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The Eigencurve is Proper

Abstract

Coleman and Mazur constructed a rigid analytic curve Cp,N , called the eigencurve,

whose points correspond to all finite slope overconvergent p-adic eigenforms. We

prove the conjecture that the eigencurve Cp,N is proper over the weight space for any

prime p and tame level N .
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1. Introduction

1.1. Coleman and Mazur’s question. The study of p-adic families of modular

forms dates back to Serre’s Eisenstein family [Ser]. It provides arithmetic informa-

tion about the possible congruences between coefficients of modular forms (in differ-

ent weights). In particular, the congruences of the constant terms give congruences

between the special values of zeta-functions. The theory was further developed by

Hida in [HidaA] and [HidaB], in which he constructed p-adic families of cuspidal

Hecke eigenforms, varying analytically with weights. One can also attach families of

Galois representations to the families of eigenforms. This later led to Mazur’s impor-

tant work on Galois deformation theory. However, Hida’s construction only apply to

ordinary modular forms.

This restriction on ordinary forms was resolved by Coleman and Mazur’s work

[CM98] in which they constructed the p-adic eigencurve (of tame level 1). It is

a rigid analytic curve C whose points correspond to all finite slope overconvergent

p-adic eigenforms, including the ordinary ones. There is a natural projection map

π : C → W whose image characterizes the weights of the eigenforms. Here the rigid

spaceW is called the weight space. The construction is later generalized to any tame

level N by Buzzard [Buz07].

Understanding the geometry of the eigencurve (or, more generally, eigenvarieties)

can provide arithmetic information about p-adic modular forms. Since Coleman

and Mazur’s work, many progresses have been made towards the geometry of the

eigencurve, for example [Bel12], [BM12], [Buz03], [BuCa05], and [BK05]. However,

some fundamental questions remain open, among which is the following conjecture

known as “properness of the eigencurve”.

In [CM98], Coleman and Mazur raise the following question:
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Does there exist a p-adic family of finite slope overconvergent eigen-

forms, parameterized by a punctured disk, that converges to an over-

convergent eigenform at the puncture which is of infinite slope?

In other words, this is to ask whether the projection map π : C → W satisfies the

valuative criterion for properness. We will show that the answer to this question is

affirmative. More precisely, the main result of this thesis is the following theorem.

Theorem 1.1 (Properness of the Eigencurve). Let Cp,N be the Coleman-Mazur eigen-

curve of tame level N , and let π : Cp,N → W denote the natural projection to the

weight space. Let D be the closed unit disk over some finite extension L over Qp, and

let D∗ be the punctured disk with the origin removed. Suppose h : D∗ → Cp,N is a

morphism of rigid analytic spaces such that π ◦ h extends to D. Then h extends to a

morphism h̃ : D → Cp,N so that the following diagram commutes.

D∗
h

//

��

Cp,N

π

��

D //

h̃

::

W

We want to point out that although this property is named “properness of the

eigencurve”, the projection π is actually not proper in the sense of rigid analytic

geometry because it is of infinite degree. The readers should think of “proper” as

shorthand for “proper locally in the domain”. We also remark that a stronger form

of the conjecture is false. According to [CS04], there exists a pointwise sequence of

finite slope eigenforms converging to an eigenform of infinite slope. Therefore, our

statement must be formulated in the framework of rigid families.

In the past decade, some progresses have been made towards this problem. In

[BuCa06], the properness was proved for p = 2 and N = 1. In [Cal08], the properness
2



was proved at integral weights in the center ofW . In a joint work with Ruocuhan Liu

[DL13], we proved the conjecture at weights which are non p-adic Liouville numbers.

1.2. Strategy of the proof. To attack the main theorem, we study the associated

family of Galois representations. More precisely, we look at the family of p-adic Galois

representations on the punctured disk by pulling-back the natural Galois representa-

tions on the eigencurve. By restricting to GQp-representations, we reduce the problem

to a local question! We can then make use of powerful tools from p-adic Hodge the-

ory and (ϕ,Γ)-modules. In particular, we make extensive use of the recent advances

on p-adic Hodge theory in rigid analytic families (e.g., [BeCo08], [KL10], and [Bel13]).

Let us explain the idea more carefully. Let Σ be the finite set of places of Q consist-

ing of the infinite place and the primes dividing pN . By [CM98], the family of over-

convergent eigenforms on the eigencurve give rise to a family of GQ,Σ-representations

on the normalization of Cp,N which interpolates the Galois representations associated

to classical forms. Pulling back along h, we obtain a family of GQ,Σ-representations

VD∗ on the punctured disk D∗. From the construction, Cp,N can be regarded as

an analytic subspace of Xp ×Gm, where Xp is the deformation space of the pseudo-

representations associated to all p-modular residue representations of GQ,Σ. We claim

that the composition D∗ → Cp,N → Xp×Gm → Xp extends to a morphism D → Xp.

Consequently, VD∗ extends to a family of Galois representations VD on the entire disk

D.

Now we look at the family of local p-adic Galois representations (namely, restrict

to GQp). Abusing the notation, we still call it VD. Let V ∗D be its dual. For each point

x ∈ D, we write V ∗x for the specialization of V ∗D at x. At every point x away from the

puncture, the representation V ∗x is in fact trianguline. This is due to a result of Kisin

[Kis03]. More precisely, let αC be the function of Up-eigenvalues on the eigencurve

and let α ∈ O(D∗)× be the pullback of αC. For any x ∈ D∗, the specialization V ∗x
3



has a crystalline period with Frobenius eigenvalue α(x). It is straightforward to see

that α extends to an analytic function on the entire disk. We want to show that

the specialization at the puncture point is also trianguline. In particular, we need to

show that α(0) 6= 0.

Up till now, we have reduced the original global conjecture to the following local

question about family of p-adic Galois representations.

Local Question: Suppose we have a family of GQp-representations

V ∗D of rank 2 on a closed unit disk D. Let α be a rigid analytic func-

tion on the disk which is invertible on the puncture disk D∗. As-

sume that for every point x on the punctured disk, we have (B+
crys ⊗

V ∗x )GQp ,ϕ=α(x) 6= 0. In particular, every V ∗x is trianguline. We want

to show that V0 is also trianguline with nonzero Frobenius eigenvalue

α(0).

The proof of this local question consists of three steps. Remember that we need to

cut out a crystalline period on the entire disk. The main idea is to first look at the

de Rham period.

Step 1: Away from the puncture

On the punctured disk, we are able to prove that crystalline periods coincide with de

Rham periods. More precisely, for any affinoid Sp(R) ⊂ D∗, we have D+
crys(V

∗
R)ϕ=α =

D+
crys(V

∗
R) = D+

dR(V ∗R) are free of rank 1. The main ingredient of the proof is a varia-

tion of “finite slope subspace” originally constructed by Kisin. In [Kis03], it is proved

that the crystalline and de Rham periods coincide on “Y -small” affinoid subdomains

of Cp,N . The Y -smallness condition is later removed by Liu in his generalization of

finite slope subspaces [Liu12].
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Step 2: Passing to the puncture

We make use of the crucial fact that D+
dR commutes with flat base change. Applying

base change from annuli to the disk implies D+
dR(V ∗D) is nonzero and has generic rank

1. Pick an element e ∈ D+
dR(V ∗D) whose specialization at 0 is nonzero. Note that e

is de Rham on the disk and crystalline on the punctured disk. This forces e to be

crystalline on the disk.

Moreover, we know that ϕe = αe on the entire disk. Therefore, the nonzero image

of e under specialization D+
crys(V

∗
D) ⊗ S/m0 ↪→ D+

crys(V
∗

0 ) gives us the desired crys-

talline period.

Step 3: Conclusion

That we had constructed is not just a crystalline period in V ∗0 , but a family of

crystalline period e; namely, a global triangulation. This implies that (V0, α(0)) lives

in the space Xp×Gm and is a (p-adic) limit of points on Cp,N . However, the eigencurve

Cp,N is an analytic subspace of Xp×Gm. Therefore, the point (V0, α(0)) also lives on

the eigencurve!

1.3. Structure of the thesis. We first review some of the background material in

Chapter 2. In section 2.1, we recap some basic rigid analytic geometry as we will

later study rigid analytic families of p-adic Galois representations. In section 2.2 and

2.3, we give an overview on p-adic Hodge theory and the theory of (ϕ,Γ)-modules.

Chapter 3 contributes to the study of rigid analytic families of p-adic Galois rep-

resentations. Especially, we introduce recent advances on p-adic Hodge theory and

(ϕ,Γ)-modules in rigid analytic families. We end the chapter with the flat base change

theorem for the de Rham functor D+
dR.
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In Chapter 4, we review the definition of overconvergent modular forms and briefly

sketch Coleman-Mazur’s construction of the eigencurve. We also recall the construc-

tion of the natural family of Galois representations on (the normalization) of the

eigencurve.

In Chapter 5, we study finite slope subspace. The notion was originally defined

by Kisin in [Kis03], and later generalized by Liu in [Liu12]. We adopt the language

of Liu as well as his result on the existence of finite slope subspaces. Then we list

some of the main results in [Liu12] which play a central role in the proof of the main

theorem.

In chapter 6, we prove the main theorem. The proof consists of three parts. In

section 6.1, we show that the natural family of GQ,Σ-representations on D∗ extends

to the entire disk. In section 6.2, we focus on the local question by restricting to GQp-

representations. Finally, in section 6.3, we finish the proof by finding a crystalline

period at the puncture point. In particular, this yields α(0) 6= 0.
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2. Preliminaries

2.1. Rigid analytic geometry. Throughout the thesis, we study objects in rigid

analytic families; namely, objects which live on rigid spaces. The main purpose of

rigid analytic geometry is to provide a notion of analytic spaces over non-archimedean

fields, serving as an analogue of complex manifolds over C. The standard reference

for rigid geometry is [BGR].

2.1.1. Tate algebras and affinoid algebras. Let k be a complete non-archimedean field,

namely, a field complete with respect to a norm | · | : k → R≥0 satisfying |a + b| ≤

max{|a|, |b|} for all a, b ∈ k. For example, the field Qp of p-adic numbers is a complete

non-archimedean field equipped with the normalized norm given by |p| = p−1.

Definition 2.1. The Tate algebra over k of n variables is defined as

Tn = Tn(k) = k〈X1, . . . , Xn〉 := {
∑
J

aJX
J | |aJ | → 0 as J →∞}.

Here the index J runs over multi-index (j1, . . . , jn) ∈ Z⊕n≥0 and “XJ” stands for

Xj1
1 · · ·Xjn

n . The condition “J →∞” means
∑n

i=1 ji →∞.

Definition 2.2. The Gauss norm on Tn is defined by

|
∑
J

aJX
J | := sup

J
|aJ |.

Note that the Gauss norm makes Tn into a Banach k-algebra.

Definition 2.3. A k-affinoid algebra is a k-algebra such that A ∼= Tn(k)/I for some

Tate algebra Tn(k) and some idea I ⊂ Tn(k).

Note that the ideals I ⊂ Tn are closed Banach subspaces of Tn. Thus we can equip

A ∼= Tn/I with the quotient norm and make it a Banach k-algebra. If we have two

different presentations of A, the induced Banach norms will be equivalent.
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2.1.2. Rigid spaces. Let A be a k-affinoid algebra. In this section, we study the

spectrum X = Sp(A) equipped with a Grothendieck topology and a structure sheaf

OX . They are called affinoid spaces.

Definition 2.4. Let A be a k-affinoid algebra. Define the affinoid space X = Sp(A)

to be the set of maximal ideals of A. For any maximal ideal x ∈ X and any f ∈ A,

we write f(x) for the image of f in A/x. Using this language, we define the spectral

(semi-)norm | · |sp on A by setting |f |sp = supx∈X |f(x)|.

Definition 2.5. Let A be a k-affinoid algebra and let X = Sp(A) be the associated

affinoid space. A subset U ⊂ X is called an affinoid subdomain if there exists a k-

affinoid algebra A′ and a morphism A→ A′ such that the induced map α : Sp(A′)→

Sp(A) factors through U and the following universal property holds:

For any morphism A → B of k-affinoid algebras such that the induced map α′ :

Sp(B) → Sp(A) factors though U , the map α′ uniquely facts through α : Sp(A′) →

Sp(A).

Lemma 2.6. Let U ⊂ X be an affinoid subdomain as above and let α : Sp(A′) →

Sp(A) be corresponding map. Then α is injective and it induces a bijection Sp(A′)
∼−→

U .

Using Lemma 2.6, we may always identify the affinoid subdomain U with the set

Sp(A′). In particular, every affinoid subdomain has a structure of affinoid space. The

structure is unique up to a canonical isomorphism. Moreover, if U ⊂ X and V ⊂ U

are affinoid subdomains, so is V ⊂ X. For later use, we point out the following fact:

if Sp(A′) ↪→ Sp(A) is an affinoid subdomain, then the morphism A→ A′ is flat.

Examples of affinoid subdomains include those called rational subdomains. Let

X = Sp(A) and let f0, f1, . . . fn ∈ A with no common zeros. Consider the subset

X(
f1

f0

, · · · fn
f0

) = {x ∈ X | |fi(x)| ≤ |f0(x)| for all i = 1, . . . , n} ⊂ X

8



which is called a rational subdomain of X. One can show that rational subdomains

are indeed affinoid subdomains. It is a deep theorem that every affinoid subdomain

can be written as a finite union of rational subdomains.

Definition 2.7. Let X = Sp(A) be an affinoid space. An affinoid covering of X

is a finite collection of affinoid subdomains U1, . . . , Un such that X =
⋃n
i=1 Ui. The

collection of affinoid subdomains and affinoid coverings gives a Grothendieck topology

on X, called the weak G-topology.

We define a structure (pre-)sheaf OX on X = Sp(A). For any affinoid subdomain

U = Sp(A′) → X, we simply set OX(U) = A′. The presheaf OX is indeed a sheaf

with respect to the weak G-topology on X. The pair (X,OX) forms a locally ringed

space.

Finally, we can define the general notion of rigid spaces by gluing the affinoid spaces

together.

Definition 2.8. A rigid analytic k-space is a locally ringed space (X,OX) equipped

with a grothendieck topology such thatX admits a coveringX = ∪Xi where (Xi,OX |Xi
)

is an affinoid space for all i.

2.2. p-adic Hodge theory. In this section, we review some basic definitions from

p-adic Hodge theory. In particular, we review the construction of Fontaine’s period

rings, which can be used to classify different subcategories of p-adic Galois represen-

tations. The main reference for this section is [Ber02].

2.2.1. Some perfect rings. Let us first fix some notations. Let K be a finite extension

of Qp and let GK = Gal(K/K). Let χ : GK → Z×p be the cyclotomic character.

Moreover, choose a compatible system of primitive p-power roots of unity (ζpn)n≥0.

Namely, each ζpn is a primitive pn-th root of unity and ζppn+1 = ζpn . WriteKn = K(ζpn)

for each n ≥ 1 and let K∞ = ∪n≥1Kn. We also write HK = Gal(K/K∞) and

Γ = ΓK = Gal(K∞/K).
9



Consider a field of characteristic p defined by Ẽ = lim←−x 7→xp Cp; namely, Ẽ consists

of elements of the form (x(i))i≥0 with x(i) ∈ Cp and (x(i+1))p = x(i) for each i. For

example, the element ε = (ζpn)n≥0 is in Ẽ. Let Ẽ+ be the subset of those x =

(x(i)) ∈ Ẽ such that x(0) ∈ OCp . One can show that Ẽ is an algebraically closed

field of characteristic p. Nevertheless, we can define a valuation vE on Ẽ by setting

vE(x) = vp(x
(0)). Then Ẽ is complete with respect to this valuation and Ẽ+ is the

valuation ring. There is also a natural Frobenius map ϕ on Ẽ defined by ϕ((x(i))) =

((x(i))p), namely, raising each component to the p-th power. Similarly, there is a

natural GK-action by acting component-wise.

Let Ã = W (Ẽ) and Ã+ = W (Ẽ+). These are perfect rings of characteristic 0. We

define a topology on Ã which is referred as the weak topology. First, we choose an

element p̃ ∈ Ẽ+ with p̃(0) = p. Let [p̃] be its Teichmüller lift. We define the weak

topology on Ã by specifying the following sets to be a basis of open neighborhoods

around 0:

Um,n = pmÃ + [p̃]nÃ+

where m,n ≥ 0. The weak topology on Ã+ is given by the subspace topology.

We can also define natural Frobenius and GK-actions on Ã and Ã+. More precisely,

we define the Frobenius map by

ϕ(
∞∑
i=0

pi[xi]) =
∞∑
i=0

pi[xpi ]

and for each g ∈ GK , we define

g(
∞∑
i=0

pi[xi]) =
∞∑
i=0

pi[g(xi)].

Both actions are continuous with respect to the weak topology and preserve the

subring Ã+.

Finally we define B̃ = Ã[1/p] and B̃+ = Ã+[1/p].

10



2.2.2. Period rings BHT, BdR, and Bcrys. In this section, we recall the constructions

of Fontaine’s period rings, especially the Hodge-Tate, de Rham, and crystalline period

rings.

First of all, the Hodge-Tate period ring is defined as BHT = Cp[t, t
−1]. It is equipped

with a grading give by the powers of t and a natural GK-action given by g(t) := χ(g)t.

Clearly, the GK-action preserves grading. Moreover, we know that BGK
HT = K.

Now we construct the de Rham period ring BdR. Consider a map θ : B̃+ → Cp

defined by θ(
∑
pi[xi]) =

∑
pix

(0)
i . This map is continuous and GK-equivariant. The

kernel of θ is a principal ideal generated by [p̃]−p. We define B+
dR = lim←−i B̃

+/ ker(θ)i.

In particular, we obtain a map θ : B+
dR → Cp. Note that each quotient B̃+/ ker(θ)i

has a natural structure of p-adic Banach space. This allows us to equip B+
dR with

p-adic Fréchet topology. The natural GK-action on B̃+ induces a natural GK-action

on B+
dR. It is straightforward to check that the GK-action is continuous with respect

to the topology defined above.

Recall that ε = (ζpn)n≥0 is an element in Ẽ+ and let [ε] be its Techmüller lift.

Consider an element t ∈ B+
dR defined by

t := log([ε]) = log(1 + ([ε]− 1)) =
∞∑
n=1

(1− [ε])n

n
.

One checks that t indeed converges to an element in B+
dR. It turns out t is a generator

of ker(θ) ⊂ B+
dR and B+

dR is t-adically complete. Define BdR = B+
dR[1/t] and define

a filtration on BdR by setting Fili BdR = tiB+
dR. Then the associated graded ring is

just BHT. Furthermore, the GK-action on BdR preserves the filtration. We also know

that BGK
dR = K.

It remains to define the crystalline period rings B+
crys and Bcrys. Indeed, B+

crys

is a subring of BdR consists of elements whose expansions satisfy certain growth

conditions. Recall that ε = (1, ζp, ζp2 , . . .) ∈ Ẽ+. We write ε1 = (ζp, ζp2 , ζp3 , . . .) ∈ Ẽ+

and define ω = ([ε] − 1)/([ε1] − 1) ∈ B̃+. One can check that θ(ω) = 0 and thus ω

11



is a generator of ker(θ). It turns out every element in B+
dR can be written as a sum∑∞

i=0 aiω
i with ai ∈ B̃+. We define

B+
crys = {x =

∞∑
i=0

ai
ωi

i!
where ai ∈ B̃+ and ai → 0} ⊂ B+

dR

and define Bcrys = B+
crys[1/t]. We have BGK

crys = K0, the maximal unramified subex-

tension of K/Qp.

There is a natural filtration on Bcrys induced by the inclusion Bcrys ⊂ BdR. More-

over, we can put Frobenius structures on B+
crys and Bcrys induced from the natural

Frobenius ϕ : B̃+ → B̃+. We remark that such attempt fails for B+
dR. For example,

1/([p̃1/p]− p) ∈ B+
dR but ϕ(1/([p̃1/p]− p)) = 1/([p̃]− p) 6∈ B+

dR.

2.2.3. The functors D∗. For any of the period rings B∗ ∈ {BHT,BdR,Bcrys} con-

structed above, we consider the functor D∗ from the category of finite dimensional

Qp-representations of GK to the category of K-vector spaces (or, K0-vector space

in the crystalline case) defined as follows. Let V be such a finite dimensional Qp-

representation; namely, a finite dimensional Qp-vector space equipped with a Qp-

linear continuous action of GK . Define

D∗(V ) := (B∗ ⊗Qp V )GK .

Note that BHT has an extra structure of grading which makes DHT(V ) a graded K-

vector space. Similarly, DdR(V ) is naturally a filtered K-vector space, and Dcrys(V )

is a K0-vector space equipped with a semi-linear Frobenius ϕ and a filtration on

Dcrys(V )⊗K0 K. An element of DHT(V ) (resp., DdR(V ), Dcrys(V )) is called a Hodge-

Tate period (resp., de Rham period, crystalline period) of V .

We say that V is Hodge-Tate (resp., de Rham, crystalline) if dimK DHT(V ) =

dimQp V (resp., dimK DdR(V ) = dimQp V , dimK0 Dcrys(V ) = dimQp V ). We have the
12



following inclusion relation between the categories of these Galois representations.

{ crystalline repn. } ⊂ { de Rham repn. } ⊂ { Hodge-Tate repn. }

Remark 2.9. There is another interpretation of Hodge-Tate representations. A Qp-

representation of GK is Hodge-Tate if V has a decomposition Cp ⊗ V =
⊕d

i=1 Cp(ki)

as Cp[GK ]-modules. Here the integers k1, . . . kd are called Hodge-Tate weights.

Remark 2.10. Those subcategories of Galois representations arise naturally in the

study of number theory. For example, for a (classical) modular form f of weight

k ≥ 1, the associated GQp-representation Vf is in fact crystalline with Hodge-Tate

weight 0 and k − 1.

2.3. (ϕ,Γ)-modules. Roughly speaking, (ϕ,Γ)-modules are linear algebraic objects

equipped with semi-linear Frobenius and Γ-action. The classical theory of (ϕ,Γ)-

modules is introduced by Fontaine as modules over non-perfect rings BK . The theory

was later established by Cherbonnier-Colmez over overconvergent rings B†K , and then

by Berger over Robba rings B†rig,K . In particular, there are equivalences of categories

between p-adic representations of GK and categories of étale (ϕ,Γ)-modules over BK ,

B†K , and B†rig,K , respectively. We will adopt Berger’s language for our purpose.

2.3.1. Some non-perfect rings. Consider the map Fp((T )) → Ẽ sending T to ε − 1.

Let EQp denote the image of this map and let E be the separable closure of EQp inside

Ẽ. Let E+ denote the subring of E of elements with positive vE-valuation.

Consider the map Zp[[T ]][T−1] → Ã sending T to π = [ε] − 1. Let AQp denote

the p-adic completion of the image of this map and let BQp = AQp [1/p]. Let B be

the p-adic completion of the maximal unramified extension of BQp inside B̃. Let

A = B ∩ Ã and A+ = B ∩ Ã+. Note that AQp (resp., A) is the Cohen ring of EQp

(resp., E).
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There is a natural GK-action on A. We define AK := AHK and BK := AK [1/p].

When K = Qp, this definition coincides with the one defined above. There is also a

Frobenius action on A and A+ induced from the one on Ã. However, since A and

A+ are not perfect rings, the Frobenius maps are no longer surjective.

2.3.2. Some overconvergent rings. For s ≥ 0, consider the following subring of Ã:

Ã†,s = {x =
∞∑
i=0

pi[xi] ∈ Ã | vE(xi) +
psi

p− 1
≥ 0, lim

i→∞
(vE(xi) +

psi

p− 1
) =∞}

and put B̃†,s = Ã†,s[1/p]. Define

A†,s = A ∩ Ã†,s, B†,s = B ∩ B̃†,s.

Taking the union over all s, we obtain he “overconvergent rings”:

A† = ∪s≥0A
†,s, B† = ∪s≥0B

†,s.

All these rings possess natural GK-actions. Hence we can take Galois invariants:

A†,sK := (A†,s)HK , B†,sK := (B†,s)HK

and

A†K := (A†)HK , B†K := (B†)HK .

Clearly, A†,s, B†,s, A†, and B† have a natural action of Γ ' GK/HK . There are also

natural Frobenius actions on them induced from the ones on Ã and B̃. Nevertheless,

we can define a norm ws on B†,s by setting ws(x) = infi(vE(xi) + psi
p−1

). Then B†,s is

complete with respect to this norm.

Now we introduce the Robba rings. Note that, for each s′ > s, ws′ is also a

norm on B†,s. Therefore, it makes sense to consider the Fréchet completion of B†,s

with respect to the family of norms {ws′}s′≥s. The resulting ring is denoted by B†,srig.

Similarly, we can consider the family of norms {ws′}s′≥s on B†,sK and let B†,srig,K to be
14



the Fréchet completion. By continuity, B†,srig and B†,srig,K are equipped with natural Γ

and Frobenius actions extending the ones on B†,s and B†,sK .

Finally, taking the union over all s, we obtain the Robba rings B†rig,K := ∪s≥0B
†,s
rig,K .

Clearly, it have natural Γ- and Frobenius actions on it. We remark that the elements

in the Robba ring have a more explicit description when K/Qp is unramified. (This

in particular suffices for our use because we will be mainly interested in the case

K = Qp.) When K/Qp is unramified, let BsK denote the ring of bounded rigid

analytic functions on the half-open annulus {0 < vp(T ) ≤ 1/s}. Then there is an

isomorphism

BsK → B†,sK

sending f(T ) to f(π). Taking the Fréchet completion of the union ∪sB†,sK , we know

that B†rig,K can be identified with the ring of all analytic functions on some half-open

annulus with outside radius 1. The Frobenius action is given by ϕ(T ) = (1 + T )p− 1

and the Γ-action is given by γ(T ) = (1 + T )χ(γ) − 1 for each γ ∈ Γ.

We remark that the above explicit description can be extended to the case when

K/Qp is ramified. But the isomorphism will be non-canonical.

2.3.3. (ϕ,Γ)-modules and p-adic Galois representations.

Definition 2.11. A (ϕ,Γ)-module over B†rig,K is a finite free B†rig,K-moduleD equipped

with semi-linear ϕ- and Γ-actions, commuting with each other, and such that ϕ(D)

generates D.

The theory of (ϕ,Γ)-modules is particularly useful in the study of p-adic Galois

representations. To every p-adic representation of GK , we can associate a (ϕ,Γ)-

module over B†rig,K which translates a Galois representation into a linear algebraic

object. This allows us to construct examples and perform explicit calculations.
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More precisely, the process above turns a Galois representation into an étale (ϕ,Γ)-

module. To define the notion of étaleness, we first review Kedlaya’s slope theory of

ϕ-modules.

Definition 2.12. Let B be a ring equipped with a Frobenius action ϕ. (We will

apply the construction to B̃, B†K , and B†rig,K .)

(a) A ϕ-module over B is a finite free B-module equipped with a semi-linear

ϕ-action such that ϕ(M) generates M .

(b) For any rational number r = a/b ∈ Q with coprime integers a ∈ Z and b ∈

Z≥1, we define a ϕ-module Mr over B of rank b as follows. Let e1, . . . , eb be a

basis of Mr. The ϕ-action on Mr is determined by ϕ(ei) = ei+1 (1 ≤ i ≤ b−1)

and ϕ(eb) = pae1. This ϕ-module Mr is called an elementary ϕ-module of

slope r.

The theory of Dieudonné-Manin decomposition says that every ϕ-module M over

B̃ has can be decomposed as a direct sum of ϕ-modules isomorphic to elementary

ones, namely, M ' ⊕iMri .

Definition 2.13. A ϕ-module M over B†K is isocline of slope r if in the Dieudonné-

Manin decomposition of M ⊗B†K
B̃, all ri’s are equal to r.

As for ϕ-modules over the Robba rings B†rig,K , Kedlaya proves the following slope

decomposition theorem.

Theorem 2.14. Let D be a ϕ-module over B†rig,K. There is a unique filtration

0 = D0 ⊂ D1 ⊂ · · · ⊂ Dn = D

such that for each i, we have Di/Di−1 ' Mi ⊗B†K
B†rig,K for some ϕ-module Mi over

B†K isocline of slope ri and the slopes satisfy r1 < r2 < · · · < rn.
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Definition 2.15. A ϕ-module D over B†rig,K is called étale if in the slope decompo-

sition of D we have n = 1 and r1 = 0. Namely, it comes from a ϕ-module isocline of

slope 0.

Now we come back to the discussion of (ϕ,Γ)-modules. Clearly, a (ϕ,Γ)-module is

just a ϕ-module over B†rig,K equipped with an extra Γ-action.

Definition 2.16. A (ϕ,Γ)-module D over B†rig,K is called étale if it is étale as a

ϕ-module.

Theorem 2.17. There is an equivalence of categories:

D†rig : {p-adic representations of GK} −→ {étale (ϕ,Γ)-modules over B†rig,K}

sending V to D†rig(V ) = (B†rig ⊗Qp V )HK . The inverse is given by D 7→ (B†rig ⊗B†rig,K

D)ϕ=1.

17



3. Families of p-adic Galois representations

In this section, we study p-adic Galois representations in rigid analytic families.

In particular, we extend the study of p-adic Hodge theory and (ϕ,Γ)-modules into

family versions.

First, let us clarify some notations. Let G be a topological group and let X be a

rigid analytic space over Qp. By a family of p-adic representations of G on X, we

mean a locally free OX-module VX equipped with an OX-linear continuous action

of G. If X = Sp(S) is an affinoid space, a family of p-adic representation is also

called an S-linear G-representation, denoted by VS. Moreover, If Sp(R) ⊂ Sp(S) is

an affinoid subdomain and VS is a family of p-adic representation over Sp(S), we use

VR to denote the base change of VS from S to R. Finally, for every point x ∈ Sp(S),

we write Vx for the specialization VS ⊗S k(x) of VS at x.

3.1. p-adic Hodge theory in families. In this section, we give a brief review on

various p-adic Hodge theoretic functors for families of p-adic representations of GQp .

We refer the reader to [BeCo08] and [KL10] for more details.

3.1.1. The functors D∗ in families. Let S be a Qp-affinoid algebra, and let VS be an

S-linear GQp-representation.

Let BHT, B+
dR and B+

crys be the Hodge-Tate, de Rham and crystalline period rings

used in p-adic Hodge theory. For each k > 0, B+
dR/(t

k) is naturally a Qp-Banach

space. This gives a Fréchet topology on

B+
dR = lim←−

k

B+
dR/(t

k).

So we can define S⊗̂QpB
+
dR = lim←−S⊗̂QpB

+
dR/(t

k). We can also define S⊗̂QpBHT and

S⊗̂QpB
+
crys as BHT, B+

crys have natural Qp-Banach space structures. For an S-linear
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representation VS of GQp , following [BeCo08], we set

DHT(VS) = ((S⊗̂QpBHT)⊗S VS)GQp ,

D+
dR(VS) = ((S⊗̂QpB

+
dR)⊗S VS)GQp ,

and

D+
crys(VS) = ((S⊗̂QpB

+
crys)⊗S VS)GQp .

Taking an direct limit, we can define DdR(VS). More precisely, we define

DdR(VS) =
⋃
i

Fil−i DdR(VS) =
⋃
i

(
(S⊗̂Qpt

−iB+
dR)⊗ VS

)GQp

=
⋃
i

lim←−
k

(
(S⊗̂Qp(t−iB+

dR/t
k))⊗ VS

)GQp .

The module Dcrys(VS) can be defined similarly.

3.1.2. Flat base change for D+
dR. The following proposition ensures the flat base

change property of the functor D+
dR(·).

Proposition 3.1. Let VS be an S-linear GQp-representation. If f : S → S ′ is a flat

morphism of Qp-affinoid algebras, then

D+
dR(VS)⊗S S ′

∼−→ D+
dR(V ⊗S S ′).

Proof. This is proved in the proof in [Bel13, Proposition 5.30]. �

3.2. (ϕ,Γ)-modules in rigid analytic families.

3.2.1. The (ϕ,Γ)-module functor D†rig. In [BeCo08], Berger and Colmez construct the

family version of overconvergent (ϕ,Γ)-modules functor for free S-linear representa-

tions. This functor is later generalized to general S-linear representations by Kedlaya

and the second author in [KL10].
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More precisely, let VS be an S-linear GQp-representation of rank d. For sufficiently

large s, one can construct a locally free S⊗̂QpB
†,s
Qp

-module D†,s(VS) of rank d such

that for any x ∈M(S), D†,s(VS)⊗S S/mx is naturally isomorphic to D†,s(Vx). We set

(S⊗̂QpB
†
Qp

) =
⋃
s

S⊗̂QpB
†,s
Qp

and define

D†(VS) = (S⊗̂QpB
†
Qp

)⊗S⊗̂QpB
†,s
Qp

D†,s(VS) =
⋃
s

D†,s(VS).

This is a locally free S⊗̂QpB
†
Qp

-module of rank d and specializes to D†(Vx) for any

x ∈ M(S). Moreover, D†(VS) is equipped with commuting semilinear ϕ,Γ-actions.

This makes D†(VS) an étale (ϕ,Γ)-module over S⊗̂QpB
†
Qp

in the sense of [KL10,

Definition 2.8].

For sufficiently large s, we define

D†,srig(VS) = (S⊗̂QpB
†,s
rig,Qp

)⊗S⊗̂B†,sQp

D†,s(VS).

We set

S⊗̂QpB
†
rig,Qp

=
⋃
s

S⊗̂QpB
†,s
rig,Qp

,

and define

D†rig(VS) = (S⊗̂QpB
†
rig,Qp

)⊗S⊗̂QpB
†,s
rig,Qp

D†,srig(VS) =
⋃
s

D†,srig(VS).

Then D†rig(VS) is an étale family of (ϕ,Γ)-module over S⊗̂QpB
†
rig,Qp

in the sense of

[KL10, Definition 6.3].
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3.2.2. The functors D+
dif and DSen. The construction of (ϕ,Γ)-modules helps to con-

struct the family version of the functors D+
dif and DSen. The same construction for a

single point recovers the original constructions in [Fon04] and [Sen73].

Recall that for 0 < s ≤ rn = pn−1(p− 1), one has the localization map

ιn : B†,srig,Qp
→ Qp(ζpn)[[t]].

This induces a continuous map S⊗̂QpB
†,s
rig,Qp

→ S⊗̂QpQp(ζpn)[[t]]. Define

D+,n
dif (VS) = (S⊗̂QpQp(ζpn)[[t]])⊗ιn,S⊗̂QpB

†,s
rig,Qp

D†,srig(VS).

It is clear that D+,n
dif (VS) is a locally free S⊗̂QpQp(ζpn)[[t]]-module of rank d equipped

with a semilnear Γ-action.

Abusing the notation, we still denote by ιn the natural map ιn : D†,srig(VS) →

D+,n
dif (VS). We define

D+
dif(VS) =

⋃
n

D+,n
dif (VS).

Moreover, we define

Dn
Sen(VS) = D+,n

dif (VS)/(t)

and we set

DSen(VS) =
⋃
n

Dn
Sen(VS).

In particular, Dn
Sen(VS) is a locally free S⊗̂QpQp(ζpn)-module of rank d. Clearly,

the constructions of D+
dif and DSen are compatible with specializations because the

construction of D†rig is.

On DSen(VS), we can construct “Sen operator” generalizing the one constructed in

[Sen80]. Pick a topological generator γ ∈ Γ which is close enough to 1. Consider the

operator

ΘSen :=
log γ

logp χ(γ)
.
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This definition is independent of the choice of γ. The roots of the characteristic

polynomial (called Sen polynomial) of ΘSen are called the Hodge-Tate-Sen weights

of VS. We remark that the specialization of the Hodge-Tate-Sen weights at a point

x ∈ Sp(S) coincide with the generalized Hodge-Tate weights of Vx studied by Sen

[Sen80].

The following theorem compare the constructions from (families version) p-adic

Hodge theory and those from (families of) (ϕ,Γ)-modules. It generalizes the com-

parison results in [Sen73], [Fon04], and [Ber02] to rigid families.

Theorem 3.2. [Bel13, Theorem 5.9, Theorem 5.11, Theorem 5.13] For an S-linear

representation VS of GQp, we have DHT(VS) = ⊕i∈Z(DSen(VS) · ti)Γ, D+
dR(VS) =

D+
dif(VS)Γ and D+

crys(VS) = (D†rig(VS))Γ.
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4. The eigencurve

The notion of families of p-adic modular forms was first studied by Serre [Ser].

The rough idea is as follows. Let A = Qp〈T 〉 and let D = Sp(A) be the p-adic rigid

(closed) unit disk. In particular, A is the ring of rigid analytic functions on D. For

any a ∈ A and any integer k, viewed as a point in D, we write a(k) for the evaluation

of a at k. If we look at q-expansions, a p-adic family of modular eigenforms on D is

a formal expansion

f =
∑
n≥0

anq
n ∈ A[[q]]

such that for each integer k ∈ D, the specialization

fk =
∑
n≥0

an(k)qn ∈ Cp[[q]]

is an eigenform of weight k. In [Ser], Serre studied the family of p-adic Eisenstein

series. The upshot is that it provides arithmetic information about the possible con-

gruences between coefficients of modular forms (in different weights). In particular,

the congruences of the constant terms give congruences between the special values of

zeta-functions.

The theory was further developed by Hida in [HidaA] and [HidaB], in which he

constructed p-adic families of cuspidal Hecke eigenforms, varying analytically with

weights. One can also attach families of Galois representations to the families of

eigenforms. This later led to Mazurs important work on Galois deformation theory.

However, Hidas construction only apply to ordinary modular forms. This restriction

on ordinary forms was resolved by Coleman and Mazurs work [CM98] in which they

constructed the eigencurve. It is a rigid analytic curve C whose points parameterize

all (finite slope) overconvergent p-adic eigenforms, including the ordinary ones. There

is a natural map π : C → W whose image characterizes the weights of the eigenforms.

Here the rigid spaceW is called the weight space. The construction is later generalized
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to any tame level N by Buzzard in [Buz07]. Understanding the geometry of the

eigencurve (or, more generally, eigenvarieties) can provide arithmetic information

about p-adic modular forms.

4.1. Overconvergent modular forms. In this section, we review the constructions

of overconvergent modular forms, which are first studied by Coleman [Col97].

We first fix some notations. Let N be a positive integer prime to p. For each m ≥ 1,

let X = X1(Npm) be the rigid analytic modular curve over Qp of level Γ1(Npm), and

let E → X denote the universal semiabelian scheme. Let e : X → E be the identity

section. Consider the line bundle ω := e∗Ω1
E/X over X, namely, the sheaf of invariant

differentials. We also write X1(Npm)(0) for the ordinary locus of X1(Npm).

Inspired by Serre’s work, Katz defined the notion of p-adic modular forms [Kat73],

which are p-adic interpolations of classical modular forms. Roughly speaking, a p-

adic modular form of level Γ1(Npm) and weight k is a section of ωk defined on the

ordinary locus X1(Npm)(0). Each p-adic modular form has a q-expansion at ∞. For

the precise definition, please refer to [Kat73].

In [Col97], Coleman studied overconvergent modular forms, which are p-adic mod-

ular forms converging beyond the ordinary locus. He showed that a large class of

overconvergent modular forms live in a p-adic family. One can also work with general

weights by p-adically interpolates classical (integral) weights.

We start with the notion of the weight space.

Definition 4.1. The weight space of tame level N is a rigid analytic spaceW =Wp,N

over Qp whose K-points are given by W(K) = Homcont(Z×p × (Z/NZ)×, K×).

We have a natural embedding Z ↪→ W(Qp) by sending integer k to the character

a 7→ ak. In particular, the classical weights can be viewed as points in the weight

space. One can show that W is isomorphic to disjoint union of finitely many open

unit disks.
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Coleman’s definition of overconvergent modular forms treat integral weights and

non-integral weights separately. The definition of overconvergent modular forms of

integral weights are geometric, while he uses p-adic Eisenstein series and a trick to

define the forms for general weights.

For weight κ = k ∈ Z, the construction is as follows. Let 0 < w < p/(p + 1)

be a rational number. Let K/Qp be a finite extension containing an element with

valuation w. Let Ep−1 be the normalized Eisenstein series of level 1 and weight p−1.

Note that Ep−1 is a lift of the Hasse invariant. Consider the following open subset of

X1(N):

X1(N)(w) := {x ∈ X1(N) | |Ep−1| ≥ p−w} ⊂ X1(N),

the strict neighborhood of width w of the ordinary locus of X1(N). Moreover, con-

sider the modular curve X(N, p) of level Γ1(N) ∩ Γ0(p). Then the natural projec-

tion X(N, p) → X1(N) has a section given by canonical subgroup. Define subset

X1(Np)(w) ⊂ X1(Np) by

X1(Np)(w) := X1(Np)×X(N,p) X1(N)(w).

Now we define a w-overconvergent modular form of weight k and level Γ1(Np) to

be an element of H0(X1(Np)(w), ω⊗k). An overconvergent modular form is nothing

but a w-overconvergent modular form for some w > 0. The notion of overconvergent

modular forms for level Γ1(Npm) can be defined similarly. We remark that every

overconvergent modular form has q-expansions at every cusp in X1(Npm)(w).

Now we treat the case when the weight κ ∈ W(K) is not an integer. The definition

uses Serre’s p-adic Eisenstein series Eκ (ref. [Col97]). In particular, for any κ ∈ W ,

the Eisenstein series Eκ has a q-expansion at the cusp∞. Let f be a p-adic modular

form of weight κ. Then f is called a w-overconvergent modular form of weight κ

if f/Eκ extends to a section of OX1(Npm) over X1(Npm)(w). By an overconvergent
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modular form of weight κ we mean a w-overconvergent form for some w > 0.

Finally, we remark that there is a geometric definition given by Andreatta-Iovita-

Stevens in [AIS12], in which they constructed explicitly a rigid analytic bundle ωκ

on X1(Npm)(w) whose sections are the w-overconvergent modular forms.

4.2. The Coleman-Mazur eigencurve. For a newform f , let ρf denote the p-

adic Galois representation of GQ associated to f . Recall that a p-modular residual

representation of tame level N is a two dimensional GQ-representation V over Fp

which is isomorphic to the reduction of ρf for some newform f of level Γ1(Npm)

with m ≥ 1. The Eichler-Shimura relation implies that the GQ-action on V factors

through GQ,Σ.

Let RV be the universal deformation ring of the pseudo-representation associated

to V , and let rV be the associated rank 2 universal pseudo-representation. Let XV =

SpRV [1/p] be the rigid analytic space over Qp associated to RV . For a newform f

of level Γ1(Np), if the reduction of ρf is isomorphic to V , and if the Up-eigenvalue

αf of f is nonzero, it gives rise to a modular point (ρf , α
−1
f ) in XV × Gm. Let

Xp =
∐
XV where V runs through all (finitely many) p-modular tame levelN residual

representations. By the work of Coleman and Mazur [CM98], one may regard the

eigencurve Cp,N of tame level N as an analytic subspace of Xp×Gm, whose reduction

is equal to the Zariski closure of all such modular points (ρf , α
−1
f ). As a result of the

construction, we see that the Cp-points of Cp,N correspond bijectively to finite slope

overconvergent p-adic eigenforms of tame level N . We remark that Cp,N contains not

only forms of level Γ1(Np), but also all forms of level Γ1(Npm) for m ≥ 1.

From this construction using deformation rings, it is not obvious that Cp,N is in-

deed a curve. To prove more geometric properties of the eigencurve, Coleman and

Mazur give another construction using Hecke algebras. They proved that the new

construction is a curve and is same as the previous construction. The new method
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uses the Fredholm theory for the compact Up-operators on the p-adic Banach space

of overconvergent modular forms. For details, please refer to [CM98].

4.3. Families of Galois representations on the eigencurve. In this section, we

construct a natural family of p-adic Galois representations on the normalization of

the eigencurve.

Let r be the universal pseudo-representations on Xp. We obtain a rank 2 pseudo-

representation of GQ,Σ on the eigencurve Cp,N by pulling back r through Cp,N ⊂

Xp × Gm. Let C̃p,N be the normalization of Cp,N . By [CM98, Theorem 5.1.2] (see

the remark after it), any rank 2 pseudo-representations of GQ,Σ on a smooth rigid

analytic curve over Qp can be converted naturally to a family of p-adic representations

of GQ,Σ. Thus there exists a family of GQ,Σ-representations VC̃ of rank 2 on C̃p,N

whose associated pseudo-representation is isomorphic to the pullback of the pseudo-

representation on Cp,N .

We still use VC̃ to denote its restriction to GQp . Let κ ∈ O(C̃) be the pull-back of

the weight function on C. We claim that it has generalized Hodge-Tate weights 0 and

κ− 1. Indeed, this follows from the fact that the specializations Vz of VC̃ at classical

points z are crystalline with Hodge-Tate weight 0, k−1, and that the classical points

are dense in C̃. An immediate consequence is that VC̃ admits a Hodge-Tate period.

Later, we will show that we can lift this Hodge-Tate period to a de Rham and even

crystalline period.

Moreover, we write α ∈ O(C̃) to be the pull-back of the Up-eigenvalue and let Z ⊂ C̃

be the subset of classical points z such that Vz has distinct crystalline Frobenius

eigenvalues. Then the family of representations VC̃ forms a weakly refined family of

p-adic Galois representations of GQp (in the sense of [BelChe, Definition 4.2.7]) with

F = α, κ1 = 0, κ2 = κ− 1 and dense subset Z ⊂ C̃.
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5. Finite slope subspace

The notion of finite slope subspace was first introduced by Kisin. In [Kis03], the

finite slope subspaces are formulated in order to understand the relations between de

Rham periods and crystalline periods of the family of Galois representations on the

eigencurve. More precisely, it is proved that the positive de Rham periods coincide

with positive crystalline periods on “Y -small” affinoid subdomains of the eigencurve.

The definition is later enhanced by Liu [Liu12] by removing the Y -smallness condition

imposed in Kisin’s original definition. This modification is important for our purpose

because we need to compare the de Rham and crystalline periods on general affinoid

subdomains. Therefore, we adopt the definitions as in [Liu12].

From now on, we take K = Qp. Let X be a separated and reduced rigid analytic

space over some finite extension L of Qp. Let VX be a family of p-adic representations

of GQp over X. We further assume that the Sen polynomial for VX is of the form

TQ(T ) for some Q(T ) ∈ OX [T ]. Let α ∈ O(X)× be an invertible analytic function

on X.

We need the following notation in the definition below. If X ′ ⊂ X is an analytic

subspace and h is an analytic function on X, we write X ′h for the non-vanishing locus

of h in X ′. In particular, if j is an integer, then X ′Q(j) excludes exactly those points

which has −j as a Hodge-Tate weight.

Definition 5.1. Let (X, VX , α) be a triple as above. An analytic subspace Xfs ⊂ X

is called a finite slope subspace of X with respect to the pair (VX , α) if it satisfies the

following two conditions:

(1) For every integer j ≤ 0, the subspace (Xfs)Q(j) is Zariski-dense in Xfs.

(2) For any affinoid algebra R over L and any morphism g : Sp(R) → X which

factors through XQ(j) for every integer j ≤ 0, the morphism g factors through
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Xfs if and only if the natural map

ιn : (D†rig(VR))ϕ=g∗(α),Γ=1 → (D+,n
dif (VR))Γ

is an isomorphism for all sufficiently large n.

The uniqueness of the finite slope subspace is obvious. The following result guar-

antees the existence of finite slope subspace.

Theorem 5.2 ([Liu12], Theorem 3.3.1). Given any triple (X, VX , α) as above, the

rigid analytic space X has a unique finite slope subspace Xfs.

The finite slope subspace has the following important property which will play an

important role in next section.

Theorem 5.3 ([Liu12], Theorem 3.3.4). Let Sp(S) be an affinoid subdomain of Xfs

and let | · |sp denote the spectral norm taken on S. Then for any n ≥ n(VS) and

k > logp |α−1|sp, the natural map

(D†rig(VS))ϕ=α,Γ=1 → (D+,n
dif (VS)/(tk))Γ

is an isomorphism.

Remark 5.4. Notice that we have D†rig(VS)Γ = D+
crys(VS) and D+

dif(VS)Γ = D+
dR(VS)

by Theorem 3.2. This theorem indeed allows us to compare positive de Rham periods

and crystalline ones on the affinoid Sp(S).

Now we apply the above discussion to the family of Galois representations on

the eigencurve. Recall that we have a family of 2-dimensional GQ,Σ-representations

on the normalization C̃ of C = Cp,N . We still use VC̃ to denote the corresponding

representation of GQp . Let αC ∈ O(Cp,N)× be the function of Up-eigenvalues and let

αC̃ ∈ O(C̃p,N)× be the pullback of αC. Note that VC̃ has 0 as a Hodge-Tate-Sen weight.

So we may write the Sen polynomial of VC̃ as T (T − κC̃) for some κC̃ ∈ O(C̃p,N).
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Proposition 5.5. The finite slope subspace associated to the pair (VC̃, αC̃) is the

normalized eigencurve C̃ itself.

Proof. This is one of the main result of [Liu12]. More precisely, the discussion in

[Liu12, Section 5.4] shows that VC̃ forms a weakly refined family of p-adic Galois

representations. Then by [Liu12, Proposition 5.1.4], the finite slope subspace of such

family is the underlying space itself. �
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6. The main theorem

With all the preparations above, we can finally prove the main theorem.

Theorem 6.1 (Properness of the Eigencurve). Let Cp,N be the Coleman-Mazur eigen-

curve of tame level N , and let π : Cp,N → W denote the natural projection to the

weight space. Let D be the closed unit disk over some finite extension L over Qp, and

let D∗ be the punctured disk with the origin removed. Suppose h : D∗ → Cp,N is a

morphism of rigid analytic spaces such that π ◦ h extends to D. Then h extends to a

morphism h̃ : D → Cp,N compatible with π ◦ h.

As mentioned in the introduction section, we attack this problem by studying

the associated family of Galois representations on the disk. Then we further reduce

the problem to a local question by restricting to GQp-representations. Here is the

breakdown of the strategy:

• We look at the associate family of GQ,Σ-representations VD∗ on the punctured

disk D∗. It is obtained by pulling-back the natural GQ,Σ-representations on

the normalized eigencurve C̃p,N . In section 6.1, we show that VD∗ naturally

extends to a representation VD on the entire disk.

• In section 6.2, we reduce the problem to a local question by looking at the

associated GQp-representations, still denoted by VD∗ and VD. Write V ∗D∗ and

V ∗D for the dual of VD∗ and VD, respectively. We claim that the finite slope

subspace of V ∗D∗ is the punctured disk D∗ itself. It in turn allows us to compare

the de Rham periods and crystalline periods on the punctured disk. This is

proved in section 6.2.1.

• Using an explicit calculation, in section 6.2.2 we show that the positive de

Rham periods D+
dR(V ∗D) coincides with the positive crystalline periods D+

crys(V
∗
D).
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• Finally, we wrap up the proof in section 6.3. More precisely, we find a nonzero

de Rham period on the disk and show that it is indeed a crystalline period

with nonzero Frobenius eigenvalue. This suffices to conclude the proof.

6.1. Families of Galois representations on the punctured disk. Let Cp,N be

the Coleman-Mazur eigencurve of tame level N and let C̃p,N be the normalization of

Cp,N . Recall that there exists a family of GQ,Σ-representations VC̃ of rank 2 on C̃p,N

whose associated pseudo-representation is isomorphic to the pullback of the pseudo-

representation on Cp,N (see section 4.3).

Moreover, we may assume that the given map h : D∗ → Cp,N is dominant. (Oth-

erwise, the image of h must be a single point by the connectedness of D∗, and the

situation becomes trivial.) Since D∗ is smooth, the map h : D∗ → Cp,N must factor

through C̃p,N . Abusing the notation, we still denote the resulting map D∗ → C̃p,N by

h. Let VD∗ denote the pullback of VC̃ along h. The goal of this section is to show

that the composition u : D∗ → Cp,N ↪→ Xp × Gm → Xp extends to a morphism

on the entire disk D. Consequently, this implies that VD∗ extends to a family of

GQ,Σ-representations on D.

Before proceeding, let us first make the following observation.

Lemma 6.2. Let F ∈ O(D∗) be a bounded function on the punctured disk. Namely,

there exists a constant C such that |F (x)| ≤ C for all x ∈ D∗. Then F extends

uniquely to an element of O(D).

Proof. The uniqueness is obvious. After scaling, we may assume |F (x)| ≤ 1 for all

x ∈ D∗. Let D0,n = Sp(Qp〈T, pnT−1〉) be the closed annulus with outside radius 1

and inside radius p−n. By the assumption above, |F | ≤ 1 on D0,n for any n ≥ 1. This

implies F ∈ Zp〈T, pnT−1〉 for all n ≥ 1. Therefore,

F ∈
⋂
n≥1

Zp〈T, pnT−1〉 = Zp〈T 〉 = O(D).
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Proposition 6.3. The composition morphism u : D∗ → Cp,N ↪→ Xp × Gm → Xp

extends to a morphism of rigid analytic spaces ũ : D → Xp.

Proof. Since D∗ is connected, it maps to XV for some p-modular residue represen-

tation V . Note that XV is the generic fibre of Spf(RV ). Thus for any x ∈ D∗ and

t ∈ RV , we have |u∗(t)(x)| = |t(u(x))| ≤ 1. By Lemma 6.2, u∗(t) extends uniquely

to an element of Zp〈T 〉. This gives us a continuous morphism RV → Zp〈T 〉, yielding

the desired extension. �

Using this, we can show that VD∗ extends to the entire disk D. Denote by rD∗ the

pseudo-representation associated to VD∗ . From the construction of VD∗ , we see that

rD∗ is isomorphic to the pullback of the universal pseudo-representation on Xp along

u.

Corollary 6.4. The family of GQ,Σ-representations VD∗ extends to D.

Proof. Let ũ : D → Xp be the morphism given by Proposition 6.3. Pulling back the

universal pseudo-representation on Xp along ũ, we obtain a pseudo-representation

rD of GQ,Σ on D which extends rD∗ . Note that D is a smooth rigid analytic curve

over Qp. As explained earlier in section 4, by [CM98, Theorem 5.1.2] again, one

can convert rD to a family of GQ,Σ-representations on D. This gives the desired

extension. �

From now on, we denote by VD the extended family of p-adic representations of

GQ,Σ on D given by Corollary 6.4.

6.2. The local question. In this section, we study the restriction of various GQ,Σ-

representations to GQp . Namely, we reduce the original problem to a local question.

Recall that we have families of GQ,Σ-representations VD∗ , VD and VC̃ on D∗, D and
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C̃, respectively. We use the same notations to denote their restrictions to GQp . We

also write V ∗D∗ , V
∗
D, and V ∗C̃ for their duals.

6.2.1. Finite slope subspace of V ∗D∗. Let αC ∈ O(Cp,N)× be the function encoding the

Up-eigenvalues. Let αC̃ ∈ O(C̃p,N)× be the pullback of αC and let α ∈ O(D∗)× be

the pullback of αC̃ via h. Since the family of p-adic representations VC̃ has 0 as a

Hodge-Tate weight, we may write the Sen polynomial of V ∗C̃ as T (T − κC̃) for some

κC̃ ∈ O(C̃p,N). Let κ = h∗(κC̃) ∈ O(D∗). It follows that the Sen polynomial of V ∗D∗

is T (T − κ). In particular, we can talk about the finite slope subspace associated to

the triple (D∗, V ∗D∗ , α).

Proposition 6.5. The finite slope subspace (D∗)fs of the punctured disk D∗ associ-

ated to (V ∗D∗ , α) is D∗ itself.

Proof. We need to check that the triple (D∗, V ∗D∗ , α) satisfies the conditions (1) and (2)

of Definition 5.1. According to Proposition 5.5, the finite slope subspace associated

to the pair (V ∗C̃ , αC̃) is C̃ itself. Hence, the triple (C̃, αC̃, V ∗C̃ ) satisfies the conditions

(1) and (2). In particular, C̃(κC̃−j) is scheme-theoretically dense in C̃ for every j ≤ 0.

Since h is dominant and D∗ is of dimension 1, we deduce that D∗(κ−j) = h−1(C̃(κC̃−j)) is

scheme-theoretically dense in D∗. Thus the triple (D∗, V ∗D∗ , α) satisfies the condition

(1). Moreover, the triple (D∗, V ∗D∗ , α) also satisfies the condition (2) because D∗(κ−j)

maps to C̃(κC̃−j) for every j ≤ 0. This concludes the proof. �

Proposition 6.6. For any affinoid subdomain Sp(R) of D∗ and any k > logp |α−1|sp

with | · |sp being the spectral norm on R, the natural map

(D†rig(V ∗R)))ϕ=α,Γ=1 → (D+
dif(V

∗
R)/(tk))Γ

is an isomorphism. Furthermore, (D†rig(V ∗R)))ϕ=α,Γ=1 is a locally free R-module of

rank 1.
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Proof. Since the finite slope subspace of D∗ is itself, it follows immediately from

Theorem 5.3 that the given map is an isomorphism. Note that Sp(R) is smooth of

dimension 1. One can deduce that the R-module (D+
dif(V

∗
R)/(tk))Γ is locally free as it

is finite and torsion free. Moreover, by [Liu12, Corollary 1.5.6], the natural map

(D+
dif(V

∗
R)/(tk))Γ ⊗R k(x)→ (D+

dif(V
∗
x )/(tk))Γ

is an isomorphism for any x ∈ Sp(R) with non-integral weight. It is clear that the

right hand side is of k(x)-dimension 1. Since the subset of points with non-integral

weights is Zariski dense in Sp(R), we conclude that (D+
dif(V

∗
R)/(tk))Γ is a locally free

R-module of rank 1, and so is (D†rig(V ∗R)))ϕ=α,Γ=1. �

Corollary 6.7. For any affinoid subdomain Sp(R) of D∗, the natural map

D+
crys(V

∗
R)ϕ=α → D+

dR(V ∗R)

is an isomorphism. Furthermore, they are locally free R-modules of rank 1.

Proof. By the previous proposition, the natural map

(D†rig(V ∗R)))ϕ=α,Γ=1 → (D+
dif(V

∗
R)/(tk))Γ

is an isomorphism for all sufficiently large k. Taking an inverse limit, we obtain

natural isomorphism

(D†rig(V ∗R)))ϕ=α,Γ=1 → D+
dif(V

∗
R)Γ = lim←−

k

(D+
dif(V

∗
R)/(tk))Γ.

Finally, we conclude by applying Theorem 3.2 which says D+
crys(V

∗
R) = D†rig(V ∗R)Γ and

D+
dR(V ∗R) = D+

dif(V
∗
R)Γ. �

6.2.2. De Rham periods vs crystalline periods. By Corollary 6.7 in the previous sec-

tion, we know that D+
dR(V ∗R) = D+

crys(V
∗
R) for any affinoid Sp(R) ⊂ D∗; namely, the de

35



Rham periods and the crystalline periods coincide on the punctured disk. The goal

of this section is to show D+
dR(V ∗D) = D+

crys(V
∗
D).

Let us first fix some notations which will be used in the rest of the thesis. Let

S = Qp〈T 〉. For any n ≥ 0 (resp. n′ > n ≥ 0), let Sn = Qp〈p−nT 〉 (resp. Sn,n′ =

Qp〈p−nT, pn
′
T−1〉). Let Vn (resp. Vn,n′) be the restriction of VD on Sp(Sn) (resp.

Sp(Sn,n′)).

Definition 6.8. Let A be a Qp-Banach algebra.

(i) For any n ≥ 0, define the Banach algebra A〈p−nT 〉 to be the ring of formal

power series
∑

i∈N aiT
i with ai ∈ A and such that |ai|p−ni → 0 as i→∞. It

is equipped with a Banach norm |
∑

i∈N aiT
i| = sup |ai|p−ni.

(ii) For any n′ > n ≥ 0, define the Banach algebra A〈p−nT, pn′T−1〉 to be the

ring of Laurent series
∑

i∈Z aiT
i with ai ∈ A and such that |ai|p−ni → 0 as

i → ∞ and |ai|p−n
′i → 0 as i → −∞. It is equipped with a Banach norm

|
∑

i∈Z aiT
i| = max{sup |ai|p−ni, sup |ai|p−n

′i}.

Using the facts that the elements {p−niT i}i∈N form an orthonormal basis of Sn

and that {p−niT i, pn′(i+1)T−i−1}i∈N form an orthonormal basis of Sn,n′ , we deduce the

following lemma.

Lemma 6.9. Let A be a Qp-Banach algebra. For any n ≥ 0, we have natural

identification of Banach algebras

ηn,A : Sn⊗̂QpA
∼−→ A〈p−nT 〉.

Similarly, for any n′ > n ≥ 0, we have natural identification of Banach algebras

ηn,n′,A : Sn,n′⊗̂QpA
∼−→ A〈p−nT, pn′T−1〉.

Definition 6.10. Let A = lim←−
j∈J

Aj be a Fréchet algebra where Aj’s are Qp-Banach

algebras.
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(i) Define the Fréchet algebra A〈p−nT 〉 to be the inverse limit of Banach algebras

Aj〈p−nT 〉.

(ii) For any n′ > n ≥ 0, define the Fréchet algebra A〈p−nT, pn′T−1〉 to be the

inverse limit of Banach algebras Aj〈p−nT, pn
′
T−1〉.

Note that the natural inclusions Aj〈p−nT 〉 ↪→ Aj[[T ]] induces an injective map

A〈p−nT 〉 = lim←−
j∈J

Aj〈p−nT 〉 ↪→ lim←−
j∈J

Aj[[T ]] = A[[T ]].

Thus one may naturally identify A〈p−nT 〉 as a subring of A[[T ]]. Similarly, one can

naturally identify A〈p−nT, pn′T−1〉 as a subset of A[[T, T−1]], which is not a ring!.

Lemma 6.11. We adopt the notations as in Definition 6.10. For any n ≥ 0, we

have natural identification of Fréchet algebras

ηn,A : Sn⊗̂QpA
∼−→ A〈p−nT 〉.

Similarly, for any n′ > n ≥ 0, we have natural identification of Fréchet algebras

ηn,n′,A : Sn,n′⊗̂QpA
∼−→ A〈p−nT, pn′T−1〉.

Proof. This follows from first applying the previous lemma to the Qp-Banach algebras

Aj and then taking inverse limits. �

In particular, Lemma 6.9 applies to A = B+
crys and Lemma 6.11 applies to A =

B+
dR = lim←−B+

dR/(t
i).

Lemma 6.12. (i) For any n ≥ 0, the continuous map B+
crys → B+

dR induces a

natural inclusion B+
crys〈p−MT 〉 ↪→ B+

dR〈p−MT 〉.

(ii) For any n′ > n ≥ 0, the continuous map B+
crys → B+

dR/(t
i) induces a natural

inclusion B+
crys〈p−nT, pn

′
T−1〉 ↪→ B+

dR〈p−nT, pn
′
T−1〉.

Proof. By the commutative diagram
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B+
crys〈p−nT 〉 //

��

B+
dR〈p−nT 〉

��

B+
crys[[T ]] // B+

dR[[T ]],

we see that the composition B+
crys〈p−nT 〉 → B+

dR〈p−nT 〉 → B+
dR[[T ]] is injective.

Hence the natural map B+
crys〈p−nT 〉 → B+

dR〈p−nT 〉 is injective. The proof of (ii) is

similar. �

As a consequence of Lemma 6.12, we may naturally identify Sn⊗̂QpB
+
crys (resp.

Sn,n′⊗̂QpB
+
crys) as a subring of Sn⊗̂QpB

+
dR (resp. Sn,n′⊗̂QpB

+
dR).

Lemma 6.13. For any x ∈ Sn⊗̂QpB
+
dR, if its image in Sn,n′⊗̂QpB

+
dR belongs to

Sn,n′⊗̂QpB
+
crys, then x ∈ Sn⊗̂QpB

+
crys.

Proof. By the previous lemmas, we may regard all the rings involved as subsets of

B+
dR[[T, T−1]]. It follows from the assumption that

x ∈ B+
dR〈p

−nT 〉∩B+
crys〈p−nT, pn

′
T−1〉 ⊆ B+

dR[[T ]]∩B+
crys〈p−nT, pn

′
T−1〉 = B+

crys〈p−nT 〉.

This is to say x ∈ Sn⊗̂QpB
+
crys. �

Finally, we show that the crystalline and de Rham periods coincide on the entire

disk.

Corollary 6.14. D+
crys(V

∗
D) = D+

dR(V ∗D).

Proof. Applying Corollary 6.7 to R = S0,1, we have D+
crys(V

∗
0,1) = D+

dR(V ∗0,1). Using

the previous lemma, we deduce that D+
dR(V ∗D) ⊆ D+

crys(V
∗
D). Indeed, any x ∈ D+

dR(V ∗D)

must also live in D+
crys(V

∗
0,1) = (S0,1⊗̂B+

crys⊗V ∗D)GQp . Thus x ∈ (S0⊗̂B+
crys⊗V ∗D)GQp =

D+
crys(V

∗
D). The inclusion from the other direction is obvious. �
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6.3. Proof of the main theorem. Applying Proposition 3.1 to the flat base change

from S to S0,1, we obtain isomorphism

D+
dR(V ∗D)⊗S S0,1

∼−→ D+
dR(V ∗0,1).

By Corollary 6.7, we see that D+
dR(V ∗0,1) is a locally free S0,1-module of rank 1. In

particular, this implies D+
dR(V ∗D) 6= 0.

Pick a nonzero element e ∈ D+
dR(V ∗D). By dividing a suitable power of T , we

may assume that the specialization e0 of e at the puncture 0 is nonzero. Note that

e ∈ D+
crys(V

∗
D) by Corollary 6.14. Moreover, the image of e in D+

crys(V
∗

0,1) belongs to

D+
crys(V

∗
0,1)ϕ=α by Corollary 6.7. That is, ϕ(e) = αe on Sp(S0,1). Note that the norms

of the Up-eigenvalues of overconvergent p-adic eigenforms are less than or equal to

1. By Lemma 6.2, we must have α ∈ O(D). Since Sp(S0,1) is Zariski dense in D,

this forces ϕ(e) = αe on the entire disk. In particular, ϕ(e0) = α(0)e0. Since ϕ is

injective on D+
crys(V

∗
0 ), we conclude that α(0) 6= 0. Thus α ∈ O(D)×.

Now we construct a map h̃ : D → Xp × Gm of rigid analytic spaces by sending x

to (ũ(x), α(x)−1) where ũ is given by Proposition 6.3. It is clear that h̃|D∗ = h. Since

Cp,N is an analytic subspace of Xp × Gm, h̃−1(Cp,N) is a an analytic subspace of D

containing D∗. This forces h̃−1(Cp,N) = D, making h̃ the desired extension of h. The

proof of the main theorem is now complete.
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[BM12] Joël Belläıche, Mladen Dimitrov, On the eigencurve at classical weight one point.
preprint 2012.

[Bel13] Rebecca Bellovin, P -adic Hodge theory in rigid analytic families, Dissertation 2013.

[Ber02] Laurent Berger, Représentations p-adiques et équations différentielles, Invent. Math.
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