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Abstract

This dissertation consists of three essays examining the implications of human psychology

for economic behavior and market outcomes.

The first chapter formalizes a model of people’s inattention to choices and actions in

dynamic decision environments. The model provides a new foundation for habit-forming

behaviors, and also generates surprising implications for how deadline length can affect

task completion rates. I report results from two “extra-lab” experiments that jointly vary

reminder cues and payoff parameters to test and confirm the predictions of the model. I

also embed this model of consumer behavior in various market settings and study how

firms structure reminder advertising campaigns, consumer rebates, and free-trial offers.

The second chapter, coauthored with Hunt Allcott, examines the frequently made

hypothesis that consumers are imperfectly informed about or inattentive to the energy costs

associated with energy-using appliances. We study two field experiments that provide

information on energy costs and product lifetimes for compact fluorescent lightbulbs vs.

traditional incandescent bulbs. We then propose a general model of consumer bias in choices

between energy-using durables, derive formulas for quantifying the welfare implications of

such bias, and evaluate the implications of existing policies. Results suggest that moderate

CFL subsidies may be optimal, but that imperfect information and inattention do not appear

to justify a ban on traditional incandescent lightbulbs in the absence of other inefficiencies.

The third chapter, coauthored with Holger Herz, has its starting point in the now

well-established fact that people’s desire for fair transactions can play an important role in

negotiations, organizations, and markets. In this chapter, we show that markets can also
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shape what people consider to be a fair transaction. We propose a simple and generally-

applicable model of path-dependent fairness preferences, in which past experiences shape

preferences, and we experimentally test the model’s predictions. We find that previous

exposure to competitive pressure substantially and persistently reduces subjects’ fairness

concerns, making them more likely to accept transactions in which they receive a low share

of the surplus. But consistent with our theory, we also find that past experience has little

effect on subjects’ inclinations to treat others unfairly.
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Chapter 1

From Intentions to Actions: A Model

and Experimental Evidence of

Inattentive Choice

1.1 Introduction

The relationship between people’s preferences and actions is characterized by a variety of

frictions. Frictionless theories of intertemporal choice are hard to reconcile with people’s

poor adherence to medication regimens, lack of exercise, low savings rates, frequently late

bill payments, and inefficient energy use. Incomplete information, systematically biased

beliefs, and self-control problems are often invoked to explain what appear to be suboptimal

choices, and have been formally modeled in a variety of economic settings.

This paper theoretically and experimentally investigates a different bias that may play

an important role in intertemporal decision-making: people are inattentive, and will not take

an action that is not on their minds. At one point in time, a person may have fully intended

to take all of his daily medications, pay his bills on time, and apply for a rebate; at another

point in time, those once salient intentions may no longer be contemplated, buried by daily

distractions, worries, and new goals.
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In the case of poor compliance with medication regimens, for example, chronic disease

patients frequently report “forgetting” as the reason for why they do not take all of their

prescribed daily medication (MacDonell et al., 2013; Vyankandondera et al., 2013). This

is corroborated by evidence from cognitive psychology experiments, which show that

attentional and memory failures measured in controlled laboratory environments are

significantly correlated with poor medication adherence (Poquette et al., 2013; Zogg et al.,

2012).

Another growing body of evidence builds on a basic implication of limited attention:

cues directing people’s attention to a particular action should make its execution more

likely. In decisions affecting health outcomes, simple cues such as email or text message

reminders have been shown to increase compliance with daily medication regimens (Vervloet

et al., 2012), scheduling of check-ups and screening tests (DeFrank et al., 2009), exercise

(Calzolari and Nardotto, 2012), and healthy food choices (Patrick et al., 2009). In financial

decision making, simple cues have been shown to increase savings (Karlan et al., 2012a) and

timely loan repayments (Cadena and Schoar, 2011). And various cues directing attention

to electricity use have decreased energy consumption by increasing simple behaviors

such as turning off energy-using appliances (Gilbert and Zivin, 2013; Jessoe and Rapson,

forthcoming).

However, the full implications of inattention to choices and actions in dynamic decisions

are poorly understood:1 What makes a certain choice or action more or less likely to come

to mind? When should reminder cues should be more or less effective, and how do they

interact with financial incentives?2 How do sophisticated, profit-maximizing firms respond

to consumer inattention?

This paper proposes a dynamic model of inattentive choice and theoretically and exper-

1In contrast, the implications of limited capacity to update expectations in dynamic environments have been
much more studied in rational inattention models and other approaches.

2Note that models of rational inattention (e.g. Sims 2003), which I discuss in more detail in Section 1.2.6, do
not naturally allow for simple cues such as reminders to affect choice, and thus do not shed light on these issues.
The simple reason is that an uninformative reminder should not lower the costs associated with processing
information about a particular option.
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imentally investigates its implications. The first ingredient of the model is that cues can

affect behavior by reminding the person about the choice or action. The second ingredient

is what research in psychology and other cognitive sciences calls rehearsal or accessibility bias:

the idea that recent engagement with a certain choice or action will increase the likelihood

that it rises to the top of the mind again. Two forms of rehearsal are key to the decisions

studied in this paper: a weak form of rehearsal is when the person thinks about the action,

a stronger form is when the person performs the action.

For repeated actions—such as taking medication, attending the gym, or turning off

electricity-using appliances to cut energy use—rehearsal implies that these behaviors will

be habit-forming. The more a person has performed these behaviors in the past, the more

likely they are to be top of mind, and thus the more likely they are to be performed again.

A consequence of rehearsal, therefore, is that temporary incentives have a ripple effect: for

example, incentivizing people to make energy conserving actions a more integral part of

their routines will increase the attention devoted to those actions in a way that will persist

when those incentives are removed. I show that rehearsal also has implications for tasks that

must be completed by a deadline; in particular, it can significantly diminish the option value

of longer deadlines. A consumer who purchases a product with the intention of mailing

in the accompanying $50 rebate will be likely to think about the rebate again several days

later but, because of rehearsal, will be less likely to think about it again in 4 weeks. As a

consequence, consumers who are naive about their future inattention can be hurt by longer

deadlines.

These predictions are consistent with a broad set of empirical findings, and show that

patterns of behavior that are sometimes attributed to other theories such as hyperbolic

discounting (Laibson, 1997; O’Donoghue and Rabin, 1999) or habit-forming preferences

(Becker and Murphy, 1988) may also be a consequence of time-varying attention. At the

same time, the model is sharply distinguished from other theories by its predictions about

how changes in cues can modify behavioral responses to changes in payoff parameters.

For tasks with deadlines, the model predicts that a small set of reminders can alter the
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potentially perverse effect of longer deadlines. For repeated actions, the model makes

predictions about how reminders can amplify or diminish the spillover effects of temporary

shocks to peoples’ routines. These novel predictions about the interaction of cues and payoff

parameters are immediately translatable into new experimental designs, and are tested and

confirmed in two experiments reported in this paper.

These results, as well as others, lead to four main contributions. First, I show that a simple

and psychologically grounded model of inattentive choice provides a unifying explanation

of what appear to be “non-standard” responses to changes in payoff parameters. Second, I

show that the model extends the economic analysis of incentives by providing a framework

for studying the effects of cue provision with a theoretical precision that generates sharp,

testable hypotheses. The model generates novel predictions for the previously unexamined

question of how cues and incentives interact to influence behavior, and provides a needed

organization of conditions under which cues should or should not have a significant impact.

Third, I test the new predictions of the model in two real-effort experiments that employ

2× 2 factorial designs to vary both payoff parameters and cues. These experiments provide

the first direct evidence that both the deadline and the habit effects predicted by the rehearsal

property of the model are, indeed, a consequence of time-varying attention. Fourth, I show

that beyond its predictions for individual behavior, the inattention model can be fruitfully

incorporated into a variety of market analyses. I illustrate the model’s applicability by using

it to theoretically study marketing tactics such as consumer rebates, and to complement

existing theories of advertising by deriving optimal policies of reminder advertising.

Section 1.2 presents the formal model, which builds on the imperfect recall model in

Mullainathan (2002), and related approaches by Ericson (2010) and Holman and Zaidi

(2010). I consider a decision maker (DM) who each period must choose whether or not to

take a certain action when it is available. But with some probability, the DM is inattentive,

and therefore does not even consider taking the action. Closely following evidence from

psychology, I assume that cues and rehearsal increase the probability of the DM being

attentive. To complete the model and apply it to dynamic decisions, I further draw on the
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experimental literature to specify how people form beliefs about the possibility of their

future inattentiveness. Because the evidence discussed in Section 1.2 suggests that, on

average, people vastly underestimate the likelihood of future inattentiveness, I draw out the

additional implications of this naivete by considering two different ways of completing the

model: sophisticated beliefs that are correct about future (in)attentiveness or naive beliefs that

assume full attentiveness in all future periods.3

Section 1.3 studies the behavior of an inattentive DM in a repeated action setting such

as medication adherence, exercise, or residential energy use. Section 1.3.1 contains the

theoretical results, while Section 1.3.2 reports an experiment testing the new predictions.

Section 1.3.1 shows that because engaging in a behavior increases the probability that it

will be attentively considered in the future, the model predicts behavioral patterns similar

to those predicted by preference-based theories of habit formation (Becker and Murphy,

1988), and documented for exercise (Charness and Gneezy, 2009; Acland and Levy, 2011)

and residential energy use (Jessoe and Rapson, forthcoming). But at the same time—and

consistent with evidence from gym attendance (Calzolari and Nardotto, 2012) and energy

use (Allcott and Rogers, 2012; Gilbert and Zivin, 2013)4—the model predicts that cues such

as reminders affect both current and future behavior.5 Moreover, in addition to capturing

both the habit effects and the cue effects in a single parsimonious framework, the model

makes predictions about when increasing cues will amplify or diminish the impacts of

incentives. Consistent with Jessoe and Rapson (forthcoming), the model predicts that people

will be more responsive to incentives following a prior or concurrent increase in cues. At the

same time, the model also predicts that the effects of current incentives on future behavior

are decreasing in the strength of future cues. This second comparative static follows from

3Appendix A.1.3 further generalizes these two illustrative extremes and proposes a model of partial naivete.

4The cues described in Allcott and Rogers (2012), however, may act through channels other than just
attention, because they also included normative information.

5This prediction resembles models of cue-triggered cravings (Laibson, 2001; Bernheim and Rangel, 2004).
The scopes are very different, however. Laibson (2001) and Bernheim and Rangel (2004) focus on conditioned,
visceral responses to immediate consumption opportunities, and apply the models mostly to addictions. Most
of the repeated-action behaviors studied in this paper, in contrast, are “good” habits that typically involve
temporally distant benefits that should not elicit any sort of craving.
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core idea of the model that people do not need reminders for behaviors that are routine.

That is, the model predicts that habits and reminders are substitutes.

The experiment reported in Section 1.3.2 examines the interaction between repeat

performance and reminders. The task in this experiment resembles taking daily medication

and involves completing a daily survey in return for $1 per completed survey. The 2× 2

design varies 1) whether this task is available each day for three weeks straight or whether

it is available for only the first and third weeks, and 2) whether or not participants receive

daily reminders in the third week. I find that even without week 3 reminders, participants

who are assigned to perform the task for three weeks straight complete approximately

5 out of 7 surveys in week 3. In contrast, those participants who experience the week 2

interruption and don’t receive week 3 reminders complete only about 2.5 surveys. But

consistent with the prediction that habits and reminders are substitutes, this effect of the

week 2 interruption is almost entirely eliminated when subjects receive reminders in week 3.

Reminders have only a minor effect on subjects who do not experience the interruption, but

nearly double the week 3 completion rate of subjects who do experience the interruption.

This interaction between repeat performance and reminders provides strong evidence that

repeat performance of a behavior increases the likelihood that it is attentively considered in

the future.

Section 1.4 studies the behavior of an inattentive DM who must complete some task—

e.g., pay a bill, schedule a medical appointment, redeem a rebate, return a product—by a

certain deadline. Section 1.4.1 contains the theoretical results, while Section 1.4.2 reports

an experiment testing the new predictions. The central theoretical results in Section 1.4.1

concern how extending the deadline affects completion rates and welfare. On the one hand,

the model predicts that a longer deadline increases a sophisticated DM’s welfare. On the

other hand, the model predicts that a longer deadline can decrease a naive DM’s welfare

and completion probability when the likelihood of being attentive to the task decays over time.

Intuitively, this is because the naive DM does not realize that he will be significantly less

likely to think of the task at a later point in time, and thus puts off the task more than
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he should with a longer deadline. This result is consistent with experimental evidence

on short vs. long deadlines for rebate redemption (Silk, 2004), gift certificate redemption

(Shu and Gneezy, 2010), and product returns (Janakiraman and Ordóñez, 2012). The

second central theoretical prediction for task completion helps differentiate the inattention

mechanism from alternative explanations of deadline effects. The prediction is that if a

longer deadline leads to lower completion rates then an appropriately placed reminder will

have a significantly larger effect on decision makers facing the longer deadline, potentially

reversing the “perverse” effect of the longer deadline.

Section 1.4.2 reports an experiment testing the new prediction about the interaction

of deadlines and reminders. Participants in the experiment receive a cash reward for

completing a 20 minute questionnaire by a certain deadline. The 2× 2 design varies the

deadline length between either 2 days or 21 days, and varies whether participants receive

reminders during the last two days including the deadline. Replicating previous evidence, I

find that among participants who do not receive reminders, the longer deadline decreases

the probability of completing the task from 59% to 42%. However, I find that reminders

increase completion rates by 15 percentage points for subjects facing the shorter deadline,

and increase completion rates by a striking 31 percentage points for subjects facing the

longer deadline. Thus, while existing results on deadline effects replicate in the absence of

reminders, they are nearly eliminated by reminders—a prediction unique to the inattention

mechanism.

Section 1.5 builds on the theoretical results in Sections 1.3 and 1.4 to formally explore

some market implications of the model. Section 1.5.1 builds on Section 1.4 and proposes a

formal model of consumers rebates. In contrast to previous theoretical work—which has

focused on price discrimination and has modeled consumers’ redemption decision as a

static, one-period choice—I consider a dynamic model of the rebate redemption process and

use the inattention model to analyze the previously ignored question of how firms choose

the redemption deadlines. Different from existing theoretical work, but consistent with

policymakers’ and industry experts’ claims, the model predicts that rebates are deceptively
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attractive to inattentive and naive consumers. Moreover, the model predicts that firms

will use “intermediate length” deadlines to maximally exploit consumer mistakes. Finally,

the model shows that consumer rebates can facilitate socially inefficient transactions, and

provides a formal framework for evaluating various policy proposals to regulate rebate

offers. Building on the insights developed in the rebate model, I also discuss implications

for product return policies and automatic renewal billing.

Section 1.5.2 builds on Section 1.3 to study the optimal cue provision strategy of an

organization interested in increasing consumers’ likelihood of taking some repeated action.

The simple advertising model developed in this section generates insights for a variety of

different types of communications: A health care provider or insurer using SMS messages

or phone calls to remind chronic disease patients to take their medications, an organization

sending reports to remind consumers of ways to save energy, or a firm advertising a

repeat-purchase product to make sure that it stays top of mind. I show that as in models

of informative advertising, the returns to each additional message are decreasing in the

intensity of previous communications. But in contrast to models of informative advertising,

the inattention model predicts that the optimal intensity of reminder messages should not

converge to zero in the long run, and that the optimal advertising strategy might involve

cycles or intermittent messages. Moreover, when the behavioral rehearsal effect is sufficiently

strong, the model also predicts that the optimal message intensity will be non-monotonic

in consumers’ preferences for choosing the action; that is, reminder messages will be most

effective for behaviors that consumers want to take, but not so often that these actions

become habitual. These results, as well as others, illustrate how the model complements

existing theories of informative and persuasive advertising by providing new insights and

foundations for what marketers refer to as reminder advertising.

Section 1.6 discusses some limitations of the analysis in this paper, as well as directions

for future research.
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1.2 Model and Evidence

Sections 1.2.1-1.2.3 set up the model, Section 1.2.4 further motivates the assumptions, Section

1.2.5 offers some further remarks on the model, and Section 1.2.6 briefly reviews the related

economics literature.

1.2.1 The Decision Environment

I define the model for a general binary choice decision environment in which payoffs and

the action space can depend arbitrarily on the past history of actions. This encompasses

actions that must be taken only once over the course of T periods, such as paying a bill, and

actions that are taken repeatedly every period, such as taking medication. Although not

analyzed in this paper, the model can also be applied to actions that are taken “every so

often”; e.g., actions that must be taken once every five periods.

There are T periods t = 0, . . . , T, with T < ∞. Each period the decision maker (DM)

makes a choice xt from a choice-set Xt(ht) ∈ {{d}, {d, a}}, where ht = (x0, . . . , xt−1) denotes

the history of choices up to period t. The choice xt = a is an active choice—e.g., paying the

bill or taking the medication. The choice x = d is a passive default—e.g., not paying the bill

or not taking the medication. When Xt(ht) = {d}, there is no choice to be made in period

t. In the bill example, for instance, this will be the case if the bill has already been paid in

period τ < t.

The DM’s period t flow utility after choice xt is given by ut(xt, ξt, ht), where the ξt are

independent random draws from a distribution F with bounded support in [ξ, ξ̄], and are

realized prior to the DM taking his action. Unless otherwise stated, I will assume that F

is atomless and fully supported on [ξ, ξ̄]. In this case, I will assume that F has a density

function, which I will denote by f .

Variation in ξt represents fluctuations in daily opportunity costs or variation in taste

shocks. I assume that u(d, ξt, ht) = 0 for all ξt and ht, so that only the utility from the

non-default choice fluctuates. The DM’s period t utility from a sequence of realizations

ut, ut+1, . . . is given by Ut = ∑τ≥t uτ. Note that for simplicity, I assume no discounting,
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though allowing for an exponential discount factor would not change the results in any way.

Appendix A.1.1, generalizes the model to infinite horizons and time discounting.

1.2.2 Attention Dynamics

Each period, the DM either thinks about a, denoted αt = 1, or does not think about a,

denoted αt = 0. When αt = 0, he always chooses the default d. When αt = 1, the DM

compares a to the default alternative and chooses the better option subject to the DM’s

beliefs about his own future actions. I will describe the state αt = 1 as attentive and the state

αt = 0 as inattentive.

Each period, the DM also receives a set of attention cues Ωt ∼ Gt, with strength

σ(Ωt) ∈ [0, 1]. Cues increase the probability that the DM is attentive, and may include a

host of events that direct attention to the choice of xt = a, including advertisements, fliers,

email or text message reminders, conversations with others, and various visual and auditory

cues intended to serve as reminders. I will frequently use the shorthand of writing σ instead

of σ(Ωt), and I will let Ht denote the period t distribution of values of σ.

In period t ≥ 1, the DM is more likely think about a if 1) he has thought about it in

period t− 1 (i.e. αt = 1); if 2) he actually engages in the behavior a in period t− 1 (i.e.,

xt−1 = a); and if 3) he receives a salient set of cues in period t. I will refer to the effect

of αt−1 on period t attentiveness as mental rehearsal and I will refer to the effect of xt−1 on

period t attentiveness as behavioral rehearsal. Section 1.2.4 reviews the cognitive psychology

literature that motivates these attention effects.

Formally, I assume that for t ≥ 1, Pr(αt = 1) = g(αt−1, xt−1, σ(Ωt)), where (αt, xt) ∈

{(0, d), (1, d), (1, a)} and g satisfies the following assumptions:6

A1 g is continuous and increasing in σ, and g(0, d, 1) = 1

A2 g(1, d, 0) > 0

A3 g(0, d, σ) ≤ g(1, d, σ) ≤ g(1, a, σ) for all σ

6Note that since the DM cannot choose xt = a when he is inattentive, the pair (0, a) is not possible.
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A4 For any σ1 < σ2, g(0, d, σ2)− g(0, d, σ1) ≥ g(1, d, σ2)− g(1, d, σ1) ≥ g(1, a, σ2)− g(1, a, σ1)

The first assumption states that the stronger the set of cues the DM receives, the more likely

he is to be attentive. Moreover, there exists a sufficiently strong set of cues that would make

the DM fully attentive. The second assumption states that if the DM was attentive last

period, there is always a chance that he will be attentive this period. The third assumption

formalizes the idea that rehearsal increases the likelihood of being attentive to a. The fourth

assumption states that the effect of cues on period t attentiveness is less pronounced if

behavioral and mental rehearsal already make a more top of mind.

The fourth assumption can be motivated with the following intuitive model of cues:

Suppose that the DM receives a set of cues Ω = {ω1, . . . , ωK} in period t. The effect of each

additional cue ωk is that it triggers thoughts of the action with probability σ({ωk}), and

thus decreases the probability of being inattentive by a factor 1− σ({ωk}). Thus the set of

cues Ω makes the DM attentive with probability

g(αt−1, xt−1, Ω) = 1− [(1− g(αt−1, xt−1, 0))(1− σ({ω1})) · · · (1− σ({ωK}))] (1.1)

and can be said to have an aggregate strength of 1−∏K
i=1(1− σ({ωi})). Clearly, specification

(1.1) satisfies A1-A4 as long as g(αt−1, xt−1, 0) satisfies A3.

Assumptions A1-A4 will be in full force throughout the paper. Some results will also

rely on strengthening A3 and A4 to require that rehearsal strictly matters:

A3′ g(0, d, σ) < g(1, d, σ) < g(1, a, σ) for all σ ∈ [0, 1).

A4′ For any σ1 < σ2, g(0, d, σ2)− g(0, d, σ1) > g(1, d, σ2)− g(1, d, σ1) > g(1, a, σ2)− g(1, a, σ1).

Note that specification (1.1) satisfies A4′ when g(αt−1, xt−1, 0) satisfies A3′.

In period 0, Pr(α0 = 1) = g(0, d, σ(ω0)), with σ(ω0) potentially very close to 1 if

that’s when the DM first learns about the behavior option. To further simplify notation, I

will set γt(αt−1, xt−1) =
∫

g(αt−1, xt−1, σ)dHt(σ), and set γ0 =
∫

g(0, d, σ)dH0(σ). That is,

γt(αt−1, xt−1) is simply the probability of being attentive in period t, as a function of period

t− 1 events.
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1.2.3 Strategies and Beliefs

Sophisticated Decision Makers

A sophisticated DM correctly anticipates the dynamics of his (in)attention, and optimally

chooses his actions with those dynamics in mind. His strategies can be computed by

backward induction.

To formalize, let EF denote the expectation taken with respect to F, and let (ht, xt) denote

the period t + 1 history that results when xt is chosen after history ht. Let Vs
t (ht, αt) denoted

the sophisticated DM’s expected period t utility conditional period t history ht and on

whether or not he is attentive in period t. Let xs(ht, ξt) denote the DM’s period t strategy

conditional on being attentive. The functions Vs
t and xs are defined recursively below. To ease

notation, I sometimes suppress the arguments of xs(·). For t = T,

Vs
T(hT, αt) = αtEFu(xs, ξT, hT) (1.2)

xs(hT, ξT) = argmaxx∈A(ht)
u(x, ξT, hT) (1.3)

and for t < T,

Vs
t (ht, αt) = αtEF

[
u(xs, ξt, ht) + Vs

t+1((ht, xs), γ(1, xs))
]
+ (1− αt)EFVs

t+1((ht, d), γ(0, d)) (1.4)

xs(ht, ξt) = argmaxx∈A(ht)
{u(x, ξt, ht) + Vs

t+1((ht, x), γ(1, x))} (1.5)

As formalized in equation (1.5), a sophisticated DM recognizes that he may be inattentive

in the future and considers how cues and rehearsal affect the probability of being attentive

in period t + 1.

Naive Decision Makers

As summarized in Section 1.2.4, many people appear to be naive about the possibility of

future inattention. To investigate the role of naivete in a stark and illustrative way, in the

body of the paper I make the extreme assumption that a naive DM is fully naive; that is,
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he thinks that he will be perfectly attentive in the future.7 In appendix A.1.3, however, I

introduce models of partial naivete. In general, a sufficiently—though not fully—naive DM

would exhibit many of the same forms of misoptimization that a fully naive DM exhibits,

but to a lesser extent.8

Conditional on being attentive, the naive DM makes the same choice that a fully attentive

DM would make. And the utility that a naive DM thinks he will realize, in expectation,

corresponds to the utility that a perfectly attentive DM actually realizes, in expectation.

Formally, let xn
t denote the naive DM’s strategy, and let Ṽn

t denote the naive DM’s

expectation of his time t utility conditional on history ht. Then analogous to equations

(1.2)-(1.5),

Ṽn
T (hT) = EFu(xn, ξT, hT) (1.6)

xn
T(ξT) = argmaxx∈A(hT)

u(x, ξT, hT) (1.7)

and for t < T,

Ṽn
t (ht) = EFt

[
u(xn, ξt, ht) + Ṽn

t+1((ht, xn))
]

(1.8)

xn(ht, ξt) = argmaxx∈A(ht)
{u(x, ξt, ht) + Ṽn

t+1((ht, x))} (1.9)

The expected period t utility Vn
t that a naive DM actually realizes is determined analo-

gously to equations (1.2) and (1.4), with xn in place of xs and with Vn
t in place of Vs

t .

1.2.4 Psychological foundations: Evidence and examples

In this section I discuss psychological evidence motivating the foundations of this model.

Readers may skip this section without loss of continuity.

7This is analogous to O’Donoghue and Rabin’s (1999) analysis of (fully) naive versus sophisticated hyperbolic
discounters.

8In the decisions studied in Section 1.4, for example, the partially naive DM would still put off the task
more than he should, but not as much as the fully naive DM. And as I discuss in appendix A.1.3, the results of
Section 1.3 for naive DMs go through verbatim under milder forms of naivete.
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Attention dynamics

Rehearsal. A key difference between one-time actions such as redeeming a rebate and

repeated actions such as taking medication is that repetition of a behavior option can

increase the likelihood that it will come to mind again. The idea that future retrieval of

information or intentions is made easier by rehearsing the retrieval has a long tradition

of research in cognitive psychology (Atkinson and Shiffrin, 1969). In laboratory studies,

Jacoby et al. (2001) coined the term “accessibility bias” to refer to the effect that repetition

of a response has on the ease with which it comes to mind.9 Recent work has proposed

that repeated engagement in recycling behaviors (Tobias, 2009) or repeated purchasing of a

product (Henderson et al., 2011) increases the attention devoted to those actions.

Other work (Sellen et al., 1997) suggests that even passive thoughts about one’s intentions

can increase the likelihood that they will be retrieved in the future. As Sellen et al. (1997)

argue, however, mental rehearsal is not enough to permanently preserve intentions at the

top of the mind in the absence of external cues. McBride et al. (in press), for example,

gave study participants postcards and instructed participants to mail them back—in return

for a $50 lottery—after randomly chosen delays of 1, 2, 5, 14, or 30 days. Corroborating

the hypothesis that mental rehearsal does not by itself preserve goals, performance was

significantly better by subjects randomized into the short delays.10 Analogous results on

task completion have been obtained for laboratory tasks with delays varying between 5

minutes and 60 minutes (McBride et al., 2011; Martin et al., 2011).11

9In laboratory tests of accessibility bias (Jacoby et al., 2001; Hay and Jacoby, 1996), subjects first become
accustomed to responding a certain way to stimulus words such as “knee.” For some subjects the required
response to “knee” is “bone” 75% of the time while for others it is “bend.” The next day, subjects are asked to
memorize a list of word pairs such as “knee/bone.” In the quiz stage of day 2, subjects who become accustomed
to responding to “knee” with “bone” in day 1, are both much faster and more accurate in their responses to
“knee” in day 2 than are subjects who become accustomed to the response “bend.”

10An average 65% return rate for delays of 1, 2, or 5 days versus an average 48% return rate for delays of 14
or 30 days.

11However, it is not clear that these laboratory tasks tap into the same psychological mechanisms as the
naturalistic experiments. The typical “prospective memory” tasks require subjects to respond a certain way to a
cue or prompt after a short time delay. Success in these tasks relies on short bursts of vigilance efforts that don’t
seem to have direct “real world” analogs. Most field behaviors involve unprompted actions, such as “canceling
the gym membership at some point next week.”
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Cues. Many types of cues may trigger thoughts of the behavior. Visual cues such noticing

the pill bottle can trigger thoughts of the associated action; glancing at a billboard can

refresh consideration of the advertised product. Auditory cues can have similar effects.

Charles et al. (2007) found that a combination of visual and audio reminders built into an

electronic pill bottle had a substantial impact on adherence to inhaled corticosteroid therapy

over the course of 24 weeks.

Firms and organizations often capture attention through various messages: reminder

emails, SMS messages, or advertisements. Recent evidence from randomized controlled trials

shows that reminder messages have large effects on health behaviors such as gym attendance

(Calzolari and Nardotto, 2012), sunscreen use (Armgstrong et al., 2009), adherence to

medication regimens (Krishna et al., 2009; Vervloet et al., 2012), obtaining immunizations

(Szilagyi et al., 2000), scheduling/attending medical appointments (Altmann and Traxler,

2012), and even weight loss (Patrick et al., 2009).12 In financial settings, Karlan et al. (2012a)

find that reminders increase savings deposits, while Cadena and Schoar (2011) find that

reminders increase timely loan repayments by small business owners.13 In marketing,

Nedungadi (1990) and Mitra and Lynch. (1995) find that non-persuasive product primes can

increase the consideration and subsequent purchase of the product, without increasing the

product’s perceived value.

Finally, incidental events such as conversations with others can also constitute cues.

Hearing a colleague complain about her referee report, for example, may trigger thoughts

about one’s own refereeing duties.

Cues are imperfect. Although cues can have powerful effects on behavior, most cues are

still imperfect in the sense that a period t cue cannot guarantee attentiveness in period t.

One reason for this imperfection is that emails, SMS messages, fliers, calendar reminders,

12Over the course of 4 months, Patrick et al. (2009) found that individuals receiving SMS messages reminding
them to purchase healthy foods, pack healthy snacks, drink water, and other such activities lost 1.97kg more
than the control group. Haapala et al. (2012) found that over the course of 12 months, individuals receiving
SMS reminders lost 3.4kg more than the control group (N = 125).

13See, however, Karlan et al. (2012b) who find that only personalized SMS reminder messages seem to affect
repayments of loans in the Philippines.
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and many other types of communications do not always reach the targeted person. There

is no guarantee that the person will check his mail or phone, or be at his computer. The

person may also choose to discard many of these communications before even reading

them. Second, even within a time period of 1 day, a person will not necessarily receive

the cue at a time when he is ready to act (Tobias, 2009). A reminder email to schedule a

medical appointment might be read by the person when he is at work, but then subsequently

forgotten several hours later when the person is ready to act. Third, indirect cues such as

conversations with others are not guaranteed to trigger associated thoughts of the behavior.

Fourth, a person with a limited capacity to process information may not meaningfully

process all communications or stimuli. Section 1.6, for example, discusses how a person

may become desensitized to certain cues.

Naivete

Experimental studies show that people overestimate the likelihood that they will take a

certain action on a later date. Ericson (2011), for example, used an incentive compatible

mechanism to elicit subjects’ beliefs about the likelihood that on a later date, they will send

an email to the experimenter to claim a $20 payment (that would subsequently be mailed to

them). Quite strikingly, only 53% of the subjects sent the email, though the average incentive-

compatible forecast was 76%. While the failure to carry out such a high reward/low cost

task suggests significant inattention,14 the large discrepancy between forecasts and actual

behavior also suggests significant naivete. In similar tasks resembling rebate redemption,

Silk (2004), Letzler and Tasoff (2013),15 and Shu and Gneezy (2010) also find a large and

robust discrepancy between forecasts and behavior.

14Ericson’s (2011) calibrations show that alternative explanations such as time inconsistency or underestima-
tion of effort cannot explain subjects’ behavior given the high benefit-cost ratio.

15Letzler and Tasoff (2013) also found that a reminder sent approximately 2.5 weeks before the deadline
reduced overconfidence by 7 percentage points by increasing redemption, though the difference was not
statistically significant. Results in section 1.4, however, suggest that reminders sent far from the deadline should
not be very effective for naive decision makers because these decision makers will delay completion of the task,
and end up forgetting about the task again over the course of that delay.
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Several psychological factors likely contribute to naivete about one’s future inattention.

One psychological channel is motivational: people like to hold favorable beliefs about the

future or about their own traits (Camerer, 1997). A second psychological channel is cognitive:

people overuse their current disposition to predict their future disposition, as in projection

bias (Loewenstein et al., 2003). A person focusing on a certain task on Tuesday will simply

have trouble imagining how he could forget about this task on Wednesday or Thursday.

1.2.5 Remarks

Note that in the baseline model proposed thus far, the agent has no control of the cues in

his environment. Indeed, many types of cues are not set by the DM himself: cues coming

from interested parties, incidental cues such as conversations with others, or random events

(e.g, a new rebate opportunity reminds the DM of a current rebate that is about to expire).

This starting point abstracts from the fact that people also use reminder technologies

such as calendars, alarm clocks, “to do” lists, etc. In Appendix A.1.2, I consider a more

general environment in which the DM first makes additional investments in cues, and then

participates in the subgame corresponding to the baseline model defined in this section.

In the appendix, I discuss the extent to which investment in cues modifies the results in

the paper, and argue that the qualitative results remain largely unchanged. Although a

sophisticated DM who can cheaply purchase a perfect cue technology and is always attentive

to the possibility of this investment option can essentially eliminate his inattention, I argue

in appendix A.1.2 that this is an extreme case.

1.2.6 Relation to economics work on limited attention

By studying inattention to actions, rather than information, my model differs from most

existing economic models of inattention. The model in this paper complements models of

limited attention in information processing (Sims, 2003; Gabaix and Laibson, 2005; Peng

and Xiong, 2006; Reis, 2006; Schwartzstein, 2012; Woodford, 2012; Caplin and Dean, 2013b,a)

and models of disproportionate focusing on some attributes over others (Gabaix and
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Laibson, 2006; Gabaix, 2012; Köszegi and Szeidl, 2013; Bordalo et al., 2013). The information

processing models capture the idea that decision makers may have cognitive limitations in

how much information they can use to evaluate an option; my model, in contrast, captures

the idea that a decision maker may form a clear intention for how he would like to act in

the future, but then fails to follow through on that intention because it is not top of mind.

Like the information processing models, the focusing models also lead to biases in the

evaluation of options, but not to the gap between intentions and future actions captured in

this paper. Moreover, neither the information processing models nor the focusing models

allow for uninformative cues or past actions to directly influence attentiveness. In Chun et

al.’s (2011) terminology, existing economic models would be classified as models of external

attention—the modulation of how external stimuli or new information is processed—while

my model would be classified as a model of internal attention—the modulation of internally

generated information such as intentions and goals.

Mullainathan (2002) studies limited recall of information. The idea that repetition and cues

increase attentiveness parallels Mullainathan’s modeling of the rehearsal and associativity

properties of recall memory. Closely related to this paper, Holman and Zaidi (2010) formulate

a model of “prospective memory” (“memory for action”) for a decision environment in

which there are no external cues and an action can be taken only once (and thus there is no

scope for repetition to increase future attentiveness).16 Their model is formally nested as a

special case of the model in this paper. Also related is the model that Karlan et al. (2012a)

16Ericson (2010) also considers a model in which present-biased agents permanently forget about a task
with some probability. “Forgetting,” as applied to intentions and actions, might not be the right term, however.
In contrast to a person focused on recalling a historical date but consciously failing, the person who absent-
mindedly fails to take his medication is not aware of the memory retrieval failure while it is occurring—the
intention has been stored in memory and is in tact, but the problem is that the person has simply not directed
his attention to retrieving that intention from memory. Some psychologists use the term “prospective forgetting”
in laboratory paradigms in which subjects fail to respond to a certain cue or prompt after short time delays.
Applied to field behaviors, however, Dismukes (2012) points out that the term “is something of a misnomer,
given that what it refers to involves the cognitive process of planning, attention, and task management as
much at involves memory. After forming an intention, individuals often become engaged with various ongoing
tasks and, in most everyday situations, cannot hold the deferred intention in a focal attention.” As footnote
11 also points out, laboratory studies of what cognitive psychologists often call prospective forgetting don’t
necessarily capture the same mechanisms that operate in field behaviors. I suggest that a better description of
the underlying psychology is inattention to previously formed intentions, choices, and actions.
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develop for the specific context of consumption and savings with “lumpy expenditures.”

Karlan et al. (2012a) assume that consumers might be inattentive to certain aspects of a

decision—namely, potential future expenditures—but that cues can direct attention to those

aspects of a decision.

1.3 Repeated actions

1.3.1 Theory

In this section, I investigate the model’s implications for decisions that are made repeatedly

and on a regular basis. These include health behaviors such as taking medication or making

plans to exercise, actions affecting energy conservation such as turning of energy-using

appliances and adjusting the thermostat at peak hours, and actions constituting parts of

workplace routines.

Formally, the DM learns about the repeated action in period t = 0 and chooses xt ∈ {d, a}

in each period t = 1, . . . , T. The DM’s utility from choosing xt = a in period t is bt + ξt.

Throughout this section, I will rely on the stronger assumptions A3′ and A4′, which state that

rehearsal strictly increases next period’s probability of attention, and that this diminishes

the impact of cues. I will also assume that bt + ξ̄ > 0 and bt + ξ < 0 for all t, so that

Pr(bt + ξ > 0) > 0 and Pr(bt + ξ < 0) > 0 for all t. Finally, I will assume that for all t ≥ 1,

the DM will be inattentive with positive probability: γt(1, a) < 1 for all t = 1, 2, . . . T.

A naive DM will choose xt = a if and only if doing so generates positive flow utility

that period: bt + ξt ≥ 0.17 A sophisticated DM’s strategies are more complicated because he

considers how his current actions impact the probability of future attentiveness through

behavioral rehearsal. A sophisticated DM will always choose xt = a when bt + ξt ≥ 0, but

17In the model of naivete in the body of the paper, naive DMs don’t consider how performing a behavior
affects future attentiveness because they assume that they will be perfectly attentive to the behavior in the
future. More generally, however, overestimation and naivete about the effects of behavioral rehearsal don’t need
to be as tightly linked. The more general models in Appendix A.1.3 allow for a separation between a general
overestimation of attention and a more specific naivete about behavioral rehearsal. All results in this section
about naive DMs hold under the narrower assumption that the DM simply does not understand that behavioral
rehearsal increases the probability of future attentiveness.
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he may also choose xt = a when bt + ξt < 0.

I begin the analysis in the section by characterizing how changes in payoffs bt impact

behavior in period t, as well as in all subsequent and prior periods. I will let Prs(xt = a)

and Prn(xt = a) denote respective probabilities that sophisticated and naive DMs choose

xt = a in period t, from the period 0 perspective.18

The assumption that F is atomless and has a density function ensures that for both

sophisticated and naive DMs, Pr(xt = a) is differentiable in bt′ for any t′ ≥ 1 (Lemmas 3

and 4 in appendix A.4.1).

Proposition 1. 1. For t ≤ t′,

∂

∂bt
Prn(xt′ = a) > 0 and

∂

∂bt
Prs(xt′ = a) > 0.

2. For all 1 ≤ t′′ < t,

∂

∂bt
Prn(xt′′ = a) = 0 and

∂

∂bt
Prs(xt′′ = a) > 0.

3. For all 1 ≤ t′′ < t ≤ t′,

∂2

∂bt′′∂bt
Prn(xt′ = a) > 0 and

∂2

∂bt′′∂bt
Prs(xt′ = a) > 0.

Proposition 1 fully characterizes how changes in payoffs affect the behavior of sophisti-

cated and naive DMs. Part 1 states that increasing the payoff to choosing xt = a increases

the probability that both a naive and a sophisticated DM will choose xt′ = a for t′ ≥ t. The

intuition is that increasing bt increases the probability that conditional on being attentive,

both sophisticated and naive DMs find it worthwhile to choose xt = a. Because of rehearsal,

this then leads to higher probabilities of being attentive in periods t + 1, t + 2, . . . , and thus

higher likelihoods of choosing x = a in those periods.

Part 2 states that increasing future payoffs to choosing x = a also increases a sophisticated

DM’s motivation to invest in future attentiveness through behavioral rehearsal. Thus for

18That is, probabilities of choosing xt = a when conditioning on the null, period 0 history.
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t′′ < t, a sophisticated DM’s likelihood of choosing xt′′ = a is increasing in bt.

Part 3 states that for t′′ < t < t′, period t′′ and period t payoffs will have complementary

effects on period t′ behavior. The intuition is simple: Part 1 shows that increasing bt′′ makes

the DM more attentive in all future periods. In particular, this means that the DM will be

more attentive in period t, which will increase his responsiveness to period t payoffs.

Parts 1 and 2 of Proposition 1 show that the model predicts behavioral patterns similar

to what theories of rational, taste-based habit formation predict (Becker and Murphy, 1988).

The mechanism is quite different, however. Becker and Murphy (1988) assume that repeated

consumption generates a “habit stock” that enters the utility function and creates higher

marginal utility from future consumption. Most of the applications of the Becker and

Murphy (1988) framework have focused on “bad” habits such as addictions, in which past

consumption increases the marginal utility from increasing future consumption, but also

lowers the level of utility for any given choice of consumption. The attention model in

this paper does not lead to, or apply to such bad habits. However, the model provides

an alternative mechanism for the various “good” habits discussed at the beginning of this

section. Temporarily increasing the returns to taking some action will increase the likelihood

of taking that action is taken during the temporary increase in incentives; but, because of

rehearsal, the model predicts that the person will then become more attentive to the action,

and thus more likely to take it even when the additional incentives are no longer in place.

Evidence for such spillover effects has been document in the case of energy use (Jessoe

and Rapson, forthcoming) and exercising (Charness and Gneezy, 2009; Acland and Levy,

2011).19

What distinguishes the inattention model from models such as Becker and Murphy

(1988) are its predictions about how cues will affect behavior and how they will modulate the

spillover effects of incentives. I now turn to formally investigating these effects. Analogous

19In the case of gym attendance, it is probably less likely that the person literally “forgets” to attend the gym
after making plans to do so. Rather, it is more likely that infrequent gym goers probably don’t think very often
about the possibility of attending the gym, and typically don’t think to incorporate it into their daily plans and
routines. This is consistent with the findings in Charness and Gneezy (2009) that temporary incentives have the
biggest effects on irregular gym goers.
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to Proposition 1, I begin by characterizing how changes in the cue distribution Ht affect

behavior in period t, as well as behavior after period t and before period t. Throughout,

I will write H1
t >FOSD H2

t if H1
t first order stochastically dominates H2

t . When comparing

outcomes under two different sequences of cue distributions H1 = (H1
1 , . . . , H1

T) and H2 =

(H2
1 , . . . , H2

T), I will index the corresponding outcomes with the superscripts H1 or H2. I

will set µi
t =

∫
σdHi

t.

Proposition 2. Consider two sequences of cue distributions H1 = (H1
1 , . . . , H1

T) and H2 =

(H2
1 , . . . , H2

T) such that for some t′, H2
t′ >FOSD H1

t′ but H1
τ = H2

τ for τ 6= t′. Then

1. Prn,H2
(xt = a) > Prn,H1

(xt = a) for all t ≥ t′

2. When t′ > 1, Prn,H2
(xt = a) = Prn,H1

(xt = a) for all t < t′.

3. Prs,H2
(xt = a) > Prs,H1

(xt = a) for all t ≥ t′ when a) t′ = 1 or b) µ2
t′ is sufficiently close to

1.

4. When t′ > 1, Prs,H2
(xt = a) < Prs,H1

(xt = a) for all all t < t′.

5. Prn,H2
(xt = a)− Prn,H1

(xt = a) is decreasing Ht′′ for all t′′ < t′ ≤ t.

Part 1 states that adding cues unambiguously increase the likelihood that a naive DM

chooses xt = a both at the time that the cues arrive and in all future periods. By assumption,

a period t2 cue increases the likelihood that the DM is attentive in period t2. And because

of rehearsal, this effect spills over into all periods following t2. Part 2 simply says that naive

DMs will not adjust their behavior in anticipation of future cues.

An analog to part 1 holds for sophisticated DMs when the change in cues occurs in

period 1, as in part (a) of part 3. Generally, however, the impact on sophisticated DMs’

behavior is more nuanced because of another channel through which cues affect behavior:

sophisticated DMs realize that the more likely they are to be reminded of the behavior in

the future, the less important it is to make it habitual. Thus, the anticipation of future cues

crowds out sophisticated DMs’ motive to invest in making the behavior more habitual, as
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formalized in part 4 of Proposition 2.20 When the additional cues are sufficiently strong,

however, as in condition (b) of part 3 of the proposition, the crowd out effect becomes

relatively weak.

Finally, part 5 of Proposition 2 states that for naive DMs, temporally separated cues

always have substitutable effects on behavior. The more cues the DM gets in period 1, for

example, the smaller the impact of period 6 cues on period t ≥ 6 behavior. Intuitively, this

is because the more cues the DM gets in period 1, the more likely he is to be attentive in

period 6 (by part 1 of the proposition); as a consequence, there is less scope for period 6

cues to make him more attentive that period. This result that temporally separated cues are

substitutes is in contrast to part 3 of Proposition 1, which shows that increases in temporally

separated payoffs have complementary effects on behavior.

Recent evidence on exercise (Calzolari and Nardotto, 2012) and energy use (Allcott and

Rogers, 2012; Gilbert and Zivin, 2013) is consistent with parts 1 and 3 of Proposition 2, and

complements the evidence on habit formation in those domains. Calzolari and Nardotto

(2012) show that over the course of 6 months, weekly reminders to attend the gym increase

attendance from an average of 8.19 visits per month to an average of 9.31 visits per month.

Moreover, they find that the reminder intervention continues to have an effect on behavior

for up to 3 months after it ends.

Gilbert and Zivin (2013) show that households reduce consumption by 0.6% to 1%

following each electricity bill. Allcott and Rogers (2012) show that following each home

energy report, consumers are more likely to engage in repeated actions such as turning off

lights, unplugging unused electronics, and adjusting thermostats. Interestingly, Allcott and

Rogers (2012) also find that the impact of each additional home energy report diminishes

with time. While Allcott and Rogers (2012) propose that one possible reason for this is

20In the baseline model presented here, sophisticated DMs can increase attentiveness to xt = a only through
repeated choice of the action. In the more general model in Appendix A.1.2, sophisticated DMs could also
increase attentiveness through investments in reminder technologies. Either way, when a sophisticated DM’s
investment choice is discrete, an additional cue in period t2 can indirectly lower the probability of this DM’s
period t2 attentiveness by crowding out investments in increasing the likelihood of being attentive in the future.
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“desensitization” to previously encountered cues,21 part 5 of Proposition 2 shows that this

effect of diminishing marginal returns to additional cues can arise endogenously as a

consequence of rehearsal. In the advertising setting examined in Section 1.5.2, I further

extend the prediction that temporally separated cues will be substitutes, and examine the

implications for optimal policies of reminder advertising.

In addition to their direct impact on behavior, cues also modify how behavior responds

to incentives. The next two propositions characterize how 1) period t1 cues change the

response to period t2 ≥ t1 incentives and how 2) period t1 incentives change the response to

period t2 > t1 cues.

Proposition 3. Take t1 ≤ t2 and consider two sequences of cue distributions H1 = (H1
1 , . . . , H1

T)

and H2 = (H2
1 , . . . , H2

T) such that for some t1, H2
t1
>FOSD H1

t1
, but H1

τ = H2
τ for τ 6= t1.

1. For all t ≥ t2,
∂Prn,H2

(xt = a)
∂bt2

>
∂Prn,H1

(xt = a)
∂bt2

.

2. If t1 = 1, then for all t ≥ 1,

∂Prs,H2
(xt = a)

∂bt2

>
∂Prs,H1

(xt = a)
∂bt2

.

Part 1 of Proposition 3 shows that receiving additional cues prior to, or during period t,

makes the naive DM’s behavior more responsive to period t incentives. In particular, the

DM is more responsive in period t and, because of rehearsal, this heightened responsiveness

also spills over into periods t + 1, . . . T. Thus, in the specific sense described in Proposition

3, cues amplify the effects of incentives.

Intuitively, the DM cannot respond to incentives for choosing xt = a unless he is

attentive. Thus, when adding cues increases the likelihood of attentiveness, it also magnifies

the response to incentives. For a naive DM, this leads to the straightforward prediction that

increasing cues in some period t′ magnifies the response to incentives in any period t ≥ t′.

21See Section 1.6 for a discussion of this effect.
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For a sophisticated DM, matters can be more complicated because, by part 4 of Proposi-

tion 2, an increase in period t cues crowds out the motivation to choose xt′ = a in periods

t′ < t. In particular, the DM anticipating fewer cues in the future may also be more sensitive

to changes in future payoffs due to the strategic rehearsal motive. When t2 = 1, however, so

that the strategic rehearsal motive is shutdown, the result also holds for sophisticated DMs.

I have not yet been able to find more general conditions under which an analog to part 1 of

Proposition 3 holds for sophisticated DMs.

The results of Proposition 3 are in line with recent evidence on residential electricity

use. Jessoe and Rapson (forthcoming) study how energy use responds to temporary price

increases, and find that supplementing the usual price change notifications with additional

cues in the form of electricity meters makes people significantly more elastic to price changes.

The intuitive explanation provided by Proposition 3 is that the electricity meters increase

the likelihood of being attentive to energy use, and thus increase the fraction of people who

take actions to reduce energy consumption during a temporarily high price. Appendix A.1.4

derives a formal corollary of Proposition 3 for energy use elasticities.

At the same time, there is also an important sense in which increasing cues can diminish

the impact of incentives. In particular, the intertemporal spillover effect of period t1

incentives becomes less and less pronounced as period t2 > t1 cues are increased:

Proposition 4. Take t1 < t2 and consider two sequences of cue distributions H1 = (H1
1 , . . . , H1

T)

and H2 = (H2
1 , . . . , H2

T) such that for some t2, H2
t2
>FOSD H1

t2
, but H1

τ = H2
τ for τ 6= t2.

1. For all t ≥ t2,
∂Prn,H2

(xt = a)
∂bt1

<
∂Prn,H1

(xt = a)
∂bt1

.

2. For all t ≥ t2,
∂Prs,H2

(xt = a)
∂bt1

<
∂Prs,H1

(xt = a)
∂bt1

when µt2 is sufficiently close to 1.

Part 1 of Proposition 4 shows that for a naive DM, the effect of period t1 incentives on

behavior in periods t ≥ t2 becomes less and less pronounced as period t2 cues are increased.
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Part 2 establishes the same result for a sophisticated DM. The statement is weaker

because the period t2 cues can change how a sophisticated DM responds to incentives in

period t1 < t2. In particular, it is possible that the sophisticated DM may become more

responsive to period t1 incentives as period t2 cues are increased. Nonetheless, a sufficiently

large increase in period t2 cues will diminish the impact of period t1 incentives even for a

sophisticated DM. Intuitively, if period t1 incentives impact future behavior by changing the

likelihood of future attentiveness, then their effects will become negligible if future cues are

sufficiently strong to guarantee almost perfect attentiveness.

Proposition 4 is particularly helpful for distinguishing taste-based theories of habit

formation from the theory proposed in this paper. The simple but diagnostic prediction that

reminders should have the largest effect when the behavior has not been recently performed

is difficult to rationalize with any other existing theories, or even combinations of existing

models. For example, if people had habit-forming preferences and were inattentive with

some probability p that was independent of their past behavior (but could be bolstered with

cues), then they would behave in a manner opposite to Proposition 4.22

Yet to my knowledge, this interaction between repetition of a behavior and subsequent

reminders has not been investigated in economics, psychology, or related disciplines. Section

1.3.2 below reports an experiment investigating this relationship.

1.3.2 Experimental Evidence

Design and Procedures

To examine the interaction between action repetition and reminders, I conducted an online,

real-effort experiment spanning three weeks of daily tasks. The daily task that subjects

had to perform repeatedly over the course of 3 weeks was to complete a short, online

daily survey. The repetitive nature of this short, simple task closely resembles taking daily

22Intuitively, this is because for these types of decision makers, a period t reminder would only amplify the
impact that past behavior would have on the preference for choosing xt = a. The logic behind this comparative
static is analogous to the logic behind Proposition 3.
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medication or online browsing behaviors. Disguising this task as a “survey study” and

not disclosing the true purpose of the experiment made it possible to study how subjects

naturally approach these kinds of real-world behaviors.23

The 2× 2 factorial design varied whether or not subjects were given the opportunity to

complete the task in the middle week, and whether or not subjects received reminders in

the third week. The experiment consisted of three phases, depicted in Figure 1.1:

Registration Phase (Day 0) Subjects interested in participating in the experiment were

directed to the study website, where they created an account for the experiment. Upon

creating an account, they were randomized into the study conditions described below.

They then received a short overview of the 3-week experiment and completed 5 minutes

of demographic and lifestyle questions for which they received $3. They were then given

detailed instructions explaining their “daily survey” task, which started the day after they

signed up and spanned the next three weeks. Immediately upon completing the registration

phase, subjects received an automatic email with a copy of their electronic consent form,

and all study instructions (which included a link to the study website).

Daily Survey Phase (Days 1-21) The simple task subjects faced in days 1-21 was to log into

the study website (using the email and password they registered for this experiment), and

to report their current level of excitement, happiness, stress, and worry using a 1-5 Likert

scale. Subjects received $1 for each day that they completed this daily survey. To ensure

a time break between any two consecutive survey completions, the daily survey was not

available between 12:00 a.m. and 4:59 a.m. each day. In all four conditions, subjects did not

initially know if the survey would be available to them in week 2 of the study. They were

told that it would be available in week 2 with 50% chance, and that they would be notified

of this at 5:00 a.m. on the first day of week 2. The four conditions were as follows:

• No interruption / No reminders. Subjects in this condition received only 2 communica-

23This experiment involved absolutely no deception, however—only incomplete disclosure. Subjects were told
all details of the experiment other than the true purpose of the study (and were not led to believe that the
purpose of the study was anything other than what it is).
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tions throughout the study:24 An email on day 1 reminding them to start completing

the daily survey, and an email on day 8 informing them that the survey would be

available for the next 14 days.

• Week 2 interruption / No reminders. This condition was identical to the condition above,

except that on day 8, these subjects received email notification that the daily survey

would not be available to them for the next 7 days, but that it would be made available

again for the last 7 days of the study.

• No interruption / Week 3 reminders. This condition was identical to the No interruption

/ No reminders condition, except that subjects received an email each day of week 3

stating “This is a reminder that the daily survey is available to you between 5:00 a.m.

and 11:59 p.m. today.”

• Week 2 interruption / Week 3 reminders. This condition was identical to the Week 2

interruption / No reminders condition, except that subjects received an email each day of

week 3 stating “This is a reminder that the daily survey is available to you between

5:00 a.m. and 11:59 p.m. today.”

Post-task phase At the end of the three weeks of the daily survey, subjects completed

a short closing questionnaire, for which they were paid an additional $3.25 The closing

questions asked about subjects’ use of reminder devices to complete the daily survey, as

well as subjects’ daily routines (if any) for completing the daily survey. The questions are

described and analyzed in more detail below, as well as in Appendix A.2.

In all conditions, subjects were informed on day 0 of all of the communications they

would receive, and were told that they would receive no other communications.

24All communications were emailed out at 5:00 a.m.

25Subjects who completed the daily survey on day 21 were immediately prompted to complete the 5 minute
closing questionnaire. Subjects who did not complete the daily survey on day 21 were sent an email the next
day inviting them to complete the closing questionnaire. All subjects had one week to complete the closing
questionnaire, and were sent a reminder each day of that week to complete the questionnaire. If subjects did
not complete the closing questions within one week, they did not receive the additional $3, and were emailed a
receipt for their other earnings.
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Day 0: Register for study

– Told if getting reminders in week 3

– Told that prob of week 2 break is 1/2

Day 1:
Start daily survey

(Available 5:00a.m.-11:59p.m.)

Day 8:
Learn if daily task is
available in week 2

Week 1

Day 15:
Daily survey available to all

subjects

Week 2

Day 21:
Finish

Week 3

Days 22-28:
Post-study

questionnaire

Figure 1.1: Timeline for Repeated Action Experiment

All earnings were emailed to subjects in the form of an Amazon.com gift certificate after

the completion of the study.26

Formally, the week 2 interruption can be modeled as creating substantially lower benefits

from performing the action.27 Notice that in contrast to the decisions studied in the

theory section, however, whether or not the week-long interruption would occur was not

known with certainty. A consequence of this feature is that conditional on the reminders

treatment, week 1 behavior should be identical for subjects with a week 2 break and without

a week 2 break. Controlling for week 1 behavior thus generates additional statistical power.

Propositions 24 and 25 in Appendix A.2 generalize Propositions 1 and 4 to the experimental

setting studied here.

26For subjects who completed the closing survey and signed a study receipt, these payments were emailed
within 24 hours. Subjects who never completed the closing survey were emailed a link to a receipt for their
previous earnings 8 days after the end of the daily survey phase.

27So technically, participants very serious about keeping this activity on their mind can always log into the
study site, and then pretend to answer the 4 feelings question. Alternatively, this week 2 break can also be
modeled as creating such low benefits that no subject would ever want to complete the survey in week 2. A few
subjects did log in to the study site on the first day of week 2, but this probably reflects confusion.
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Results

The experiment was run through the Harvard Decision Science Laboratory (HDSL) during

July and August 2013, and enrollment was limited to members of the HDSL subject pool.28

A total of 187 subjects completed the Registration phase. Of these 187, 7 subjects did not

complete any daily surveys during the first week, and are thus excluded from all subsequent

analysis. This exclusion is particularly reasonable because these 7 subjects also did not

complete any surveys during the subsequent weeks, meaning that in my sample, not doing

the survey in week 1 was perfectly predictive of dropping out of the experiment altogether.

Recruitment took place over the course of 6 days: on July 15,16,17 subjects who signed up

were randomized into the no reminders conditions (105/180 subjects), while on August 6,7,8

subjects who signed up were randomized into the reminders conditions (75/180) subjects.29

Figure 1.2 shows weekly averages for subjects in all 4 conditions, with error bars

corresponding to 95% confidence intervals. Strikingly consistent with the habit effect

identified in Proposition 1 (and extended to this experimental design in Proposition 25)

subjects who did not receive reminders in week 3 completed significantly fewer surveys if

they experienced a week 3 interruption. While uninterrupted subjects completed an average

of 5.2 out of 7 surveys in week 3, subjects who experienced a week 2 interruption completed

an average of only 2.3 surveys in week 3.

At the same time, the effect of the interruption is almost completely undone by the

daily reminders in week 3. While week 3 reminders have almost no effect on uninterrupted

subjects (a minor increase of 0.3 surveys), they increase the interrupted subjects’ week 3

completion rates from an average of 2.3 to an average of 4.4 surveys.

28All members of HDSL were eligible to participate in this experiment. After signing up through HDSL’s
SONA system, subjects were given a link to the study site, where they could initiate the registration process.

29That the reminders and no reminders conditions were split up across time might seem worrisome because
of time-dependent shocks. However, even if calendar date random effects did cause differences in levels, it
is hard to think of a reason for why they should confound the estimate of the interaction effect between the
week 2 interruption and week 3 reminders. But to address the concern that calendar date random effects
might somehow be inflating the interaction effect between week 2 interruption and reminders, I show that
the results are also robust to clustering at both the subject level and calendar date level. I also show that
subjects’ demographics do not vary across the four experimental conditions, and that all results are robust to
demographic controls.
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Figure 1.2: Surveys Completed Per Week, by Experimental Condition

Table 1.1 quantifies the effects in Figure 1.2 by estimating linear probability models

of daily survey completion, with robust standard errors clustered at the subject level.30

Specification (1) includes only the experimental conditions as the independent variables,

while specifications (2) and (3) also include the average daily completion rate in week 1 (i.e.,

number of surveys completed in week 1 divided by 7) as a covariate. All three specifications

show that a break between weeks 1 and 3 reduces the probability that a subject completes a

survey on any given day of week 3 by about 35 percentage points. At the same time, the

regressions show that most of this effect is mitigated with daily reminders in week 3: the

interaction effect between experiencing a week 2 break and receiving week 3 reminders

is about 25 percentage points, which is significant at the 5% level in specification (1) and

significant at the 1% level in specifications (2) and (3).

In the first specification, the effect of the week 2 interruption on week 3 performance in

30Table A.3 shows that the results are unchanged with robust two-way clustering at both the subject level
and the calendar date level.
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Table 1.1: Probability of Completing a Survey on any Given Day in Week 3

Pr(complete survey) (1) (2) (3)
Interruption –0.416*** –0.398*** –0.401***

(0.061) (0.054) (0.054)
Reminders 0.036 0.028 –0.121

(0.067) (0.051) (0.137)
Interruption*Reminders 0.267** 0.305*** 0.320***

(0.108) (0.089) (0.091)
Week1Avg 0.625*** 0.527***

(0.078) (0.093)
Week1Avg*Reminders 0.226

(0.162)
Adj. R2 0.139 0.289 0.293
Observations 1260 1260 1260

Notes: This table estimates a linear probability model of completing the daily survey in week 3 of the study.
The variable “Interruption” equals 1 if the daily survey was available in week 3 and equals 0 otherwise. The
variable “Reminders” equals 1 if subject received daily reminders in week 3 and equals 0 otherwise. The variable
“Week1avg” denotes the fraction of surveys completed in week 1. Robust standard errors clustered at subject
level. All regressions include controls for day of week and day in study. *p < 0.1; **p < 0.05; ***p < 0.01.

the reminders conditions is still a marginally significant 13.9 percentage points (p = 0.097),

but some of that is due to a slightly unbalanced randomization. As shown in Figure 1.2,

uninterrupted subjects also had a slightly higher week 1 average. Specification (2) controls

for the week 1 average under the assumption that a subject’s week 1 behavior should not

be affected by study condition. This is the right assumption for naive subjects who do

not adjust their behavior in anticipation of future cues, but not the right assumption for

sophisticated subjects. Specification (3) addresses this theoretical point by interacting the

week 1 average with whether or not a subject was in a reminders condition. In both of

these specifications, the impact of the interruption is estimated to be 8 to 9 percentage

points, which is not statistically different from zero (p = 0.205 and p = 0.274, respectively).

Appendix A.2 shows that all of these results are unchanged when controlling for various

demographic characteristics (Table A.2), and when calendar date random effects are taken

into account (Table A.3).

The end of study questionnaire, which was completed by 172 of the 180 subjects, provides
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further evidence in support of the model.31 In response to the question “On a scale of 1-5,

with 1 being ‘not at all’ and 5 being ‘very much,’ to what extent did the following factors

contribute to you not filling out the daily surveys” subjects gave an average rating of 3.9

for “Forgot”, 1.8 for “Didn’t have time,” 1.16 for “Didn’t feel like it,” 1.64 for “Could not

remember log in information,” and 1.58 for “No internet access.” The difference between

“Forgot” and each of the other reasons is significant at p < 0.001 in pairwise t-tests and

signed rank tests.

During the registration phase, subjects were also asked to predict how many times they

would complete the daily survey each week. They were asked four questions: 1) how many

times they would complete the survey in week 1; 2) how many times they would complete

the survey in week 2 if it was available then; 3) how many times they would complete the

survey in week 3 if it was available in week 2; 4) how many times they would complete the

survey in week 3 if it was not available in week 2. Although unincentivized and thus needing

to be interpreted with caution, subjects’ day 0 forecasts of their daily survey completion

rates support the naive model. Of the 168/180 subjects who completed the predictions

questions and gave answers within range,32 the average forecast was between 6.72 and 6.9

surveys for each week. Subjects did not predict that having a week 2 interruption would

affect their week 3 behavior, and their forecasts were insensitive to whether or not they were

in the reminders or no reminders conditions. For all weeks and all conditions, the forecasts

were significantly higher than actual behavior (paired t-tests p < 0.001 in all comparisons).

Of course, some of the initial confidence may reflect subjects’ intentions to use reminder

technologies, which, as analyzed in more detail in Appendix A.2, were employed by 30%

of the subjects. There is, however, no statistically significant interaction between forecasts

and using reminder technologies. Thus the 70% of the subjects who used no reminder

31It was completed by 102/105 subjects in the no reminders conditions, and by 71/75 subjects in the
reminders conditions. Subjects were given one week to complete the end of study questionnaire, and received a
daily reminder each day of the week to complete it.

3298/105 in the no reminders conditions and 74/75 in the reminders conditions completed the questions. Of
these, 2/98 subjects in the no reminders conditions and 2/74 in the reminders conditions gave out of range
answers.
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technologies appear to be quite naive. Appendix A.2 also shows that subjects’ week 3

performance was less affected by the week 2 interruption if they reported using a reminder

technology such as a calendar (typically Google calendar), writing notes or asking others to

remind them.33 Moreover, these subjects were also less affected by the week 3 reminders.

1.4 Tasks With Deadlines

1.4.1 Theory

In this section I investigate the model’s basic implications for decisions involving a single

task that must be completed by a deadline T. The task might be making a savings deposit,

applying for a rebate, paying a bill, canceling a subscription, scheduling an appointment,

and so forth.

The DM learns about the task in period t = 0, and must complete the task at some time

between period t = 1 and period t = T. The task can be completed only once, with xt = a

corresponding to completing the task in period t, and with xt = d corresponding to not

doing the task in period t. The DM obtains payoff bt + ξt if he completes the task in period

t, and obtains a payoff of 0 if he never completes it. Throughout this section, I will consider

a DM who is always attentive in period 0 when he first learns about the task: γ0 = 1.

Throughout much of the analysis in this section, I will assume that the distribution F,

deterministic payoffs b = (b1, b2, . . . ), and cue distributions H = (H1, H2, . . . ) are fixed, and

that the choice of deadline T is applied to the (infinite) sequences b and H, specifying that

Xt = {d} for all t > T. Thus for any two deadlines T1 < T2, a DM given a deadline T2 faces

the same payoff and cue distributions for the first T1 periods as the DM facing a deadline T1.

I assume that for an inattentive DM there is some z̄ < 1 such that γt(1, d) ≤ z̄ for all

t ≥ 1. A perfectly attentive DM will be defined as having γt(1, d) = 1 for all t.

The next proposition characterizes how inattention affects the probability of completing

a task by some time t ≤ T. In stating the results, let Qs denote the random variable

33Of course, standard caveats about endogeneity apply.
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corresponding to the period in which a sophisticated DM completes the task, with Qs = ∞

if the task is never completed. Let Qn and Qpa be defined analogously for naive DMs and

for perfectly attentive DMs, respectively.

Proposition 5. 1. Pr(Qn ≤ t) < Pr(Qpa ≤ t) for all t ≤ T.

2. Suppose that bt = b for all t and that b + ξ ≥ 0. Then for each t† ≥ 1, sequence of cue

distributions H, and atomless F, there is a sufficiently large T such that Pr(Qs ≤ t) >

Pr(Qpa ≤ t) for all t ≤ t†, but such that Pr(Qs ≤ T) < Pr(Qpa ≤ T).

3. For each t ≥ 1, there exists a z† > 0 such that Pr(Qs ≤ t) < Pr(Qpa ≤ t) whenever

γt′(1, d) ≤ z† for all t′ ≤ t.

For naive DMs, the effect of inattention is straightforward: for any t ≤ T, they are

less likely to complete the task by period t than perfectly attentive DMs. This is because

conditional on being attentive, they follow the same strategy as perfectly attentive DMs, but

they never complete the task when inattentive. Part 1 of Proposition 5 formalizes this idea.

The behavior of inattentive but sophisticated DMs, however, is less straightforward to

analyze because they may follow the strategy of “I should do it while it’s on my mind.” Part

2 of Proposition 5 shows that for sufficiently long deadlines and sufficiently high value tasks,

inattentive but sophisticated DMs will actually be more likely to complete the task by some

early date than perfectly attentive DMs. The intuition is that as the deadline becomes longer,

the option value to waiting increases for perfectly attentive DMs, making it more and more

attractive to put off the task until later. Inattentive but sophisticated DMs, however, will be

afraid to put off the high value task to a later time because of the possibility of forgetting

about it.

The last part of Proposition 5 is a partial analogue to the result for naive DMs. It is only

a partial analogue because even for t = T, inattentive but sophisticated DMs may be more

likely to complete the task due to the fact that they are less likely to put it off than perfectly

attentive DMs. Part 3 shows, however, that if the sophisticated DM is sufficiently inattentive,

then he will be less likely than the naive DM to complete the task by any period t ≤ T.
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I now turn to the question of how deadline length affects welfare and completion rates.

In stating the formal results below, I will let Qs,Ti , Qn,Ti , Qpa,Ti denote the random variables

corresponding to when sophisticated, naive, and perfectly attentive DMs, respectively,

complete the task (with QTi = ∞ if the task is never completed) when facing deadline Ti. I

will let Vs,Ti
0 , Vn,Ti

0 , Vpa,Ti
0 denote the ex-ante expected utilities of sophisticated, naive, and

perfectly attentive DMs, respectively, when facing a deadline Ti.

While many of the results will be stated for any sequence of payoffs b, a leading case

that will be considered throughout this section is the case of time-invariant payoffs: bt = b

for all t ≤ T. Most of the examples and applications discussed in this section involve a

task that pays a fixed benefit b but involves a stochastic effort or opportunity cost ξ. A

more general condition that subsumes this special case and that will be used in some of the

results is the following:

Condition I(T1, T2) Given two deadlines T1 and T2 = T1 + ∆ > T1: i) bt ≤ bt+∆ for all t ≤ T

and ii) bt − bt−1 ≥ bt+∆ − bt−1+∆ for all t ≤ T1.

In words, Condition I(T1, T2) states that the last T1 periods of the longer deadline have

a payoff profile that is no lower and no “steeper” than the payoff profile of the shorter

deadline T1.

Proposition 6 states results for perfectly attentive and for sophisticated DMs.

Proposition 6. Consider two deadlines T1 < T2. Then

1. Vs,T1
0 < Vs,T2

0 and Vpa,T1
0 < Vpa,T2

0

2. Suppose that either Condition I(T1, T2) holds or that bT2 + ξ ≥ 0. Then Pr(Qpa,T1 ≤ T1) ≤

Pr(Qpa,T2 ≤ T2).

3. Suppose bt = b for all t ≤ T2 and that γt(0, d) ≥ z > 0 for all t. Then Pr(Qs,T1 ≤ T1) <

Pr(Qs,T2 ≤ T2) for sufficiently high b.

Part 1 of Proposition 6 states that a sophisticated or fully attentive DM can only be made

better off by longer deadlines. The straightforward intuition is that when given the longer
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deadline T2, in the first T1 periods the DM can still behave the same way he would behave if

he was given the shorter deadline T1.

Part 2 of Proposition 6 analyzes completion rates of DMs who are fully attentive.

While longer deadlines unambiguously increase welfare of sophisticated DMs, the effect of

deadlines on completion rates is less clear cut in certain special cases. When the task is not

very pleasant or important and the distribution of task completion payoffs decreases with

time, longer deadlines may lead to lower completion rates even for perfectly attentive DMs.

As a simple example, suppose that ξ ∼ U[−1, 0] and that b1 = 1 while b2 = 2/3. Then

when T = 1, the probability of task completion is 1 because b + ξ1 is always positive. When

T = 2, the option value of delaying to period 2 makes it suboptimal to complete the task in

period 1 whenever ξ1 is sufficiently close to zero. In period 2, however, the DM completes

the task with probability less than 1. This then implies that the overall probability of task

completion is less than 1 with a two period deadline.

Part 3 of Proposition 6 proves a result analogous to part 2 for inattentive but sophisticated

DMs. When the task is sufficiently important to complete, sophisticated DMs will use the

extra time to increase the probability of completing the task.

For naive DMs, however, I show below that extending a deadline can both reduce their

welfare and lead to lower completion rates, even in situations in which longer deadlines

lead to higher completion rates for sophisticated DMs.

Proposition 7. Consider two deadlines T1 < T2. Then for any b and F, there exists a λ > 0 such

that Vn,T1
0 > Vn,T2

0 and Pr(Qn,T1 ≤ T1) > Pr(Qn,T2 ≤ T2) if:

i) γt(1, d) ≥ γt+1(1, d) and γt(0, d) ≥ γt+1(0, d) for all t ≥ 1

ii) γt(1, d) ≤ λ for all t > T1

ii) γt(0, d) ≤ λγ1(1, d) for all t > T1

Proposition 7 shows that giving a naive DM more time to complete the task can make

him worse off and less likely to complete the task if his probability of being attentive to

the task decays sufficiently quickly over time, as guaranteed by the three conditions in the

37



proposition. The simple intuition is that the longer the deadline, the higher is a naive DM’s

perceived option value of delaying the task and waiting for a more opportune time. What a

naive DM doesn’t realize, however, is that at a later date the task will probably not be on his

mind.

Proposition 7 generalizes an insight developed by Holman and Zaidi (2010) for a setting

that is formally equivalent to the case of no-cues, time-invariant payoff distributions, and an

exponential attention decay curve that limits to zero. The intuition behind conditions (i)-(iii)

in the proposition is as follows. Conditions (i) and (ii) ensure that if the DM is attentive

in period t = 1, he will be attentive in period t > T1 with low probability. Condition

(iii) ensures that if the DM is not attentive in period t = 1, then his probability of being

attentive in periods t > T1 is low relative to his probability of being attentive in period t = 1.

Combined, these three conditions ensure that the probability of being attentive in periods

t > T1 is substantially lower than the probability of being attentive in periods t ≤ T1. The

naive DM’s perception of periods’ t > T1 is substantially inflated, however. Consequently,

he is much less likely to complete the task before period T1 when given more time, while

simultaneously not being very likely to complete the task after period T1.

Importantly, the potentially perverse effect of longer deadlines is not generated simply by

limited attention, but by the decay of attention over time. In fact, with time-invariant payoffs

and a constant probability of attention (γt(1, d) = γt(0, d) = ρ for all t ≥ 1), longer deadlines

would always leave a naive DM better off and lead to higher completion probabilities.

The conditions in Proposition 7 also provide insight into the mechanisms that lead to

the decay of attention. When cue distributions don’t change over time—Ht = H for all

t ≥ 1—rehearsal always leads to decay of attention. To see this, suppose that for some ρ̄ > ρ,

γt(1, d) = ρ̄ and γt(0, d) = ρ for all t ≥ 1. Then the period t unconditional probabilities of

being attentive, pt, satisfy pt+1 = pt(ρ̄− ρ) + ρ. When p0 = 1, the sequence {pt} can be

shown to be decreasing; and Proposition 7 implies that there exists some λ > 0 such that T2

leads to lower welfare and completion rates when ρ̄ < λ and ρ < λρ̄.

Additionally, however, attention decay could also be a consequence of decreasing cues.
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Various paperwork lying on the table, conversations with others, or emails at the top of the

inbox are examples of cues that are likely to be present when the DM first learns of the

task but that will dissipate with time. Even in the extreme case in which γt is not affected

by mental rehearsal, the cue distributions could still be such that the probability of being

attentive in period t ≥ 1 is given by, e.g., γt(1, d) = γt(0, d) = kρ̄t + ρ. Proposition 7 then

again implies that completion rates will be lower under the longer deadline T2 when ρ̄ is

low and when ρ is low relative to ρ̄.

Empirically, an inverse relationships between deadline length and completion rates was

first documented by Shafir and Tversky (1992), and subsequently replicated and extended

by Shu and Gneezy (2010), Silk (2004), and Janakiraman and Ordóñez (2012). Shafir and

Tversky (1992) offered students $5 to complete a long questionnaire by a given date. One

group (N = 56) was given a 5 days to complete the questionnaire while the other group

(N = 58) was given 3 weeks. The rates of return were 60% for the short deadline group

and 42% for the long deadline group.34 Silk (2004) replicated this deadline effect in a

setting closely resembling consumer rebates. Shu and Gneezy (2010) replicated this effect

with gift certificates for “immediately enjoyable experiences,” such as pastries and movies.

And Janakiraman and Ordóñez (2012) replicated this effect in a setting closely resembling

product returns.35 Further supporting naive inattention, Silk (2004) and Shu and Gneezy

(2010) also elicited beliefs, and found that while longer deadlines led to lower completion

rates, participants predicted higher completion rates with a longer deadline.

The model provides a formal explanation for the evidence above, but also makes

34Shafir and Tversky (1992) also had a “no definite deadline condition,” but did not provide details on how
they assessed completion rates in that condition. Without a definite deadline, even perfectly sophisticated and
attentive agents might generate low completion rates by any finite date.

35Bertrand et al. (2010) examine how interest rate reductions that last 2, 4, or 6 weeks affect the demand
for small, short-term loans by the working poor population in South Africa. Bertrand et al. (2010) find that
consumers are significantly more likely to take out a loan with a longer deadline. This result, however, is
not in conflict with the experimental evidence discussed in this paragraph. The reason is that a consumer is,
mechanically, more likely to generate a need for a loan over the course of 6 weeks rather than over the course of
2 weeks. Conditional on generating a need within 2 weeks, consumers may be less likely to take out a loan
from the lender when the interest perk lasts 6 weeks rather than 2; however, this effect is trumped by the fact
that far fewer people will generate a need over the course of only two weeks.
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predictions about when longer deadlines should not lead to lower completion rates. The

first prediction is that when the probability of being attentive is bounded away from zero—

either because there is always a small chance of encountering a cue, or because g(0, d, σ)

is intrinsically bounded away from zero for all σ—the probability of task completion will

approach 1 as deadlines become very long. Longer deadlines can unambiguously decrease

completion rates only when γt(0, d) = 0 for all t—so that the probability of being attentive

decays rapidly toward zero.36

Proposition 8. Suppose that there is some b∗ > −ξ̄ such that bt → b∗.

1. If there is some z > 0 such that γt(0, d) ≥ z for all t, then limT→∞ Pr(Qs, T ≤ T) =

limT→∞ Pr(Qn, T ≤ T) = 1.

2. If bt = b and if γt(0, d) = 0 for all t, then limT→∞ Pr(Qn, T ≤ T) = 0.

Combined, Propositions 7 and 8 imply that completion rates will be lowest for “in-

termediate length” deadlines when cues are rare and/or weak. Figure 1.3 illustrates this

“U-shaped” pattern. In both panels bt + ξt ∼ U[0, 1] and the unconditional probability of

αt = 1 is given by 0.8(0.75)t + 0.2. In the left panel, this decay is generated purely through

the mental rehearsal property, while in the right panel this decay is generated purely by

changes in cues.37

Unfortunately, Proposition 8 is difficult to test because it does not provide guidance on

when the non-monotonicity should occur, if it does. A more diagnostic and easily testable

prediction of the model is that even relatively small changes in cues can alter the effects of a

36The convergence to zero completion probability is a knife-edge result, however, because if the DM
discounted future payoffs by some δ < 1, then his probability of task completion would be bounded away from
zero. Still, longer deadlines could keep decreasing the completion probability even when δ < 1.

37There are two caveats to this prediction, however. First, even if γt(0, d) is bounded away from zero, then the
possibility that the DM might, for example, lose the necessary paperwork to mail in his rebate would, effectively,
lead to a task completion decay curve that limits to zero. Second, if the DM is sufficiently present-biased
(Laibson, 1997; O’Donoghue and Rabin, 1999) and naive about the present bias, and if the variation in ξ is
sufficiently small, then he will always put off the task until the last period. Combined with decaying, this would
lead longer deadlines to unambiguously decrease completion rates. (Relatedly, Ericson (2010) considers a model
in which present-biased agents permanently forget about the task with some probability ρ each period. Part 2 of
Proposition 8 shows that even without present bias, longer deadlines can be uniformly bad in such a permanent
forgetting model.)
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Figure 1.3: “U-shaped” Curve

longer deadline. The rough idea is that if longer deadlines decrease task completion due to

the decay of attention over time, then increasing cues several periods before the deadline to

stop the decay can have a very large effect on the completion probability of a DM facing the

longer deadline. When attention decay is substantial enough to lead to perverse deadline

effects, a DM who faces a long deadline T2 and has not yet completed the task by period

T2− 1 will respond very strongly to an increase in period T2− 1 cues; this DM simply won’t

be attentive unless he gets a cue.

To formally state comparative statics about adding cues under two different deadlines T1

and T2 = T1 + ∆ > T1, I will begin with initial attention probabilities γ0
t (α, x) and consider

increasing them to γ
κi

t
t (α, x) = γ0

t (α, x) + (1 − γ0
t (α, x))κi

t, where i ∈ {1, 2} denotes the

resulting probability for each of two deadlines T1 and T2. Note that as in previous analysis,

I assume that the cue distributions in periods t ≤ T1 are initially identical in both of the

deadlines conditions. But in contrast to the previous analysis, I now allow the modified cue
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distributions to differ between deadlines. This set-up makes it possible to compare how, for

example, sending a reminder on the last or second-to-last period affects completion rates

under short versus long deadlines.

The parametrization of γ
κi

t
t (α, x) is natural and fits into the simple model of cues proposed

in the discussion surrounding equation (1.1): Suppose that the DM is initially inattentive

with probability 1− γ. Now consider sending reminders whose effect is that a DM who

would have otherwise been inattentive is now attentive with probability κ. The reminders

then increase the probability of being attentive to γ + (1− γ)κ. In the results below, I make

the additional restriction that κ1
t = κ2

t+∆ for t ≤ T1, which allows me to examine how adding

the same types and same number of cues to both the short and long deadline environments

will affect completion rates and welfare.

Proposition 9. Consider two deadlines T1, T2 = T1 + ∆ > T1. Then for any {γκi
t

t (1, d)}t≥1,

{γκi
t

t (0, d)}t≥1 with the additional restriction that κ1
t = κ2

t+∆:

1. Suppose that either Condition I(T1, T2) holds or that bT2 + ξ ≥ 0. Then there is a κ̄ < 1

such that Pr(Qn,T1 ≤ T1) < Pr(Qn,T2 ≤ T2) and Pr(Qs,T1 ≤ T1) < Pr(Qs,T2 ≤ T2) if

κ1
t = κ2

t+∆ ≥ κ̄ for t ≤ T1.

2. Suppose that bT2 + ξ ≥ 0. Then Pr(Qn,T1 ≤ T1)− Pr(Qn,T2 ≤ T2) is strictly decreasing in

κ1
T1

= κ2
T2

.

3. Suppose that Condition I(T1, T2) holds and the initial cue distributions are time invariant,

γ0
t = γ0 for all t ≥ 1. Then for each t ≤ T1, Pr(Qn,T1 ≤ T1)− Pr(Qn,T2 ≤ T2) is strictly

decreasing in κ1
t = κ2

t+∆ while it is positive.

Proposition 9 motivates a simple and testable hypothesis for situations in which longer

deadlines lead to lower completion rates, and in which payoffs from task completion don’t

change with time, as in the settings studied by Shafir and Tversky (1992), Shu and Gneezy

(2010), Silk (2004), and Janakiraman and Ordóñez (2012). Suppose, for example, that study

participants are more likely to complete a task when given a 2-day deadline than when

given a 3-week deadline. Part 1 of Proposition 9 implies that if the participants receive a
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sufficiently strong set of cues during the last two days in the 3-week condition and during

both days of the 2-day condition, then the longer deadline should no longer lead to lower

completion rates.

The second part of the proposition considers the case in which doing the task in the

last period of the long deadline always generates positive flow utility that period. In this

case, adding cues, however weak, in the last period of both the short and long deadline

conditions should diminish the difference in completion rates between the short and long

deadline conditions.

The last part of the proposition shows that under the additional assumption that the

initial cue distributions do not vary from period to period, adding additional cues (however

weak) any number of periods before the deadline has a bigger impact on a naive DM’s

completion probability when the deadline is long.

Attention decay is not only a sufficient condition, but also a necessary condition for

reminder provision to have a larger effect in the long deadline condition. If the probability of

being attentive to the task does not decline with time then, because more decisions makers

will have completed the task by period T2 − 1 then by period T1 − 1, a reminder in period

Ti − 1 will actually have a smaller effect in the longer deadline condition. And even when

the likelihood of being attentive does decay with time, the “dropout effect” described in the

previous sentence is still a countervailing force that pushes cues to have a smaller net effect

in the long deadline condition. The conditions described in Proposition 9 ensure that the

“decay effect” dominates the “dropout effect.”

Results such as Proposition 9 motivate a straightforward way to diagnose when certain

patterns of behavior are caused by inattention: increasing attention through various types

of cues should diminish those behavioral patterns. Although other biases such as procrasti-

nation may also play a role people’s ability to complete tasks, tests such as those suggested

by Proposition 9 can help assess how much of a certain behavioral pattern is caused by
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inattention.38,39

1.4.2 Experimental Evidence

Design and Procedures

Motivated by Proposition 9, I conducted an online, real-effort experiment to measure how

much of the long deadline effect (previously documented in other studies) is due to the

decay of attention over time. In addition to varying deadline length as in previous work,

the new experiment also varied reminder provision to test the comparative static derived in

Proposition 9. The experiment consisted of two phases described below.

Registration Phase (Day 0) Potential subjects received an invitation email to complete a

10-20 minute survey in which they would have to choose between hypothetical gambles,

and for which they would receive a $10 Amazon.com gift card. Those who were interested

in the opportunity followed the link to the study site, where they created an account for

the experiment. Subjects then answered a few demographics questions, were randomized

into one of the four experimental conditions described below, and read instructions for

completing the risk survey. Instructions (which included a link to the study site) were also

automatically emailed to the subjects upon completion of the registration phase.

Task Completion Phase (Days 1−deadline) The risk survey became available to subjects at

38Short-run impatience (Laibson, 1997; O’Donoghue and Rabin, 1999) can lead to suboptimally low com-
pletion rates but, like the perfectly attentive and time consistent model, it does not predict that increasing the
(finite) deadline can decrease completion rates when the distributions of completion payoffs do not change over
time. The simple reason is that even if a longer deadline T2 induces more procrastination, upon reaching the
last T1 periods of the longer deadline, the present-biased DM now plays the same game that he would play with
the shorter deadline. Moreover, a fully attentive but present-biased DM would not exhibit suboptimally low
completion rates for immediately pleasurable tasks as, arguably, in the experiments of Shu and Gneezy (2010).

There are, however, other deadline effects that are explained by present-biased preferences but not by the
inattention model. Ariely and Wertenbroch (2002) study tasks that can only be completed over several days,
such as term papers, and find that students self-impose shorter deadlines. This is consistent with students
wanting to commit their short-run self to complete the task in a timely manner, but cannot be explained by
inattention.

39Another theory that would be consistent with Proposition 7 but not Proposition 9 is a combination of
declining motivation and projection bias (Loewenstein et al., 2003). For example, people may be excited when
they first decide to complete some task, but their motivation to do it decays each day. If they misforecast this
decay in motivation, then logic similar to that of Proposition 7 would predict that longer deadlines could lead
to lower completion rates. However, reminders would then not reverse this trend, contrary to Proposition 9.
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8:00 a.m. the day after registration. The four conditions for task completion were as follows:

1. Short Deadline / No Reminders. Subjects in this condition faced a deadline of 11:59 p.m.

on day 2 and received no reminders. The study instructions clarified that they would

receive no reminders, stating “You will receive no further communications from us

over the course of the study.”

2. Long Deadline / No Reminders. Subjects in this condition faced a deadline of 11:59 p.m.

on day 21. As in the previous condition, they received no reminders on any of the

days, and the study instructions clarified that they would not.

3. Short Deadline / Reminders. Subjects in this condition faced a deadline of 11:59 p.m.

on day 2, and received reminders on days 1 and 2. Subjects were informed that they

would be getting reminders each day. The reminders are described below in further

detail.

4. Long Deadline / Reminders. Subjects in this condition faced a deadline of 11:59 p.m. on

day 21, and received reminders on days 20 and 21. Subjects were informed that they

would be getting reminders on days 20 and 21.

The timing and content of the reminders were as follows. Reminders were only sent to

those subjects in the reminders conditions who had not yet completed the survey. Of those

subjects, email reminders were sent to everyone. Additionally, during the registration phase,

subjects randomized into the reminders conditions were also given the option to consent to

receive text message reminders. All subjects in the reminders conditions who had not yet

completed the survey received an email reminder at 8 a.m. on each of the two reminder

days. Subjects were sent a second set of reminders at either 10 a.m., 11 a.m., 12 p.m., 1 p.m.,

or 2 p.m. that consisted of an email and, for those choosing to receive text messages, a text

message. Two-thirds of all subjects in the reminders condition received only basic email

reminders. These emails mentioned the deadline date and nothing else (see Appendix A.3

for text). One-third of the subjects received a basic+info email reminder instead of a basic
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email reminder at 8 a.m. of each reminder day. The purpose of the augmented message was

to examine whether information loss played a role in task completion. The email therefore

included information about the $10 reward and when it would be emailed, the length of

the survey, and the URL of the study (see Appendix A.3). The language of the reminder

messages was intentionally simple to minimize demand effects.

After completing the risk survey, subjects were prompted to sign a receipt for the $10

gift card, which was always emailed the day after the deadline.40

Results

A total of 403 subjects (93% students; 88.6% Harvard undergraduates) were recruited for the

experiment in August and September. The email was sent to all 12 undergraduate residences

at Harvard41 and generated a total of 34 unique dates on which subjects signed up for

the study. Of subjects in the reminders condition, 64.5% chose to receive text messages.

Appendix A.3.2 verifies that the randomization was successful, finding no significant

differences between any of the demographic variables across conditions.

Table 1.2 summarizes the completion rates by condition; and table 1.3 estimates a linear

probability model of task completion, with robust standard errors clustered by both start

date and undergraduate residence. Consistent with previous evidence and the prediction of

Proposition 7, a longer deadline decreases completion rates from 59.4% to 41.6% in the no

reminders conditions (p < 0.01). Consistent with Proposition 9, however, reminders close

40Note that the reward was never immediately available. Nevertheless, one potential concern with this aspect
of the procedures is that if subjects have a high exponential daily discount factor, then the discounted value
of the reward for subjects on day 1 in the long deadline conditions is lower than the discounted value of the
reward for subjects on day 1 in the short deadline conditions. However, all results about completion rates
would continue to hold even with exponential discounting—the simple intuition is that the discounted value
of task completion on days 20 and 21 in the long deadline conditions is equal to the discounted value of task
completion on days 1 and 2 in the short deadline conditions. At the same time, to the extent that small amounts
of money are fungible, subjects should not treat the $10 on day 22 any differently than the $10 on day 3. For
small stakes monetary rewards, Andreoni and Sprenger (2012) experimentally estimate an annual discount rate
of 0.3, which translates into a 3-week discount rate of less than 1.7%, or a discount of 0.17 from $10.00.

41Almost all sophomores, juniors and seniors at Harvard live in one of the 12 undergraduate “houses.” A
recruitment email was sent to each house only once. Recruitment occurred over the course of 5 weeks, with 2 or
3 houses receiving a recruitment email each week.
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the gap between the short and long deadlines. With reminders, the longer deadline reduces

completion rates by an insignificant 2.3%.

Table 1.2: Fraction of Subjects Completing Task, by Experimental Condition

No reminders
Reminders on
last two days

2 days 59.4% 74.3%
3 weeks 41.6% 72.0%

Table 1.3: Probability of Completing Task, by Experimental Condition

Pr(Complete) (1)
LongDeadline –0.178***

(0.067)
Reminders 0.149**

(0.072)
LongDeadline*Reminders 0.156*

(0.081)
Adj. R2 0.074
Observations 403

Notes: This table estimates a linear probability of task completion, by condition. The variable “LongDeadline”
equals 1 if subjects had 3 weeks to complete the task, and equals 0 if subjects had 2 days to complete the task.
The variable “Reminders” equals 1 if subjects received two days of reminders—days 1 and 2 for subjects with a
2-day deadline and days 20 and 21 for subjects with a 3-week deadline. Robust standard errors are computed by
specifying both start date and undergraduate residence as the cluster groups, following the multiway clustering
method suggested by Cameron et al. (2011). *p < 0.1; **p < 0.05; ***p < 0.01.

The key prediction that is confirmed by the data is that if longer deadlines decrease

completion rates, then, because of how rapidly the likelihood of being attentive must decay,

reminders have a larger impact on decision makers facing a longer deadline. Table 1.3

shows that while subjects given the short deadline are 14.9 percentage points more likely

to complete the task when they receive reminders, subjects facing the long deadline are

30.5 percentage points more likely to complete the task when they receive reminders. The

difference between differences is a marginally significant 15.6 percentage points (p < 0.1).

Table A.7 in Appendix A.3 shows that these results are robust to both demographic
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controls as well as day of week controls.42 Table A.8 in Appendix A.3 analyzes whether

different types of reminders had different effects. The content of the reminder had no

additional effect on completion rates, suggesting that information loss is not an important

factor. The table also shows that the 64.5% of the subjects who agreed to receive SMS

messages did not behave any differently from the subjects who did not. This fact, of course,

is difficult to interpret because of the usual endogeneity caveats.

Figure 1.4 provides further evidence for the decaying attention dynamics proposed by

the model. For each of the four experimental conditions, the figure shows the fraction of

subjects completing the task on a given day. Consistent with the theoretical prediction that

longer deadlines increase the perceived option value of delaying task completion, subjects

in the long deadlines conditions are significantly less likely to complete the task on the first

day that it becomes available. Consistent with decaying attention, however, subjects who

don’t complete the task in the first few days are very unlikely to ever complete it if they

don’t receive reminders. Quite strikingly, only 2 out of the 101 subjects in the long deadline

/ no reminders condition completed the task between days 11 and 21. Subjects in the long

deadline / reminders condition exhibited a similar pattern of behavior during days 1-19. When

they received reminders on days 20 and 21, however, more than 50% of the subjects who

had not yet completed the task ended up completing it.43

The results of this experiment thus replicate existing studies on deadline effects but, by

showing how a small set of reminders can drastically change the outcomes, provide strong

evidence that these deadline effects are generated by the decaying attention mechanism

postulated in this paper.

42Recruitment was staggered across different days of the week, so that each day of the week served as a
start date for at least 33 and no more than 77 subjects in the study. Table A.6 shows that deadline day of
week appears to have no impact on probability of completing the task: the hypothesis that there are no day of
week effects cannot be rejected for either the short deadline or the long deadline conditions (p = 0.18 for short
deadline; p = 0.26) for long deadline).

43This striking pattern of behavior also shows that reminder provision is not likely to have generated a
demand effect. One potential hypothesis is that reminders induce a demand effect by signaling to subjects that
the experimenter is taking the task seriously. Note, however, that subjects knew from the beginning whether
or not they were getting reminders. The extremely low completion rates in days 11-19 in the long deadline/
reminders condition are not consistent with this signaling demand story.
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1.5 Inattention in the Market

In this section, I explore how the kinds of behavioral patterns analyzed in Sections 1.3

and 1.4 might play out in various strategic interactions between sophisticated firms and

inattentive consumers. Section 1.5.1 builds on the task completion results from Section 1.4 to

study consumer rebates and related applications, while Section 1.5.2 builds on the repeated

action results from Section 1.3 to study a model of reminder advertising.

1.5.1 Rebates and Related Applications

In this section I illustrate the applicability of the inattention model by embedding it in a

simple model of consumer rebates. Rebates are a commonly used marketing tactic that

requires consumers to 1) make a purchase at some up-front price p and 2) to submit a

(partial) refund request, along with proof of purchase, by mail or internet by some deadline

T. Edwards (2007) estimates the annual volume of rebate offers to range from $4 to $10

billion. Silk and Janiszewski (2008) estimate redemption rates of 10% to 30% for consumer

rebate offers between $20 and $100, and redemption rates of 40% for bigger ticket consumer

electronics.

Previous work on consumer rebates has focused on their potential use for price dis-

crimination (Narasimhan, 1984; Banks and Moorthy, 1999; Lu and Moorthy, 2007),44 and

has modeled consumers’ redemption decision as a static, one-period choice. The analysis

here differs from previous work in two crucial ways. First, the analysis is the first, to my

knowledge, to investigate the question of how firms choose optimal redemption deadlines

in a dynamic model of consumers’ redemption decisions. Second, I investigate a setting in

which firms may offer rebates to naive and inattentive consumers even when there is no

incentive to price discriminate among them. While price discrimination is surely a potential

motivation as well, the intentionally simple setting in this section allows me to formally

44Gerstner and Hess (1991) propose that rebates may arise due to channel distribution issues between
manufacturers, retailers and consumers. Chen et al. (2005) propose that rebates may function as “state-
contingent discounts” that redistribute money to states with high marginal utility from income. More similar to
the analysis here is Gilpatric’s (2009) recent work on offering rebates to time-inconsistent consumers.
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capture and evaluate policymakers’ and industry leaders’ claims that consumer rebates are

deceptively attractive to consumers.45

The monopolistic seller produces a certain product at a constant marginal cost c, and

in period 0 chooses an offer P = (p, T, r) consisting of an upfront price p, a rebate r ≥ 0

and a redemption deadline T chosen from a set of possible deadlines T . For simplicity,

I assume that T if finite. The set T may be bounded from below because of a minimum

deadline length requirement as in, e.g., New York state.46, and bounded from above because

of similar restrictions47 or because of logistical and credibility issues.

I will often focus on the monopolist’s optimal offer conditional on being restricted to a

particular deadline T.48 This is a helpful intermediate step in the analysis that also facilitates

the evaluation of various policy proposals to restrict deadline choice. The optimal policy

for a particular deadline T is denoted P∗T = (p∗T, r∗T), and the corresponding monopolist’s

profits are denoted π∗T. The optimal policy P is computed by choosing the deadline T ∈ T

that maximizes π∗T and then setting p and r according to P∗T.

There is a unit mass of consumers who are interested in the product and value it at

v > 0. They make a purchase decision in period 0. In each period t = 1, . . . T, consumers

who have purchased the product can incur an i.i.d. hassle cost ξt ∼ F (with ξt ≤ 0) and

mail in the rebate. Consumers who never attempt to redeem the rebate derive utility v− p

from the transaction. Consumers who mail in the rebate in period t derive expected utility

v− p + θr + ξt from the transaction, where θ < 1. The discount factor θ arises from the

possibility of filling out the form incorrectly and thus not receiving the rebate (Edwards,

2007, 2009) or the possibility of losing the check once it arrives in the mail (Edwards, 2007,

45Preliminary results show that even when price discrimination is possible, making rebates maximally
deceptive is more profitable than trying to price discriminate among consumers.

46See Edwards (2009) for a summary of the law.

47To my knowledge, no such restrictions exist. However, the theoretical analysis in this section will consider
the possibility of setting an upper bound.

48Proposition 10 shows that an optimal offer always exists. An optimum could fail to exist if it was the case,
for example, that the monopolist’s profits increase without bound for an appropriate combination of p and r
approaching infinity.

51



2009).49 Accordingly, the monopolist’s profit is given by π = p− c− θµr, where µ is the

probability that the consumer attempts to redeem over the course of the T periods.

Following the recent behavioral industrial organization literature on two-part pricing

(Heidhues et al., 2012b,a; Grubb, 2012) I assume a price floor: there is some p such that

any offer must satisfy p − r ≥ p. Following (Heidhues et al., 2012b, 2011), this can be

motivated by the existence of market-savvy arbitrageurs who have no interest in the actual

product, but who will exploit a firm offering easy money. Appendix A.1.5 walks-through

this microfoundation.50 For smaller value items, p = 0 is consistent with, and helps explain

the fact that “free after rebate” deals are extremely common, while deals in which rebates

are even slightly above up-front prices are non-existent.51 All results will be proven for any

p < c, however.52

I begin by characterizing when rebates will be offered.53

Proposition 10. For each T, there exists an optimal policy P∗T, and consumers always buy in

equilibrium if v ≥ c. If consumers are sophisticated about their inattention then p∗T = v and r∗T = 0.

If consumers are naive, then for any set of attention probabilities γt(α, x), there is a v† > 0 such that

1. If v < v† then r∗T = 0 in any equilibrium in which consumers buy the product.

2. If v > v† then p∗T > v and r∗T > 0 and consumers buy the product.

49The results in this section would be unchanged if instead I assumed that 1) there is some probability that
consumers lose the rebate form or the necessary information they need to claim the rebate (e.g., barcodes) or
if 2) consumers are partially naive but not fully naive. What matters for the analysis in this section is that all
consumers, including the naive ones, discount the value of the rebate because of a mistake they may make.

50And as I also discuss in the appendix, all results hold under the plausible assumption a small fraction of
the consumers who derive value from the product happen to be market-savvy arbitrageurs. As Heidhues et al.
(2011) point out, these arbitrageurs are equivalent to Gabaix and Laibson’s (2006) sophisticates.

51See, for example, http://www.dealigg.com/free.php. Of course, current rebate offers still don’t keep out
all arbitrageurs. Woodruff (2012), for example, describes profit-making schemes involving the resale of free or
nearly free after rebate offers.

52 p = 0 may not be a good assumption for items such as expensive consumer electronics that can be resold
in a secondary market. This suggests that a more general model could allow the price floor to be a function of v.
All results in hold for a piece-wise linear formulation of the form p(v) = max(0, a + bv), where b ∈ (0, 1).

53As before, I assume that there is some z̄ < 1 such that γt(1, d) ≤ z̄ for all t.
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According to Proposition 10, rebates will not be offered to sophisticated consumers. The

simple intuition is that the monopolistic seller extracts all surplus generated by a transaction

with a sophisticated consumer. Offering a rebate, however, reduces total surplus because it

forces consumers to incur effort costs to redeem it.

With naive consumers, the monopolist’s profits are no longer determined solely by the

transaction surplus; the profits are given by the sum of the actual transaction surplus and

consumers’ misperceptions of the value of the deal. Thus a rebate will be optimal when

it increases misperceptions more than it decreases the actual surplus. Note now that the

introduction of a rebate cannot decrease true surplus by more than EFξt, the expected

redemption effort cost in a given period. In contrast, holding T fixed, the misperceptions of

naive consumers will strictly increase in r. But as shown in Appendix A.4.3, the post-rebate

price floor constrains the rebate value to be no higher than some continuous function n̄(v)

that is strictly increasing in v and satisfies n̄(0) = 0. Thus a high v is necessary (and

sufficient) to guarantee that the monopolist can set a rebate that will generate sufficiently

high misperceptions.

Because rebates are used to create deceptively appealing offers, expected consumer

utility is negative in any equilibrium with a rebate. The next proposition shows that rebates

may also lead to socially wasteful transactions in the sense that a product that costs c to

produce is sold to consumers who derive utility v < c from the product.

Proposition 11. Suppose consumers are naive. Then for each L > 0 and T there exists c† such that

if v = c− L and c ≥ c† then p∗T, r∗T > 0 and consumers purchase the product.

The intuition behind proposition 11 is again derived from the fact that the monopolist’s

profits are given by the sum of the actual transaction surplus and consumers’ misperceptions

of the value of the deal. Thus even when v < c and the transaction surplus is negative, a

rebate can still be profitable by making the deal appear deceptively attractive to consumers.

As with Proposition 10, the price-floor requires the product to be a sufficiently big ticket

item to create scope for sufficiently deceptive rebates.

I now characterize how the monopolist will choose a redemption deadline and how that
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will impact consumers.

Proposition 12. Let R(r, T) denote the probability that a consumer mails in a rebate of size r given

a deadline T and suppose that consumers are naive.

1. If T1 < T2 and R(r∗T1
, T1) < R(r∗T1

, T2) then π∗T2
> π∗T1

.

2. Assume there is some z > 0 such that γt(0, d) ≥ z for all t. Then holding all other parameters

constant, there is a T† such that r∗T = 0 for all T ≥ T†.

The main message of Proposition 12 is that if consumers are sufficiently inattentive,

firms will choose deadlines that are of “intermediate length.” This basic message follows

from Proposition 7, which shows that longer deadlines can lead to lower task completion

rates, and from Proposition 8, which shows that long enough deadlines will actually lead

to higher completion rates than “intermediate length” deadlines. Although a systematic

analysis of redemption deadlines is lacking, the “medium length” deadline prediction seems

consistent with industry practice of setting deadlines that typically range between 15 and 60

days.54,55

The model’s prediction that rebates may be used to create deceptively attractive deals is

echoed by industry experts and policymakers. As bluntly explained by a VP of an electronics

retailer, “Manufacturers love rebates because the redemption rates are close to none. It’s

just human nature that we go after them, and they get people into stores, but when it comes

time to collect, few people follow through.”56 This prediction is in contrast to the more

traditional views that rebates are used to price discriminate among rational consumers.

And even more starkly in contrast to the rational price discrimination framework is the

prediction that rebates can facilitate the sale of socially wasteful products.

54See, however, the caveats in footnote 37

55Rebates for products offered by the retailer Staples, for example, typically have redemption deadlines of
either 30 or 60 days (see https://www.stapleseasyrebates.com/promocenter/staples/promo_search.html). Silk
and Janiszewski (2008) analyze a random online sample and find that most deadlines are either 15 or 30 days.

56Catherine Greenman, “The Trouble With Rebates.” The New York Times. September 16,
1999. Accessed August 15, 2013, http://www.nytimes.com/1999/09/16/technology/the-trouble-with-
rebates.html?pagewanted=all&src=pm
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While some have explored the possibility of banning rebates on the grounds that they

are deceptive (Lynch and Zauberman, 2006; Sovern, 2006), the model suggests that there

are less paternalistic interventions that can increase consumer welfare or market efficiency,

without interfering with the potential of using rebates for purposes of efficiency-enhancing

price discrimination. One such possibility, for example, is to require very short or very long

deadlines. Legislators in the states of California, New York, Texas, and North Carolina have

imposed minimum deadline lengths (Edwards, 2007), though it is unclear whether those 2

or 4 week minimums are sufficiently high. Note, however, that such deadline restrictions

have less clear-cut effects on social efficiency. This is because by virtue of attempting

to minimize redemption probability, a monopolist’s choice of deadline also minimizes

consumers’ socially wasteful redemption effort.57

Lastly, note that the inattention model also suggests that because of attention decay,

exploitative firms may want to create deferred rebate programs that require consumers to

wait before they can claim the rebate. Some companies have, in fact, offered 54-week

deferred rebates of up to $10,000 to consumers purchasing big ticket items such as pools or

automobiles, but have subsequently faced lawsuits for deceptive and exploitative practices.58

Following incidents of massive consumer complaints, North Carolina has banned rebates

with a deferral period of more than 6 months, in addition to creating other restrictions.59 I

speculate that deferred rebates are not more common because firms fear that such offers

are so transparently exploitative that they would tarnish the firms’ reputations on the one

hand, and—as in the case of North Carolina—invite more severe government oversight and

intervention on the other hand.

57A second possibility is to minimize inattention bias by requiring firms to send consumers reminders to
redeem their rebates. A third possibility is to attempt to debias naive consumers through salient disclosure of
low redemption rates (Edwards, 2007), or by encouraging them to set their own reminders to minimize the
probability of forgetting.

58Jamie Boll, “PSI: Big rebate offer leads to big disappointment.” Feb 08, 2011. Accessed 8/25/2013,
http://www.wbtv.com/story/13983724/psi-big-rebate-offer-leads-to-big-disappointment. See also the Pennsyl-
vania Attorney General Press release:http://www.attorneygeneral.gov/press.aspx?id=835

59See the North Carolina Department of Justice on rebates: http://www.ncdoj.gov/Consumer/Purchases-
and-Contracts/Rebates.aspx
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Related Applications

There are a number of other transactions between firms and consumers that share some key

similarities with consumer rebates. Namely, the feature that, at a later date, the consumer

can take some action x by a deadline T, which generates some (endogenously set) benefit

b− ξt to the consumer, at a (endogenously set) cost c to the firm. A product return policy

with a deadline T is one such example. Another set of examples is contracts with automatic

renewal. DellaVigna and Malmendier (2004) list examples such as free trial offers that

automatically transition into paid services, automatically renewing contracts in the health

club industry, and automatically renewing newspaper subscriptions. In all of these examples,

naive and inattentive consumers will overvalue the deal because they will overestimate the

likelihood of returning the product or canceling their membership.

As DellaVigna and Malmendier (2004) show, naive hyperbolic discounting can also

lead to overvaluation, and can explain why firms increase switching costs by, for example,

stipulating that consumers can only cancel their gym membership in person. The analysis in

this paper provides an alternative explanation: by increasing switching costs, firms increase

the option value of delay, which makes naive and inattentive consumers more likely to

put off the task until later and subsequently lose track of it. Intuitively, if canceling a gym

membership involved only one click online, a consumer who first decided to cancel the

membership would likely do it right away. The requirement to cancel the membership in

person, however, makes the consumer put off the task until later and subsequently forget

about it.

The inattention model can thus explain why firms make some actions very easy—like the

“1-Click” buying feature—while making other actions more effortful. But additionally, the

inattention model also makes predictions about which actions firms will remind consumers

to take, and which they won’t. Firms exploiting naive inattention would remind consumers

to, for example, follow through on limited time offers, but would not remind consumers to,

for example, consider canceling their subscription after the expiration of the free-trial phase.

These predictions seem to be consistent with casual observation, and future work should
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provide systematic evidence for these new predictions.

1.5.2 Optimal Cue Provision by an Interested Party

Economic theories of advertising typically assume that marketing communications either

provide information (Stigler, 1961; Butters, 1977) or enter directly into consumers’ utility

functions (Becker and Murphy, 1993). Both the informative and the persuasive (or com-

plementary) functions of advertising are important, particularly when the product is first

introduced. However, marketers also emphasize a third function of marketing communica-

tions: after a product has been introduced, advertising must keep the product at the top of

the consumer’s mind.

This section uses the inattention model to formalize a model of reminder communications

by a sophisticated firm or organization. To keep things simple, I focus on an organization

whose objective is to direct consumer behavior solely through the reminder communications.

For example, a health care provider or insurer might use SMS messages or phone calls to

remind patients with chronic diseases to take their medications,60 or an organization might

send reports reminding consumers of ways to save energy (Allcott and Rogers, 2012). The

insights developed in this simple model could also be applied to understand the optimal

policy of a firm that uses reminder advertising to make sure that its repeat purchase product

stays a top of mind consideration.

While recent work in economics has investigated advertising to inattentive consumers

in a static, one-period setting (e.g., Falkinger 2007, 2008; Eliaz and Spiegler 2011a,b),61 the

inattention model proposed in this paper provides foundations for extending these analyses

to dynamic, multi-period environments. As this section shows, some of the most distinctive

predictions of reminder communications are manifested only in dynamic settings.

60Providers and insurers may purchase these services from independent third party firms specializing in
population health and patient communication; e.g., Healthways, Phytel, Optum, IncentOne, Staywell.

61See also Hefti (2013) for a model building on Falkinger (2007, 2008). See Spiegler (forthcoming) for a model
of competitive framing. Most related to the analysis here, see Villas-Boas (1993) for a simple model of reminder
advertising in a duopoly.
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Formally, there is a unit mass of homogeneous, inattentive consumers who choose

xt ∈ {d, a} in each period t ≥ 1. Each period, the organization chooses between sending

a communication, denoted mt = 1, or not sending a communication, denoted mt = 0. A

period t communication costs c to send and reaches a consumer with probability w ∈ (0, 1).

For simplicity, I assume that when a consumer is reached he is attentive with probability 1

regardless of previous history. Otherwise, there are no other cues and the DM is attentive

with probability g(α, x, 0). For simplicity, I assume that g(0, d, 0) = 0, and that the probability

of being attentive in period 0 is 0.

The organization’s objective function is to choose m = (m1, m2, . . . ) to maximize

E0 ∑T
t=1 δt

o(φt − mtc), where φt is the fraction of consumers choosing xt = a and δo < 1

is the organization’s discount factor. Formally, I will assume that the organization commits

to a strategy in period 0. However, the assumptions in this section will guarantee that the

consumers will not alter their strategies in anticipation of future cues; thus, the results

would be identical under the assumption that the organization can revise its strategy each

period.

Note that initially uninformed but otherwise attentive consumers, in the sense of Stigler

(1961) or Butters (1977), are nested as a special case of the framework: g0(0, d, 0) = 0 and

g(1, d, 0) = 1. That is, these consumers will not consider xt = a until they are contacted by

the organization, but will always consider xt = a after the first time. The general framework

proposed here thus nests a simple variation of informative advertising as a special case.

To fully draw out the long-run implications for the optimal messaging strategy, I extend

the baseline model and set T = ∞, and assume that future payoffs are discounted by an

exponential discount factor δDM (see Appendix A.1.1 for a formal extension of the inattention

model to infinite horizons). Each consumer’s period t payoff from choosing xt = a is given

by bH > 0 with probability ` ∈ (0, 1) and by bL < 0 with probability 1− `. These taste

variations are independently distributed across the unit mass of consumers each period.62

62To map this into the formal framework, assume that bt ≡ b for all t, and suppose that ξt takes on the values
ξH or ξL < ξH . So bH = b + ξH while bL = b + ξL. Note that in contrast to the assumptions in earlier sections,
the distribution F is not atomless here.
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To further simplify the model, I assume that bL is sufficiently low so that even sophisticated

consumers always choose xt = d when bL is realized.63

Proposition 13 establishes necessary and sufficient conditions for repeated communica-

tion to be optimal in the long run.

Proposition 13. Let m∗ be an optimal messaging strategy and set ψ = `g(1, a, 0) + (1 −

`)g(1, d, 0).

1. If
w`

1− δoψ
≤ c

then m∗t = 0 for all t.

2. If ψ = 1 then there exists a t† < ∞ such that m∗t = 1 if and only if t < t†.

3. If
w`

1− δoψ
> c (1.10)

and g(1, a, 0) < 1, then for any t > 0 there exists a t′ ≥ t such that m∗t′ = 1.

Part 1 establishes conditions under which sending communications to the consumers is

not optimal in any period. The quantity w`
1−δoψ is an upper bound on how much a single

message can increase the organization’s discounted payoff, so that sending a message is

never optimal when this upper bound is not greater than c. As intuition would suggest,

the upper bound is increasing in `, the consumers’ likelihood of wanting to choose xt = a

conditional on being attentive, and increasing in w, the efficacy of the organization’s

messaging attempt.

Note that in the absence of rehearsal effects, ψ = 0, and the upper bound reduces to

w`. With rehearsal effects, ψ > 0, and thus a single period t message has a larger effect:

63A sufficient condition for this is that bL < −γbH/(1− ψ), where ψ = `γ(1, a, 0) + (1− `)γ(1, d, 0). Note
that while the parameter ` is a useful comparative statics parameter corresponding to the consumers’ strength
of preference for choosing xt = a, the variation in taste shocks does create additional complexity arising from
the fact that sophisticated consumers’ choice may be shaped by their beliefs about the organization’s future
messaging strategy.
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in addition to making DMs more attentive in period t, the message also makes DMs more

attentive in periods t + 1, t + 2, . . . .

Part 2 establishes conditions under which sending communications to the consumers

cannot be optimal in the “long-run,” though may be optimal in the short run. The condition

that ψ = 1 simply ensures that the probability of being attentive does not decay with time.

Importantly, this condition holds for consumers with g0(0, d, 0) = 0 and g(1, d, 0) = 1—

which can be interpreted as initially uninformed but otherwise attentive consumers.

Part 3 completes the proposition by showing that when neither the condition in part 1

nor the condition in part 2 holds, the organization’s optimal strategy will involve messaging

in the long run.

Proposition 13 illustrates a key difference between optimal communications with inat-

tentive versus attentive but uninformed consumers: repeated communication is optimal in

the long run if and only if consumers are inattentive and their attention decays with time

in the absence of communications. In fact, parts 1 and 3 imply that when ψ < 1, so that

attention decays over time, the organization’s optimal advertising strategy is to either not

send messages at all, or to never stop sending messages.64

But while the inattention model implies that the returns to additional communication

do not converge to zero in the long run, like models of informative advertising it also

predicts that the returns to each additional communication are diminishing. A version

of this intuition was already established in part 5 of Proposition 2, which showed that

temporally separated cues are substitutes. In the simple setting here, it is similarly true

that for t′ < t, the returns to choosing mt = 1 are decreasing in mt′ because a choice of

mt′ = 1 decreases the fraction of consumers who would otherwise be inattentive in period t.

Such intermittent communications create an “action and backsliding effect”: for t > t′, the

64Note that models of informative advertising can sustain long-run advertising policies in a market by
assuming overlapping generations of consumers, but these models also predict that an organization or firm
will eventually want to limit its communications to zero with any one particular household or consumer. This
distinction is particularly important for communications such as those encouraging health-improving or energy
conservation behaviors, which are targeted to specific households and can be sent on a frequent and regular
basis.
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probability of xt′ = a is high following mt′ = 1, then decays while mt′+1, mt′+2, · · · = 0, and

then increases substantially again when mt = 1.65 Both the diminishing returns prediction

and the action and backsliding prediction are key determinants of the optimal advertising

policy and both have received empirical support. Allcott and Rogers (2012), for example,

find that the effect of each additional report about energy-saving behaviors declines with

time. At the same time, they also find a significant action and backsliding effect.

Lemma 1 formalizes the conditions under which choosing mt = 1 is each period is not

optimal. For the remainder of the section, I will use 1 = (1, 1, . . . ) to denote the strategy of

sending a message each period, and likewise use 0 to denote the strategy of never sending a

message.

Lemma 1. m = 1 is an optimal messaging strategy if and only if

w(1− ψ)`

(1− ψ(1− w))(1− δoψ(1− w))
≥ c. (1.11)

Combined, Proposition 13 and Lemma 1 begin to provide insights into how consumers’

preferences for choosing xt = a, parametrized here by `, affect the organization’s returns

to choosing mt = 1. When consumers are attentive but initially uninformed, the returns to

sending an additional message are increasing in `, for the simple reason that conditional

on considering xt = a, more consumers will choose it. Similarly, when consumers are

inattentive but rehearsal has no effect, ψ = `g(1, a, 0) + (1 − `)g(1, d, 0) = 0 and thus

condition (1.10) and condition (1.11) are equivalent. This then implies that there is some

`† such that the optimal strategy is m = 1 for ` > `† and m = 0 for ` < `†. Lemma 2

summarizes these results:

Lemma 2. 1. If g(1, d, 0) = 1 then the total number of messages is increasing in `.

2. If g(1, a, 0) = 0 then the optimal strategy is m = 0 if w` < c and is m = 1 if w` > c.

Behavioral rehearsal adds an additional nuance to the relationship between preferences

65Agarwal et al. (2013) first coined the phrase “action and backsliding” to describe this kind of pattern of
behavior with respect to credit card fees. Their finding that behavior responds most strongly to cues in the form
of late fees, however, is not directly explained by the model in this paper.
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and the optimal messaging strategy. On the one hand, the higher the `, the more likely

consumers are to choose xt = a conditional on being attentive. On the other hand, higher `

also implies that consumers are more likely to be attentive due to rehearsal. The combination

of these two effects implies that the optimal communication intensity can be non-monotonic

in `:

Proposition 14. Fix g(1, d, 0) < 1 and c < 1/4− g(1, d, 0)/4. Then there exist high enough

g(1, a, 0) < 1 and w < 1 such that the optimal messaging strategy m∗ = (m∗1 , m∗2 , . . . ) is non-

monotonic in `: for some `1 < `2 < `3,

i) If ` ∈ (`1, `2) then condition (1.10) holds but condition (1.11) does not hold

ii) If ` ∈ (`2, `3) then condition (1.11) holds

iii) If ` ∈ (`3, 1) then condition (1.10) holds but condition (1.11) does not hold

The key implication of Proposition 14 is that when the effect of behavioral rehearsal

is sufficiently strong, cue provision has the biggest impact on consumers who want to

choose xt = a “often enough” but not necessarily all of the time. Intuitively, consumers

who want to choose xt = a all of the time develop a strong enough habit that will not be

significantly affected by cues. In the daily action experiment, for example, participants who

completed the survey for three weeks straight were not significantly affected by week 3 cues.

On the other hand, consumers who rarely want to choose xt = a will also not be affected

by additional cues for the simple reason that they will not want to choose a conditional

on being attentive. These results generate implications not only for how the organization

should design its optimal messaging strategy for a given population of consumers, but

also for how the organization should attempt to target its messages to different subgroups

within a population.66

66The model also generates insights about how to optimally tailor communications to a given consumer
over time. The results in Section 1.3 show that all else equal, reminders should be most effective following an
interruption to the decision maker’s routine. An organization that can effectively monitor each consumer’s
behavior should thus increase the intensity of communications following what appear to be random breaks in
the repeated behavior. Such targeting should be especially affective when consumers are naive, because naive
consumers do not change their behavior in anticipation of future cues.
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Although the analysis in this section focuses on a simple setting in which the organization

only chooses cues, an important question for future theoretical and empirical work is how

to optimally combine incentives and cues. The substitutes and complements predictions

in Propositions 3 and 4 suggest that when both incentives and cues part of a program,

they should be used simultaneously rather than one after the other. This is because cues

amplify the effects of contemporaneous incentives, but crowd-out the spillover effects of

past incentives.

1.6 Concluding Remarks

1.6.1 Recap

This paper proposes a model of inattentive choice, focusing on two factors determining

attention: cues and rehearsal.

Applied to repeated actions, the model provides an attention-based theory of “good”

habits and provides a unifying explanation of many recent empirical findings in domains

of behavior ranging from exercise to residential energy use. The model is distinguished

from theories of habit-forming preferences (Becker and Murphy, 1988) by its predictions

about how 1) cues affect current and future behavior 2) how cues can amplify the effects of

temporary shocks to routines and 3) how cues can also diminish the effects of temporary

shocks to routines. Consistent with these predictions, the first experiment in this paper uses

a three-week, real-effort task to test and confirm the distinguishing prediction that repeat

performance and reminders are substitutes.

Applied to tasks that must be completed by a deadline, the model identifies when

the likelihood of being attentive to the task will decay with time, which then leads naive

decision makers to be hurt by longer deadlines. But at the same time, the model also

generates new comparative statics about how changes in cues can break the time-decay

of attention and therefore eliminate the “perverse” effect of longer deadlines. The second

experiment reported in this paper replicates the finding that longer deadlines can lead to
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lower completion rates but, consistent with the new comparative statics about cue effects,

shows that a small set of reminders can eliminate this effect.

Finally, I apply the model to study market interactions between sophisticated firms and

inattentive consumers. Building on the results about tasks with deadlines, I show how firms

will use sales tactics such as consumer rebates and automatic renewal billing to facilitate

deceptively attractive and socially inefficient transactions with consumers. Building on the

results about repeated actions, I use the model to study a firm or organization’s optimal

policy of reminder advertising to inattentive consumers who must take some repeated action.

In contrast to models of informative advertising, the optimal messaging intensity does not

converge to zero in the long run and may be non-monotonic in consumers’ preferences for

taking the action.

Taken together, the theoretical and experimental results show that 1) time-varying

attention can explain a broad range of economically important behaviors that are not easily

explained by other theories; 2) the effects of payoff-irrelevant cues on economic behaviors

can be predicted and studied with theoretical and empirical precision; 3) theoretically

motivated variations in cues can be used to empirically distinguish between time-varying

attention and other potential drivers of behavior; and 4) consumer inattention may be an

important determinant of firms’ sales and marketing strategies.

Industry players’, policymakers’ and academics’ growing interest in combining incen-

tives with cue-based interventions to encourage behaviors ranging from preventive health

measures to energy conservation—as well as the need to understand the medium- and

long-run effects of these (sometimes short-run) programs—makes the developments in this

paper especially pertinent. The theoretical model and experimental frameworks developed

in this paper can provide useful structure for future empirical work on these questions.

1.6.2 Extensions

A stark and not fully realistic characteristic of the model in this paper is the assumption that

all else equal, inattention does not vary with stakes. Some models of bounded rationality
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(e.g., Mullainathan 2002) make a similar assumption, while others (e.g., Sims 2003) propose

that a limited cognitive resource is allocated optimally toward the highest stake decisions.67

In this paper, higher stakes may make sophisticated agents more motivated to engage in

rehearsal or, as in Appendix A.1.2, to invest in reminder technologies. An intuition that is

absent from the model, however, is that even in the absence of all cues, a person would be

more attentive to higher stakes tasks. At the same time, assuming that attention allocation

is completely “rational” in the sense of Sims (2003) is discordant with the fact that many

people are naive about how attentive they will be in the future. A completely “rational”

approach to attention also seems to be at odds with the notion that sometimes people just

pay attention to the “wrong” things. One avenue for future theoretical and experimental

work is to investigate how the types of inattentive choices modeled in this paper might

depend on the stakes of the decision.

A second way in which the model in this paper could be extended is by incorporating

the possibility that some types of contextual cues derive their strength from repeated pairing

with a certain action, as in the work of Laibson (2001) and Bernheim and Rangel (2004)

on addiction. Interventions to improve medication adherence, for example, recommend

associating the action of taking medicine with an event-based cue such as breakfast (Insel

et al., 2013). Endogenously formed associations between context and actions may further

help explain why some routines, such as brushing one’s teeth every evening, are so stable.

Relatedly, people may also become desensitized to cues that they receive often but typically

don’t pair with the action (Rankin et al., 2009). The sensitization and desensitization

considerations may play an important role in the design of optimal communication strategies

such as the ones analyzed in Section 1.5.2, and limit the extent to which communications

can be used to increase task completion, as in the examples studied in Section 1.4. The

experimental design described in Section 1.3.2 could be extended to study desensitization

to reminders, as well as the sensitization to event-based cues.

67Psychologists recognize that attention has both a “goal-driven”/“top-down” component and a “stimulus-
driven”/“bottom-up” component (Yantis, 1998)
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Finally, future work should broaden the choice set beyond the simple decisions studied

in this paper. A key concept to theoretically and experimentally explore in this more general

framework is the hypothesis that making some actions more top of mind might crowd out

attention to other actions. Consider, for example, a driver who must choose between left,

right, or straight at an intersection, and suppose that left is the correct choice on the driver’s

usual route to work. In the rare and atypical instances in which the driver must, instead, go

straight, he may still go with the routine choice of left when he is inattentive. This example

illustrates the intuition that rehearsal of one action may make it very mentally accessible,

but at the expense of making other actions less so.68 Extending the model to larger choice

sets and, with that, formalizing the nuances of how attention is allocated to the different

alternatives is a modeling challenge that may shed light on the formation and power of

defaults, and may generate new insights about how firms compete through advertising

policies.

68At the same time, there seem to be some a priori default choices such as not taking the daily medication or
not turning off the lights whose consideration is much less likely to be crowded out by the increased accessibility
of the alternative(s). My speculation is that the option of not performing an action is salient whenever execution
of the action requires a certain degree of cognitive monitoring.
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Chapter 2

The Lightbulb Paradox: Evidence

from Randomized Experiments1

2.1 Introduction

It has long been suggested that consumers may be imperfectly informed about or inattentive

to energy costs when they buy energy using durables such as cars, air conditioners, and

lightbulbs.2 This suggestion is supported by recent empirical evidence from other domains:

people are inattentive to "add-ons" or ancillary product costs such as sales taxes (Chetty,

Looney, and Kroft 2009),3 shipping and handling charges (Hossein and Morgan 2006), and

out-of-pocket insurance costs (Abaluck and Gruber 2011). Because American households

spent $325 billion on gasoline and another $245 billion on electricity, natural gas, and heating

oil in 2011 (BLS 2013), even small inefficiencies can aggregate to substantial losses.

In theory, the first best policy to address imperfect information and inattention would

be an idealized information provision technology that is both costless and "powerful", by

1Co-authored with Hunt Allcott

2See Anderson and Claxton (1982), Blumstein et al. (1980), Jaffe and Stavins (1994), Sanstad and Howarth
(1994), Gillingham and Palmer (2013), and many others.

3Relatedly, Finkelstein (2009) and Cabral and Hoxby (2012) show how salience varies across different tax
collection methods.
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which we mean that all treated consumers would become fully informed about and attentive

to energy costs and other product attributes. In practice, the U.S. and other countries have

energy use disclosure requirements such as fuel economy labels on new cars and "yellow

tags" on home appliances. There is little evidence on how effectively these programs inform

consumers or how they affect purchases.

In addition to information disclosure, policymakers also have a broad set of second best

corrective policies such as subsidies and standards for energy efficient autos, appliances,

and buildings. Along with externalities and the so-called "landlord-tenant" agency problem,

imperfect information and inattention are key potential justifications in both academic

papers4 and government regulatory impact analyses.5 Evaluating these policies is important,

as they are costly: fuel economy standards, appliance energy efficiency standards, "demand-

side management" programs run by electric and gas utilities, and weatherization subsidies

cost $17 billion each year (Allcott and Greenstone 2012).

This paper focuses on one the lightbulb market, a particularly compelling case study of

consumer behavior and public policy. Do people know how much electricity a traditional

incandescent uses relative to an energy efficient compact fluorescent lightbulb (CFL)? Do

we pay as much attention to this additional cost as we do to purchase prices, or are we

inattentive, like consumers in Gabaix and Laibson (2006)? How should the government

intervene, if at all? Regulated and government-run electric utilities spent $252 million

subsidizing and otherwise promoting energy efficient compact fluorescent lightbulbs (CFLs)

in the U.S. in 2010 (DOE 2010). Furthermore, the Energy Independence and Security Act

of 2007 sets minimum efficiency standards that ban traditional incandescent lightbulbs

4Among other references, see Gillingham and Palmer (2013), Fischer, Harrington, and Parry (2007), and
Parry, Evans, and Oates (2010). The latter paper, for example, focuses on two market failures that could justify
energy efficiency standards: externalities and what they call "misperceptions market failures."

5See, for example, the Regulatory Impact Analysis for the increase in the Corporate Average Fuel Economy
standard for 2012 to 2016. The analysis argues that even without counting the externality reductions, the
regulation increases consumer welfare, perhaps because consumers have incorrect "perceptions" of the value of
fuel economy (NHTSA 2010, page 2). See also the Regulatory Impact Statement for Australia’s ban on energy
inefficient lightbulbs (DEWHA 2008, page vii), which argues that "information failures" and consumer cognitive
costs help to justify that policy.
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between 2012 and 2014 and will be tightened further in 2020.

This ban on traditional incandescents has generated vigorous debate. Many consumers

dislike CFLs because they are inferior on several dimensions, and opponents suggest that the

regulation is "an example of over-reaching government intrusion into our lives" (Formisano

2008). The government’s economic impact analysis (DOE 2009) and other studies (NRDC

2011) argue for the policy by showing that consumers will enjoy billions of dollars in annual

cost savings. Of course, such private cost savings could only reflect welfare gains in the

presence of imperfect information, inattention, or some other market failure. Argentina,

Australia, Brazil, Canada, China, Cuba, the European Union, Israel, Malaysia, Russia, and

Switzerland have also banned some or all incandescent light bulbs.

We combine two randomized information provision experiments with a formal model

of optimal policy to answer two research questions. First, how much can information provision

affect demand for energy efficient lightbulbs? Second, if powerful information provision is costly or

infeasible, do subsidies and minimum standards increase welfare as second best solutions to imperfect

information and inattention?

We begin by presenting the results of two randomized control trials (RCTs) that measure

the effects of energy cost information on lightbulb purchases. The first is an "artefactual field

experiment" (Levitt and List 2009) using Time-Sharing Experiments for the Social Sciences

(TESS). This is a high-quality computer-based survey platform which has been used by a

number of economists, including Allcott (2013), Fong and Luttmer (2009), Heiss, McFadden,

and Winter (2007), Newell and Siikamaki (2013), Rabin and Weizsacker (2009), and others.

We gave consumers a $10 shopping budget and asked them to make a series of choices

between CFLs and incandescents in a multiple price list format. We then gave the treatment

group information about lightbulb energy costs and lifetimes. After this informational

intervention, we again asked all consumers to choose between CFLs and incandescents. This

design allows us to infer the joint distribution of demand in the baseline and "informed"

states, which is crucial for policy analysis. The experiment was incentive compatible: one

of the choices was randomly selected to be the consumer’s "official purchase," and the
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consumer received those lightbulbs and kept the remainder of his or her shopping budget.

The informational intervention increased average willingness to pay for CFLs by $2.32, and

CFL market share at market prices increased by about 12 percentage points.

The second RCT is a "framed field experiment" (Levitt and List 2009) with a large home

improvement retailer. Our staff intercepted shoppers, used an iPad to deliver information

about energy costs and bulb lifetimes to the treatment group, and then gave coupons with

randomly assigned CFL subsidies. While a 20 percent subsidy increased CFL market share

by about 10 percentage points, the informational intervention had statistically zero effect.

We can bound the information effect as less than the effect of a 12 percent subsidy with 90

percent confidence.

The second half of the paper uses the experimental results to analyze the welfare effects

of second best subsidies and standards, given that our informational interventions are not

realistically feasible at large scale. In doing this, we follow the approach of Chetty, Looney,

and Kroft (2009) in assuming that our treatment groups made informed and otherwise

optimal decisions, meaning that our treatment effects measure the magnitude of bias from

imperfect information and inattention. Qualitatively, we believe that this assumption is best

viewed as an approximation, and we present evidence to evaluate it throughout the paper.

In order to ensure that the assumption would be particularly reasonable, we designed the

two interventions to fully inform consumers and draw attention to energy costs and other

attributes, while minimizing other possible effects. For example, the interventions included

no information or cues related to environmental externalities, other social costs of energy

use, or social norms. We also took a series of steps to minimize experimenter demand effects.

Furthermore, we delivered information through different channels and quizzed consumers

on comprehension in the TESS experiment, thus ensuring that consumers understood and

attended to the information.

In order to use the empirical results for policy analysis, we formalize a simple theoretical

framework that clarifies the "internality rationale" for energy efficiency policy. Consumers

make a discrete choice, which in our application is between an incandescent and a CFL.
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Some consumers, however, may misjudge the true difference in utility they would experience

from the two products; we label the dollar value of this potential mistake the "internality."

The internality is directly analogous to an externality: it is a wedge between willingness to

pay and social welfare, and it may be heterogeneous across consumers. The policymaker

has two instruments: an "internality tax" (in our example, a CFL subsidy) with lump-sum

recycling and a ban on the "sin good" (in our example, a ban on traditional incandescents).

Just as Diamond (1973) shows that the optimal externality tax equals the average marginal

externality, the optimal internality tax equals the average marginal internality. The welfare

effect of the ban is the sum of the true utility experienced by the set of consumers who

would buy the banned good if they were allowed to do so. Crucially, this average marginal

internality is a sufficient statistic in the sense of Chetty (2009): the underlying "structural"

model of the bias and any heterogeneity within the set of marginal consumers are both

irrelevant for evaluating the welfare effects of a subsidy or ban.

In the context of our theoretical model, the TESS experiment results suggest that the

optimal subsidy is approximately $3 per 60-Watt equivalent CFL. This is slightly larger than

typical CFL subsidies offered by many electric utilities. However, we also observe a large

group of consumers who purchase incandescents at baseline and are still willing to pay

substantially more for incandescents after the informational intervention. Banning incandes-

cents imposes welfare losses on this population that outweigh the gains to apparently-biased

consumers who had weaker preferences for the incandescent. This implies that in our model,

imperfect information and inattention by themselves do not justify a ban on traditional

incandescents.

The simpler design of the in-store experiment identifies only the slope of demand and the

effect of information on quantity demanded. However, we show how these two parameters

can be used to derive a first-order approximation to the optimal subsidy. Intuitively, the

average marginal internality is the price change that would have the same effect on demand

as the informational intervention. Given that the intervention had statistically zero effect,

we cannot reject that the optimal subsidy is zero. Our formula bounds the optimal subsidy
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for a 60-Watt equivalent CFL between negative 30 cents and positive 35 cents per CFL with

90 percent confidence. Given the difference in the population and the experimental setting,

it does not surprise us that the effects differ from the TESS experiment. This result only

strengthens the qualitative conclusion that the internalities we consider are not large enough

to solely justify a ban in our model.

The paper makes three central contributions. First, our two experiments are a "proof of

concept" for how large-sample randomized control trials can be used to test the effects of

energy use information on durable goods purchases.6 The dearth of evidence in this context

is especially remarkable given the large literature on the effects of information disclosure on

consumer choice in other domains, including Choi, Laibson, and Madrian (2010) and Duarte

and Hastings (2012) on financial choices, Greenstone, Oyer, and Vissing-Jorgensen (2006)

on securities, Bhargava and Manoli (2013) on takeup of social programs, Jin and Sorensen

(2006), Kling et al. (2012), and Scanlon et al. (2002) on health insurance plans, Pope (2009) on

hospitals, Bollinger, Leslie, and Sorensen (2011) and Luo et al. (2012) on health and nutrition,

Dupas (2011) on HIV risk, Figlio and Lucas (2004) and Hastings and Weinstein (2008) on

school choice, and many others.

Second, there is a growing empirical literature on whether consumers of durable goods

"undervalue" energy costs relative to upfront prices, including Allcott (2013), Allcott and

Wozny (2013), Busse, Knittel, and Zettelmeyer (2013), Dubin and McFadden (1984), Goldberg

(1998), Hassett and Metcalf (1995), Hausman (1979), Metcalf and Hassett (1999), Sallee,

West, and Fan (2009), and many others. Imperfect information and inattention are two

of the factors that could cause undervaluation. Most of the previous literature has tested

6There are some related studies that differ from our experiments on one or more dimensions. Kallbekken,
Saelen, and Hermansen (2013) study energy information disclosure at six retail stores in Norway, comparing
purchases to a non-randomly selected control group. Anderson and Claxton (1982) study energy information
labels with 12 stores assigned to treatment groups and six to control. There are a number of studies that
randomly assign information disclosure across individual experimental subjects and study effects on stated
preferences in hypothetical choices, including Newell and Siikamaki (2013) and Ward, Clark, Jensen, Yen, and
Russell (2011). Deutsch (2010a, 2010b) studies information disclosure to online shoppers, measuring what
products they click on and what products they put in online shopping carts, but he does not observe actual
purchases. Houde (2012) uses quasi-experimental variation with a structural demand model to estimate how
the Energy Star label affects consumer welfare, while Herberich, List, and Price (2011) and Toledo (2013) study
how prices and social norm information affect CFL purchases.
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for undervaluation by (essentially) comparing price elasticities to energy cost elasticities

using variation in purchase prices and energy costs. Our approach is innovative in this

literature in that we instead test for undervaluation using experimentally-induced variation

in information about and salience of energy costs, as suggested by Chetty, Looney, and Kroft

(2009) and DellaVigna (2009). Aside from allowing for more highly-credible identification

via randomized control experiments, this approach also isolates the potential effects of

imperfect information and inattention from other potential mechanisms such as present bias,

which should be unaffected by our informational interventions. Our results are qualitatively

consistent with several of the above papers in suggesting that internalities are small in the

particular markets that have been studied, and that corrective subsidies and standards may

be stronger in these contexts than can be justified by internalities alone.

Third, we provide an example of how techniques from public economics can be combined

with psychologically-motivated experiments to provide insight into important public policies.

Related analyses include Bernheim and Rangel (2004), Chetty, Looney, and Kroft (2009),

Gruber and Koszegi (2004), Gul and Pesendorfer (2007), O’Donoghue and Rabin (2006),

Baicker, Mullainathan, and Schwartzstein (2013), and Mullainathan, Schwartzstein, and

Congdon (2012) who study taxes when consumers are present biased or otherwise make

mistakes. There are also several analyses of energy taxes, energy efficiency standards,

or subsidies for energy efficient goods when consumers misoptimize, including Allcott,

Mullainathan, and Taubinsky (2013), Heutel (2011), Fischer, Harrington, and Parry, and Parry

Evans, and Oates (2010). Our theoretical framework is straightforward, and closely follows

Allcott, Mullainathan, and Taubinsky (2013), Baicker, Mullainathan, and Schwartzstein

(2013), and Mullainathan, Schwartzstein, and Congdon (2012). This paper is distinguished

from most existing work in "behavioral public economics" in that it combines a theoretical

framework with parameters from randomized experiments to derive optimal policy.

Section 2 gives more background on lightbulbs and related policies. Sections 3 and 4

present the TESS and in-store experiments, respectively. Section 5 lays out our theoretical

framework and derives optimal policies and welfare formulas. Section 6 contains the policy
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evaluations, and Section 7 concludes.

2.2 Background

2.2.1 "The Lightbulb Paradox"

Lightbulbs are a canonical example of the "Energy Paradox" (Jaffe and Stavins 1994): the

low adoption of energy efficient technologies despite potentially large savings. Compared

to standard incandescents, compact fluorescent lightbulbs (CFLs) typically last eight times

longer and use four times less electricity. Although CFLs cost several dollars to purchase,

compared to a dollar or less for incandescents, using a CFL saves about $5 each year once

the costs of electricity and replacement bulbs are included. Despite this cost advantage, only

28 percent of residential sockets that could hold CFLs in 2010 actually had them (DOE 2010).

In that year, using incandescents instead of CFLs cost US households $15 billion.7 Although

one lightbulb is inexpensive and by itself uses little electricity, this aggregate figure makes

it difficult to argue that the lightbulb market is unimportant, especially when viewed as a

case study of issues relevant to the broader class of energy-using durables.

Of course, CFLs and incandescents are differentiated products: many consumers do not

like CFLs because the light quality is different, they sometimes flicker, they take time to

reach full brightness, and they must be properly disposed of because they contain mercury.

While about 60 percent of Americans report in recent surveys that they are "excited" about

the lightbulb efficiency standards, about 30 percent say that they are "worried" because they

"prefer using traditional lightbulbs" (Sylvania 2012). As Jaffe and Stavins (1994), Allcott

and Greenstone (2012), and many others have pointed out, these kinds of non-financial

utility costs from energy efficiency are important potential explanations for the apparent

7Throughout the paper, we assume that incandescents and CFLs last an average of 1000 and 8000 hours,
respectively. (To receive the Energy Star rating, a CFL model must last a median of 8000 hours in official tests.
Of course, a given consumer may experience varying results.) The national average electricity price is $0.10 per
kilowatt-hour. Our cost estimate of $15 billion is equal to 5.8 billion residential sockets (DOE 2012), times the 80
percent of sockets that can accommodate CFLs (DOE 2010) minus the actual "socket share" of 28 percent (DOE
2010), times $5 per socket per year.
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"Energy Paradox." Our framework is very clear in allowing these utility differences, and

our results indeed show that many consumers strongly prefer incandescents even after the

informational interventions.

The U.S. lighting efficiency standards do not require CFLs, nor do they ban incandescents.

Instead, they set a maximum energy use per unit of light output. Along with CFLs, light-

emitting diodes (LEDs) and high-efficiency halogen bulbs also comply with the standard.

We focus on the choice between CFLs and incandescents because these are by far the most

important current technologies. In 2012, about 1.5 billion incandescents and 300 million CFLs

were purchased, compared to only 23 million LEDs (Energy Star 2013). Our quantitative

welfare calculations would change in the future if LEDs become a relevant part of the choice

set. However, it seems plausible that the qualitative lessons about imperfect information

and inattention from CFLs also apply to LEDs, given that LEDs also have high purchase

prices, long lifetimes, and large energy cost savings relative to both incandescents and CFLs.

2.2.2 Economic Reasons for Standards and Subsidies

Governments often intervene in markets to subsidize goods or ban bads. Review articles

such as Allcott and Greenstone (2012), Gillingham and Palmer (2013), Jaffe and Stavins (1994),

and many others discuss the economic reasons in the context of energy-using durables.

One potential reason for such policies is externalities. In the case of lightbulbs, one might

think that electricity prices are below social cost due to unpriced externalities from climate

change, and banning energy inefficient lightbulbs is a welfare-improving second best policy

in the absence of a price on carbon dioxide emissions. However, two other distortions that

imply that the marginal price of electricity used for residential lightbulbs could actually

be above social marginal cost. First, retailers typically include much of fixed distribution

costs in marginal prices, as Borenstein and Davis (2012) and Davis and Muehlegger (2010)

show for natural gas. Second, most residential customers are charged time-invariant prices

instead of the optimal peak-load prices, which are lower at night and higher during the

day. If lightbulbs are more likely than to be used at night, they thus use electricity which is
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underpriced. This suggests that if the primary distortion is mispriced residential electricity,

it could actually be optimal to subsidize incandescents.8

Policymakers might also subsidize new or emerging products to help correct for unin-

ternalized spillovers from research and development or consumer learning. However, 70

percent of consumers report having at least one CFL in their home, compared to 80 percent

who report having at least one incandescent (Sylvania 2012), so the technology is available

and the vast majority of consumers already have experience with it.

Agency problems in real estate markets could also justify subsidies and standards. For

example, home buyers and renters cannot costlessly observe energy efficiency, which reduces

the incentive of sellers and landlords to install energy efficient capital stock. Empirical

studies by Davis (2010) and Gillingham, Harding, and Rapson (2012) provide some evidence

of this, and we are able to provide some evidence from the TESS experiment as well. A final

set of inefficiencies is "internalities," which we define as choices that don’t maximize the

decision maker’s own welfare. Present bias over cash flows could be one such internality: if

consumers underweight future energy cost savings, they would be less energy efficient than

their long-run preferences would dictate, and sophisticates would demand commitment

devices to make their future selves buy CFLs and hybrid cars. However, as Andreoni and

Sprenger (2012) and others have pointed out, agents in most models are present biased over

consumption, and most consumers have enough liquidity that paying the incremental few

dollars for a CFL does not immediately affect consumption.

Our paper focuses on a particular class of internalities, imperfect information and

inattention. In the absence of our results, what would empirical estimates from other

contexts suggest could be the magnitudes of these biases? Abaluck and Gruber (2011)

find that consumers are five times more responsive to insurance plan premiums than to

8California is a particularly stark example. Regulations encouraging low-carbon electricity generation mean
that the carbon content of electricity consumed there is extremely low relative to other states, so the downward
distortion to electricity prices from the lack of a carbon tax is particularly small. Meanwhile, residential
electricity tariffs with sharply increasing block prices distort marginal prices upward. Despite the fact that these
two forces significantly weaken or reverse the argument that underpriced electricity justifies energy efficiency
policies, California has implemented the federal lighting efficiency standards early.
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out-of-pocket costs. In their two empirical studies, Chetty, Looney, and Kroft (2009) estimate

that consumers are only 35 percent and 6 percent as attentive to sales taxes as they are

to product prices. A CFL saves an undiscounted $36 over its expected life relative to an

incandescent. If consumers were (hypothetically) as inattentive to these savings as they

are to sales taxes, these estimates suggest that they could undervalue the CFL’s energy

savings by $23 to $34. This dwarfs the typical difference in purchase prices between CFLs

and incandescents, and it suggests that our informational interventions could have massive

impacts on demand.

In summary, while there are other market failures that could justify subsidies and

standards for lightbulbs, we designed this study to focus on imperfect information and

inattention because results from other literatures suggested that these two distortions could

be large, while other market failures appear to be less relevant.

2.3 TESS Experiment

2.3.1 Survey Platform

We implemented the artefactual field experiment through Time-Sharing Experiments for

the Social Sciences (TESS). TESS, which is funded by the National Science Foundation,

facilitates academic access to KnowledgePanel, an online experimental platform managed

by a company called GfK. The platform has been used by a number of economists, including

Allcott (2013), Fong and Luttmer (2009), Heiss, McFadden, and Winter (2007), Newell and

Siikamaki (2013), and Rabin and Weizsacker (2009).

One reason why economists use TESS is the recruitment process, which generates a

sample as close as practically possible to being nationally representative on unobservable

characteristics and reduces concern about generalizability. Potential KnowledgePanel

participants are randomly selected from the U.S. Postal Service Delivery Sequence File

and recruited through a series of mailings in English and Spanish, plus telephone-based

follow-up when the address can be matched to a phone number. About 10 percent of
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people who are invited actually consent and complete the demographic profile to become

KnowledgePanel participants, and there are now approximately 50,000 active panel members.

Unrecruited volunteers are not allowed to opt in. Households without computers are given

computers in order to complete the studies.

KnowledgePanel participants take an average of two studies per month, and no more

than one per week. Of the KnowledgePanel participants who started our study, some were

not qualified to continue because their computer audio did not work, which would have

prevented them from hearing the audio part of our treatment and control interventions.

Of the qualified participants who began the survey, about 3/4 completed it, giving us a

final qualified sample size of 1533. Although we were able to negotiate with GfK to require

answers on some of the most important parts of the study, GfK’s policy is to usually allow

participants to refuse. A handful of participants refuse to answer any given question, so the

number of observations will vary slightly across regressions.

GfK provides sampling weights which can allow us to match the US population aged 18

and older on gender, age, ethnicity, education, census region, urban or rural location, and

whether the household had internet access before recruitment. All statistics presented in

the paper are weighted for national representativeness, although weighting observations

equally does not substantively change the results.

2.3.2 Experimental Design

The study had four parts: baseline lightbulb choices, the informational intervention, endline

lightbulb choices, and a post-experiment survey. About 21 percent of treatment group

consumers (226 consumers) were randomly assigned to skip the baseline lightbulb choices

and begin directly with the informational intervention; these "Endline-Only" consumers

are included in all statistics when possible and are the focus of several robustness checks.

Appendix B.1 contains screen shots from each part of the experiment.

Consumers were first shown an introductory screen with the following text:

In appreciation for your participation in this study, we are giving you a $10 shopping budget.
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With this money, we will offer you the chance to buy light bulbs. You must make a purchase with this

money. Whatever money you have left over after your purchase, you get to keep. This money will be

provided to you as cash-equivalent bonus points that will be awarded to your account.

In approximately four to six weeks, GfK will send you the light bulbs you have purchased. Light

bulbs are frequently shipped in the mail. There is not much risk of breakage, but if anything does

happen, GfK will just ship you a replacement. Even if you don’t need light bulbs right now, remember

that you can store them and use them in the future.

During the study, we will ask you to make 30 decisions between pairs of light bulbs. There will be

a first set of 15decisions, then a break, and then a second set of 15 decisions. After you finish with all

30 decisions in the questionnaire, one of them will be randomly selected as your “official purchase.”

GfK will ship you the light bulbs that you chose in that official purchase. Since each of your decisions

has a chance of being your official purchase, you should think about each decision carefully.

Baseline Lightbulb Choices

After the introductory screen, consumers were then shown two lightbulb packages. One

package contained one Philips 60-Watt equivalent Compact Fluorescent Lightbulb. The

other contained four Philips 60-Watt incandescent lightbulbs. The two choices were chosen

to be as comparable as possible, except for the CFL vs. incandescent technology. Half of

respondents were randomly assigned to see the incandescent on the left, labeled as "Choice

A," while the other half saw the incandescent on the right, labeled as "Choice B."

Consumers had the option to "click for detailed product information," and about 19

percent did so. This opened a simple "Detailed Product Information" screen, which included

the light output in Lumens, a quantitative measure of light color, energy use in Watts, and

other information. Both packages typically sell online for about $4, although we did not tell

consumers these typical prices.

Lower down on this same screen, consumers were asked to make their baseline lightbulb

choices: 15 decisions between the same two packages at different relative prices. Decision

Number 1 offered Choice A for free and Choice B for $10. The relative price of Choice A
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increased monotonically until Decision Number 15, which offered Choice A for $10 and

Choice B for free. Consumers spent a median of three minutes and zero seconds to complete

these first 15 decisions.

We identify consumers’ baseline relative willingness to pay (WTP) for the CFL, denoted

v0
i , using the relative prices at which they switch from preferring CFLs to incandescents. For

example, consumers who choose CFLs when both packages cost $4 but choose incandescents

when incandescents are one dollar cheaper are assumed to have v0
i = $0.50. Eight percent

of consumers did not choose monotonically: they chose Choice A at a higher relative price

than another decision at which they chose Choice B. These consumers were prompted with

the following message: The Decision Numbers below are organized such that Choice A costs more

and more relative to Choice B as you read from top to bottom. Thus, most people will be more likely to

purchase Choice A for decisions at the top of the list, and Choice B for decisions at the bottom of the

list. Feel free to review your choices and make any changes. Then click NEXT. After this prompt,

5.3 percent of consumers still chose non-monotonically, and we code their WTP as missing.

Some consumers had "censored" WTPs: they preferred either Choice A or Choice B at

all relative prices. These consumers were asked to self-report their WTP. For example, a

participant who always preferred Choice A was asked: Your decisions suggest that you prefer

Choice A even when Choice A costs a total of $10 and Choice B is free. If Choice B continued to be

free, how much would Choice A need to cost in order for you to switch to Choice B? (This is purely

hypothetical - your answer will not affect any of the prices you are offered.)

At baseline, five percent of consumers preferred the incandescents by more than $10,

while 19 percent preferred the CFLs by more than $10. Across all censored consumers, the

median absolute value of self-reported relative WTP was $15. The distribution of self-reports

is skewed, with about eight percent of consumers preferring one or the other choice by

more than $40. Because these are self-reports, we wish to be cautious about using them in

the analysis, so we instead assume a mean relative WTP of $15 and -$15 for top-coded and

bottom-coded consumers, respectively. We will demonstrate the sensitivity of the results

to this assumed mean censored value. While an assumed mean censored value may seem
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unsatisfying, remember that in the absence of this type of experiment, a demand model

used to predict the removal of a product from the choice set would typically assume a logit

or otherwise parametric functional form for demand.

In theory, if lightbulbs were perishable and consumers did not immediately need one,

they would buy the cheapest package instead of revealing the WTP they would have if they

did need one. In practice, lightbulbs are easily stored, and we reminded consumers of this

fact in the introductory text. In theory, if it were costless to resell the experimental purchase

and replace it with a different purchase outside the experiment, consumers who know that

the typical retail prices are approximately equal would always buy the cheaper package.

In order to avoid making this salient, the experiment website did not include information

about the bulbs’ typical retail prices. In practice, it seems unlikely that consumers resold the

packages that they received. If non-storability and price arbitrage affected some consumers’

choices, this would make the demand curve more elastic and the treatment effects less

positive. Empirically, however, we see large shares of consumers with relative WTPs that

differ substantially from typical market relative prices.

Informational Intervention

Consumers were randomized into three groups: Balanced treatment, Positive treatment, and

control. Endline-Only consumers were randomized between the two treatment groups with

equal probability. All other consumers were randomized between all three groups with

equal probability.

The information treatments were designed to give clear product information while

minimizing the possibility that the information would be perceived as biased. The treatments

were also designed to closely parallel each other, to minimize the chance that idiosyncratic

factors other than the information content could affect purchases. Each treatment had the

following structure:

1. Belief elicitation. This elicited prior beliefs over the information to be presented in the

two Information Screens.
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2. Introductory Screen

3. First Information Screen. This had text plus an illustratory graph, and the text was

also read verbatim via an audio recording. The audio recordings are available as part

of the Online Supplementary Materials. At the bottom of the information screen, there

was a "quiz" on a key fact.

4. Second Information Screen. This paralleled the First Information Screen.

The central difference between the three conditions was the content of their two In-

formation Screens. The order of these two screens was randomly assigned with equal

probability.

We took two steps to make sure that all consumers understood the treatment. First, we

used multiple channels to convey information: text, graphical, and audio. This means that

people who process information in different ways had a higher chance of internalizing the

information. Second, the quiz forced respondents to internalize the information if they had

not done so initially.

Balanced Treatment The Balanced treatment Introductory Screen had the following text:

For this next part of the study, you will have the opportunity to learn more about light bulbs. We

will focus on the following two issues:

1. Total Costs

2. Disposal and Warm-Up Time

The discussion of each issue will be followed by a one-question quiz. Please pay close attention to

the discussion so that you can correctly answer the quiz question.

Consumers then advanced to the Total Cost Information Screen and the Disposal and

the Warm-Up Information Screen, in randomized order. The Total Cost Information Screen

explained that CFLs both last longer and use less electricity and translates these differences

into dollar amounts. The bottom line was:
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Thus, for eight years of light, the total costs to purchase bulbs and electricity would be:

• $56 for incandescents: $8 for the bulbs plus $48 for electricity.

• $16 for a CFL: $4 for the bulbs plus $12 for electricity.

The quiz question at the bottom of the screen was: For eight years of light, how much larger

are the total costs (for bulbs plus electricity) for 60-Watt incandescents as compared to their CFL

equivalents? The correct answer could be inferred from the information on the screen: $56

for incandescents - $16 for CFLs = $40. Sixty-four percent of consumers correctly put $40.

Those who did not were prompted: That is not the correct answer. Please try again. After this

prompt, 73 percent of consumers had typed $40. The remaining consumers were prompted:

The total costs for eight years of light are $16 for CFLs and $56 for incandescents. Therefore, the

incandescents cost $40 more. You may type the number 40 into the answer box. By this point, 89

percent of consumers had correctly typed $40. This documents that the vast majority of

consumers understood at least some part of the information. Consumers spent a median of

two minutes and 12 seconds to read the Total Cost Information Screen and complete the

quiz question.

The Disposal and Warm-Up Information Screen was designed to present information

about ways in which CFLs may not be preferred to incandescents. It paralleled exactly

the Total Cost Information Screen, beginning with belief elicitation, and then continuing

to an Information Screen with text of similar length, a graph, and a quiz question at the

bottom. The Disposal and Warm-Up Information Screen explained that "because CFLs contain

mercury, it is recommended that they be properly recycled instead of disposed of in regular household

trash." It also explained that "after the light switch is turned on, CFLs take longer to warm up

than incandescents." We included this information to reduce the probability of experimenter

demand effects, through which consumers might think that the experimenter wanted them

to purchase the CFL, potentially causing their endline choices to differ from true preferences.
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Control The control intervention was designed to exactly parallel the treatment interven-

tions, but with information that should not affect relative WTP for CFLs vs. incandescents.

One screen presented the number of lightbulbs installed in residential, commercial, and

industrial buildings in the United States. The other screen detailed trends in total lightbulb

sales between 2000 and 2009.

Positive Treatment The Positive treatment was designed to inform consumers about

the benefits of the CFL in terms of lifetime and lower energy costs, without presenting

information about ways that the incandescent might be preferred to the CFL. This more

closely parallels the intervention in the in-store RCT described in the next section. To

implement this while keeping the intervention the same length, we combined the Total Cost

Information Screen with a random draw of one of the two control screens.

Endline Lightbulb Choices

The endline lightbulb choice screen was analogous to the baseline screen. Consumers spent

a median of one minute and 20 seconds to complete these final 15 decisions. We determine

endline relative WTP v1
i in the same way as above.

2.3.3 Data

Column 1 of Table 2.1 presents descriptive statistics. Liberal is self-reported political

ideology, originally on a seven-point scale, normalized to mean zero and standard deviation

one, with larger numbers indicating more liberal. Party is self-reported political affiliation,

similarly normalized from an original seven-point scale, with larger numbers indicating

more strongly Democratic. Environmentalist is the consumer’s answer to the question,

"Would you describe yourself as an environmentalist?" Conserve Energy is an indicator for

whether the consumer reports having taken steps to conserve energy in the past twelve

months. Homeowner is a binary indicator variable for whether the consumer owns his or
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her home instead of rents. These questions were asked when the participant first entered

KnowledgePanel, not as part of our experiment.

Table 2.1: Descriptive Statistics and Balance for TESS Experiment

(1) (2) (3)
Population Treatment - Control Positive - Balanced

Individual Characteristics Mean Difference Treatment Difference
Baseline Relative Willingness-to-Pay 2.9 0.20 -0.25

for CFL ($) (7.1) (0.52) (0.70)
Household Income ($000s) 70.9 -2.86 -3.79

(51.8) (3.92) (3.86)
Education (Years) 13.8 -0.04 0.18

(2.5) (0.18) (0.21)
Age 46.7 0.26 0.22

(16.9) (1.26) (1.45)
Male 0.48 -0.007 -0.009

(0.50) (0.035) (0.040)
Liberal 0.00 0.056 -0.005

(1.00) (0.076) (0.084)
Party 0.00 0.080 0.078

(1.00) (0.072) (0.082)
Environmentalist 0.30 -0.024 0.019

(0.32) (0.023) (0.026)
Conserve Energy 0.55 0.008 0.032

(0.50) (0.036) (0.041)
Homeowner 0.70 0.022 -0.012

(0.46) (0.035) (0.038)

F-Test p-Value 0.848 0.995

Notes: Column 1 presents means of individual characteristics in the TESS experiment population, with standard
deviations in parenthesis. Column 2 presents differences in means between the treatment groups and control,
while column 3 presents differences in means between Positive and Balanced treatment groups. Columns 2
and 3 have robust standard errors in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent
confidence, respectively. Observations are weighted for national representativeness.

Column 2 presents the difference in means between consumers in either of the two

treatment groups vs. control. Column 3 presents the difference in means between the

Positive and Balanced treatment groups. All 20 t-tests fail to reject equality, as do the

joint F-tests of all characteristics. Like all reported results, these are weighted for national

representativeness, although the unweighted groups are also balanced on all characteristics.
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Appendix Table B2.1 presents correlations between baseline WTP and observable char-

acteristics. Men, democrats, environmentalists, those who report having taken steps to

conserve energy, and those with higher discount factors have higher demand for CFLs.

(The discount factors are the δ parameter in a β, δ model of present bias, as calibrated from

hypothetical intertemporal tradeoffs in the post-experiment survey.) These correlations

conform to our intuition and build further confidence that the differences in WTP are

meaningful. However, renters and more present-biased (lower β) consumers do not have

lower WTP for CFLs conditional on other observables. This provides no support for the

hypotheses that agency problems and present bias play a role in lightbulb decisions.

2.3.4 Empirical Strategy and Results

Figure 2.1 shows the baseline and endline demand curve for CFLs. The control endline

demand curve sits almost directly on top of the baseline demand curve, implying that the

control interventions had little effect on relative demand for CFLs vs. incandescents. The

treatment endline curve is shifted outwards, reflecting an increase in demand for the CFL.

At equal prices, which approximately reflects market conditions, 76 percent of the treatment

group chooses the CFL, against 65 percent of control.

Figure 2.2 presents a histogram of the within-subject changes in WTP between baseline

and endline. About 90 percent of control group consumers either have exactly the same

WTP or change by $2 or less. In treatment, there is a mass to the right of the figure, with 36

percent of people increasing WTP by between $1 and $10.

Denote Xi as participant i’s vector of characteristics from Table 1, and Ti as an indicator

for whether the household is in either of the two treatment groups. We estimate the average

treatment effects of the informational interventions on endline willingness-to-pay v1
i using

OLS with robust standard errors:

v1
i = τTi + γXi + ε i (2.1)
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Figure 2.1: CFL Demand Curves

Table 2.2 presents the results. Column 1 presents the unconditional difference in means,

excluding the Endline-Only group for comparability with other columns that include

baseline WTP. Column 2 adds the control for baseline WTP v0
i . Column 3 is the exact

specification from Equation (2.1), including individual characteristics. The sample size

decreases in column 3 because at least one X characteristic is missing for 15 consumers, but

the effects do not change statistically. In column 3, the informational intervention caused

consumers’ WTP for the CFL to increase by an average of about $2.32.

One potential concern is that treatment group consumers might wish to be internally

consistent in their choices between baseline and endline (Falk and Zimmermann 2012).

This could cause endline choices to be biased towards the baseline, unlike an experimental

design that did not require consumers to state baseline choices. This in turn would bias

treatment effects toward zero. The Endline-Only treatment group was included to test this.

Column 4 includes only the Endline-Only and control groups, excluding the treatment

group that made baseline choices. The estimates should be compared against Column 1,

which similarly does not control for baseline WTP. The point estimate is not statistically
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Figure 2.2: Histogram of Changes in WTP

different, although it is lower by $0.46 per package.9

Top-coding and bottom-coding of WTP mechanically influence the treatment effect.

Consumers with baseline WTP equal to the maximum cannot reveal a post-treatment

increase in WTP, and any consumers with baseline WTP equal to the minimum could

not reveal a decrease in WTP. Because the treatment tends to increase WTP, the former

effect should dominate, and the average treatment effect should be understated. Column

5 excludes consumers with top-coded or bottom-coded baseline WTP of v0
i = $15 or

v0
i = −$15. The estimated effect increases to $3.23.10

Relatedly, the assumed mean censored value of $15 caps the increase in WTP that any

consumer can reveal. Since a larger share of endline WTP is top-coded in treatment relative

9Two other tests confirm why this result holds. First, average post-treatment WTP does not differ statistically
between the Endline-Only group and rest of the treatment group. Second, the shape of demand does not differ
between these two groups: Appendix Figure B2.1 shows that the Endline-Only demand curve sits very close to
the demand curve for the rest of the treatment group, while control group demand is very different. Statistical
tests show that the share of consumers with v1

i > v+ does not differ statistically at any level of v+.

10This increase is consistent with Figure 2.4, which we discuss later. The figure shows that consumers with
top coded baseline relative WTP (plus the small group with WTP of $9) have close to zero conditional average
treatment effect, precisely because there is no way for them to increase their WTP in the multiple price list. This
illustrates graphically why excluding these consumers increases the treatment effect.
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Table 2.2: Effects of TESS Informational Interventions

(1) (2) (3) (4) (5) (6)

1(Treatment) 2.535 2.301 2.324 2.078 3.231 2.138
(0.549)*** (0.358)*** (0.364)*** (0.777)*** (0.364)*** (0.498)***

Baseline Willingness-to-Pay 0.777 0.775 0.934 0.776
(0.037)*** (0.037)*** (0.065)*** (0.037)***

1(Positive Treatment) 0.396
(0.573)

R2 0.03 0.56 0.57 0.02 0.33 0.57
N 1,203 1,203 1,188 656 919 1,188

Individual Characteristics No No Yes No Yes Yes
Include Endline-Only Group No No No Yes No No
Exclude Max./Min. Baseline WTP No No No No Yes No

Notes: This table presents estimates of Equation (2.1). The outcome variable is endline
willingness-to-pay for the CFL. Robust standard errors in parenthesis. *, **, ***: Statistically
significant with 90, 95, and 99 percent confidence, respectively. Observations are weighted
for national representativeness.

to control (29 percent vs. 16 percent), increasing this assumed value should increase the

treatment effect. In unreported regressions where we alternatively assume mean censored

values of $12 ($20) instead of $15, the ATE decreases to $1.99 (increases to $2.88).

Demand Effects

With any experiment other than a natural field experiment, one might be worried about

demand effects: that participants change their actions to comply with, or perhaps defy, the

perceived intent of the study. We could have designed a lengthier or otherwise more complex

experiment to obfuscate our objective of estimating the effects of information disclosure, but

this would have added to the cost. If demand effects are present, the likely direction would

be to increase treatment group post-intervention WTP, i.e. make the treatment effect more

positive. Aside from pointing out that the likely sign of the bias would only reinforce our

qualitative conclusions, we also address demand effects in three ways.

First, we designed the experiment to include the Balanced treatment group, which
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disclosed both positive and negative information about CFLs. Consumers in this group

should be less likely to believe that the experimenters were purely trying to persuade them

to purchase the CFL. If demand effects play a large role, effects of the Positive treatment

should be inflated relative to the Balanced treatment. Column 6 of Table 2.2 includes an

indicator for the Positive treatment group, showing that the effects do not differ statistically,

and the point estimates are fairly similar. Because the effects do not differ between the two

groups, we combine all treated consumers in all other parts of the analysis.

Second, demand effects are less likely if participants cannot identify the intent of the

study. The post-experiment survey asked consumers what they thought the intent of the

study was. Multiple responses were allowed. Table 3 presents the share of each group

that gave each response. The two treatment groups responded similarly, although the

Balanced group was more likely to report that the intent of the study was to "understand

what features of lightbulbs are most important to people" and less likely to report that the

intent was to "test how well people are able to quantify energy costs." Relative to control,

both treatment groups were more likely to respond that the intent of the study was to

""understand why people buy incandescents vs. CFLs," "test how well people are able to

quantify energy costs," "test whether ability to quantify energy costs affects purchases," and

"test whether consumer education affects purchases." The control group was more likely to

respond that the intent was to "understand the effects of price changes," "measure whether

people make consistent purchases in similar situations," and "test whether the number of

bulbs in a package affects purchasing patterns." The dispersion of beliefs within groups

suggests that there is not one obvious way in which demand effects might act.

Third, if demand effects are present, they should differentially affect people who are

more able to detect the intent of the study and are more willing to change their choices

given the experimenter’s intent. One existing measure of these issues is the Self-Monitoring

Scale, a battery of personality questions developed by Snyder (1974). Snyder writes that

the scale is designed to identify individuals who "tend to express what they think and feel,

rather than mold and tailor their self-presentations and social behavior to fit the situation."
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Table 2.3: Perceived Intent of TESS Study

(1) (2) (3)
Balanced Positive

Do you think that the intent of the study was to . . . Control Treatment Treatment
Understand the effect of price changes on purchasing patterns 0.44 0.34 0.37
Measure whether people make consistent

purchases in similar situations 0.31 0.25 0.26
Understand why people buy incandescents vs. CFLs 0.31 0.48 0.47
Test how well people are able to quantify energy costs 0.27 0.38 0.46
Test whether ability to quantify energy costs

affects purchases of incandescents vs. CFLs 0.33 0.50 0.54
Test whether the number of bulbs in a package

affects purchasing patterns 0.37 0.22 0.26
Test whether consumer education affects purchases

of incandescents vs. CFLs 0.41 0.60 0.64
Understand what features of lightbulbs

are most important to people 0.30 0.41 0.34
Predict the future popularity of incandescents vs. CFLs 0.30 0.34 0.34
None of the above 0.05 0.08 0.05

Number of Respondents 461 545 519
Notes: This table presents the share of consumers in each group who responded that the
intent of the study was as listed in the leftmost column. Observations are weighted for
national representativeness.

From the set of standard Self-Monitoring Scale statements, we took the most relevant

six:

• It’s important to me to fit in with the group I’m with.

• My behavior often depends on how I feel others wish me to behave.

• My powers of intuition are quite good when it comes to understanding others’ emo-

tions and motives.

• My behavior is usually an expression of my true inner feelings, attitudes, and beliefs.

• Once I know what the situation calls for, it’s easy for me to regulate my actions

accordingly.
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• I would NOT change my opinions (or the way I do things) in order to please someone

else or win their favor.

At the very end of the post-experiment survey, we asked consumers to respond to

each of these six statements on a five-point Likert scale from "Agree" to "Disagree." We

normalize responses to each question to mean zero, standard deviation one, and interact

each with the treatment indicator while also controlling for lower-order interactions. While

the six Self-Monitoring Scale variables are correlated with each other, none is correlated

with endline CFL demand or with the treatment effect, nor is a composite of the six. The

estimation results can be found in Appendix Table B2.2.

Mechanisms

How much of the treatment effect is coming from changing information sets vs. directing

attention to energy costs? The post-experiment survey elicits beliefs over how much less

it costs to buy electricity for a CFL vs. incandescents over the typical 8000-hour life of

a CFL, at national average electricity prices. The question is similar, but not identical, to

the "quiz" question asked of the treatment group, and the correct answer is $36 ($48 for

the incandescent minus $12 for the CFL). Column 1 of Table 4 shows that the treatment

increases median beliefs: they are $25 in control and $13 higher in treatment. Column 2

of Table 2.4 shows that the treatment also substantially reduces the median absolute error,

i.e. the absolute value of the difference between the reported belief and $36. As in the

other tables, the exact sample sizes are slightly smaller than the total number of qualified

participants because a handful of participants refused to answer. We use median regressions

because reported beliefs have high variance, and median regressions are more robust to

extreme outliers than OLS. These results suggest that at least part of the treatment effect is

from changing information sets.

The post-experiment survey also asks consumers to rate on a scale of 1-10 the importance

of energy use, bulb lifetime, warm-up time, and mercury and disposal in their purchase
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Table 2.4: Effects on Beliefs

(1) (2)
Savings Belief
Belief Error

1(Treatment) 13.0 -14.0
(3.8)*** (1.8)***

Constant 25.0 34.0
(3.8)*** (1.4)***

R2 . .
N 1,506 1,506

Notes: In the post-experiment survey, consumers were asked their beliefs about the dollar
value of electricity cost savings from owning CFLs instead of incandescents. Columns 1
and 2 present median regressions of the effects of the informational interventions on these
beliefs and the absolute value of the error in these beliefs, respectively. *, **, ***: Statistically
significant with 90, 95, and 99 percent confidence, respectively. Observations are weighted
for national representativeness.

decisions. Table 2.5 presents how the treatments affected these ratings. Both Positive and

Balanced treatments decreased the stated importance of purchase prices, consistent with

consumers re-orienting away from purchase price as a measure of cost. Point estimates

suggest that both the Positive and Balanced treatments increased the importance of energy

use and that the Positive treatment also increased the importance of bulb lifetimes. These

are the only estimates in the entire analysis whose significance level is affected by the

weighting: they are not significant in Table 2.5, but (unreported) regressions show that they

are statistically significant when weighting all observations equally. The Positive treatment

and control groups do not differ on the importance of warm-up time or mercury and

disposal, which is to be expected because neither group received information on these two

issues. Interestingly, the Balanced treatment decreased the importance of warm-up time.

One potential explanation is that consumers had previously believed that CFL warm-up

times were longer, and the treatment reduced the importance of this difference between

CFLs and incandescents.
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Table 2.5: Effects on Important Factors in Purchase Decision

(1) (2) (3) (4) (5)
Energy Bulb Warm-Up Mercury and

Price Use Lifetime Time Disposal

1(Balanced Treatment) -0.864 0.147 0.023 -0.943 -0.294
(0.208)*** (0.214) (0.201) (0.243)*** (0.252)

1(Positive Treatment) -0.552 0.202 0.249 0.036 -0.089
(0.218)** (0.210) (0.187) (0.231) (0.244)

Constant 7.747 7.435 7.760 5.406 6.030
(0.134)*** (0.145)*** (0.133)*** (0.167)*** (0.178)***

R2 0.02 0.00 0.00 0.02 0.00
N 1,533 1,478 1,512 1,506 1,518

Notes: This table reports treatment effects on self-reported importance of different factors in
purchase decisions. Robust standard errors in parenthesis. *, **, ***: Statistically significant
with 90, 95, and 99 percent confidence, respectively. Observations are weighted for national
representativeness.

2.4 In-Store Experiment

2.4.1 Experimental Design

Would the effects of information provision be different in a more typical retail setting com-

pared to the TESS platform? To answer this, we partnered with a large home improvement

retailer to implement an in-store experiment. Between July and November 2011, three

research assistants (RAs) worked in four large "big box" stores, one in Boston, two in New

York, and one in Washington, D.C. The RAs approached customers in the stores’ "general

purpose lighting" areas, which stock incandescents and CFLs that are substitutable for

the same uses.11 They told customers that they were from Harvard University and asked,

"Are you interested in answering some quick research questions in exchange for a discount

on any lighting you buy today?" Customers who consented were given a brief survey via

iPad in which they were asked, among other questions, the most important factors in their

lightbulb purchase decision, the number of bulbs they were buying, and the amount of

11This includes standard bulbs used for lamps and overhead room lights. Specialty bulbs like Christmas
lights and other decorative bulbs, outdoor floodlights, and lights for vanity mirrors are sold in an adjacent aisle.
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time each day they expected these lightbulbs to be turned on each day. The survey did not

mention electricity costs or discuss any differences between incandescents and CFLs.

The iPad randomized customers into treatment and control groups with equal probability.

For the treatment group, the iPad would display the annual energy costs for the bulbs

the customer was buying, given his or her estimated daily usage. It also displayed the

total energy cost difference over the bulb lifetime and the total user cost, which included

energy costs plus purchase prices. Appendix B.3 presents the information treatment screen.

The RAs would interpret and discuss the information with the customer, but they were

instructed not to advocate for a particular type of bulb and to avoid discussing any other

issues unrelated to energy costs, such as mercury content or environmental externalities.

The control group did not receive this informational intervention, and the RAs did not

discuss energy costs or compare CFLs and incandescents with these customers.

At the end of the survey and potential informational intervention, the RAs gave cus-

tomers a coupon in appreciation for their time. The iPad randomized respondents into

either the Standard Coupon group, which received a coupon for 10 percent off all lightbulbs

purchased, or the Rebate Coupon group, which received the same 10 percent coupon plus a

second coupon valid for 30 percent off all CFLs purchased. Thus, the Rebate Coupon group

had an additional 20 percent discount on all CFLs. For a consumer buying a typical package

of 60 Watt bulbs at a cost of $3.16 per bulb, this maps to an average rebate of $0.63 per bulb.

The coupons had bar codes which were recorded in the retailer’s transaction data as the

customers submitted them at the register, allowing us to match the iPad data to purchases.

After giving customers their coupons, the RAs would leave the immediate area in order

to avoid any potential external pressure on customers’ decisions. The RAs would then record

additional demographic information on the customer, including approximate age, gender,

and ethnicity. The RAs also recorded this information for people who refused. Finally,

the RA recorded the total duration of the interaction. The difference between treatment

and control had a mean of 3.17 minutes and a median of 3.0 minutes. This measures the

amount of time spent discussing the energy cost information and the differences between
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incandescents and CFLs.

2.4.2 Data

Of the 1561 people who were approached, 459 refused, while 1102 began the iPad survey.

Of these, 13 broke off after the first question, two broke off later, and 1087 were assigned to

a treatment group and given a coupon. Column 1 of Table 2.6 presents descriptive statistics

for the sample of customers who completed the survey and were given a coupon. Column 2

presents differences between the 474 people who refused or did not complete the survey

and the 1087 who completed, using the demographic characteristics recorded for those who

refused. People whom the RAs thought were older, male, Asian, and Hispanic were more

likely to refuse. Columns 3 and 4 present differences between the information treatment

and control groups and between the rebate and standard coupon groups. In one of the 18

t-tests, a characteristic is statistically different with 95 percent confidence: we have slightly

fewer people coded as Asian in the information treatment group. F-tests fail to reject that

the groups are balanced.
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Table 2.6: Descriptive Statistics and Balance for In-Store Experiment

(1) (2) (3) (4)
Experimental Refused - Treatment - Rebate -

Sample Sample Control Standard
Individual Characteristics Mean Difference Difference Difference
Energy an Important Factor 0.25 0.009 -0.024

in Purchase Decision (0.43) (0.026) (0.026)
Expected Usage (Minutes/Day) 333 12.8 2.7

(280) (17.0) (17.0)
Age 43.8 2.3 0.7 -0.3

(11.4) (0.6)∗∗∗ (0.7) (0.7)
Male 0.66 0.06 0.009 0.003

(0.47) (0.03)∗∗ (0.029) (0.029)
African American 0.16 -0.04 -0.001 -0.008

(0.37) (0.02)∗∗ (0.022) (0.022)
Asian 0.06 0.04 -0.030 0.005

(0.24) (0.02)∗∗ (0.014)∗∗ (0.015)
Caucasian 0.66 -0.07 0.037 -0.005

(0.47) (0.03)∗∗ (0.029) (0.029)
Hispanic 0.07 0.06 0.001 0.011

(0.25) (0.02)∗∗∗ (0.015 ) (0.015)
Middle Eastern 0.01 0.01 0.002 0.007

(0.12) (0.01) (0.013) (0.007)

F-Test p-Value 0.00 0.742 0.896

Purchase Decisions
Purchased Any Lightbulb 0.77 0.011 0.027

(0.42) (0.025) (0.025)
Purchased Substitutable Lightbulb 0.73 -0.008 0.011

(0.44) (0.027) (0.027)
Notes: Column 1 presents means of individual characteristics in the in-store experiment
sample, with standard deviations in parenthesis. Column 2 presents differences in recorded
demographic characteristics between those who refused or did not complete the survey
and the experimental sample. Column 3 presents differences in means between treatment
and control groups, while column 4 presents differences in means between the rebate and
standard coupon groups. Columns 2, 3, and 4 have robust standard errors in parenthesis. *,
**, ***: Statistically significant with 90, 95, and 99 percent confidence, respectively.
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We restrict our regression sample to the set of consumers that purchase a "substitutable

lightbulb," by which we mean either a CFL or any incandescent or halogen that can be

replaced with a CFL. The bottom panel of Table 2.6 shows that 77 percent of interview

respondents purchased any lightbulb with a coupon, and 73 percent of survey respondents

purchased a substitutable lightbulb. While information or rebates theoretically could affect

whether or not customers purchase a substitutable lightbulb, t-tests show that in practice

the percentages are not significantly different between the groups.

2.4.3 Empirical Strategy and Results

We denote Ti and Si as indicator variables for whether customer i is in the information

treatment and rebate groups, respectively. Xi is the vector of individual-level covariates.

We estimate a linear probability model12 with robust standard errors using the following

equation:

1(Purchase CFL)i = ηSi + τTi + αXi + ε i (2.2)

Table 2.7 presents estimates of Equation (2.2). Column 1 excludes covariates Xi, while

column 2 adds them. The estimates are statistically identical, and the point estimates are

very similar. For customers who received the standard coupon and were in the information

control group, the CFL market share is 34 percent. The rebate increases CFL market share

by about ten percentage points. This implies a price elasticity of demand for CFLs of

∆Q/Q
∆P/P ≈

0.1/0.34
−0.2 ≈ −1.5. Column 3 shows that the interaction between information and

rebates is statistically zero.

The informational intervention does not statistically affect CFL market share. Using

the standard errors from column 2, we can reject with 90 percent confidence that the

intervention had more than 73 percent of the effect of the 20 percent CFL rebate. Assuming

12We technically prefer the linear probability model here because we assume locally linear demand when
using the estimates for policy analysis. In any event, S and T are indicator variables, and the probit estimates
are almost identical.
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Table 2.7: Effects of In-Store Informational Intervention

(1) (2) (3)

1(Rebate) 0.094 0.105 0.078
(0.035)*** (0.033)*** (0.047)*

1(Treatment) -0.002 0.004 -0.022
(0.035) (0.033) (0.045)

1(Rebate and Treatment) 0.054
(0.066)

R2 0.01 0.16 0.16
N 794 793 793

Individual Characteristics No Yes Yes

Notes: This table presents estimates of Equation (2.2), a linear probability model with
outcome variable 1(Purchased CFL). Robust standard errors in parenthesis. *, **, ***:
Statistically significant with 90, 95, and 99 percent confidence, respectively.

linear demand, this bounds the effect of information at the effect of a 12 percent rebate, or

about $0.46 per 60-Watt equivalent bulb.

There are several reasons for why the information effect might differ from the TESS

experiment. First, it could be that a very large share of consumers did not understand the in-

store informational intervention or were in too much of a hurry to internalize the information.

However, our RAs reported that they believe that this is unlikely. Second, the informational

environment differs: these and other home improvement stores have signage in lightbulb

aisles that highlights features of different lightbulb technologies, including electricity use.

If this existing information is very effective, incremental information might have no effect.

Notice that if this is the case, our treatment effects are still the relevant parameters for policy

analysis later in the paper: if existing information provision technologies are fully effective,

then there is no remaining imperfect information and inattention to justify subsidies and

standards.

A third reason is that the experimental populations differ: the TESS population is

nationwide, while the in-store sample is drawn from four stores in three eastern states.

Home improvement retailers are the most common place where households buy lightbulbs
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(DOE 2010), and our partner alone sells upwards of 50 million lightbulb packages each year,

a non-trivial share of national sales. Internally valid estimates for our experimental sample

are thus of great interest per se, even if the results might not generalize to other types of

retailers.

2.5 A Framework for Policy Analysis

2.5.1 Consumers

We model consumers that make one of two choices, labeled E and I. In our empirical

application, E represents the purchase of an energy efficient product (the CFL), while I is

an energy inefficient product (the incandescent). More generally, this model could capture

any choice over which consumers might misoptimize.

Products j ∈ {E, I} are sold at prices pj, and p = pE − pI is the relative price of E. We

define vj as the consumer’s true utility from consuming product j, and we call v = vE − vI

the relative true utility from E. In our empirical application, v could be determined by any

and all of the differences between CFLs and incandescents, such as electricity costs, longer

lifetime, mercury content, brightness, and "warm glow" utility from reduced environmental

impact.

A consumer’s utility from purchasing product j at price pj is given by vj + (Z − pj),

where Z is the consumer’s budget and Z− pj is utility from consumption of the numeraire

good. A fully optimizing consumer thus chooses E if and only if v > p. A misoptimizing

consumer chooses E if and only if v− bk(p) > p, where bk(p) is a bias that may depend on

p and is continuously differentiable in p. To simplify notation, we will typically denote bias

by bk rather than bk(p). The pair (v, bk), which we will refer to as a consumer’s "type," is

jointly distributed according to a distribution F. We denote the conditional distribution of v

given b by Fv|bk
(·|bk). We assume that for each bk, the distribution Fv|bk

(·|bk) has an atomless

and continuous density function fv|bk
(·|bk). For simplicity, we will also assume that b takes

on finitely many values, though the analysis easily generalizes. We let αk denote the fraction
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of consumers with bias bk.

We also call bk the "internality," to highlight the analogy to externalities. While an

externality is a wedge between private willingness-to-pay (WTP) and social welfare, the

internality is a wedge between private WTP and true private welfare. This is a reduced form

representation of many biases that could cause consumers not to maximize experienced

utility, including misperceptions of any product attribute. It allows for dependencies between

bias bk, true valuation v, and price p, as theories of endogenous inattention would imply. In

our empirical application, we think of the bias as arising from consumers’ undervaluation

of energy costs due to a set of informational and attentional biases that we discuss in the

next section.

Under the additional assumption below, this model generates continuous and downward-

sloping demand curves for product E.13

Assumption 1: bk is differentiable in p and there exists a ρ > −1 such that b′k(p) > ρ for

all p.

Let DR(p) = 1− F(p) denote the “unbiased” demand curve for E, let Dbk(p) = αk[1−

Fv|bk
(p + bk|bk)] denote the demand curve of consumers with bias bk, let DR

bk
= αk[1 −

Fv|bk
(p|bk)] denote what would be the demand curve of consumers with bias b if they were

“debiased,” and let D(p) = ∑k Dbk(p) denote the total demand curve of all consumers. Our

assumptions about bk and F imply that all demand curves are continuously differentiable

functions of p. All analysis that follows expresses results in terms of these demand curves,

so this framework could also be applied to continuous choice situations.

2.5.2 The Policymaker

The policymaker has two types of tax policies available: a subsidy of amount s for E and a

ban on either choice. We will compare the welfare impacts of these policies to a hypothetical

13The assumption that b′k(p) > −1 is needed to gurantee that a consumer’s perceived relative value of E,
given by v− bk(p)− p, does not increase in p. The additional assumption that b′k is bounded away from -1
guarantees that v− bk(p)− p < 0 for high enough p and that v− bk(p)− p > 0 for low enough p, which implies
that type k is marginal at some price.
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technology that can fully debias consumers.

The policymaker maintains a balanced budget through lump-sum tax or transfer T(s) =∫
sσ(v, bk, c− s)dF(v, bk). This implies that the subsidy has no distortionary effects on other

dimensions of consumption, and thus its role is purely corrective. Because all consumers

choose either E or I, the subsidy for E is equivalent to a tax on I, and a ban on one choice

is equivalent to a mandate for the other. Products E and I are produced in a competitive

economy at a constant marginal costs cj, with relative cost c = cE − cI . Product E’s relative

price after subsidy s is p = c− s.

Let σ(v, bk, p) denote the choice choice of a type (v, bk) consumer at price p, with σ = 1

denoting the choice of E and σ = 0 denoting the choice of I. Also denote pσ as pE if σ = 1

and pI if σ = 0. Finally, define a normalizing constant C as the integral over all consumers

of Z + vI − pI . The policymaker’s objective is

W(s) ≡
∫
[

relative true utility
from E︷ ︸︸ ︷

σ(v, bk, c− s)(v)

consumption of
numeraire good︷ ︸︸ ︷

+Z + T(s)− pσ]dF(v, bk)

= C +
∫

σ(v, bk, c− s)(v− c)dF(v, bk). (2.3)

Our assumptions about bk and F imply that W is continuously differentiable. To ensure

the existence of an optimal subsidy, we assume that set of possible values of v − bk is

bounded from above and from below; that is,
⋃

k suppFv|bk
(·|bk) is a bounded set. This

assumption implies that a ban on product I is equivalent to a sufficiently large subsidy, and

a ban on product E is equivalent to a sufficiently small (negative) subsidy (i.e., sufficiently

large tax on E).

An important benchmark we will consider is the first best level of welfare, given by

WFB = C +
∫

v≥c
(v− c)dF. (2.4)
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Subsidy

Define the average marginal internality at price p = c− s as

B(p) =
∑k bkD′bk

D′
.

In Appendix B.4, we establish the following result, which is analogous to the optimal

tax formulas derived by Allcott, Mullainathan and Taubinsky (2013) in a similar setting:

Proposition 15.

W ′(s) = (B(c− s)− s)D′(c− s) (2.5)

The intuition behind Proposition 15 is that the welfare impact of a subsidy trades off the

internality reduction, B(c− s)D′, with the distortion to consumers’ decision utility, −sD′.

This is directly analogous to the logic behind a Pigouvian tax, which trades off externality

reduction with distortions to consumers’ private utility gains. This result is closely related to

the formulas derived in Allcott, Mullainathan and Taubinsky (2013), Baicker, Mullainathan,

and Schwartzstein (2013), and Mullainathan, Schwartzstein, and Congdon (2012) for similar

settings.

Since an optimal subsidy s∗ must satisfy W ′(s∗) = 0, Proposition 15 implies that an

optimal subsidy must equal the average marginal internality:

s∗ = B(c− s∗) (2.6)

Equation (2.6) is analogous to Diamond’s (1973) result that the optimal externality tax when

agents have heterogeneous externalities is a similarly-weighted average marginal externality.

Figure 2.3 illustrates the intuition in the special case with linear demand and constant

B(p). The unbiased demand curve DR(p) is shifted out relative to demand curve D(p),

meaning that the bias reduces demand for good E and causes welfare losses. The average

marginal internality is the distance from a to f. The initial equilibrium is at point b, and the

optimal subsidy s∗ moves the equilibrium to point f. A marginal increase in the subsidy

from 0 induces marginal consumers at point b to purchase good E, increasing their true

utility by amount bd. The welfare gain from the optimal subsidy is triangle abd.
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Figure 2.3: Marginal Internality Example

Equation (2.6) highlights the kinds of consumer heterogeneity that do and do not

matter for the optimal subsidy. Heterogeneity in the average marginal internality B(p) at

different price levels clearly does matter, and there are a number of practical situations

where one might expect higher-WTP consumers to be more or less biased. For example,

environmentalist consumers may both be more attentive to energy costs and have higher

true relative utility v from good E. This highlights that it is not sufficient to set an internality

tax based on a general idea that "consumers are biased" - it matters whether the biased

consumers are marginal to the policy. As the analogy to Diamond’s (1973) formula suggests,

this insight generalizes to other market failures: if setting a time-invariant congestion tax,

for example, the optimal tax would be smaller if people who travel at rush hour (and thus

impose larger externalities) are less price elastic.

However, heterogeneity in bias b within the set of consumers on the margin at price p

does not affect the optimal subsidy: only the average marginal internality matters. This is

important because some models such as Chetty, Looney, and Kroft (2007) have consumers

that are either fully unbiased or completely biased with some probability, while other

models might have all consumers with a partial bias. While empirical analyses such as
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Chetty, Looney, and Kroft (2009), Hossein and Morgan (2006), and Abaluck and Gruber

(2011) have been able to identify average biases within groups of marginal consumers, we

are not aware of previous studies that have been able to identify distributions of individual

biases. Equation (2.6) shows that the optimal subsidy can be set without knowledge of

the underlying "structural" model and distribution of biases. Thus, the B(p) function is a

sufficient statistic for setting the optimal subsidy in the sense of Chetty (2009).

While the B(p) function is a sufficient statistic for calculating the welfare impacts of a

subsidy, it is not informative about how close the optimal subsidy comes the first best. As

the next proposition shows, a subsidy can achieve the first best if and only if consumers have

homogeneous bias. Combined with the fact that the same B(p) function can be generated by

either homogeneously or heterogeneously biased consumers, this proposition implies that

B(p) is not informative of the gap between the second best welfare attained by the optimal

subsidy and the first best level of welfare that would be attained if consumers were fully

debiased.

Proposition 16. Let s∗ be an optimal subsidy. If all consumers have the same bias b, then s∗ is

uniquely defined and W(s∗) = WFB. If some consumers have bias bi while other consumers have

bias bj such that bi(p) < bj(p) for all p, then W(s∗) < WFB.

A key implication of Proposition 16 is that if an informational intervention that fully

debiases consumers were inexpensive and feasible at large scale, it would likely be preferred

to a subsidy or ban. If bias b is heterogeneous, a subsidy is less efficient: if it perfectly

corrects the choice of consumers with bias b1, it still leaves consumers with bias b2 > b1

to underpurchase E, while leaving consumers with bias b3 < b1 to overpurchase E. This

is the intuition for why "asymmetric paternalism" (Camerer et al. 2003) and "libertarian

paternalism" (Sunstein and Thaler 2003) are preferred to subsidies and bans. The reason to

also consider subsidies and bans is if fully-debiasing information provision technologies are

costly or infeasible, while the feasible information provision technologies do not fully debias

consumers. In particular, our informational interventions are unlikely to be scaled: even

though we chose high-volume store locations, the in-store experiment required labor costs
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of several dollars per customer intercept, and it is not obvious how the TESS intervention

could be implemented outside the TESS platform.

Ban

According to welfare equation (2.3), a ban on good I has the following effect on welfare:

∆W =
∫
(v− c)dF(v, bk)−

∫
σ(v, bk, c)(v− c)dF(v, bk)

=
∫
(1− σ(v, bk, c))(v− c)dF(v, bk)

=
∫
{(v,bk)|σ(v,bk ,c)=0}

vdF(v, bk)− c (2.7)

This equation simply states that the welfare effects of a ban are the average relative true

utility v for consumers currently purchasing I, minus the relative cost c. An analogous

equation would hold for a ban on E.

Figure 2.3 illustrates this equation, again assuming linear demand and constant B(p).

The ban on good I increases welfare for the set of consumers to the left of point f, because

purchasing good E increases their true utility. This welfare gain is the triangle abd. However,

the ban decreases welfare for the set of consumers to the right of point f: while they are

biased, their true utility from good E is still less than the relative price. This welfare loss is

the triangle amn.

Under our assumption of lump-sum revenue recycling, a ban on good I is equivalent

to a sufficiently large subsidy for good E. Bans are thus weakly worse than the optimal

subsidy. However, there is some marginal cost of public funds at which a ban could be

preferred. On the other hand, if the corrective price policy is implemented as a tax on good

I, then a cost of public funds further reinforces the relative appeal of price-based policies

relative to bans.
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Figure 2.4: Demand Curves

2.5.3 First-Order Approximation to Optimal Subsidy

When the policymaker can directly measure the B(p) function at all p, welfare changes

can be computed at each subsidy level to exactly compute the globally optimal subsidy.

In Section 6, we use the TESS experiment to do this. However, this function is in general

difficult to estimate: there are only a few papers in any context that cleanly identify biases

for even some subset of consumers. Following Baicker, Mullainathan, and Schwartzstein

(2013) and Mullainathan, Schwartzstein, and Congdon (2012), we now present one approach

to approximating the marginal internality using two reduced form sufficient statistics: the

slope of demand and the effect of the bias on market shares. In Section 6, we illustrate how

this can be implemented using the in-store experiment.

To a first order approximation, we have

DR
bk
(p)− Db(p) = Dbk(p− bk)− Dbk(p)

≈ bkD′bk
(p).
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Thus,

DR(p)− D(p) = ∑
k
(Dbk(p− bk)− Dbk(p)) ≈∑

k
bkD′bk

= D′(p)B(p).

It then follows that

B(p) ≈ DR(p)− D(p)
D′(p)

. (2.8)

The numerator is the effect of the bias on market shares, while the denominator is the

slope of demand. In other words, the average marginal internality is the price change that

affects quantity demanded exactly as much as the bias does.

To a first-order approximation, demand and "unbiased demand" have the same slope:

(DR
bk
)′(p) = D′bk

(p− bk) ≈ D′bk
(p). This means that we can also approximate B by

B(p) ≈ DR(p)− D(p)
(DR)′(p)

. (2.9)

Figure 2.3 illustrates the intuition behind Equation (2.8). The length of segment ab is

given by DR(p)− D(p). This could be identified through a randomized field experiment

that fully debiases consumers and measures the effects on demand for E. The demand slope

D′(p) could be identified through an RCT that randomizes relative prices. The segment af,

which corresponds to the average marginal internality, is given by DR(p)−D(p)
D′(p) . Combining

Equation (2.8) or (2.9) with Equation (2.6) yields an approximation to the optimal subsidy.

Thus, the effect of the bias on market shares and the slope of demand are sufficient statistics

for an approximation to the average marginal internality.

2.6 Policy Evaluation

2.6.1 Inferring Bias from Treatment Effects

We now combine the experimental estimates with the theoretical framework to illustrate

how results such as these could be used to inform policy. To do this, we build on the idea

that the information treatment groups choose optimally, although the information control

group may not. One important feature of this approach is that it "respects choice" in the
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sense of Bernheim and Rangel (2009): we conduct welfare analysis using consumers’ own

choices in what is plausibly a "debiased" state. In their language, we define control group

choices as provisionally suspect due to the possibility of imperfect information processing.

If choices differ between treatment and control, we delete control group choices from the

welfare-relevant domain. In our language, the implication is that the conditional average

treatment effect of our informational interventions at any price p equals the average marginal

internality from imperfect information and inattention:

Assumption 2: τ(p) = B(p).

This is analogous to the assumption made by Chetty, Looney, and Kroft (2009) when

they estimate the magnitude of inattention to sales taxes using the treatment effect of

an intervention that posted tax-inclusive purchase prices. In justifying this assumption,

Chetty, Looney, and Kroft (2009) write that "when tax-inclusive prices are posted, consumers

presumably optimize relative to the tax-inclusive price." Similarly, it seems reasonable to

assume that consumers optimize relative to lightbulb lifetimes and energy costs after we

provided them with information about these attributes. In the empirical sections, however,

we have discussed potential reasons why this assumption may not hold. In qualitatively

interpreting the results, we view this assumption as an approximation.

2.6.2 "Structural" Models of Bias

Because the optimal policy depends on b, not the underlying "structural" model of the

bias, our exposition uses this "reduced form" parameter. However, it may be helpful to

specify categories of inefficiencies that could affect lightbulb demand and would plausibly

be addressed by our informational interventions:

1. Costly information acquisition, as in Gabaix et al. (2006) and Sallee (2013). This

category includes many standard models of imperfect information in which the

consumer incurs a cost to learn about energy efficiency, lifetime, or other product

attributes and, in the absence of paying that cost, assumes that different goods have

the same level of an attribute.
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2. Biased priors about energy costs or other product attributes, as tested by Allcott (2013),

Attari et al. (2010), Bollinger, Leslie, and Sorensen (2011), and others. Put simply, this

category reflects consumers who may know that CFLs use less energy but don’t know

that the savings are so large.

3. Exogenous inattention to energy as a "shrouded" add-on cost, as in Gabaix and Laibson

(2006).

4. Costly cognition or "thinking cost" models, as in Conlisk (1988), Chetty, Looney, and

Kroft (2007), Gabaix (2013), Reis (2006), Sims (2004), and others. In these models,

consumers might not pay attention to differences in energy costs between lightbulbs

because their experiences with other goods suggest that energy cost differences are

typically unimportant. However, once informed that lightbulb energy cost differences

are large relative to the difference in purchase prices, consumers in these models

would consider them in their choices.

Informational interventions would not affect all biases that could affect lightbulb demand.

For example, "bias toward concentration" (Koszegi and Szeidl 2013) could cause consumers

to undervalue electricity costs because they occur in a stream of small future payments.

Koszegi and Szeidl (2013) point out that re-framing the stream of payments as one net

present value, as our interventions do, does not necessarily address this possible bias. It

is also possible that present bias over cash flows could cause consumers to undervalue

the CFL’s future cost savings, although this is not consistent with the TESS data or the

standard models of present bias over consumption. Our informational interventions should

not affect present biased consumers. Finally, consumers could be imperfectly informed

about or inattentive to other attributes not discussed in our informational interventions.

Because imperfect information and inattention may not be the only biases, Appendix B.4

generalizes the theoretical framework to the case when the intervention identifies only part

of the bias. Intuitively, the optimal subsidy is additive in the different types of internality.

For example, if present bias over cash flows reduces marginal consumers’ demand for
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the CFL, then the true optimal subsidy is larger than the subsidies we calculate based

on the informational interventions alone. Similarly, if present bias reduces inframarginal

consumers’ CFL demand, then the true welfare gains of a ban are larger (or less negative)

than we calculate.

2.6.3 Using the TESS Experiment Results

Subsidy

The theoretical framework shows that to set and evaluate policy, we need to know both

the initial demand curve and the average marginal internality at each point. This should

now clarify why the particular design we used for the TESS experiment is so important: by

eliciting WTP in consumers’ baseline (potentially biased) state and subsequently in their

treated (optimizing) state, we can identify the average marginal internality at each point on

the market demand curve.

Figure 2.4 presents the conditional average treatment effects (CATEs) at each level of

baseline WTP. As Figure 2.1 shows, there are only a small number of consumers with

baseline WTP equal to $9 or between -$3.50 and -$9, so we group outlying high and low

baseline WTPs together. Consistent with the ATEs in Table 2, the CATEs are all around

$3, except for the CATE at the highest baseline WTP, which is close to zero. This is simply

due to top-coding: consumers who start with top-coded baseline WTP cannot increase their

WTP further. Because these inframarginal consumers are unaffected by the subsidy and the

ban, this does not affect the welfare calculations. After excluding consumers with top-coded

and bottom-coded baseline WTP, there is a slight positive correlation between baseline WTP

and the treatment effect. This highlights that the population average internality would not

be the right parameter for setting optimal policy.

Figure 2.5 illustrates how this distribution of average marginal internalities is combined

with the baseline demand curve for policy analysis. The dashed line is the baseline demand

curve D(p). At each point, the average marginal internality from Figure 2.4 is added to WTP
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Figure 2.5: TESS Experiment Treatment Effects by Initial WTP

to give the average true utility of consumers marginal at each price p. These average true

utilities are plotted as diamonds. Consistent with their approximately equal retail prices,

we assume that the two packages have the same marginal cost of production, so c = 0.

The leftmost shaded rectangle reflects the welfare gain from increasing the subsidy from

$0 to $1. This increased subsidy moves about 13 percent of consumers over the margin to

buying a CFL. The height of the rectangle is the difference between average true utility and

relative cost c. Moving to the right, the next two shaded rectangles reflect the welfare gain

from increasing the subsidy from $1 to $2 and from $2 to $3, respectively. These first three

shaded rectangles reflect welfare gains, as average true utility v exceeds cost c. However,

further increases in the subsidy cause welfare losses. The $3 optimal subsidy is consistent

with Figure 2.4, which shows ATEs in the range of $2 to $3 for consumers with baseline

WTP less than 0.

The welfare effects of banning incandescents are the sum of all shaded rectangles. Notice

again that it is the average marginal internalities that determine welfare impacts, not the

distribution of individual biases within the sets of marginal consumers. Graphically, this is

reflected by the fact that height of each discrete welfare rectangle is determined only by the
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Figure 2.6: Welfare Calculation Using TESS Experiment

average internality at each price.

Table 2.8 presents formal calculations that parallel Figure 2.5. Column 1 contains the

subsidy amount. Column 2 presents the average baseline relative WTP v0 for consumers

marginal to the increase in the subsidy, assuming that demand is linear between the two

price levels. Column 3 presents the average internality for this group of marginal consumers.

This equals the treatment effect for each point on the left side of Figure 2.4. Column 4

presents the demand density: the share of all consumers that are marginal at each relative

price level. Column 5 presents the welfare effect of the increment to the subsidy, using

Equation (2.5), while column 6 presents the total welfare effect of changing the subsidy

from zero to the amount listed in that row. Columns 3-6 are measured with sampling error,

although we omit standard errors for simplicity.

As Equation (2.5) shows, a marginal increase in the subsidy increases welfare as long as

the marginal internality outweighs the distortion to decision utility. Table 2.8 shows that for

subsidies larger than $3, the point estimate of true utility for marginal consumers is less

than the cost of the CFL. Thus, increases in the subsidy above $3 will reduce welfare relative
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Table 2.8: Welfare Analysis Using TESS Results

(1) (2) (3) (4) (5) (6)
Relative WTP (v0

i ) Average Demand Marginal Cumulative
CFL of Marginal Marginal Density Welfare Welfare
Subsidy Consumers Internality (Share of Effect Effect
($/package) ($/package) ($/package) packages) ($/package) ($/package)
1 0.5 2.11 0.126 0.204 0.204
2 1.5 2.16 0.052 0.034 0.238
3 2.5 3.41 0.028 0.026 0.264
4 3.5 1.77 0.030 -0.052 0.212
6 5 1.77 0.006 -0.020 0.192
8 7 1.77 0.008 -0.042 0.150
10 9 1.77 0.003 -0.019 0.131
∞ 15 1.77 0.043 -0.567 -0.436

Notes: This table uses the TESS experiment results to calculate the welfare effects at different
levels of the CFL subsidy. Observations are weighted for national representativeness. See
text for details.

to the $3 subsidy in our model. Using the analogy to externalities, subsidies higher than $3

would be equivalent to setting a Pigouvian externality tax higher than marginal damages.

For comparison, typical CFL rebates offered by electric utilities have been on the order of $1

to $2 per bulb.

If we assume that B(p) = τ̂(p) = τ̂ = $2.32 at all p, Equation (2.6) implies that the

globally optimal subsidy is also s∗ = $2.32, which is consistent with the result in Table

2.8 that the optimal subsidy does not exceed $3. However, the benefit of this "grid search"

approach to calculating the optimal subsidy is that in theory, the average marginal internality

could be very different for different values of v0. Grid search identifies the global optimum

even if the necessary condition for a local optimum in Equation (2.6) is satisfied at multiple

subsidy levels.

Ban

A ban on traditional incandescents is equivalent to a change in relative prices that is so large

as to induce all consumers to cease buying incandescents. In Figure 2.5, this is the sum

of the positive welfare rectangles above the x-axis minus the sum of the negative welfare
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rectangles below the x-axis. Table 2.8 shows that this sums to a loss of $0.436 per package

sold.

Top-coding and bottom-coding have two opposing effects on this welfare calculation.

First, the treatment causes many treatment group consumers to be willing to pay the

maximum for the CFL. Assuming a larger average WTP for this top-coded group would

increase the treatment effect, implying a larger bias and thus larger welfare gains from

corrective policies. Second, however, the welfare effects of a ban depend importantly on

the tail of the WTP distribution: if some consumers very strongly prefer incandescents,

banning them can cause large welfare losses. Appendix Table B2.3 tests the sensitivity of

these welfare calculations to assuming that top-coded and bottom-coded relative WTPs

average $12 and -$12. The two opposing effects almost exactly offset each other: the welfare

loss from the ban is $0.434 per package sold. Appendix Table B2.3 instead assumes mean

censored WTPs of $20 and -$20. Under this assumption, the welfare loss from the ban is

$0.744 per package sold.

Illustrative Calculation: Welfare Gains from Information Provision

Proposition 16 shows that when the bias is heterogeneous, a fully-debiasing informational

intervention generates larger consumer welfare gains than a subsidy. For the purpose of

illustrating this, we briefly make a very strong assumption: that each treated consumer’s

individual WTP change from baseline to endline equals b. This is stronger than our

Assumption 2, which was that the conditional average treatment effects equal B(p).

Debiasing changes a consumer’s welfare if and only if it changes his or her choice at

market prices. The utility gain for a consumer who does change his or her choice is |v− c|.

Thus, the welfare gain from full debiasing is the integral of |v− c| over all consumers who

change choices:

∫
|σ(v, 0, c)− σ(v, bk, c)| · |v− c|dF(v, bk). (2.10)

In the TESS data, 21 percent of treatment group consumers change choices after the
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intervention, and their average |v − c| is $3.36, giving total welfare gains of $0.72 per

package.14 This is almost three times larger than the $0.26 per package welfare gain from

the optimal subsidy. Of course, to fully compare the two policies, one would need to

subtract the cost of implementing each policy, including the costs of consumers’ time for

the informational intervention and any deadweight loss of raising public funds for the

subsidy. This calculation simply illustrates the sense in which the "targeting" properties of

information provision can make it preferred to a subsidy.

2.6.4 Using the In-Store Experiment Results

The treatment effects from the in-store experiment can be used in Equation (2.8) to determine

the optimal subsidy for this sample in this context. If the treatment group optimizes with

respect to energy costs and product lifetimes, while the control group is potentially biased,

τ̂ = DR(p)−D(p). We assume that D′ = (DR)′, as we do not reject this hypothesis in Table

2.7, and it is theoretically true to first-order approximation. Plugging τ̂ and η̂ from column

2 of Table 2.7 into Equation (2.8) and using that the average rebate s per 60-Watt bulb was

$0.63, the optimal subsidy per 60-Watt bulb is:

B(S = 0) ≈ DR(p)− D(p)
D′(p)

. =
τ̂

η̂/s
≈ 0.004

0.105/$0.63
≈ $0.024 (2.11)

Figure 2.6 illustrates the calculation. The information treatment effect τ̂ is the distance

from b to a, and the slope of demand is η̂/s. The figure exaggerates τ̂, as the point estimate

suggests only a very small effect on market share.

Using the Delta method and the estimated variance-covariance matrix, the 90 percent

confidence interval on the optimal subsidy per 60-Watt equivalent CFL is (−$0.30, $0.35).

Thus, for this sample of people in the informational environment where our experiment

14We emphasize that this calculation is purely for the purposes of illustrating Proposition 16. Figure 2.2
illustrates why the required assumption is too strong: some control group consumers also change WTP between
baseline and endline, even though the control intervention was not designed to debias. Under a similar
assumption, Equation (2.10) would imply that the welfare gains from the control intervention are $0.19. This
suggests that even if the conditional average treatment effects are meaningful, there can be noise in any given
consumer’s WTP change between baseline and endline.
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Figure 2.7: Policy Analysis Using In-Store Experiment

took place, the results rule out that the optimal subsidy is more than one-third as large as

the $1 to $2 per bulb subsidies that electric utilities have typically offered. Furthermore,

unless the treatment group consumers who bought incandescents in this experiment have

substantially weaker preferences for incandescents than the inframarginal consumers in

the TESS experiment, the tighly-estimated zero treatment effect suggests that banning

incandescent lightbulbs will cause larger welfare losses in this population than in the TESS

population. Thus, while the empirical estimates from the two experiments are different,

they both lead to the same qualitative conclusion about the ban.

2.7 Conclusion

Imperfect information and inattention are commonly-proposed justifications for energy

efficiency subsidies and standards, and they are frequently invoked in the lightbulb market

as justifications for energy efficiency policies. We implemented two randomized control trials

that measure the effects of "powerful" information provision on purchases of energy efficient
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CFLs. The TESS intervention increased WTP by an average of $2.32, while the in-store

experiment had tightly-estimated zero effects in a different population and informational

environment. These forms of information provision would be difficult to scale, and lower-

cost disclosure technologies seem less likely to fully inform and debias consumers. We

thus formalized a theoretical framework that uses the experimental results to evaluate two

second best policies: CFL subsidies and a ban on traditional incandescent bulbs. Results

suggest that moderate CFL subsidies may be optimal, but that imperfect information and

inattention do not justify a ban on traditional incandescents.

For our quantitative evaluation of subsidies and standards, we assumed that the treat-

ment effects of powerful information provision identify the magnitude of bias. Given our

experimental designs, we think that the assumption is a reasonable but imperfect approxi-

mation. We have discussed the importance of issues such as whether the treatment groups

understood the information, experimenter demand effects, and external validity.

Even though the policy analysis is approximate, there are several ways in which this

study is valuable. First, the in-store experiment is a proof-of-concept for what we think will

be an important research effort to use field experiments to evaluate the effects of energy

efficiency subsidies and information provision on purchases of durable goods. Second, we

have highlighted the necessary parameters for studying the "internality rationale" for energy

efficiency policies, and we have implemented two examples of experimental designs that can

identify these parameters. Third, as we calculated in Section 2, estimates of inattention from

other research combined with the very large magnitude of lightbulb energy costs relative

to purchase prices suggested that biases from imperfect information and inattention might

have had large effects in this market. Results from both experiments are consistent in that

they reject that potential prior. Fourth, our model provides one initial data point which

suggests that imperfect information and inattention may not justify the lighting energy

efficiency standards in the absence of other distortions.

Although our application is to one particularly important and controversial policy, the

approach is quite general. The theoretical framework generalizes immediately to any binary
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or continuous choice, and the idea of using informational interventions in RCTs to quantify

internalities can be used in a wide variety of contexts. The approach to optimal policy could

be useful in other contexts where informational or attentional biases might be used to justify

subsidies or bans and where powerful information provision is feasible in small RCTs but

not cost effective at large scale.
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Chapter 3

Market Experience is a Reference

Point in Judgments of Fairness1

3.1 Introduction

Empirical evidence shows that people’s aversion toward unfair transactions can play an

important role in markets and negotiations. In product markets, consumers’ feelings of

entitlement restrict sellers’ ability to exploit changes in supply and demand (Kahneman et al.,

1986), while in labor markets, reciprocal gift exchange can lead to involuntary unemployment

(Akerlof, 1982; Fehr et al., 1993).2 To incorporate such non-pecuniary concerns into economic

theory, economists have proposed models of “social preferences,” which assume that in

addition to maximizing consumption, people also care about the fairness or kindness of

own or others’ actions. A common property of these models is that the fairness or kindness

of an action or outcome is evaluated by an exogenous and static criterion such as equal

division or surplus maximization, which implies that fairness judgments remain stable over

1Co-authored with Holger Herz

2For reviews of this evidence, see Fehr et al. (2009) on labor markets and Camerer (2003) on negotiations.
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time and past experiences should not affect the evaluation criterion.3

Casual observation and introspection, however, suggest that this static description of

people’s feelings of entitlement is incomplete. Consider two examples. Americans are

getting increasingly upset about raises in gasoline prices.4 The Swiss have signed petitions

to start referenda over a CHF 40,000 (roughly 41,500 USD) minimum yearly wage and an

initiative that restricts the highest salary in a Swiss company to no more than 12 times

the lowest one.5 It appears that Americans feel entitled to cheap petrol, and the Swiss

are accustomed to high wages. For outsiders, these expressions of anger are hard to

comprehend. After all, European gas prices are twice as high as American prices, and the

Swiss workers are already amongst the most privileged in the world in terms of wages. The

anger, therefore, seems to be best explained by fairness standards that are dynamic and

shaped by past experience.

Yet to our knowledge, direct evidence for path-dependent fairness standards is still missing.

In this paper, we provide an experimental test of path-dependent fairness preferences by

exogenously manipulating subjects’ experiences, keeping everything else constant. To derive

our hypotheses, we introduce a model of path-dependent fairness preferences in which

past experience shapes people’s feelings of entitlement. Our investigation is inspired by the

seminal work of Kahneman et al. (1986), who introduce an intuitive notion of fairness in

which “A firm is not allowed to increase its profits by arbitrarily violating the entitlement of

its transactors to the reference price, rent, or wage,” and who argue that past experience

determines this reference transaction: “When there is a history of transactions between

3See, for example, Rabin (1993), Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Charness and Rabin
(2002), Dufwenberg and Kirchsteiger (2004), or Falk and Fischbacher (2006). Models including reciprocity
motives suggest a certain context dependence since the desire to treat someone kindly depends on how they
acted. But the evaluation of an agent’s kindness still requires a static criterion. Different from these commonly
used models of social preferences, but similar to ours, Benjamin (2005) proposes a model of reference-dependent
fairness preferences in which an employee’s period t wage serves as his period t + 1 reference point, and Kaur
(2012) formalizes the idea that workers may retaliate against a firm that offers them a wage below their reference
wage.

4Tom Geoghegan. 2011. “Why are Americans so angry about petrol prices?” BBC News. May 11, 2011,
accessed July 9th, 2013, http://www.bbc.co.uk/news/world-us-canada-13338754.

5Tim Judah. 2013. “Angry Swiss aren’t done slimming the fat cats” Bloomberg. March 4, 2013, accessed July
9th, 2013, http://www.bloomberg.com/news/2013-03-04/angry-swiss-aren-t-done-slimming-the-fat-cats.html.
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firm and transactor, the most recent price, wage, or rent will be adopted for reference...”

and “terms of exchange that are initially seen as unfair may in time acquire the status of a

reference transaction.”6,7

In the first phase of our experiment, all subjects participate in one of two market games.

In the proposer competition (PC) game (Roth et al., 1991), two proposers make an offer of a

monetary allocation to one responder, who can choose to accept either one or zero of those

offers. In the responder competition (RC) game (Fischbacher et al., 2009), one proposer makes

an offer to two responders, who simultaneously choose whether or not to accept the offer,

with one responder randomly selected to transact in the case that both offers are accepted.

Consistent with previous evidence, market conditions have a large impact on the offers: in

the PC game, competitive pressures force proposers to give up most of their surplus, while

in the RC game, proposers keep most of their surplus.

In the second phase of the experiment, proposers and responders are matched one-on-

one in a variant of the ultimatum game (Güth et al., 1982), and proposers again make offers

to responders. Consistent with previous studies, responders are willing to reject an offer

and forgo significant monetary gains to punish proposers making unfair offers. However,

we find that responders’ experiences from the first part of the experiment are an important

reference point for the types of offers they are willing to accept: In period 1 of the ultimatum

game, the lowest acceptable offer of a responder who started in the PC market is 36% higher

than the lowest acceptable offer of a responder who started in the RC market. That is,

responders who started out in markets in which competition forces proposers to make very

6In the Kahneman et al. study, participants rate the fairness of wage and price changes by firms in
hypothetical scenarios. The majority of questions deal with differing justifications for similar wage or price
changes and analyze how the motives underlying the price change affect the fairness rating. Only one of
the analyzed questions (Question 2, p.730) actually examines the effect of differences in experience on the
acceptability of the same offer, and they find that it is more acceptable for a firm to offer a low wage to a novel
worker when market conditions have changed than offering the same wage to a current employee in which case
the new wage constitutes a wage cut. However, note that in this case different earnings may also be justified
based on differences in productivity.

7See also Binmore et al. (1991) for an early suggestion as well as survey evidence that exposure to different
kinds of bargaining enviroments can shape subjects’ perceptions of what is fair. See Zwick and Mak (2012) for a
recent review of the determinants of fairness perceptions in bargaining games.
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favorable offers to the responders have a much higher standard for what constitutes a fair

and acceptable offer. Moreover, this difference is persistent: over the course of 15 periods of

repeated play, this difference dissipates by only about one-half of its period-one value.

In contrast, proposers’ behavior is much less influenced by their phase 1 market experi-

ence, as they quickly learn what responders are willing to accept and adjust their offers to

maximize profits. This result is consistent with a key theoretical prediction of our model:

because past experience affects players’ motives for resisting unfair treatment, it should

affect the behavior of players with little bargaining power who are in a position to be treated

unfairly, but it should not affect the behavior of players with greater bargaining power,

because they are less likely to have their fairness reference point violated.

Our results have a number of economic implications. First, a key implication of our

work is that fairness preferences are endogenous to market structure. For example, how

a consumer perceives high prices can depend on whether this consumer is accustomed to

high or low prices. This prediction is consistent with the differential perception of the price

of gasoline discussed earlier.8

Second, dynamically adjusting fairness standards imply that consumer outrage following

a price hike may be impermanent, and will subside as consumers adopt the new price as

their reference transaction. Consider, for example, the outrage that followed a 60% price

increase by movie rental company Netflix in July 2011. Starting with angry outcries in

various social media channels,9 this outrage quickly turned into a loss of 800,000 members

and a stock price that plummeted from $291 to $75 over the course of just three and a half

months.10 Yet Netflix did not lower prices, and casual observation of the company two

years later in 2013—a gain of 3 million new customers, a stock price above $200, and no

sign of discontent over unreasonably high prices—might suggest that consumers eventually

8In a similar vein, Simonsohn and Loewenstein (2006) show that movers to a new city arriving from more
expensive cities rent pricier apartments than those arriving from cheaper cities.

9http://edition.cnn.com/2011/TECH/social.media/07/22/social.media.outrage.taylor/index.html

10Nick Wingfield and Brian Stelter. 2011. “How Netflix lost 800,000 Members, and Good Will.” New York
Times. October 24, 2011, accessed June 20th, 2013, http://www.nytimes.com/2011/10/25/technology/netflix-
lost-800000-members-with-price-rise-and-split-plan.html.
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adopted the new prices as the reference transaction.

Third, our findings can help explain empirical observations in labor markets. It is a well

established fact that current labor market conditions have little effect on incumbent workers’

wages (Beaudry and DiNardo, 1991; Bewley, 1999; Kaur, 2012). Because workers’ fairness

reference points depend on past experience, lowering wages of existing workers is difficult,

but hiring new workers at lower wages can be feasible. Moreover, our results also provide a

rationale for the long lasting effects of initial labor market conditions and starting wages

upon entering a firm (Oreopoulos et al., 2012). Firms take workers’ current fairness reference

point into account during future wage renegotiations, which causes persistent differences

in offered wages based on initial starting conditions. Our results thus provide a potential

psychological mechanism underlying wage rigidity and persistent wage differentials.11

Fourth, our work contributes to a recent literature on contracts as reference points by

Hart and Moore (2008) (see also Hart, 2009; Hart and Holmstrom, 2010; Fehr et al., 2011b;

Schmidt and Herweg, 2012), who argue that a contract between two parties functions as a

reference point that these parties use to evaluate the fairness of their subsequent outcomes.12

Our notion of reference-dependent fairness is complimentary, and applies more broadly

to environments in which parties do not have the opportunity to write a contract prior

to choosing actions. In fact, Hart and Moore (2008) discuss extensions of their model in

which reference points other than contractual terms affect parties’ feelings of entitlement.

Our work, therefore, paves the way toward more integrated models of reference-dependent

fairness.

Finally, our work contributes to the debate about the effects of policy interventions

on market outcomes. Falk et al. (2006) experimentally show that experimenter-imposed

minimum wage laws can cause spillover effects, raising wages even after the removal of

11See Kaur (2012) and reference therein for recent evidence and a potential source of high unemployment
volatility. See Shimer (2005) and Hall (2005) for work relating wage rigidity to unemployment volatility. Eliaz
and Spiegler (2012) propose a model of reference-dependent preferences in a search and matching model that
generates both wage rigidity and unemployment volatility.

12See Fehr et al. (2011a) and Bartling and Schmidt (2012) on the effect of contracts as reference points on
subsequent contract renegotiation.
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the minimum wage law, a finding that is also predicted by our theory and consistent with

our results. However, Falk et al. (2006) cannot pin down whether this spillover effect is

directly due workers’ past experiences: because the minimum wage was imposed by the

experimenter, it may have served as a signal of the experimenter’s preferences or beliefs

about social norms.13

Our paper is also broadly related to experimental economics work on learning spillovers

across games. The work on learning spillovers in strategic interactions (Grimm and Mengel,

2012; Bednar et al., 2012; Cason et al., 2011) has shown how beliefs about opponents’ play can

be influenced by observations of play in similar games. But while these papers demonstrate

the importance of learning spillovers in coordination games through belief- or best-response

bundling, our results demonstrate spillovers that operate at the level of preferences.

More generally, our results link the study of social preferences to the psychology

and economics literature that argues that preferences are not exogenously given, but are

reference-dependent and constructed from past experience, expectations, or the decision

context (Lichtenstein and Slovic, 2006; Kahneman and Tversky, 2000; Simonson and Tversky,

1992). But while most existing work on reference-dependence studies how reference points

affect the pricing of risk, the tradeoffs between consumption and effort, or the tradeoffs

between different dimensions of consumption, our work shows the importance of reference-

dependence in determining the tradeoff between consumption and fairness.

The rest of the paper proceeds as follows. In section 2 we describe the games used in our

experiment, and the rest of our experimental design. In section 3 we present a simple and

13That is, experimenter-imposed wage conditions could have created a demand effect or led subjects to
make inferences about social norms or what the experimenter considers to be appropriate behavior. In contrast,
market forces endogenously shape experiences in our design, which allows us to directly attribute observed
treatment differences to experiences. Moreover, because the Falk et al. (2006) design involves a complex strategic
interaction between a firm and multiple workers, the design cannot pin down whether the outcomes of minimum
wage laws shape fairness preferences or simply change players’ beliefs about others’ strategic intentions. (In
their design, i) a firm can make up to three wage offers ii) payoffs are nonlinear in the number of workers
accepting and iii) the multiple workers must simultaneously choose to accept or reject.) For example, how
much a worker punishes a firm by rejecting its offer will depend on his belief about other workers’ acceptance
decisions, and his beliefs about the number of offers made by the firm. Or relatedly, workers who do not want
to receive payoffs lower than other workers will not want to obtain zero payoffs by rejecting a wage offer if they
think that other workers will accept offers and thus obtain positive payoffs.
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generally applicable model of path-dependent fairness preferences, which we then use to

motivate a set of hypotheses for our experimental design. In section 4 we present our results,

and find that they are largely consistent with our theoretical predictions. In section 5 we

discuss additional applications and testable predictions of our theory. Section 6 concludes.

3.2 Experimental Design

All games in the experiment were based on the asymmetric ultimatum game, first introduced

by Kagel et al. (1996)14, and the market game first introduced by Roth et al. (1991). In

each of these games, 100 chips must be divided between proposers and responders, with

proposers making offers, and responders choosing whether or not to accept the offers. These

chips are then converted into monetary payoffs, with different conversion rates for the

proposer and the responder. In our experiment, the monetary value of each chip was three

times as high for a proposer as it was for a responder.15 Our experimental design consists

of three variants of the asymmetric ultimatum game: (i) Proposer Competition (PC), (ii)

Responder Competition (RC) and (iii) no competition. Subjects participated in one of the

two market games for the first 15 periods of our experiment, and then participated in the

non-competitive ultimatum game in the next 15 periods. We describe the experimental

games in more detail below.

3.2.1 Phase 1: Market Games

In the first phase of our experiment (first 15 periods), subjects participated in either a

responder competition treatment or in a proposer competition treatment.

In the responder competition (RC) market game, one proposer is matched with two

14This asymmetric ultimatum game is a variant of the original ultimatum game design first introduced by
Güth et al. (1982).

15We have chosen the asymmetric ultimatum game rather than the standard ultimatum game because
existing evidence on responder behavior shows that the variance in minimum acceptable offers is considerably
larger in the asymmetric ultimatum game than in the standard ultimatum game. Consequently, we considered
the asymmetric ultimatum game to be better suited for treatment manipulations that seek to affect responder
behavior.
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responders. The proposer first posts an offer of how to divide 100 chips between himself

and a responder. Each responder then observes the offer and, without knowing the decision

of the other responder, chooses whether or not to accept it. If both responders reject the offer,

all three subjects receive zero chips. If one responder accepts the offer and one responder

rejects the offer, the 100 chips are divided according to the proposed division between the

proposer and the responder who accepted the offer. The responder who rejects the offer

receives zero chips. If both responders accept the offer, it is randomly determined which

responder actually receives the offer, and the non-selected responder receives zero chips.

In the proposer competition (PC) market game, two proposers are matched with one

responder. Each proposer first posts an offer of how to divide 100 chips with the responder.

The responder observes both offers and can accept one or none of the offers. If both offers

are rejected, all three subjects receive zero chips. If an offer is accepted, the proposer

who made the offer and the responder receive chips according to the proposed split. The

proposer whose offer was not accepted receives zero chips.

3.2.2 Phase 2: Ultimatum Game

In the next phase of our experiment (next 15 periods), all subjects participated in a standard

version of the asymmetric ultimatum game for 15 periods. In this version, one proposer is

matched with one responder. First, the proposer makes an offer to the responder. Second,

the responder can accept or reject the offer. We did not elicit responders’ decisions in phase

2 in the same way that we elicited them in phase 1. Before responders were informed about

the actual offer, but after the offer was made, responders stated a minimum acceptable offer

(MAO) amount; that is, each responder stated a number x such that the proposer’s offer is

accepted if and only if he offers at least x chips to the responder. This minimum amount

was binding and directly enforced by the computer. As before, the proposed division of

chips is implemented if and only if the proposer’s offer is accepted, while both subjects get
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zero chips if the proposed offer is rejected.16

A key feature of the ultimatum game that we wish to emphasize is that if the responder

cares only about distributions of wealth, then his choice in the ultimatum game is completely

non-strategic in the sense that it reflects only his preferences, and not his beliefs about other

players’ behavior. A proposer’s choice in the ultimatum game, in contrast, reflects not only

his preferences, but also his beliefs about the probability that the responder will accept his

offer. Similarly, in the RC market game, a responder’s utility from rejecting an offer may

depend on whether or not he believes the other responder will accept the offer. Therefore,

differences in responder behavior in the ultimatum game can be attributed to a malleability

of preferences that is not captured by models of exogenously given preferences.

3.2.3 Procedures

At the beginning of each session, each subject was assigned to the role of proposer or

responder, and this role was fixed throughout the experiment. Just before the first period,

one third of the proposers and two thirds of the responders were randomly assigned to

the proposer competition treatment. The remaining two thirds of the proposers and one

third of the responders were assigned to the responder competition treatment. Subjects

stayed in their respective treatment groups throughout all of phase 1 of the experiment.

All subjects received written instructions for their respective treatment, and were asked

to answer several understanding checks before proceeding with the experiment. After

all subjects completed the instructions and the understanding checks, they were asked to

proceed to the first phase of the experiment. Proposers and responders were randomly

rematched within their treatment group after every period. The subjects were told that there

would be a second phase to the experiment, but were told nothing else about it other than

16Our use of the strategy method in phase 2 but not in phase 1 makes the responders’ choice sets very
different between the two phases. In phase 1, responders are given choices A1 = {accept, reject}, while in phase
2, they are given choices A2 = {0, 1, . . . , 100}. We did not use this strategy in phase 1, because we didn’t want
to exogenously impose rules about which offer must be chosen under proposer competition. Also, note that
eliciting MAOs is technically not fully equivalent to the strategy method, since a responder’s full strategy
might be to accept an offer of x but reject an offer y > x. But as long as responders’ acceptance preferences are
monotonic, there is no loss of information in eliciting MAOs.
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that their choices in phase 1 would have no effect on their potential payoffs in phase 2.

Once the first phase of the experiment was finished, subjects received on-screen instruc-

tions for the ultimatum game without competition, and were again asked to work through

several understanding checks. They were then divided into three different matching groups.

Each matching group contained one third of the proposers and one third of the responders

within a session. The first matching group consisted of proposers and responders who had

previously been in the proposer competition treatment (PC Matching Group). The second

matching group consisted of proposers and responders who had previously been in the

responder competition treatment (RC Matching Group). Finally, the third matching group

consisted of the remaining third of proposers who had previously been in the proposer

competition treatment and the remaining third of responders who had previously been in

the responder competition treatment (Mixed Matching Group).

As a naming convention, we will refer to responders and proposers who have previously

participated in the proposer competition market as “PC Responders” and “PC Proposers”,

and to those who have participated in the responder competition market as “RC Responders”

and “RC Proposers”. The composition of the matching groups is summarized in table 3.1.

Subjects stayed within their respective matching groups throughout all 15 periods, though

the pairs were randomly reshuffled every period within each matching group.

Table 3.1: Overview of Matching Groups

Proposer Origin Responder Origin
PC Matching Group PC Proposers PC Responders
RC Matching Group RC Proposers RC Responders
Mixed Matching Group PC Proposers RC Responders

A key feature of our matching groups is that they allow us to cleanly investigate the

effect of responder experience on bargaining behavior, holding proposer experience constant

(by comparing the PC Matching Group with the Mixed Matching Group). Similarly, it

allows us to investigate the effect of proposer experience on bargaining behavior, holding

responder experience constant (by comparing the RC Matching Group with the Mixed
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Matching Group).

In addition to each subject’s actions, we also elicited beliefs before periods 1, 6 and 11 in

both phases. Responders were asked to estimate the average offer made by proposers in

the next five periods. Proposers were asked to estimate the median acceptance threshold

of responders.17 To avoid wealth effects potentially confounding or interfering with our

treatment manipulation, either phase 1 or phase 2 was selected for payment at the end of

the experiment. Within the chosen phase, 4 periods were selected at random.18 The points

earned in the selected periods were then converted into Swiss Francs, with the exchange

rate of points to Swiss Francs set at 10:1.

In total, we ran 5 sessions totaling to 150 subjects. Because difference in past experience

are a crucial variable in our design, we only invited subjects who have not previously

participated in ultimatum game experiments. Sessions consisted of either 24, 30 or 36 subjects

and were conducted in October and November 2012. Experiments were computerized using

the software z-tree (Fischbacher, 2007) and conducted at the experimental laboratory of the

University of Zurich. Our subject pool consisted primarily of students at Zurich University

and the Federal Institute of Technology in Zurich.19 On average, an experimental session

lasted 75 minutes with an average payment of CHF 43.5 ($47.50), including a show-up fee

of CHF 15.

3.3 Theory and Hypothesis Development

In this section we present a simple and generally-applicable model of path-dependent

fairness preferences to motivate our hypotheses.

17We did not incentivize the belief elicitation, and we only asked for beliefs every 5 periods for time reasons.
In the proposer competition treatment, proposers were asked to additionally assume that the offer is the larger
of the two offers made.

18We selected 4 periods rather than 1 to reduce the variance in subject payments in case phase 1 of the
experiment was selected for payment (which otherwise would have been very large). This was necessary to
comply with the payment rules of the laboratory.

19Subjects were drawn from a database of volunteers using ORSEE (Greiner, 2004).
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3.3.1 Set-up

We begin by investigating the behavior of fairness-motivated players over the course of two

phases. In phase 1, proposers and responders are matched to play either the PC market

game or the RC market game. In phase 2, the players are randomly rematched to play a

non-competitive ultimatum game, such that no player is matched with a player he interacted

with in phase 1. In section 3.3.5 we extend the model to a setting in which subjects play for

multiple periods in phase 1, and then play again for multiple periods in phase 2.

The fairness view of a player i depends on his reference point ri, which dictates what

share of the ‘total pie’ the player feels entitled to. In particular, if π1, π2, . . . πn are the

resulting material payoffs of the players, then the utility of player i in any n-person game is

given by

ui(πi, π−i|ri) = πi − λ max

[
ri(n)

(
n

∑
j=1

πj

)
− πi, 0

]
, (3.1)

where π−i is the vector of payoffs of all players j 6= i, and where ri(n) denotes the share of

the surplus that player i feels entitled to in an n-person game. Notice that the total pie in

equation (3.1) is determined as the sum of ex-post payoffs.

We assume that, in phase 1, players begin with identical reference points r1
i (n) = 1/n for

all i. In phase 2, players update their reference points based on their phase 1 experience. Let

µ1
i =

π1
i

∑n
j=1 π1

j
(3.2)

be player i’s share of the pie in phase 1, and set µ1
i = 0 if ∑n

j=1 π1
j = 0.20 Then player i’s

phase 2 reference point r2
i in a m-person game is given by

r2
i (m) = (1− γ)(1/m) + γµ1

i . (3.3)

When γ = 0, the players’ fairness preferences are not affected by their experience, and

the model reduces to a simple model of static distributional preferences, similar to the

20Without having any qualitative implications for our results, one can relax this assumption to setting µ1
i = x

if ∑n
j=1 π1

j = 0, with x ∈ [0, 1/n].
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models introduced by Fehr and Schmidt (1999) and Bolton and Ockenfels (2000). But when

γ > 0, players’ fairness preferences are affected by their past experience, leading to a mode

of dynamic distributional preferences. In particular, in the extreme that γ = 1, phase 2

preferences are completely determined by past experience.

As in our experimental design, we assume linear payoff functions. Throughout our

theoretical results, we will assume that a proposer whose offer a gets accepted receives a

payoff of k(Y− a) for some constant k > 0, and that the responder accepting that offer gets

a payoff of a. Offers will be restricted to be in the set A = [0, Y].

3.3.2 Equilibrium in the PC Market in Phase 1

We begin our analysis with the phase 1 PC market.

Our first result is that when there is proposer competition, the proposers are forced to

make competitive offers at which they make zero profits. This result resembles the results

of Fehr and Schmidt (1999) and Bolton and Ockenfels (2000), who were the first to provide

a theoretical account of how competitive pressures can mask agents’ preferences for equal

distributions.

Proposition 17. In any (possibly mixed-strategy) SPE of the PC market game, at least one of

the proposers offers a = Y, and the responder accepts one of the offers with probability 1. When

restricting attention to pure-strategy SPEs, there is a unique equilibrium in which both proposers

offer a = Y.

The proof of Proposition 17, as well as all subsequent proofs, is contained in Appendix

C.3. The intuition behind Proposition 17 is the usual Bertrand competition logic. Suppose

a proposer i offers some ai < Y and this offer is accepted with probability p > 0. Then

the other proposer j certainly can’t do better by offering aj < ai. But offering aj = ai is not

optimal either. Proposer i can do strictly better by offering ai + ε for an arbitrarily small ε,

and thus increasing the probability that his offer is accepted by p > 0, while decreasing his

payoff conditional on acceptance by an arbitrarily small amount.
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Notice that in the PC market, the equilibrium offers are not affected by the reference

transaction, and thus would not be affected by past experience. This does not mean, however,

that the responder’s minimum acceptable offer would not be affected by past experience in

the PC market. The smallest offer a responder would be willing to accept in any subgame

of the PC market game (including subgames that are off of the equilibrium path) is still

determined by his reference point.

3.3.3 Equilibrium in the RC Market in Phase 1

Next, we characterize equilibria in the RC market game. The proposition that follows shows

that in the RC market, an offer of a = 0 can always be supported as an SPE outcome, though

there is a multiplicity of equilibria. The multiplicity of equilibria is due to the fact that

our model gives rise to a coordination game between the responders: for a wide range of

parameters, it is optimal for responder i to accept an offer if and only if he thinks that the

other responder will accept the offer. The source of this strategic complementarity between

the responders’ acceptance decisions is the behindness aversion assumed in the fairness

preferences: a responder derives disutility whenever an unfair proposer gets to transact

with another responder.

Proposition 18. An offer a in the RC market game can be supported as an SPE if and only if

a ∈
[
0, λkY

3+(2+k)λ

]
.

Notice that in the RC market, a zero offers equilibrium is possible, and the highest

possible offers that can be sustained in equilibrium are still significantly lower than the

equilibrium offers from the PC market. In particular, even as λ→ ∞, the highest sustainable

offers are still no larger than kY
2+k , meaning that proposers still get less than 1/3 of the total

surplus.21

21In particular, λkY
3+(2+k)λ is increasing in λ and limλ→∞

λkY
3+(2+k)λ = kY

2+k . Now if the proposer offers a = kY
2+k

and this offer is accepted, then his total payoff is 2 kY
2+k , from which it follows that the responder gets 1/3 fo the

total sum of payoffs.
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3.3.4 Phase 2 Behavior

To simplify exposition for the main body of the paper, we assume that in the RC market

game, players coordinate on the equilibrium in which proposers offer 0.22

We begin by examining how responders’ phase 2 acceptance thresholds are shaped by

their phase 1 market experience. A key comparative static parameter will be γ—the weight

that players’ phase 1 experience has in shaping their phase 2 fairness preferences.

Proposition 19. Let MPC(γ) (MRC(γ)) be the minimal acceptable offer of a PC (RC) responder as

a function of γ. Then

1. MPC(0) = MRC(0)

2. MPC(γ) is strictly increasing in γ

3. MRC(γ) is strictly decreasing in γ

The key prediction of Proposition 19 is that the higher the impact of past experience on

responders’ fairness reference points, the greater will be the difference between the MAOs

of PC and RC responders. When no weight is given to past experience, both PC and RC

responders will have identical distributional preferences, as in standard models of fairness.

But as the weight γ increases, the MAOs of PC responders rise, while the MAOs of RC

responders fall.23

We now compare the behavior of RC and PC proposers. In our next result, we examine

how proposers’ strategies are impacted by their Phase 1 experience and by their beliefs

about the responders’ behavior.

Proposition 20. A PC proposer always offers MPC(γ) to a PC responder, and offers MRC(γ) to

a RC responder. A RC proposer always offers MRC(γ) to a RC responder. Finally, there exists a

γ† ∈ (0, 1] such that

22Appendix C.3 includes a more detailed analysis in which we investigate phase 2 behavior for each possible
equilibrium of the RC market game. It is shown that the qualitative conclusions remain identical.

23Not that responders’ behavior here is characterized by rational trading off between fairness monetary
income. Zwick and Chen (1999) provide a careful experimental analysis of how subjects make tradeoffs between
fairness and income.
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1. If γ ≤ γ† then a RC proposer always offers MPC(γ) to a PC responder

2. If γ ∈ (γ†, 1) then a RC proposer offers a < MPC(γ) to a PC responder

Proposition 20 says that PC proposers, who are used to receiving a very small share of

the surplus, are predicted to act in a profit-maximizing manner and will thus offer each

type of responder the smallest amount that responder is willing to accept. RC proposers,

on the other hand, are used to receiving a larger share of the pie, and may not be happy

with a division of surplus in which they don’t get most of the pie. When an RC proposer

is matched with a PC responder, there might, therefore, not be any division of the pie that

both would find acceptable. In such a situation, an RC proposer would make an offer that

would simply end in a rejection by the PC responder, as reflected in the last statement of

Proposition 20. However, an RC proposer and an RC responder can always come to an

agreement, since an RC responder is used to receiving very little of the surplus. In this

situation, an RC proposer will make an offer equal to the smallest amount the RC responder

is willing to accept.

Proposition 20 thus shows that RC proposers and PC proposers will always make

identical offers to the RC responder. That is, when matched with an RC responder, proposers’

Phase 1 experience has absolutely no impact on their strategy. When matched with a PC

responder, RC proposers may make smaller offers than PC proposers for a high enough

parameter γ.

Note, however, that our experimental design investigates only three of the four interac-

tions that are considered in Proposition 20 (see Table 3.1 for a summary of the matching

groups). In particular, we never match PC responders with RC proposers.24 Thus Propo-

sition 20 predicts that proposers’ Phase 1 experience should not affect their strategies in

our experimental design, as both types of proposers will choose strategies based solely on

responders’ phase 1 experience, simply offering the smallest amount their partner will be

willing to accept.

24Since PC responders and RC proposers are always scarce in each session, such a matching group would
have been prohibitively costly. Hence, we decided to focus on the other three matching groups.
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3.3.5 Convergence

The stylized two-phase environment we have considered so far illustrates our model’s

predictions for how exposure to our two different markets affects subsequent behavior in

the non-competitive ultimatum game. We now consider a more dynamic model in which

players have the opportunity to repeatedly participate in the phase 1 market games and

the phase 2 ultimatum game. The key question we ask is how behavior, and the effects

of different market experiences, will change as players continue to repeatedly play the

ultimatum game.

We consider play in periods t = −T, . . . , 0, 1, 2, . . . ∞. In periods t = −T, . . . , 0, players

participate in some n player game (possibly one of the market games), while in periods

t = 1, 2, . . . players participate in a non-competitive ultimatum game. As before, we let µt
i

denote the share of the pie that player i received in period t, and set µt
i = 0 if all n players

received zero payoffs in the respective period.

In period t = −T, player i’s reference point in an n person game is given by µ−T
i = 1/n.

In periods t > −T, the reference point of player i in an n-player game is given by

rt
i = (1− γ)(1/n) + γ

t−1

∑
τ=−T

µτ
i

t + T
. (3.4)

Notice that equation (3.4) is a generalization of equation (3.3) to a setting with more than

two periods. In the more general definition (3.4), the reference point is a convex combination

of the ‘neutral reference point’ 1/n and the average of past experience. While we feel that

the unweighted average of past experience is a natural input into the reference point, it is

by no means the only natural specification, nor is it crucial for our results. In Appendix C.3,

we show that all results remain unchanged for any weighted average of past experiences, as

long as a more recent experience gets at least as much weight as an older experience.

We consider the evolution of play between a proposer and a responder in periods t > 0.

We let rt
P and rt

R denote the proposer’s and responder’s period t > 0 reference points. We

assume that each period, proposers and responders have perfect information about each

others’ reference points, and play an SPE of the non-competitive ultimatum game. We let
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Mt denote the minimal acceptable offer of a responder i in period t > 0, and let at denote

the proposer’s period t > 0 offer.

Throughout this analysis, we will be concerned with steady state preferences and

strategies:

Definition 1. A steady state is a pair of strategies (a∗, M∗) and reference points (r∗P, r∗R) such that

1. (a∗, M∗) is an SPE of the ultimatum game in which players have the fairness reference points

(r∗P, r∗R)

2. r∗P = (1− γ)(1/2) + γ
π∗P

π∗P+π∗R
and r∗R = (1− γ)(1/2) + γ

π∗R
π∗P+π∗R

, where π∗P and π∗R are the

proposer’s and responder’s steady state SPE payoffs

Our main result in this section is that there is a unique steady state to which play always

converges:

Proposition 21. Assume that γ < 1. Then there is a unique steady state 〈(a∗, M∗), (r∗P, r∗R)〉. In

the steady state, a∗ > 0, a∗ < k(W − a∗), and a∗ = M∗. Moreover, this steady state is globally

stable. That is, for any set of initial experiences {µt
i}0

t=−T, preferences and strategies converge to the

steady state:

lim
t→∞

rt
P = r∗P and lim

t→∞
rt

R = r∗R

lim
t→∞

at = a∗ and lim
t→∞

Mt = M∗

Proposition 21 shows that if players have enough experience in the ultimatum game

environment, then their fairness preferences in that environment can be characterized as a

fixed point of an adjustment dynamic. In fact, Proposition 21 shows that our model uniquely

pins down what the steady-state fairness preferences can be—the steady state is unique.

The only assumption needed to guarantee uniqueness is that γ < 1: that is, that players’

fairness preferences are not completely (though perhaps arbitrarily close to) determined by

past experience.

A final prediction of the model is that when players have extreme past experiences

as in our market conditions, convergence to the steady state will be monotonic. That is,
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PC responders should monotonically decrease their MAOs, while RC responders should

monotonically increase their MAOs:

Proposition 22. Assume that γ < 1 and that ∑0
t=−T µt

R
T+1 + ∑0

t=−T µt
P

T+1 ≤ 1.

1. If ∑0
t=−T µt

R
T+1 < r∗R, then for all t > 0, Mt < r∗R but is strictly increasing in t.

2. If ∑0
t=−T µt

R
T+1 > r∗R, then for all t > 0, Mt > r∗R but is strictly decreasing in t.

Proposition 22 simply says that even though responders’ MAOs should not reach steady

state levels in a finite number of periods, the effect of past market experience should still

diminish over time.

3.3.6 Discussion of Assumptions

To keep the analysis as simple and clear as possible, we make several simplifying assump-

tions in the model that are almost surely at odds with behavior in our experiment. In

particular, we make the extreme assumption that players derive disutility when their share

of the pie falls short of their reference point, but they do not derive disutility from receiving

a disproportionately large share of the pie. Incorporating such a motive would weaken

the statement of Proposition 20. However, as long proposers derive greater disutility from

falling short of their reference point than from exceeding it, the qualitative prediction of

Proposition 20 will still hold: that is, proposers’ strategies will depend more on responders’

Phase 1 experience than on their own Phase 1 experience.

3.3.7 Testable Hypotheses

Our theoretical results lead to a number of testable hypotheses. We begin by enumerating

the hypotheses for Phase 1 of the experiment.

H1 In the PC market, proposers will offer most of the pie. In the RC market, proposers will

offer significantly less than proposers in the PC market.
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The first part of hypothesis H1 is a direct consequence of Proposition 17: because of

Bertrand-style competition, proposers cannot maintain positive material surplus. The second

part of hypothesis H1 is a consequence of Proposition 18. While proposition 18 does not pin

down a unique equilibrium, it does say that even the largest possible equilibrium offer is far

below the predicted equilibrium in the PC market, and it says that even offers of zero can

be supported as an equilibrium in the RC market.

We next turn to hypotheses for Phase 2 of the experiment.

H2.1 Responders from the PC market will have higher MAOs than responders from the RC

market

H2.2 Proposers who have learned from Phase 2 experience what responders in their match-

ing group are willing to accept will offer more to PC responders than to RC responders.

H2.3 Proposers who have learned from Phase 2 experience what responders in their match-

ing group are willing to accept will not be affected by their Phase 1 market experience.

H2.4 Differences in Responders’ strategies due to Phase 1 experience will diminish over

time, but will not be completely eliminated.

Hypothesis H2.1 is formally derived in Proposition 19, and is a basic consequence of

assuming that preferences are path-dependent.

Hypothesis H2.2 is derived in Proposition 20, and is a consequence of Proposers’ profit-

maximization motives: proposers should offer less to responders who are willing to accept

less. We expect H2.2 to be in full force after a few periods of play, once Proposers have a

chance to learn what offers responders are willing to accept.

Hypothesis H2.3, also motivated by Proposition 20, complements H2.2 and says that

proposers’ own experience in Phase 1 should play no role in their strategies once they have

an opportunity to learn about responders’ preferences. Initially, it is possible that proposers’

Phase 1 experience may affect their beliefs about responder behavior, and thus affect their

strategies. But when proposers learn about responders’ strategies, Proposition 4’s prediction

that proposers’ Phase 1 experience will not affect their strategies should be in full force.
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Hypothesis H2.4 is directly motivated by Proposition 22, which states that with experi-

ence, proposers’ reference points should monotonically converge toward the steady-state

reference point.

3.4 Results

In this section, we present our experimental evidence for path-dependent fairness prefer-

ences. We begin in subsection 3.4.1 by analyzing differences in behavior between the RC

and PC markets: as expected, we find that offers in the PC market are significantly higher

than offers in the RC market. In subsection 3.4.2 we turn to the analysis of phase 2 of the

experiment, and investigate how differences in phase 1 experience affect responder behavior

in phase 2. In subsection 3.4.3 we investigate how differences in phase 1 experience affect

proposers’ offers. Finally, in subsection 3.4.4 we investigate to what extent responders’

fairness preferences converge over time.

3.4.1 Phase 1: The Effect of Competition on Offers and Acceptance Decisions

We find strong evidence that competition affects offers in the first phase of our experiment.

Averaged over all 15 periods, proposers offer 78 chips to responders in the PC market,

whereas they offer only 31 chips to responders in the RC market. The development of offers

over the course of the 15 periods in both treatments is shown in the left panel of figure 3.1.

The difference between offers in the two treatments is roughly 23 chips in period 1, and

increases over time until it reaches an average of 50 chips from period 7 onwards. To assess

the statistical significance of this difference, we use a clustered version of the rank-sum test

proposed by Datta and Satten (2005), which controls for potential dependencies between

observations. Clustering on the treatment group in phase 1, we find that the difference in

individual average offers is highly significant (p < 0.01, clustered rank sum test)25

25While we present clustered rank-sum tests in the text, we also present p-values using standard rank sum
tests that do not account for the potential dependencies between observations within matching groups in table
C.1 in Appendix A as a benchmark. It can be seen that the p-values of the standard test are in general slightly
smaller, but very comparable to the p-values from the clustered test presented in the text.
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Figure 3.1: Average Offers and Acceptance Rates Over Time, Respectively.

Despite these large differences in offers, the right panel of figure 3.1 shows that the

probability that an offer is accepted does not differ much by treatment. In the PC market,

responders accept one of the two offers in 99.2 percent of the time. In the RC market,

responders accept the offers 76.8 percent of the time, and the probability that at least one

of the responders accepts an offer is 92.5 percent. Thus in both markets, a successful

transaction occurs over 90 percent of the time. Our stark experimental results on the affects

of competitive forces are consistent with Roth et al. (1991) and Fischbacher et al. (2009) and

confirm our hypothesis 1. We summarize them in the following result:

Result 1. Competition among responders leads to low offers, whereas competition among proposers

leads to high offers in the market version of the ultimatum game. Despite facing relatively low offers,

responders in the responder competition market accept offers with a high frequency.

3.4.2 Phase 2: The Effect of Experience on Responder Behavior

Hypothesis H2.1 states that PC responders have higher acceptance thresholds than RC

responders. The left panel of figure 3.2 provides our first piece of evidence in favor of

the hypothesis. In every period of the bargaining game, average minimal acceptable

offers are larger for PC Responders. The difference is particularly pronounced in early

periods. In period 1, the difference in the average acceptance threshold between the two
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treatment groups is 13 chips, which translates to PC Responders stating minimum acceptance

thresholds that are 36 percent higher than the acceptance thresholds of RC Responders.
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Figure 3.2: Minimal Acceptance Thresholds of Responders.

To assess the statistical significance of this difference, we again use the clustered version

of the rank-sum test in order to control for potential dependencies between observations

stemming from phase 1 of the experiment. Clustering on the treatment group in phase 1,

the difference in minimum acceptance thresholds in the first period is significant (p = 0.03,

clustered rank-sum test). On average over all 15 periods, the difference is 8.6 chips (p = 0.06,

clustered rank-sum test using individual average acceptance thresholds as the unit of

observation), which translates to PC responders stating minimum acceptance thresholds

that are 24 percent higher.

The right panel of figure 3.2 shows that a similar picture emerges when comparing the

median minimum acceptance thresholds across the two treatment groups. The median

minimum acceptance threshold of the PC responders is consistently larger than the median

minimum acceptance threshold of the RC responders, and the treatment effect is very

consistent over time. A ranksum test using median acceptance thresholds of each treatment

group in each session as the unit of observation (N = 10) reveals that the difference in

medians is also significant (p < 0.02).

The data shown in figure 3.2, however, does not account for differences in past experience
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of the proposer. To control for potential effects of proposer experience on responder behavior,

we have to exploit the exogenous variation in matching group composition in phase 2 of the

experiment. As we explained in section 3.2, our different matching groups in phase 2 of

the experiment allow us to perform such an analysis. Figure 3.3 shows the development

of minimum acceptance thresholds over time in phase 2 of the experiment for the three

different matching groups. While the solid line exactly corresponds to the PC responder plot

in figure 3.2, the two dotted lines disaggregate the RC responders based on their matching

groups. It can again be seen that minimum acceptance thresholds in the PC matching group

remain permanently above the minimum acceptance thresholds of the other two groups.

Moreover, the two matching groups with RC responders are not significantly different from

each other (p = 0.44, clustered rank-sum test using individual average acceptance thresholds

as the unit of observation).
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Figure 3.3: Mean and Median Minimal Acceptance Thresholds of Responders, by Matching Group.

To statistically assess potential differences in responder behavior conditional on respon-

der and proposer experience, we turn to regression analysis. Table 3.2 shows coefficients of

a regression of minimum acceptance thresholds on a dummy variable indicating whether a
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responder participated in the PC market in phase 1 (PC Responder) and a dummy variable

indicating whether the matched proposer participated in the PC market in phase 1 (PC

Proposer). Hence, PC Responder captures the effect of responder experience, whereas PC

Proposer captures the effect of proposer experience.

Table 3.2: Minimum acceptable offers by experience

First Period All
(1) (2)

PC Responder 15.400** 10.187*
(5.665) (4.921)

PC Proposer –4.800 –3.227
(6.777) (7.490)

Constant 38.400*** 37.413***
(4.165) (4.675)

Adj. R2 0.059 0.041
Observations 75 1125

OLS Regressions; Clustering by treatment groups. Significance levels: *** p < .01, ** p < .05, * p < .1.

Table 3.2 clearly shows that only responder experience has a significant effect. This

effect is particularly pronounced in the first period, and weakens when all periods are

considered in the regression. We will return to the issue of convergence in subsection 3.4.4.

Our evidence on responder behavior is summarized in the next result:

Result 2. Responders who have been exposed to proposer competition in phase 1 have a higher

minimal acceptance threshold than responders who have been exposed to responder competition in

phase 1. The experience of matched proposers has no substantial impact on responder behavior.

3.4.3 The Effect of Experience on Proposer Behavior

Our theoretical framework also makes predictions about proposer behavior. Hypothesis

H2.2 states that proposers should tailor their phase 2 offers to the responders’ past phase 1

experience. Hypothesis H2.3 states that once proposers have an opportunity to learn about

responders’ behavior, proposers should not be affected by their own phase 1 experience at

all. We now investigate these hypotheses.
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Figure 3.4: Mean and Median Offers of Proposers, by Matching Group.

The left panel of figure 3.4 shows average offers in the different matching groups over

time, and the right hand panel shows the respective median offers by matching group over

time. It can immediately be seen that, in the first period, proposer origin affects proposer

offers. While the mean and median offer is roughly equivalent in the two matching groups

with PC proposers, RC proposers make lower offers in period 1. However, mean and

median offers of PC proposers seem to diverge, whereas mean and median offers of the RC

proposers appear to converge to the level of the PC proposers who are matched with RC

responders. To assess the relevance of proposer and responder experience on proposers’

offers, we again turn to regression analysis.

Table 3.3 shows a regression of offers on a dummy variable indicating whether a

responder participated in the PC market in phase 1 (PC Responder) and a dummy variable

indicating whether the matched proposer participated in the PC market in phase 1 (PC

Proposer). Column (1) shows that proposers’ phase 1 experience is an important determinant

of their first period offers. When aggregating over all 15 periods, however, the effect is

completely reversed. The coefficient on PC Proposer becomes insignificant, whereas the
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Table 3.3: Proposer Offers

First Period All
(1) (2)

PC Responder –1.000 8.813*
(3.835) (3.927)

PC Proposer 12.400*** 1.613
(2.461) (2.541)

Constant 36.600*** 45.853***
(2.836) (3.049)

Adj. R2 0.068 0.106
Observations 75 1125

Notes:OLS Regressions; Clustering by treatment groups. Significance levels: *** p < .01, ** p < .05, * p < .1.

coefficient on PC Responder becomes larger and significant (p = 0.051). Thus, once

proposers have learned the preferences of the responders with whom they are matched,

their phase 1 experience becomes completely irrelevant. We summarize these findings in

the following result:

Result 3 (Offers are Primarily Driven by Responder Experience). Overall, proposers’ experience

in phase 1 of the experiment has very little impact on their offers in phase 2 of the experiment.

Responders’ phase 1 experience, however, significantly impacts proposers’ offers in phase 2 of the

experiment.

Data on proposers’ beliefs further supports the conclusion that proposers’ offers in phase

2 are strongly affected by their beliefs about responders’ minimum acceptance thresholds

in phase 2.26 In Periods 1, 6 and 11, proposers were asked to state their belief about

responders’ median acceptance threshold. Table 3.4 shows regressions of this believed

median acceptance threshold on proposer and responder experience dummies.

PC Proposers initially believe in higher acceptance thresholds, but the difference is

not statistically significant. However, in period 6 and 11 the effect of proposer experience

on believed acceptance thresholds vanishes. Responder experience, however, increasingly

26This is consistent with earlier work documenting that bargainers’ beliefs about their partners’ strategies
will effect their own strategies. See, e.g., Roth and Schoumaker (1983).
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Table 3.4: Proposers’ beliefs about acceptance

Period 1 Period 6 Period 11
(1) (2) (3)

PC Proposer 6.600 0.600 –4.400
(9.995) (4.264) (5.237)

PC Responder 6.800 12.000* 15.800***
(10.449) (4.341) (2.736)

Constant 35.000*** 44.000*** 46.800***
(4.657) (3.463) (4.558)

Adj. R2 0.050 0.149 0.199
Observations 75 75 75

Notes: OLS Regressions; Clustering by treatment groups. Significance levels: *** p < .01, ** p < .05, * p < .1.

affects the believed median acceptance threshold. While it initially has no effect in period

1, being matched with a PC responder leads to significantly higher beliefs in median

acceptance thresholds in periods 6 and 11. This evidence is consistent with proposers

offering higher amounts when being matched with PC responders.

The fact that proposers’ offers are strongly shaped by their beliefs about responder

behavior is also consistent with our theoretical predication that proposer behavior is driven

by the maximization of monetary payoffs. To further investigate this prediction, we compute

the optimal offers for each period (and by matching group) in appendix C.2, and find

that proposers’ actual offers are very close to the optimal offers (both in magnitudes and

statistically).

3.4.4 Convergence of Fairness Preferences

Next, we turn to the persistence of the effects of experience on proposers and responders

over time. According to Hypothesis 2.4, the difference between PC and RC responders’

MAOs should diminish over time. In this section, we analyze how quickly this convergence

occurs, if at all. The fitted lines in figure 3.2 suggest that there is a negative trend in

minimum acceptable offers for responders who have been exposed to proposer competition

in the first part of the experiment. This observation is confirmed by regression analysis in
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column (1) of table 3.5.

Table 3.5: Time trends in minimum acceptance thresholds

(1)
PC Responder 12.093**

(4.296)
PC Responder×period –0.440*

(0.222)
Period –0.126

(0.182)
Constant 36.811***

(2.449)
Adj. R2 0.041
Observations 1125

Notes: OLS regressions; Clustering by treatment groups

The difference in acceptance thresholds between the two treatment groups is decreasing

by an average of .44 chips per period, which is approximately 3.6 percent of the initial

difference. This attenuation of the difference appears to be mainly driven by responders

from the PC treatment group slowly decreasing their acceptance thresholds over time

(see the significant negative time trend in column (1)). Responders from the responder

competition treatment group, however, do not change their acceptance thresholds over time.

We summarize these findings in our final Result:

Result 4 (Gradual Convergence of Fairness Preferences). The difference in acceptance thresholds

is fairly persistent, but gradually decreasing over time.

3.4.5 Discussion of Results

Do Experiences or Expectations Shape the Reference Point?

In the theoretical development of our hypotheses, we have assumed that fairness reference

points correspond to past experiences. Alternatively, following the approach by Kőszegi and

Rabin (2006, 2007, 2009) in the domain of consumption and risk preferences, it is possible

that reference points correspond to expectations. Applied to fairness preferences, it may be
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that a responder chooses to reject a proposer’s offer when that offer falls far short of what

the responder expected.27

A model of rational expectations along the lines of Kőszegi and Rabin (2006, 2007, 2009)

would not predict our results. Once players learn which game they will be participating

in for the subsequent 15 periods, their rational expectations about outcomes should not

depend on their phase 1 experiences.28

Another possibility is that a model of naive, rather than rational, expectations might

be generating the differences in responders’ phase 2 behavior. Although one is faced with

many degrees of freedom in formulating a generally-applicable theory of naive expectations

that can explain how beliefs in one game are shaped by outcomes in a previous game,

one of the many possible formulations is similar to our model. A model in which players’

expectations are a convex combination of the shares of the surplus that they have received

in the past could generate patterns similar to the patterns observed in our data. In that

sense, our model can be viewed as a tractable and reduced-form approach to formalizing

the behavior of a player whose experiences shape his naive beliefs, which in turn affect

preferences.29

We want to point out, however, that a model in which naive beliefs shape the fairness

reference point would have trouble explaining the stark difference between responders’

adjustment of their phase 2 behavior and proposers’ adjustment of their phase 2 behavior

(see Figures 3.3 and 3.4). As we discussed in detail, proposer behavior suggests that our

27In the context of third-party punishment, Coffman (2010) tests the idea that third parties’ expectations may
shape their punishment decisions, but does not find evidence for this hypothesis.

28Rational expectations should only be shaped by knowledge of the game structure, and beliefs about other
players’ types. And since rational players should not have their beliefs systematically biased by play in different
games, these rational players should not have different beliefs about each others’ types as a result of playing
different games in Phase 1. Of course, it may be possible to accommodate our results with a model in which there
are multiple rational expectations equilibria and past experience serves as a coordination device for selecting
an equilibrium. However, we do not find such an explanation particularly satisfactory, since it amounts to
assuming a model with enough degrees of freedom in its predictions such that our data can’t falsify it. A more
satisfactory account would have our empirical results as a prediction.

29A responder’s naive beliefs might literally be dictated by a his past shares of the surplus—thus corre-
sponding exactly to our mathematical model—or the beliefs might be a convex combination of the offers the
responder observes—thus corresponding to a minor variation of our model that generate identical results.
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subjects are actually very fast to learn how other subjects behave in the game they are

playing. By period 5, proposers’ phase 1 experience has absolutely no impact on their

behavior. Given such fast learning, a theory in which differences in responders’ behavior

are due solely to differences in their naive expectations would seem to be mismatched with

the persistent difference in MAOs that we observe in our data (see Figure 3.3).30 Finally,

although reinforcement learning (Roth and Erev, 1995, 1998) does not make predictions how

experience in one game would modify behavior in a different game with a different strategy

space, like our model it also predicts that responders may adjust their behavior in response

to the offers they see (Cooper et al., 2003).31

Fairness Reference Points or Anchoring Heuristics?

Experimental evidence has shown that individuals can be influenced by arbitrary anchors

(Lichtenstein and Slovic, 2006; Kahneman and Tversky, 2000; Ariely et al., 2003; Simonson

and Tversky, 1992), and that behavior that appears to be consistent with expressing a

particular preference can in fact be the result of arbitrary anchoring.32 Could it then be that

our results are the consequence of a simple anchoring heuristic rather than evidence for

reference-dependent fairness preferences?

Two pieces of evidence suggest that our results are not due to simple anchoring. First, we

demonstrate that past experience only has persistent effects on responder behavior, whereas

proposers quickly adapt to the new environment. This differential response to the treatment

30We should also point out that while a theory of expectations as reference points is the most similar to our
model, similar considerations apply to belief-based reciprocity models (Rabin, 1993; Levine, 1998; Dufwenberg
and Kirchsteiger, 2004). In these models players’ motivations depend on their second-order beliefs about actions
(Rabin, 1993; Dufwenberg and Kirchsteiger, 2004) or on first-order beliefs about types (Levine, 1998). Again, a
theory of reciprocity and rational beliefs would not be consistent with our results. But when combined with
certain types of non-rational beliefs, these theories may come closer to rationalizing our results. Cooper and
Dutcher (2011) propose a model along these lines to explain their findings from a meta-analysis of responder
behavior in ultimatum games.

31See also List and Cherry (2000) and Slonim and Roth (1998) for work on proposer and responder adjustment
in the ultimatum game.

32See, however, Fudenberg et al. (2012) and List et al. (2013) for evidence questioning the robustness of these
anchoring effects.
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is inconsistent with a simple anchoring heuristic, whereas our theory of reference-dependent

fairness preferences precisely predicts such behavior.

Second, we collected data on individual cognitive abilities using the cognitive reflection

test (CRT) (Frederick, 2005). The CRT is a cognitive test that seems particularly suited

to assess the proneness to the anchoring heuristic. In the CRT, subjects have to answer

questions that have an intuitive but wrong answer. Individuals who fall for fast and frugal

heuristics are likely to score low on the CRT. Table C.2 in appendix A shows coefficients for

regressions of the minimum acceptance threshold on phase 1 experience, CRT scores and the

interaction of the treatment with the CRT score in period 1 of phase 2 of the experiment, in

which anchoring should be particularly pronounced. If our subjects were following a simple

anchoring heuristic, we would expect that the treatment effect is particularly pronounced

for individuals scoring low on the CRT. It turns out that the statistically insignificant point

estimate of the interaction between CRT score and treatment has the opposite sign.

3.5 Concluding Remarks

While most existing work on social preferences has progressed under the presumption

of static preferences, we show that fairness preferences are malleable and endogenous

to the economic forces that determine market outcomes. We also demonstrate that such

malleability can be incorporated into economic theory in a disciplined generalizable way: the

parsimonious and generally applicable model we propose incorporates the path-dependent

nature of preferences at the cost of just one additional degree of freedom, and predicts

uniquely determined long-run outcomes in the games we consider.

We view our experimental and theoretical work as a first step towards understanding

the dynamic nature of fairness preferences, paving the way for a number of other theoretical

and empirical questions to be addressed by future research. One important set of questions

concerns the foundations of path dependence. Although our results would not be predicted

by a model in which agents form rational beliefs and derive utility from those beliefs, our

mathematical framework and experimental results are not meant to distinguish between
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whether experience is a direct input into preferences, or whether the input is beliefs that are

shaped by the past experiences of boundedly-rational agents. We plan to investigate this

question in future work.

While past experience does not appear to affect proposers’ prosociality in our empirical

results, a relationship between prosociality and past experience may exist in other con-

texts. In concurrent work, Peysakhovich and Rand (2013) demonstrate that immersing

subjects in environments that support cooperation in the infinitely repeated Prisoner’s

Dilemma (PD) substantially impacts subjects’ norms of prosociality in subsequent interac-

tions. Peysakhovich and Rand (2013) find that subjects who have previously experienced

cooperative outcomes are more likely to cooperate across a broad array of one-shot games

such as the dictator and trust games, and are also more likely to punish selfishness in

third-party punishment games. Interestingly, Peysakhovich and Rand (2013) find no effect

on retaliation in the ultimatum game, which suggests that there may be important nuances

in how past experience shapes retaliatory versus cooperative motivations. We believe this to

be an important theoretical and empirical question for future research.33

Our work also raises intriguing questions about the market consequences of dynamic

fairness preferences. For example, what are the implications of path-dependent fairness

preferences for how a firm would optimally choose its dynamic price schedule? Our work

implies that a trade-off exists between the immediate loss of customers whose fairness

reference point is violated, and the long run profits generated through the increased

willingness to pay of customers once the reference point has adjusted. And unlike theories

of reference dependence that do not invoke fairness preferences—but in line with the

insights of Kahneman et al. (1986)—our framework implies that consumers will react very

differently to prices increases that are exploitations of market power, as opposed to price

increases necessitated by rising costs of production.

33Also quite intriguing is that Peysakhovich and Rand (2013) find that subjects with lower CRT scores are
most affected by their PD manipulation, which leads them to suggest that subjects adopt cooperative tendencies
as “heuristics” shaped by past experiences. In contrast, we find no interaction between CRT scores and the effect
of past experience. This suggests that there may be fundamental differences between cooperative and retaliatory
behaviors, and that past experiences may shape these behaviors through different psychological channels.
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The effect of experience on fairness perceptions in labor markets may also cause wage

rigidities and create excessive unemployment volatility. Finally, the path-dependence of

fairness preferences may also help to shed light on the differences in beliefs and attitudes

that we observe across different cultures and institutions.
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Appendix A

Appendix to Chapter 1

A.1 Extensions and Additional Examples

A.1.1 Infinite Horizon

Let δ < 1 be the DM’s discount factor, and suppose now that T is possibly infinite. For

simplicity, I will assume that period t flow payoffs are independent of the history t. Let Ht

be the set of all possible period t histories, and set H ≡ ⋃Ht. Let xs : H×R→ {d, a} denote

a sophisticated DM’s plan, which maps each pair (ht, ξt) to an action in A(ht), conditional on

the DM being attentive. Let zt = (xt, ξt) denote the period t outcome, and let ut(zt) denote

the period t flow payoff corresponding to that outcome. Finally, let F (xs) be the distribution

over the possible outcomes z = (z0, z1, . . . ) induced by strategy xs. Note that the product

measure F (xs) takes into account how the likelihood of being attentive evolves over time as

a function of past events.

The sophisticated DM chooses the strategy xs that maximizes

∞

∑
t=0

δtu(z)dF s(xs).

The naive DM chooses the strategy xn that corresponds to the strategy of a perfectly

attentive DM. In particular, let Fpa(xn) denote the product measure over outcomes that

would be induced if a perfectly attentive DM used strategy xn. The naive DM chooses the
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strategy xn that maximizes
∞

∑
t=0

δtu(z)dFpa(xn).

His utility, however, is given by
∞

∑
t=0

δtu(z)dFn(xn)

where Fn(xn) is the actual product measure over a naive DMs’ outcomes that xn induces.

A.1.2 Endogenous Cue Generation

Does setting cues eliminate inattention for sophisticates?

The possibility to manipulate cues does not eliminate the DM’s inattention problem for

a number of reasons. As discussed in Section 1.2.4, cues are imperfect. Second, cues can

be costly. While setting a single electronic calendar reminder is cheap, purchasing an

electronic pill bottle with an array of audio and visual reminders is more costly. Even

electronic calendar reminders, however, can be expensive. Because one calendar reminder

is highly imperfect in the sense that it can be forgotten minutes later, ensuring perfect

attentiveness over the course of even a 1 week period might require hundreds, if not

thousands of reminders—which carries a high nuisance cost. Third, an inattentive DM will

not only be inattentive about the primary behavior: he will also be inattentive about setting

additional cues. Especially when combined with naivete, these issues substantially reduce

the possibility that a DM might eliminate his inattention through reminder technologies.

Formal model

I now explore an augmented model in which the DM can set cues in period 0. I begin

by focusing on sophisticated DMs. As in section 1.4, suppose that the DM starts out with

initial attention probabilities γ0
t (α, x) but can modify them to γκt

t (α, x) at cost C(κ), where

κ = (κ1, . . . , κT). For these DMs, let Vs
0 (κ) be the period 0 utility as a function of modified

attention probabilities, with the Vs
t still defined as in Section 1.2.3. Different from Section

1.2.3, I now allow the vector κ to be set by the DM in period 0. The period 0 optimization is
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now

max
κ∈[0,1]T

{Vs
0 (κ)− C(κ)}, (A.1)

Notice that all of the analysis in the paper is just a subgame of this more general framework.

Notice also that this general framework still incorporates the idea that some cues are gener-

ated exogenously, either by an interested party or as incidental events such as conversations

with others.

A basic prediction of this more general framework is that as stakes become larger, the

DM invests more in increasing his attention. This would not modify most of the results,

however. I now walk through each of the paper’s results to check their robustness. To

consider analogs to the results about creating additional cues, as in several propositions in

the paper, assume that the additions are applied to the initial cue distributions Ht, but that

the DM’s cost function C(κ) does not change.

An assumption I will rely on throughout the analysis is that the DM cannot guarantee

perfect attentiveness:

Assumption B For κ = (κ1, . . . , κT), limκt→1 C(κ) = ∞ for each t.

Prop 1 Holds under Assumption B (which is needed to guarantee that there is scope for

“external” cues to affect inattention). The logic is slightly more involved, though,

because increasing bt′ will now increase both investments in reminders, as well as

investments through behavioral rehearsal.

Prop 2 Part 4 goes through exactly. The higher the period t′ cues, the less the DM invests in

future attentiveness both through rehearsal and through reminder technologies. Thus

the likelihood of him taking an action in period t < t′ decreases. The logic of 2b goes

through under assumption B: A sufficiently large increase in period t cues cannot be

crowded out by lack of investment through rehearsal or own reminder technologies.

Finally, whether or not 3a goes through under assumption B depends on the curvature

of C and on the function g(x, α, σ). It is possible that increasing period 1 cues crowds

out investment in future cues more than one-for-one. However, in the simple model of
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multiplicative cues introduced in (1.1), investment in cues will be crowded out less

than one-for-one when C is continuous and convex. This ensures that increasing H1

always increases the likelihood of attentiveness in all future periods. Part 5 will hold

under these same assumptions.

Prop 3 Whether or not part 2 goes through under assumption B depends on the curvature of

C on the function g(x, α, σ). As argued above, in the simple model of multiplicative

cues introduced in (1.1), investment in cues will be crowded out less than one-for-one

when C is continuous and convex. This ensures that increasing H1 always increases

the likelihood of attentiveness in all future periods.

Prop 4 The logic goes through under assumption B. Making the DM close to attentive as

in part (b) makes him close to non-responsive to rehearsal effects (or investments in

reminder technologies) from prior periods.

Prop 5 Part (2) of Proposition 5 will hold under assumption B. As discussed in Section 1.2.5,

no cue is perfect because there is always a chance that it will be ignored or missed.

Part 3 of Proposition 5 may not necessarily hold for very high benefit tasks, since the

DM will set many reminders for those tasks. However, this claim should still hold for

low benefit tasks for which the DM will not invest as much in reminders.

Prop 7 Parts 1 and 2 clearly hold verbatim, since the more attentive the DM is, the more

advantageous the longer deadline. Part 3 will also hold but possibly through a

different mechanism: the more important the task, the more attentive the DM becomes

to it through endogenous cue setting, thus approaching the behavior of the perfectly

attentive DM.

Prop 8 Holds verbatim, since the probability of being attentive is still bounded away from 0.

Prop 9 The analog to part 2 will still hold, in the sense that if the γ0
t (α, x) are sufficiently

high to make the DM close to attentive, then longer deadlines should generate higher

completion rates.
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Props 13,14 The major new question that the more general framework raises is the extent to which

third-party cue-provision crowds out decision makers’ personal cue provision. As long

as crowd-out is not one-for-one, however, the impact of third-party cues should not go

to zero in the long run. The DM’s own personal provision may also be non-monotonic

in `, thus dampening the extent to which the third party’s optimal cue intensity may

be non-monotonic in `.

A.1.3 Modeling Partial Naivete

At the most general level, prediction mistakes can be incorporated by supposing that the

DM’s forecasts are given by ĝ(α, x, σ) that satisfies assumptions A1-A4, but that doesn’t nec-

essarily correspond to the true g. A simple and parametric way of modeling overconfidence

is to set

ĝ(α, x, σ) = χo + (1− χo)g(α, x, σ) (A.2)

Then χo = 0 corresponds to a fully sophisticated DM, χo = 1 corresponds to a fully naive

DM, and χ ∈ (0, 1) corresponds to a partially overconfident DM.

The DM may be naive in more nuanced ways, however. For example, the DM may

recognize that he can be inattentive in the future, but be fully naive about the role that

behavioral rehearsal plays in increasing accessibility. This can be captured by setting

ĝ(α, a, σ) = ĝ(α, d, σ) = χrg(α, d, σ) + (1− χr)g(α, a, σ). In this formulation of naivete, the

DM will always overestimate his future attentiveness for one time tasks such as the ones

studied in Section 1.4. In the repeated action environments studied in Section 1.3, this

formulation will lead the DM to be completely ignorant of the effect that past behavior will

have on his future behavior. This ignorance of the behavioral rehearsal effect will sometimes

lead the DM to overestimate and sometimes underestimate the probability of choosing

xt = a in the future.

Even more generally, the partial overconfidence in equation (A.2) can be combined with

the naivete about rehearsal described in the previous paragraph.
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A.1.4 Response elasticities for section 1.3.1

Let Di
t(bt) = e +

(
1− PrHi

(at = 1)
)

be the expected total consumption of energy in period

t, conditional on sequence of cue distributions Hi. Here, e ≥ 0 is a baseline electricity use

from other decisions. Then ∂
∂bt

Di
t(bt) = − ∂

∂bt
PrHi

(xt = a).

Let st be the naive or sophisticated DM’s threshold rule in period t, so that xt = a if and

only if ξt ≥ st. Then for i = 1, 2,

∂PrHi
(xt=a)

∂bt

PrHi(xt = a)
=

∂

∂bt
(1− F(st))

is constant in i. To simlify notation, set kt == ∂
∂bt

(1− F(st)). Then

−
∂

∂bt
D1

t (bt)

Dt(bt)
< −

∂
∂bt

D2
t (bt)

Dt(bt)

⇔ − ktPrH1
(xt = a)

e +
(
1− PrH1(xt = a)

) < − ktPrH2
(xt = a)

e +
(
1− PrH2(xt = a)

)
⇔ −PrH1

(xt = a)
(

e + 1− PrH2
(xt = a)

)
< −PrH2

(xt = a)
(

e + 1− PrH1
(xt = a)

)
⇔ −PrH1

(xt = a)(e + 1) < −PrH2
(xt = a)(e + 1)

⇔ PrH1
(xt = a) > PrH2

(xt = a)

Thus, when cues increase the probability of xt = a, they also increase the demand response

elasticity.

A.1.5 Microfoundations for the price floor assumption

An arbitrageur who derives no intrinsic value from the product gets a total payoff of

v̂a − p + r from the offer, where v̂a corresponds to the scrap value of the product, net of

potential inconvenience costs of going through with the deal. I assume that v̂a < c. In

contrast to the inattentive consumers, an arbitrageur is perfectly attentive, and always mails

in the form correctly. Thus, conditional on purchasing a product with a rebate, he obtains

the rebate with probability 1. This is in contrast to naive consumers who derive utility v

from one unit of the product but derive 0 utility from further purchases.
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Proposition 23. Conditional on any deadline T, the profit maximizing choice of pT and rT is such

that pT − rT ≥ v̂a.

Proof. If pT − rT < v̂a then arbitrageurs will have infinite demand for the product. However,

the profit from selling to each arbitrageur will be pT − rT − c < v̂a − c < 0.

Note that it is possible there are some arbitrageurs who are intrinsically interested in

the product, and derive utility v− p + r > v̂a − p + r from the first unit. The analysis in the

body of the paper is a limit case of an economy in which the fraction ε of such arbitrageurs

approaches 0.

A.2 Daily Action Experiment: Supplementary Material

A.2.1 Theoretical Extensions

To formally model the decision environment in experiment 2, suppose now that the payoff

to choosing at = 1 is bt + ξt + ζt, where bt and ξt ∼ F are as in Section 1.3. The new source

of variation is the correlated shock ζt. Specifically, there are t1 and t2 such that

• ζt = z̄ for all t ≤ t1 and t > t2

• With probability p, ζt = ζ for all t1 < t ≤ t2, while with probability 1− p, ζt = ζ̄ for

all t1 < t ≤ t2

Proposition 24. For all t > t2, t1 < τ ≤ t2: Prs(at = 1) and Prn(at = 1) are increasing in the

realization ζτ.

Proposition 25. Consider two different sequences of cue distributions H1 = (H1
1 , . . . , H1

T) and

H2 = (H2
1 , . . . , H2

T) such that H1
τ = H2

τ for τ ≤ t2, but such that H2
τ ≥ H1

τ for τ > t2, with strict

equality for at least one such τ.

1. For all t > t2, t1 < τ ≤ t2: Prn,H2
(at = 1)− Prn(at = 1) is decreasing in ζτ.

2. If ζ is sufficiently low then for all t > t2 and t1 < τ ≤ t2, Prs,H2
(at = 1)− Prs,H1

(at = 1) is

decreasing in ζτ.
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3. For each H1, there is a µ† < 1 such that if µ2
τ ≥ µ† then for all t > t2 and t1 < τ ≤ t2,

Prs,H2
(at = 1)− Prs,H1

(at = 1) is decreasing in ζτ.

A.2.2 Additional Experimental Details

Table A.1 shows the age, sex and student breakdown by arm. Chi-squared tests from

multinomial a probit regression show that the randomization was succesful and that none of

these demographic variables are statistically different by arm: p = 0.20, p = 0.41, p = 0.29

separately and p = 0.40 jointly. The reminders and no reminders groups are also comparable:

chi-square p = 0.40, p = 0.23, p = 0.10 separately and p = 0.28 jointly. And similarly

for interrupted versus non-interrupted groups: chi-square p = 0.04, p = 0.29, p = 0.25

separately and p = 0.15 jointly.

Table A.1: Demographics by Experimental Condition

Condition NB-NR B-NR NB-R B-NR Overall
Mean Age 31.3 28.1 31.2 28.4 29.6
% Male 26.0% 37.3% 23.7% 27.0% 30.5%
% Students 57.0% 58.8% 47.4% 46.0% 52.6%
Observations 54 51 38 37 180

Notes:Condition 1 = No interruption/ No reminders; Condition 2 = Week 2 interruption / No reminders;
Condition 3 = No interruption / Reminders; Condition 4 = Week 2 Interruption / Reminders.
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A.2.3 Robustness to Demographic Controls

One subject listed an out of range answer (“Beau”) in the age category, and is thus excluded

from analysis. Table A.2 shows that adding demographic controls does not at all alter the

results of Table 1.1. The demographic controls also do not appear to explain any additional

variance in week 3 completion rates.

Table A.2: Replication of Table 1.1 with Demographic Controls.

Pr(complete survey) (1) (2) (3)
Interruption –0.420*** –0.419*** –0.421***

(0.063) (0.054) (0.055)
Reminders 0.034 0.032 –0.134

(0.065) (0.050) (0.136)
Interruption*Reminders 0.270** 0.316*** 0.326***

(0.115) (0.094) (0.095)
Week1Avg 0.635*** 0.527***

(0.081) (0.097)
Week1Avg*Reminders 0.251

(0.163)
Adj. R2 0.147 0.289 0.294
Observations 1253 1253 1253

Notes: This table estimates a linear model of the probability of completing the daily survey in week 3 of
the study, controlling for the demographic variables gathered in the registration phase of the study. The
variable “Interruption” equals 1 if the daily survey was available in week 3 and equals 0 otherwise. The variable
“Reminders” equals 1 if subject received daily reminders in week 3 and equals 0 otherwise. The variable
“Week1avg” denotes the fraction of surveys completed in week 1. Robust standard errors clustered at subject
level. All regressions include controls for: day of week, day in study, age, age2, sex, race, and whether or not
subject is a student. *p < 0.1; **p < 0.05; ***p < 0.01.
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A.2.4 Robustness to calendar date random effects

Table A.3 estimates a linear probability model with robust standard errors clustered at the

subject level and calendar date level, following Cameron et al. (2011). Unfortunately, when

clustering at the calendar date level, including dummy variables for day of the week and

for day in study causes the variance-covariance matrix to be highly singular; thuse these

dummies are omitted. Instead, I just include day in study as a covariate.

Table A.3: Replication of Table 1.1 With Clustering at the Calendar Date Level

Pr(complete survey) (1) (2) (3)
Interruption –0.416*** –0.398*** –0.401***

(0.065) (0.058) (0.058)
Reminders 0.036 0.028 –0.121

(0.068) (0.056) (0.136)
Interruption*Reminders 0.267** 0.305*** 0.320***

(0.108) (0.092) (0.095)
Week1Avg 0.625*** 0.527***

(0.078) (0.081)
Week1Avg*Reminders 0.226

(0.152)
Adj. R2 0.143 0.292 0.297
Observations 1260 1260 1260

Notes: This table estimates a linear probability model of completing the daily survey in week 3 of the study.
The variable “Interruption” equals 1 if the daily survey was available in week 3 and equals 0 otherwise. The
variable “Reminders” equals 1 if subject received daily reminders in week 3 and equals 0 otherwise. The variable
“Week1avg” denotes the fraction of surveys completed in week 1. Robust standard errors clustered at the subject
level and calendar date level, following Cameron et al. (2011). *p < 0.1; **p < 0.05; ***p < 0.01.

A.2.5 Analysis of Post-Experimental Survey Results

Out of the 172 subjects completing the post-experimental questionnaire, 51 subjects, or

29.7% reported using a reminder technology. Subjects were coded as using a memory aid if

they reported 1) using a calendar 2) using notes/diaries/daily planners/Google recurring

tasks etc 3) asking others to remind them 4) leaving a tab with the study site open on

the computer 5) making the study site their homepage or 6) automating their own daily

reminders. Subjects were not coded as using a reminder technology if they reported a
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routine such as doing the survey each morning, saying that they put it on a “mental to do

list” or saying that they bookmarked the survey or starred the study overview email.

Interestingly, subjects were not less likely to use their own reminder technology if they

were told that they would not be getting reminders in week 3 (Fisher’s exact test p = 0.40).

There is also no difference in reminder technology use by week 2 Interruption (Fisher’s

exact test p = 0.17).

Table A.4: Effect of Using Own Reminder Technology, by Experimental Condition.

Pr(complete survey) (1) (2) (3) (4)
Interruption –0.432*** –0.438*** –0.458*** –0.463***

(0.058) (0.060) (0.056) (0.058)
Reminders 0.051 –0.095 0.046 –0.110

(0.049) (0.136) (0.049) (0.136)
Interruption*Reminders 0.338*** 0.346*** 0.362*** 0.361***

(0.093) (0.093) (0.100) (0.097)
Own_Technology 0.142*** 0.137*** 0.143*** 0.137***

(0.046) (0.045) (0.047) (0.046)
Interruption*Own_Technology 0.255*** 0.274*** 0.256*** 0.276***

(0.091) (0.092) (0.091) (0.091)
Interruption*Own_Tech*Reminders –0.208 –0.209 –0.185 –0.182

(0.165) (0.168) (0.163) (0.165)
Week1Avg 0.553*** 0.460*** 0.566*** 0.467***

(0.078) (0.090) (0.080) (0.091)
Week1Avg*Reminders 0.222 0.236

(0.162) (0.163)
Adj. R2 0.319 0.323 0.321 0.325
Observations 1204 1204 1197 1197

Notes: This table estimates a linear model of the probability of completing the daily survey in week 3 of the
study. The variable “Interruption” equals 1 if the daily survey was available in week 3 and equals 0 otherwise.
The variable “Reminders” equals 1 if subject received daily reminders in week 3 and equals 0 otherwise. The
variable “Week1avg” denotes the fraction of surveys completed in week 1. The variable “Own_Technology”
equals 1 if subject reported having used a reminder technology, and equals 0 otherwise. Robust standard errors
clustered at subject level. All regressions include controls for day of week and day in study. Regressions (3) and
(4) also include controls for age, age2, sex, race, and whether or not subject is a student. *p < 0.1; **p < 0.05;
***p < 0.01.
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A.3 Task Completion Experiment: Supplementary Material

A.3.1 Reminders Text

Basic Email

Dear Participant,

This is a reminder that the deadline for the risk questionnaire is [[date]], 11:59pm EST.

Thank you.

-The study team

Questions? Send an email to RiskQuestionnaires@gmail.com and we will get back to you

Augmented Email

Dear Participant,

Thank you for signing up for the risk attitudes study. This is a reminder that to receive the

$10 Amazon gift card on [[day after deadline]], you must complete the 10-20 minute risk

questionnaire by [[deadline]], 11:59pm EST.

To access the questionnaire, please click on the link below and log in with the email and

password with which you registered: [[Study URL]]

If you forgot your password and need help resetting it, you can reply to this email.

Thank you.

-The study team

Questions? Send an email to RiskQuestionnaires@gmail.com and we will get back to you

Text Message

This is a reminder that the deadlie for the risk questionnaire is [[date]].
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A.3.2 Demographics

Tabe A.5 shows demographics by experimental condition. The last row displays year in

college for subjects who are students. Freshmen are coded as 1, Sophomores as 2, etc.

Multinomial probit regressions do not reject the null hypothesis that student status, sex,

race, and year in college are equally distributed across all 4 conditions (p > 0.38 for all

variables in separate regressions; p = 0.85 in a joint test of significance).

Table A.5: Demographics by Experimental Condition

Condition 1 2 3 4 Overall
% Harvard students 87.1% 88.1% 89.1% 90.0% 88.6%
% Male 38.6 37.3% 23.7% 27.0% 41.7%
% White 57.0% 58.8% 47.4% 46.0% 51.6%
% Asian 29.7% 30.7% 32.7% 27.0% 30.0%
% Hispanic 6.9% 5.9% 7.9% 11.0% 7.9%
% African American 6.9% 4.0% 5.9% 2.0% 4.7%
Year (if student) 2.96 3.04 2.89 2.75 2.91
Observations 101 101 101 100 403

Notes: Condition 1 = Short deadline/ No reminders; Condition 2 = Long deadline / No reminders; Condition
3 = Short deadline / Reminders; Condition 4 = Long deadline / Reminders.
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A.3.3 Day of week effects

Table A.6: Day of Week Effects

Pr(complete) (1) (2)
reminder 0.150** 0.303***

(0.068) (0.066)
Sun –0.037 –0.080

(0.138) (0.104)
Mon –0.125* –0.135*

(0.075) (0.071)
Tues 0.071 –0.086

(0.117) (0.090)
Wed –0.000 –0.002

(0.077) (0.134)
Thurs –0.131 –0.193**

(0.121) (0.098)
Fri –0.053 0.003

(0.098) (0.092)
Adj. R2 0.047 0.119
Observations 202 201
Day effects F-test p = 0.183 p = 0.257

Notes: This table estimates a linear probability model of completing the task, by experimental condition, to
test for day of week effects. Column (1) check whether the day of week on which the deadline falls impacts
completion rates for the short deadline conditions. Column2 (2) checks whether the day of week on which the
deadline falls impacts completion rates for the long deadline conditions. The F tests checks the joint significance
of day of week effects for each regression.
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A.3.4 Robustness

Table A.7: Robustness to Day of Week and Demographics

Pr(complete) (1) (2) (3)
LongDeadline –0.177*** –0.171*** –0.170***

(0.067) (0.057) (0.057)
Reminders 0.151** 0.150** 0.151*

(0.075) (0.076) (0.078)
LongDeadline*Reminders 0.163* 0.154* 0.163*

(0.089) (0.083) (0.091)
Adj. R2 0.087 0.089 0.102
Observations 403 403 403
Demographic Controls Yes No Yes
Day of Week Controls No Yes Yes

Notes: This table estimates a linear probability model of completing the task, by experimental condition. The
variable “LongDeadline” equals 1 if subjects had 3 weeks to complete the task, and equals 0 if subjects had 2
days to complete the task. The variable “Reminders” equals 1 if subjects received two days of reminders—days
1 and 2 for subjects with a 2-day deadline and days 20 and 21 for subjects with a 3-week deadline. Robust
standard errors are computed by specifying both start date and undergraduate residence as the cluster groups,
following the multiway clustering method suggested by Cameron et al. (2011). Demographic controls include
whether or not subject is a Harvard undergraduate, sex, and race (White, Asian, Hispanic, African American,
or Other). Day of week controls include dummies for which day of the week the deadline falls on. *p < 0.1;
**p < 0.05; ***p < 0.01.
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A.3.5 Reminder Types

Table A.8: Different Types of Reminders Don’t Have Differential Effects

(1) (2) (3) (4)
LongDeadline –0.178*** –0.178*** –0.178*** –0.178***

(0.067) (0.067) (0.067) (0.061)
Reminders 0.158** 0.163** 0.165 0.164*

(0.074) (0.078) (0.106) (0.088)
LongDeadline*Reminders 0.156* 0.146 0.154* 0.157*

(0.081) (0.091) (0.082) (0.086)
Info –0.031 –0.047

(0.052) (0.112)
Info*LongDeadline 0.033

(0.176)
SMSmessage –0.025 –0.022

(0.073) (0.069)
SMS*LongDeadline –0.005

(0.116)
Adj. R2 0.074 0.074 0.074 0.060
Observations 403 403 403 403

Notes: This table estimates a linear probability model of completing the task, by experimental condition. The
variable “LongDeadline” equals 1 if subjects had 3 weeks to complete the task, and equals 0 if subjects had 2
days to complete the task. The variable “Reminders” equals 1 if subjects received two days of reminders—days
1 and 2 for subjects with a 2-day deadline and days 20 and 21 for subjects with a 3-week deadline. The variable
“Info” equals 1 if the email message contained information in addition to the deadline. The variable SMSMessage
equals 1 if subject request to receive SMS message reminders in addition to the emails. Robust standard errors
are computed by specifying both start date and undergraduate residence as the cluster groups, following the
multiway clustering method suggested by Cameron et al. (2011).

A.4 Proofs of Mathematical Results

A.4.1 Proofs for repeated action results

As before, I will let ss
t and sn

t denote the sophisticated and naive DMs’ threshold strategies,

respectively: the DM chooses xt = a if and only if ξt ≥ st. I will let ss = (ss
1, . . . , ss

T) denote

the sophisticated DM’s vector of threshold strategies, and I will let sn denote the naive DM’s

vector of threshold strategies.

Since past of actions does not affect payoffs in this setting, I will use Vs
t (αt) and Vn

t (αt)
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to denote the sophisticated and naive DMs’ expected period t utility conditional on being

attentive or not that period.

I will let Pr(αt = 1) denote the probability of being attentive in period t, from the period

0 perspective.

Preliminary results

I begin by showing that for both sophisticated and naive DMs, Pr(xt = a) is differentiable

in bt′ for any t′ ≥ τ.

Lemma 3. Prn(xt = a) is differentiable in bt′ for any t′ ≥ τ.

Proof. Note that this is clearly true for t < t′, since a naive DM does not adjust his current

behavior in anticipation of future benefits.

Now suppose that t = t′. Because Prn(xt = a) = Pr(bt + ξt ≥ 0)Prn(αt = 1), it follows

that Prn(xt = a) = Pr(bt + ξt ≥ 0)Prn(αt = 1). But Pr(bt + ξt ≥ 0) = 1− F(−bt) is of

course differentiable in bt by assumption.

Next suppose that t > t′. For t > t′,

Prn(αt+1 = 1) = γt+1(0, d) + Prn(αt = 1)(γt+1(1, d)− γt+1(0, d))

+ Prn(αt = 1)Pr(bt + ξt ≥ 0)(γt+1(1, a)− γt+1(1, d)).

Thus Prn(αt+1 = 1) is differentiable in bt′ if Prn(αt) and Pr(bt + ξt ≥ 0) are differentiable

in bt′ . A simple induction thus shows that Prn(αt = 1) is differentiable in bt′ for all t > t′.

And because Prn(xt = a) = Pr(bt + ξt ≥ 0)Prn(αt = 1), it then follows that Prn(xt = a) is

differentiable in bt′ for all t > t′.

Lemma 4. Prs(xt = a) is differentiable in bt′ for any t′ ≥ τ.

Proof. First, suppose that t = t′. Then Vs
t (0), Vs

t+1(1), and Vs
t+1(0) are all differentiable in bt′
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because they are not functions of bt′ . By definition,

ss
t = −bt − [γt+1(1, a)− γt+1(1, d)]∆Vs

t+1 (A.3)

Vs
t (0) = Vs

t+1(0) + γt+1(0, d)∆Vs
t+1 (A.4)

Vs
t (1) = Vs

t+1(0) + γt+1(1, d)∆Vs
t+1 +

∫
ξt≥ss

t

[
(bt + ξt) + (γt+1(1, a)− γt+1(1, d))∆Vs

t+1
]

dF(A.5)

where ∆Vs
t+1 = Vs

t+1(1) − Vs
t+1(0). Now suppose that t = t′. Then Vs

t (0), Vs
t+1(1), and

Vs
t+1(0) are all differentiable in bt′ because they are not functions of bt′ , and thus equations

(A.3)-(A.5) show that ss
t and Vs

t (1) are differentiable in bt. By recursive reasoning, equations

(A.3)-(A.5) more generally show that ss
t and Vs

t (αt) are differentiable in bt′ for t ≤ t′.

Moreover, ss
t is differentiable in bt′ for t > t′ for the simple reason that ss

t is not a function of

bt′ for t > t′.

Next, note that

Prs(αt+1 = 1) = γt+1(0, d) + Prs(αt = 1)(γt+1(1, d)− γt+1(0, d))

+ Prs(αt = 1)Pr(ξt ≥ st)(γt+1(1, a)− γt+1(1, d)). (A.6)

from which it follows that Prs(αt+1 = 1) is differentiable in bt′ if Prs(αt = 1) is differentiable

in bt′ . Similarly, (A.6) also shows that Prs(αt = 1) is differentiable in bt′ if Prs(αt+1 = 1) is

differentiable in bt′ . But because Pr(αt) is differentiable in bt′ for t = t′, recursive reasoning

shows that Pr(αt) is differentiable in bt′ for all t.

Finally, because Prn(xt = a) = Pr(ξt ≥ ss
t)Prn(αt = 1), it then follows that Prn(xt = a)

is differentiable in bt′ for all t.

Proofs of Propositions

Proof of Proposition 1, parts 1 and 2. A naive DM chooses xt′ = a if and only if bt′ + ξt′ ≥ 0.

So an increase in bt′ clearly increases the likelihood of choosing xt′ = a. Because of the

behavioral rehearsal property, this increases the probability of being attentive in period t + 1,

and subsequently choosing xt′+1 = a. A simple induction shows that for all periods t > t′

the DM will thus be more likely to be attentive, and therefore choose xt = a.
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I now turn to sophisticated DMs. I first consider how ss changes as bt′ changes. Con-

ditional on being attentive in some period t > t′, a change in bt′ does not affect the DM’s

payoff in any period τ ≥ t, or the likelihood of the DM being attentive in any period τ > t.

Thus ss
t remains fixed for t > t′.

Similarly, Vs
t (αt) remains fixed for any t > t′. The DM’s optimal strategy in any period

t takes into account period t flow utility, as well as how it affects future expected utility

through changes in future expected attentiveness,

ss
t = −bt − [γt+1(1, a)− γt+1(1, d)]∆Vs

t+1 (A.7)

where ∆Vs
t+1 = Vs

t+1(1)−Vs
t+1(0). But since Vs

t is constant in bt′ for all t > t′, it follows that

ss
t′ is decreasing in bt′ .

Next, for ss
t defined as in (A.7),

Vs
t (1)−Vs

t (0) = Vs
t+1(0) + γt+1(1, d)∆Vs

t+1 +
∫

ξt≥ss
t

[
(bt + ξt) + (γt+1(1, a)− γt+1(1, d))∆Vs

t+1
]

dF

−
[
Vs

t+1(0) + γt+1(0, d)∆Vs
t+1
]

=
∫

ξt≥ss
t

[
(bt + ξt) + (γt+1(1, a)− γt+1(1, d))∆Vs

t+1
]

dF

+ (γt+1(1, d)− γt+1(0, d))∆Vs
t+1.

Differentiating Vs
t (1)−Vs

t (0) with respect to bt, shows that

∂

∂bt
(Vs

t (1)−Vs
t (0)) =

∫
ξt≥ss

t

(1)dF +
[
(bt + ss

t) + (γt+1(1, a)− γt+1(1, d))∆Vs
t+1
]

f (ss
t)

= 1− F(ss
t) > 0 (A.8)

where (A.7) is used to obtain the second line. This shows that ∆Vs
t′ is increasing in bt′ .

Next, differentiating Vs
t (1)−Vs

t (0) with respect to ∆Vs
t+1, shows that

d
d∆Vs

t+1
(Vs

t (1)−Vs
t (0)) =

∫
ξt≥ss

t

(γt+1(1, a)− γt+1(1, d)) dF +
[
(bt + ss

t) + (γt+1(1, a)− γt+1(1, d))∆Vs
t+1
]

f (ss
t)

= 1− F (γt+1(1, a)− γt+1(1, d)) > 0 (A.9)

Thus, since ∆Vs
t′ is increasing in bt′ , a straightforward induction shows that ∆Vs

t is increasing

in bt′ for t < t′. Equation (A.7) thus shows that ss
t is decreasing in bt′ for all t ≤ t′.
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Equation (A.6) shows that Prs(αt+1 = 1) is increasing in Prs(αt = 1) and Pr(ξt ≥ st).

And because Prs(α1 = 1) is constant in bt′ , recursively applying equation (A.6) shows that

Prs(αt′ = 1) is increasing in bt for all t′.

Proof of Proposition 1, part 3 (naive DM). I first consider naive DMs. Note that Prn,Hi
(xt =

a) = Pr(bt + ξt ≥ 0)Prn,Hi
(αt = 1). Thus

dPrn,Hi
(xt = a)

dbt′′
=

dPr(bt + ξt ≥ 0)
dbt′′

Prn,Hi
(αt = 1).

So the result follows for t′ = t if Prn(αt = 1) is increasing bt′′ This is true, as shown in the

proof of Proposition 1, part 1.

Now

Prn(αt+1 = 1) = γt+1(0, d) + Prn(αt = 1)(γt+1(1, d)− γt+1(0, d))

+ Prn(αt = 1)Prn(bt + ξt ≥ 0)(γt+1(1, a)− γt+1(1, d)), (A.10)

which shows that

∂Prn(αt+1 = 1)
∂bt

= Prn(αt = 1)
∂Prn(bt + ξt ≥ 0)

∂bt

is increasing in Prn(αt = 1). For t′ > t, similar computations show that

∂Prn(αt′+1 = 1)
∂bt

=
∂Prn(αt′ = 1)

∂bt
(γt+1(1, d)− γt+1(0, d))

+
∂Prn(αt′ = 1)

∂bt
Prn(bt′ + ξt′ ≥ 0)(γt′+1(1, a)− γt′+1(1, d))

A simple proof by induction then shows that dPrn(αt′=1)
dbt

is increasing in Prn(αt = 1) for all

t′ > t. But since Prn(αt = 1) is increasing in bt′′ , the statement of the proposition follows.

Proof of Proposition 1, part 3 (sophisticated DM). Equation (A.8) shows that

∂

∂bt′′
(Vs

t′′(1)−Vs
t′′(0)) = 1− F(ss

t′′) (A.11)
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from which it follows that

∂2

∂bt′′∂bt
(Vs

t′′(1)−Vs
t′′(0)) = − f (ss

t′′)
∂

∂bt
ss

t′′ > 0 (A.12)

because ∂
∂bt

ss
t′′ < 0, as established in part 2. Equation (A.9) combined with a simple induction

now shows that
∂2

∂bt′′∂bt
(Vs

τ (1)−Vs
τ (0)) > 0 (A.13)

for all τ ≤ t′′. Equation (A.7) now shows that

∂2

∂bt′′∂bt
ss

τ < 0 (A.14)

for all τ < t′′ and that
∂2

∂bt′′∂bt
ss

t′′ = 0 (A.15)

for τ ≥ t′′.

Now equation (A.6), implies that for any t′ ≥ τ,

∂2

∂bt′′∂bt
Prs(αt′+1) =

∂2

∂bt′′∂bt
Prs(αt′)(γt′+1(1, d)− γt′+1(0, d)) (A.16)

+

[ (
∂2

∂bt′′∂bt
Prs(ξt′ ≥ st′)

)
Prs(αt′) (A.17)

+ Prs(ξt′ ≥ st′)

(
∂2

∂bt′′∂bt
Prs(αt′)

)
(A.18)

+

(
∂

∂bt′′
Prs(ξt′ ≥ st′)

)(
∂

∂bt
Prs(αt′)

)
(A.19)

+

(
∂

∂bt
Prs(ξt′ ≥ st′)

)(
∂

∂bt′′
Prs(αt′)

) ]
(A.20)

from which it follows that ∂2

∂bt′′ ∂bt
Prs(αt′+1) > 0 if ∂2

∂bt′′ ∂bt
Prs(αt′) ≥ 0. But since ∂2

∂bt′′ ∂bt
Prs(α1) ≥

0, recursively using the computations above, as well as equations (A.14) and (A.15) shows

that ∂2

∂bt′′ ∂bt
Prs(αt′) > 0 for all t′ ≤ t. Reasoning analogous to part 1 now shows that

∂2

∂bt′′ ∂bt
Prs(αt′) > 0 for all t′ > t as well.

Proof of Proposition 2, parts 1,2. Part 2 is obvious because naive DMs just choose xt = a if

bt + ξt ≥ 0. Part 1 follows because the DM will be more attentive in period t2, which, as in
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the proof of Proposition 1 (part 1), will make him more likely to be attentive in all future

periods.

Proof of Proposition 2, part 3. That the result holds under condition (a) is obvious, and follows

from the same logic as for the naive case.

Consider now condition (b). Assumptions A1 and A2 imply that there exists an ε such

that
∫

g(α, x, σ)dH1
t′ < (1− ε)g(α, x, 1− ε). But now if µ2

t′ > 1− ε2, then under H2
t′ , σ > 1− ε

with probability at least 1− ε. Thus for a high enough µ2
t′ , Prs,H2

(αt′ = 1) > Prs,H1
(αt′ = 1).

From this, it follows that the probability of attentiveness under H2 is higher in all period

t > t′ as well. Moreover, as in the proof of Proposition 1, the sophisticated DM’s strategies

don’t change for t ≥ t′, from which the results follow.

Proof of Proposition 2, part 4. Let γi
t(αt−1, xt−1) denote the probability of being attentive in

period t under cue distribution Hi
t. As shown in the proof of part 2 of Proposition 1,

Vs,i
t (1)−Vs,i

t (0) =
∫

ξt≥ss
t

[
(bt + ξt) +

(
γi

t+1(1, a)− γi
t+1(1, d)

)
∆Vs

t+1

]
dF+

(
γi

t+1(1, d)− γi
t+1(0, d)

)
∆Vs

t+1

Consider now t = t′ − 1. By assumption A4, γ2
t+1(1, a)− γ2

t+1(1, d) < γ1
t+1(1, a)− γ1

t+1(1, d)

and γ2
t+1(1, d)−γ2

t+1(0, d) < γ1
t+1(1, d)−γ1

t+1(0, d). It thus follows that Vs,2
t2−1(1)−Vs,2

t2−1(0) <

Vs,1
t2−1(1)− Vs,1(0). Now the proof of part 2 of Proposition 1 shows that Vs

t (1)− Vs
t (0) is

increasing in ∆Vs
t+1. From this it follows that Vs,2(1)− Vs,2(0) < Vs,1(1)− Vs,1(0) for all

t = t1 + 1, t1 + 1, . . . t2. As shown in equation (A.7), this implies that ss
t is higher under H2;

which means that the DM will be less likely to do the task under H2.

Proof of Proposition 2, part 5. By definition,

Prn,H2
(αt2 = 1)− Prn,H1

(αt2 = 1) (A.21)

=
(

γ2
t2
(0, d)− γ1

t2
(0, d)

)
+ Prn(αt2−1 = 1)

[
(γ2

t2
(1, d)− γ1

t2
(1, d))− (γ2

t2
(0, d)− γ1

t2
(0, d))

]
(A.22)

+ Prn(αt2−1 = 1)Pr(bt2−1 + ξt2−1 ≥ 0)
[
(γ2

t2
(1, a)− γ1

t2
(1, a))− (γ2

t2
(1, d)− γ1

t2
(1, d))

]
.

(A.23)
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But assumption A4′ imlies that that (γ2
t2
(1, d)− γ1

t2
(1, d))− (γ2

t2
(0, d)− γ1

t2
(0, d)) < 0

and that (γ2
t2
(1, a)− γ1

t2
(1, a))− (γ2

t2
(1, d)− γ1

t2
(1, d)) < 0. It thus follows that Prn,H2

(αt2 =

1)− Prn,H2
(αt2 = 1) is decreasing in Prn(αt2−1 = 1). But since Prn(αt2−1 = 1) is increasing

in Ht′ by part 1, it thus follows that Prn,H2
(αt2 = 1)− Prn,H2

(αt2 = 1) is decreasing in Ht′ .

Finally, note that for t > t2,

Prn,H2
(αt = 1)− Prn,H1

(αt = 1) (A.24)

=
(

Prn,H2
(αt = 1)− Prn,H1

(αt = 1)
)
(γt+1(1, d)− γt+1(0, d)) (A.25)

=
(

Prn,H2
(αt = 1)− Prn,H1

(αt = 1)
)

Pr(bt + ξt ≥ 0) (γt+1(1, a)− γt+1(1, d)) (A.26)

is increasing in Prn,H2
(αt = 1)− Prn,H1

(αt = 1). A simple proof by induction thus shows

that Prn,H2
(αt = 1)− Prn,H2

(αt = 1) is decreasing in Ht′ for all t ≥ t2.

Proof of Proposition 3, part 1. Note that Prn,Hi
(xt = a) = Pr(bt + ξt ≥ 0)Prn,Hi

(αt = 1). Thus

∂Prn,Hi
(xt = a)

∂bt2

=
∂Pr(bt + ξt ≥ 0)

∂bt2

Prn,Hi
(αt = 1).

So the result follows for t = t2 if Prn,H2
(αt2 = 1) > Prn,H1

(αt2 = 1). This is true, as shown in

the proof of Proposition 2, part 1.

Now for the naive DM,

Pr(αt+1 = 1) = γt+1(0, d) + Pr(αt = 1)(γt+1(1, d)− γt+1(0, d))

+ Pr(αt = 1)Pr(bt + ξt ≥ 0)(γt+1(1, a)− γt+1(1, d)), (A.27)

which shows that ∂Pr(xt+1=a)
∂bt2

is increasing in Pr(αt = 1) when t = t2. A simple proof

by induction then shows that ∂Pr(xt+1=a)
∂bt2

is increasing in Pr(αt = 1) for t ≥ t2. Since,

Prn,H2
(αt2 = 1) > Prn,H1

(αt2 = 1), the statement of the proposition follows.

Proof of Proposition 3, part 2. When looking at period 1 behavior, there is no scope for cues

to crowd out behavioral rehearsal as in Proposition 2, part 4. Moreover, period t1 cues do

not affect the sophisticated DM’s strategy in periods t ≥ t1. Thus the rest of the argument

follows analogously to the argument for part 1.
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Proof of Proposition 4, part 1. As shown in equation (A.27), the impact of period t rehearsal

on period t + 1 attentiveness is increasing in (γt+1(1, d) − γt+1(0, d)) and (γt+1(1, a) −

γt+1(1, d)). Assumption A4 guarantees that g(1, d, σ)− g(0, d, σ) are decreasing in σ, from

which it follows that

(γt+1(1, d)− γt+1(0, d)) =
∫
(g(1, d, σ)− g(0, d, σ))dHt+1

is decreasing in Ht+1 (in the FOSD order). Similarly, (γt+1(1, a)− γt+1(1, d)) are decreasing

Ht+1. Thus the impact of rehearsal in periods t < t2 on the likelihood of being attentive in

period t = t2 is smaller under H2.

Proof of Proposition 4, part 2. Assumptions A1 and A2 guarantee that γt2(0, d)→ 1 as µ2
t2
→

1. This implies that the impact of period t < t2 rehearsal on period t2 attentiveness can be

made arbitrarily small when µ2
t2

is sufficiently high. As a consequence, the impact of period

t < t2 rehearsal on period t′ > t2 attentiveness can be made arbitrarily small when µ2
t2

is

sufficiently high.

A.4.2 Proofs for one time actions results

Throughout, I will use the following additional notation. I will use spa,T
t o denote the

sophisticated DM’s period t threshold rule, given a deadline T. That is, the sophisticated

DM chooses xt = a if and only if ξt ≥ spa,T
t . I will define ss,T

t and sn,T
t similarly. When

considering results under two different deadlines T1, and T2, I will use the superscript Ti to

index the respective strategies spa,Ti
t , ss,Ti

t , sn,Ti
t . I will let dt denote the 1× t vector (d, . . . , d).

Then Vpa
t (dt−1) will denote the perfectly attentive DM’s period t utility, conditional on not

having yet completed the task.

Preliminary Results

I begin with several lemmas that will be used in the proofs of the propositions.

Lemma 5. Suppose that bt ≡ b for all t. Then Vpa,T
0 → b + ξ̄ as a T → ∞.
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Proof. Suppose that the DM follows the following strategy: For some ε > 0, choose xt = a

if and only if b + ξt > b + ξ̄ − ε/2. Then conditional on completing the task, the DM’s

utility is at least b + ξ̄ − e/2. And his probability of completing the task is at least pε,T =

1−
(
1− F(ξ̄ − ε/2)

)T. Clearly, pε,T → 1 as T → ∞. Thus for any ε > 0,

lim
T→∞

Vpa,T
0 > b + ξ̄ − ε. (A.28)

But since equation (A.28) holds for any ε > 0, it therefore follows that Vpa,T
0 → b + ξ̄ as

a T → ∞.

Lemma 6. Suppose that bt ≡ b for all t. Then Pr(Qpa,T ≤ T)→ 1 as a T → ∞.

Proof. Suppose, by way of contradiction, that 1− Pr(Qpa,T ≤ T) > η for some η > 0. This

would then imply that Vpa,T
0 < (b + ξ̄)(1− η) for all T. This is in direct contradiction to

Lemma 5.

Lemma 7. Suppose that bt ≡ b for all t. Then for any fixed t, Vpa,T
t (dt−1)→ b + ξ̄ as a T → ∞.

Proof. Follows identically to the proof of Lemma 5.

Lemma 8. Fix some t ≥ 1. Then limT→∞ spa,T
t = ξ̄.

Proof. By definition, b + spa,T = Vpa,T
t+1 . By Lemma 7, Vpa,T

t+1 (dt−1) → b + ξ̄ as T → ∞. Thus

spa,T → ξ̄ as T → ∞.

Lemma 9. For some t† ≤ T, set bt = b′t + η for t ≤ t†, and bt = b′t for t > t†. Then Pr(Qpa ≤ T)

is increasing in η.

Proof. I will let Vpa
t (dt−1; η) denote the expected period t utility as a function of η. For

t > t†, Vpa
t (dt−1; η) does not depend on η. For t ≤ t†, I will now show that Vpa

t (dt−1; η)−

Vpa
t (dt−1; 0) ≤ η Note that the threshold rule is given by ss

t(η) = max
(

Vpa
t+1(dt−1)− b′t − η, ξ

)
.
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Setting VT+1(dT) = 0, we now have:

Vpa
t (dt−1; η) =

∫ x̄i

ss
t (η)

(b′t + η − ξt)dF + F(ss
t(η))V

pa
t+1(dt−1; η)

=
∫ ss

t (η)

ss
t (0)

(b′t + η − ξt)dF +
∫ x̄i

ss
t (0)

(b′t + η − ξt)dF + F(ss
t(η))V

pa
t+1(dt−1; η)

=
∫ ss

t (η)

ss
t (0)

[
(b′t + η − ξt)−Vpa

t+1(dt−1)
]

dF +
∫ x̄i

ss
t (0)

(b′t + η − ξt)dF + F(ss
t(0))V

pa
t+1(dt−1; η)

= (1− F(ss
t(η)))η +

∫ ss
t (η)

ss
t (0)

[
(b′t − ξt)−Vpa

t+1(dt−1)
]

dF +
∫ x̄i

ss
t (0)

(b′t − ξt)dF + F(ss
t(0))V

pa
t+1(dt−1; η)

≤ (1− F(ss
t(η)))η +

∫ x̄i

ss
t (0)

(b′t − ξt)dF + F(ss
t(0))V

pa
t+1(dt−1; η)

= (1− F(ss
t(η)))η + F(ss

t(0))
[
Vpa

t+1(dt−1; η)−Vpa
t+1(dt−1; 0)

]
+ Vpa

t (dt−1; 0).

Now clearly, Vpa
T+1(dT; η) − Vpa

T+1(dT; 0) < η, and thus a simple induction shows that

Vpa
t (dt−1; η)−Vpa

t (dt−1; 0) ≤ η.

Proof of Propositions

Proof of Proposition 5. Part 1. Obvious. Conditional on being attentive, the naive DM follows

the same strategy as the perfectly attentive DM. However, the naive DM is less likely to do

the task each period because he is inattentive with some positive probability.

Part 2. Clearly, Pr(Qs ≤ T) < Pr(Qpa ≤ T) when b+ ξ ≥ 0: by assumption, the perfectly

attentive DM will complete the task with probability 1, whereas the inattentive DM will

complete the task with probability less than one. Now by assumption, the inattentive DM is

attentive with probability no greater than z̄ < 1 in all periods, and thus Vs
2 ≤ z̄(b + ξ̄) for

any value of T. This means that ss
1 is bounded away from ξ̄ for all T or, equivalently, that

Prs(x1 = a) is bounded away from 0 for all T. On the other hand, Lemma 8 implies that for

any t†, Pr(Qpa ≤ t†)→ 0 as T → ∞.

Part 3. Obvious. Sufficiently low probability of being attentive can make completion

probabilities arbitrarily low.

Proof of Proposition 6. Part 1. Obvious

Part 2. An even stronger result is true. Under condition I(T1, T2), the probability of
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completing the task between periods t = ∆ + 1 and t = T2, conditional on not having completed

the task by period ∆ + 1, is higher than the probability of completing the task when given the

short deadline. Formally, Pr(Qpa,T1 ≤ T1) < Pr(Qpa,T2 ≤ T2|Qpa,T2 > ∆).

The short deadline game can be transformed into the T1 period subgame of the long

deadline through the following series of operations:

• Increase the payoff in all periods by bT2 − bT1 .

• Increase the payoff all but the last period by (bT2−1 − bT1−1)− (bT2 − bT1)

• ...

• Increase the payoff in the first period by (b∆+1 − b1)− (b∆+2 − b2).

Lemma 9 implies that each operation increase the likelihood of completing the task, which

establishes the result.

Part 3. Note that Vs,Ti
t ≤ z̄(b + ξ̄) for all t. By definition, ss,Ti

t = max(Vs,Ti
t+1 − b, ξ), from

which it follows that ss,Ti
t = max

(
z̄ξ̄ − (1− z̄)b, ξ,−b

)
. However, z̄ξ̄ − (1− z̄)b → −∞ as

b→ ∞, from which it follows that ss,Ti
t → ξ as b→ ∞.

Thus for t ≤ T1, ss,T1
t /ss,T2

t → 1 as b → ∞. Moreover, the assumption that γt(1, d) is

bounded away from 1 implies that limb→∞ Pr(Qs,Ti ≤ Ti) < 1 each i = 1, 2. Thus it follows

that

lim
b→∞

1− Pr(Qs,T2 ≤ T2) = lim
b→∞

Pr(T1 + 1 ≤ Qs,T2 ≤ T2)
(

1− Pr(Qs,T2 ≤ T1)
)

< lim
b→∞

(
1− Pr(Qs,T2 ≤ T1)

)
,

which completes the proof.

Proof of Proposition 7. Clearly, Vpa,T2
t > Vpa,T1

t for all t ≤ T1. Therefore, sn,T1
t < sn,T2

t for all

t ≤ T1. This implies that Pr(2 ≤ Qn,T2 ≤ T1) < Pr(2 ≤ Qn,T1 ≤ T1). Noting that γ1(1, d) is
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the probability of being attentive in period 1 under both deadlines,

Pr(Qn,T1 ≤ T1)− Pr(Qn,T2 ≤ T1) =
[
1− γ1(1, d)(1− F(ss,T2))

] [
1− Pr(2 ≤ Qn,T2 ≤ T1|Qn,T2 > 1)

]
−

[
1− γ1(1, d)(1− F(ss,T1

1 ))
] [

1− Pr(2 ≤ Qn,T1 ≤ T1|Qn,T1 > 1)
]

>
[
1− γ1(1, d)(1− F(ss,T2

1 ))
] [

1− Pr(2 ≤ Qn,T2 ≤ T1|Qn,T2 > 1)
]

−
[
1− γ1(1, d)(1− F(ss,T1

1 ))
] [

1− Pr(2 ≤ Qn,T2 ≤ T1|Qn,T2 > 1)
]

=
[
γ1(1, d)

(
F(ss,T1

1 )− F(ss,T2
1 )

)] [
1− Pr(2 ≤ Qn,T2 ≤ T1|Qn,T2 > 1)

]
>

[
γ1(1, d)

(
F(ss,T1

1 )− F(ss,T2
1 )

)] [
1− Pr(2 ≤ Qpa,T2 ≤ T1|Qpa,T2 > 1)

]
=

[
γ1(1, d)

(
F(ss,T1

1 )− F(ss,T2
1 )

)] T1

∏
t=2

F(sn,T2
t ), (A.29)

As before, let dt denoting the 1× t vector (d, . . . , d). Let Pr(αt|ht = dt−1, α1, Ti) denote

the probability that the naive DM is attentive or inattentive in period t, conditional on: 1)

not having completed the task by period t, 2) facing the deadline Ti, and 3) whether or not

he was attentive in period 1.

Condition (i) in the statement of the proposition implies that Pr(αT1 = 1|dT1−1, α1 =

1, T2) ≤ γ1(1, d). Conditions (ii) and(iii) thus implies that for t > T1

Pr(αt = 1|dt−1, α1 = 1, T2) ≤ λPr(αt−1 = 1|dt−2, α1 = 1, T2) + λγ1(d, 1)Pr(αt−1 = 0|d−1t, α1 = 1, T2)

< λPr(αt−1 = 1|dT1−1, α1 = 1, T2) + λγ1(d, 1). (A.30)

Equation (A.30) thus shows that if Pr(αt−1 = 1|dt−2, α1 = 1, T2) ≤ γ1(d, 1) and λ < 1/2,

then Pr(αt = 1|dt−1, α1 = 1, T2) < γ1(d, 1) and Pr(αt = 1|dt−1, α1 = 1, T2) < 2λγ1(d, 1). A

simple induction thus shows that if λ < 1/2, then Pr(αt = 1|dt−1, α1 = 1, T2) < 2λγ1(d, 1)

for all t > T1.

Thus the probability of being attentive in any period t > T1 conditional on not having

completed the task by that period is bounded above by 2λγ1(d, 1) when λ < 1/2. And over-

all, this implies that for 2λ(T2 − T1) < 1, the probability of completing the task after period

T1, conditional on not completing it by period T2, is bounded above by 2λγ1(d, 1)(T2 − T1).
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Thus by equation (A.29),

Pr(Qn,T2 ≤ T2)− Pr(Qn,T1 ≤ T1) = Pr(Qn,T2 ≤ T1) + Pr(T1 < Qn,T2 ≤ T2|Qn,T2 > T1)− Pr(Qn,T1 ≤ T1)

< 2λγ1(d, 1)(T2 − T1)−
[
γ1(1, d)

(
F(ss,T1

1 )− F(ss,T2
1 )

)] T1

∏
t=2

F(sn,T2
t )

is negative when λ is sufficiently small such that

2λ(T2 − T1) <
(

F(ss,T1
1 )− F(ss,T2

1 )
) T1

∏
t=2

F(sn,T2
t ).

Proof of Proposition 8, part 1. Let f be the density function of F, and let M denote the maxi-

mum f on [ξ, ξ̄]. By assumption ι > 0.

Step 1. I will begin with the simpler case in which bt ≡ b for all t. For any ε > 0, Lemma

6 implies that there is a sufficiently high Tε such that Vpa,T
0 > b + ξ̄ − ε2. This then implies

that the perfectly attentive DM obtains a payoff that’s at least b + ξ̄ − ε with probability

at least 1− ε. Thus with probability at least 1− ε, the DM completes the task by using a

threshold strategy ss
t > ξ̄ − ε. Let t† be such that ss

t > ξ̄ − ε whenever t ≥ t†. Thus

T

∏
t=t†

F(ss
t) < ε

or
T

∑
t=t†

log F(ss
t) < log(ε). (A.31)

Now a Taylor expansion shows that

T

∑
t=t†

log F(ss
t) = −

T

∑
t=t†

[
∞

∑
i=1

(1− F(ss
t))

i/i!

]

> −
T

∑
t=t†

[
∞

∑
i=1

(1− F(ss
t))

i

]

= −
T

∑
t=t†

1− F(ss
t)

F(ss
t)

> −
T

∑
t=t†

1− F(ss
t)

F(ξ̄ − ε)
. (A.32)
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Now for this same deadline Tε, the probability that a naive DM never completes the task

satisfies

1− Pr(Qn ≤ Tε) <
T

∏
t=t†

[1− z(1− F(ss
t))]

Taking logs and Taylor expanding,

log (1− Pr(Qn ≤ Tε)) <
T

∑
t=t†

log [1− z(1− F(ss
t))]

= −z
T

∑
t=t†

[
∞

∑
i=1

(1− F(ss
t))

i/i!

]

< −z
T

∑
t=t†

(1− F(ss
t))

< −zF(ξ̄ − ε) log(ε), (A.33)

where the last line follows from equations (A.31) and (A.32).

But now the expression in Equation (A.33) approaches −∞ as ε → 0, from which it

follows that Pr(Qn ≤ Tε)→ 1 as ε→ 0.

Step 2 (sketch) I now prove the more general statement in the proposition. Let Qn
∗ denote

the stopping time corresponding to the model in which period t payoffs are b∗ + ξt. Step 1

is easily generalized to show that for each ε > 0, there is a ∆ε such that if Tt†,ε = t† + ∆ε

Pr(Qn
∗ ≤ Tt†,ε|Qn

∗ > t†) > 1− ε/2 for all t†. The reason is as follows. For the sophisticated

DM, equations (A.31) and (A.32) generalize immediately to the ∆ε period subgame. For the

naive DM, equation (A.33) also carries over to the ∆ε subgame because all that matters is

that the probability of being attentive is bounded from below by z.

Next, it is easy to show that the threshold strategis sn
t are continuous in the payoffs

b1, . . . bT. Thus by continuity, Pr(Qn
∗ ≤ Tt†,ε|Qn

∗ > t†)→ Pr(Qn ≤ Tt†,ε|Qn > t†) as t† → ∞.

Now choose some ε > 0. And let ∆ε be the value such that Pr(Qn
∗ ≤ Tt†,ε|Qn

∗ > t†) >

1− ε/2 for all t† and Tt†,ε = t† + ∆ε. Now fixing ∆ε, we can find a high enough t† be such

that Pr(Qn ≤ Tt†,ε|Qn > t†) > Pr(Qn
∗ ≤ Tt†,ε|Qn

∗ > t†)− ε/2. Combined, this shows that

Pr(Qn ≤ Tt†,ε|Qn > t†) > 1− ε.

Proof of Proposition 8, part 2. Let Pr(αt = 1|dt−1) denote the probability that the naive DM
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is attentive in period t, conditional on not yet having completed the task. Note that

Pr(αt = 1|dt−1) =
γt(1, d)Pr(αt−1 = 1|dt−2)F(sn

t−1)

1− Pr(αt−1 = 1|dt−2)F(sn
t−1)

< γt(1, d)Pr(αt−1 = 1|dt−2)F(sn
t−1)

≤ z̄Pr(αt−1 = 1|dt−2)F(sn
t−1).

Thus

Pr(αt = 1|dt−1) < z̄t. (A.34)

Now for any t† and ε > 0, Lemma 8 implies that there exists a deadline length Tt† such

that Pr
(
Qn,Tt† ≤ t†) < ε. This implies that the probability of ever completing the task is

given by

Pr
(

Qn,Tt† ≤ Tt†

)
= ε +

Tt†

∑
t=t†+1

Pr(αt = 1|dt−1)

< ε +
Tt†

∑
t=t†+1

z̄t

< ε +
z̄t†

1− z̄t†

But z̄t†

1−z̄t†
→ 0 as t† → ∞, which shows that Pr

(
Qn,Tt†

)
can be made arbitrarily small with a

large enough Tt†

Proof of Proposition 9, part 1. Part 1. By assumption A2, as κ1
t → 1 for all t ≤ T1, Pr(Qn,T1 ≤

T1) → Pr(Qpa,T1 ≤ T1). Similarly, Pr(Qn,T2 ≤ T2|Qn,T2 > ∆) → Pr(Qpa,T2 ≤ T2|Qpa,T2 > ∆)

as κ2
∆+t → 1 for all t ≤ T1. But now the proof of part 2 of Proposition 6 shows that

Pr(Qpa,T2 ≤ T2|Qpa,T2 > ∆) ≥ Pr(Qpa,T1 ≤ T1). Thus

Pr(Qn,T2 ≤ T2) = Pr(Qn,T2 ≤ ∆)+
(

1− Pr(Qn,T2 ≤ T2)
)

Pr(Qn,T2 ≤ T2|Qn,T2 > ∆) > Pr(Qn,T1 ≤ T1)

as κ1
t → 1 for all t ≤ T1.

The proof for sophisticated DMs follows identically.

Proof of Proposition 9, part 2. To simplify notation, set qi = Pr(Qn,Ti ≤ Ti − 1), and set pi =
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Pr(αTi = 1|dTi−1). That is, qi is the probability that a naive DM completes the task by period

Ti − 1 when facing the deadline Ti, whereas pi is the probability of being attentive in period

Ti, conditional on not having completed the task by that time.

The effect of adding a strength κ ≡ κ1
T1

= κ2
T2

cue is that pi is transformed to pi(κ) =

pi + (1− pi)κ.

Suppose that

[
q1 + (1− q1)p1(κ)Pr(bT1 + ξT1 ≥ 0)

]
−
[
q2 + (1− q2)p2(κ)Pr(bT2 + ξT2 ≥ 0)

]
> 0 (A.35)

when κ = 0.

Differentiating the expression in (A.35) with respect κ, and noting that (Pr(bT1 + ξT1 ≥

0) ≤ Pr(bT2 + ξT2 ≥ 0) by assumption, yields

(1− q1)(1− p1)Pr(bT1 + ξT1 ≥ 0)− (1− q2)(1− p2)Pr(bT2 + ξT2 ≥ 0) (A.36)

= (1− q2)p2Pr(bT2 + ξT2 ≥ 0)− (1− q1)p1Pr(bT1 + ξT1 ≥ 0) (A.37)

− (1− q2)Pr(bT2 + ξT2 ≥ 0) + (1− q1)Pr(bT1 + ξT1 ≥ 0) (A.38)

< q1 − q2 − (1− q2)Pr(bT2 + ξT2 ≥ 0) + (1− q1)Pr(bT1 + ξT1 ≥ 0) (A.39)

< (q1 − q2) (1− Pr(bT2 + ξT2 ≥ 0)) (A.40)

= 0

where equation (A.39) is obtained by substituting the inequality (A.35) into the experession

in lines (A.37), (A.38).

Proof of Proposition 9, part 3. To simplify notation, set qi
t = Pr(Qn,Ti ≤ t), and set pi

t =

Pr(αt = 1|dTi−1). That is, qi
t is the probability that a naive DM completes the task by period

t when facing the deadline Ti, whereas pi is the probability of being attentive in period

t, conditional on not having completed the task by that time. Let Pi
t (αt) = Pr(Qn,Ti ≤

Ti|αt, Qn,Ti > t− 1) denote the probability of completing the task conditional on i) facing

the deadline Ti, ii) period t attentiveness αt, and iii) not having completed the task before

period t.
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The effect of adding a strength κ ≡ κ1
t = κ2

t+∆ cue in periods t and t + ∆, respectively,

is that p1
t is transformed to p1

t (κ) = p1
t + (1− p1

t )κ and p2
t+∆ is transformed to p2

t+∆(κ) =

p1
t+∆ + (1− p1

t+∆)κ

Suppose that Pr(Qn,T1 ≤ T1) − Pr(Qn,T2 ≤ T2) > 0 when κ = κ1
t = κ2

t+∆ = 0. Then,

equivalently,

[q1
t−1 + (1− q1

t−1)p1
t (κ)P1

t (1) + (1− q1
t−1)(1− p1

t (κ))P1
t (0)] (A.41)

− [q2
t−1+∆ + (1− q2

t−1+∆)p2
t+∆(κ)P2

t+∆(1) + (1− q2
t−1+∆)(1− p2

t+∆(κ))P2
t+∆(0)] > 0 (A.42)

when κ = 0. Equivalently,

[q1
t−1 + (1− q1

t−1)p1
t (κ)(P1

t (1)− P1
t (0)) + (1− q1

t−1)P1
t (0)] (A.43)

− [q2
t−1+∆ + (1− q2

t−1+∆)p2
t+∆(κ)(P2

t+∆(1)− P2
t+∆(0)) + (1− q2

t−1+∆)P2
t+∆(0)] > 0 (A.44)

Differentiating the expression in lines (A.43)-(A.44) with respect to κ yields

[(1− q1
t−1)(1− p1

t (κ))(P1
t (1)− P1

t (0))]− [(1− q2
t−1+∆)(1− p2

t+∆(κ))(P2
t+∆(1)− P2

t+∆(0))]

(A.45)

By assumption, γ1
t = γ2

t+∆ for all t ≤ T1. Combining this with reasoning similar to that

in Part 2 of Proposition 6 shows that Condition I(T1, T2) guarantees that

P2
t+∆(1) ≥ P1

t (1) (A.46)

P2
t+∆(0) ≥ P1

t (0) (A.47)

P2
t+∆(1)− P2

t+∆(0) ≥ P1
t (1)− P1

t (0) (A.48)

The assumption that γ1
t = γ2

t+∆ for all t ≤ T1 also implies that p1
t > p2

t+∆. Thus, if

q1
t−1 > q2

t−1+∆, then, using (A.48), the expression in equation (A.45) is negative.

Otherwise, when q1
t−1 < q2

t−1+∆, combining the inequality in lines (A.43)-(A.44) with
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inequality (A.48) shows that

[(1− q1
t−1)(1− p1

t (κ))(P1
t (1)− P1

t (0))]− [(1− q2
t−1+∆)(1− p2

t+∆(κ))(P2
t+∆(1)− P2

t+∆(0))]

< q1
t−1 − q2

t−1+∆ + (1− q1
t−1)P1

t (1)− (1− q2
t−1+∆)P2

t+∆(1) (A.49)

≤ q1
t−1 − q2

t−1+∆ + (1− q1
t−1)P2

t+∆(1)− (1− q2
t−1+∆)P2

t+∆(1) (A.50)

= (q1
t−1 − q2

t−1+∆)(1− P2
t+∆(1)) (A.51)

< 0. (A.52)

In the computations above, simple algebra shows that (A.49) is a consequence of the in-

equality in lines (A.43)-(A.44), and (A.50) is a consequence of (A.46).

A.4.3 Proofs for rebate market results

Proof of Proposition 10. As argued in the text, it is clearly not optimal to create rebates for

sophisticated consumers.

Consider now naive decision makers. Suppose that when v = v1, the optimal rebate

policy is p∗T, r∗T > 0. This implies that p∗T − θµTr∗T > v1, where µT is the probability that

the DM applies for the rebate; otherwise the profit maximizing offer would set pT = v1

and rT = 0. When v is raised by some amount δ > 0 to v = v1 + δ, it still follows that

p∗T + δ− θµTr∗T > v1 + δ.

Note that a change in v will not change the DM’s redemption probability conditional

on purchasing, or the perceived value of the rebate. Thus if a positive rebate is better than

no rebate for v = v1, simply increasing the upfront price by δ when v is increased to v1 + δ

increases the profits by δ, and is likewise preferred to no rebate.

I now show that a rebate will be offered for a high enough v. For all rT > −ξ, the DM’s

redemption strategy will not depend on r. So for rT > −ξ, let νe,T denote the DM’s expected

redemption effort. Note, also, that for rT > −ξ, the DM’s perceived probability of applying

for the rebate is 1. Then for rT > −ξ, the DM’s expected payoff conditional on offer pT, rT

is v− pT + θ(r− νe,T). Profit maximization implies that pT = v + θ(r− νe,T), and the price
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floor assumption thus requires that

v + θ(r− νe,T)− r ≥ p,

from which it follows that

r ≤ v− θνe,T − p
1− θ

≡ nT(v).

Note that nT(v) grows without bound as v approaches infinity.

Now let θµT denote the DM’s actual probability of applying for the rebate when

r + ξ > 0. Note that µT does not depend on r in the region r > −ξ. Note, also, that

µT < 1 by assumption that the DM is inattentive. Now when nT(v) > −ξ is high enough

and generates profit v + θ(r− νe,T)− r ≥ p, the monopolist’s profit from setting rT = nT(v)

and pT = v + θ(r− νe,T) will be

πT = v + θr− θνe,T − θµTr− c

= v + θ(1− µT)nT(v)− θνe,T − c.

But for high enough nT(v), it is clear that v− c + θ(1− µT)nT(v)− θνe,T > v− c.

Proof of Proposition 11. As shown in the proof of Proposition 10, for a high enough v = c− L

the profit from offering a rebate r = nT(v) will be given by

θ(1− µT)nT(v)− θνe,T − L. (A.53)

As before, µT is constant in r in the region r = nT(v) > −ξ. Moreover, nT(v) > −ξ for high

enough v. Plainly, then, expression (A.53) is positive for a high enough nT(v).

Proof of Proposition 12. Part 1 On the one hand, a longer deadline always increase the DM’s

perceived value of the rebate. On the other hand, if a longer deadline increases the redemption

probability, then it also increases the cost associated with a rebate.

Part 2 As show in Proposition 8, for any r > 0, redemption probability will approach 1

as T → ∞. But profits when r > 0 are

v + θ(1− µT)r− θνe,T − c
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which approach v− c− θνe,T < v− c as µT → 1.

A.4.4 Proofs for reminder advertising results

Proof of Proposition 13, part 1. Suppose that a fraction φt of consumers are attentive in period

t. When a message is not sent in period t+ 1, rehearsal implies that the fraction of consumers

who will be attentive that period will be

φt+1 = φtψ (A.54)

, where ψ = `g(1, a, 0) + (1− `)g(0, d, 0).

Now since all consumers are initially inattentive, the payoff from sending no messages

is 0. Consider now the payoff from sending a single message in period 1, and no other

messages. In period 1, a fraction w of consumers will be attentive. Equation (A.54) then

implies that the fraction of consumers attentive in period t will be φt = ψt−1w. The total

payoffs, therefore, are
∞

∑
t=1

δt
oψt−1w`− δc = δ

w`

1− δoψ
− δc (A.55)

Now the quantity in equation (A.55) is the highest payoff a single message can ever generate:

If some consumers would already be attentive in the period that the message is sent, then

the payoff from sending the message would be smaller. If messages are to be sent in the

future, then the incremental payoff from sending the message in the current period is also

diminished.

Proof of Proposition 13, part 2. The fraction of attentive consumers after some number n of

message will be 1− (1− w)n. Thus, the payoff of sending message n + 1 in some period t

will be

∞

∑
τ=t

[(1− w)n − (1− w)n+1]δτ
o − δt

oc` = δt
o[
(
(1− w)n − (1− w)n+1

) `

1− δo
− c] (A.56)

Now (1 − w)n − (1 − w)n+1 → 0 as n → ∞, and thus the quantity in equation (A.56)

approaches 0 as n → 0. Thus there exists some n† such that sending more than n > n†
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messages is not optimal.

The proof of the claim is completed by noting that the expression in (A.56) is positive if

and only if (1−w)n − (1−w)n+1 `
1−δo
− c. But in this case, the expression in (A.56) is clearly

decreasing in t: sending a message earlier is always preferred to sending a message later.

Thus the n† message will be sent in the first n† periods.

Proof of Proposition 13, part 3. Suppose, by way of contradiction, that there is some t† such

that mt† = 1 but mt = 0 for all t > t†. Then the fraction of consumers attentive in period

t > t† will be φt† ψt−t†
.

If a message is sent in period t > t†, but not in any future periods, then the fraction of

consumers attentive in period t will be φt† ψt−t†
+ (1− φt† ψt−t†

)w. Rehearsal implies that

the fraction of consumers attentive in period τ > t will be

[φt† ψt−t†
+ (1− φt† ψt−t†

)w]ψτ−t = φt† ψτ−t†
+ (1− φt† ψt−t†

)wψτ−t (A.57)

The net benefits of sending a message in period t > t† are therefore

∞

∑
τ=t

(1− φt† ψt−t†
)w`ψτ−t − δtc =

∞

∑
τ=t

δt
[
(1− φt† ψt−t†

)
w`

1− δo
− c
]

(A.58)

Since (1− φt† ψt−t†
) → 1 as t → ∞, it follows that the expression in equation (A.58) is

positive for high enough t.

Proof of Lemma 1. When mt = 1 each period, the fraction of attentive consumers in period

t + 1 is given by

φt+1 = (1− φt)w + φtw + φt(1− w)ψ = w(1− φtψ) + φtψ. (A.59)

Since φ0 = 0, simple algebra shows that the sequence {φt+1} defined in (A.59) is strictly

increasing and converges to φ∗ = w
1−ψ(1−w)

.

Now set φt = φ∗ − εt. By definition, εt → 0 as t → ∞. Consider the payoffs from

choosing mt+1 = 1 rather than mt+1 = 0. When in period t + 1, this increases the fraction of
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attentive consumers by

∆t+1 = [(1− (φ∗ − εt)ψ)w + (φ∗ − εt)ψ]− [(φ∗ − εt)ψ]

= w− wψ(φ∗ − εt)

=
w(1− ψ)

1− ψ(1− w)
+ wψεt (A.60)

Now if mτ = 1 for all τ ≥ t + 2, then the period t + 1 increase translates into an additional

∆t+1(1− w)ψ attentive consumers period t + 2. Intuitively, this is because of those extra

consumers who have been made attentive by the period t + 1 message, (1− w)ψ will not

receive the period t + 2 message and but stay attentive because of rehearsal. Thus, the

period t + 1 message increase the fraction of attentive consumers by ∆t+1(1−w)ψ in period

t + 2. Following this logic, the period t + 1 message increase the fraction of consumers

attentive in period τ > t + 1 by ∆t+1((1− w)ψ)τ−t+1.

Thus the payoff from sending the message in period t + 1 is

`
∞

∑
τ=t+1

∆t+1((1− w)ψ)τ−t+1δτ
o − cδt+1 = δt+1

[
w(1− ψ)

1− ψ(1− w)
+ wψεt − c

]
(A.61)

Since εt approaches zero as t→ ∞, the quantity in equation (A.61) is positive for all t if and

only if w(1−ψ)
1−ψ(1−w)

≥ c.

Proof of Lemma 2. Obvious.

Proof of Proposition 14. When ` = 1/2 and w = 1,

w(1− ψ)`

(1− ψ(1− w))(1− δoψ(1− w))
=

1
2
(1− g(1, a, 0)/2− g(1, d, 0)/2) > (1− g(1, d, 0))/2.

Since the experession above is continuous in ` and w for all g(1, a, 0), there is some w′ < 1

such that condition (1.11) holds in an open neighborhood of ` = 1/2 for w > w′.

When ` = 1 and w = 1, ψ approaches 1 as g(1, a, 0) approaches 1, and thus the expression

in (1.11) approaches 0 as g(1, a, 0) approaches 1. Continuity implies that there are some

ḡ < 1 and w′′ < 1 such that condition (1.11) does not hold in an open neighborhood of ` = 1

when g(1, a, 0) > ḡ and w > w′′.
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When w > 2c, condition (1.10) holds for all ` ≥ 1/2.

Thus choosing g(1, a, 0) > ḡ and w > max{w′, w′′, 2c} guarantees that there exist `2 and

`3 such that condition (1.11) holds when ` ∈ (`2, `3), condition (1.11) does not hold when

` ∈ (`3, 1), but condition (1.10) does hold when ` ∈ (`3, 1).

Now fix g(1, a, 0) > ḡ and w > max{w′, w′′, 2c}, and let `2 be the highest value of `

smaller than 1/2 for which condition(1.11) holds. Since

w`

1− δoψ
>

w(1− ψ)`

(1− ψ(1− w))(1− δoψ(1− w))

there exists some `1 < `2 such that condition (1.10) holds but condition (1.11) does not hold

for ` ∈ (`1, `2).
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Appendix B

Appendix to Chapter 2

B.1 Details of TESS Experiment

Introductory Screen

Figure B.1: Introductory Screen
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Figure B.2: Baseline Lightbulb Choices (Top of Screen)

Figure B.3: Detailed Product Information
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Figure B.4: Baseline Product Information (Bottom of Screen)

Figure B.5: Total Cost Information Screen
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Figure B.6: Disposal and Warm-Up Information Screen

Figure B.7: Disposal and Warm-Up Information Screen
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Figure B.8: Control Introductory Screen

Figure B.9: Number of Bulbs by Sector Information Screen
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Figure B.10: Sales Trends Information Screen

Figure B.11: Endline Lightbulb Choices (Top of Screen)
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Figure B.12: Endline Lightbulb Choices (Bottom of Screen)
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Post-Experiment Survey Questions

Question 1. How important were the following factors in your purchase decision? [Rate from

1-10]

1. Energy use

2. Time required for the bulb to reach full brightness after it is turned on

3. Bulb lifetime

4. Mercury content and protocols for proper disposal

5. Purchase Ppice

Question 2. Do you think that the intent of the study was to ...

Select all answers that apply

1. Understand the effect of price changes on purchasing patterns

2. Measure whether people make consistent purchases in similar situations

3. Understand why people buy incandescents vs. CFLs

4. Test how well people are able to quantify energy costs

5. Test whether ability to quantify energy costs affects purchases of incandescents vs. CFLs

6. Test whether the number of bulbs in a package affects purchasing patterns

7. Test whether consumer education affects purchases of incandescents vs. CFLs

8. Understand what features of lightbulbs are most important to people

9. Predict the future popularity of incandescents vs. CFLs

10. None of the above
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Question 3. Part A: The typical CFL lasts 8000 hours, or about eight years at typical usage

rates. Do you think it costs more or less to buy electricity for that 8000 hours of light from compact

fluorescent light bulbs (CFLs) compared to incandescent light bulbs?

• More

• Less

Part B: At national average electricity prices, how much [more/less] does it cost to buy electricity

for that 8000 hours of light from compact fluorescent light bulbs (CFLs) compared to incandescent

light bulbs? Just give your best guess.

Question 4. Some states and local areas have rebates, low-interest loans, or other incentives

available for energy efficiency. These might include rebates for Energy Star appliances or energy

efficient light bulbs, low-interest loans for energy-saving home improvements, government-funded

weatherization, and other programs. Are any such programs available in your area?

1. Yes

2. I think so, but I’m not sure

3. I’m not sure at all

4. I think not, but I’m not sure

5. No
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Question 5. This question is about hypothetical choices and does not affect your earnings in this

study.

Suppose that you could get the amount under “Option A” (i.e. $100), or the amount under

“Option B” a year later. Assume it’s no more work for you to receive the money under Option A than

under Option B, and that you would receive the money for sure, regardless of when you choose to

receive it. Which would you prefer?

Notes: This does not show all of the 18 choices. Participants were randomly assigned to

receive either this table or another table that was identical except that the bottom half and

top half were switched, so that the one year vs. two year tradeoffs were presented first.
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Question 6. Please indicate how much you agree or disagree with the following statements:

Select one answer from each row in the grid

[Strongly Agree Agree Neutral Disagree Strongly Disagree]

1. It’s important to me to fit in with the group I’m with.

2. My behavior often depends on how I feel others wish me to behave.

3. My powers of intuition are quite good when it comes to understanding others’ emotions and

motives.

4. My behavior is usually an expression of my true inner feelings, attitudes, and beliefs.

5. Once I know what the situation calls for, it’s easy for me to regulate my actions accordingly.

6. I would NOT change my opinions (or the way I do things) in order to please someone else or

win their favor.

B.2 Additional TESS Results

Baseline Willingness-to-Pay

Table A2.1 shows the association between baseline WTP v0 and a series of individual

characteristics. Column 1 shows that men, democrats, and those who report having

taken steps to conserve energy have higher demand for CFLs. Columns 2-5 separately

test individual variables of environmentalism and political ideology which are correlated,

providing additional evidence that liberals tend to have higher WTP. These correlations

conform to our intuition and build further confidence that the differences in WTP are

meaningful.

The table also provides suggestive evidence on two distortions other than imperfect

information and inattention which might justify subsidies and standards. The first is a

particular form of agency problem in real estate markets: renters might have lower CFL

demand because they might leave the CFLs in the house’s light sockets when they move and
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be unable to capitalize on their investment. Lacking random or quasi-random assignment

in renter vs. homeowner status, Davis (2012) and Gillingham, Harding, and Rapson (2012)

correlate durable good ownership with homeowner status conditional on observables.

Column 1 replicates their approach in the TESS data, showing no conditional association

between WTP and homeowner status. Column 6 shows that the unconditional association is

also statistically zero.

The second potential distortion considered in Table A2.1 is present bias. In the post-

experiment survey, we estimate the β and δ of a quasi-hyperbolic model through a menu of

hypothetical intertemporal choices at two different time horizons: $100 now vs. $m1
i in one

year, and $100 in one year vs. $m2
i in two years. Denoting m̂1 and m̂2 as the minimum values

at which participant i prefers money sooner, the long run discount factor is δi = 100/m̂2,

and the present bias parameter is βi = m̂2
i /m̂1

i . We dropped non-monotonic responses and

top-coded m̂1 and m̂2 analogously to how we constructed v0 and v1.

If there is a distribution of β and δ, consumers with higher β and δ should be more

likely to purchase CFLs. Column 1 shows that there is a conditional correlation between

δ and baseline WTP v0
i , suggesting that people who are more patient may be more likely

to purchase CFLs. However, there is no statistically significant correlation between β and

v0
i . Column 7 repeats the estimates without any conditioning variables, and the coefficients

are comparable. The results in column 1 rule out with 90 percent confidence that a one

standard deviation increase in β increases WTP for the CFL by more than $0.47. In sum,

these correlations provide no suggestive evidence in favor of the hypotheses that agency

problems or present bias play a role in lightbulb decisions.
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Table B.1: Association Between Individual Characteristics and CFL Demand

(1) (2) (3) (4) (5) (6) (7)

Income (000s) 0.005
(0.006)

Education (Years) 0.010
(0.148)

Age 0.003
(0.018)

Male 0.931
(0.533)*

Liberal 0.091 0.374
(0.389) (0.285)

Party 0.573 0.562
(0.344)* (0.266)**

Environmentalist 0.682 1.429
(0.791) (0.804)*

Conserve Energy 0.970 0.863
(0.525)* (0.545)

Homeowner 0.047 0.116
(0.716) (0.616)

Present Bias β 0.281 0.144
(0.298) (0.284)

Discount Factor δ 1.215 0.962
(0.620)* (0.605)

R2 0.03 0.00 0.01 0.00 0.00 0.00 0.01
N 1,163 1,226 1,229 1,221 1,219 1,229 1,178

Notes: Left-hand-side variable is baseline relative WTP for the CFL. *, **, ***: Statistically significant with 90, 95, and 99
percent confidence, respectively. Observations are weighted for national representativeness.
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Table B.2: Correlation of Treatment Effects with Self-Monitoring Scale

(1) (2) (3) (4) (5) (6) (7)

Important to fit in 0.206
(0.399)

Behave as others wish 0.480
(0.384)

Good intuition for others’ motives 0.266
(0.295)

(-1)*Behavior expresses true feelings -0.410
(0.332)

Regulate my actions -0.218
(0.310)

(-1)*NOT change opinions to please someone -0.114
(0.365)

Self-Monitoring Mean -0.010
(0.008)

R2 0.57 0.57 0.56 0.57 0.56 0.56 0.57
N 1,185 1,184 1,184 1,184 1,184 1,184 1,188

Notes: This table presents estimates of Equation (2.1) with the addition of Self-Monitoring Scale variables and the
interaction of these variables with the treatment indicator. The outcome variable is endline willingness-to-pay for the
CFL. Robust standard errors in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence,
respectively. Observations are weighted for national representativeness.
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Table B.3: Sensitivity of TESS Welfare Analysis to Assumed Mean Censored Values Assuming Top-Coded
and Bottom-Coded WTPs Average $12 and -$12, Respectively

(1) (2) (3) (4) (5) (6)
Relative WTP (v0

i ) Average Demand Marginal Cumulative
CFL of Marginal Marginal Density Welfare Welfare
Subsidy Consumers Internality (Share of Effect Effect
($/package) ($/package) ($/package) packages) ($/package) ($/package)
1 0.5 1.92 0.126 0.180 0.180
2 1.5 2.29 0.052 0.041 0.221
3 2.5 2.98 0.028 0.014 0.234
4 3.5 0.69 0.030 -0.085 0.150
6 5 0.69 0.006 -0.027 0.123
8 7 0.69 0.008 -0.050 0.073
10 9 0.69 0.003 -0.022 0.051
∞ 12 0.69 0.043 -0.485 -0.434

Notes: Theis table uses the TESS experiment results to calculate the welfare effects at
different levels of the CFL subsidy. They replicate Table 8, except with different assumed
mean censored values of WTP. Observations are weighted for national representativeness.

Sensitivity of TESS Welfare Analysis to Assumed Mean Censored Values
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Table B.4: Sensitivity of TESS Welfare Analysis to Assumed Mean Censored Values Assuming Top-Coded
and Bottom-Coded WTPs Average $20 and -$20, Respectively

(1) (2) (3) (4) (5) (6)
Relative WTP (v0

i ) Average Demand Marginal Cumulative
CFL of Marginal Marginal Density Welfare Welfare
Subsidy Consumers Internality (Share of Effect Effect
($/package) ($/package) ($/package) packages) ($/package) ($/package)
1 0.5 2.43 0.126 0.244 0.244
2 1.5 1.95 0.052 0.024 0.268
3 2.5 4.11 0.028 0.046 0.314
4 3.5 0.18 0.030 -0.100 0.213
6 5 0.18 0.006 -0.030 0.183
8 7 0.18 0.008 -0.054 0.129
10 9 0.18 0.003 -0.023 0.106
∞ 20 0.18 0.043 -0.850 -0.744

Notes: Theis table uses the TESS experiment results to calculate the welfare effects at
different levels of the CFL subsidy. They replicate Table 8, except with different assumed
mean censored values of WTP. Observations are weighted for national representativeness.
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Figure B.13: Post-Only Treatment Demand Curve

Notes: Figure B.13 presents the demand curve for the Endline-Only treatment group,

along with demand curve for the control group and other treatment group consumers.

Observations are weighted for national representativeness.
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B.3 iPad Total Cost Comparison Screen

Figure B.14: iPad Total Cost Comparison Screen

Notes: This is the information screen presented to treatment group consumers in the

in-store experiment. Numbers in this screen shot represent a consumer buying one CFL at

typical purchase prices and national average electricity prices.
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B.4 Appendix to Theoretical Framework

Proof of Proposition 19

Rewrite welfare as

W(s) = C + ∑
k

αk

[∫
σ(v, bk, c− s)(v− c)dFv|bk

(v|bk)

]
= C + ∑

k
αk

[∫
v≥c−s+bk

(v− c)dFv|bk
(v|bk)

]
. (B.1)

Differentiating (B.1) with respect to s yields

W ′(s) = ∑
k

αk
[
−((c− s + bk)− c) fv|bk

(c− s + bk|bk)
]

= ∑
k

αk(s− bk) fv|b(c− s + bk|bk)

= ∑
k
(bk − s)D′bk

(c− s)

= (B(c− s)− s) D′(c− s).

Proof of Proposition 20

Suppose that consumers are homogeneous in their bias: bk ≡ b for all k. Then by Proposition

1, an optimal subsidy must satisfy s∗ = b(c− s∗). We now show that this subsidy attains the

first best under homogeneity. Plugging s∗ = b(c− s∗) into the the social welfare function

yields

W(s∗) = C +
∫

v≥c−s∗+b(p−s∗)
(v− c)dF(v)

= C +
∫

v≥c
(v− c)dF(v). (B.2)

But by definition, (B.2) is just the first best level of welfare.

Set ψ(s) = s− b(c− s). We must now show that ψ(s) = 0 has a solution s∗. By definition

and by Assumption 1, ψ′(s) = 1 + b′(c− s) ≥ 1 + ρ, where ρ > −1. This ensures that ψ(s)

has a unique solution.
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When consumers are heterogenous in the way specified in the proposition, the argument

in the body of the paper shows why the first best can’t be obtained.

Generalizing the Analysis to Partial Internality Reduction

Suppose that consumer bias is given by b = bx + by, and set

Bx(p) =
∑ bxD′bk

D′
and By(p) =

∑ byD′b
D′

.

Consider now a demand curve Dy
bk
(p) = 1− Fv|bk

(p + by
k |bk) corresponding to a partial

debiasing; namely, elimination of the bias component bx. Set Dy = ∑k Dy
bk

. The reasoning of

section 2.5.3 goes through almost verbatim to establish that

By(p) ≈ DY(p)− D(p)
D′(p)

.

and

By(p) ≈ DY(p)− D(p)
(DY)′(p)

.

As shown in the paper, the optimal subsidy satisfies s∗ = Bx + By. It thus follows that if

Bx > 0—as it would if bx corresponds to present-biased undervaluations of the energy costs–

then Dy(p)−D(p)
(Dy)′(p) constitutes an approximate lower bound for the optimal subsidy. Similarly,

if Bx < 0—as it would be if bx corresponds to undervaluations of positive attributes of the

incandescent that are not debiased by our interventions—then Dy(p)−D(p)
(Dy)′(p) constitutes an

approximate upper bound for the optimal subsidy.
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Appendix C

Appendix to Chapter 3

C.1 Additional tables

Table C.1: P-Values of Wilcoxon Rank-Sum tests

Test p-value
Average offers in phase 1: PC Market vs. RC Market p < 0.01
First Period MAO’s in Phase 2: PC Responders vs. RC Responders p = 0.018
Average MAO’s in Phase 2: PC Responders vs. RC Responders p = 0.062
Average MAO’s in Phase 2: Matching Group 2 vs. Matching Group 3 p = 0.38
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Table C.2: Minimum Acceptance Thresholds and Cognitive Reflection Test Scores

First Period All Periods
(1) (2) (3) (4) (5) (6)

RC –13.000** –13.851*** –11.878 –8.573* –9.286** –4.042
(4.208) (4.113) (7.585) (3.946) (3.670) (5.098)

CRT 5.317*** 6.110* 4.453*** 6.561**
(1.222) (3.127) (1.054) (2.349)

RC*CRT –1.117 –2.968
(3.335) (2.573)

Constant 49.000*** 39.854*** 38.490*** 44.373*** 36.714*** 33.089***
(3.051) (4.231) (6.941) (3.624) (3.706) (4.554)

Adj. R2 0.064 0.119 0.107 0.038 0.091 0.095
Observations 75 75 75 1125 1125 1125

OLS Regressions; Clustering by treatment groups; only first period observations are used; Significance levels:
*** p < .01, ** p < .05, * p < .1.

C.2 Proposer optimization

We can compute the ex-post profit maximizing offer for each period in a matching group,

given the observed cumulative distribution function of minimum acceptance thresholds

Fmt(MAO) of responders within that matching group:

a∗mt = arg maxa Fmt(a)[k(Y− a)],

where m denotes the individual matching group and t denotes the time period.

prof. max. offer actual avg. offer
PC Matching Group 51.8 56.3
RC Matching Group 45.6 45.8
Mixed Matching Group 39.3 47.5

Table C.3: Profit maximizing offers by matching groups

Table C.3 shows the average profit maximizing offer in phase 2 of the experiment

conditional on the matching group. Comparing the profit maximizing offers across the

different matching groups, it can be seen that the profit maximizing offer in the PC Matching
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Group is 6.2 points higher than in the RC Matching Group (p = 0.25, Ranksum Test based

on 10 observations, one per matching group in each treatment), and 12.5 point higher than

in the Mixed Matching Group (p = 0.08). The profit maximizing offers between the RC

matching group and the mixed matching group are not statistically significantly different

(p = 0.35). Pooling the two matching groups with RC responders and comparing the average

profit maximizing offer with the PC matching group which contained PC responders, the

profit maximizing offer in the PC matching group is 9.5 points higher (p = 0.08, Ranksum

test based on 15 observations, one for each independent matching group). Moreover, actual

average offers are not statistically significantly different from profit maximizing offers in the

PC and RC matching groups. The exception is the mixed matching group, in which actual

average offers are significantly larger than profit maximizing offers (p = 0.08, ranksum test

based on matching groups). The data therefore again supports the predictions of the theory:

Proposers’ behavior is close to profit maximizing. Because minimum acceptance thresholds

differ depending on responder experience, profit maximizing behavior leads proposers to

adopt their offers depending on responder experience.
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C.3 Proofs of Propositions (online publication only)

Proof of Proposition 17. We will establish this result under the following more general as-

sumptions: the two proposers have reference points rP1 , rP2 ∈ [0, 1], and the responder has a

reference point rR ∈ [0, 1] such that rPi + rR ≤ 1.

We begin by showing that both proposers offering a = Y and the responder accepting one

of the offers is, indeed, a SPE. Begin with the responder. His utility from rejecting both offers

is uR = 0. His utility from accepting one of the offers is uR = Y−λ max(rRY−Y, 0) = Y > 0,

since rR ≤ 1. Thus it is optimal for the responder to accept. Next, consider the proposers.

Both proposers get a financial payoff of 0 when they both offer a = Y, regardless of whose

offer the responder accepts. Now if proposer i deviates and offers ai < Y then the responder

will reject his offer with probability 1. This proposer i will then again end up with a financial

payoff of 0. Thus neither proposer has an incentive to deviate.

We now show that there exists no SPE in which both proposers offer ai < Y with positive

probability. For each of the proposers i, let αi denote their (possibly) mixed strategy. Let ai

denote the lowest offer in the support of αi. Let H2 be the cumulative distribution function

corresponding to proposer 2’s offers, and set a′2 = inf{a′ : H2(a′) > 0}. We will begin by

showing that it is impossible to have a1 < a′2 < Y in any SPE.

So suppose, by way of contradiction, that a′2 < Y. Since conditional on accepting an

offer, the responder’s utility is strictly increasing in the size of the offer, the responder will

reject the offer a1 with probability 1. Thus when proposer 1 makes an offer a1, his utility

cannot be greater than zero.

Set

a† :=
rRkY

1− rR + krR

and suppose that proposer 2 makes an offer ai ≤ a† with positive probability. Then for

proposer 1, an offer of a1 is strictly dominated by an offer of a = a† + ε, for a small enough

ε > 0. Notice that if a > a†, then a > rR[k(Y− a) + a] by definition, and thus the responder

derives positive utility from accepting the offer a. Thus proposer 1’s utility from having
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offer a = a† + ε accepted is

uP1 = k(Y− a)− λ max{rP1 [k(Y− a) + a]− k(Y− a), 0}

≥ k(Y− a†)− kε− λεrR(1 + k)

> 0 for small enough ε,

where in going from the first to the second equation we use the assumption that rP1 ≤ 1− rR

and the fact that a† = rR[k(Y− a†) + a†] by definition. Thus if proposer 2 offers ai ≤ a† with

positive probability, offering a† + ε is strictly better than offering a1 for proposer 1, since the

higher offer has a positive probability of generating positive utility to the proposer.

Next, suppose that proposer 2 offers a2 > a† with probability 1. Then with probability

1, the responder would derive positive utility from accepting an offer made by proposer

2. This means that whenever proposer 1 offers a1, his offer is rejected, while Proposer 2’s

offer is accepted with probability 1. Now if a′2 < Y, then proposer 1’s utility when he offers

a = a′2 + ε (for a small ε) and the offer is accepted is

uP1 = k(Y− a)− λ max{rP1 [k(Y− a) + a]− k(Y− a), 0}

= k(Y− a′2)− λ max{rP1 [k(Y− a′2) + a′2]− k(Y− a′2), 0} − kε− λεrR(1 + k)

> −λ max{rP1 [k(Y− a′2) + a′2]− k(Y− a′2), 0} for small enough ε

Suppose now that k ≥ 1 (as in our experiment). If proposer 1 offers a1, then with probability

1 his utility is at most as good as −λrP1 [k(Y− a′2) + a′2] (for each possible offer that proposer

2 makes), and thus proposer 1 increases his utility with positive probability when he offers

a1 + ε for some small ε > 0.

When k < 1 and a′2 < Y, then proposer 1’s utility when he offers a1 is at most as good as

−λrP1Y with probability 1 (for each possible offer that proposer 2 makes). However, when

proposer 1 offers a = Y, this offer is accepted whenever proposer 2 offers a2 < Y; thus for a

positive measure of proposer 2’s offers, proposer 1’s utility increases from at most −λrP1Y

to 0 when he offers a = Y instead of a = a1. We have thus established that when a′2 < Y,

there is no SPE in which proposer 1 offers a < a2.
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Suppose now that a1 = a′2 < Y. If a′2 is offered with probability 0 by proposer 2, then a

verbatim repetition of the previous arguments establishes a contradiction. So suppose that

a′2 is offered with positive probability. In this case, when proposers i = 1, 2 both offer a′2,

at least one of these offers must be rejected with positive probability in the SPE. But then,

the proposer whose offer is rejected with positive probability is better off increasing that

offer by some tiny ε > 0, thereby increasing his probability of acceptance by a non-trivial

probability, while at the same time decreasing his payoff conditional on acceptance by a

negligible amount.

Thus a1 ≤ a′2 < Y cannot be supported in a SPE, and an identical argument shows that

a2 ≤ a′1 < Y cannot be supported in a SPE either. This establishes that at least one of the

proposers must offer a = Y with probability 1 in any mixed-strategy equilibrium.

When restricting to pure-strategy equilibria, there cannot be an equilibrium in which

proposer 1 offers a1 < Y with probability 1, while proposer 2 offers a2 = Y with probability

1. A profitable deviation for proposer 2 would be to offer a1 + ε < Y. And similar logic

shows that proposer 2 can’t offer a2 < Y.

Proof of Proposition 18. We prove this result under the more general conditions that the

responders have reference points rR1 = rR2 = rR ∈ [0, 1] and the proposer has a reference

point rP ≤ 1− rR.

First, notice that regardless of j’s strategy, responder i is always willing to accept an offer

a ≥ â :=
λrRkY

1 + λ(rk− r + 1)
.

This is because

â− λ [rR[k(Y− â) + â]− â] = 0 (C.1)

and so receiving an offer a ≥ â yields weakly positive utility to responder i, regardless of

what responder j does. Thus, since an offer a > â is always accepted, the highest offer that

can be supported in a SPE is â.

We now show that any offer a ≤ â can be supported in a SPE. The candidate equilibrium

is one in which 1. the proposer offers a and both responders choose to accept it with
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probability 1, 2. the responders both reject any offer a′ < a and 3. the responders both

accept any offer a′ > a. If responder i deviates from equilibrium and rejects, then his utility

is

udeviate
R = −λ[rR(k(Y− a) + a)]

with probability 1. In contrast, responder i’s equilibrium payoff is

uequilib
R =

1
2
[a− λ[rR(k(Y− a) + a)− a]] +

1
2
[−λ[rR(k(Y− a) + a)]] = udeviate

R +
1
2
(1 + λ)a.

Thus for a > 0, the responder is strictly better off accepting, while for a = 0 the responder is

weakly better off accepting.

Now clearly, the proposer has no incentive to offer a′ > a. Next, we show that the

subgame following an offer of a′ < a has an equilibrium in which both responders reject. To

see this, consider the payoff responder i gets when he deviates. By equation (C.1), accepting

an offer a′ < a ≤ â generates negative utility for responder i. On the other hand, if responder

sticks with his equilibrium strategy and rejects, then all three players get financial payoffs

equal to zero, and thus responder i’s utility is non-negative. Thus responder i is better off

sticking with his equilibrium strategy.

The exact statement of Proposition 18 obtains in the special case that rR = 1/3.

Proof of Proposition 19. The proof of this proposition considers the more general case in

which players don’t necessarily coordinate on the zero offers equilibrium in the RC market.

By Proposition 17, µ1
R = 1 for a responder from the PC market. By Proposition 18, a

responder in the RC market is offered a ≤ â := λkY
3+(2+k)λ . This means that the responder’s

share of the surplus is at most

µ̄RC :=
â

(Y− â)k + â
.

And computations reveal that µ̄RC < 1/3. Note, however, that it is possible that µ1
R = 0 <

µ̄RC in case the offer actually went to the other responder in the RC market.
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Either way, we have that the responders’ period 2 reference points, as a function of γ are

rRPC =
1 + γ

2

rRRC =
1− γ

2
+ γµ1

RRC
.

And since 1/2 > µ1
RRC

, it easily follows that rPC is increasing in γ while rPC is decreasing in

γ.

The statement of the proposition will thus be proven by showing that the minimal

acceptable offer is a strictly increasing function of the reference point.

To see this, notice that the lowest offer a responder is willing to accept must satisfy

M− λ[r[(Y−M)k + M]−M] = 0

from which it follows that M = rkY
1−r+kr , which is an increasing function of r for any k > 0.

We now formulate a more general version of proposition 20 that does not rely on the

assumption that the RC market is characterized by a zero offers equilibrium. In particular,

we suppose that in the RC market, responders are offered some a ≤ â and that both

responders accept the offer in equilibrium. This means that half of the responders receive a

share µ1
RL

RC
= 0 of the surplus, since they do not get to receive the offer, while the other half

of the responders receive a share µ1
RH

RC
≥ 0 of the surplus, since they do get to participate in

the offer. We assume that in the ultimatum game, the proposer does not know which of the

responders he is facing. That is, the proposer believes that with probability 1/2 he is facing

a responder with µ1
RL

RC
= 0, and with probability 1/2 he is facing a responder with µ1

RH
RC
≥ 0.

We let MRC,L and MRC,H denote the corresponding MAOs. We now formulate the following

more general proposition to characterize the perfect Bayesian equilibria (PBE) of this game:

Proposition 26. 1. A PC proposer offers MPC to a PC responder in any PBE

2. A PC proposer offers MRC,H to a RC responder if k(Y−MRC,H) > 2k(Y−MRC,L) and offers

MRC,L otherwise

3. A RC proposer offers MRC,H to a RC responder if k(Y−MRC,H) > 2k(Y−MRC,L) and offers
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MRC,L otherwise

4. There exists a γ† ∈ (0, 1] such that

(a) If γ ≤ γ† then a RC proposer always offers MPC to a PC responder

(b) If γ ∈ (γ†, 1) then a RC proposer offers a < MPC to a PC responder

Proof of Proposition 26. Proof of (1). Let rPPC and rRPC be the period 2 reference points of the

proposer and responder who participated in the PC market in phase 1. By Proposition 17,

proposers get a zero share of the surplus in the PC market while responders get a full share

of the surplus in the PC market. Thus

rPPC + rRPC =

(
1− γ

2
+ γ · 0

)
+

(
1− γ

2
+ γ · 1

)
= 1. (C.2)

Now conditional on making an offer that the responder will accept in phase 2, the proposer’s

optimal strategy is to offer a = MPC. The only thing we have to check is that the proposer’s

utility from having this offer implemented is non-negative. The proposer’s utility from

having this offer implemented is:

uP = k(Y−MPC)− λ max{rPPC [k(Y−MPC) + MPC]− k(Y−MPC), 0}, (C.3)

Equation (C.3) is certainly non-negative if rPPCW − k(Y − MPC) ≤ 0, where W = k(Y −

MPC) + MPC. But by definition, MPC must satisfy

MPC − λ max{rRPCW −MPC, 0} = 0 (C.4)

from it which it follows that rRPCW −MPC > 0. Thus

rPPCW = (1− rRPC)W < W −MPC = k(Y−MPC), (C.5)

from which it follows that equation (C.3) is positive.

Proof of (2). Let rRRC denote the phase 2 reference point of an RC responder. Then because

rRRC ≤ rRPC , equation (C.2) implies that rPPC + rRRC ≤ 1. Analogous to equation (C.4) we

can establish that MRC,H − λ max{rRRC,H W − MRC,H, 0} = 0, where W is now defined as
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W = k(Y−MRC,H) + MRC,H. Thus analogous to (C.5), we find that rPPCW < k(Y−MRC,H).

This means that in the domain of offers a ≤ MRC,H, the proposer’s share of the surplus

exceeds his fairness reference point, and thus he acts as a purely profit-maximizing agent

in that domain of offers. Statement (2) now follows because the proposer’s maximization

problem now simply boils down figuring out if he is better off offering MRC,H and having

his offer accepted by all responders or if he is better off offering MRC,L and having his offer

accepted by just half of the responders.

Proof of (3). This proof is virtually identical to the proof of (2).

Proof of (4). As before, it is clear that conditional on making an offer that the responder

will accept in phase 2, the proposer’s optimal strategy is to offer a = MPC. However, when

there is no offer that is acceptable to the responder and that will generate non-negative

utility to the proposer, the proposer’s optimal strategy is to offer a < MPC. As before, the

proposer’s utility, as a function of γ, is

uP(γ) = k(Y−MPC(γ))− λ max{rPRC(γ)[k(Y−MPC(γ)) + MPC(γ)]− k(Y−MPC(γ)), 0}.

(C.6)

But

rPRC [k(Y−MPC) + MPC]− k(Y−MPC) = MPC[k(1− rPRC) + rPRC ] + kY(rPRC − 1). (C.7)

Now the left-hand side of (C.7) is clearly increasing in rPRC , while the right-hand side of

(C.7) is clearly increasing in MPC. Thus (C.7) is increasing in γ because MPC and rPRC are

increasing in γ. From this, it follows that uP(γ) is decreasing in γ.

Next, we have

rPRC + rRPC =

(
1− γ

2
+ γ · µP,PC

)
+

(
1− γ

2
+ γ · 1

)
= 1 + γµP,RC, (C.8)

where µP,RC > 0 is the share of the surplus that the proposer gets in the RC market. As

before, we have that rRPCW > MPC, where W = k(Y−MPC) + MPC. Thus

rPRCW = (1− rRPC + γµP,RC)W < W −MPC + γµP,RCW = k(Y−MPC) + γµP,RC.

238



Thus when γ = 0, we have that k(Y −MPC)− rPRCW > 0. Moreover, since k(Y −MPC)−

rPRCW is continuous in γ, we know that k(Y−MPC)− rPRCW > 0 for a neighborhood of γ

around 0, and thus that uP(γ) > 0 for γ close enough to zero. Moreover, since uP(γ) is

continuous and decreasing in γ, there must exist some γ† ∈ (0, 1] such that uP(γ) is positive

if and only if γ ≤ γ†.

To see that γ† can sometimes be less than 1 in the above proof, fix γ and let λ be very

large, so that both the proposer and responder require approximately a share rPRC and rRPC ,

respectively, of the surplus to derive non-negative utility from the transaction. But since

rPRC + rRPC > 1, there will not be a division of surplus that suits both the proposer and

responder.

Proof of Proposition 21. We prove that the statement of the proposition holds under more

general assumptions about how reference points are formed. In particular, let w0, w1, . . . ...

be an infinite sequence given by w0 = 1 and wj = δj for some δ ∈ [0, 1]. Then let the period

t reference point of player i be given by

rt
i = (1− γ)(1/2) + γ

∑t−1
τ=−T wt−1−τµτ

i

∑t−1
τ=−T wt−1−τ

.

The definition used in the main body of the paper is obtained as a special case in which

δ = 1.

Step 1: We first show that there is a unique steady state. In any steady state, we must

have

M∗ − λ[r∗R(k(Y−M∗) + M∗)−M∗] = 0, (C.9)

which can be rearranged to show that

M∗

k(Y−M∗) + M∗
=

λr∗R
1 + λ

. (C.10)

As in the proof of Proposition 26, offering a∗ = M∗ is clearly optimal for the proposer,

conditional on making an offer that the responder will accept. Moreover, since r∗P + r∗R = 1
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by definition, we can show, analogously to equation (C.5), that

r∗P[k(Y−M∗) + M∗] < k(Y−M∗),

from which it follows that the proposer derives positive utility from making an offer

a∗ = M∗. Thus the proposer’s optimal strategy is to offer a∗ = M∗ in any steady state.

Plugging in a∗ = M∗ into (C.10), and using the definition of r∗R, we now have that

r∗R = (1− γ)(1/2) + γ
λ

1 + λ
r∗R. (C.11)

Equation (C.11) is a linear equation in r∗R with a unique solution given by

r∗R =
(1− γ) + λ(1− γ)

2 + 2λ(1− γ)
. (C.12)

Thus there can be at most one steady state. We now show that the unique solution does,

indeed, correspond to a steady state. First, examination of equation (C.12) shows that

r∗R ∈ (0, 1): since (1− γ) < 2, it is clear that the numerator is smaller than the denominator.

Next, by definition of M∗, accepting an offer of a∗ = M∗ is weakly optimal for the responder.

And as we have already established, offering a∗ = M∗ is also optimal for the proposer.

Step 2: We now show that for each ε > 0, there exists a t ≥ 1 such that rt
R + rt

P ≤ 1 + ε.

To see this, notice that µt
R + µt

P ≤ 1 for t ≥ 1, regardless of the outcome in period t. Thus

rt
R + rt

P = (1− γ) + γ

(
∑t−1

τ=−T wt−1−τµτ
R + wt−1−τµτ

P

∑t−1
τ=−T wt−1−τ

)

≤ (1− γ) + γ

(
∑0

τ=−T wt−1−τµτ
R + wt−1−τµτ

P

∑t−1
τ=−T wt−1−τ

+
∑t−1

τ=1 wt−1−τ

∑t−1
τ=−T wt−1−τ

)

= 1 + γ

(
∑0

τ=−T wt−1−τµτ
R + wt−1−τµτ

P

∑t−1
τ=−T wt−1−τ

− ∑0
τ=−T wt−1−τ

∑t−1
τ=−T wt−1−τ

)

But
∑0

τ=−T wt−1−τµτ
R + wt−1−τµτ

P

∑t−1
τ=−T wt−1−τ

≤ ∑0
τ=−T 2wt−1−τ

∑t−1
τ=−T wt−1−τ

and
∑0

τ=−T wt−1−τ

∑t−1
τ=−T wt−1−τ

→ 0
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as t→ ∞. Thus for each ε > 0, there exists a t ≥ 1 such that rt
R + rt

P ≤ 1 + ε.

Step 3: We now show that there is some t† ≥ 1 such that at = Mt for all t ≥ t†; that is,

for all t ≥ t†, the proposer derives positive utility from offering Mt and having that offer

accepted.

Set rt
P = 1− rt

R + εt. As in the proof of Proposition 26, we have that rt
R[k(Y−Mt)+ Mt] >

Mt. Thus

rt
P[k(Y−Mt) + Mt] = (1− rt

R + εt)[k(Y−Mt) + Mt]

< [k(Y−Mt) + Mt]−Mt + εt[k(Y−Mt) + Mt]

= k(Y−Mt) + εt[k(Y−Mt) + Mt].

This means that the proposer’s utility from offering Mt is such that

ut
P ≥ k(Y−Mt)− λ max(εt, 0).

Moreover, because rt
R ≤ (1− γ)/2 + γ = (1 + γ)/2, it easily follows that

Mt =
kλrt

RY
1 + λ(1− rt

R) + kλrt
R

is bounded away from Y (for all possible λ) as long as γ < 1. Thus we have that for all t,

there is some c > 0 such that k(Y−Mt) ≥ c. By step 2, there is a t† such that λεt < c for all

t ≥ t†. Thus there is a t† such that k(Y−Mt)− λ max(εt, 0) > 0 for all t ≥ t†.

Step 4: We now strengthen step 2 to show that |rt
P + rt

R − 1| → 0. By step 3, we now have

that µt
R + µt

P = 1 for all t ≥ t†. Thus for t > t†,

rt
R + rt

P = (1− γ) + γ

(
∑t−1

τ=−T wt−1−τµτ
R + wt−1−τµτ

P

∑t−1
τ=−T wt−1−τ

)

= (1− γ) + γ

(
∑t†−1

τ=−T wt−1−τµτ
R + wt−1−τµτ

P

∑t−1
τ=−T wt−1−τ

+
∑t−1

τ=t† wt−1−τ

∑t−1
τ=−T wt−1−τ

)

= 1 + γ

(
∑t†−1

τ=−T wt−1−τµτ
R + wt−1−τµτ

P

∑t−1
τ=−T wt−1−τ

− ∑t†−1
τ=−T wt−1−τ

∑t−1
τ=−T wt−1−τ

)
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But since
∑t†−1

τ=−T wt−1−τµτ
R + wt−1−τµτ

P

∑t−1
τ=−T wt−1−τ

→ 0

and
∑t†−1

τ=−T wt−1−τ

∑t−1
τ=−T wt−1−τ

→ 0

as t→ ∞, it follows that rt
R + rt

P → 1 as t→ ∞.

Step 5: We now finish off the proof of the proposition by proving that the steady state

identified in Step 1 is globally stable.

Define νt
R =

∑t−1
τ=−T wt−1−τµτ

i

∑t−1
τ=−T wt−1−τ

. Define the map ξ : R→ R as follows:

ξ(ν) = (1− γ)/2 + γν.

Define the map ψ : R→ R as follows:

ψ(ν) =
λξ(ν)

1 + λ
.

Notice that ψ is linear in ν and has slope γλ/(1 + λ) < 1; thus ψ is a contraction and has a

unique fixed point. In a steady state, r∗R = ξ(ν∗R), and thus equation (C.10) implies that

M∗

k(Y−M∗) + M∗
= ψ(ν∗R). (C.13)

But since ν∗R = M∗
k(Y−M∗)+M∗ by definition, it follows that the unique fixed point of ψ

corresponds to the unique steady state.

Now for t† defined as in step 3, rt = ξ(νt) and Mt

k(Y−Mt)+Mt = ψ(νt
R) for all t ≥ t†. Because

ξ is strictly increasing, each value of νt
R corresponds to a unique value of Mt. Because ψ

is strictly increasing and because Mt

k(Y−Mt)+Mt is strictly increasing in rt
R, each value of νt

R

also corresponds to a unique value of Mt. Because ξ and ψ are both continuous functions

of ν, showing that νt
R → ν∗R will thus imply that Mt → M∗ and rt

R → r∗R. Moreover, since

|rt
R + rt

P− 1| → 0 by Step 4, convergence of rt
R will also imply convergence of rt

P. And finally,

since Step 3 shows that at = Mt for all t ≥ t†, νt
R → ν∗R will thus also imply that at → a∗.

Because ψ is an increasing and linear function of νt that crosses the 45-degree line

exactly once, it thus follows that ψ(ν) ∈ (ν∗, ν) for ν > ν∗ and ψ(ν) ∈ (ν, ν∗) for ν < ν∗. By

242



definition,

νt+1
R =

w0

∑t
τ=−T wt−τ

µt
R +

(
1− w0

∑t
τ=−T wt−τ

)
νt

R (C.14)

is a convex combination of νt
R and ψ(νt

R) = Mt

k(Y−Mt)+Mt = µt
R, which implies that νt+1

R ∈

(ν∗R, νt
R) if νt

R > ν∗R. Similarly, it follows that νt+1
R ∈ (νt

R, ν∗R) if νt
R < ν∗R.

For t† defined as in step 3, a simple induction thus implies that if νt†

R < ν∗R, then νt
R will

be strictly increasing for t ≥ t† and bounded from above by ν∗. Similarly, if νt†

R > ν∗, then νt
R

will be strictly decreasing for t ≥ t† and bounded from below by ν∗R. Because any monotonic

and bounded sequence converges, νt
R must converge to some ν∗∗ ∈ [0, 1]. Because each

value of νt
R corresponds to a unique value of Mt, and because ψ is continuous in ν, there

must, therefore, exist some M∗∗ such that Mt → M∗∗. Thus

lim
t→∞

µt
R = lim

t→∞

Mt

k(Y−Mt) + Mt =
M∗∗

k(Y−M∗∗) + M∗∗
.

It is then easy to show that

νt =
∑t−1

τ=−T wt−1−τµτ
i

∑t−1
τ=−T wt−1−τ

→ M∗∗

k(Y−M∗∗) + M∗∗
.

On the other hand,

ψ(νt
R) =

Mt

k(Y−Mt) + Mt →
M∗∗

k(Y−M∗∗) + M∗∗
.

But since ψ is continuous, we therefore have that ψ(ν∗∗) = ν∗∗. And because ψ has a unique

fixed point, it must be that ν∗∗ = ν∗R, thus completing the proof.

Proof of Proposition 22. Since rt
P + rt

R ≤ 1 for all t ≥ 1, the reasoning of Step 3 in the proof of

Proposition 21 implies that the proposer will offer at = Mt in all periods t ≥ 1. Thus for

t ≥ 1, rt = ξ(νt
R) and Mt

k(Y−Mt)+Mt = ψ(νt
R).

As in the proof of Proposition 21, a simple induction thus implies that if ν1
R < ν∗R, then

νt
R will be strictly increasing for t ≥ 1 and bounded from above by ν∗. Similarly, if ν1 > ν∗R,

then νt
R will be strictly decreasing for t ≥ 1 and bounded from below by ν∗R. But since Mt is

a monotonic function ζ(·) of νt
R such that M∗ = ζ(ν∗R), the result follows.
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