. The first

category includes only the Wald method. The second category is a class of modified

methods, in which the sample size is replaced by the survey effective sample size; the

survey effective size is related to the design effect, which quantifies the departure from the

ideal of a simple random sample; this category includes the modified Wilson, Clopper-

Pearson, Jeffreys, and Agresti-Coull intervals. The third category considers methods in

which the interval is constructed on a different scale, using a Wald-type method, and then

the endpoints are back-transformed to yield the final interval; this category includes the

Logit and Arcsine transformations. All intervals described can be calculated from basic

elements produced by typical statistical output, including the appropriately weighted

point estimate, p̂, and the estimated standard error, ŜE(p̂).

7.2.2 Design degrees of freedom

For each method, we describe two alternative formulations: one that does and one that

does not adjust for the design degrees of freedom. Adjustments for the design degrees

of freedom can be made by replacing the standard normal quantile with a t-distribution

quantile with dfdesign degrees of freedom. Alternatively, the effective sample size can be

replaced by the degrees-of-freedom adjusted effective sample size, described below.

A key element for modifying IID confidence interval methods for the survey setting is cal-

culating the survey effective sample size. The effective sample size is the sample size of a

simple random sample that would yield the same precision as the survey under consid-

eration. The effective sample size reflects the either gain or loss of precision attributable
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to the survey design. The effective sample size is:

neff =
p̂(1− p̂)
[ŜE(p̂)]2

(7.1)

Korn and Graubard (1998) suggest the use of the degrees-of-freedom adjusted effective

sample size (henceforth referred to as simply the adjusted effective sample size). The ad-

justed effective sample size is equal to the effective sample size multiplied by a deflation

factor that reflects the difference between the actual sample size, nact, and the design de-

grees of freedom. When constructing a two-sided confidence interval of level 1 − α, the

adjusted effective sample size suggested by Korn and Graubard (1998) is:

n∗eff,KG = neff

{
tnact(1− α/2)
tdfdesign(1− α/2)

}2

where tdf(p) indicates the pth quantile of the t distribution with df degrees of freedom,

and neff is defined as in Equation 7.1. Heuristically we argue that for finite samples

the distribution of the estimator, although asymptotically normal, may be better approx-

imated by a t distribution. We recommend using a slightly different formula for the ad-

justed degrees of freedom:

n∗eff = neff

{
z(1− α/2)

tdfdesign(1− α/2)

}2

where z(p) indicates the pth quantile of the standard normal distribution. The motivation

for using this formula will be described in greater detail later.

7.2.3 Standard method

The first method described is the standard Wald-type interval, also called the normal ap-

proximation or linear method. This method, which is based on the normal approximation

to the binomial distribution, produces a confidence interval that is symmetric around the
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point estimate, and it can produce intervals with endpoints below 0 or above 1. For a

95% confidence interval, with p̂ equal to the appropriately weighted point estimate, and

ŜE(p̂) equal to the estimated standard error, the confidence interval is calculated as:

p̂± z(1− α/2)ŜE(p̂) (7.2)

We can show that the above interval is equivalent to:

p̂± z(1− α/2)
√
p̂(1− p̂)/neff (7.3)

This representation in expression 7.3 resembles the IID Wald method with the sample

size replaced by the effective sample size. We refer to either of these confidence interval

methods as the Wald method.

To adjust for the design degrees of freedom, one can replace z(1 − α/2) in expression 7.2

with tdfdesign(1 − α/2). Alternatively, one can replace neff in expression 7.3 with neff
∗.

These intervals can be shown to be equivalent. We refer to either of these confidence

interval methods as the Wald, adj. method. Note that these intervals are not equivalent

if the Korn and Graubard adjusted effective sample size (n∗eff,KG) is used instead. Thus,

our proposed version of the adjusted effective sample size induces consistency between

the expressions.

7.2.4 Wilson method

The first modified method we describe is the modified (or ad hoc) Wilson, suggested by

Kott and Carr (1997). For the IID setting, the Wilson interval, also known as the score

or quadratic interval, is constructed by solving the following quadratic function (Wilson,

1927):

|p̂− p|2 ≤ z(1− α/2)2 [p(1− p)/n]
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This is equivalent to utilizing the asymptotic distribution of p̂ to set the interval. To mod-

ify the interval for the survey setting, we can replace the sample size n by the effective

sample size neff to produce the following formula for the upper and lower bounds of the

interval:

p̂+ z(1−α/2)2
2neff

± z(1− α/2)
√

p̂(1−p̂)
neff

+ z(1−α/2)2

(2neff)
2

1 + z(1−α/2)2
neff

(7.4)

We refer to this method as the Wilson method.

To adjust for the design degrees of freedom, Kott and Carr (1997) suggest replacing

z(1 − α/2) in expression 7.4 with tdfdesign(1 − α/2). Alternatively, one can replace neff

in expression 7.4 with n∗eff . These intervals can be shown to be equivalent. We refer to

either of these confidence interval methods as the Wilson, adj. method. As before, these

adjusted intervals are not equivalent if the Korn and Graubard formulation of the ad-

justed effective sample size (n∗eff,KG) is used.

7.2.5 Clopper-Pearson method

The second modified method adapts the traditional Clopper-Pearson interval, also called

the binomial or exact interval. The Clopper-Pearson interval uses the binomial distri-

bution, and in the IID setting, the coverage of the Clopper-Pearson interval is always at

or above the nominal confidence level (Clopper and Pearson, 1934). The limits of the

Clopper-Pearson interval can be calculated using the quantiles of an F or beta distribu-

tion. Using the notation of Korn and Graubard (1998), the lower and upper limits in the

IID setting are defined as:
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pL =
ν1Fν1,ν2(α/2)

ν2 + ν1Fν1,ν2(α/2)

pU =
ν3Fν3,ν4(1− α/2)

ν4 + ν3Fν3,ν4(1− α/2)

where ν1 = 2x, ν2 = 2(n− x + 1), ν3 = 2(x + 1), and ν4 = 2(n− x), n is the sample size, x

is the observed number of successes, and Fnum,den(p) is the pth quantile of an F distribu-

tion with num and den degrees of freedom. To construct the modified Clopper-Pearson

interval, the sample size n is replaced by the adjusted effective sample size n∗eff , and the

observed number of successes is replaced by p̂n∗eff . The adjusted effective sample size

is used because the Clopper-Pearson interval does not otherwise account for the design

degrees of freedom. We refer to this method as the CP, adj. method.

To maintain consistency with the rest of the paper, we also evaluate an unadjusted

method, though no such method appears in the literature. For the unadjusted method,

the sample size is replaced by the effective sample size neff , and the observed number of

successes is replaced by p̂n∗eff . We refer to this method as the CP method.

7.2.6 Jeffreys method

The next modified method is the Jeffreys interval, which is constructed from a non-

informative Beta(0.5, 0.5) prior for binomially distributed data (Brown et al., 2001). In

the IID setting, the Jeffreys interval can be regarded as a mid-p version of the Clopper-

Pearson interval, and its bounds are always contained within the bounds of the Clopper-

Pearson interval, making it less conservative than the Clopper-Pearson (Brown et al.,

2001). In the IID setting, the lower and upper limits are defined as:

pL =Betaα1,β1(α/2)

pU =Betaα1,β1(1− α/2)
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where α1 = x + 0.5, β1 = n − x + 0.5, and Betashape1,shape2(p) is the pth quantile of a Beta

distribution with shape1 and shape2 degrees of freedom. To modify the Jeffreys interval,

the sample size n is replaced by the adjusted effective sample size neff , and the observed

number of successes x is replaced by p̂n∗eff . This modification was first suggested in the

appendix of a paper (Gray et al., 2004). We refer to this as the Jeffreys method.

Alternatively, the sample size can be replaced by the adjusted effective sample size be-

cause the design degrees of freedom are not incorporated otherwise (Curtin et al., 2006).

In other words, the sample size n is replaced by the adjusted effective sample size n∗eff ,

and the observed number of successes is replaced by p̂n∗eff . We refer to this method as the

Jeffreys, adj. method. To our knowledge, neither the modified Jeffreys nor the adjusted

modified Jeffreys intervals for surveys have been applied in simulations or in practice.

7.2.7 Agresti-Coull method

The Agresti-Coull method was developed to have the simplicity of the Wald interval but

with performance more like the Wilson interval (Agresti and Coull, 1998). In their paper,

the authors demonstrate that the midpoint for a Wilson interval is a weighted average of

the observed prevalence and 1/2. To modify the Wald interval to more closely resemble

the Wilson interval, a constant is added to the number of successes and two times that

constant is added to the number of trials. To construct the interval in the IID setting, the

bounds are as follows:

p̃± z(1− α/2)
√
p̃(1− p̃)/ñ

where x̃ = x + c, ñ = n + 2c, and p̃ = x̃/ñ. For a 95% confidence interval, the authors

suggest letting c = 1.962/2 = 1.92, but they propose that setting c = 2 may be easier to

understand by non-statisticians because it is akin to adding two successes and two fail-

ures to the data. In this paper, we use the former, more theoretically-motivated definition
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in which c = 1.92. Note that the Agresti-Coull interval can have bounds that are below 0

or above 1.

Similar to the other modifications, the Agresti-Coull interval can be adapted to the survey

setting by letting x̃ = p̂neff + c, ñ = neff + 2c. We refer to this as the AC method.

Though this modification has been suggested previously (Curtin et al., 2006), it has not

been applied in practice or evaluated in a simulation study, to the best of our knowledge.

The Agresti-Coull method can be further modified to adjust for the design degrees of

freedom by letting x̃ = p̂n∗eff + c and ñ = n∗eff + 2c. We refer to this as the AC, adj.

method. Note that this is not equivalent to constructing the interval using a t-quantile,

tdfdesign(1 − α/2), in place of the Z-quantile, z(1 − α/2). The two methods will only be

equivalent if we use the Z-quantile and let x̃ = p̂n∗eff + c∗ and ñ = n∗eff + 2c∗, where

c∗ = c
{

z(1−α/2)
tdfdesign (1−α/2)

}2

. We do not suggest using this revised constant c∗ in order to gain

this equivalency.

7.2.8 Logit method

The third class of methods consists of transformed methods, in which variance-stabilizing

transformations, commonly used for binary data, are applied to construct the confidence

interval. The point estimate is transformed to the new scale, and a Wald-type interval

is constructed around the transformed point estimate, with the delta method being used

to determine the transformed variance. The logit-transformed confidence interval can be

constructed in the following way (Rust and Rao, 1996):

log

(
p̂

1− p̂

)
± z(1− α/2) ŜE(p̂)

p̂(1− p̂)
(7.5)

The above limits are on the log odds/logit scale, and one must apply the function

exp(·)/[1 + exp(·)] to convert them to the standard risk scale. The limits on the logit scale
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can be re-expressed using the following equivalent formulation:

log

(
p̂

1− p̂

)
± z(1− α/2) [neff p̂(1− p̂)]−1/2 (7.6)

We refer to this as the Logit method.

To adjust for the design degrees of freedom, z(1 − α/2) in expression 7.5 can be replaced

with tdfdesign(1−α/2). Alternatively, one can replace neff in expression 7.6 with n∗eff . These

intervals can be shown to be equivalent. We refer to either of these confidence interval

methods as the Logit, adj. method. As before, these adjusted intervals are not equivalent

if the Korn and Graubard formulation of the adjusted effective sample size (n∗eff,KG) is

used.

7.2.9 Arcsine method

The arcsine-transformed confidence interval (Hogg and Craig, 1995) can be constructed

in the following way:

√
p̂± z(1− α/2) 1

2
√
neff

(7.7)

The above limits are on the arcsine scale, and one must apply the function [sin(·)]2 to

convert them to the standard risk scale. We refer to this as the Arcsine method.

To adjust for the design degrees of freedom, z(1 − α/2) in expression 7.7 can be replaced

with tdfdesign(1−α/2). Alternatively, one can replace neff in expression 7.7 with n∗eff . It can

be shown that these approaches produce the same confidence interval limits. Again, the

expressions confidence limits are not equivalent if the Korn and Graubard formulation of

the adjusted effective sample size (n∗eff,KG) is used.
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7.3 Truncation and degenerate intervals

7.3.1 Truncation

In settings where it is expected that the survey will only increase the standard error rel-

ative to a simple random sample (design effect ¿ 1), such as clustered surveys, Korn and

Graubard (1998) recommend using a procedure called truncation. If the observed effec-

tive sample size is greater than the actual sample size, they recommend setting neff (or

n∗eff,KG) equal to nact. In other words, the observed design effect is less than 1, so we set

the design effect equal to 1. Since this is equivalent to treating the data as if it resulted

from a simple random sample, the logical next step would be to apply the standard IID

confidence interval methods to the data, adjusting for weighting as necessary. In reality,

for many formulations of the confidence intervals, after truncation, we are not left with

the standard intervals. In this section we discuss these inconsistencies and recommend

a revised framework to increase logical consistency. For all methods described that do

not adjust for the design degrees of freedom, truncating the effective sample size neff at

the actual sample size yields the equivalent IID confidence interval. For methods directly

using the estimated standard error in the calculations (Wald and Logit), truncation can

be achieved by checking if the estimated survey standard error is less than the simple

random sample standard error, i.e., check if ŜE(p̂) <
√
p̂(1− p̂/nact; if so, the estimated

simple random sample standard error should be used for all calculations. Alternatively,

since we present the Wald and Logit intervals with equivalent formulations using the

effective sample size, neff can be truncated as described above.

For the methods described that do adjust for the design degrees of freedom, the truncated

intervals do not always readily reduce to the standard IID interval. Consider the adjusted

Wilson (Wilson, adj.) method. We have two equivalent formulations for this method, one

using a t-quantile with the effective sample size, and the other using a Z-quantile with the

adjusted effective sample size. Following the instructions of Korn and Graubard (1998),

123



we could either use the formulation with the effective sample size and truncate neff , or we

could use the formulation with the adjusted effective sample size and truncate n∗eff . These

two approaches lead to different intervals. For example, let neff = 60, nact = 30, p̂ = 0.10,

and dfdesign = 10, thus the observed DEFF = 0.5. The resulting confidence intervals

are described in Table 7.1. As noted previously, the two intervals are equivalent in the

absence of truncation. For this example, the comparable IID interval is (0.035, 0.256). We

see that truncating the adjusted Wilson interval with the t-quantile leads to a confidence

interval that is wider than the IID interval, while truncating n∗eff returns the standard IID

interval.

Table 7.1: Results of Truncation Example

Adjusted Intervals Not Truncated Truncated

Wilson, adj. t-quantile & neff tdf = 2.23, neff = 60 tdf = 2.23, neff = 30

CI = (0.042, 0.219) CI = (0.030, 0.283)

Wilson, adj. Z-quantile & n∗eff Z = 1.96, n∗eff = 46.4 Z = 1.96, n∗eff = 30

CI = (0.042, 0.219) CI = (0.035, 0.256)

The same phenomenon occurs with all other adjusted intervals that have two equivalent

forms, one with a t-quantile and the effective sample size, and the other with a Z-quantile

and the adjusted effective sample size. For this reason, when applying truncation to an

adjusted interval, we argue that only the adjusted effective sample size n∗eff should be

truncated because truncating the unadjusted effective sample size neff leads to confidence

intervals wider than the equivalent IID intervals.

7.3.2 Degenerate intervals

We now discuss the behavior of each confidence interval method in the settings that can

yield degenerate intervals. A degenerate interval is a confidence interval with zero width;

this can occur when p̂ = 0 or p̂ = 1, or this can also occur when ŜE(p̂) = 0, which happens
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if, for example, all sampled clusters in one-stage cluster sampling have the same observed

prevalence of the outcome.

In settings with degenerate data, Korn and Graubard (1998) suggest that either the effec-

tive sample size, neff , or the adjusted effective sample size, n∗eff,KG, should be set equal

to nact. To align this with our discussion of truncation, because the estimated variance is

0, the survey effective sample size is infinitely large, and thus a reasonable approach is to

truncate it at the actual sample size. For the class of unadjusted methods, we recommend

truncating the effective sample size. For the class of adjusted methods, we recommend

truncating the adjusted effective sample size, n∗eff . Consistent with the previous section

on truncation, if the effective sample size, neff , is truncated in the adjusted formulations,

we will return intervals wider than the comparable IID intervals.

Briefly we discuss the behavior of each confidence interval method in these degener-

ate data settings as it is important for evaluating their relative merits. We discuss only

the adjusted methods because the key results are the same. We start with the setting of

ŜE(p̂) = 0 but p̂ is strictly between 0 and 1. In this case, all methods are tractable, but some

lead to degenerate confidence intervals. In practice, we would prefer a non-degenerate

interval that reflects the sample size through the confidence interval width. The modi-

fied Wilson, Clopper-Pearson, Jeffreys, Agresti-Coull, and Arcsine methods do not lead

to degenerate confidence intervals in this setting as long as the adjusted effective sample

size is truncated at the actual sample size. The Wald and Logit methods lead to degen-

erate intervals when the standard error is zero. In this setting, we recommend using the

alternative formulations for the Wald and Logit methods expressed as functions of the

adjusted effective sample size; then, the adjusted effective sample size can be truncated

at the actual sample size to yield non-degenerate intervals.

When the estimated proportion is equal to 0 or 1, some of the methods lead to degener-

ate confidence intervals, and one of the methods is not tractable. The modified Wilson,

Clopper-Pearson, Jeffreys, and Agresti-Coull methods do not lead to degenerate confi-
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dence intervals in this setting as long as the adjusted effective sample size is truncated

at the actual sample size. The Wald method will always lead to a degenerate confidence

interval, even if the adjusted effective sample size is used and properly truncated. Simi-

larly, the Arcsine interval always produces a degenerate confidence interval; interestingly,

this degenerate interval will be located slightly above 0 (or slightly below 1). The Logit

method is not tractable when the estimated prevalence is equal to 0 or 1 because of the

p̂(1 − p̂) term in the denominator of the confidence interval arm. Korn and Graubard

(1998) suggest substituting the truncated Clopper-Pearson interval (observed p̂ and nact)

for the Logit. In theory, any of the non-degenerate confidence interval methods could be

substituted here, or an alternative method for degenerate data such as that suggested by

Louis (1981) could be used.

Overall, we prefer a method that never results in a degenerate interval, which can be

achieved for many of the intervals if the adjusted effective sample size is properly trun-

cated. We provide a suggested framework for truncation in these degenerate data set-

tings.

7.4 Simulations

7.4.1 Set-up

To assess the performance of the confidence interval methods, we performed a simple

simulation study modeled after the popular 30 by 7 design used by the Expanded Pro-

gramme on Immunization to estimate immunization coverage (Henderson and Sundare-

san, 1982); in this design, 30 clusters are sampled with probability proportional to size

and 7 children are selected within each cluster.

For our simulations, we generated 1000 primary sampling units (PSUs) with sizes drawn

from a gamma distribution with shape parameter equal to 2, and scale parameter equal

to 100 (mean size 200). We simulated the outcomes using a beta-binomial distribution, for
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which PSUi has prevalence pi drawn from a Beta(α, β) distribution, and each of the sec-

ondary sampling units (SSUs) in that PSU are drawn from a Bernoulli distribution with

success probability pi. To simulate data with a particular overall prevalence p and intr-

acluster correlation ICC, we determined that the parameters from the Beta distribution

must equal the following (Ridout et al., 1999):

α =

[
1− ICC
ICC

]
p

β =

[
1− ICC
ICC

]
(1− p)

We considered prevalence values p = 0.01, 0.02, , 0.99, and intracluster correlations ICC =

0.005, 0.010, 0.050, 0.100, and 0.150, with the last resulting in a design effect of 1.9. To sim-

ulate two stage cluster sampling, we randomly sampled n = 30 PSUs using probability

proportional to size (PPS) sampling with replacement; then, we randomly sampledm = 7

SSUs from each selected PSU using simple random sampling without replacement. 10,000

simulations were run for all combinations of n, m, p, and ICC.

For each simulated cluster sample, we calculated the estimated prevalence, p̂, which is

the mean of the observed data since the data is self-weighting (Lemeshow and Robinson,

1985, eq. 1). We also estimated the variance using a standard estimator for unequal prob-

ability with-replacement two-stage sampling, simplified for the PPS setting (Lemeshow

and Robinson, 1985, eq. 3) (Lohr, 2010, eq. 6.15):

v̂ar(p̂) =
1

n(n− 1)

n∑
i=1

(p̂i − p̂)2

where p̂i is the observed prevalence in the ith selected PSU. Then, for each sample, we

calculated each of the confidence intervals described above: (1) Wald, (2) Wald, adj., (3)

Wilson, (4) Wilson, adj., (5) CP, (6) CP, adj., (7) Jeffreys, (8) Jeffreys, adj., (9) AC, (10)

AC, adj., (11) Logit, (12), Logit, adj., (13) Arcsine, and (14) Arcsine, adj. We summarized
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the results for each method by reporting the confidence interval coverage, which is the

proportion of simulations for which the estimated confidence interval contained the true

value p. We also calculated the average confidence interval width.

7.4.2 Results

Simulation coverage results are shown in Figure 7.1 for p = 0.01 to 0.99, n = 30 PSUs,

m = 7 SSUs per PSU, and ICC = 0.15. We do not report results for the other ICC values

because the relative performance of the methods was consistent across the simulations.

In general, the methods perform the worst when the ICC is large, so we report the results

for the largest ICC considered.

7.4.3 Adjustment

From Figure 7.1, it is apparent that for all seven confidence interval methods, the adjusted

version has superior coverage than the unadjusted version. With the exception of the ad-

justed Clopper-Pearson interval, all versions that are not adjusted for the design degrees

of freedom have coverage below the nominal 95% level, whereas the adjusted versions

have coverage near or above the 95% level. Thus, we only consider the adjusted methods

henceforth.

7.4.4 Confidence interval coverage

When contrasting the individual methods, we see that the adjusted Wald interval cov-

erage tends to fall below the nominal level when p < 0.25 or > 0.75. Coverage drops

precipitously when p < 0.10 or > 0.90. The adjusted Wilson and Jeffreys intervals have

coverage very close to the nominal level, though the coverage drops for p close to 0 or

1. The adjusted Agresti-Coull and Logit intervals have relatively stable coverage close to

the nominal level. The adjusted Clopper-Pearson method is further above 95% than the
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Figure 7.1: Confidence interval coverage probability versus true prevalence of outcome (0.01 to
0.99) for n = 30 PSUs, m = 7 SSUs per PSU, and ICC = 0.15. All methods are shown with
unadjusted and adjusted intervals. (a) Wald, (b) Wilson, (c) Clopper-Pearson, (d) Jeffreys, (e)
Agresti-Coull, (f) Logit, (g) Arcsine.
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other methods. The adjusted Arcsine method performs well for moderate p, but coverage

drops precipitously as p approaches 0 or 1.

7.4.5 Confidence interval width

To simultaneously assess confidence interval width and coverage, we plot average cov-

erage versus average width in Figure 7.2 for each of the seven adjusted methods. The

behavior of the methods changes as a function of the prevalence, so we show separate

plots for prevalence values averaged over the ranges 1% to 10% in Figure 7.2(a), 10% to

25% in Figure 7.2(b), and 25% to 50% in Figure 7.2(c). The most desirable methods lie

closest to the upper left-hand corner (narrowest width with the highest coverage).

For p between 1% and 10% in Figure 7.2(a), the Arcsine and Wald methods have the poor-

est coverage. This is likely attributable to how these intervals handle degenerate data. De-

generate data produces degenerate intervals for both the Wald and Arcsine intervals. The

Logit, Jeffreys, and Wilson intervals all have coverage slightly below 95%. The Agresti-

Coull and Clopper-Pearson intervals are the only intervals with coverage above 95%, but

they are also the widest intervals.

For p between 10% and 25% in Figure 7.2(b), the Wald and Arcsine intervals again fail

to achieve the nominal coverage level. The Jeffreys interval has coverage barely below

the nominal coverage level, and it is the narrowest interval on average. The Wilson in-

terval performs very well with the narrowest width among the methods achieving the

average coverage level. The Agresti-Coull and Logit intervals are slightly wider with

slightly higher coverage. The Clopper-Pearson interval is quite a bit wider than the other

intervals.

For p between 25% and 50% in Figure 7.2(c), the performances of the intervals are similar

to each other (note the x-axis scale), though the Clopper-Pearson interval is quite wide.

The Wilson and Agresti-Coull intervals perform the best. The Logit, Jeffreys, and Arcsine
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Figure 7.2: Average coverage vs. average width plot. n = 30, m = 7, ICC = 0.15
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intervals are all slightly wider. The Wald interval performs very poorly, having the lowest

coverage and still being wider than the majority of the intervals. The Clopper-Pearson

interval is significantly wider than the other intervals.

7.4.6 Truncation

To assess the effect of truncation, we performed a set of simulations in which the adjusted

effective sample size was truncated if it exceeded the actual sample size. Because this is

most likely to occur when the ICC is small, we show results for ICC = 0.005. Figure

7.3 compares coverage for the adjusted Wilson with and without truncation. The effect of

truncation is a moderate increase in coverage because it increases the width of confidence

intervals that are narrower the comparable IID confidence interval.
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Figure 7.3: Confidence interval coverage probability versus true prevalence of outcome (0.01 to
0.99) comparing adjusted Wilson with and without truncation for n = 30, m = 7, ICC = 0.005
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7.4.7 Non-unimodal simulation

The beta binomial prior is a rich family, but it is mostly a unimodal family, except for the

uniform member. To investigate a richer prior, we generated PSU means from a mixture

distribution of three betas. Each component beta distribution had an ICC of 0.005. The

means we used were 5%, 15%, and 45%, with weights 20%, 40% and 40% respectively,

resulting in an overall trimodal distribution. The overall mean was 25% with ICC = 0.15.

We summarize the results of 50,000 iterations in Figure 7.4 for n = 30 PSUs and m = 7

SSUs per PSU.
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Figure 7.4: Average coverage vs. average width plot for mixture distribution

In this scenario, the Wilson interval performs the best, being both the narrowest and with

high coverage. The Agresti-Coull, Logit, Jeffreys and Arcsine intervals also perform well,

although the Arcsine coverage is a bit lower and the Logit and Agresti-Coull intervals are

a bit wider than the Wilson. The Wald interval performs poorly, having both low coverage

and high width. The Clopper-Pearson is much wider than the other intervals.
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7.5 Discussion

In this paper, we describe an extensive evaluation of seven methods for constructing con-

fidence intervals for proportions using survey data. We classified the intervals into three

categories: (1) the Wald interval, (2) a class of modified methods, and (3) a class of trans-

formed methods. To the best of our knowledge, this paper contains the first application

of the modified Jeffreys interval and the first description of the modified Agresti-Coull

interval. All methods described require very few parameters to calculate just an esti-

mate of the prevalence, an estimate of the standard error, the design degrees of freedom

(if the interval will be adjusted), and the actual sample size (if the interval will be trun-

cated). Thus, these methods can be readily applied by researchers with limited statistical

expertise, an aspect which is highly relevant to people analyzing the types of surveys that

would emerge from a 30x7 cluster design.

For each method, we describe two formulations: one that does and one that does not ad-

just for the design degrees of freedom. For many of the intervals, we express the adjusted

version using either a t-quantile with the effective sample size or a Z-quantile with the

adjusted effective sample size. We note that these versions are only equivalent when our

proposed version of the adjusted effective sample size is used. From our simulation re-

sults, we conclude that it is necessary to adjust for the design degrees of freedom in order

to achieve nominal confidence interval coverage levels.

Considering the seven adjusted intervals described and the simulation results, some clear

recommendations emerge. The Wald interval should be avoided entirely because it fre-

quently fails to achieve the nominal coverage level while still being wider than the other

intervals when 10% < p < 90%; in addition, it can produce degenerate intervals or inter-

vals with bounds beyond 0 or 1. Similarly, the Arcsine interval performs poorly across

all simulations, partially because it can produce degenerate confidence intervals. For

25% < p < 50%, the Arcsine interval is also wider than many of the other intervals. Thus,

we do not recommend use of the Arcsine interval.
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Among the remaining intervals, when p < 10% or p > 90%, the Agresti-Coull and

Clopper-Pearson intervals perform the best, although it is worth noting that the other

intervals only narrowly fail to achieve the nominal coverage level. Though complete

simulation results are not shown, for less extreme ICC values, these other methods do

achieve 95% coverage. For all intermediate prevalence values and for the mixture distri-

bution example, the Logit, Wilson, Jeffreys, and Agresti-Coull intervals perform well. The

Wilson and Jeffreys intervals tend to be narrowest. The Logit interval tends to be wider

than the other intervals. The width and performance of the Agresti-Coull interval varies

across the different prevalence ranges.

We also expand upon an existing framework for truncation and the handling of ‘degener-

ate’ data described by Korn and Graubard with the goals of increasing logical consistency

and making clear practical recommendations. If truncation is to be used, we demonstrate

the importance of truncating the adjusted effective sample size, rather than the effective

sample size, so that intervals reduce to their standard IID equivalents. In addition, we

describe how each of the seven intervals performs when the standard error of the data

is equal to 0 and/or the point estimate of the data is equal to 0 or 1. In these scenarios,

we propose a framework in which the adjusted effective sample size is truncated at the

actual sample size, thereby avoiding degenerate intervals for many of the methods.

There are limitations to our work. Our simulations studies did not address many of

the other relevant factors in surveys, including stratification, disproportionate weight-

ing, missing data, and so on. Furthermore, the simulations were constructed to resemble

the particular setting of the 30x7 survey, which does not generalize to all other settings.

Nonetheless, the results are consistent with the large body of literature describing meth-

ods for confidence interval construction for proportions in the IID setting, so we believe

that the recommendations would not change significantly if more extensive simulations

were performed.

Another limitation is that we do not apply all possible methods for confidence interval
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construction. There are further adaptations of the Wilson interval described in the liter-

ature, including the use of a continuity correction (Korn and Graubard, 1999) or drop-

ping terms that are Op(n
−3/2) (Kott et al., 2001). Preliminary evidence in our simulations

suggested that these intervals did not perform as well as the standard modified Wilson

interval. Other modifications of the Wilson interval include the Andersson-Nerman inter-

val and the Model-based Wilson interval (Kott et al., 2001). We did not investigate these

intervals because they require calculations of additional quantities beyond the point es-

timate and the standard error. We believe that this makes the intervals less appealing to

practitioners and leave their further investigation to others. The Breeze interval is another

interval suggested for use in survey settings (Breeze, 1990). It is based on the Poisson dis-

tribution, so it is only appropriate for small (or large) p̂, and it is not expected to perform

well for moderate p. There are transformations, besides the logit and arcsine functions,

that have been suggested. Korn and Graubard (1999, p. 66) describe the use of a log trans-

formation , although this interval is not guaranteed to remain within the 0 to 1 bounds.

The likelihood ratio interval is obtained by inverting the likelihood ratio test H0 : p = p0

(Feng and Sitter, 2008). This interval was not included in our simulations because an

iterative algorithm is required to find the bounds, which we again believe makes the in-

terval less appealing to users. Finally, the class of replication-based methods, including

the bootstrap and jackknife, comprises an important category of methods for the analy-

sis of survey data (Rust and Rao, 1996). These intervals are interesting, but we excluded

them because of the computing complexity.

Our work has important practical implications because it addresses basic questions that

are not fully described in the literature. We reiterate the importance of avoiding the Wald

interval, but we also provide a variety of viable alternatives that are operationally simple

to calculate. Among these intervals, the modified Jeffreys and modified Agresti-Coull

have not been evaluated previously. We also provide a more structured framework for

handling the design degrees of freedom, data truncation, and degenerate data with the

goals of inducing equivalencies and increasing logical consistency.
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A. Appendices



A.1 The use of the finite population correction in survey
design for national disease surveillance

A.1.1 Estimating Survey Variance in an Infinite Population

In the first stage of sampling, n PSUs are sampled without replacement using probability

proportional to size (PPS) sampling into a set S defining the indices of the sampled PSUs,

and m SSUs are sampled using simple random sampling without replacement from each

selected PSUi into a set Si defining the indices of the sampled SSUs.

wPSU,i = [Pr(i ∈ S)]−1 PSU weight

=
M

nMi

wSSU,i = [Pr(j ∈ Si|i ∈ S)]−1 SSU weight (equal ∀j ∈ Si)

=
Mi

m

wi = wPSU,i wSSU,i Overall weight

=
M

nMi

Mi

m

=
M

nm
≡ w

T̂ =
∑
i∈S

wit̂i Numerator

M̂ =
∑
i∈S

wim Denominator

=
∑
i∈S

M

nm
m

= M since PPS

p̂ =
T̂

M̂
Prevalence estimator

The following is derived using a result from Lohr (2010, p. 229). Let T =
∑N

i=1Mipi. We

make the assumption that site size (Mi) and site prevalence (pi) are independent.
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var(T̂ ) = V arS

(
E(T̂ |S)

)
+ ES

(
V ar(T̂ |S)

)
= V arS

(
E

(∑
i∈S

wit̂i

∣∣∣∣S
))

+ ES

(
V ar

(∑
i∈S

wit̂i

∣∣∣∣S
))

= V arS

(
E

(∑
i∈S

wimp̂i

∣∣∣∣S
))

+ ES

(
V ar

(∑
i∈S

wimp̂i

∣∣∣∣S
))

= V arS

(∑
i∈S

wPSU,i
Mi

m
mpi

)
+ ES

(∑
i∈S

w2
im

2pi(1− pi)
m

)

=
1

n

N∑
i=1

Pr(i ∈ S)
n

(
Mipi

Pr(i ∈ S)/n
− T

)2

+ES

(
N∑
i=1

I(i ∈ S)w2
PSU,i

M2
i

m2
m2pi(1− pi)

m

)
by Lohr

=
1

n

N∑
i=1

Mi

M

(
Mipi
Mi/M

− T
)2

+ ES

(
N∑
i=1

I(i ∈ S) M2

n2M2
i

M2
i

pi(1− pi)
m

)

=
1

n

N∑
i=1

Mi

M
(Mpi − T )2 +

N∑
i=1

nMi

M

M2

n2

pi(1− pi)
m

=
1

n
M2

N∑
i=1

Mi

M
(pi − p)2 +

1

nm
M

N∑
i=1

Mipi(1− pi)

= M2V arPSU
n

+
1

nm
M

[
N∑
i=1

Mipi −
N∑
i=1

Mip
2
i

]
defining V arPSU as the between PSU variance of the pi terms

= M2V arPSU
n

+
1

nm
M
[
N E [Mipi]−N E

[
Mip

2
i

]]
= M2V arPSU

n
+

1

nm
M
[
N E [Mi]E [pi]−N E [Mi]E

[
p2i
]]

assuming Mi ⊥ pi

= M2V arPSU
n

+
1

nm
M
[
NMp−NM

{
V arPSU + p2

}]
= M2V arPSU

n
+

1

nm
M
[
Mp−Mp2

]
− M2

nm
V arPSU

= M2V arPSU
n

+
M2

nm
{p(1− p)− V arPSU}

= M2V arPSU
n

+
M2

nm
{p(1− p)− ICCp(1− p)}
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M2V arPSU
n

+
M2

nm
p(1− p) [1− ICC]

var (p̂) = var

(
T̂

M

)

=

(
1

n

)
V arPSU +

(
1

nm

)
p(1− p) [1− ICC]

A.1.2 Estimating the Intracluster Correlation Coefficient

We can show Equation 5.1 using standard formulae for the Beta distribution and the Beta-

Binomial distribution Gelman et al. (2004, pp. 576-577) and additional notation from

Ridout et al. (1999). The PSU means are sampled from a Beta distribution with parameters

α and β.

The grand mean is:

p =
α

α + β

The variance of the PSU means (pi) is:

V arPSU ≡
αβ

(α + β)2 (α + β + 1)

The intracluster correlation (ICC) is:

ICC =
1

α + β + 1

We now verify that Equation 5.1 is consistent with the known ICC of the Beta-binomial

distribution:
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ICC =
V arPSU
p(1− p)

=

αβ

(α+β)2(α+β+1)

α
(α+β)

β
(α+β)

=
1

α + β + 1

A.1.3 Estimating Design Effect in an Infinite Population

For the second method, we consider the design effect for a binary outcome estimated

via a two-stage cluster survey in an infinite population. The denominator of the design

effect is the simple random sample variance with replacement. A simplified approach

to calculating the simple random sample variance is to calculate the unit variance of a

beta-binomial random variable and divide this by the overall sample size (nm).

V ar(p̂|one unit sampled) =
αβ(α + β + 1)

(α + β)2 (α + β + 1)

=

(
α

α + β

)(
β

α + β

)
= p(1− p)

We can then demonstrate that the design effect in an infinite population is the following:

DEFT 2 =
var(p̂)

var(p̂SRS,wr)

=

(
1
n
− 1

nm

)
V arPSU + p(1−p)

nm
p(1−p)
nm

= (m− 1)
V arPSU
p(1− p)

+ 1

= 1 + (m− 1) ICC from eq.5.1
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A.1.4 Comparing First Stage fpcs for PPS Sampling

Here we assess the properties of the first stage fpc of Wolter so it can be compared with

the simpler first stage fpc used by Stata.

fpc1 =

[
1− 1

n

∑
i∈S

Pr(i ∈ S)

]

=

[
1− 1

n

∑
i∈S

nMi

M

]

=

[
1− 1

M

∑
i∈S

Mi

]

Interestingly, this represents the proportion of patients in the population attending clinics

that were sampled, which is not the same as the proportion of patients in the population

sampled.

ES [fpc1] = ES

[
1− 1

M

∑
i∈S

Mi

]

= 1− 1

M

N∑
i=1

ES [I(i ∈ S)Mi]

= 1− 1

M

N∑
i=1

nMi

M
Mi

= 1− Nn

M2

1

N

N∑
i=1

M2
i

= 1− Nn

M2
ES
[
M2

i

]
= 1− Nn

M2

{
V arS(Mi) + ES(Mi)

2
}

= 1− Nn

M2

{
V arS(Mi) +M

2
}

= 1−NnM
2

M2
−NnV arS(Mi)

M2
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= 1− Nn

N2
− Nn

N2

V arS(Mi)

M2/N2

= 1− n

N
− n

N

V arS(Mi)

M
2

= 1− n

N
− n

N
cv2(Mi) cv2(·) coefficient of variation

We can see that the two fpc formulations will be equivalent when Mi is constant across all

i. When the PSU sizes are not equal, we can see that the above formulation will result in

greater variance deflation. Thus, the simpler (1−n/N) formulation is more conservative.

A.1.5 Estimating Survey Variance in a Finite Population

var(T̂ ) = V arS
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from Lohr eq. 6.8

Approximate first-stage FPC using
(
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N

)
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=
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) 1
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=
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A.1.6 Estimating Design Effect in a Finite Population

DEFT 2 (p̂) =
V arPSU
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− V arPSU
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nm
− p(1−p)

nM
p(1−p)
nm

= m
V arPSU
p(1− p)

− nm

N

V arPSU
p(1− p)

+
m

M

V arPSU
p(1− p)

− V arPSU
p(1− p)

+ 1− m

M

= mICC − nm

N
ICC +

m

M
ICC − ICC + 1− m

M

= 1− m

M
+ ICC

[
m− nm

N
+
m

M
− 1

]

144



=

(
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)
+ ICC

[
m
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)
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(
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M

)]

A.1.7 Sample Size Calculation Methods

Derivations for all sample size calculation methods. Note that these methods can return

negative numbers; these should be viewed as impossible (n/a) sample size designs.

Method 1:

L = q

√
p(1− p)
keff1

keff1 =
q2p(1− p)

L2

kact1 = nm1

kact1 = keff1DEFT
2

= keff1 [1 + ICC(m1 − 1)]

nm1 = keff1 [1 + ICC(m1 − 1)]

m1 =
keff1 [1− ICC]
n− keff1ICC

=
q2p(1− p) [1− ICC]
L2n− q2p(1− p)ICC

Method 2:

L = q

√(
1− keff2

M

)
p(1− p)
keff2

keff2 =
q2p(1− p)M

L2M + q2p(1− p)
kact2 = nm2

kact2 = keff2DEFT
2
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= keff2 [1 + ICC(m2 − 1)]

nm2 = keff2 [1 + ICC(m2 − 1)]

m2 =
keff2 [1− ICC]
n− keff2ICC

=
q2p(1− p)M [1− ICC]

n [L2M + q2p(1− p)]− q2p(1− p)M [ICC]

Method 3:

L = q

√
p(1− p)
keff3

keff3 =
q2p(1− p)

L2
same as keff1

kact3 = nm3

kact3 = keff3DEFT
2

= keff3

[(
1− m3

M

)
+ ICC

((
1− n

N

)
m3 −

(
1− m3

M

))]
nm3 = keff3

[(
1− m3

M

)
+ ICC

((
1− n

N

)
m3 −

(
1− m3

M

))]
m3 =

keff3 [1− ICC]
n+

keff3
M
− keff3ICC

[(
1− n

N

)
+ 1

M

]
=

q2p(1− p)M [1− ICC]
L2nM + q2p(1− p)− q2p(1− p)M [ICC]

[(
1− n

N

)
+ 1

M

]
The corresponding predicted confidence interval half-width will be:

tn−H,0.975
√
V ar(p̂ADJ)

Note that the design degrees of freedom are n−H where n =
∑H

h=1 nh is the total number

of sites sampled, and H is the total number of strata. If no stratification is used prior to

site sampling, H = 1.
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A.2 Development of a viral load suppression measure ad-
justed for non-retention for the surveillance of ac-
quired HIV drug resistance

A.2.1 Derivation of adjusted VLS variance estimator

This section outlines the derivation of the variance estimator for the adjusted VLS mea-

sure p̂ADJ = V̂ /Ŝ, with notation as defined in Section 6.3. Methodology follows Stata’s

section on variance estimation in the SVY manual (StataCorp, 2013), and it applies a re-

sult from Goodman (1960, eq. 7) for the variance of a product of independent random

variables, referring to the independence of p̂V LS,i and p̂RET,i. Recall that p̂V LS,i = t̂i/mi

and p̂RET,i = ûi/si. t̂i and ûi are independent because they are taken from separate and

unrelated samples (the former from incoming eligible patients and the latter from eligible

patient records).

v̂ar(V̂ ) =
(
1− n

N

) n

n− 1

n∑
i=1

(
wPSU,iSip̂V LS,ip̂RET,i −

1

n

n∑
i′=1

wPSU,i′Si′ p̂V LS,i′ p̂RET,i′

)2

+
n

N

n∑
i=1

v̂ar(wPSU,iSip̂V LS,ip̂RET,i)

=
(
1− n

N

) n

n− 1

n∑
i=1

(
wPSU,iSip̂V LS,ip̂RET,i −

V̂

n

)2

+
n

N

n∑
i=1

(wPSU,iSi)
2

[
p̂2V LS,iv̂ar(p̂RET,i) +

+p̂2RET,iv̂ar(p̂V LS,i)− v̂ar(p̂V LS,i)v̂ar(p̂RET,i)

]
(Goodman 1960)

=
(
1− n

N

) n

n− 1

n∑
i=1

(
wPSU,iSip̂V LS,ip̂RET,i −

V̂

n

)2

+
n

N

n∑
i=1

(wPSU,iSi)
2

{
p̂2V LS,i

(
1− si

Si

)
p̂RET,i (1− p̂RET,i)

si

+p̂2RET,i

(
1− mi

Mi

)
p̂V LS,i (1− p̂V LS,i)

mi
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(
1− mi

Mi

)
p̂V LS,i (1− p̂V LS,i)

mi

(
1− si

Si

)
p̂RET,i (1− p̂RET,i)

si

}

v̂ar(Ŝ) =
(
1− n

N

) n

n− 1

n∑
i=1

wPSU,iSi −
1

n

n∑
j=1

wPSU,jSj

2

+ 0

=
(
1− n

N

) n

n− 1

n∑
i=1

(
wPSU,iSi −

Ŝ

n

)2

ĉov(V̂ , Ŝ) =
(
1− n

N

) n

n− 1

n∑
i=1

[wPSU,iSip̂V LS,ip̂RET,i −
1

n

n∑
j=1

wPSU,jSj p̂V LS,j p̂RET,j


×

wPSU,iSi −
1

n

n∑
j=1

wPSU,jSj

]+ 0

=
(
1− n

N

) n

n− 1

n∑
i=1

(
wPSU,iSip̂V LS,ip̂RET,i −

V̂

n

)(
wPSU,iSi −

Ŝ

n

)

v̂ar(p̂ADJ) =
1

Ŝ2

{
v̂ar(V̂ )− 2p̂ADJ ĉov(V̂ , Ŝ) + p̂2ADJ v̂ar(Ŝ)

}
. . .

=
1

Ŝ2

(
1− n

N

) n

n− 1

n∑
i=1

(wPSU,iSi)
2 (p̂V LS,ip̂RET,i − p̂ADJ)

2

+
1

Ŝ2

n

N

n∑
i=1

(wPSU,iSi)
2

{
p̂2V LS,i

(
1− si

Si

)
p̂RET,i (1− p̂RET,i)

si

+p̂2RET,i

(
1− mi

Mi

)
p̂V LS,i (1− p̂V LS,i)

mi

+p̂2RET,i

(
1− mi

Mi

)
p̂V LS,i (1− p̂V LS,i)

mi

−
(
1− mi

Mi

)
p̂V LS,i (1− p̂V LS,i)

mi

(
1− si

Si

)
p̂RET,i (1− p̂RET,i)

si

}

A.2.2 Derivation of predicted variance in an infinite population

In this section, we outline the derivation for Equation 6.1 for the predicted variance of

p̂ADJ for an infinite population (no finite population corrections). In order to derive this

equation, we assume that sampling of PSUs is PPS (proportional to the total size of the

eligible retention records, Si). Thus, Pr(i ∈ SI) = nSi

S
and wPSU,i = S

nSi
, where S =∑N

i=1 Si. Let V =
∑N

i=1 SipV LS,ipRET,i. Simplifying assumptions are made to yield results
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that limit the amount of prior information required to predict the variance. Among these

assumptions, it is assumed that VLS and retention are independent from PSU size Si.

First, we provide important results about estimating the between PSU variance for ob-

served VLS, retention, and adjusted VLS. First, it can be shown that the between PSU

variance for observed VLS and retention can be expressed using the following formulae

(see Chapter 5).

V arPSU,V LS = ICCV LSpV LS(1− pV LS) (7.1)

V arPSU,RET = ICCRETpRET (1− pRET ) (7.2)

Available data suggested no evidence of a correlation between site-specific VLS and site-

specific retention (World Health Organization, 2012a, table 9). If we are willing to assume

their independence, we can estimate the variance using the following formulae involving

the between PSU variance of VLS, V arPSU,V LS , and the between-PSU variance of reten-

tion, V arPSU,RET (Goodman, 1960, eq. 6).

V arPSU,ADJ = p2RETV arPSU,V LS + p2V LSV arPSU,RET + V arPSU,V LSV arPSU,RET (7.3)

To derive the predicted variance for adjusted VLS, we use a result from Lohr (2010, p.

229) and Goodman (1960, eq. 6) for the variance of a product of independent random

variables; the assumption of independence is justified for reasons stated in Appendix

A.2.1.

A.2.3 Derivation of predicted variance in a finite population

In this section, we outline the derivation for Equation 6.2 for the predicted variance of

p̂ADJ using finite population corrections. We proceed using the same notation and many

of the same results as Appendix A.2.2.
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V ar(V̂ ) = V arSI

(
E
[
V̂ |SI

])
+ ES

[
V ar

(
V̂ |S

)]
=

1

n

N∑
i=1

(
1− n

N

) Pr(i ∈ SI)

n

(
SipV LS,ipRET,i
Pr(i ∈ SI)/n

− V

)2

Lohr

+
N∑
i=1

[
Pr(i ∈ SI)w

2
PSU,iS

2
i

{
p2RET,iV ar (p̂V LS,i)

+p2V LS,iV ar (p̂RET,i) + V ar (p̂V LS,i)V ar (p̂RET,i)

}]
(7.4)

(Goodman 1960)
Defining V arPSU,ADJ as the between PSU variance of the pV LS,ipRET,i terms
Assuming m, s same for all PSUs
Assuming independence of Si, pV LS,i, and pRET,i

Assuming Si/S ≈Mi/M

Replacing V arPSU,V LS with ICCV LSpV LS(1− pV LS) by Eqs. 7.1,7.2

Assuming that
N∑
i=1

1

Mi
≈ N

M

. . . (7.5)

=
S2

n

{[
ICCV LS +

(
1

m
− 1

M

)
[1− ICCV LS ]

]
p2RET pV LS(1− pV LS) (7.6)

+

[
ICCRET +

(
1

s
− 1

S

)
[1− ICCRET ]

]
p2V LSpRET (1− pRET )

+

[
ICCV LS +

(
1

m
− 1

M

)
[1− ICCV LS ]

] [
ICCRET +

(
1

s
− 1

S

)
[1− ICCRET ]

]
×pV LS(1− pV LS)pRET (1− pRET )

}
V ar(p̂ADJ) = V ar

(
V̂

S

)
=

1

S2
V ar(V̂ )

≈ 1

n

{[
ICCV LS +

(
1

m
− 1

M

)
[1− ICCV LS ]

]
p2RET pV LS(1− pV LS)

+

[
ICCRET +

(
1

s
− 1

S

)
[1− ICCRET ]

]
p2V LSpRET (1− pRET )

+

[
ICCV LS +

(
1

m
− 1

M

)
[1− ICCV LS ]

] [
ICCRET +

(
1

s
− 1

S

)
[1− ICCRET ]

]
×pV LS(1− pV LS)pRET (1− pRET )

}
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If finite population corrections will be used during the survey design,

V ar(V̂ ) ≈
H∑
h=1

S2
h

n

{[
ICCV LS +

(
1

mh
− 1

Mh

)
[1− ICCV LS ]

]
p2RET pV LS(1− pV LS)

+

[
ICCRET +

(
1

sh
− 1

Sh

)
[1− ICCRET ]

]
p2V LSpRET (1− pRET )

+

[
ICCV LS +

(
1

mh
− 1

Mh

)
[1− ICCV LS ]

]
×
[
ICCRET +

(
1

sh
− 1

Sh

)
[1− ICCRET ]

]
×pV LS(1− pV LS)pRET (1− pRET )

}
(7.7)

V ar(p̂ADJ) = V ar

(
V̂

S

)

≈ V ar(V̂ )

S2
Using Eq. 7.7 (7.8)

The corresponding predicted confidence interval half-width will be:

tn−H,0.975
√
V ar(p̂ADJ)

Note that the design degrees of freedom are n−H where n =
∑H

h=1 nh is the total number

of sites sampled, and H is the total number of strata. If no stratification is used prior to

site sampling, H = 1.
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Barnighäusen, T., T. McWalter, Z. Rosner, M. Newell, and A. Welte (2010). “HIV incidence
estimating using the BED capture enzyme immunoassay,” Epidemiology, 21, 685–697.
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