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Optimizing rare variant association studies in theory and practice 

 

ABSTRACT 

 Genome-wide association studies (GWAS) have greatly improved our understanding of the 

genetic basis of complex traits. However, there are two major limitations with GWAS. First, 

most common variants identified by GWAS individually or in combination explain only a small 

proportion of heritability. This raises the possibility that additional forms of genetic variation, 

such as rare variants, could contribute to the missing heritability. The second limitation is that 

GWAS typically cannot identify which genes are being affected by the associated variants. 

Examination of rare variants, especially those in coding regions of the genome, can help address 

these issues. Moreover, several studies have recently identified low-frequency variants at both 

known and novel loci associated with complex traits, suggesting that functionally significant rare 

variants exist in the human population. 

However, without sufficiently large sample size, we are underpowered to detect rare 

variant effects due to the low allele frequencies and the large numbers of rare variants in the 

exome. This dissertation is broadly divided into two parts to explore strategies for optimizing the 

power of rare variant association studies. First, we developed a cost-efficient pooled sequencing 

scheme as well as the analytic framework that ensures low false positive and false negative rates 

in variant discovery. We showed that this strategy is good for follow-up studies of candidate 

genes and for identifying potential genetic diagnosis in well-phenotyped patients. Second, we 

employed forward simulation to assess the usefulness of founder populations in rare variant 
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association studies and compare the efficiency of exome array genotyping vs. high coverage 

exome sequencing. We developed a novel simultaneous simulation of sequence variation in the 

non-Finnish European and the Finnish population that closely approximates the empirical 

sequence data. We showed that studies of founder populations like Finland can substantially 

increase power for discovery in a subset of genes and exome chip is currently much more 

cost-efficient than exome sequencing. Taken together, our results have highlighted the usefulness 

of having diverse sets of populations (ideally founder populations) and employing cost-efficient 

study designs such as exome chip followed by pooled sequencing to boost power of rare variant 

association studies. 
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A PREAMBLE 

 Genetic studies have revealed thousands of loci contributing to common polygenic human 

diseases and traits. Studies to date have mostly focused on studying individual common variants, 

because they could be more readily assayed with initial genomic technologies. Nonetheless, the 

genetic variants discovered thus far typically explain only a small fraction of the estimated 

heritability. Some of the so-called missing heritability is likely due to additional common 

variants yet to be discovered. On the one hand, studies have been limited by sample size; those 

with larger sample sizes continue to reveal many new loci1–3. On the other hand, indirect 

statistical methods indicate that common variants collectively capture at least 30% (and likely 

more) a large proportion of the heritability for a number of diseases and traits4–6.  

The additional sources of missing heritability remain unclear. One hypothesis is that much 

of the missing heritability is due to rare genetic variants. The theoretical case for an important 

role of rare variants is that alleles predisposing to disease are likely to be deleterious and thus 

kept at low frequencies by purifying selection7–9. Because rare variants are too numerous and 

occur too infrequently, rare variant association studies (RVAS), like common variant association 

studies (CVAS)10, would require large sample collections and careful statistical analysis to 

achieve adequate power to detect genes underlying diseases.  

In reality, the practice of RVAS is still in its infancy. Some early efforts were premised on 

the notion that rare variants underlying common diseases could be readily identified in small 

numbers of samples. The few discoveries from RVAS thus far are mostly from candidate gene 

studies rather than unbiased gene discovery and, in some cases, reach only nominal rather than 

genome-wide levels of significance11–18. The analytical methodology for RVAS remains in flux, 

although many groups have proposed a rich collection of possible statistics19–21.   
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To address these challenges, in this dissertation we present an initial attempt to evaluate the 

design of RVAS and explore strategies for maximizing power of RVAS. In Chapter 2, we will 

describe a cost-efficient pooled sequencing scheme, which is further illustrated by applications 

of it in both Chapter 2 and Chapter 3. In Chapter 4, we present an analytical framework for 

evaluating the design of RVAS in different study populations. As the field of human genetics 

moves forward to explore expanded sources of variation in more diverse populations, we believe 

our approach will be useful to guide future studies. 

 However, before describing the results and implications of each chapter, a more thorough 

introduction to human genetic analysis is warranted. As such, the remainder of this chapter is 

broadly divided into three sections. The first section provides an overview of complex trait 

genetics, including the approaches for mapping genes underlying a phenotype of interest. The 

second section reviews the approaches for studying human complex traits, describing the process 

from early linkage studies to genetic association studies of both common and rare variants. The 

third section is a brief introduction to pooled sequencing and its limitations and challenges.  

 

GENETICS OF COMPLEX TRAITS 

 Interest in the genetic basis of disease originated with the rediscovery of Mendel’s laws in 

the beginning of the 20th century. Subsequent studies have identified many of the genes 

responsible for Mendelian diseases, conditions that are strongly influenced by highly penetrant 

variants in a single locus and follow a clear familial pattern. While Mendelian traits formed the 

basis for classic genetics, it has become clear that most common human traits and diseases are 

complex traits, influenced by many genetic loci, along with environmental factors. Examples 

include cardiovascular, metabolic and neuropsychiatric disorders.  
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While most alleles underlying Mendelian diseases are rare and relatively new in the 

population, controversy exists regarding the likely allelic spectrum of variants contributing to 

complex traits. Two major lines of reasoning, representing two extremes of the frequency 

spectrum of variants, exist: the “common disease common variant” hypothesis and the “common 

disease rare variant” hypothesis. 

 

The common disease common variant hypothesis 

At one extreme, the “common disease common variant” hypothesis (CDCV hypothesis) 

posits that common genetic variants underlie susceptibility to most common traits. This 

hypothesis is rooted in the assumption that the majority of polymorphisms predisposing to 

complex diseases are not evolutionarily deleterious and thus can rise to high frequencies. Several 

evolutionary scenarios might explain why disease-causing variants escape purifying selection, 

such as positive or balancing selection22, a late disease onset, and changing direction of 

selection23. To date, genome-wide association studies have successfully identified thousands of 

common variants24, which to a certain extent supports the CDCV hypothesis. Examples of such 

common variants include the APOE ε4 allele in Alzheimer’s disease25 and PPARγ Pro12Ala in 

type II diabetes26.     

 

The common disease rare variant hypothesis 

On the other extreme is the “common disease rare variant” hypothesis (CDRV hypothesis). 

This model dictates that phenotypic variation in complex traits is caused by moderately highly 

penetrant rare variants. The key assumption here is that the majority of disease-causing 

mutations are also mildly evolutionarily deleterious and thus kept at low frequencies by 
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purifying selection. A high mutation rate counterbalances the action of purifying selection and 

determines the cumulative frequency of disease-causing variants9. A well-known example 

supporting this hypothesis is the BRCA1 and BRCA2 breast cancer susceptibility mutations. 

Women carrying mutations in these genes have a lifetime risk of breast cancer as high as 80%. 

Thousands of mutations have been found within these two loci; they are collectively quite 

common but individually rare or even private to the family27,28. 

 

Both models have been supported by earlier theoretical studies9,29,30. The difference in 

conclusions is mostly due to difference in the rate of deleterious mutations and the strength of 

selection against new mutations7. In reality, the dichotomy between the two models might not be 

absolute. It is likely that both common and rare variants, along with interactions between variants 

both common and rare and interactions of genetic variants with the environment, contribute to 

complex traits. Neither model is likely to be exclusively accurate for any trait in general, and the 

genetic architecture and allelic spectrum of causal variants is likely to differ from trait to trait.  

 

APPROACHES FOR STUDYING HUMAN COMPLEX TRAITS 

 Having introduced the hypotheses regarding the genetic basis of complex traits, we next 

discuss the approaches that have been used to map genetic loci responsible for phenotypic 

variation. These approaches can be broadly grouped into two categories: linkage analysis and 

genetic association studies. Linkage analysis, a statistical technique that successfully identified 

casual genes for many Mendelian disorders, has had limited success for gene mapping of 

complex traits. An alternative is genetic association studies, which are analogous to traditional 

epidemiologic association studies. Instead of seeking association between traditional risk 
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variables and disease outcome, a genetic association study looks for an association between a 

genetic variant and a specified condition. 

 

Limited success of linkage analysis for complex traits 

 The principle of linkage analysis is founded on the co-segregation of chromosomal regions 

identical by descent along with the disease phenotype of interest within large families. 

Genome-wide linkage studies became feasible in the 1980s, with genome-wide linkage map of 

hundreds of DNA sequence variations31. Since the first successful demonstration of systematic 

linkage analysis to localize the gene causing Huntington disease in 198332, linkage analysis has 

led to the discovery of causal mutations for a large number of Mendelian disorders33. 

 Genome-wide linkage analysis has also attempted on a large number of complex traits. 

Despite the discovery of some clearly relevant loci that contribute to susceptibility of complex 

diseases such as inflammatory bowel disease34,35 and type 1 diabetes36, most of these studies 

have failed to identify a locus by strict criteria37 and the results of studies of the same disease are 

often inconsistent38. The reasons for this lack of success can be ascribed to a few basic problems. 

First, mutations in any one of multiple genes may result in identical phenotypes (locus 

heterogeneity). Genetic heterogeneity hampers linkage analysis, because a chromosomal region 

may co-segregate with a disease in some families but not in the others. Second, some traits may 

require multiple variants to act in concert (polygenic inheritance). Polygenic inheritance would 

complicate linkage analysis because no single locus is strictly required to cause a disease. Third, 

loci underlying complex traits each likely have much smaller effects (i.e., reduced penetrance), 

each potentially also interacting with other genes or environment. Thus, the genotype at a given 

locus may affect the probability of disease, but not fully determine the outcome. In such cases, 
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the signal-to-noise ratio is reduced in a linkage analysis, making it harder to pinpoint a linked 

region38–42. Moreover, linkage analysis has very low resolution. Even if a chromosomal region 

can be definitively mapped, the linkage peak region often covers several megabases. Therefore, 

extensive candidate gene studies are still required to narrow analysis to the causal gene or genes 

in the linked region42,43. 

 

The principles of association studies 

 An alternative approach to identify the genetic basis of complex traits is population-based 

association studies. Association studies assess the correlation between genetic markers and trait 

differences among unrelated population samples. The aim is to track the small chunk of ancestral 

chromosome where the causal mutation first arose but have decayed over time due to 

recombination. A higher frequency of a genetic marker in individuals with a disease can be 

interpreted as meaning that the tested marker increases disease risk. Genetic markers and trait 

can also become associated by other mechanisms, among which linkage disequilibrium (LD) is 

of greatest interest. The human genome is composed of long “block-like” regions where SNPs 

are non-randomly associated with one another, a phenomenon known as LD44–46. If the 

genotyped marker is in LD with the causal variant, the genotyped marker would also appear to 

be associated with the phenotype, and allows localization of the genetic locus. In essence, 

association studies and linkage analysis are quite similar, both relying on the co-segregation of 

chromosomal regions that contain both the genetic marker and the disease locus. They differ in 

that linkage analysis tracks chromosomal regions over a few generations of recent ancestry, and 

association studies track smaller chromosomal regions over many generations of historical 

ancestry. 
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 Despite the similarity in fundamental principles, association studies have greater statistical 

power to detect relatively common alleles with modest effect sizes than linkage analysis, 

requiring fewer (although still a large number) individuals in the study47,48. The large number of 

individuals required for a powerful study design in either scenario also means that it is easier to 

conduct a powerful association study as it is relatively easier to recruit unrelated affected 

individuals than to collect large numbers of pedigrees each with multiple affected individuals, 

particularly for diseases of old age43. In addition, association studies have higher resolution than 

linkage analysis, because the region around a marker shared identically by descent in unrelated 

individuals will be much smaller than the shared region between family members43,47. 

 There are different ways in which association studies can be categorized. Regarding the trait 

of interest, there are case-control studies for dichotomous phenotypes and population-based 

studies for continuous quantitative traits. Regarding the scale of the study, there are two broad 

categories: candidate-gene studies and genome-wide studies. Regarding the frequency spectrum 

of tested variants, association studies could evaluate common variants or rare variants. 

Association studies of individual common variants are named as genome-wide association 

studies (GWAS), whereas association studies of rare variants are often described as resequencing 

studies. This nomenclature conflates statistical methodology (association testing) and laboratory 

methodology (DNA sequencing). We will use the terms from Zuk et al.10: common variant 

association study (CVAS) and rare variant association study (RVAS).  

 

CVAS: from candidate gene approach to genome-wide studies 

Association studies to date have largely focused on studying individual common variants. 

Early CVAS had typically taken a candidate gene approach. Candidate genes are often selected 
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based on potential biological relevance or from prior human genetic evidence42,43. Such studies 

have successfully identified a number of genes that contribute to susceptibility to common 

disease, such as PPARG and KCNJ11 for type 2 diabetes26,49 and ABCA1, APOA1, and LCAT for 

plasma levels of high-density lipoprotein cholesterol11. Nonetheless, the inherent problem with 

candidate gene approach is that it is limited by our understanding of the disease pathophysiology. 

Moreover, the significant findings of association in candidate-gene studies, which were typically 

not held to the current genome-wide threshold of significance (p<5x10-8) are often not 

consistently associated with disease across a large number of independent studies50,51. 

Aided by the dense genetic map from the HapMap project46 and the development of highly 

accurate, cost-efficient, SNP array technology, the paradigm in CVAS has largely shifted from 

candidate gene studies to genome-wide studies over the last few years. The basic scheme used is 

to catalogue very common variants and genotype them either directly or indirectly (through LD). 

Because no assumptions are made about the genomic location of the causal variants, the 

genome-wide approach could exploit the strengths of association studies without having to guess 

the identity of the causal genes. Today, millions of SNPs can be assayed by commercialized SNP 

arrays simultaneously. By properties of LD, these SNPs quite adequately cover most of the 

common variation in human populations, particularly for European-derived and East Asian 

populations due to their extended LD blocks52,53. Moreover, the remaining catalogued common 

variants not covered by the commercial arrays can be recovered by computational approaches 

known as imputation.  

 

The success and failure of CVAS 

 To date, CVAS have successfully identified thousands of common variants associated with 
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hundreds of diseases and traits54. These studies have “rediscovered” many genes that have been 

shown to be important. For example, of the 95 loci found to be associated with blood lipid levels, 

18 genes were previously implicated in Mendelian lipid disorders, and several others had been 

known to influence lipid metabolism55. These studies have also highlighted biological pathways 

previously not known to be relevant to a particular disease or trait. The loci associated with 

Crohn’s disease point unambiguously to autophagy and interleukin-23-related pathways56, and 

the height loci include genes encoding chromatin proteins and hedgehog signaling57. Finally, 

many new identified loci do not implicate genes with known functions. For these findings, 

greater effort will be required to generate hypotheses for future work, but such efforts could open 

new avenues of biological research of complex traits. For instance, a ubiquitin ligase, MYLIP, 

had no recognizable role in lipid metabolism before CVAS, but has since been shown to regulate 

cellular LDL receptor levels3,58.  

Despite the widespread success of CVAS in identifying genes and pathways relevant to 

complex traits, there are two major limitations. First, common variants identified by CVAS 

almost universally have small effects (~1.1 to 1.5 fold increased risk), and in combination 

explain a small proportion of the phenotypic variance attributable to genetic causes (the 

“heritability”)59–61. In the case of height, where heritability is as high as 80%, only ~10% of 

phenotypic variance is explained by currently published CVAS association signals2. Though 

using the mixed linear modeling approach over 50% of the phenotype can be attributed to 

common variants5, it can be argued that common variants do not capture the full range of genetic 

variance and that part of the missing heritability will need to be addressed with rare variants and 

broad sense heritability components such as gene-gene or gene-environment interactions62–64. 

Second, CVAS likely have not identified the causal SNPs, but rather have identified variants that 
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are proxies for the causal SNP or haplotype. Association signals often do not point 

unambiguously to a particular gene.  

The biologic pictures being revealed by CVAS are still quite incomplete. We should strive 

for as complete a catalogue of validated risk variants as possible. On the one hand, additional 

CVAS, in larger samples and multiple ethnicities, will continue to reveal many more new loci1–3 

and follow-up by approaches including fine mapping, genomic analysis of gene expression in 

human tissues, and screen for mutations on marker-containing haplotypes will lead to better 

understanding of the results. On the other hand, complementary approaches such as RVAS will 

look into additional sources of missing heritability. 

 

RVAS: sequencing and complementary approaches 

The frequency boundaries for defining rare variants in the literature vary. Here, we use 

minor allele frequency of less than 5%, as variants of this frequency range are poorly captured by 

the commercial arrays for genome-wide CVAS. Genome-wide surveys for such variants will 

eventually be carried out in a manner similar to CVAS, with very large sample sizes that will 

provide sufficient statistical evidence to implicate variants on the basis of association evidence 

alone.  

With the arrival of the next-generation sequencing technologies, it has come into reach to 

have full genomic sequences available for multiple individuals rather than relying on a more or 

less representative fraction of the genome. High-coverage whole-genome sequencing will be the 

method of choice once it becomes more affordable, with the rapid increase in the sequencing 

capacity of existing platforms, as well as the development of new, less-expensive platforms. 

However, in the interim, it will be important to focus on more cost-effective alternative strategies. 
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One popular approach is whole-exome sequencing. Because the most obvious 

disease-influencing variants will be the clearly functional ones, whole-exome sequencing is a 

much smaller, more cost-effective and more easily interpreted bundle. An even cheaper 

alternative approach is to use genotyping arrays which account for less common variants, an 

example of which is exome chip. In Chapter 4, we present a simulation-based work where we 

compared the power and cost-efficiency of exome chip against exome sequencing. Imputation of 

rare variants into samples with existing genotype data is another likely complementary approach 

for future studies, especially as reference panels for imputation become larger and represent 

more populations. 

 

Strategies for optimizing the power of RVAS 

Until sequencing studies are inexpensive enough to for large sample sizes, it will be 

important to focus on designs that are optimized to detect the role of casual variants in smaller 

samples. Such designs may accelerate progress, by enabling early discoveries. Applications of 

these designs can be seen in Chapter 2 and 3.  

First, isolated populations resulting from recent bottlenecks should make it easier to detect a 

subset of genes. Examples include Finland, Iceland, Ashkenazi Jews, Amish, Bedouins, and 

various endogamous groups in India. Studies across multiple such populations could prove 

valuable. In Chapter 4, we explore in depth the implication of founder effect in RVAS. 

Second, extreme-trait sequencing is likely to be another important engine of discovery. A 

basic extreme-trait design would be to sequence a small, carefully selected population at one or 

both ends of the extremes of a phenotype. Because variants that contribute to the trait will be 

enriched in frequency in the extreme individuals, even small sample sizes may suggest candidate 
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variants that can then be genotyped for confirmation in a much larger collection of samples. For 

the follow-up of variants identified in extreme-trait sequencing, family members of the extreme 

individuals will be invaluable for confirming potentially causal variants through co-segregation 

analysis.  

Third, early signals may be provided by the study of gene sets that are likely to be enriched 

for disease-associated loci. The best sets may consist of genes implicated by CVAS. Whereas 

CVAS and RVAS are sometimes thought of as alternatives, they are likely to be complementary. 

Targeted sequencing of pooled samples is well suited for studying candidate gene sets, which we 

will discuss in more detail below. 

 

POOLED SEQUENCING 

Motivations for pooled sequencing 

As opposed to the naïve approach that aims at sequencing large regions in a single 

individual, there are many biological applications wherein the sequence of a small region must 

be determined from many independent samples. Examples might include studies of variation 

within specific regions from a large population, looking for associations between variants and 

trait in areas that might have been narrowed by prior linkage analysis, CVAS, or even medical 

diagnostics. Use of next-generation sequencing technologies for interrogating sequence for any 

of these tasks is hampered if libraries must be constructed independently from each sample or if 

different barcodes must be applied to each sample prior to sequencing, particularly if sample 

numbers run into many thousands. 

The actual cost of sequencing a sample consists of two parts. The first part is the cost of 

preparing a DNA sample for sequencing which is referred to as library preparation cost. Library 
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preparation is also the most time-consuming and labor-intensive part of a sequencing study. The 

second part is the cost of the actual sequencing, which is proportional to the amount of sequence. 

The dramatic increase in the efficiency of the sequencing technology makes the costs of the 

sequencing step negligible for small target regions. Thus the main remaining cost is the sample 

preparation step. 

This limitation raises the need for the development of multiplexing strategies that allow 

the processing of multiple samples per single sample preparation step at the cost of requiring 

additional sequencing capacity. Pooled genotyping has been used to quantify previously 

identified variations and study allele frequency distributions65–67 in populations. Given an 

observed number of alleles and an estimate of the number of times an allelic region was sampled 

in the pool, it is possible to infer the frequency of the allele in the pooled individuals being 

studied. Pooled sequencing can be used to reach similar ends, as a strategy to cost-effectively 

capture all variation in a target region. Such an approach allows efficient use of next-generation 

sequencing technologies, as sequencing a large pool of individuals simultaneously keeps the 

number of redundant DNA reads low.  

 

Overview of pooling methods 
 

The basic idea behind pooled sequencing is that DNA from multiple individuals is pooled 

together into a single DNA mixture which is then prepared as a single library and sequenced. In 

this approach, the library preparation cost is reduced because one library is prepared per pool 

instead of one library per sample. 

Pooling methods can be split into two categories. The first category puts each individual in 

only one pool. The naïve, disjoint pooling scheme offers insight into allele frequencies, but does 



 15 

not offer the identity of an allele carrier. These types of methods are referred to as 

non-overlapping pool methods. The second category puts each individual in multiple pools and 

uses this information to recover each individual’s genotype. These methods are referred to as 

overlapping pool methods. Many groups have developed sophisticated overlapping pooling 

designs, which encode the identity of each sample within the pooling pattern68–70. However, 

these designs usually involve complicated DNA pooling step. In our work, we developed a 

simple overlapping pooling design, which only allows decoding of singleton variants. But as we 

will show in Chapter 2 and 3, the singleton variants capture well the minor allele frequency 

range we aim to target in our studies. 

 

Limitations and challenges of pooled sequencing 

One obvious limitation of pooled sequencing is that haplotype information is not available. 

But this will be outweighed by the increased efficiency in studies where LD information is not as 

critical. Other major limitations include the ambiguous identification of individual carriers, 

especially in the presence of errors and difficulty in discerning whether a singleton variant is 

homozygous or heterozygous in an individual subject. 

SNP calling and estimating the frequency of the minor allele from pooled samples, is a 

subtle exercise for at least three reasons. First, sequencing errors may have a much larger 

relevance than in individual SNP calling. While their impact in individual sequencing can be 

reduced by setting a minimum number of reads per allele, this would have a strong and undesired 

effect in pools because it is unlikely that alleles at low frequency in the pool will be read many 

times71. Second, an obvious source of error in the pooling approach is the unequal representation 

of each sample’s DNA in the pool. This unequal representation could be due to human or 
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machine error. In experiments that rely on PCR amplification, the heterogeneity can be expected 

to be particularly strong. Individuals for which a larger DNA amount has been included in the 

pool will be overrepresented, which potentially causes a change in allele frequency estimates, 

while unrepresented samples in pool might lead to false negative discoveries72. 

In Chapter 2, we present a simple matrix pooling design that overcomes some of these 

obstacles. Under this design, each sample was sequenced in 2 pools (1 row pool and 1 column 

pool), which allows us to identify individuals carrying singleton variants. Moreover, the matrix 

design is less affected by unequal representation of each sample’s DNA in the pool and enables 

us to filter out a lot of false positives from sequencing errors or other sources. In Chapter 3, we 

applied this approach to perform an RVAS of a particular gene (NPR2) where heterozygous 

mutations had been proposed to contribute to short stature.  

 

SUMMARY 

This introductory chapter hopefully has described and contrasted the major thoughts in 

human genetics research over the last 10-15 years, with a focus on using association studies to 

map disease genes. Aiming to provide the relevant background for the rest of this dissertation, 

we have compared and contrasted the common disease common variant and common disease 

rare variant hypotheses and discussed the methodology used to conduct an association study. We 

introduced the methodology of pooled sequencing and discussed its relative merits, setting the 

stage for the studies in Chapter 2 and 3. We also covered various strategies and designs for 

optimizing RVAS, which were evaluated under a simulation framework in Chapter 4. 
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ABSTRACT 

The majority of patients presenting with short stature do not receive a definitive diagnosis. 

Advances in genetic sequencing allow for large-scale screening of candidate genes, potentially 

leading to genetic diagnoses. The purpose of this study was to discover genetic variants that 

contribute to short stature in a cohort of children with no known genetic etiology. A total of 192 

children with short stature with no defined genetic etiology and 192 individuals of normal stature 

from the Framingham Heart Study were studied. Pooled targeted sequencing using 

next-generation DNA sequencing technology of the exons of 1077 candidate genes was 

performed. The numbers of rare nonsynonymous genetic variants found in case patients but not 

in control subjects, known pathogenic variants in case patients, and potentially pathogenic 

variants in IGF1R were determined. We identified 4928 genetic variants in 1077 genes that were 

present in case patients but not in control subjects. Of those, 1349 variants were novel (898 

nonsynonymous). False-positive rates from pooled sequencing were 4% to 5%, and the 

false-negative rate was 0.1% in regions covered well by sequencing. We identified 3 individuals 

with known pathogenic variants in PTPN11 causing undiagnosed Noonan syndrome. There were 

9 rare potentially nonsynonymous variants in IGF1R, one of which is a novel, probably 

pathogenic, frameshift mutation. A previously reported pathogenic variant in IGF1R was present 

in a control subject. In summary, large-scale sequencing efforts have the potential to rapidly 

identify genetic etiologies of short stature, but data interpretation is complex; Noonan syndrome 

may be an underdiagnosed cause of short stature. 

 

INTRODUCTION 
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Growth is a fundamental biological process that occurs during childhood. With the 

exception of diabetes, short stature is one of the most common reasons for referral to a pediatric 

endocrinologist. In most cases, short stature is familial, consistent with a strong genetic influence 

on childhood and adult height. In some cases, however, children have severe short stature that is 

out of proportion to the parental heights or have short stature associated with syndromic features. 

Molecular defects associated with these rarer cases have, over the last decade, expanded the list 

of genes and biological pathways known to influence growth. Multiple mutations, for example, 

have been found in the GH pathway, not only in the GH gene (GH1) itself, but also downstream 

within the GHR (GH receptor), STAT5B, IGF1, IGFALS, and IGF1R (IGF-I receptor) genes1. 

Many genes underlying severe skeletal dysplasias associated with short stature have also been 

identified2. Despite these advances, the molecular causality in the vast majority of patients, 

including those with severe or syndromic short stature, remains unresolved. Consequently, most 

affected patients continue to be classified as having idiopathic short stature. 

Genome-wide association (GWA) studies have enabled the identification of common 

genetic variants (frequencies >5%) influencing quantitative traits such as height. Indeed, recent 

GWA studies identified 180 genetic loci with common DNA sequence variants that influence 

human stature3. Intriguingly, these common variants are often located in or near genes that 

underlie syndromes of abnormal skeletal growth. This overlap suggests that rare variants in other 

genes highlighted by the GWA studies could have significant effects on growth. 

To explore the role of rare genetic variants in short stature, we developed and applied 

large-scale candidate gene sequencing technologies4 in a cohort of children with short stature of 

unknown cause. The selected list of 1077 candidates is composed of genes from identified GWA 

loci, genes known to cause syndromic short stature, and genes known to be involved in growth 
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plate biology or growth plate signaling. Herein, we report our initial screening and assessment of 

pooled exonic sequencing on DNA samples from 192 children with short stature and 192 control 

children of normal stature. We identified a large number of nonsynonymous variants present in 

case patients but not in control subjects. There are a number of possible analytical approaches to 

explore these data. First, one can search for variants that have previously been reported to be 

pathogenic. Second, one can search for novel variants within genes known to cause short stature 

and then perform further familial segregation and functional studies to validate those variants. 

Third, one can search for multiple likely deleterious variants in novel genes not previously 

known to cause short stature. In the current article, we discuss the first approach, looking for 

known pathogenic variants, and provide a more detailed analysis of rare genetic variants 

identified in IGF1R as an example of the second approach. Haploinsufficiency of IGF1R is 

known to cause significant short stature, and our data demonstrate the utility of large-scale 

sequencing and the critical need for careful interpretation of the resulting data. Future work will 

explore the other analytical approaches. 

 

RESULTS 

Description of cohort 

Participants in this study included 192 subjects (106 male and 86 female), 75% of whom 

were white. The height z scores ranged from −2.05 to −7.01 SD (Figure 2.1). The ages of these 

subjects ranged from 3 to 22 years with a mean of 10.3 years. Seventy subjects (36.4%) had 

begun GH therapy for short stature before enrollment in the study. However, GH deficiency was 

diagnosed in only 31 subjects (16%); of these, 22 had isolated GH deficiency without additional 

pituitary hormone defects. For those subjects receiving GH therapy, only height z scores before 
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initiation of therapy are shown (Figure 2.1). An additional 14 subjects were thought to have 

known genetic syndromes, but clinical diagnostic testing for the suspected syndromes had not 

identified pathogenic variants. Twenty-nine subjects were reported to have developmental delay. 

 

 
 
Figure 2.1: Height z score at enrollment or before initiation of GH therapy. Each bar 
represents individuals with a height z score less than or equal to the number noted below it on the 
x-axis but greater than the number below the bar to the left. For example, the right-most bar 
represents individuals with a height z score -2.25 < z ≤ -2. 
 

Validating pooled sequencing results 

Using our pooled sequencing design, the false-positive rate of singleton variants estimated 

by comparison to the exome data was 4.8% (range, 0%–12.5% per individual) (Table 2.1). In 

addition, a total of 7 singleton variants mapped to the 8 holes in the 2 matrices compared with 

7680 singleton variants that mapped to the 384 subjects (patients and control subjects), resulting 

in a similar estimation of the false-positive rate of 4.2%. These numbers establish the upper 

bound for the variant false-positive rate, because singleton variants are more likely to be false 

positives than variants found in multiple individuals. Of a total of 6618 variants present in the 6 



 28 

exome samples within our target region, 7 variants were not identified by the pooled sequencing, 

giving an estimated overall false-negative rate of 0.1%. Similar to the false-positive rate, the 

false-negative rate for singleton variants is likely to be higher than that of other variants because 

singleton variants only appear in 2 pools and are more difficult to identify. 

 

Table 2.1: False-positive rate of singletons estimated by comparing with exome sequencing 
of 6 samples 
�

Sample No. No. of singletons False-positive singletons False-positive rate, % 

1 34 4 11.8 

2 58 1 1.7 

3 55 3 5.5 

4 15 0 0.0 

5 30 0 0.0 

6 16 2 12.5 

Summary 208 10 4.8 

�

Pathogenicity of rare variants 

In the 192 short stature patients, we identified a total of 10819 variants, of which 4928 were 

not detected in the control samples. Of these, 1349 were novel (Table 2.2). To screen for possible 

causal effects of variants found in our cohort, we compared these variants to those found in the 

Human Gene Mutation Database (HGMD)5. The database contains 26995 SNPs or indels located 

in the 1077 genes in our study, in which the variant has been reported as being associated with a 

particular clinical phenotype. We identified 66 such SNPs that matched a variant detected in our 

case subjects but not in control subjects. Because the HGMD is known to have erroneous entries, 
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we eliminated 7 variants with a minor allele frequency of ≥1% because these are unlikely to be 

true pathogenic variants. Of the remaining 59 variants, 32 were associated with recessive 

conditions or predispositions to complex traits, and the clinical pictures of the patients were not 

consistent with the disease phenotype, suggesting that they are unaffected heterozygous carriers. 

The final 27 variants previously associated with dominantly inherited diseases are listed in Table 

S2.1. We reviewed the phenotypes of the 27 case subjects and identified 1 case of autosomal 

dominant brachyolmia type 3 and 3 cases of Noonan syndrome. The remaining 24 case subjects 

did not have phenotypes consistent with the reported disease associations. 

 
Table 2.2: Variants identified in short stature samples but not in control samples 

 
Known variants Variant type 

ALL MAF<5% MAF<1% 

Novel variants 

Silent 1632 1602 1356 451 

Missense 1903 1888 1704 829 

Splice 11 11 10 8 

Indel 11 11 10 46 

Nonsense 22 22 22 15 

Total 3579 3534 3102 1349 

Abbreviation: MAF, minor allele frequency. 
 

Identification of pathological variants associated with brachyolmia and Noonan syndrome 

The patient with brachyolmia has a height of −3.88 SD and platyspondyly of the cervical 

spine. The mutation in TRPV4 is a missense mutation (c.1858G>A, V620I) that is a known 

variant causing the disease6. Before the research results became available but subsequent to 
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enrollment in our study, brachyolmia was clinically diagnosed in the patient, and clinical testing 

revealed this mutation. 

All 3 patients with Noonan syndrome carried variants in PTPN11, the most common 

causative gene in this syndrome. Noonan syndrome is an autosomal dominant condition with 

characteristic dysmorphic facial features as well as short stature, webbed neck, and cardiac 

abnormalities7. The first subject is an 11-year-old girl with a height z score of −2.7 SD. Isolated 

GH deficiency was diagnosed at age 7 years, and she had a poor response to GH therapy. Of note, 

she was born with a transitional atrioventricular canal defect, which was repaired at 4 months of 

age. She had a triangular face with a mildly low posterior hair line and slightly wide-spaced eyes. 

She did not have ptosis or downslanting eyes, and her ears were normal. She carries the 

c.188A>G/p.Y63C variant8. The second subject is an 8-year-old girl with a height z score of −1.7 

SD. She reached a height nadir of −3.0 SD at age 5 before the start of GH therapy for an 

indication of being small for gestational age to which she had a good response. She was 

evaluated at age 4 by a geneticist for the possibility of Russell-Silver syndrome, but no formal 

diagnosis was made. She has ptosis, epicanthal folds, downslanting eyes, and posteriorly rotated 

ears. She carries the c.925A>G/p.I309V variant9, which she inherited from her father whose 

height is 173 cm (−0.5 SD). The third subject is a 16-year-old male adolescent with a height z 

score of −2.5 SD. He reached a height nadir of −3.2 SD at age 13 before isolated GH deficiency 

was diagnosed and GH therapy was started. He also started testosterone therapy at age 15 years 

for delayed puberty. He has mild learning issues, and on examination has a low posterior hair 

line but no other facial features consistent with Noonan syndrome. He carries the 

c.853T>C/p.F285L variant9. 

 



 31 

Identification of one pathological IGF1R variant among all IGF1R rare variants identified 

To demonstrate the utility of a large-scale sequencing approach and the need for careful 

interpretation of results, we focused on rare variants in IGF1R, a gene for which 

haploinsufficiency is known to cause significant short stature10–12. Our approach was to identify 

nonsynonymous variants present in case patients only that segregated with the phenotype of 

short stature within the families. Variants meeting these criteria would be classified as potentially 

pathogenic variants requiring further functional validation. In total, our targeted sequencing 

found 25 unique IGF1R variants in both case patients and control subjects. Of these, 16 were 

synonymous SNPs, most of which were common (minor allele frequency >0.01); these were not 

evaluated further. The remaining 9 variants included 6 missense, 1 frameshift, and 2 intronic 

variants. The intronic variants were found within 5 bp of an exon, which suggests a potential 

involvement in splicing, and thus were included for further analysis. Five of these variants were 

present in case patients only (Table 2.3). All 9 variants were validated via traditional Sanger 

sequencing and confirmed to be heterozygous. To determine the biological significance of these 

variants, segregation of variants 2 through 6 within families was performed (Figure 2.2). There 

was no correlation between the individual family member's heights and the carrier status of the 

variants, suggesting that these variants are not likely to be major contributors to the patients' 

short stature, and, therefore, we excluded these variants from further consideration as pathogenic 

variants. Variant 7 was present in multiple case patients and control subjects and was also not 

likely to be pathogenic. Of note, 1 of the 2 rare missense variants found only in control subjects 

in our study (variant 9) was previously reported as pathogenic in the literature13. This control 

subject is of normal stature at −0.4 SD. 

 



Table 2.3: IGF1R Potentially Nonsynonymous Variants 
 
 

Variant Exon  cDNA Protein MAF Subject Sex Height 

SD 

Birth weight, 

ga 

IGF-1 (normal 

rangeb), ng/mL 

1 2 c.418dupG p.A140Gfs*5 novel Case 1 F -4.1 unknown 389.8 (244 - 787) 

2 5 c.1247+3A>G Intron  0.0007 Case 2 F -3.9 2800  26.6 (49 - 342) 

3 7 c.1463-5C>A Intron  0.012 Case 3 M -2.4 3500  52.2 (49 - 342) 

4 6 c.1411C>T p.R471C novel  Case 4 M -2.3 4100  34 (63 - 279) 

5 7 c.1502C>T p.S501L novel Case 5 M -3.0 3400  148 (63 - 279) 

Case 6 F -2.8 2600  97.2 (49 - 342) 6 6 

  

c.1336A>G 

  

p.M446V 

  

0.0027 

  Control 6 F 0.0    

 

 

 

 

323251327 



Table 2.3 (Continued) 

Case 7a F -3.3 4200  69.9 (49 - 342) 

Case 7b F -3.1 3800  62 (63 - 279) 

Control 7a F +0.4   

Control 7b M 0.0   

7 6 

  

c.1310G>A 

  

p.R437H 

  

0.004 

  

Control 7c M -0.4   

8 5 c.1162G>A p.V388M 0.003 Control 8 M -0.6   

9 7 c.1532G>A p.R511Q 0.003 Control 9 M -0.4   

 
Abbreviations: F, female; M, male. 
 
a. All case patients were the product of full-term pregnancies (>37 weeks) with the exception of case 7b (36.5 weeks). None of the 
case patients met the definition for intrauterine growth retardation (weight <2500 g at birth for normal gestation). 
 
b. Normal range for sex and Tanner stage. All IGF-I values were obtained during a baseline clinical evaluation and were measured 
when the patient was not receiving growth hormone therapy. 

3369333137 
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Figure 2.2: Segregation of identified IGF1R nonsynonymous variants in affected 
families does not correlate with short stature. Numbers below the individuals denote 
the height z scores. ^ indicates that the height was estimated by a family member. All 
other values were measured. Individuals carrying the heterozygous variants are indicated 
as black half-filled circles (females) or squares (males). The arrow points to the affected 
proband in each family. 
 
 
 

Variant 1 was a novel frameshift mutation (c.418dupG/p.A140Gfs*5) (Figure S2.1) 

found in 1 patient in the heterozygous state. The mutation causes severe truncation of the 

protein with complete abrogation of the transmembrane and intracellular domains and 

thus was predicted to lead to haploinsufficiency. This patient was adopted from China at 

6 years of age, and therefore a complete history and familial samples could not be 

obtained. At the age of 15 years, the patient had Tanner stage 4 breast development with 

height of 136 cm (−4.06 SD), weight of 30.2 kg (−4.87 SD), and a head circumference of 

49.3 cm (−4.4 SD). She has a history notable for bilateral cleft lip and palate as well as 
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attention deficit disorder and mild developmental delay. Her IGF-I was normal at 389.8 

ng/mL (normal range, 244–787 ng/mL for a Tanner stage 4 female). GH stimulation 

testing with arginine and glucagon demonstrated a peak GH level of 18.8 ng/mL. She had 

previously been treated with GH therapy with a possible mild increase in growth velocity, 

although this occurred concurrently with entering puberty. 

Variant 1 was the only variant in IGF1R that met our prespecified criteria for 

consideration as a potential pathogenic variant. To determine whether variant 1 was 

causal for the patient's phenotype, we evaluated IGF1R expression and function in 

primary PBMCs derived from the patient compared with those in control PBMCs 

(procured from the unrelated adoptive mother). Flow cytometric analysis by FACS of 

live PBMCs (counts, y-axis; Figure 2.3) indicated that fluorescence emitted by 

IGF1R-PE-labeled PBMCs was markedly reduced (fluorescence intensity, x-axis; Figure 

2.3) in patient PMBCs compared with that by the normal control PBMCs (Figure 2.3A). 

When the live PBMCs were treated with IGF-I, emitted fluorescence was comparably 

reduced for both control and patient PBMCs, suggesting normal internalization of IGF1R 

upon ligand binding (Figure 2.3B). Immunoblot analysis of cell lysates, furthermore, 

indicated that total IGF1R expression was reduced in the patient's PBMCs with 

correlating reductions in IGF-I–induced signaling (Figure 2.3C). Taken together, the 

results are consistent with the heterozygous IGF1R c.418dupG variant inducing a state of 

IGF1R deficiency and being an excellent candidate to cause the subject's short stature. 
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�
 
Figure 2.3: IGF1R expression and signaling in primary peripheral PBMCs of 
patient carrying heterozygous IGF1R c.418dupG. PBMCs were isolated as indicated 
in Materials and Methods. Flow cytometry analysis by FACS was used to detect IGF1R, 
labeled by PE-conjugated anti-human IGF1R-α antibody (see Materials and Methods), on 
the cell surface of live PBMCs. Live PBMCs (counts, y-axis) and fluorescence emitted 
by the IGF1R-PE–labeled PBMC were collated (log scale fluorescence intensity, x-axis). 
(A) Patient (red graph) compared with normal (black graph) PBMCs. Background 
fluorescence emitted by unlabeled and untreated PBMC control is shown by the 
gray-shaded region. The geometric mean of the fluorescent intensity (FI) detected in 
normal PBMCs was given an arbitrary unit of 100% (table). (B) Effect of IGF-I treatment 
(100 ng/mL, 1 hour) on the detection of IGF1R-PE–labeled PBMC from normal (top 
panel) and patient (bottom panel) PBMCs. For each, the geometric mean of the 
fluorescent intensity (FI) detected in untreated PBMCs was given an arbitrary unit of 
100%. (C) Western immunoblot analysis of total cell lysates from PBMCs treated with 
IGF-I (100 ng/mL) vs untreated cells. Molecular mass (kilodaltons) is indicated on the 
left side of the immunoblots. The intracellular proteins detected are indicated by arrows 
(on right). 
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DISCUSSION 

Short stature is a common problem confronting pediatric endocrinologists. After 

exclusion of other chronic diseases or overt hormonal deficiencies, clinicians are often 

unable to provide a definitive diagnosis for the etiology of an individual patient's short 

stature. There are a multitude of genetic causes for short stature, but most patients do not 

fall into a previously identified genetic syndrome. We, therefore, designed and performed 

a large-scale sequencing project to identify pathogenic rare genetic variants in individuals 

with short stature. We sequenced 1077 candidate genes including known skeletal 

dysplasia genes, genes within the GH signaling pathway, genes known to affect growth 

plate biology, and genes within loci associated with adult height in large GWA studies. 

Using this approach, we identified 4 known pathogenic variants causing short stature as 

well as novel variants in genes known to affect stature. 

To facilitate the sequencing of a large number of genes in many subjects, we used a 

pooled sequencing design, which significantly reduced the cost of such analysis14. Most 

of the cost associated with a targeted next-generation sequencing project is typically 

incurred at the library construction stage, in which targeted regions of DNA are separated 

from the remainder of the genome for sequencing. In a pooled sequencing design, this 

process only has to be performed once per pool. Although actual sequencing depth may 

need to be increased to ensure adequate representation of all samples in the pool, the 

associated cost is relatively minor. Indeed, the cost per sample of our pooled targeted 

sequencing approach is estimated to be ∼15% of the cost for individual exome 

sequencing (ie, ∼$110 compared with ∼$800 per sample, based on current prices 

available at our institution). Exome sequencing could also be done in a pooled fashion, in 
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which case cost differences will depend on the cost of sequencing coverage, a process 

that is becoming cheaper to perform. Although pooled exome sequencing does have the 

advantage that nearly all genes are evaluated, analysis and interpretation of the data 

generated would be much more complex because of the large number of novel 

nonsynonymous variants in genes with no known connection to the phenotype of interest. 

Our simple matrix pooling design, in contrast, allows for the rapid assessment of 

low-frequency variants in candidate genes and the identification of individuals carrying 

singleton variants, which are more likely to be pathogenic than variants with a higher 

minor allele frequency. However, pooling does limit the ability to discern whether a 

single variant is homozygous or heterozygous in an individual subject and follow-up 

confirmatory genotyping is necessary. Using this design, we were able to identify a large 

number of very rare nonsynonymous variants within our candidate genes with low false 

-positive and low false-negative rates. 

We identified 4 subjects in our cohort who had known pathogenic variants 

implicated in disease. Notably, 3 of these subjects have mutations in PTPN11 that cause 

Noonan syndrome. Noonan syndrome is known to have a wide phenotypic spectrum, 

leading to difficulty in diagnosis7, and, indeed, one of our subject's fathers carries a 

proven pathogenic variant in PTPN11 yet never presented with the overt clinical 

manifestations of Noonan syndrome. Although it is true that our subjects may have had 

features consistent with Noonan syndrome that were unrecognized, such as a cardiac 

defect or delayed puberty, this retrospective recognition of related features does not 

eliminate the benefit of genetic screening. The lack of diagnoses in our cohort represents 

clinical reality, because these subjects were extensively evaluated by experienced 
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pediatric endocrinologists and in one case by geneticist as well. This suggests that a 

substantial number of patients with Noonan syndrome are designated as having idiopathic 

short stature or isolated GH deficiency even after clinical evaluation by pediatric 

subspecialists. Additional research is needed to determine whether widespread screening 

for PTPN11 or the other Noonan syndrome genes is warranted for patients with short 

stature of unknown etiology. 

It is important to note that, in our cohort, the vast majority of HGMD-reported 

disease-causing dominant mutations did not manifest with the associated clinical 

phenotype. The classification of these variants as pathogenic is probably erroneous and 

based on insufficient clinical evidence. However, we cannot rule out the possibility that 

the variants have variable expressivity and some of our subjects are presenting on the 

very mild end of the clinical spectrum with short stature as their disease manifestation. 

Our focus on rare variants of the IGF1R gene illustrates the critical importance of 

providing supporting familial segregation and functional data when a rare variant has 

been identified. IGF-I, the primary mediator of GH function, is essential for growth. 

Heterozygous and compound heterozygous mutations in IGF1R that lead to decreases in 

the quantity or function of the receptor have been described in nearly a dozen human 

cases1,10–12,15,16. These patients display variable phenotypes, with shared characteristics 

that include poor prenatal and postnatal growth, microcephaly, high or normal IGF-I 

levels, and developmental delay1,10–12,15,16. 

Our targeted sequencing approach identified 7 unique rare 

nonsynonymous IGF1R variants as well as 2 intronic variants with the potential to affect 

splicing because of their proximity to exons. Only 1 of these 9 variants, a novel 
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c.418dupG frameshift mutation located in exon 2, was associated with clinical features 

suggestive of a pathological IGF1R deficiency state (high levels of serum IGF-1, 

microcephaly, and intrauterine growth retardation). Furthermore, in primary cells derived 

from this patient, significant decreases in both IGF1R expression and IGF-I–induced 

signaling supported the pathogenicity of the IGF1R c.418dupG defect. None of the 

remaining variants found in case patients show convincing evidence of pathogenicity. 

This example demonstrates that large-scale sequencing efforts will identify numerous 

very rare and novel nonsynonymous variants in candidate genes. Most of these variants 

will be missense variants, leading to a change in a single amino acid, which will not 

affect protein function, and represent incidental findings. Segregation of these variants 

with the phenotype within families is the first critical step in evaluating potential 

pathogenicity, highlighting the importance of collecting familial samples at the time of 

the initial DNA collection. 

Filtering strategies based on population allele frequency are useful and necessary, 

but most public databases do not provide individual phenotypic data linked to the 

subject's genotype, thus limiting the ability to determine whether a variant is potentially 

pathogenic. Therefore, simultaneous sequencing of a control cohort with a known 

phenotype, in this case normal stature, provides additional information about the lack of 

pathogenicity of rare variants in a gene. This fact is exemplified by our finding that 

an IGF1R variant previously reported to be pathogenic (c.1532G>A/p.R511Q)13 was 

found in the heterozygous state in a control subject of normal stature. This variant was 

originally identified in the heterozygous state in a patient and her maternal aunt, both of 

whom presented with extreme short stature (−6.1 and −5.7 SD, respectively). It is of note 
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that information regarding the parents of the patient were lacking in this report. In vitro 

reconstitution studies of the homozygous p.R511Q variant were performed to support the 

pathogenicity of this variant, although the effect of heterozygosity was unknown. These 

caveats, together with our identification of the same variant in a control subject of normal 

stature, strongly suggest that a heterozygous p.R511Q is not likely to be the cause of the 

previously reported family's extreme short stature. Furthermore, Kansra et al17 recently 

detected the R511Q variant in 6 of 1800 public school students. Indeed, carriers had an 

average height around the 27th percentile, thus providing additional evidence that this 

variant does not cause severe short stature. Taken together, these results support the 

importance of segregation analysis and the need to include primary cells in functional 

analysis. 

Our study has a number of important limitations. We recruited a very heterogeneous 

cohort, allowing for the inclusion of dysmorphic features, other congenital anomalies, 

and hormonal deficiencies provided that there was no known genetic etiology for these 

findings. Thus, subjects in this cohort do not meet a strict definition of idiopathic short 

stature18. Nevertheless, we believe that this cohort more accurately represents the 

diversity of patients who are seen in a referral setting and is probably enriched for 

individuals with rare genetic variants that may have multisystem effects. In addition, our 

hybrid selection strategy only targets the exons of the candidate genes, and, thus, any 

noncoding variation that affects gene expression cannot be detected by our methods. 

Variants affecting gene expression can play an important role in causing short stature. For 

example, Russell-Silver syndrome, an important syndromic form of short stature, is often 

due to abnormalities in methylation of chromosome 11p15.5, leading to aberrant gene 
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expression19. In addition, our current approach does not assess copy number variation (ie, 

deletions or duplications of genes), which may also be an important genetic defect 

leading to short stature. We are currently pursuing copy number analysis of this cohort 

using a custom chromosomal microarray (data not shown). Furthermore, we did not 

obtain perfect sequencing coverage of all variants in the targeted region and could miss 

potentially pathogenic variants in the candidate genes. Finally, because of the large 

numbers of rare missense variants in both case patients and control subjects, we have 

limited power to discover new genes with a statistically significant excess of mutations in 

case patients vs control subjects. Ongoing work to increase sample size and examine 

subjects at the extremes of the height distribution will provide additional data to support 

novel gene discovery. 

In conclusion, we present the initial results of a large-scale candidate gene 

sequencing effort in children with short stature and demonstrate the complexity of data 

interpretation of such efforts. Of our 192 subjects, 3 were found to have known 

pathogenic variants in PTPN11, highlighting the possibility that Noonan syndrome is 

underdiagnosed in the clinical setting. We report a novel frameshift mutation 

in IGF1R and demonstrate its pathogenicity in vivo. In addition, we provide evidence that 

a previously reported variant in IGF1R is not pathogenic. Analyses of variants identified 

in the other candidate genes are currently ongoing. 

 

MATERIALS AND METHODS 

Height candidate genes 
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In this study, we sequenced the exons of 1077 genes (∼2 Mb total target size). Of 

these 1077 genes, one-third (n = 356) were known biological candidates, including genes 

known to underlie syndromic growth disorders or skeletal dysplasias as well as genes 

involved in growth plate biology or GH signaling. The remaining two-thirds (n = 777) 

included genes within genomic loci associated with height based on GWA studies; 56 

genes belong to both categories (see Table S2.2)3. For the genes within the GWA loci, we 

set the genomic boundaries at each height-associated locus using linkage disequilibrium 

cutoffs (HapMap CEU r2 > 0.5) for the top single-nucleotide polymorphism (SNP). For 

loci with ≥2 genes within the genomic boundary, all genes were included. Loci with >10 

genes were excluded. For SNPs with <2 genes within the genomic boundary, genes 

beyond the boundary but within the next recombination hotspots were included. 

 

Subjects 

This study was approved by the institutional review board at Boston Children's 

Hospital (Boston, Massachusetts). All subjects or their legal guardians provided written 

informed consent. The 192 patients with short stature (>2 SD below the mean for age and 

sex)20 but without defined genetic etiologies, were recruited from the endocrinology and 

genetics clinics at Boston Children's Hospital. Because we were searching for rare 

genetic syndromes, subjects were allowed to have additional medical comorbidities, 

dysmorphic features, or other hormonal deficiencies as long as these alternate medical 

problems did not provide a clear explanation for the subject's short stature. In addition, 

192 control subjects were chosen from the Framingham Heart Study. Control subjects 

were chosen from the middle of the Framingham Heart Study height distribution (height 
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z scores between −0.7 and +0.7 SDs). z scores were calculated by regressing the height 

phenotype, stratifying by sex and adjusting for age. 

 

Sequencing protocol 

DNA samples from multiple subjects were pooled for DNA sequencing using 

previously described methods available at the Broad Institute21. To identify variants 

present only in a single individual (hereon referred to as singleton variants), we applied a 

simple overlapping pooling design (Figure S2.2). The samples from short stature subjects 

and control samples were each arranged into a 14 × 14 matrix of 28 pools, with 13 to 14 

samples in each pool. Four empty “holes” were included in each matrix for assessing the 

false-positive rate. Each sample was sequenced in 2 pools (1 row pool and 1 column 

pool). Singleton variants appear only in 1 row pool and 1 column pool. Therefore, the 

subject whose DNA sample is present at the intersection of these 2 pools must be the 

individual carrying that singleton variant. The targeted exons of the 1077 candidate genes 

were enriched using a custom Agilent SureSelect hybrid selection system. Sequencing 

was performed on the Illumina HiSeq platform. There was an average of 12961604 reads 

per pool, resulting in mean target coverage of 213 reads (15 reads per subject in a pool of 

14 subjects or 30 total reads per subject, as each subject is present in 2 pools). Variant 

calling was performed using Syzygy software21 and then a new likelihood-based 

secondary calling strategy that integrated the extra information from our matrix design 

was applied (Supplemental Methods). 

Variants were annotated for functional effect using SnpEff 2.0.5 

(http://snpeff.sourceforge.net/). Variant allele frequency data were obtained from 3 
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publicly available datasets: (1) the integrated variant call set of 1000 Genomes phase 1 

samples22 (February 2012 release); (2) the National Heart, Lung, and Blood Institute 

Exome Variant Server23, and (3) ∼12 000 sequenced genomes and exomes assembled for 

exome genotyping chip design (http://genome.sph.umich.edu/wiki/Exome_Chip_Design). 

The maximal allele frequencies from all 3 sources were used. Novel variants are those 

not observed in any of these datasets. 

 

Assessing false-positive and false-negative rates 

We estimated the false-negative and false-positive rates by comparing pooling data 

with data from exome sequencing previously performed in 6 of the short stature subjects. 

To start, we determined the overlapping targets between pooling and exome capture 

arrays. Then, limiting to sites with ≥10 reads, we assumed that the exome sequencing 

data reflected the gold standard because of its much greater depth of coverage. False 

positives were defined as singletons observed in pooling data but not in exome data, 

whereas false-negative results were those observed in exome data but not in either of the 

2 relevant pools. The false-positive rate was also estimated by looking for singleton 

variants that mapped to one of the empty holes in the matrix. The singleton variants that 

mapped to empty holes were false-positives, permitting the number of false-positive 

variants per individual to be estimated, and from there we could independently estimate 

the false-positive rate of singleton variants. 

 

IGF1R functional studies 
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Whole blood samples (BD Vacutainer Cell Preparation Tube with sodium heparin; 

Becton, Dickinson and Company, Franklin Lakes, New Jersey) were collected from the 

adopted patient and from the unrelated mother, who served as normal control subjects. 

Peripheral blood mononuclear cells (PBMCs) were isolated following the manufacturer's 

protocol. PBMCs, in freezing medium (RPMI 1640 medium + 40% fetal bovine serum + 

10% dimethyl sulfoxide) were stored in liquid nitrogen. 

For immunoblot analysis, fresh PBMCs (2 × 106/treatment) were resuspended in 

serum-free RPMI 1640 medium, with or without recombinant IGF-I (100 ng/mL; GroPep 

Ltd, Thebarton, South Australia, Australia), for 20 minutes at 37°C in a CO2 incubator, 

before pelleting, and cells were lysed as described previously for fibroblast cell cultures24. 

Western immunoblot analyses were performed as described previously24. For flow 

cytometry analysis by fluorescence-activated cell sorting (FACS) of cell surface IGF1R, 

PBMCs, warmed to 37°C from liquid nitrogen storage, were washed twice, aliquoted as 1 

× 106cells/sample in RPMI 1640 medium + 10% fetal bovine serum, and incubated 

overnight at 37°C (5% CO2 incubator). Before IGF-I treatment, cells were washed twice 

with serum-free RPMI 1640 medium + 0.5% BSA and equilibrated in 0.5 mL of 

serum-free RPMI 1640 medium for 4 hours. Cells were treated with or without IGF-I 

(100 ng/mL final concentration) for 1 hour, after which cells were washed twice with 

cold staining medium (1× PBS-0.5% BSA-0.1% sodium azide) and incubated with 

phycoerythrin (PE)–conjugated anti-human IGFIR-α (CD221; BD Biosciences, San Jose, 

California) for 30 minutes at 4°C in the dark. After antibody staining, cells were washed 

twice with cold staining medium, resuspended in 200 µL of staining medium-0.25% 

propidium iodide, and incubated on ice for 10 minutes. A total of 100 000 live PBMCs 
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(propidium iodide negative, CD221 positive) per sample were acquired via a 

FACSCaliber flow cytometer (BD Biosciences), and the fluorescence emitted by 

IGF1R-PE–labeled PBMCs was analyzed using FCS Express 3 analysis software (De 

Novo Software, Los Angeles, California). 
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NOTE ADDED AT PROOF 

After this paper was published, we were informed that PTPN11 p.I309V exists at 

7% in Ashkenazi Jews. Thus this variant is likely benign. 
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ABSTRACT 

Based on the observation of reduced stature in relatives of patients with acromesomelic 

dysplasia, type Maroteaux (AMDM), homozygous for mutations in natriuretic peptide receptor B 

gene (NPR2), it has been suggested that heterozygous mutations in this gene could be 

responsible for the growth impairment observed in some cases of idiopathic short stature (ISS), 

and some small subsequent studies provided support for this hypothesis. We enrolled 192 

unrelated patients with short stature and 7 heterozygous NPR2 missense or loss-of-function 

mutations, including one de novo splice site variant, were identified. These allelic variants were 

not found in our controls and 5 of them were not found in the public databases. NPR2 mutations 

were also found in relatives, all of whom had short stature (height SDS below -2), consistent 

with a dominant inheritance pattern. We then went on to investigate the presence of NPR2 

mutations in two larger cohorts of individuals selected from the extremes of height distribution. 

Functional studies of the NPR2 mutations identified are pending. With these functional results, 

we will be able to test more rigorously the hypothesis that NPR2 functional haploinsufficiency 

causes short stature.
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INTRODUCTION 

C-type natriuretic peptide (CNP) is a small, secreted peptide and a member of the 

natriuretic peptide family. CNP binds to a homodimeric transmembrane receptor, natriuretic 

peptide receptor B (NPR2), which functions as a guanylyl cyclase to generate cGMP in 

chondrocytes, female reproductive organs, and endothelial cells1,2. Further intracellular signaling 

occurs through cGMP-dependent protein kinases, cGMP binding phosphodiesterases, and cyclic 

nucleotide-gated ion channels.  

Several lines of evidence indicate that CNP/NPR2 signaling is an important regulator of 

skeletal growth. CNP-overexpressing mice exhibit excessive growth3, while defects of the CNP4 

or NPR25 gene, lead to impairment of skeletal development. In humans, loss-of-function 

mutations in NPR2 cause acromesomelic dysplasia, Maroteaux type (AMDM; OMIM 602875). 

This autosomal recessive skeletal dysplasia is characterized by dwarfism and short limbs6. On 

the other hand, overproduction of CNP due to a chromosomal translocation was reported to 

cause skeletal dysplasia associated with tall stature7,8. In addition, gain-of-function mutations of 

NPR2 have been identified in several studies to cause overgrowth disorder9–11.  

Interestingly, in the first report of biallelic NPR2 mutations causing AMDM, parents of 

patients with AMDM (obligate heterozygotes) were noted to be shorter than expected for their 

population of origin6, though these individuals came from a wide range of geographic and ethnic 

backgrounds, and measurements were done by a number of observers, which complicated the 

comparison. Another study that evaluated a single family with an AMDM proband showed that 

the heterozygous carriers had a mean height 1.4 SD lower than their non-carrier family 

members12. In this single-family study, the proband’s parents share a common ancestor, so it is 

possible that the heterozygous carriers share some other mutation causing short stature, and the 
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level of evidence of a heterozygous effect was limited by the size of the family. Based on these 

two studies, it is presumed that heterozygous NPR2 mutations can mildly impair long bone 

growth and it has further been hypothesized that one person in 30 with idiopathic short stature 

(ISS) will be carrier of an NPR2 mutation6,12.  

Recent studies searched for heterozygous NPR2 mutations in cohorts with ISS. One study 

of 47 independent Brazilian patients identified heterozygous NPR2 mutations in 6% of 

patients13. Another study on 101 unrelated Japanese patients with short stature identified 

heterozygous NPR2 mutations in 2% of patients14. While providing observational data consistent 

with the hypothesis that a monoallelic NPR2 mutation could cause short stature, these studies did 

not study normal height controls and were based on a relatively small number of patients, so 

have not rigorously verified the hypothesis. Analyses of larger cohorts, including controls, are 

needed to more clearly define the role of heterozygous NPR2 defects in patients with ISS.  

 

RESULTS 

Discovery of NPR2 variants in patients with short stature and controls using pooled 

sequencing 

We selected 192 patients with short stature (>2 SD below the mean for age and sex) and 

192 controls of matching ancestry from the middle of the Framingham Heart Study (FHS) height 

distribution (height z scores between -0.7 and +0.7 SDs). Characteristics of the subjects were 

described previously15. Pooled targeted sequencing of the exons of 1077 candidate genes was 

performed15. We detected 11 variants in NPR2. Of these, two were synonymous SNPs found in 

multiple patients and controls, and two were synonymous variants found only in patients. We 

focused on the seven potential loss-of-function variants, which included one splice site and 6 
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missense variants, all found in patients only (Table 3.1). These seven variants were all validated 

via traditional Sanger sequencing and confirmed to be heterozygous in each individual carrier.  

 

Family analyses and clinical phenotypes 

The splice site mutation is a C.1352-1G>A in a highly conserved base pair in the acceptor 

splice site at the 5’ end of exon 7, carried in a single patient. Sanger sequencing of the proband, 

his parents, and a brother confirmed that the variant is found in the patient but not in his mother, 

father or brother. These results were confirmed by a second round of sequencing, and paternity 

was confirmed by SNP genotyping.  There was no family history of short stature, consistent with 

the hypothesis that the de novo variant in NPR2 is contributing to short stature in this patient. 

 We also detected 6 missense variants in NPR2; of these, 4 were private variants not found 

in any of the reference databases (Patients 2-5, Table 3.1), and sequencing of relatives 

demonstrated segregation of these variants with the short stature phenotype (Figure 3.1). Of note, 

one of these variants (Patient 2) was found in a male patient who was also found to carry a 

known TRPV4 mutation (c.1858G>A, V620I) previously reported as causal for brachyolmia type 

316. The patient carries a clinical diagnosis of brachyolmia and features consistent with this 

disease, including platyspondyly of the cervical spine, and we previously reported the presence 

of this likely pathogenic variant in this patient15. The NPR2 variant was present in the patient’s 

mother, who does not carry the TRPV4 variant, and in two sisters, the elder of which also carries 

the TRPV4 variant.  The mother and both sisters had short stature with height SDS scores below -

2.5, and the sister carrying both variants had a height SDS score of -3.1. Notably patient’s father 

is deceased but also was reported to have had short stature (-3.1 SDS) and presumably carried 

the TRPV4 variant.  Thus, this patient and one of his sisters inherited the NPR2 variant from his 
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mother and the TRPV4 variant from his father, presumably resulting in severe short stature with 

skeletal dysplasia.    

We also detected two rare missense variants present in the NHLBI Exome Sequencing 

Project data base (Patients 6-7). Neither of these variants has been reported to be pathogenic, and 

both are reported to be rare (minor allele frequency 0.01%).  The mother of Patient 6, who also 

had short stature, did not carry the NPR2 variant, but DNA was not available from the sibling or 

father for further segregation analysis.  Patient 7 was adopted from China, so the family history 

of short stature was unknown and testing for segregation of the variant was not possible. 



Table 3.1: NPR2 potentially nonsynonymous variants in short stature patients 
 

Subject Sex Variant PolyPhen2 
Prediction 

Nadir Height 
SDS 

Current 
Height SDS 

GH 
Therapy 

GH 
Indication 

Upper/ 
Lower 

Patient 
1 

M Splice 
C.1352-1G>A 

N/A -3.14 -2.15 Yes ISS 1.08 
> +2 SDS 

Patient 
2 

M A48S 
(brachylomia with 
known TRPV4 variant) 

1.00 -4.15 -3.91 No N/A 1.17 
> +2 SDS 

Patient 
3 

F E389D 0.00 -3.84 -3.14 Yes ISS 0.91 
-1 SDS 

Patient 
4 

F I494S  0.997 -3.57 -1.79 Yes ISS 0.96 
0 SDS 

Patient 
5 

M A549T 0.998 -3.88 -2.70 Yes ISS  1.02 
+1-2 SDS 

Patient 
6 

M A164G 0.065 -2.53 -2.16 IGF-1 
therapy 

ISS/IGF-1 
deficiency 

1.11 
> +2 SDS 

Patient 
7 

F R787W 0.998 -2.92 -2.41 No ISS 1.06 
> +2 SDS 

Abbreviations: F, female; M, male; GH, growth hormone; IGF-1, insulin-like growth factor 1. 

 

570117 
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Figure 3.1: Segregation of identified NPR2 nonsynonymous variants in affected families. 

Numbers below the individuals denote the height z scores. + indicates family members who also 

carry the TRPV4 mutation casual of brachyolmia. ^ indicates that this family member was 

treated with growth hormone therapy prior to this height measurement and had a nadir height of -

2.8 SDS. * indicates that the height was estimated by a family member. All other values were 

measured. Individuals with short stature are indicated as black circles (females) or squares 

(males). The arrow points to the affected proband in each family.  

 

 

 



 59 

Screening for NPR2 mutations in cohorts of height extreme individuals 

We then went on to screen for NPR2 mutations in two additional cohorts. The first cohort 

of individuals (n=272) was selected from the extremes (<1st percentile or >99th percentile) of 

height distribution from four FINRISK surveys (~33,000 samples in total). Pooled targeted 

sequencing of the exons of 1077 candidate genes was performed. We detected 8 potential 

variants in NPR2. Of these variants, two were common synonymous SNPs (observed in the short 

stature patients and FHS controls as well) and one was an intronic variant found in both short 

and tall extremes, and we did not pursue these further. Among the remaining 5 missense variants, 

2 were validated by Sequenom genotyping and confirmed to be heterozygous in tall extremes 

only (Table 3.2). One of these is located in the extracellular region at the ligand binding domain 

(p.N247D) and the other is located at the kinase homology domain (p.R562Q). Neither variants 

were found in any of the reference databases. An in silico analysis suggested that one mutation is 

benign (p.N247D) and the other is probably damaging (p.R562Q). 

The second cohort of individuals (n=1,000) was extremes (<1.25th percentile or >98.75th 

percentile) of height distribution from Estonian Biobank (~52,000 samples in total). Pooled 

targeted sequencing of the exons of four candidate genes was performed. Again, we did not 

evaluate further the synonymous or intronic variants identified. There were two missense variant 

observed in both tall extreme and short extreme samples, which we did not pursue further either. 

For the remaining 6 missense variants, we performed Sanger sequencing and validated 3 

singleton variants (Table 3.2) all found in short extremes only.  Two of them are located in the 

extracellular region at the ligand binding domain (p.E76K, p.G39R). The third mutation is 

located at the kinase homology domain (p.T661K). These allelic variants were not found in any 
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of the reference databases. An in silico analysis suggested that the three missense mutations are 

possibly damaging (p.E76K), benign (p.G39R), and probably damaging (p.T661K) respectively. 

 

Table 3.2: NPR2 potentially nonsynonymous variants in FINRISK and Estonian GeneBank 

height extreme samples 

 
Variant Observation PolyPhen2 Prediction 

p.N247D FINRISK tall extreme 0.002 

p.R562Q FINRISK tall extreme 0.995 

p.E76K Estonian short extreme 0.609 

p.G39R Estonian short extreme 0.013 

p.T661K Estonian short extreme 0.999 

 

Overall observation of NPR2 mutations across three cohorts 

Overall, across three cohorts, we observed 12 NPR2 nonsynonymous variants, 10 in short 

stature samples, and 2 in tall extreme samples (Table 3.3). Assuming that all variants are equally 

likely to occur in short stature samples and tall extreme samples (or control samples of normal 

height) under the null hypothesis, our observation gives a p value of 0.018 (one-tailed test).  

We hypothesize that the 2 missense variants observed in FINRISK tall extremes are 

either functional neutral or gain-of-function mutations, while the missense variants identified in 

Estonian short extremes and in the seven short stature cases are loss-of-function mutations. If the 

hypothesis is validated, the association signal will be stronger than described above, as 

functional neutral variants can be removed from the test. 

 



Table 3.3: Observation of NPR2 nonsynonymous variants in three cohorts 

Cohort Observation of  

nonsynonymous variants  

Note 

Short stature patients  

and FHS controls 

7 variants in 192 short stature patients 

0 variant in 192 FHS controls 

Patient 1: de novo mutation 

Patients 2-6: all heterozygous relatives 

had short stature (height SDS < -2) 

Patient 7: no family data available 

Extremes of FINRISK  

height distribution 

0 variant in 136 short extremes 

2 variants in 136 tall extremes 

No family data available 

Extremes of Estonian Biobank  

height distribution 

3 variants in 500 short extremes  

0 variant in 500 tall extremes 

No family data available 

 

61417 
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Functional characterization of NPR2 variants 

To further examine the pathogenicity of the identifed NPR2 nonysnonymous variants 

(Table 3.3), we initiated experiments assessing the CNP-dependent cGMP-producing capacities, 

and results are still pending. It will be interesting to see whether the results of functional studies 

are consistent with the outcome of familial analyses. We also intend to evaluate the correlation 

between in silico prediction of mutation effects with the results of functional studies. 

 

Discussion�

In summary, to explore the role of NPR2 variation in short stature, we have screened for 

heterozygous NPR2 mutations in three different cohorts (Table 3.3). Familial analyses in the 

short stature patient cohort support the hypothesis that rare heterozygous NPR2 variants could be 

a major contributor short stature in individuals carrying these variants. Functional studies of the 

NPR2 mutations identified are pending, which could add further support for this hypothesis. We 

also identified NPR2 mutations in two additional cohorts, where family data are not available. 

Pending results of functional studies will be crucial in interpreting these discoveries, especially 

as we identified two variants in individuals from the tall extreme of the height distribution. The 

frequencies of heterozygous mutation carriers in varied across cohorts. This is likely due to 

different ethnicities, sample selection criteria, and possibly experimental design.  

In contrast with homozygous mutations in NPR2, which produces a severe short stature 

and body disproportion, heterozygous mutations in NPR2 seem to be associated with mild and 

variable growth impairment without distinct phenotype. The severity of short stature, body 

proportions, and the presence of nonspecific skeletal abnormalities vary across individuals in our 
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study, consistent with previous observations12,13. This variability is likely due to differences in 

the nature of NPR2 mutations carried by the individuals, as well as variable expressivity. 

Previously, a study of 47 Brazilian patients identified heterozygous NPR2 mutations in 

6% of patients13, while another study on 101 short stature Japanese patients identified mutations 

in 2% of patients14. Functional analyses were performed in both studies to evaluate the 

pathogenicity and elucidate the molecular mechanisms of the identified mutations. However, 

both studies were observations based on small number of patients. Our study, in much larger 

cohorts and with more family data, with functional analyses (once completed), will be a more 

rigorous assessment of heterozygous mutations in NPR2 as a potential cause of growth 

impairment in ISS patients. 

The frequency of heterozygous carriers of AMDM mutations was previously estimated to 

be ~0.14%12. In NHLBI, the cumulative frequency of all nonsynonymous NPR2 variants is 

approximately 0.4% in ~4000 European American samples. The discrepancy between these two 

allele frequencies highlights the importance of functional studies, which boost the power of rare 

variant association tests by removing neutral background variants. Despite the rarity of AMDM 

mutations (and nonsynonymous NPR2 variants in general), these loss-of-function alleles likely 

have relatively large effect size (previously estimated to be around -1.8 SDS12) and would 

explain ~1% of height variation in the population based on these assumptions. Moreover, 

common variants at the locus and in this pathway also contribute to height variation, as GWAS 

signals have been identified near both NPR2 and NPPC, encoding the ligand CNP.  

The action of natriuretic peptide system on longitudinal growth is partially explained by 

the capacity of CNP/NPR2 signaling to inhibit fibroblast growth factor receptor-3 (FGFR3) 

downstream signaling at the level of the MAPK cascade17. Gain-of-function mutations in 
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FGFR3, which promote a sustained activation of the MAPK pathway, are responsible for 

achondroplasia, one of the most common skeletal dysplasia18. It has been shown that CNP 

alleviates the short-limbed phenotype of achondroplasia mice19. The CNP analog with an 

extended half-life, BMN 111, has recently been developed and significantly recovery of bone 

growth was demonstrated in ACH mice by subcutaneous administration of BMN 11120.  

While this therapeutic approach would be ineffective in AMDM patients that lack the 

receptor for CNP, this form of therapy might be effective for heterozygous carriers of NPR2 

mutations who still have one functional receptor. A study by Olney et al. has shown that plasma 

CNP level was very high in AMDM patients, suggesting the presence of a feedback loop that 

regulates CNP production12. For the heterozygous carriers of the mutation, this level was not 

different from the noncarriers. In the normal population, blood level of CNP is lower in adults 

than in children. It is therefore also possible that NPR2 mutation carriers have abnormal level of 

CNP during childhood but normal level in adulthood. This finding would likely not have been 

detected in the study of Olney et al. because most of the participants were adults. 

Apart from CNP, it is conceivable that pharmacological inhibitors of the MEK/ERK 

MAPK pathway might improve bone growth for AMDM patients and heterozygous carriers. 

MEK1/2 inhibitors that are currently undergoing clinical evaluation in cancer are promising 

therapeutic candidates for growth defects associated with excess MEK1/2 signaling, including 

patients with AMDM, achondroplasia or other appropriate skeletal dysplasia. It has been shown 

that pharmacological inhibition of MEK1/2 is sufficient to rescue the growth defect in mice 

model of AMDM21. The key to moving skeletal dysplasia therapeutics forward will be to deliver 

this class of agents specifically to the growth plate. 
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AMDM patients appear to have an abnormality in the GH/IGF-1 system, characterized by 

low insulin-like growth factor 1 (IGF-1) levels, high growth hormone (GH) levels, and lack of a 

response to GH treatment12. This implies an interaction between CNP/NPR2 and GH/IGF-1 

pathways during postnatal growth and the growth failure in AMDM may be due at least partially 

to low IGF-1 levels. Studies in more children with AMDM will test this hypothesis. IGF-1 

levels, however, were not low in the carriers12–14. It is possible, as mentioned earlier, that carriers 

have abnormal levels of IGF-1 during childhood that were not detected. Studies that will advance 

our knowledge of these mechanisms can eventually help predict the determinants for 

responsiveness to therapy. This knowledge would allow clinicians to tailor GH treatment and 

dosing to an individual’s molecular diagnosis. It may be useful in the future to include NPR2 

sequencing in the evaluation of children presenting with short stature. This information could 

then be used to help make the decision of whether to start growth hormone. 

 

MATERIALS AND METHODS 

Subjects 

Short stature patient cohort 

192 patients with short stature (>2 SD below the mean for age and sex22) but without 

defined genetic etiologies, were recruited from the endocrinology and genetics clinics at Boston 

Children's Hospital. In addition, 192 control subjects were chosen from the middle of the 

Framingham Heart Study height distribution (height z scores between −0.7 and +0.7 SDs). More 

detailed description of the cohort is reported in Wang et al.15  

 

FINRISK height extreme cohort 
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272 subjects were chosen from the extremes (<1st percentile or >99th percentile) of the 

FINRISK surveys (FINRISK 1992, FINRISK 1997, FINRISK 2002, FINRISK 2007) height 

distribution. The FINRISK cohorts comprise the respondents of representative, cross-sectional 

population surveys that are carried out every 5 years since 1972, to assess the risk factors of 

chronic diseases and health behavior in the working age population, in five large study areas of 

Finland23. 

 

Estonian Biobank height extreme cohort 

1000 subjects were selected from the extremes (<1.25th percentile or >98.75th percentile) 

of the Estonian Biobank height distribution. The Estonian Biobank cohort is a volunteer-based 

sample of the Estonian resident adult population (age ≥18 years). The age, sex and geographical 

distribution closely reflect those of the Estonian adult population and encompass close to 5% of 

the entire adult population of Estonia24. 

 

Pooled sequencing protocol 

DNA samples from multiple subjects were pooled for DNA sequencing using previously 

described methods available at the Broad Institute25. To identify variants present only in a single 

individual (hereon referred to as singleton variants), we applied a simple overlapping pooling 

design as described in Wang et al.15. In short, each sample was sequenced in 2 pools (1 row pool 

and 1 column pool). Singleton variants appear only in 1 row pool and 1 column pool. Therefore, 

the subject whose DNA sample is present at the intersection of these 2 pools must be the 

individual carrying that singleton variant. 
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Sequencing was performed on the Illumina HiSeq platform. Variant calling was performed 

as described previously15. Variants were annotated for functional effect using SnpEff 2.0.5 

(http://snpeff.sourceforge.net/). Variant allele frequency data were obtained from the National 

Heart, Lung, and Blood Institute Exome Variant Server26. 

Confirmation of variants found in NPR2 through pooled sequencing was done via Sanger 

sequencing or Sequenom genotyping. Each variant was sequenced in the proband and in all 

related family members for whom DNA samples were provided.   

 

Short stature patient cohort 

The samples from short stature subjects and control samples were each arranged into a 14 

× 14 matrix of 28 pools, with 13 to 14 samples in each pool. The coding regions of NPR2 were 

sequenced along with ~1000 height candidate genes15. The targeted exons of the candidate genes 

were enriched using a custom Agilent SureSelect hybrid selection system. The mean target 

coverage of NPR2 is 297 reads per pool, resulting in 21 reads per subject in a pool of 14 subjects 

or 42 total reads per subject, as each subject is present in 2 pools. 

 

FINRISK height extreme cohort 

The FINRISK DNA samples were whole-genome amplified. The short extreme subjects 

and the tall extreme subjects were each arranged into a 12 × 12 matrix of 24 pools, with 11-12 

samples in each pool. The coding region of NPR2 was enriched as described above for short 

stature patient cohort. The mean target coverage of NPR2 is 377 reads per pool, resulting in 31 

reads per subject in a pool of 12 subjects or 62 total reads per subject. 
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Estonian Biobank height extreme cohort 

The samples from short extreme subjects and tall extreme subjects were each arranged 

into a 24 × 24 matrix of 48 pools, with 19-24 samples in each pool. The coding regions of NPR2 

were sequenced along with three other genes. The targeted exons of all four genes were enriched 

using PCR-based fluidigm Access Array system. The mean target coverage of NPR2 is 2735 

reads per pool, resulting in 114 reads per subject in a pool of 24 subjects or 228 total reads per 

subject. 

 

In silico prediction of mutation effects 

To identify the potential effects of sequence variants identified in NPR2 on protein 

function or structure, the wild-type and variant sequences were submitted to the PolyPhen 

method (http://genetics.bwh.harvard.edu/pph2)27. 

�

Assaying wild-type and mutant NPR2 activity 

Missense mutations in NPR2 will be generated by site-directed mutagenesis using the 

wild-type rat NPR2 expression construct pRK-NPR-B. Activity in HEK 293 cells will be 

measured as described elsewhere28. In brief, cells will be seeded to 40%-45% confluency in 10-

cm dishes in Dulbecco’s modified Eagle medium (DMEM) with 10% fetal bovine serum (FBS). 

The cells will be transfected 2 d later with 4 µg of expression construct with Lipofectamine 

(Invitrogen) in serum-free DMEM. After transfection, cells will be supplemented with 15% FBS 

and incubated overnight. Transfection efficiency is expected to be 40-50%, as determined by 

cotransfecting cells with a green fluorescent protein reporter plasmid. Transfected cells will be 

starved for 12 h prior to CNP exposure (48-72 h after transfection). Cells will then be exposed to 
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1µM CNP (Bachem) for 3 min. Signaling will be terminated by aspirating the CNP-containing 

media and adding ice-cold 80% ethanol to the cells. This ethanol extract will be centrifudged, 

and the supernatant will be collected and vacuum evaporated. The amount of cGMP in the 

evaporated samples will be measured by use of a cGMP assay kit (Cayman Chemical). 
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ABSTRACT 

Finnish samples have been extensively utilized in studying single-gene disorders, where 

the founder effect has clearly aided in discovery, and more recently in genome-wide association 

studies (GWAS) of complex traits, where the founder effect has had less obvious impacts. As the 

field starts to explore rare variants’ contribution to polygenic traits, it is of great importance to 

characterize and confirm the Finnish founder effect in sequencing data and to assess its 

implications for rare variants association studies. Here, we employ forward simulation, guided 

by empirical deep resequencing data, to model the genetic architecture of quantitative polygenic 

traits in both the general European and the Finnish population simultaneously. We demonstrate 

that power for rare variant association tests is higher in the Finnish population, especially when 

variants’ phenotypic effects are tightly coupled with fitness effects and therefore reflect a greater 

contribution of rarer variants. SKAT-O, VT, and single variant tests are more powerful than 

other rare variant methods in the Finnish population across a range of genetic models. We also 

compare the relative power and efficiency of exome array genotyping vs. high coverage exome 

sequencing. At a fixed cost, less expensive genotyping strategies have far greater power than 

sequencing; in a fixed number of samples, however, genotyping arrays miss a substantial portion 

of genetic signals detected in sequencing, even in the Finnish founder population. As genetic 

studies probe sequence variation at greater depth in more diverse populations, our simulation 

approach provides a framework to evaluate various study designs for gene discovery. 
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INTRODUCTION 

A founder effect can result either from a true founder event (i.e., the establishment of a new 

population from a limited pool of individuals) or from an extreme reduction in population size 

(i.e., a bottleneck in size), followed by relative genetic isolation from other populations. The 

population of Finland is one of the best-studied genetic isolates. The Finnish genetic architecture 

has been shaped by a series of founder effects and a subsequent drift in local subisolates. The 

initial founder effects are generally associated with two colonization waves 4000 and 2000 years 

ago to southern and western Finland. More recently, there was an internal migration movement 

in the 15th-16th century from a small southeastern area to the middle, western and finally 

northern and eastern parts of the country1. 

The Finnish population has been extensively utilized in genetic studies. It is considered to be 

a relatively homogenous large founder population, and hence potentially well suited for genetic 

mapping. The evidence for a founder effect includes enrichment of almost forty rare recessive 

diseases, longer regions of linkage disequilibrium, increased kinship coefficients between pairs 

of randomly chosen individuals, and extended runs of homozygosity1–10. In part because of the 

founder effect, identification of the genes underlying the rare diseases enriched in Finland has 

been remarkably successful.1 Finnish samples have also contributed to many GWAS of complex 

traits, but because common (>5% minor allele frequency, MAF) variation is less influenced by 

human population history, a founder effect would be less likely to provide a specific advantage 

in this setting. 

Studies of polygenic traits and disorders are now moving to a middle ground between GWAS 

genotyping methods (thus far focused largely on common variation, typically MAF >5%) and 

sequencing-based methods that were most successfully employed to identify extremely rare 
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variants in single gene disorders. This middle ground is association studies of lower frequency 

variants (MAF <5%), analyzed either individually or in aggregate (the aggregate analysis has 

also been termed RVAS11). As such, it is of great interest and importance to confirm the Finnish 

founder effect in sequencing data that includes rarer variants and assess the implications for these 

association studies of rarer variants. Due to the founding event and subsequent strong genetic 

drift, some variants that are rare in the ancestral population will have risen in frequency in a 

founder population, while others will have decreased or disappeared. These alterations in allele 

frequency could potentially increase power of rare variant tests in two ways. First, some rare and 

potentially deleterious variants could rise to higher frequencies, out of proportion to what might 

be expected given their deleterious effects.  Second, there is greater homogeneity of rare 

variation in a founder population, and thus fewer background rare variants at any individual 

locus.  As an example, a protective mutation for Alzheimer’s disease (MIM 104300) was 

discovered in part because it has a much higher frequency in the Scandinavian populations 

(~0.4%) than in the general European population (<0.01%)12. 

Exome sequencing studies are emerging as a popular approach to identify rare coding 

variants associated with complex traits, while a cheaper alternative approach is to use array-

based genotyping of a defined set of coding variants. The human genetics community has 

aggregated an extensive list of putative functional coding variants from the exome sequences of 

>12,000 individuals for array-based genotyping platforms (e.g. the Illumina Infinium 

HumanExome BeadChip and the Affymetrix Axiom Exome Array Plate; see URL for a 

description of SNP content and selection strategies). Although these arrays do not provide a 

complete catalogue of all coding variants, the set of variants selected for array design is 

estimated to include >97% of the non-synonymous variants that would be detected in any 
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individual genome through exome sequencing.  In theory, the coverage would be even higher for 

a founder population, which has fewer rare variants compared to a non-founder population. 

To increase power to detect effects of rare variants, especially those that are too infrequent to 

be individually tested for association, many groups have devised tests that combine evidence 

across multiple variants13. These tests have become a standard approach for analyzing rare 

variants, and include burden tests14–16 and other types of tests that aggregate evidence across sets 

of variants17,18. The relative power of such tests to detect association is strongly influenced by 

underlying genetic architecture.  Specifically, the proportion of causal variants among all 

variants analyzed and the distribution of effect sizes and allele frequencies of causal variants all 

affect test performance. Different statistical tests also have different sets of parameters, the 

values of which can have a large effect on the power of the tests. 

Different diseases and phenotypes likely have different architectures19. To try to evaluate 

how different sample selections (founder vs. non-founder populations), analytical methods 

(single variant tests, gene-based tests), and study designs (exome sequencing vs. exome array 

genotyping) would perform with different genetic architectures, we have developed a population 

genetics framework to assess the impact of the Finnish population history on genetic studies of 

rarer variation. Our approach has four basic stages: 1) confirming and characterizing the Finnish 

founder effect in sequence data, 2) developing a simultaneous simulation of sequence variation 

in the non-Finnish European (NFE) population and the Finnish population that closely 

approximates the sequence data, 3) specifying a range of models of genetic architectures to 

generate simulated phenotypic data, and 4) comparing operating characteristics of different gene-

based tests and single variant tests on phenotype, genotype, and sequence data from simulated 

founder and non-founder populations.  
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With this framework in place, we address the following questions: 1) Under what types of 

genetic architecture(s) is it more powerful to use a founder population such as Finland? 2) Under 

different genetic models, what are the optimal association tests for rare variants in a founder 

population? 3) How does power compare between using exome sequencing data and exome chip 

data, particularly in a founder population? Our results show that power to detect genetic signals – 

by both single variant and gene-based tests – is higher in samples from the Finnish founder 

population than in equivalently sized NFE samples, especially when the phenotypic effects of 

variants are tightly coupled with effects on fitness. SKAT-O, VT, and single variant tests have 

the highest mean power in a founder population across simulated datasets. At a fixed cost, 

genotyping strategies have far greater power than sequencing; in a fixed number of samples, 

however, genotyping arrays miss a substantial portion of causal variation detected in sequencing.   

 

RESULTS 

 
Assessing the Finnish founder effect 

We analyzed whole exome sequence data of NFE and Finnish samples from the GoT2D 

Project (see Methods). If the Finnish population had been through a founding event in the past, 

there are a number of direct predictions for the allele frequency spectra (AFS) and the sharing of 

variants between the Finns and the NFEs. We showed that, when comparing Finnish and NFE 

samples of the same size (N=500), the allele frequency spectra (AFS) are shifted towards higher 

frequencies in the Finns (Figure 4.1).  The proportion of singleton variants is much lower in the 

Finns than the NFEs (28% vs. 46% for synonymous variants, 39% vs. 57% for missense 

variants), while the opposite is true for common variants (>5%) (31% vs. 22% for synonymous 

variants, 19% vs. 12% for missense variants). Furthermore, singleton variants in a population of 
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Finns (N=250) are more likely to be seen again in another population of Finns (N=250), 

compared with the same analysis in NFEs (34% vs. 23% for synonymous singleton variants, 30% 

vs. 20% for missense singleton variants) (Figure S4.1). We also observed that SNPs found in 

both samples tend to have higher frequencies in Finns (paired t-test p value < 0.01) (Table S4.1). 

Compared to the NFEs, the Finns have lower level of heterozygosity (on average there are 0.6% 

fewer heterozygous sites per individual in the Finns, t-test p value < 0.01) and reduced genetic 

diversity (Watterson’s estimate adjusted by sequence length is 6.14×10-4 for the Finns and 

1.01×10-3 for the NFEs). All these results strongly confirm the presence of a founder effect in 

Finland. 
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Figure 4.1: The final demographic model for simulating NFEs and Finns simultaneously. 
The NFEs were modeled as long-term (45,000 generations) constant size (N=8,100) followed by 
a bottleneck (N=2,000) and then by exponential growth (1.5% growth per generation). For 
modeling the Finns, we tested three general classes of models, of which only one (Class 3 in 
Tables S2) approximated the empirical observations.  In this model, after the initial founding 
event (100 generations ago, N=1,000), the Finn-s went through a slow growth phase (0.5-5% 
growth per generation), and then a more recent fast growth phase (8-30% growth per 
generation); there was gene flow from the NFEs to the Finns. 
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Simulation of coding sequence variation in hundreds of thousands of samples 

To enable a controlled characterization of the performance of different sample selections, 

analytical methods and study designs under a range of scenarios, we used the forward simulation 

package ForSim20 to generate coding sequence data for the NFEs and the Finns simultaneously. 

This way, we could simulate evolution of complex traits over time in large samples and we know 

the truth (i.e. fitness effects) about all variants. To model the NFEs, we used the conventional 

four-parameter model21 and adapted parameters from a recent simulation that generated 

representative sequence data for European populations (Figure 4.2)22. We further modeled the 

Finns as a founder population established by a small number of NFEs. We refined our 

demographic parameters for the Finnish model by comparing to exome sequencing data from the 

GoT2D project (see Method).   In our final model, the initial founding event was followed by a 

slow growth phase, and then a more recent fast growth phase, with gene flow from the NFEs to 

Finns (Figure 4.2). Figure 4.3 shows that our final demographic model reproduces the observed 

allele frequency spectra well. We also analyzed missense/synonymous ratio (Figure S4.2) and 

allele sharing between the Finns and the NFEs (Figure S4.3); these metrics are also similar 

between the observed and simulated data.  
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Figure 4.2: The final demographic model for simulating NFEs and Finns simultaneously. 
The NFEs were modeled as long-term (45,000 generations) constant size (N=8,100) followed by 
a bottleneck (N=2,000) and then by exponential growth (1.5% growth per generation). For 
modeling the Finns, we tested three general classes of models, of which only one (Class 3 in 
Tables S2) approximated the empirical observations.  In this model, after the initial founding 
event (100 generations ago, N=1,000), the Finns went through a slow growth phase (0.5-5% 
growth per generation), and then a more recent fast growth phase (8-30% growth per 
generation); there was gene flow from the NFEs to the Finns. 
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Figure 4.3: Agreement of empirical allele frequency spectra with the modeled spectra. 
Sample sizes are 843 for the Finns and 820 for the NFEs. (A) Synonymous variants and (B) 
Missense variants.  
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Specification of a range of disease models 

Protein-coding variation will only partially explain the phenotypic variation of any 

polygenic trait. However, to focus on the role of coding variation (as they are more likely to 

enrich for functionally significant alleles), we simulated a heritable quantitative trait (h2 = 80%) 

for which aggregated coding variation in each of 1,000 genes explains, on average, 0.1% of total 

heritability. We assume selectively neutral missense variants are background variants with no 

effects on the trait, while selectively non-neutral missense variants are the causal variants. Four 

different disease models were generated by varying the degree of coupling (τ) between a causal 

variant’s phenotypic effect and the strength of purifying selection against that variant23. Broadly, 

M1 (τ=0) is characterized by rare and common alleles that have similar effects on phenotype; M2 

(τ=0.5) produces a modest correlation between variant frequency and effect size; and M3 (τ=1) 

results in a sharp inverse correlation. M4 (τ is randomly chosen among 0, 0.5 and 1 for each 

effect gene) may represent a more realistic scenario, as different genes are likely to have 

different pleiotropic effects and are therefore exposed to different strengths of purifying 

selection. As expected, we observed that as τ increases, more phenotypic variance is explained 

by rare variants (Figure S4.4).  

 

Alterations in allele frequency in the founder population 

With simulated data we demonstrated alterations in allele frequency in the founder 

population, which could potentially increase power of rare variant tests. We first showed that 

there is greater homogeneity of rare variation at any individual locus in a founder population. 

The Finns have on average 2.5x fewer rare variants (<5%) per gene compared to the NFEs (mean 

20.0 ± 4.5 vs. 52.3 ± 7.4).  This reduction in rare variants was seen for both variants we 



 84 

simulated as causal and those simulated as neutral, background variants (Figure S4.5). As seen in 

Figure S4.6, the cumulative allele frequency of causal variants and background variants per gene 

is similar between the Finns and the NFEs, meaning that there are fewer rare variants in the 

Finns, but they are each on average more common than variants in NFEs.  

We next showed that there is increased frequency of causal variants (thus variance 

explained per gene) at some genes. We observed that the distribution of the variance explained 

per gene is wider in the Finns than in the NFEs (Figure 4.4). At one end of the distribution (the 

left tails of the graphs in Figure 4.4), the increased frequency of some individual causal variants 

leads to a greater variance explained for some genes in the Finns (more obvious with larger τ); at 

the other end of the distributions, so many causal variants are lost in Finland so other genes have 

lower variance explained in the Finns. As a result, some genes will be detectable in smaller 

sample sizes in Finns than in NFEs, whereas it will be more difficult to detect the effects of rare 

variation in some other genes, as too many causal variants have been lost due to the founder 

effect.  
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Figure 4.4: Distribution of variance explained per gene. Distribution of variance explained 
per gene by variants with MAF below 5% under four different disease models in either 30,000 
Finns or 30,000 NFEs. (A) M1 (τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ randomly 
sampled from 0, 0.5, and 1 for each effect gene). 
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Founder population vs. non-founder population in exome sequencing studies 

With simulated genotype and phenotype data, we compared the power of using 30,000 

NFEs and 30,000 Finns in exome sequencing studies under different disease models. We 

implemented five gene-based tests (T1, T5, MB, VT, SKAT-O) and single variant tests. Because 

we are interested in the role of lower frequency variants, all tests were run on variants with MAF 

below 5%. In the context of exome sequencing studies, the significance threshold for calculating 

power is set at α=2.5×10-6 (after Bonferroni correction, assuming 20,000 genes in the exome).  

As seen in Figure 4.5, as τ increases, so does the power from using Finns compared with 

using NFEs (compare panels A, B and C). Under M4, the biggest power gain in the Finns is seen 

among genes of which τ value is 1 (Figure S4.7). As the value of τ increases, phenotypic impacts 

of rare variants increase (Figure S4.4). Therefore it is more powerful to use a founder population 

in models where rare variation plays a more prominent role. These results are consistent with the 

effect of a founder event on allele frequencies – founder effects impact rare variants more than 

common variants. 
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Figure 4.5: Power of exome sequencing studies in 30,000 Finns vs. 30,000 NFEs. 
 (A) M1 (τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ randomly sampled from 0, 0.5, and 1 
for each effect gene). We simulated a quantitative trait (h2 = 80%) for which aggregated coding 
variation in 1,000 genes explains the total heritability. Models M1-4 were generated by varying 
the degree of coupling (τ) between a causal variant’s phenotypic effect and the strength of 
purifying selection against that variant. We compared SKAT-O, variable threshold test (VT) and 
single variant tests (singleVar). 
 

 

 

 



 88 

Understanding the excess of power in the founder population  

To understand why there is an excess of power in the founder population across different 

disease models, we considered genes detected in one population only. We observed that genes 

detected only in the Finns tend to have greater variance explained per gene in the Finns vs. the 

NFEs (Figure S4.8), while the opposite is true for genes detected in the NFEs only (Figure S4.9). 

For genes detected in the Finns only, the cumulative allele frequency for background variants is 

similar between the Finns and the NFEs, but the cumulative allele frequency for causal variants 

is shifted upwards in the Finns (Figure S4.10). For genes detected in the NFEs only, the opposite 

is true (Figure S4.11).  

As shown above, overall frequency rise of causal variants and thus greater variance 

explained for some genes could drive the excess of power in the Finns. We next tested whether 

reduced heterogeneity could also contribute to the power difference. We selected a set of genes 

for which the variance explained is closely matched between the NFEs and the Finns (Figure 

S4.12). As shown in Figure S4.13, the accumulated allele frequency of causal variants and 

background variants are similar between the two populations as well. The power gain in the 

Finns is retained under M3 (Figure S4.14), suggesting that reduced genetic heterogeneity alone 

could increase power when variance explained at a gene stays the same in the founder 

population. This effect is clearer when τ value is 1, as rare variants play a more prominent role. 

 

Relative power of different association tests for rare variants in a founder population 

Among the five gene-based tests we conducted, SKAT-O and VT tests perform best 

across a range of models in both the Finns and the NFEs (Figure 4.5, S4.15), as SKAT-O allows 

different variants to have different directions and magnitude of effects and VT decreases 
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background noise by selecting an optimal frequency threshold. The single variant test performs 

reasonably well under different disease models and it is particularly powerful when τ is large, 

especially when used in a founder population (Figure 4.5, S4.15). As τ increases, the effect sizes 

of rare causal mutations tend to increase, making it more powerful to test these variants 

individually.  For a founder population like the Finns, as we have shown earlier, the allele 

frequency spectra are shifted away from the rarest variants, which gives extra power in testing 

rare variants individually.  

Of note, LD has not been taken into account in both the single variant and gene-based 

tests. For gene-based tests, LD is generally not addressed, at least for discovery of gene-wide 

association signals. For single variant tests, we have operated under the assumption that the 

causal variants are directly assessed. Incorporating LD might further increase the power of single 

variant analyses, if one or more very rare variants were tagged by a single more common variant. 

 

Exome chip studies vs. exome sequencing studies 

Exome chip genotyping, despite being a much cheaper technology than exome 

sequencing, has not been rigorously assessed in terms of cost-efficiency. Here we used our 

simulation framework to try to address this question. We first confirmed that our simulations 

reproduced the expected differences in observed allele frequency spectra between exome chip 

and exome sequence data (Figure S4.16, compare with Figure 4.3B). We then compared the cost-

efficiency of exome chip studies and exome sequencing studies under different disease models in 

the Finnish founder population. The cost of exome chip per sample was assumed to be about one 

tenth that of exome sequencing. Figure 4.6 shows that under M4, the power of SKAT-O is far 

greater in exome chip studies than exome sequencing studies at a fixed cost (middle versus 
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bottom line); in a fixed number of samples, however, genotyping arrays miss a substantial 

portion of causal variation detected in sequencing (top versus middle line). We also compared 

the two study designs in a non-founder population (Figure S4.17), under M1-3 (Figure S4.18, 

S4.19), as well as using different rare variant association tests (Figure S4.18), and observed 

similar results. Despite substantial cost-efficiency, the exome chip is underpowered to detect the 

contributions of certain genes simply because not enough causal variants in these genes are 

covered by the chip. This becomes more apparent as τ increases (Figure S4.19), because the 

allele frequency spectrum of causal variants shifts downwards, and the exome chip captures 

fewer casual variants (Figure S4.20). 

As Finnish samples contributed to exome chip design, we went on to assess how much 

their inclusion impacts the power of the exome chip in Finns, i.e., how the exome chip would 

perform in a non-Finnish founder population.  To address this question, we simulated a different 

exome chip, with no contribution of Finnish samples (replaced with an equal number of NFE 

samples). As expected, the power for rare variant association in Finns decreases when Finns 

were not used in the SNP discovery process of the exome chip. The power decrease was minimal 

at low sample size, reaching a difference of approximately 2% when 30,000 samples were used 

(Figure S4.21; the power dropped from ~10% to ~8% when Finns were not used). This suggests 

that the current exome chip would perform slightly less well in a non-Finnish founder 

population. However, the exome chip is still a far more cost-efficient strategy for such 

populations compared to exome sequencing, the power of which at a comparable cost (bottom 

line in Figure 4.6) is negligible. If it is desirable to avoid the marginal loss of power in non-

Finnish founder populations of interest, one could perform exome sequencing using a 

representative population sample first, and supplement the exome chip with the newly 
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discovered variants to ensure that rare variation in that founder population is directly represented 

on the chip. 

 

Figure 4.6: Power of exome chip study vs. exome sequencing study in the Finns. The 
comparison was done under M4 using SKAT-O test. As different genes are likely to have 
different pleiotropic effects and are therefore exposed to different strengths of purifying 
selection, M4 is generated to represent a potentially more realistic scenario. The top two lines 
show power comparison at a fixed sample size; the bottom two lines show power comparison at 
a fixed cost (and thus only a tenth of the samples were sequenced). 
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DISCUSSION 

By using forward simulations based on empirical deep resequencing data, we showed that 

1) founder populations can provide additional power, especially when the phenotypic effects of 

variants are tightly coupled with effects on fitness; 2) in a founder population, the single variant 

test, SKAT-O and VT perform best under different disease models, and the single variant test is 

particularly powerful when the phenotypic effects of variants are tightly coupled with effects on 

fitness; and 3) exome chip genotyping is currently much more cost-efficient than exome 

sequencing, but misses a substantial portion of causal variation in a sequencing study of the same 

sample size. We also suggest that more than 10,000 samples will likely be required to reach non-

negligible statistical power to identify associations with low frequency variation, assuming a per-

gene contribution of ~0.1% of heritability. This is consistent with recent independent estimates 

of required sample sizes11,24. We are almost certainly underestimating the required sample size, 

as we modeled a highly heritable trait where all heritability is explained by coding variants in 

1,000 genes, while the average contribution of coding variation to heritability will likely 

typically be lower than 0.1% per gene.  

The changes in allele frequency and decreased allelic diversity in founder populations 

that are caused by the bottleneck event(s) and drift can aid in detection of rare variant 

associations.  We have shown through our simulation that the power gain in the founder 

population is from both increased frequency of causal variants (thus variance explained per gene) 

at some genes and reduced genetic heterogeneity. Founder populations typically also 

demonstrate a higher degree of cultural and environmental homogeneity (not modeled here), 

which could further increase the strength of the genetic signals. However, there are also 

limitations with using founder populations. First, the population size may not be large enough to 
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allow for the collection of sufficiently large numbers of cases. Second, rare variants may be 

recent in origin and hence specific to a single founder population; these are the variants that are 

potentially least replicable, although this concern is less relevant for gene-based “burden”-type 

tests where variants are aggregated. Of note, the variants might be unique to founder populations, 

but the finding of genes is relevant to all populations. Third, a higher rate of direct and cryptic 

relatedness in some founder populations could confound baseline assumptions of independence 

among genotypes and phenotypes and may require more specialized approaches to account for 

this sample structure. Fourth, there might not be enough power to detect some genes in the 

founder population due to loss of causal variants (Figure 4.4). Nevertheless, the increased power, 

particularly for single variant tests, suggests that exome chip and/or exome sequencing in all 

available samples from founder populations would be an efficient use of resources. Different 

founder populations will happen to be better powered for different genes (in each population, 

certain genes will gain in power while others lose power, but the genes that gain in power will 

vary across populations).  Thus, a potentially attractive strategy for rare variant studies is to 

employ a diverse panel of well-powered founder populations. 

We evaluated a variety of statistical tests that were developed using different assumptions 

about genetic architecture.  We have shown that these tests are indeed sensitive to different 

disease models. SKAT-O and VT tests outperform the other gene-based tests across a range of 

different genetic architectures. It is also worth noting that single variant tests perform as well as 

or better than SKAT-O and VT, particularly in founder populations with decreased allelic 

diversity. This raises as one possible strategy to use single variant tests as a screen in founder 

populations and then follow up with candidate gene sequencing. 
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We have shown exome chip genotyping studies are currently much more cost-efficient 

than exome sequencing studies under a range of genetic models. In a fixed number of samples, 

however, exome chip genotyping studies miss a substantial portion of causal variation that could 

be detected by sequencing. Continued sharp drops in the cost of sequencing and/or targeted 

sequencing to follow up initial results might enable better-powered and more cost-efficient 

exome sequencing or whole genome sequencing studies. Given the requirement for large sample 

sizes, the ability to combine studies for example in meta-analyses will be critical for a new wave 

of discoveries.  Of note, as reference panels for imputation become larger and represent more 

populations, imputation of rare variants into samples with existing genotype data is another 

likely complementary approach for future studies.  

Our study has a number of limitations. We have taken a forward-in-time approach for 

simulating population sequence data, which has substantial advantage in terms of being able to 

model different genetic architectures and demographic parameters, but this approach comes with 

the cost of requiring greater computational resources. Because of this limitation, as well as the 

complexity of the demographic models, we did not do a complete search through the entire 

parameter space for the best-fitting demographic model. Another limitation with our simulation 

is that the limited sample size of the empirical data provided an incomplete view of rare variants 

in the population, so our simulations may not be completely accurate at very low allele 

frequencies. Moreover, as suggested by Casals et al.25, there might be a relaxation of selection in 

the founder population, which we have not considered in our simulation. It is also worth noting 

that our empirical Finnish samples are from all across Finland (Table S4.2) and therefore our 

model for simulating the Finns ignored the demographic heterogeneity within Finland. As deeper 

and richer human genetic data becomes available, the models can be calibrated and improved. 
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Last but not least, our study does not explore the effects of properties such as gene size or 

mutation rate on power, nor does it characterize power of rare variant tests at non-coding loci, 

where causal variant frequencies and effect sizes may be different. 

In summary, our study has highlighted the usefulness of understanding the population-

genetic properties of a study population to explore a range of genetic models and recognize the 

features and limitations of different association study designs in that population. As the field of 

human genetics moves forward to explore new and expanded sources of variation, such models 

offer a context with which to interpret the data and to plan future studies for gene discovery.  

With current approaches focused on rare variation, our work suggests that founder populations 

such as Finland can play an important role in genetic studies. 

 

MATERIALS AND METHODS 

Empirical Exome Sequencing Data 

We used whole exome sequenced samples from GoT2D (Genetics of Type 2 Diabetes) 

Project. In total, 2850 European type 2 diabetes cases and controls from four cohorts (DGI, 

FUSION, GoT2D-UK, KORA) were whole exome sequenced at ~40X. Exome target capture 

was performed with the Agilent SureSelect Human All Exon hybrid selection kit and sequence 

obtained on HiSeq. Subsequent alignment and allele calling used Burrows-Wheeler Aligner 

(BWA)26 and Genome Analysis Tookit (GATK)27. We kept samples from GoT2D-UK and 

KORA as the NFE population and samples from FUSION (Table S1) as the Finnish population 

for our analyses. We excluded SNPs with any missing data in any individual, SNPs with Hardy-

Weinberg equilibrium (HWE) P < 10-5, and all nonautosomal SNPs. We carried out 

multidimensional scaling (MDS) to identify population outliers (Figure S4.22). We filtered out 
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relatives, for whom the estimated genome-wide identity-by-descent (IBD) proportion to alleles 

shared was >0.10. We also excluded individuals with inbreeding coefficient >0.05 or <-0.05. We 

estimated IBD sharing using PLINK’s ‘--genome’ option28 and estimated inbreeding coefficients 

using PLINK’s ‘--het’ option. All analyses were carried out on an LD-pruned set of SNPs 

obtained by using the PLINK option ‘--indep’, which recursively removes SNPs within a sliding 

window. The parameters for --indep are: window size in SNPs (50), the number of SNPs to shift 

the window at each step (5), and the variance inflation factor (VIF) threshold (1.8). The final 

dataset included 843 Finnish samples and 820 NFE samples. 

 

Simulation of Exome Sequencing Data 

Exome sequencing data were simulated using ForSim, a forward evolutionary simulation 

tool.20 The average gene coding length was set as 1500bp. We used a mutation rate per site of 

2x10-8 29–31 and a uniform locus-wide recombination rate of 2Mb/cM as in previous report22. We 

modeled the distribution of selection coefficients for de novo missense mutations by a gamma 

distribution32 (as in previous reports32,33, we assume that ~20% of missense sites are neutrally 

evolving).  

For modeling the NFEs, we used a conventional four-parameter model of the history of 

the European population with long-term constant size followed by a bottleneck and then by an 

exponential expansion (Figure 4.2)21. The four parameters used were:  (1) long-term ancestral 

effective population size; (2) bottleneck population size; (3) duration of exponential growth in 

generations; and (4) recent effective population size. We adapted parameters from a recent 

simulation that generated representative sequence data for European populations22. (see Figure 

4.2 for final parameter values) 



 97 

We modeled the Finns as a founder population established by a small number of NFEs. 

The founding event was followed by a slow growth phase and a more recent fast growth phase 

(Figure 4.2). The demographic history parameters were fitted by comparing to empirical exome 

sequencing data. P(data|model) was calculated and used for model-fitting (see Supplemental 

Method for further discussion). We tested two other models, neither of which agreed with the 

empirical observations as well as our current model (Table S4.3). 

 

Simulation of Exome Chip Data 

         Exome chip data were generated based on simulated exome sequencing data. The process 

resembles that of the actual exome chip design (see URL for a description of SNP content and 

selection strategies). ~12,000 simulated exomes across 16 cohorts were pooled together. The 

cohorts were matched by ancestry and sample size with the real cohorts (except that non-

European samples were substituted by NFE samples).  Only missense variants observed three or 

more times in at least two datasets were selected. ~90% of the selected SNPs passed design and 

were used for the simulated chip. For simulating the exome chip without contribution of Finnish 

samples, all procedures are the same except that Finnish samples are replaced with an equal 

number of NFE samples.  

 

Simulation of Phenotypic Variation 

We simulated a quantitative trait (QT) with a target size of 1,000 genes and the 

heritability of 80%. For efficiency, we modeled the heritability as completely explained by 

coding variants and a large target size of 1,000 genes; power will scale with total heritability, 

fraction of heritability explained by coding variation, and inversely with target size. We modeled 
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additive genetic effects as well as environmental effects. We did not consider non-additive 

effects (dominant, recessive, epistatic, gene-environment interactions) in our simulations. The 

joint allele frequency spectrum of both the Finns and the NFEs is used when calculating 

heritability. The effect sizes are scaled so as to cap heritability at 80%. More specifically, 

variance explained by a variant is calculated as 2*MAF*(1-MAF)*p2, where p is phenotypic 

effect. We sum this up over all variants and to cap heritability (additive genetic variance) at 80%, 

effect sizes of all variants are adjusted by a uniform factor. 

We assume neutral missense variants have no effect on phenotype. For assigning effect 

sizes of causal variants (non-neutral missense variants), we implemented a range of possible 

mappings between a variant’s selection coefficient s (we modeled the distribution of selection 

coefficients for de novo missense mutations by a gamma distribution, so s is known for every 

variant in our simulated data) and its effect on phenotype (p). We model these mappings as: p=sτ 

*(1+ε) as suggested by Eyre-Walker et al23. Here, τ is the degree of coupling between p and s; ε 

is a normally distributed random noise parameter. In the case of common diseases of post-

reproductive onset, the role of natural selection on causal variants is not yet clear. Therefore we 

tested a range of scenarios: M1 (τ=0), M2 (τ=0.5), M3 (τ=1), and M4 (τ randomly chosen with 

equal probability among 0, 0.5 and 1 for each effect gene).  

For determining the direction of effect of causal variants on QT, we further assumed that, 

in each trait-affecting gene, 0-20% of the causal variants influence the QT in the opposite 

direction from the remaining causal variants. This assumption is based on two different 

arguments: (1) the vast majority of de novo amino acid mutations with a measurable effect 

reduce protein activity and gain-of-function mutations are much less frequent and are restricted 
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to specific residues or domains; (2) some genes, like APOB (MIM 107730) and PCSK9 (MIM 

607786)18,34, clearly illustrate a mixture of variants that affect QTs in both directions.  

 

Association Tests and Power Analysis 

We conducted five different gene-based tests on simulated data. Four burden tests – 

VT14, T1, T5, and MB16 -- were performed by running SCORE-Seq (See URL for details).  VT 

stands for variable-threshold test; T1 and T5 are fixed threshold tests and pertain to the threshold 

of 1% and 5% respectively; MB stands for Madsen and Browning. The mutation information is 

aggregated across multiple variant sites of a gene through a weighted linear combination and 

then related to the phenotype of interest through appropriate regression models. The weights can 

be constant (T1, T5, VT) or dependent on allele frequencies (MB). The allele-frequency 

threshold can be fixed (T1, T5, MB) or variable (VT). We also performed the unified optimal 

test SKAT-O using default weights35. SKAT-O is a data-adaptive test that includes both burden 

tests and SKAT17 as special cases. Single-variant tests were carried out using PLINK’s ‘--linear’ 

option. We limited our analysis to variants with minor allele frequency below 5%.  

The exome-wide significance threshold for gene-based tests is set at α=2.5×10-6 (after 

bonferroni correction, assuming 20,000 genes in the exome). Power is defined as the number of 

effect genes reaching genome-wide significance divided by the target size, which is 1000. The 

exome-wide significance threshold for single variant test is 0.05 divided by the number of 

variants tested (varying with sample size, excluding singletons and doubletons). The power of 

the single variant test is defined as the number of effect genes harboring genome-wide significant 

variant(s) divided by 1000. 
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THE OVERVIEW 

While some traits may be under positive or balancing selection, other traits and diseases are 

likely under negative selection because of their deleterious effects to the fitness of the patient. 

Even for putatively neutral traits, mutations could have pleiotropic effects on fitness and thus be 

selected against. Under the selective pressure, causal variants would be kept at a low population 

frequency. Therefore, rare variants at multiple loci may influence the complex disease risk1.  

Despite the potential importance of rare variants, testing for their association with diseases 

and traits is likely to be challenging2,3. Rare variants are individually of low frequencies and 

well-powered studies require large sample sizes. Unfortunately, performing whole-genome or 

whole-exome sequencing for large cohorts is still very expensive. This dissertation presented 

approaches in response to these challenges – we developed a cost-efficient pooled sequencing 

scheme for follow-up studies of candidate genes, and proposed a simulation framework for 

evaluating various designs of rare variant association studies (RVAS). 

In this concluding chapter, I first list the major findings of each of the studies presented in 

this dissertation, followed by a discussion of the broader implications highlighted by these 

studies. As most issues directly relevant to each study have already been presented in the 

discussion section of each chapter, this section will be kept relatively brief. Finally, this chapter 

will conclude with a more general discussion on the potential outcome of RVAS. 

 

MAJOR FINDINGS 

Chapter 2 

 We developed a cost-efficient pooled sequencing scheme with well-controlled 

false-positive and false-negative rates. 
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 We identified three cases with known pathogenic variants in PTPN11, highlighting the 

possibility that Noonan syndrome may be an underdiagnosed cause of short stature. 

 The vas majority of HGMD-reported disease-causing dominant mutations did not 

manifest with the associated clinical phenotype in our cohort, suggesting that the 

classification of these variants as pathogenic is probably erroneous. 

 We reported a new frameshift mutation in IGF1R and demonstrate its pathogenicity by 

functional studies. 

 

Chapter 3 

 We identified heterozygous NPR2 mutations in ~2% of short stature patients; family 

analysis demonstrated segregation of these variants with the short stature phenotype. 

 We screened for NPR2 mutations in two cohorts of samples at the extremes of height 

distribution in population-based cohorts. 

 Heterozygous NPR2 mutations in NPR2 could be an important cause of nonsyndromic 

familial short stature. 

 

Chapter 4 

 We have developed a population genetics framework to assess the impact of the 

Finnish population history on genetic studies of rarer variation; more generally, our 

simulation approach provides a framework to evaluate association study designs in 

different study populations. 

 We demonstrate that power for rare variant association tests is higher in the Finnish 

population, especially when variants’ phenotypic effects are tightly coupled with 
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fitness effects. 

 SKAT-O, VT, and single variant tests are more powerful than other rare variant 

methods in a founder population.  

 At a fixed cost, genotyping strategies have far greater power than sequencing; in a 

fixed number of samples, however, genotyping arrays miss a substantial portion of 

causal variation detected in sequencing. 

  

BROADER IMPLICATION OF THE STUDIES 

Ongoing RVAS attempts a search for genes harboring multiple rare variants collectively 

associated with complex traits. The power of such studies depends on three key quantities: the 

combined allele frequency of the tested alleles, the excess relative risk of disease conferred by 

alleles in the class, and sample size. To maximize the power of an association study, we want all 

these quantities, to be as large as possible. Unfortunately, these goals sometimes pull in opposite 

directions. For example, expanding the alleles under study increases combined allele frequency 

but dilutes the excess relative risk4. 

 

The balance between combined allele frequency and the excess relative risk 

The association signal is provided by pathogenic variants, where as benign alleles are a 

source of noise masking the association signal. Ideally, one would aggregate only pathogenic 

alleles and ignore benign alleles. Unfortunately, one cannot perfectly distinguish the former from 

the latter. To enrich for harmful alleles, RVAS typically focuses on nonsynonymous variants in 

protein-coding regions, or focuses on variants with frequency below a specified threshold. Even 

with these limitations, the resulting variants remain a mixture of pathogenic and benign alleles. 
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Several potential directions to optimize the balance between combined allele frequency and the 

excess relative risk can be pursued. 

 

Functional characterization of human allelic variants 

The ability to discriminate between pathogenic and benign alleles would dramatically 

increase the potential of sequencing studies focusing on rare variants in complex traits. Several 

studies have demonstrated that highlighting functional variants using experimental5,6 or 

computational7–9 approaches increase the power of these studies. 

Medical genetics is interested in finding “pathogenic” mutations that causally influence 

traits of interest. Population genetics focuses on “deleterious” alleles that are under purifying 

selection. Functional analysis is focused on the “damaging” effect on molecular function. The 

rationale for current approaches that infer functional significance of human allelic variants is that 

the effects on phenotypes correlate with the effects on fitness and are mediated by the effects on 

molecular function. Yet it is possible that most of human alleles under purifying selection have 

no detectable effects on medically relevant phenotypes in current environment, and damaging 

alleles may be neutral or beneficial rather than deleterious10. Below we review major prediction 

methods and discuss the limitations or future direction for each. 

1. Allele frequency as a proxy 

The analysis of allele frequency in unaffected controls has been used in many studies to 

enrich for pathogenic variants. This approach has been dramatically facilitated by large-scale 

sequencing efforts such as 1000 Genomes Project11 and Exome Sequencing Project (ESP)12. It is 

easy to infer that the variant is benign (or, at least, not of high penetrance) if it is seen at 

appreciable frequency in healthy controls, yet the sole observation of its absence in multiple 
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controls is insufficient to convincingly imply pathogenicity. Other limitations include 

imbalanced number of cases and controls in some studies and no phenotype information for 

sequenced individuals in public datasets such as 1000 Genomes and ESP. 

2. Experimental evidence 

Direct experimental functional analysis is a highly convincing method to test the effect of 

human allelic variants, which includes the analysis of protein expression and localization, in 

vitro functional assays and genetic manipulation on model organisms. The limitations with direct 

experimental methods are that: they are highly laborious and not feasible, at least currently, at 

the whole-exome scale; it is not always easy to find functional assays that are informative about 

the human condition.  

3. Computational predictions 

Computational programs, such as PlolyPhen-213, SIFT14, or Mutation Taster15, offer 

predictions of whether a mutation is likely to be damaging. Prediction methods mostly rely on 

two fundamental observations. First, the analysis of phylogenetic information in the form of 

multiple sequence alignment is a powerful source of information about the spectrum of residues 

allowed at particular positions of the protein of interest. Second, mapping mutations on protein 

3D structure may provide key insights into the functional mechanisms, if the structure has been 

resolved for the protein of interest or its close homolog10.  

At this time, the accuracy of computational predictions is ~75-80%, which is less 

informative than direct experimental evidence10. However, given that computational methods do 

not involve any additional labor and cost and can be applied to any gene, they will likely 

continue to be used widely in the future. On the one hand, as more protein sequences and 

structures accompanied by training data (known disease-causing mutations and neutral 
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polymorphisms) are available, the classification accuracy will improve. On the other hand, the 

accuracy can be potentially improved if the scope of the methods would be narrower, so they 

would be specifically focused on a single phenotype and a group of genes involved in this 

phenotype.  

 

Extending RVAS to noncoding regions 

By extending RVAS to noncoding regions, more pathogenic variants can be included in the 

association tests. A major challenge, though, is how to select the genomic regions across which 

to aggregate variants. To perform RVAS with reasonable sensitivity in noncoding regions, it will 

be important to have fairly precise knowledge of the functionally important regulatory sequences 

related to each human gene to aggregate them together.  

At present, without such knowledge, it is more cost-efficient to perform whole-exome, 

rather than whole-genome sequencing studies. This approach will maximize the number of 

samples that can be analyzed for coding regions, where the power is currently vastly greater, 

where the effect sizes are expected to be larger, and where the discoveries are likely to be more 

immediately actionable.  

 

Using founder populations 

Another approach is to use populations in which the combined allele frequency of casual 

variants for some genes happens to be much larger than other populations. As we have shown in 

Chapter 4, the distribution of combined allele frequency of causal variants is wider in the Finns 

compared to the non-Finnish Europeans. Studying recently bottlenecked populations such as 

Finland will make it easier to discover some disease-associated genes, although the power for 
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detecting some other genes will be decreased. Studying multiple founder populations may be a 

powerful strategy. The discoveries might be incomplete, but they may prove valuable by 

providing the initial insights into disease pathogenesis and architecture.  

 

Enabling studies of larger sample size 

Extrapolation of effect sizes and frequencies from published candidate gene studies shows 

that thousands of individuals are required for whole exome sequencing studies to reach 

acceptable statistical power16. In Chapter 4, we showed that more than 10,000 samples will likely 

be required to reach non-negligible statistical power to identify associations with low frequency 

variation (assuming a per-gene contribution of ~0.1% of heritability). This is consistent with 

recent independent estimates of required sample sizes based on population genetics 

simulations3,4. 

The cost of sequencing a human genome is dropping rapidly, due to the continual 

development of new, faster, cheaper DNA sequencing technologies such as next-generation 

DNA sequencing. Prices are expected to drop further over the next few years, with new DNA 

sequencing methods currently under development, such as nanopore DNA sequencing17–19 and 

microscopy-based techniques20. However, at this time, whole-genome sequencing or even 

whole-exome sequencing is too expensive to perform for large sample sizes. A few 

techniques/designs could fill the niche between genome-wide CVAS and whole-genome 

sequencing.  

 

Exome chip 

The exome chips provide an economical method to assay a large number of coding variants 
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and investigate the role of rare DNA variants in causing disease. As we have shown in Chapter 4, 

at a fixed cost, exome chip has far greater power than exome sequencing, though in a fixed 

number of samples, exome chip misses a substantial portion of genetic signals detected in 

sequencing. 

A limitation of exome chips is that they will miss a significant fraction (~15-20%) of 

variants whose genomic context is incompatible with array-based genotyping, variants highly 

specific to non-European populations, as well as the rarest variants in any population21. While 

these exome chip studies will only provide an imperfect approximation to the results of 

sequencing studies, they will provide a preview of the discoveries that will be possible when 

exome sequencing is performed on hundreds of thousands of samples. Given that over a million 

and a half exome chips have been sold, we are expecting to see interesting findings coming out 

of these studies especially when methods such as meta-analysis is applied to combine studies. If 

it turns out that large exome chip studies don’t provide a lot of insight, there are two possible 

explanations: either coding variants have much smaller effect sizes than expected; or it’s really 

the rarest variants missed by exome chip that are important. 

 

Imputation 

When a very large number of individuals with both exome sequence data and genome-wide 

genotype data are available, statistical imputation can also be a fast and economical strategy for 

extending sample sizes. Currently, sufficiently large reference panels that can support imputation 

of very rare variants are not available for most cosmopolitan populations. However, several 

examples of the success of this approach exist, mainly from the isolated population of Iceland. 

There, relatively limited genetic diversity, a panel of sequenced Icelanders, and the availability 
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of a large collection of genotyped individuals have enabled recent discoveries using imputation. 

MYH6 L721W (minor allele frequency 0.4%) was evaluated in 38,000 individuals and 

associated with risk for sick sinus syndrome22 and APP A673T (minor allele frequency 0.1%) 

was evaluated in 71,000 individuals and associated with the risk for Alzheimer’s disease23. 

 

Target enrichment and sample pooling 

One popular efficient design for Genome-wide CVAS is the two-stage design. The first 

stage employs a whole-genome genotyping platform and tests all available markers for 

association with the disease, while the second stage uses a custom genotyping platform to follow 

up those markers exhibiting sufficiently strong association with the disease in the first stage. 

Two-stage designs gain their efficiency by excluding markers for further testing that show little 

evidence of association in the first stage24. Genome-wide RVAS will likely continue using 

two-stage designs, with exome sequencing or exome array genotyping used in the first stage. A 

range of approaches are available for follow-up in the second stage, ranging from genotype 

imputation to targeted genotyping or targeted sequencing. When targeted genotyping and 

imputation are not possible or when the association signal is driven by a burden of rare mutations, 

it will be necessary to undertake targeted sequencing of genes prioritized in the first stage. 

Target enrichment can be a highly effective way of reducing sequencing costs and saving 

sequencing time. Conversely, target enrichment increases sample preparation cost and time. 

Assuming that the throughput of sequencing runs and our ability to analyze large whole genome 

sequencing datasets both continue to increase, and the cost per base of sequence continue to 

decrease, there will come a point at which it is no longer economical to perform target 

enrichment of individual samples, compared to whole genome sequencing25.  
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The cost of performing target enrichment can be reduced by pooling samples before 

enrichment. In Chapter 2, we demonstrated that our pooled sequencing scheme reduces cost 

considerably and is well suited for follow-up studies on candidate genes. Several potential 

directions to further improve or extend the use of the approach can be pursued. First, technology 

development is needed for methods more readily scalable for different target sizes and different 

sample sizes. Second, downstream analysis methods for pooled sequencing need to be further 

improved. Existing methods for aggregate rare variant statistics are not designed to work well 

with pooled sequencing data, which lose individual genotype information and are more prone to 

errors compared to high-coverage individual sequencing. 

 
OUTLOOK FOR RVAS 

The combined contribution of multiple rare loci to the population-level genetic variance 

remains an open question because association studies that focus on rare variants remain 

underpowered. The few population-based common disease exome-sequencing studies published 

to date, have not been successful in finding individual genes showing significant enrichment26,27. 

These current findings are likely to foreshadow the definitive identification of individual genes 

in larger cohorts, following the trajectory of genome-wide CVAS. 

Although effect sizes for rare variants may be larger than for common variants, large effect 

sizes or odds ratios do not equate to a large contribution to the variance explained at the 

population level. Recent sequencing studies identified enrichment of rare variants, but this early 

work suggests a large polygenic burden of rare coding variants, which alone may not account for 

the unexplained variation28,29.  

Methods for detecting contribution of common variants to the missing heritability have been 

described previously. Purcell et al.30 developed the concept of a polygenic score by combining 
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the effects of multiple common variants that are modestly associated with schizophrenia. They 

showed that the score is predictive of schizophrenia in an independent cohort, thus indicating 

that there is polygenic signal from many yet-to-be-detected common variants in schizophrenia. 

Yang et al.31 adopted a different approach by estimating the proportion of variance for human 

height explained by hundreds of thousands of common variants with a linear-model analysis. 

They found that at least 45% of the variance can be accounted for by common variants, 

indicating that there are many common variants associated with height that have yet to be 

discovered. 

More recently, methods have been designed to detect the signal of polygenic inheritance 

from low-frequency variants. Chan and colleagues showed that there is more power to detect risk 

variants than to detect protective variants, resulting in an increase in the ratio of detected risk to 

protective variants. Such an excess can also occur if risk variants are present and kept at lower 

frequencies because of negative selection. They tested the method on published GWAS results 

and observed a strong signal in some diseases (schizophrenia and type 2 diabetes) but not 

others32.  

Agarwala et al. developed a population genetics framework to directly simulate, in large 

populations, a wide space of genetic architecture. Each hypothesis about genetic architecture was 

then quantitatively evaluated against cumulative results of empirical studies already performed. 

Whereas extreme models are excluded by the combination of epidemiology, linkage and 

genome-wide association studies, many models remain consistent, including those where rare 

variants explain either little (<25%) or most (>80%) of type 2 diabetes heritability33. 

 Overall, the genetic architecture will be different from one complex trait to another. Even 

within one trait, there will be heterogeneity in phenotypic contributions across loci. Mutation rate, 
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overall phenotypic contribution, coupling between phenotypic effects and fitness effects and 

allelic spectrum of causal variants are all likely to vary across loci. Thus, outcomes of RVAS 

will be different for different traits. Ongoing sequencing and genotyping studies will further 

constrain the space of possible architectures, but very large sample sizes will be required to 

localize most of the heritability underlying complex traits. This is not an either-or debate, and 

advocating a focus on solely rare or common variants will not be a productive way forward. 

 
 
REFERENCES 

1. Zwick, M.E., Cutler, D.J., and Chakravarti, A. (2000). Patterns of genetic variation in 
Mendelian and complex traits. Annu. Rev. Genomics Hum. Genet. 1, 387–407. 
 
2. Tennessen, J.A., Bigham, A.W., O’Connor, T.D., Fu, W., Kenny, E.E., Gravel, S., McGee, S., 
Do, R., Liu, X., Jun, G., et al. (2012). Evolution and functional impact of rare coding variation 
from deep sequencing of human exomes. Science 337, 64–69. 
 
3. Kryukov, G. V, Shpunt, A., Stamatoyannopoulos, J.A., and Sunyaev, S.R. (2009). Power of 
deep, all-exon resequencing for discovery of human trait genes. Proc. Natl. Acad. Sci. U. S. A. 
106, 3871–3876. 
 
4. Zuk, O., Schaffner, S.F., Samocha, K., Do, R., Hechter, E., Kathiresan, S., Daly, M.J., Neale, 
B.M., Sunyaev, S.R., and Lander, E.S. (2014). Searching for missing heritability: Designing rare 
variant association studies. Proc. Natl. Acad. Sci. 111, E455–64. 
 
5. Bonnefond, A., Clément, N., Fawcett, K., Yengo, L., Vaillant, E., Guillaume, J.-L., 
Dechaume, A., Payne, F., Roussel, R., Czernichow, S., et al. (2012). Rare MTNR1B variants 
impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297–301. 
 
6. Romeo, S., Yin, W., Kozlitina, J., Pennacchio, L.A., Boerwinkle, E., Hobbs, H.H., and Cohen, 
J.C. (2009). Rare loss-of-function mutations in ANGPTL family members contribute to plasma 
triglyceride levels in humans. J. Clin. Invest. 119, 70–79. 
 
7. MacArthur, D.G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., 
Jostins, L., Habegger, L., Pickrell, J.K., Montgomery, S.B., et al. (2012). A systematic survey of 
loss-of-function variants in human protein-coding genes. Science 335, 823–828. 
 
8. Ahituv, N., Kavaslar, N., Schackwitz, W., Ustaszewska, A., Martin, J., Hebert, S., Doelle, H., 
Ersoy, B., Kryukov, G., Schmidt, S., et al. (2007). Medical sequencing at the extremes of human 
body mass. Am. J. Hum. Genet. 80, 779–791. 



 118 

 
9. Ji, W., Foo, J.N., O’Roak, B.J., Zhao, H., Larson, M.G., Simon, D.B., Newton-Cheh, C., State, 
M.W., Levy, D., and Lifton, R.P. (2008). Rare independent mutations in renal salt handling 
genes contribute to blood pressure variation. Nat. Genet. 40, 592–599. 
 
10. Sunyaev, S.R. (2012). Inferring causality and functional significance of human coding DNA 
variants. Hum. Mol. Genet. 21, R10–7. 
 
11. Abecasis, G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin, R.M., Gibbs, R.A., Hurles, 
M.E., and McVean, G.A. (2010). A map of human genome variation from population-scale 
sequencing. Nature 467, 1061–1073. 
 
12. National Heart, Lung, and B.I. Exome Variant Server. 
 
13. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., 
Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server for predicting damaging 
missense mutations. Nat. Methods 7, 248–249. 
 
14. Ng, P.C., and Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome 
Res. 11, 863–874. 
 
15. Schwarz, J.M., Rödelsperger, C., Schuelke, M., and Seelow, D. (2010). MutationTaster 
evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576. 
 
16. Kiezun, A., Garimella, K., Do, R., Stitziel, N.O., Neale, B.M., McLaren, P.J., Gupta, N., 
Sklar, P., Sullivan, P.F., Moran, J.L., et al. (2012). Exome sequencing and the genetic basis of 
complex traits. Nat. Genet. 44, 623–630. 
 
17. Stoddart, D., Heron, A.J., Mikhailova, E., Maglia, G., and Bayley, H. (2009). 
Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological 
nanopore. Proc. Natl. Acad. Sci. U. S. A. 106, 7702–7707. 
 
18. Korlach, J., Marks, P.J., Cicero, R.L., Gray, J.J., Murphy, D.L., Roitman, D.B., Pham, T.T., 
Otto, G.A., Foquet, M., and Turner, S.W. (2008). Selective aluminum passivation for targeted 
immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. 
Proc. Natl. Acad. Sci. U. S. A. 105, 1176–1181. 
 
19. Dela Torre, R., Larkin, J., Singer, A., and Meller, A. (2012). Fabrication and characterization 
of solid-state nanopore arrays for high-throughput DNA sequencing. Nanotechnology 23, 
385308. 
 
20. Bell, D.C., Thomas, W.K., Murtagh, K.M., Dionne, C.A., Graham, A.C., Anderson, J.E., and 
Glover, W.R. (2012). DNA base identification by electron microscopy. Microsc. Microanal. 18, 
1049–1053. 
 



 119 

21. Do, R., Kathiresan, S., and Abecasis, G.R. (2012). Exome sequencing and complex disease: 
practical aspects of rare variant association studies. Hum. Mol. Genet. 21, R1–9. 
 
22. Holm, H., Gudbjartsson, D.F., Sulem, P., Masson, G., Helgadottir, H.T., Zanon, C., 
Magnusson, O.T., Helgason, A., Saemundsdottir, J., Gylfason, A., et al. (2011). A rare variant in 
MYH6 is associated with high risk of sick sinus syndrome. Nat. Genet. 43, 316–320. 
 
23. Jonsson, T., Atwal, J.K., Steinberg, S., Snaedal, J., Jonsson, P. V, Bjornsson, S., Stefansson, 
H., Sulem, P., Gudbjartsson, D., Maloney, J., et al. (2012). A mutation in APP protects against 
Alzheimer’s disease and age-related cognitive decline. Nature 488, 96–99. 
 
24. Skol, A.D., Scott, L.J., Abecasis, G.R., and Boehnke, M. (2007). Optimal designs for 
two-stage genome-wide association studies. Genet. Epidemiol. 31, 776–788. 
 
25. Mamanova, L., Coffey, A.J., Scott, C.E., Kozarewa, I., Turner, E.H., Kumar, A., Howard, E., 
Shendure, J., and Turner, D.J. (2010). Target-enrichment strategies for next-generation 
sequencing. Nat. Methods 7, 111–118. 
 
26. Liu, L., Sabo, A., Neale, B.M., Nagaswamy, U., Stevens, C., Lim, E., Bodea, C.A., Muzny, 
D., Reid, J.G., Banks, E., et al. (2013). Analysis of rare, exonic variation amongst subjects with 
autism spectrum disorders and population controls. PLoS Genet. 9, e1003443. 
 
27. Albrechtsen, A., Grarup, N., Li, Y., Sparsø, T., Tian, G., Cao, H., Jiang, T., Kim, S.Y., 
Korneliussen, T., Li, Q., et al. (2013). Exome sequencing-driven discovery of coding 
polymorphisms associated with common metabolic phenotypes. Diabetologia 56, 298–310. 
 
28. Purcell, S.M., Moran, J.L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P., 
O’Dushlaine, C., Chambert, K., Bergen, S.E., Kähler, A., et al. (2014). A polygenic burden of 
rare disruptive mutations in schizophrenia. Nature 506, 185–190. 
 
29. Cruchaga, C., Karch, C.M., Jin, S.C., Benitez, B.A., Cai, Y., Guerreiro, R., Harari, O., 
Norton, J., Budde, J., Bertelsen, S., et al. (2014). Rare coding variants in the phospholipase D3 
gene confer risk for Alzheimer’s disease. Nature 505, 550–554. 
 
30. Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O’Donovan, M.C., Sullivan, P.F., and 
Sklar, P. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar 
disorder. Nature 460, 748–752. 
 
31. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden, 
P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., et al. (2010). Common SNPs explain a 
large proportion of the heritability for human height. Nat. Genet. 42, 565–569. 
 
32. Chan, Y., Lim, E.T., Sandholm, N., Wang, S.R., McKnight, A.J., Ripke, S., Daly, M.J., 
Neale, B.M., Salem, R.M., and Hirschhorn, J.N. (2014). An Excess of Risk-Increasing 
Low-Frequency Variants Can Be a Signal of Polygenic Inheritance in Complex Diseases. Am. J. 
Hum. Genet. 94, 437–452. 



 120 

 
33. Agarwala, V., Flannick, J., Sunyaev, S., and Altshuler, D. (2013). Evaluating empirical 
bounds on complex disease genetic architecture. Nat. Genet.  
 



 
 
 

Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 122 

Supplementary Material – Large-scale pooled next-generation 

sequencing of 1077 genes to identify genetic causes of short stature 

Supplemental Methods – Variant Calling Strategy 

Variant calling was performed using Syzygy software and then applied a new likelihood-

based secondary calling strategy that integrated the extra information from our matrix design. 

Instead of setting a hard cutoff for calling variants in individual pools as typically implemented 

in Syzygy, we calculated accumulated evidence for the presence of the variant allele from the 

full matrix. To keep the false positive rate low, we also required supportive evidence for an 

individual variant to be present in both row and column pools. 

Specifically, our single nucleotide polymorphism (SNP) calling strategy is a likelihood 

ratio test comparing the following two hypotheses: 1. Null Hypothesis (H0) – there is no variant 

at the site; observed non-reference reads are all due to sequencing error. 2. Alternative 

Hypothesis (H1) – there is a variant at the site (as well as background sequencing error rate). 

First, a sequencing error rate is chosen to optimize the likelihood of the null hypothesis (L[H0]); 

then a background sequencing error rate as well as variant frequencies (in pools where there are 

reads of the variant allele) are chosen to optimize the likelihood of the alternative hypothesis 

(L[H1]). The test statistic D is calculated as: D = 2*(ln(L[H1]) - ln(L[H0])). The probability 

distribution of D is approximately a chi-square distribution with degrees of freedom equal to 

df[H1]-df[H0] (in our case, the degrees of freedom is equal to the number of pools with non-zero 

estimated variant frequency). We can then derive the p-values and significance was set at 0.05 

after a strict Bonferroni correction accounting for the number of sites tested. 
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Figure S2.1: Electropherogram of novel IGF1R variant #1, c.418dupG (see Table 2.3). (A) 
Schematic of the IGF1R peptide is shown above the correlating coding exons (numbered 1 to 
21). Arrow indicates the location of the variant. The IGF1R peptide consist of a signal peptide, 
alpha and beta subunits, composed of the following subdomains: L1, receptor leucine-rich 
domain; CR, cysteine-rich, furin-like, domain; L2, receptor L domain; FN, fibronectin type III 
domain; TM, transmembrane domain; TK, tyrosine kinase catalytic domain; and CT, C-terminal 
domain. (B) Electropherogram of IGF1R c.418dupG (exon 2) in Patient genomic DNA. Box 
nucleotide, c.418. Normal and new residues generated by the c.418dupG, are as indicated.  
Asterix (*), stop codon. 
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Figure S2.2: Matrix pooling design. Each box in the table represents one sample, which is 
present in one column pool and one row pool.  Four empty “holes”, labeled as yellow stars, were 
included into each matrix for assessing false positive rate. 
 
 
 
 



 
Table S2.1: Human Gene Mutation Database Dominant Disease Associated Variants Found in Cases Only 
 
Gene Disease HGMD 

Variant ID 
Genomic 
Location (hg19) 

c.DNA Protein Ref. Subject Description 

PTPN11 Noonan 
syndrome 

CM024733 chr12:112910844 NM_002834.3:
c.853T-C 

NP_002825.3:
p.F285L 

1 See main text. 

PTPN11 Noonan 
syndrome 

CM021136 chr12:112915526 
 

NM_002834.3:
c.925A-G 

NP_002825.3: 
p.I309V 

1 See main text. 

PTPN11 Noonan 
syndrome 

CM013416 
 

chr12:112888172 
 

NM_002834.3:
c.188A-G 

NP_002825.3: 
p.Y63C 

2 See main text. 

TRPV4 Brachyolmia CM083203 chr12:110230201 NM_021625.4:
c.1858G-A 

NP_067638.3:
p.V620I 

3 See main text. 

NLRP3 Familial cold 
auto-
inflammatory 
syndrome 

CM043481 chr1:247588214 NM_004895.4:
c.1469G-A 
 

NP_004886.3:
p.R490K 
 

4 ISS. No report of recurrent rash or 
arthralgias with cold exposure.  

CREBBP 
 

Rubinstein-
Taybi 
syndrome 

CM021087 
 

chr16:3778387 
 

NM_004380.2:
c.6661A-C 
 

NP_004371.2:
p.M2221L 
 

5 GHD. Normal intelligence. No 
physical signs of Rubinstein-Taybi. 

CREBBP 
 

Rubinstein-
Taybi 
syndrome 

CM085347 
 

chr16:3820773 
 

NM_004380.2:
c.2678C-T 
 

NP_004371.2:
p.S893L 
 

6 GHD. Normal intelligence. No 
physical signs of Rubinstein-Taybi. 

GLI3 
 

Greig 
cephalopoly-
syndactyly 
syndrome 

CM970684 
 

chr7:42007506 
 

NM_000168.5:
c.2119C-T 
 

NP_000159.3:
p.P707S 
 

7 ISS, developmental delay. Normal 
head shape and no polydactyly or 
syndactyly. 

125
121
28 



 
Table S2.1 (Continued) 
 
GLI3 
 

Greig 
cephalopoly-
syndactyly 
syndrome 

CM990707 
 

chr7:42007201 
 

NM_000168.5:
c.2424A-G 
 

NP_000159.3:
p.I808M 
 

8 Dysplastic thumb with mild short 
stature. Variant does not segregate with 
phenotype in the family. 

FGFR1 
 

Non-
syndromic 
trigono-
cephaly 

CM010303 
 

chr8:38282064 
 

NM_023110.2:
c.899T-C 
 

NP_075598.2:
p.I300T 
 

9 ISS. Normocephalic. 

PTCH1 Holoprosence
phaly 

CM020752 chr9:98229479 NM_000264.3:
c.2479A-G 

NP_000255.2:
p.S827G 

10 Found in the subject with the novel 
IGF1R frameshift. No midline defects 
although has a bilateral cleft lip and 
palate. No GHD. 

JAG1 Alagille 
syndrome 

CM061804 chr20:10622447 NM_000214.2:
c.2666G-A 

NP_000205.1:
p.R889Q 
 

11 Patient has clinical diagnosis of 
Rubinstein-Taybi syndrome. No 
hepatic abnormalities. 

RPL5 Diamond-
Blackfan 
anemia 

CM086904 
 

chr1:93301840 
 

NM_000969.3:
c.418G-A 
 

NP_000960.2:
p.G140S 
 

12 ISS. No cleft palate, thumb 
abnormalities, or anemia.  

COL1A1 Osteogenesis 
imperfecta I 

CM123299 
 

chr17:48264220 
 

NM_000088.3:
c.3595A-G 

NP_000079.2:
p.S1199G 

13 ISS. No history of fractures.  

COL1A1 Ehlers-
Danlos 
Syndrome 

CM071624 
 

chr17:48265329 
 

NM_000088.3:
c.3277C-T 

NP_000079.2:
p.R1093C 

14 ISS. No skin hyperextensibility or joint 
hypermobility. 

EXT1 
 

Multiple 
osteo-
chondromas 

CM099178 
 

chr8:118830697 
 

NM_000127.2:
c.1609G-A 

NP_000118.2:
p.V537I 
 

15 ISS. No osteochondromas. 

INSR Diabetes CM950700 chr19:7141798 NM_000208.2:
c.2572A-G 

NP_000199.2:
p.T858A 

16 SGA. No signs of diabetes or insulin 
resistance.  

126
912
128 



 
Table S2.1 (Continued) 
 
COL11A1 Robin 

Sequence and 
Marshall 
syndrome 

CS030538 
 

chr1:103400613 
 

NM_080629.2: 
c.IVS45+3G4A 
 

Unknown. 
Predicted 
splice variant. 

17 Clinically diagnosed with Coffin-
Lowry syndrome. No cleft palate. 

ALPL Hypo-
phosphatasia 

CM084852 
 

chr1:21890638 
 

NM_000478.4:
c.577C-G 

NP_000469.3:
p.P193A 

NP ISS. No bone abnormalities. Normal 
alkaline phosphatase levels. 

ALPL Hypo-
phosphatasia 

CM993530 
 

chr1:21890587 
 

NM_000478.4:
c.526G-A 

NP_000469.3:
p.A176T 

18 ISS. No bone abnormalities. Normal 
alkaline phosphatase levels. 

ABCC8 Hyper-
insulinism 

CM994416 
 

chr11:17450177 
 

NM_000352.3:
c.1858C-T 

NP_000343.2:
p.R620C 

19 Hypopituitarism. No signs of 
hyperinsulinism.  

PHEX Hypo-
phosphatemic 
Rickets  

CM025296 
 

chrX:22051133 
 

NM_000444.4:
c.10G-C 
 

NP_000435.3:
p.E4Q 
 

NP ISS. Normal phosphorus levels and no 
rickets. 

NF1 Neurofibrom
atosis 1 

CM000785 
 

chr17:29552261 
 

NM_000267.3:
c.1994C-T 

NP_000258.1:
p.S665F 

20 GHD. No stigmata of 
neurofibromatosis. 

NF1 Neurofibrom
atosis 1 

CS040852 
 

chr17:29653237 
 

NM_000267.3:
c.5172G>A 

Unknown. 
Predicted 
splice variant. 

21  

BMP4 Orbicularis 
oris defect 

CM091521 chr14:54417117 NM_001202.3:
c.860G-A 

NP_001193.2:
p.R287H 

22  

TGFBR2 Marfan 
Syndrome 

CM063202 chr3:30733044 NM_003242.5:
c.1657T-A 

NP_003233.4:
p.S553T 

23  

LRP5 Osteoporosis, 
primary 

CM122876 chr11:68193464 NM_002335.2:
c.3446T-A 

NP_002326.2:
p.L1149Q 

24   

 
ISS – Idiopathic short stature. GHD – Growth hormone deficiency. SGA – Small for gestational age. NP – Not published.  
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Table S2.2: List of 1077 height candidate genes, including (1) genes known to 
underlie syndromic growth disorders or skeletal dysplasias, as well as genes 
involved in growth plate biology or growth hormone signaling (bold) (2) genes 
within genomic loci associated with height based on genome-wide association studies 
(plain) (3) genes belonging to both group (1) and (2) (underlined). 
 
AAMP$ CDSN$ GABRD$ LIN28$ PHOSPHO1$ SMARCA5$
ABCB5$ CENPO$ GALNS$ LIN28B$ PIGC$ SMARCAL1(
ABCB8$ CENPP$ GAP43$ LMBR1( PIGF$ SMC1A(
ABCC8$ CEP120$ GAS1$ LMNA( PIGK$ SMC3(
ABCE1$ CEP290( GCNT1$ LMO4$ PITPNM2$ SMO(
ABI3$ CETN3$ GDF5$ LMX1B( PITX1$ SMOX$
ABP1$ CHCHD7$ GDPD5$ LOXL1$ PITX2( SMPD1(
ACAN$ CHD1L$ GFM1$ LPAR1$ PJA2$ SMS$
ACBD4$ CHD7( GFPT2$ LPGAT1$ PKIA$ SNAP47(
ACPL2$ CHMP4A$ GGT7$ LRIG3$ PKN2$ SNED1$
ACSS2$ CHMP4B$ GH1$ LRP5( PLAG1$ SNF8$
ACTN1$ CHRNG$ GH2$ LRP6$ PLAGL1( SNRPC$
ACVR1( CHST3( GHR( LRRC37B$ PLCD3$ SOCS2$
ACY3$ CISH$ GHRH( LSAMP$ PLD1$ SOCS3(
ADA( CLCN5( GHRHR( LTBP1$ PLEKHA5$ SOCS5$
ADAM28$ CLDN22$ GHRL( LTBP2$ PLEKHJ1$ SOS1(
ADAMTS10$ CLIC4$ GHSR$ LTBP3$ PLOD2( SOST(
ADAMTS12$ CNOT6$ GIP$ LTK$ PLXNC1$ SOX2(
ADAMTS17$ COL10A1( GIPC2$ LUM$ PML$ SOX3(
ADAMTS2( COL11A1$ GIT1$ LUZP1$ PMPCA$ SOX5(
ADAMTS3$ COL11A2( GJA1( LXN$ PNKD$ SOX6(
ADAMTSL2( COL1A1( GJE1$ LY86$ PNPT1$ SOX9$
ADAMTSL3$ COL1A2( GKAP1$ LYPD1$ POLR2B$ SPAG9$
ADCY3$ COL2A1( GLB1( LYPLAL1$ POLR3A$ SPDEF$
ADCY4$ COL5A1( GLI2$ LYSMD3$ POLR3G$ SPG20(
ADRBK1$ COL5A2( GLI3( LYSMD4$ POMC$ SPINK2$
AEBP2$ COL9A1( GLT25D2$ MACC1$ POR( SRRM1$
AGPS( COL9A2( GMPR2$ MAL2$ POU1F1( SRY(
AGXT$ COL9A3( GNA12$ MAP2K1( POU5F1$ SSH3$
AK5$ COMP( GNAS( MAP2K2( PPA2$ SSR1$
AKAP7$ COPA$ GNPAT( MAP2K3$ PPAP2A$ SSSCA1$
ALG12( COX18$ GNPTAB$ MAP6$ PPM1A$ SST(
ALMS1( COX7A2$ GNRH1( MAPK1( PPP2R3A$ ST3GAL1$
ALPL( CPAMD8$ GNRHR( MAPK3( PPP2R5A$ STAG1$
ALPP$ CPEB4$ GPBAR1$ MAPK9$ PQBP1( STARD3NL$
ALPPL2$ CPN1$ GPC3( MAPKAPK3$ PRAM1$ STAT3(
ALX4( CRADD$ GPC5$ MATN3( PRB1$ STAT5B(
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Table(S2.2((Continued)(
$ $ ( $ (
AMZ1$ CREB5$ GPC6$ MBOAT1$ PRDM12$ STAU1$
ANKH( CREBBP( GPR111$ MBTD1$ PRDM6$ STC1$
ANKRD13B$ CRIPT$ GPR115$ MC3R$ PREPL$ STC2$
ANKRD13D$ CROCC$ GPR126$ MC4R$ PRG4( STK10$
ANKRD17$ CRTAP( GPR135$ MCFD2$ PRKAB2$ STK25$
ANKS1A$ CSE1L$ GPR27$ MCM10$ PRKCD$ STK36$
ANO5( CSNK1G3$ GPR39$ MECP2( PRKCZ$ STOML1$
ANO7$ CTDP1( GPR98$ MED28$ PRKG2$ SUB1$
ANTXR2( CTPS$ GPSM1$ MEF2A$ PROCR$ SUCLG2$
AP3D1$ CTSK( GRK7$ MEF2C$ PROK2$ SUZ12$
AQP12A$ CUL4B( GRM4$ MESP2( PROKR2( SV2A$
ARFGEF2$ CUL7( GSDMC$ MEST( PROP1( SYN3$
ARHGEF3$ CXXC4$ GSS$ METRN$ PSMB3$ SYT12$
ARL6( CYP11B1( GTF2B$ METTL13$ PSORS1C1$ T$
ARPC2$ CYP19A1$ GTF2H5$ MFAP2$ PTCH1$ TAC3(
ARSB( CYP21A2$ GUSB( MGAT5$ PTCH2( TACR3(
ARSE( CYP27A1$ GYPA$ MGP( PTEN( TAF11$
ASS1$ CYP27B1( GYPB$ MICA$ PTGFR$ TAF2$
ASTN1$ DAAM1$ H1FX$ MKKS( PTH( TAL2$
ATAD2B$ DACT1$ H2AFY$ MKL2$ PTH1R( TAOK1$
ATG7$ DCN$ HABP4$ MKS1( PTHLH$ TARS$
ATG9B$ DDX27$ HACE1$ MLF1$ PTPDC1$ TAX1BP1$
ATP13A2$ DDX4$ HAGHL$ MLXIP$ PTPN11( TAZ(
ATP2B1$ DDX6$ HCCS( MMP13( PTPRJ$ TBC1D21$
ATP5SL$ DHCR24( HCP5$ MMP2( PXMP3$ TBCE(
ATP6V0A2( DHCR7( HDAC11$ MMP24$ PXMP4$ TBX1(
ATP7A( DHDDS$ HDLBP$ MMP9( QSOX2$ TBX10$
ATP8B1( DIS3L2$ HEMK1$ MNX1( RAB23( TBX15$
ATR( DLEU7$ HEPACAM2$ MOBKL2A$ RAB26$ TBX3(
ATRX( DLG5$ HESX1( MOS$ RAB3GAP1( TBX4$
ATXN3$ DLL3( HEXIM1$ MPHOSPH9$ RAB3GAP2( TBX5(
AURKA$ DLX3( HEXIM2$ MRPL42$ RAD23B$ TCF19$
B3GALTL( DNAJC27$ HFE$ MRPS16( RAD51L1$ TCF4(
B3GNT8$ DNM3$ HHIP$ MRPS6$ RAF1( TCOF1(
B4GALT7( DNMBP$ HIF1A( MSL2$ RAI1( TEAD1$
BAK1$ DNMT3A$ HINT3$ MSLN$ RARS$ TET2$
BBS1( DOCK2$ HIST1H2AE$ MSX2( RASA2$ TGFB1(
BBS10( DOCK3$ HIST1H2BG$ MTMR11$ RASGEF1B$ TGFB2$
BBS12( DOHH$ HIST1H3A$ MUSK$ RASGRP3$ TGFBR1(
BBS2( DOT1L$ HIST1H4A$ MUSTN1$ RASSF10$ TGFBR2(
BBS4( DPCR1$ HIVEP2$ MYC$ RAX2$ THRA(
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Table(S2.2((Continued)(
$ $ $ $ (
BBS5( DTL$ HK3$ MYCN( RBBP8$ THRB(
BBS7$ DYM$ HLAEDQA1$ MYH7B$ RBM15B$ TIGD1$
BBS9( E2F1$ HLAEDQB1$ MYO1E$ RBM28( TIGIT$
BCKDHA$ E4F1$ HLAEDRB1$ MYO6$ RBM45$ TIMP3$
BCKDHB$ EBP( HMGA1$ MYO9B$ RDH12$ TINF2$
BCL2L14$ ECM2$ HMGA2$ NARFL$ RECQL4( TLE3$
BCL7A$ EDEM2$ HNRNPK$ NBN( REST$ TLN2$
BCL9$ EFEMP1$ HOXA11( NCK1$ RFK$ TMBIM1$
BICD2$ EFHD1$ HOXA13( NCL$ RFT1$ TMEM176A$
BMP2$ EFNB1( HOXD13( NCOA1$ RFWD2$ TMEM181$
BMP3$ EFR3B$ HPRT1( NCOA6$ RFX6$ TMEM22$
BMP4( EIF2AK3$ HRAS( NCOR2$ RHOD$ TMEM30A$
BMP5( EIF4E2$ HS2ST1$ NCSTN$ RIPK3$ TMEM38B$
BMP6$ EIF4E3$ HSPG2( NDUFAF1$ RMI1$ TMEM91$
BMP7( EIF5AL1$ HTR1D$ NDUFB1$ RNF135$ TNC$
BMPR1A( EIF6$ HYAL1( NDUFV1$ RNF24$ TNFRSF11A(
BMPR1B( ENPP2$ ICK( NEDD8$ RNF7$ TNFRSF11B(
BMPR2( EP300( ID4$ NEK4$ ROR2( TNFSF10$
BNC2$ EPB41L1$ IDUA( NEU1$ RORA$ TNFSF11(
BPIL2$ EPB41L2$ IFT80( NF1$ RPL11( TNP1$
BRAF( EPDR1$ IGBP1( NFATC4$ RPL35A( TNPO1$
BRCA2$ EPHB2$ IGF1( NFIC$ RPL5$ TNS1$
BRUNOL5$ EPRS$ IGF1R$ NFKBIA( RPLP1$ TOX$
BTK( EPYC$ IGF2( NHLH1$ RPS10$ TP53I13$
BTN1A1$ ERC2$ IGF2BP2$ NIPBL( RPS17( TP53I3$
BTN2A1$ ERCC2( IGF2BP3$ NLRP3( RPS19( TP53INP2$
BUB1B( ERCC3( IGF2R( NMB$ RPS20$ TP63(
BVES$ ERLIN1$ IGFALS( NMBR$ RPS24$ TRA2A$
C12orf12$ ESCO2( IGFBP1$ NMU$ RPS6KA3( TRA2B$
C12orf65$ ESR1$ IGFBP2( NMUR1$ RPS7( TRAPPC2(
C13orf1$ ESR2( IGFBP3$ NOG$ RPSAP52$ TREH$
C14orf149$ ETS1$ IGFBP4$ NOS3$ RREB1$ TRIM13$
C14orf181$ ETV6$ IGFBP5( NOV$ RSPO3$ TRIM32(
C14orf39$ EVC( IGFBP6( NPC2$ RTF1$ TRIM37(
C16orf79$ EVC2( IGFBP7$ NPFFR2$ RUNX2$ TRIP11$
C18orf45$ EXOC1$ IHH$ NPPC$ RUNX3$ TRMT11$
C19orf36$ EXOSC5$ IKBKG( NPR2( RYBP$ TRPC4AP$
C1orf105$ EXT1( IL20RB$ NPR3$ SALL1( TRPM5$
C1orf21$ EXT2( IL31$ NSD1$ SALL4( TRPS1(
C1orf86$ FAM101A$ IL31RA$ NSDHL( SAMD3$ TRPV4(
C20orf108$ FAM124B$ IL7$ NSMAF$ SBDS( TSEN15$
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Table(S2.2((Continued)(
$ $ $ ( $
C20orf152$ FAM148A$ IL8RA$ NUCB2$ SBNO1$ TSSC4$
C20orf4$ FAM148B$ INPP5E$ NUDT3$ SCAND1$ TTC27$
C2orf34$ FAM164A$ INS( NUDT8$ SCARB1$ TTC30A$
C2orf44$ FAM173A$ INSR$ NUP160$ SCMH1$ TTC7A$
C2orf54$ FAM184B$ INTS7$ NUSAP1$ SCUBE3$ TTK$
C2orf62$ FAM27L$ IP6K3$ OBSL1( SDCCAG3$ TTLL4$
C2orf79$ FAM46A$ IPPK$ OCRL( SDHA( TTYH3$
C2orf84$ FAM49B$ IRF1$ OFD1( SDHB$ TULP4$
C3orf18$ FAM81A$ IRS1( OIP5$ SDR16C5$ TWIST1$
C3orf31$ FAM82A1$ IRS2( OPN5$ SEC11A$ TXNDC5$
C3orf37$ FANCA( ISCA2$ OPTN$ SEC16A$ UBE2Z$
C3orf63$ FANCB( ITGB8$ OR2K2$ SECISBP2( UBR1(
C3orf65$ FANCC$ ITIH1$ OR2Z1$ SEMA3E( UBXN2A$
C4orf14$ FANCD2( ITIH3$ OR4A5$ SENP2$ UHRF1BP1$
C5orf23$ FANCE$ ITIH4$ OR4B1$ SENP6$ UIMC1$
C6orf1$ FANCF( ITPKA$ OR4C12$ SERAC1$ USE1$
C6orf106$ FANCG( ITPR3$ OR4C13$ SERPINE2$ UTP18$
C6orf125$ FANCI( JAG1( OR4C46$ SERPINH1$ UTP6$
C6orf138$ FANCL( JAK2( OSR1$ SF3A2$ VAMP4$
C6orf15$ FANCM( JAZF1$ OSTF1$ SF3B4$ VANGL2$
C6orf173$ FAR2$ JMJD4$ OTUD4$ SFMBT1$ VDR(
C6orf191$ FARP2$ KAL1( OTUD7B$ SFTA2$ VEGFA(
C7orf11( FBLL1$ KBTBD8$ OTX2( SH3BP2( VGLL2$
C7orf30$ FBLN1( KCNE2$ PACRGL$ SH3GL3$ VGLL4$
C9orf163$ FBLN2$ KCNH2$ PACSIN1$ SHH( VPRBP$
C9orf40$ FBLN5$ KCNIP4$ PADI2$ SHOX( VPS13C$
C9orf41$ FBN1( KCNJ1$ PANK3$ SHOX2$ VTA1$
C9orf64$ FBN2( KCNJ11$ PAPPA$ SHQ1$ WDR66$
C9orf95$ FBXL17$ KCNJ12$ PAPPA2$ SHROOM4( WDR73$
CA2( FBXO7$ KCNJ2$ PAPSS2( SIL1( WISP3(
CA8$ FBXW11$ KCNQ1$ PAQR5$ SIX1$ WNT3(
CABLES1$ FBXW4( KCNRG$ PARN$ SIX2$ WNT7A(
CAGE1$ FCHO2$ KDM5C( PARVA$ SIX3$ WNT9A$
CAMK1D$ FER$ KERA$ PAX3( SIX6$ WRN(
CARD11$ FGD1( KHDRBS3$ PAX8( SKI$ WWC2$
CASKIN1$ FGF1( KIAA0317$ PCBD2$ SLAMF6$ YEATS4$
CASQ1$ FGF10( KIAA0368$ PCCB$ SLC16A7$ ZBTB16(
CATSPER3$ FGF18$ KIAA0586$ PCGF2$ SLC22A18$ ZBTB20$
CBLN3$ FGF2( KIAA1279( PCNT( SLC22A4$ ZBTB38$
CCBL2$ FGF21( KIF1A$ PCSK5$ SLC22A5$ ZCCHC24$
CCDC126$ FGF23( KIF23$ PDE10A$ SLC26A2( ZCCHC6$
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Table(S2.2((Continued)(
( $ $ ( $
CCDC28B( FGFR1( KIF27$ PDE11A$ SLC29A3( ZFAT$
CCDC3$ FGFR2( KISS1( PDE3A$ SLC2A2( ZFP36L1$
CCDC49$ FGFR3$ KISS1R( PDIA4$ SLC30A10$ ZFYVE26$
CCDC66$ FILIP1$ KRAS( PDLIM4$ SLC34A3( ZMPSTE24(
CCDC78$ FKBP1B$ L3MBTL3$ PEA15$ SLC35C1( ZNF169$
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Supplementary Material – Simulation of Finnish population history, 

guided by empirical genetic data, to assess power of rare variant 

tests in Finland 

Supplemental Method 

Fitting Finnish demographic history parameters 

P(data|model) for each model was calculated as below. The first two terms are the probabilities 

of the observed allele frequency spectra of synonymous and missense variants given the 

demographic model being tested. The third term is the probability of the observed 

synonymous/missense ratio. The last two terms calculate the probabilities of the observed allele 

sharing between Finns and NFEs.  

 

s, m: the observed total number of synonymous or missense variants;  

si, mi: the observed number of synonymous or missense variants within the ith frequency 

category; 

pi, qi: the predicted proportion of synonymous or missense variants that fall into the ith frequency 

category; 

ri: the predicted proportion of variants in the ith frequency category that are synonymous; 

ssi, smi: the observed number of synonymous or missense variants within the ith frequency 

category in the Finns that are shared with NFEs; 
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xi, yi: the predicted proportion of synonymous or missense variants within the ith frequency 

category in the Finns that are shared with NFEs. 

 

 

Figure S4.1: Singleton variants in a population of Finns are more likely to be seen again in 
another population of Finns. For the set of singleton variants ascertained from a random 
sample of 250 individuals, we assessed the proportion (y-axis) and the frequencies (x-axis) of 
these variants observed in a second sample of 250 individuals. The analysis was done in 
synonymous (A) and missense (B) variants separately. 
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Figure S4.2: Agreement of empirical missense/synonymous ratios with the modeled ratios.  
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Figure S4.3: Allele sharing between the Finns and the NFEs, comparing simulated data and 
empirical data. For the set of variants ascertained from the first sample, we assessed their 
frequencies (x-aixs) in the first sample and the proportion (y-axis) of these variants observed in a 
second sample. For results in Finns, the first sample is 843 Finns and the second sample is 820 
NFEs; for results in NFEs, the first sample is 820 NFEs and the second sample is 843 Finns. The 
analysis was done in synonymous variants (A) and missense variants (B) separately. 
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Figure S4.4: Variance explained by variants within different frequency ranges under four 
different disease models.  
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Figure S4.5: Number of causal variants (solid lines) or background variants (dashed lines) 
with MAF below 5% per gene, in either 30,000 Finns or 30,000 NFEs. 
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Figure S4.6: Accumulated allele frequency of causal variants (solid lines) or background 
variants (dashed lines) with MAF below 5% per gene, in either 30,000 Finns or 30,000 
NFEs. 
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Figure S4.7: Power difference between using the Finns and the NFEs for genes of different 
τ values under M4 (τ randomly sampled from 0, 0.5, and 1 for each effect gene). Shown here 
is the result for SKAT-O test and the sample size is 30,000. The biggest power gain in the Finns 
is seen among genes with τ value of 1 (almost doubling in power, paired t-test p value < 0.01). 
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Figure S4.8: Distribution of variance explained per gene by variants with MAF below 5% 
under four different disease models in either 30,000 Finns or 30,000 NFEs, for genes 
detected in the Finns only. (A) M1 (τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ randomly 
sampled from 0, 0.5, and 1 for each effect gene). 
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Figure S4.9: Distribution of variance explained per gene by variants with MAF below 5% 
under four different disease models, in either 30,000 Finns or 30,000 NFEs, for genes 
detected in the NFEs only. (A) M1 (τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ randomly 
sampled from 0, 0.5, and 1 for each effect gene). 
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Figure S4.10 Accumulated allele frequency of causal variants (solid lines) or background 
variants (dashed lines) with MAF below 5% per gene under four different disease models, 
for genes detected in the Finns only. The distributions for causal variants in the Finns shift 
upwards compared to the NFEs. (A) M1 (τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ 
randomly sampled from 0, 0.5, and 1 for each effect gene). 
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Figure S4.11 Accumulated allele frequency of causal variants (solid lines) or background 
variants (dashed lines) with MAF below 5% per gene under four different disease models, 
for genes detected in the NFEs only. The distributions for causal variants in the Finns shift 
downwards compared to the NFEs. (A) M1 (τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ 
randomly sampled from 0, 0.5, and 1 for each effect gene). 
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Figure S4.12 Distribution of variance explained per gene by variants with MAF below 5% 
under four different disease models, in either 30,000 Finns or 30,000 NFEs. The genes were 
sampled so as to match the variance explained in the Finns and the NFEs. (A) M1 (τ=0); (B) M2 
(τ=0.5); (C) M3 (τ=1); (D) M4 (τ randomly sampled from 0, 0.5, and 1 for each effect gene). 
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Figure S4.13 Accumulated allele frequency of causal variants (solid lines) or background 
variants (dashed lines) with MAF below 5% per gene under four different disease models. 
The genes were sampled so as to match the variance explained in the Finns and the NFEs. (A) 
M1 (τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ randomly sampled from 0, 0.5, and 1 for 
each effect gene). 
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Figure S4.14 Power of SKAT-O test in 30,000 Finns or 30,000 NFEs under four different 
disease models, either for all genes, or for a set of genes sampled by matching the variance 
explained in the Finns and the NFEs.  
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Figure S4.15: Power of exome sequencing studies in 30,000 Finns vs. 30,000 NFEs. (A) M1 
(τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ randomly sampled from 0, 0.5, and 1 for each 
effect gene). We simulated a quantitative trait (h2 = 80%) for which aggregated coding variation 
in 1,000 genes explains the total heritability. Models M1-4 were generated by varying the degree 
of coupling (τ) between a causal variant’s phenotypic effect and the strength of purifying 
selection against that variant. We implemented five gene-based tests (T1, T5, MB, VT, SKAT-
O) in addition to the single variant tests (singleVar) (see Methods). 
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Figure S4.16: Agreement of empirical allele frequency spectra with the modeled spectra of 
exome chip data.  
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Figure S4.17: Power of exome chip study vs exome sequencing study in the NFEs under M4 
using SKAT-O test. As different genes are likely to have different pleiotropic effects and are 
therefore exposed to different strengths of purifying selection, M4 is generated to represent a 
potentially more realistic scenario where τ (the degree of coupling between a causal variant’s 
phenotypic effect and the strength of purifying selection against that variant) is randomly chosen 
among 0, 0.5 and 1 for each effect gene. The top two lines show power comparison at a fixed 
sample size; the bottom two lines show power comparison at a fixed cost (and thus only a tenth 
of the samples were sequenced). 
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Figure S4.18: Power of exome chip study (N=30,000) vs exome sequencing study (N=3,000) 
in the Finns under four different disease models. (A) M1: τ=0; (B) M2: τ=0.5; (C) M3: τ=1; 
(D) M4: τ randomly sampled from 0, 0.5, and 1 for each effect gene. 
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Figure S4.19: Proportion of genes detected by exome sequencing (N=30,000) only, or by 
exome chip (N=30,000) only, or by both (using SKAT-O test) under four different disease 
models (M1: τ=0; M2: τ=0.5; M3: τ=1; M4: τ randomly sampled from 0, 0.5, and 1 for each 
effect gene). As τ gets larger, the proportion of genes detected by exome sequencing only 
increases. (A) Results in Finns; (B) results in NFEs. 
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Figure S4.20: Distribution of variance explained per gene by variants with MAF below 5% 
in exome sequencing (solid line) or exome chip (dashed line) data of 30,000 Finns, under 
four different disease models. (A) M1 (τ=0); (B) M2 (τ=0.5); (C) M3 (τ=1); (D) M4 (τ 
randomly sampled from 0, 0.5, and 1 for each effect gene). 
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Figure S4.21: Power of two different exome chips in the Finns under M4 (τ randomly 
sampled from 0, 0.5, and 1 for each effect gene) using SKAT-O test. One chip design 
resembles that of the actual exome chip design (top line); the other chip design uses NFE 
samples only with no contribution from Finnish samples (bottom line). 
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Figure S4.22: MDS plots of whole exome sequenced samples from GoT2D project. (A) 
Finns (N=843); (B) NFEs (N=820). 
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Table S4.1: Variants found in both samples tend to have higher allele counts in Finns 
 

Finn-NFE Finn-Finn NFE-NFE Variants 
Difference p value Difference p value Difference p value 

Synonymous  0.415 0.000733 0.00451 0.911 0.0059 0.845 
Missense  0.505 1.43e-06 0.00868 0.777 0.000157 0.994 
  
For Variants shared between 250 Finns and 250 NFEs, their allele counts tend to be higher in 
Finns (paired t-test). As controls, we also checked allele counts for variants shared between 250 
Finns and another 250 Finns, as well as between 250 NFEs and another 250 NFEs.  
 
 
 
 
Table S4.2: Birth place distribution of FUSION samples 
 
Birth place No. of samples 
UUSIMAA, UUDENMAAN / NYLAND 27 
TURKU-PORI, TURUN JA PORIN / ABO-BJORNEBORG, ABO-
OCH-BJORNEBORG 

92 

HAME, HAMEEN / TAVASTEHUS 105 
KYMI, KYMEN / KYMMMENE, VIBORG, VIIPURI 49 
MIKKELI, MIKKELIN / SAINT MICHEL 61 
POHJOIS-KARJALA, POHJOIS-KARJALAN / NORRA-KARALEN, 
NORRA KARENS 

52 

KUOPIO, KUOPION / KUOPIO 148 
KESKI-SUOMI, KESKI-SUOMEN / MELLERSTA-FINLAND 76 
VAASA, VASAAN / VASA, WASA 125 
OULU, OULUN / ULEABORG 41 
LAPPI, LAPIN / LAPPLAND 13 
KARJALA, VIIPURI (area formerly part of Finland) 54 
Total 843 
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Table S4.3: Three different models of Finnish population history 
 
Parameters Class 1 Modela Class 2 Modelb Class 3 Modelc 

Bottleneck size 200-4000 1000 1000 
Bottleneck time 1.5-3.5ky ago 2.5ky ago 2.5ky ago 
Growth rate (per 
generation) 

2.5-10% 5-10% Slow phase:0.5-5% Fast 
phase: 8-30% 

Gene flow into Finns 0 1-5% 0.5-7% 
Minimal   
-log(P(data|model)) 

1419 426 267 

aFounding bottleneck event followed by exponential growth of constant growth rate, with no 
gene flow between NFEs and Finns 
 
bFounding bottleneck event followed by exponential growth of constant growth rate, with gene 
flow from NFEs into Finns 
 
cFounding bottleneck event followed by a slow growth phase and a fast growth phase, with gene 
flow from NFEs into Finns 
 


