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Mathematical Modeling to Evaluate Disease Control Policy 

 

Abstract 

 

In this dissertation I assessed three distinct policy questions: the implications of introducing a 

new tuberculosis diagnostic in southern Africa, the potential value of research related to HIV 

treatment policy in South Africa, and the causal effect of state cigarette taxes imposed between 

1996 and 2013 on health outcomes in the United States.  

In Chapter 1 I investigated use of a new TB diagnostic, Xpert MTB/RIF, to replace sputum 

smear-based diagnostic algorithms in southern Africa. Analyses were undertaken using a dynamic 

mathematical model, taking account of TB transmission and natural history, HIV epidemiology, TB 

drug resistance, and disease control interventions. Results suggest Xpert may substantially reduce 

TB morbidity and mortality, and modestly reduce transmission, while significantly increasing 

demands on healthcare resources. Xpert adoption was estimated to cost $711 to $1,083 per DALY 

averted, representing good value for money according to conventional benchmarks.  

In Chapter 2 I estimated the value of new research on various targets relevant to HIV 

treatment policy in South Africa. I implemented the analysis with a mathematical model of HIV 

epidemiology, simulating HIV transmission, disease progression, and receipt of treatment. I used 

Value of Information (VOI) methods to identify priority research areas, based on the welfare gains 

possible by obtaining better information prior to decision-making. High priority research targets 

included issues of cost and implementation, relative infectiousness during late HIV, the reduction in 
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infectiousness following treatment initiation, and the therapeutic benefits of early treatment 

initiation.  

In Chapter 3 I estimated how changes in state cigarette taxes over the period 1996-2013 

affected smoking behavior and health outcomes in the United States. The causal effect of tax 

changes were estimated in the context of a demographic model directly linking smoking behavior 

with subsequent mortality risks, using data from the Behavioral Risk Factor Surveillance System. 

Results suggest national cigarette consumption by 2013 was 4.0% lower (3.3, 4.6) compared to a 

counterfactual with no new state cigarette taxes after 1996, averting 27 thousand (22, 34) deaths 

and producing 119 thousand (92, 151) extra life-years lived. The health impact of these taxes was 

projected to be far greater in future years. 
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 Dissertation Overview  Chapter 1.
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In order to make good public policy, decision-makers must understand the consequences of 

competing policy options. In evaluating these options, it is rare to have all the information that 

might be desired – the available information about an intervention might be derived from a setting 

very different to that anticipated for the new policy, and understanding long-term outcomes may 

require piecing together information about many intermediate steps. Each of the three chapters in 

this dissertation takes a formal approach to combining available data to estimate policy outcomes. 

Addressing very different policy questions, each chapter develops a mathematical model describing 

how quantities about which we have some understanding—such as historical time trends in disease 

epidemiology, or the individual-level effects of an intervention under defined conditions—combine 

to generate population-level outcomes. This approach brings with it both weaknesses and 

strengths. From the outset, all of these mathematical models are known to be wrong, in the sense 

that they involve simplification of complex disease processes, and ignore various sources of 

heterogeneity in how individuals will be affected by a given policy. The challenge for policy analysis 

using these models is to produce reasonable estimates about quantities of interest, despite the 

simplifications. Of course, any attempt to predict future events requires assumptions, even if these 

are not plainly stated. A strength of the approach adopted for these analyses comes from the 

opportunity to examine and test modeling assumptions. By modeling the various processes that 

generate long-term outcomes, mechanistic models allow many different intermediate outcomes to 

be estimated. Even though we may not have empirical data on long-term outcomes to validate 

policy predictions, we often have data on these intermediate outcomes, which can be used to both 

calibrate model inputs and identify modeling assumptions that are inconsistent with reality, 

providing the opportunity for iterative model refinement.   
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 Chapter 2: Population health impact and cost-effectiveness of tuberculosis diagnosis 1.1.

with Xpert MTB/RIF, a dynamic simulation and economic evaluation 

In Chapter 1 I investigate the consequences of introducing new technology for diagnosis of 

tuberculosis (TB) in southern African countries. TB remains a leading cause of mortality and 

morbidity in southern Africa [1]. Although significant advances have been made, continued 

progress in TB control is threatened by the inadequacy of existing diagnosis. Diagnostic algorithms 

generally rely on sputum smear microscopy, which has limited sensitivity, especially among HIV-

infected patients [2–4]. Recently, the Xpert MTB/RIF automated DNA test has been shown to 

provide rapid and sensitive detection of TB and rifampicin (RIF) resistance [5,6], and can be 

implemented by relatively unskilled healthcare workers [5,7]. In December 2010, the WHO 

recommended that Xpert be used for TB diagnosis where MDR-TB (multidrug resistant-TB) or HIV 

infection are suspected [8], and many countries have begun to adopt this technology [9].  

In this study I estimated the potential health and economic consequences of introducing Xpert in 

southern African countries, which are characterized by a high prevalence of HIV infection and 

growing TB drug resistance. I compared two alternative strategies for diagnosing TB, the first based 

on the earlier diagnostic algorithms relying on sputum smear microscopy, and the second based on 

implementing Xpert in accordance with new WHO recommendations. Comparisons between these 

two strategies were made using a dynamic mathematical model of TB, which took account of key 

features of TB transmission dynamics and natural history, interactions with HIV infection, TB drug 

resistance patterns, and trends in TB and HIV control interventions. A Bayesian approach was used 

to calibrate model parameters to reported data on TB prevalence, incidence, and the distribution of 

drug resistance in each country [10]. Model simulations were undertaken for five southern African 

countries: Botswana, Lesotho, Namibia, South Africa, and Swaziland. The analysis assessed changes 

in epidemiological outcomes and health system costs over 10-year and 20-year time horizons, as 
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well as the incremental cost-effectiveness ratio (ICER) of the Xpert strategy compared to the 

current algorithm. 

The results of this analysis indicated that the introduction of Xpert has the potential to substantially 

reduce TB morbidity and mortality in southern Africa, with TB prevalence estimated to be 28% 

lower (95% posterior interval: 14, 40) and TB mortality 21% lower (10, 32) 10 years after Xpert 

introduction, as compared to outcomes estimated for the continued use of earlier diagnostics. For 

individuals with smear-negative TB, the benefits of Xpert implementation would be immediate, 

leading to the diagnosis and early treatment of many individuals who would be missed by the 

conventional diagnostic algorithm. Over a longer time frame, the introduction of Xpert would 

reduce transmission, but these secondary effects are smaller than might have been anticipated, and 

TB incidence after 10 years was estimated to be 6% lower (2, 13) under the Xpert scenario as 

compared to the status quo. As a consequence, the analysis suggests that TB incidence would 

remain substantial after three decades of Xpert use, in the absence of other modifications to the TB 

control strategy.  

Results also suggested that Xpert adoption would significantly increase demands on healthcare 

resources. While the direct costs of the Xpert technology itself are not small, a major financial 

impact of Xpert introduction would come from increased resource requirements in HIV treatment 

programs, with prompt TB treatment extending survival among TB/HIV-coinfected individuals. At 

10 years after Xpert introduction, HIV treatment costs are estimated to comprise 58% (95% CI: 40–

72) of the total incremental costs associated with the Xpert strategy. Treatment of MDR-TB 

represents another major cost, as the number of cases of MDR-TB identified increases two- to 

three-fold with Xpert introduction. Compared to continued use of earlier diagnostics, the 

introduction of Xpert was estimated to have an ICER that ranged from $711 to $1,083 per DALY 

averted, depending on the time horizon and assumptions about the Xpert test cost. These ratios 
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were generally robust to changes in analytic assumptions, though did rise substantially in scenarios 

that assumed much higher availability of TB culture (a more sensitive diagnostic test than sputum 

smear, but with long turn-around times) under the status quo. 

While the ICERs estimated in this study are higher than those estimated by an earlier analysis [11], 

they still suggest that the introduction of Xpert represents good value for money according to 

typical international benchmarks. However, these results also raise important questions of 

affordability, due to the additional demand for various treatment services. It is likely that existing 

resources will be called upon to support the introduction of Xpert and the cascade of 

complementary services this will trigger, and our findings underscore the concern raised by other 

commentators regarding the possible pitfalls of introducing Xpert into health systems that are 

already facing capacity constraints [12,13]. 

 Chapter 2: Value of new research to inform HIV control policy in South Africa 1.2.

In Chapter 2 I report analyses to estimate the relative value of various targets for new research 

related to HIV control in developing countries. Despite unprecedented funding levels, many highly-

affected countries are not yet able to provide antiretroviral therapy (ART) to all who might benefit 

[14]. While the therapeutic benefits of ART are well established [15], there is increasing evidence 

that ART may also reduce HIV transmission [16]. As a consequence, policy makers are considering 

expanded ART eligibility criteria [17]. Expanded eligibility will come at the expense of other care 

unless further funding is available [18], and must compete with efforts to increase enrollment 

among groups already eligible according to current guidelines. Recent modeled analyses suggest 

uncertainty about the optimal approach to expanding ART programs according to cost-effectiveness 

criteria [19], and this uncertainty hinders the development of long-term HIV control strategy [20]. 

Uncertainty about optimal ART policy is partially due to weaknesses in the evidence base used to 

understand the consequences of HIV treatment policy. A number of specific issues are particularly 
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uncertain, including the magnitude of incidence reductions associated with ART as implemented in 

routine programs [21], the therapeutic benefits of initiating ART at high CD4 cell count [22], the 

relative importance of early HIV infection to epidemic dynamics [23], and the cost and 

implementation challenges associated with expanding different programmatic components [21,24].  

This study attempts to inform decisions about new HIV research to inform ART policy, using value 

of information (VOI) methods to identify high-priority research targets [25–27]. To implement this 

analysis I developed a mathematical model to represent an HIV epidemic in the South African adult 

population, simulating transmission of HIV infection through durable sexual partnerships and 

casual sexual contacts, the progression of HIV disease for HIV-infected individuals, and initiation 

and receipt of antiretroviral therapy. I used this model to project the costs and health outcomes 

resulting from various policy options that might be adopted by the South African national HIV 

control program, and used Monte Carlo methods to quantify how uncertainty in epidemiology, 

programmatic performance and cost translated into uncertainty in modeled outcomes. These 

results were then used to estimate VOI for individual parameters or groups of parameters. Finally, I 

compared VOI estimates for different parameters to draw conclusions about high-priority research 

targets for informing ART policy. 

This analysis suggested that scaling-up ART would substantially reduce the burden of HIV in South 

Africa. Over the next 20 years the most aggressive scale-up policy was estimated to reduce 

cumulative incidence by 58% (44, 68) and reduce HIV mortality by 34% (29, 38), as compared to 

continuation of current policy. The relative impacts of therapeutic vs. preventive effects of ART 

were sensitive to the time horizon, with the prevention effects contributing the majority of DALYs 

averted from ART expansion over an extended timeline. Expanded ART was also estimated to 

require large increases in health system costs, with higher HIV programs costs being only modestly 

offset by savings in routine health services. The cost-effectiveness findings suggested that 
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expanding ART access, either through raising CD4 cell count-based eligibility criteria or through 

more aggressive testing programs, would be cost-effective under a wide range of assumptions, and 

despite uncertainties about epidemiology and intervention effects. These findings are broadly 

consistent with other analyses investigating the long-term outcomes of ART expansion in South 

Africa [19,28–30]. The relative ordering of ART scale-up approaches was sensitive to the time 

horizon, with expansions in eligibility preferred to expansions in coverage in analyses that adopted 

an extended time horizon.  

The cost-effectiveness results described above formed the basis of the value-of-information 

analysis. Issues found to have the highest potential value of information included (1) issues of cost 

and implementation, (2) relative infectiousness during late HIV and the reduction in infectiousness 

for individuals on ART, and (3) the therapeutic health benefits of ART for individuals with CD4 cell 

counts above current eligibility guidelines. These findings generally held up across truncated and 

extended time horizons. The prevention benefits of ART are the subject of an increasing volume of 

research [31,32], as are the therapeutic benefits of early ART initiation [33,34]. There has been less 

systematic investigation of issues of cost and implementation, though recent work has focused on 

HIV treatment costs [35–38]. One challenge for new research on costs and implementation issues is 

generalizability: while studies examining physiological processes may generalize broadly, the costs 

and quality of service provision are a consequence of complex social and institutional interactions, 

and outcomes might differ substantially across settings or as intervention approaches change. The 

most notable finding of the VOI results is the apparent unimportance of information about 

transmission during early HIV infection. Resolving uncertainty for this parameter (the relative risk 

of transmission during early HIV infection) accounts for approximately 1% of the value of 

information estimated for the most valuable research targets, and suggests that research funding 

might be better devoted to other subjects. 
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 Chapter 3: Estimating the health impact of recent changes in state-level cigarette taxes 1.3.

Chapter 3 describes an analysis of the effects of changes in state cigarette taxes over the period 

1996-2013 on smoking behavior and health outcomes in the United States. Cigarette smoking is 

estimated to cause one out of every five deaths in the U.S. [39], and both state and federal 

governments have introduced cigarette excise taxes to limit cigarette consumption. Many states 

have raised these taxes in recent years, with the real value of the average state cigarette tax rising 

by over 200% since 1996 [40]. Studies of the effect of state cigarette taxes over earlier periods [41–

45] have identified a relationship between taxes and smoking behavior that is weaker and less 

robust than would be expected from the broader literature on taxes and smoking [46].  

For this study I developed a mechanistic model of smoking behavior and associated health 

outcomes in the 50 U.S. states and District of Columbia, and used this model to assess the impact of 

state cigarette taxes introduced over 17 years from 1996 to 2013. This analysis departs from 

previous analyses of the causal effects of cigarette taxes by allowing for separate effects on smoking 

initiation, smoking intensity, and quitting behavior, and by estimating these effects in the context of 

a demographic model that directly links smoking behavior and smoking history with mortality risks 

[47]. I estimated causal effects of cigarette taxes using the 1996-2012 rounds of the CDC’s 

Behavioral Risk Factor Surveillance System survey, which describe current and past smoking 

behavior for a large population-based sample of the adult in the United States [48]. These analyses 

made use of inter-state variation in the timing and magnitude of new cigarette taxes to identify 

causal effects, using a measure of anti-smoking sentiment [42] to control for state-level factors that 

influence both smoking behavior and the introduction of new cigarette taxes. 

The results of this analysis suggest that average national cigarette consumption by the beginning of 

2013 was 4.4% lower among men (3.7, 5.3), and 3.6% lower among women (2.6, 4.2), compared to 

a counterfactual scenario in which no new state cigarette taxes were introduced after 1996, for a 
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4.0% reduction in overall consumption (3.3,4.6). These reductions differ widely by state depending 

on the timing and magnitude of tax increases. The behavioral effects of tax increases were projected 

to be larger if a longer time horizon is considered, with the average number of years spent smoking 

estimated to drop by 10 months (7, 12) for the 2013 birth cohort if exposed to 2013 versus 1996 

tax levels, for a 6.1% (4.5, 7.8) reduction in overall consumption. These behavioral effects are still 

modest, with estimates of the price elasticity of demand implied by these results varying from -0.14 

to -0.39 depending on sex and the time horizon over which effects were estimated. These 

elasticities are smaller than conventional estimates for cigarette taxes and cigarette consumption, 

but are in line with other studies based on variation in cigarette taxes across U.S. states [41–45]. 

As a consequence of the behavioral outcomes, these analyses suggest that 27 thousand (22, 34) 

deaths have been averted as a result of the state cigarette taxes introduced over the period 1996-

2013, for an extra 119 thousand life-years lived (92, 151). These mortality reductions are relatively 

trivial compared to overall U.S. mortality. However, projections of future health outcomes under 

scenarios that compared 2013 and 1996 tax levels suggest that the health benefits of recent state 

tax increases will largely accrue in future decades, with over a million extra life-years lived in the 

decade 2020-2029. The results indicate a 2.0 month (1.4, 2.7) overall gain in life expectancy for the 

2013 birth cohort due to state tax increases since 1996, with larger gains for men. While valuable, 

these effects are still modest compared to recent estimates of the overall effect of tobacco control in 

the U.S. [49], which find life expectancy gains 10-20 times larger than estimated by this analysis. 

This finding of minor gains in life expectancy is consistent with the modest behavioral effects 

estimated for the recent tax changes. 

In sum, this analysis confirms the beneficial effect of recent state-level cigarette tax increases on 

smoking behavior, providing detailed evidence about the magnitude and distribution of these 

effects on both smoking behavior and smoking-related mortality.  
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In addition to addressing three substantive questions of policy interest, this dissertation also 

features a number of small methodological innovations. As part of the analyses for Chapter 2, new 

methods were developed for the application of VOI methods in the context of calibrated models. 

Common calibration approaches result in a parameter distribution that is approximated by a large 

sample of parameter sets, rather than a mathematical function. In this context, it is difficult to draw 

new samples from the conditional distribution of model parameters (i.e., the distribution of other 

parameters when one parameter is held fixed at a specific value). However, simulating from this 

conditional distribution is necessary with conventional methods for estimating VOI for a single 

parameter1, as it this is used to calculate the expected net monetary benefit for a given strategy and 

parameter value (E(NMB|i,θz) where i represents a strategy and θz is the parameter of interest). To 

resolve this problem, I developed a method that does not require simulating from this posterior 

distribution, and instead uses the information from the existing parameter sets to approximate 

E(NMB|i,θz) with a flexible function. These methods are more demanding than conventional 

approaches, yet will be of increasing relevance as a greater number of analyses adopt numerical 

methods to calibrate complex disease models. 

The analysis undertaken for the third paper is novel in its use of a mechanistic disease model as the 

vehicle for an econometric analysis, estimating the behavioral response to tax changes. This 

approach more closely integrates the task of causal inference about the effects of cigarette taxation 

with the task of estimating final health outcomes, and in so doing may provide a more nuanced 

understanding of the long-term consequences of cigarette tax policy. 

  

                                                             

1 Or, equally, for subsets of parameters. 
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Abstract 

Background: The Xpert MTB/RIF test enables rapid detection of tuberculosis and rifampicin 

resistance. The World Health Organization recommends Xpert for initial diagnosis in people 

suspected of having multidrug-resistant-TB or HIV-associated-TB, and many countries are moving 

quickly toward adopting Xpert. As roll-out proceeds, it is essential to understand the potential 

health impact and cost-effectiveness of diagnostic strategies based on Xpert. 

Methods and Findings: We evaluated potential health and economic consequences of 

implementing Xpert in five southern African countries—Botswana, Lesotho, Namibia, South Africa 

and Swaziland—where drug resistance and TB-HIV coinfection are prevalent. Using a calibrated, 

dynamic mathematical model, we compared the status quo diagnostic algorithm, emphasizing 

sputum smear, against an algorithm incorporating Xpert for initial diagnosis, with results projected 

over 10- and 20-year time periods starting from 2012. Compared to status quo, implementation of 

Xpert would avert 132 [95% CI: 55-284] thousand TB cases and 182 [97-302] thousand TB deaths 

in southern Africa over 10 years following introduction, and reduce prevalence by 28% [14-40%] 

by 2022, with more modest reductions in incidence. Health system costs are projected to increase 

substantially with Xpert, by US$460 [294-699] million over 10 years. Antiretroviral therapy for HIV 

represents a substantial fraction of these additional costs, due to improved survival in TB/HIV-

infected populations through better TB case-finding and treatment. Costs for treating MDR-TB are 

also expected to rise significantly with Xpert scale-up. Relative to status quo, Xpert has an estimated 

cost-effectiveness of US$959 [$633-$1,485] per DALY averted over 10 years. Across countries, cost-

effectiveness ratios ranged from $792 [$482-$1,785] in Swaziland to $1,257 [$767-$2,276] in 

Botswana. Assessing outcomes over a 10 year period focuses on the near-term consequences of 

Xpert adoption, but the cost-effectiveness results are conservative, with cost-effectiveness ratios 

assessed over a 20-year time horizon approximately 20% lower than the 10-year values. 
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Conclusions: Introduction of Xpert could substantially change TB morbidity and mortality through 

improved case-finding and treatment, with more limited impact on long-term transmission 

dynamics. Despite extant uncertainty about TB natural history and intervention impact in this 

setting, it is nonetheless clear that Xpert offers reasonable value for money based on conventional 

benchmarks for cost-effectiveness. However, the additional financial burden would be substantial, 

including significant increases in costs for treating HIV and MDR-TB. Given the fundamental 

influence of HIV on TB dynamics and intervention costs, care should be taken when interpreting the 

results of this analysis outside of high HIV prevalence settings. 
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 Introduction 2.1.

Tuberculosis (TB) remains a leading cause of global mortality and morbidity, with an estimated 9 

million new TB cases and 1.5 million TB-related deaths in 2010 [1]. Although significant advances 

have been made in improving TB outcomes under the DOTS approach championed by the World 

Health Organization (WHO) and its partners in the Stop TB Partnership [2], continued progress is 

threatened by the inadequacy of existing diagnostic tools [3]. In most high-burden settings, TB 

diagnosis relies principally on sputum smear microscopy, which has limited sensitivity, especially 

among HIV-infected patients [4–6]. Traditional culture-based diagnosis and evaluation of drug 

sensitivity is relatively costly and slow [7,8], and many resource-limited settings lack the laboratory 

capacity to perform culture and sensitivity testing at high volume [9,10]. Lack of prompt diagnosis 

and appropriate treatment of TB increases the risks of transmission, drug resistance, and case 

fatality [11–13]. 

Recently, the Xpert MTB/RIF automated DNA test has been shown to provide rapid and sensitive 

detection of TB and rifampicin (RIF) resistance [14–17]. The Xpert test uses a cartridge-based 

system that integrates sample processing and real-time PCR, accommodates use by relatively 

unskilled healthcare workers, and provides results in <2 h [15,18]. In a large multicenter evaluation 

and subsequent implementation study, a single Xpert MTB/RIF test was found to identify >98% of 

patients with smear-positive TB and >70% of patients with smear-negative TB [14,15]. Sensitivity 

and specificity for RIF resistance were above 94% and 98%, respectively. More recent analyses 

have suggested that Xpert can greatly reduce the delay until treatment initiation for individuals 

with active TB [19]. 

In December 2010, WHO recommended that Xpert be used for initial diagnosis in patients 

suspected of having multidrug-resistant TB (MDR-TB) or HIV-associated TB disease [20]. By the 

end of May 2012, 66 of 145 countries eligible to purchase Xpert equipment at reduced prices had 
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already done so [21]. A volume-dependent price mechanism is being used for purchase of test 

cartridges [22], such that by August 2012 the ex-works price of Xpert cartridges had dropped to 

less than US$10 for eligible countries [23]. Whereas the global TB control community has moved 

quickly to embrace the new technology, several studies and commentaries have sounded important 

notes of caution concerning the cost of the technology, the demand it will place on existing 

infrastructure, and the challenge of addressing false positive indications of RIF resistance [24–30]. 

As implementation advances, evidence on the epidemiologic impact and cost-effectiveness of Xpert 

is urgently needed, particularly as the consequences of Xpert introduction may vary across 

epidemiologic settings and may depend on the specific diagnostic algorithms that are considered 

[31,32]. 

In this study we used a calibrated, dynamic mathematical model of TB to quantify the potential 

health and economic consequences of introducing Xpert in five southern African countries 

characterized by high prevalence of HIV infection and extant multidrug resistance. Comparing a 

diagnostic strategy based on Xpert to the status quo, we predicted changes in TB incidence, 

prevalence, mortality, and drug resistance; estimated health system costs; and assessed the 

incremental cost-effectiveness of Xpert adoption. 

 

 Methods 2.2.

2.2.1. Overview 

We evaluated the population health outcomes and health system costs associated with two 

alternative strategies for diagnosing TB, the first based on current diagnostic algorithms and the 

second based on implementing Xpert in accordance with current WHO recommendations. 

Comparisons between these two strategies were made using a calibrated mathematical model of 
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TB, reflecting key features of TB transmission dynamics and natural history, interactions with HIV 

infection, and patterns and trends in TB control interventions and treatment for HIV/AIDS. Model 

simulations were undertaken for five southern African countries: Botswana, Lesotho, Namibia, 

South Africa, and Swaziland. We assessed changes in epidemiological outcomes and health system 

costs over 10-y and 20-y time horizons, as well as the incremental cost-effectiveness ratio (ICER) of 

the Xpert strategy compared to the current algorithm. 

2.2.2. Diagnostic strategies 

A “status quo scenario” was created to represent the current diagnostic approach. Under this 

approach, all patients with suspected TB receive an initial sputum smear, and those diagnosed as 

smear-positive are directed to treatment. Sputum culture is indicated for patients with suspected 

TB who test smear-negative but who have a history of TB treatment or in whom there is a strong 

suspicion of TB. Drug sensitivity testing (DST) is indicated for treatment-experienced patients 

diagnosed with TB. Those who receive DST are initiated on a treatment regimen appropriate to 

their drug resistance profile, while those who do not receive DST are initiated on the standard first-

line regimen. In the main analysis we assumed that the coverage of culture testing would be 20% 

(range 10%–30%) among smear-negative, treatment-naïve patients, and 80% (range 70%–90%) 

among smear-negative, treatment-experienced patients. We assumed further that 80% (range 

70%–90%) of treatment-experienced patients diagnosed with TB would go on to receive DST. 

Given limited empirical data on country-specific coverage of culture and DST, these values were all 

varied across wide ranges in sensitivity analyses.  

An “Xpert scenario” was constructed based on the diagnostic algorithms suggested for high HIV 

prevalence settings in the May 2011 WHO recommendations for Xpert implementation [33]. These 

recommendations suggest the use of Xpert as an initial diagnostic for all individuals of HIV-positive 

or unknown status. Given the high prevalence of HIV among patients with suspected TB in southern 
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Africa and the low number of individuals with a recent HIV test result [34], we modeled an 

algorithm in which Xpert was used as the initial diagnostic for all patients with suspected TB. 

According to this algorithm, such patients are first tested with a single Xpert assay, and no sputum 

smear is performed. Those testing TB-positive but negative for RIF resistance are initiated on a 

standard first-line regimen. Those testing positive for RIF resistance go on to receive DST. If the 

DST result indicates drug resistance, the individual is treated with a drug regimen tailored to the 

observed resistance profile. Under this scenario we assumed that scale-up to full coverage of Xpert 

within the national TB program would occur over the 3-y period starting in 2012. A diagram of the 

two alternative diagnostic algorithms is shown in Figure 2.1. 
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Figure 2.1. Status quo and Xpert diagnostic algorithms 

 

2.2.3. Modeling approach 

We developed a dynamic compartmental model of TB following the conventions of earlier models 

[35–41], with additional detail to accommodate evaluation of alternative diagnostic strategies. The 

model structure (Figure 2.2) is defined by a set of core TB states, and these states are further 

subdivided to account for (1) aspects of HIV infection, progression, and treatment relevant to TB 
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epidemiology; (2) multiple circulating TB strains, with different drug resistance profiles; and (3) 

tracking of TB treatment history.  

2.2.3.1. Core TB states 

The core TB model simulates the movements of individuals between states that capture important 

features of TB transmission, natural history, and treatment. Individuals enter the model in the 

susceptible state, where they face a risk of TB infection. The risk of infection is modeled as a time-

dependent variable that reflects contact rates between infected and uninfected individuals, and 

transmission probabilities that allow for varying infectivity across different categories of active 

disease. Upon infection, individuals progress either directly to active disease or to latent infection. 

Individuals with latent infection may subsequently progress to active TB or be superinfected by a 

different TB strain. Active disease is categorized as smear-positive or smear-negative. Smear-

negative cases may progress to smear-positive, and all individuals with active disease may 

spontaneously self-cure, which returns them to the latent/recovered state. An individual with 

active disease can be diagnosed as a TB case, according to the characteristics of the diagnostic 

algorithm, and initiated on treatment (as described in detail below). All individuals in the model are 

subject to a background mortality rate and to TB-related mortality specific to each active disease 

state. 
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Figure 2.2. Model states, subdivisions, and transitions 

 

2.2.3.2. HIV subdivisions 

HIV coinfection can alter the natural history of TB, with HIV-infected individuals having a higher 

probability of primary progressive TB upon initial infection [42,43], a higher rate of breakdown 

from latent infection to active TB [44], a lower probability of smear-positivity amongst those with 

active disease [4–6], and higher mortality rates [4,45,46]. The HIV sub-model draws on model 

structure and key parameters from an array of published HIV models [47–50]. Seven HIV 

subdivisions were created, defined by CD4 cell count (>350 cells/µl, 200–350 cells/µl, and <200 

cells/µl) and by whether or not an individual is receiving antiretroviral therapy (ART). HIV 

incidence is modeled as a transition from the HIV-negative category to the HIV-positive, CD4 count 

>350 cells/µl category, with time-varying incidence rates defined as exogenous model parameters. 
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HIV-positive individuals not on ART progress over time to subdivisions with lower CD4 counts. 

Untreated individuals transition onto ART at rates specific to their CD4 category. These rates are 

allowed to vary over time to capture changing eligibility criteria and coverage of testing and 

referral. HIV-related mortality occurs at rates specific to each subdivision. 

2.2.3.3. Drug resistance subdivisions 

Model states are further subdivided to account for differences in drug resistance among circulating 

TB strains, including (1) pan-sensitive TB, (2) isoniazid (INH) mono-resistant TB, (3) RIF mono-

resistant TB, (4) TB resistant to both INH and RIF (MDR-TB), and (5) TB resistant to INH and RIF 

plus one or more second-line drugs (MDR+/XDR-TB). An individual in the susceptible state who is 

newly infected with TB transitions to the subdivision of the infecting strain. An individual with 

latent TB who is superinfected by a different strain transitions to the subdivision of the 

superinfecting strain. Individuals may also develop acquired drug resistance as a result of TB 

treatment, transitioning to subdivisions with broader resistance profiles.  

2.2.3.4. Treatment history subdivisions 

A final subdivision of model states distinguishes treatment-naïve from treatment-experienced 

individuals, as diagnostic algorithms may dictate different confirmatory tests depending on an 

individual’s history of prior treatment. Individuals enter the model in the treatment-naïve 

subdivision, and all individuals exiting their first course of TB treatment (through default, failure, or 

cure) transition to the treatment-experienced subdivision.  

The model is implemented as a series of difference equations with a monthly time step. A full 

description of model structure and equations is given in Section 2.6. 
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2.2.4. TB diagnosis and treatment 

The model allows for TB diagnosis and treatment through the national TB DOTS program, or 

through non-DOTS providers functioning outside the national program. Uptake into treatment 

programs requires that individuals (1) present to a health facility and are identified as patients with 

suspected TB, (2) are diagnosed as active cases, and (3) are initiated on regimens determined by 

their background characteristics and information on drug sensitivity, if available. The model 

accounts for differences in test performance and information provided by each diagnostic 

algorithm, and for attrition between diagnosis and treatment, which varies depending on the delay 

to test results [51]. Individuals with false negative diagnoses for active TB will remain in the pool of 

undiagnosed active TB cases, with the possibility of presenting for diagnosis again. Individuals 

without active TB who attend with TB symptoms and are incorrectly diagnosed with active TB are 

assumed to undergo TB treatment, incurring costs but no positive or negative health effects. 

Algorithms for diagnosis and treatment in non-DOTS programs are assumed to be the same in both 

the status quo and Xpert scenarios, i.e., independent of the choice of diagnostic algorithm in the 

national DOTS program. 

Individuals on TB treatment may successfully complete treatment, fail, default (become lost to 

follow-up), or die. Those who successfully complete treatment return to the latent/recovered state. 

A percentage of individuals failing therapy are identified as failures by the treatment program and 

reinitiate treatment, while all others return to active disease. Individuals who fail or default from 

treatment may acquire resistance to the drugs they have received. The model allows individuals 

with pan-sensitive TB to develop mono-INH-resistant TB, mono-RIF-resistant TB, or MDR-TB 

directly. Individuals with mono-INH- or mono-RIF-resistant TB can develop MDR-TB, and 

individuals with MDR-TB can develop MDR+/XDR-TB, with the rates of acquiring drug resistance 

dependent on a patient’s TB drug regimen and current drug resistance profile (see Section 2.6).  
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2.2.5. Impact of diagnostic algorithms on TB epidemiology 

Any change in diagnostic algorithm is assumed to impact TB epidemiology through two channels. 

The first major effect is via changes in the overall sensitivity and specificity of TB diagnosis. For the 

population with undiagnosed active TB, an improvement in diagnostic sensitivity results in 

improved case detection and reduced delay to treatment initiation and, consequently, increases 

survival and decreases the duration of infectiousness. The second major effect is via changes in the 

distribution of regimens received by newly diagnosed TB cases. Drug-resistant TB cases identified 

by an algorithm with better sensitivity for diagnosing resistance have a higher probability of being 

initiated on a more effective treatment regimen, which in turn improves cure rates, increases 

survival, and reduces the probability that a patient will return to an infectious state.  

2.2.6. Estimation approach 

We used a Bayesian estimation approach developed by Raftery and colleagues [52,53] and recently 

adopted by the Joint United Nations Programme on HIV/AIDS for HIV epidemic projections [54–

56]. This approach provides a method for calibrating complex nonlinear models to reported data on 

disease burden, and for characterizing uncertainty in analysis results using Bayesian posterior 

intervals and similar metrics. These features are particularly important for our analysis, given the 

substantial uncertainty around many of the parameters describing TB epidemiology. We used this 

approach to calibrate the model to independent WHO estimates of TB incidence and prevalence in 

each of the five countries [57], and to data from drug resistance surveys available for all countries 

except Namibia [58]. The analysis was implemented using a sampling/importance resampling 

algorithm [52,55,59]. First, a large number of parameter sets were drawn from the joint prior 

distribution of the input parameters. For each of these parameter sets the model was run and a 

likelihood statistic calculated by comparing model outcomes to the corresponding calibration data. 

The likelihood for each parameter set was then used as the probability weight in a second-stage 
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resample of the parameter sets, which yielded draws representing the posterior parameter 

distribution, reflecting the information available on both model inputs and calibration data. The 

results of this simulation are similar to those produced by traditional Monte Carlo simulation and 

probabilistic sensitivity analyses, with the additional benefit of being constrained to be consistent 

with independent estimates on TB outcomes for each country. For each modeled outcome, 

uncertainty intervals were calculated by taking the 2.5th and 97.5th percentiles of the distribution 

for this outcome generated by the the resampled parameter sets, and the point estimate calculated 

by taking the arithmetic mean of this distribution (see Section 2.6 for further detail). 

2.2.7. Model parameter values 

We parameterized the model using historical demographic and epidemiologic data available for 

each country. Parameter values relating to population demographics were derived from United 

Nations Population Division estimates and projections. Parameter values relating to TB 

transmission dynamics were chosen to be consistent with data and assumptions used in earlier TB 

models [35–41]. Parameter values relating to TB program coverage and treatment outcomes were 

derived from published reporting data [57]. Key parameter values relating to TB diagnosis and 

treatment are summarized in Table 2.1. Estimates for HIV incidence and ART access between 1983 

and 2010 were derived from unpublished data provided by the Joint United Nations Programme on 

HIV/AIDS. Future ART access was assumed to increase from current levels to the WHO universal 

access target of 80% coverage [60] over the course of 10 y. For Botswana, which was providing ART 

to an estimated 83% of those in need by 2009, coverage was maintained at current levels. ART 

eligibility was initially limited to individuals with CD4 count <200 cells/µl and then extended to 

include those with a CD4 count in the range 200–350 cells/µl from 2010 onward, consistent with 

the expansion of ART eligibility in WHO HIV treatment guidelines [61,62]. A full description of all 

parameters in the model is provided in Section 2.6.   
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Table 2.1. Selected model parameter values and ranges 

Description 
Base-Case 
Value Range Source 

Sensitivity of sputum smear microscopy    

Smear-negative TB  0.0 —  

Smear-positive TB  1.0 — Assumeda 

Specificity of sputum smear microscopy 0.974 (0.965–0.982) [82] 

Sensitivity of sputum culture 1.0 — Assumedb 

Specificity of sputum culture 0.984 (0.978–0.989) [83] 

Sensitivity of Xpert for TB    

Smear-negative TB  0.725 (0.655–0.788)  

Smear-positive TB  0.982 (0.969–0.991) [14] 

Specificity of Xpert for TB 0.992 (0.982–0.997) [14] 

Sensitivity of Xpert for RIF resistance 0.976 (0.946–0.992) [14] 

Specificity of Xpert for RIF resistance 0.981 (0.966–0.990) [14] 

Probability of sputum culture following a 
negative sputum smear (status quo) 

  
 

Treatment-naïve patients  0.20 (0.11–0.31)  

Treatment-experienced patients  0.80 (0.69–0.89) [84] 

Probability of DST following a positive TB 
diagnosis (status quo algorithm) 

  
 

Treatment-naïve patients  0.00 —  

Treatment-experienced patients  0.80 (0.69–0.89) [84] 

Probability of loss to follow-up between 
presentation and treatment initiation 

  
 

With prompt diagnosis (smear, Xpert) 0.15 (0.09–0.24)  

With delayed diagnosis (culture, DST) 0.25 (0.14–0.39) [51] 

Background mortality rate (ages 15+ y) Time-varying — WHO 
unpublished data 

Excess mortality rate, active TB    

Smear-negative 0.21 (0.18–0.25)  

Smear-positive 0.30 (0.21–0.41) [38] 
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Table 2.1. Selected model parameter values and ranges (continued) 

Description 
Base-Case 
Value Range Source 

Excess mortality rate, HIV    

CD4 >350, no ART 0. 008 (0.005–0.012)  

CD4 200–350, no ART 0.030 (0.018–0.048)  

CD4 <200, no ART 0.230 (0.136–0.366)  

On ART initiated at CD4 >350  0.008 (0.005–0.012)  

On ART initiated at CD4 200–350  0.023 (0.014–0.037)  

On ART initiated at CD4 <200  0.050 (0.031–0.076) [85–90] 

Excess mortality rate, CD4<200, active TB 0.80 (0.472–1.272) [45,46] 

Per-test cost of Xpert $20, $30, $40 Fixedc [33,64,65] 

Per-test cost of smear diagnosis    

Botswana $6.13 (4.18–8.68)  

Lesotho $3.31 (2.26–4.68)  

Namibia $5.31 (3.63–7.51)  

South Africa $5.94 (4.06–8.39)  

Swaziland $4.24 (2.90–5.99) [51,91–97] 

Per-test cost of culture    

Botswana $15.83 (13.07–18.99)  

Lesotho $8.56 (7.07–10.27)  

Namibia $13.72 (11.33–16.46)  

South Africa $15.33 (12.66–18.39)  

Swaziland $10.94 (9.04 -13.13) [51,91,93,94,97] 

Per-test cost of chest X-ray    

Botswana $16.69 (11.35–23.70)  

Lesotho $9.03 (6.14–12.81)  

Namibia $14.46 (9.83–20.52)  

South Africa $16.16 (10.99–22.94)  

Swaziland $11.54 (7.85–16.38) [91,96,98] 
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Table 2.1. Selected model parameter values and ranges (continued) 

Description 
Base-Case 
Value Range Source 

Per-test cost of DST    

Botswana $81.97 (61.44–107.17)  

Lesotho $44.32 (33.22–57.94)  

Namibia $71.02 (53.24–92.85)  

South Africa $79.37 (59.50–103.77)  

Swaziland $56.65 (42.47–74.07) [7,99] 

Cost of outpatient diagnostic visit     

Botswana $10.32 (6.09–16.40)  

Lesotho $2.94 (1.73–4.67)  

Namibia $7.99 (4.71–12.70)  

South Africa $10.30 (6.08–16.39)  

Swaziland $6.21 (3.66–9.87) [100] 

Cost of outpatient treatment visit     

Botswana $6.85 (4.04–10.89)  

Lesotho $1.95 (1.15–3.10)  

Namibia $5.31 (3.13–8.44)  

South Africa $6.85 (4.04–10.89)  

Swaziland $4.13 (2.44–6.57) [100] 

Cost of inpatient care, per day     

Botswana $38.99 (23.00–61.99)  

Lesotho $8.78 (5.18–13.96)  

Namibia $28.76 (16.97–45.73)  

South Africa $39.38 (23.23–62.61)  

Swaziland $21.91 (12.93–34.84) [100] 

Monthly TB regimen cost    

First-line $5.86 (3.46–9.32)  

Mono-INH resistant $18.02 (10.63–28.65)  

Mono-RIF resistant $33.91 (20.01–53.92)  

MDR-TB $119.37 (70.43–189.79)  

MDR+/XDR-TB $179.06 (105.64–284.70) [63] 
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Table 2.1. Selected model parameter values and ranges (continued) 

Description 
Base-Case 
Value Range Source 

Monthly cost of ART    

Botswana $104.97 (84–80–128.48)  

Lesotho $69.63 (57.22–83.92)  

Namibia $94.68 (76.78–115.52)  

South Africa $102.53 (82.90–125.40)  

Swaziland $81.20 (66.25–98.52) [63,101–105] 

Disability weights    

Active TB 0.271 (0.151–0.422)  

HIV-positive, CD4 >350, no ART 0.135 (0.078–0.213)  

HIV-positive, CD4 200–350, no ART 0.320 (0.176–0.496)  

HIV-positive, CD4 <200, no ART 0.505 (0.252–0.757)  

HIV-positive, ART initiated at CD4 
>350  

0.135 (0.078–0.213) 
 

HIV-positive, ART initiated at CD4 
200–350  

0.151 (0.087–0.238) 
 

HIV-positive, ART initiated at CD4 
<200  

0.167 (0.096–0.262) 
[66,67] 

All costs are given in 2011 US dollars. 

a As smear status is tracked in the model, the sensitivity of sputum smear for individuals classed as 

smear-negative and smear-positive is 0% and 100% (respectively) by construction. 

b As sputum culture is the gold standard for TB detection, the sensitivity is assumed to be 100%. 

c As the per-test cost of Xpert is of key interest to policy-makers (and potentially subject to price 

negotiation), the results of the analyses are presented for three separate values for the Xpert cost. 

 

2.2.8. Measurement of resource use and costs 

Costs were assessed from a health system perspective and expressed in 2011 US dollars. Costs 

reflected resources used to deliver TB diagnosis and treatment, as provided by both public and 

private providers, and resources used in providing ART to HIV-infected individuals. An ingredients 

approach to costing was used, by which the total cost to provide a particular diagnostic procedure 
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or a course of treatment was calculated by estimating the number of units of each specific type of 

resource input needed to deliver the service, multiplying each quantity by the corresponding unit 

cost of that resource input, and summing across all inputs.  

Average costs for each type of service are shown in Table 2.1. Cost estimates extrapolated from the 

literature were adjusted for inflation, currency conversions, and price levels, where relevant. 

Treatment costs for TB and HIV included drugs, clinic visits, and monitoring tests, including regular 

smear examinations during TB treatment. Drug costs were derived from the WHO price reporting 

mechanism [63]. Costs for laboratory tests (excluding Xpert) were derived from the literature. 

Numbers of treatment monitoring visits and laboratory tests followed a previous global analysis 

[35]. For Xpert, estimates in WHO implementation guidelines [33] suggest an economic cost of 

US$25–US$35 per test in southern Africa (including consumables, equipment, personnel, transport, 

facilities, and managerial overheads). This range of estimates is consistent with the results from a 

cost analysis conducted for the South African national program, which found a cost range of US$25–

US$33 [64], as well as an analysis of potential implementation strategies that reported costs of 

US$27 per patient with suspected TB for placement of equipment at central laboratories and US$39 

for placement of equipment at point of care [65]. Costs of Xpert may continue to change as volume 

increases, through reductions in the prices of equipment and consumables [22,23], economies of 

scale, and accumulated implementation experience; we therefore conducted analyses using Xpert 

per-test costs of US$20, US$30, and US$40.  

2.2.9. Outcomes 

We estimated trends in population-level epidemiological outcomes including TB prevalence, 

incidence, mortality, and resistance to anti-TB drugs, prior to Xpert introduction in 2012, and over 

the subsequent 20-y period. Summary outcome measures computed based on population 

survivorship in the model included life-years and disability-adjusted life-years (DALYs), the latter 
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incorporating disability weights from the Global Burden of Disease study [66,67]. We evaluated the 

cost-effectiveness of introducing Xpert in terms of the ICER, expressed as the difference in total 

costs between the Xpert and status quo scenarios, divided by the difference in life-years or DALYs 

between the two scenarios. Cost-effectiveness ratios were computed over both 10-y and 20-y time 

horizons following Xpert introduction, in each case based only on the costs and health outcomes 

accrued during that period. Costs and health benefits were discounted at an annual rate of 3% 

[68,69]. Following standard benchmarks proposed in international work on cost-effectiveness, we 

compared the ICER to thresholds for cost-effectiveness defined in reference to the annual gross 

domestic product (GDP) per capita in each country. Interventions are considered to be highly cost-

effective when they have ICERs that fall below the annual per-capita GDP, and are regarded as being 

potentially cost-effective if they have ICERs between one and three times annual per-capita GDP 

[70].  

2.2.10. Sensitivity analysis 

The sensitivity of the model to changes in individual parameters was investigated through 

traditional one-way sensitivity analyses as well as by computing partial rank correlation 

coefficients across the set of simulation results produced by the Bayesian uncertainty analysis 

[38,71,72]. For the one-way sensitivity analyses, we computed the change in the ICER (calculated 

over a 10-y time horizon) that would occur when we changed one parameter value by ±1 standard 

deviation from its posterior mean value while holding all other parameter values at their posterior 

means. We also conducted an array of additional sensitivity analyses that varied assumptions 

regarding the diagnostic algorithms being compared, the use of inpatient care as part of MDR-TB 

treatment, future ART coverage decisions, and trends in antiretroviral drug prices. 

Finally, we conducted a probabilistic sensitivity analysis to assess the uncertainty around the 

optimal choice of diagnostic strategy resulting from the joint effects of uncertainty around all input 
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parameters simultaneously, and these results are presented as posterior intervals around key 

model outcomes and as cost-effectiveness acceptability curves.  

 

 Results 2.3.

2.3.1. Epidemiological projections under the current diagnostic algorithm 

Figure 2.3 shows estimates and projections for TB prevalence and incidence in the southern Africa 

region from 1990 through the end of 2032, under the assumption that the current (status quo) 

diagnostic algorithm is used over the whole period. The results for individual countries followed 

the general trend seen in the regional results, with historical declines in TB prevalence and 

incidence reversed over the period 1995–2010 as a consequence of concurrent HIV epidemics. The 

magnitude of the TB epidemic differed across individual countries, with Lesotho having the lowest 

prevalence and incidence and Swaziland the highest.  
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Figure 2.3. Estimated and projected TB prevalence, TB incidence, and multidrug-resistant TB 

prevalence in southern Africa under status quo diagnostic algorithm, 1990–2032 
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2.3.2. Performance of diagnostic algorithms 

Based on our model simulations, the positive predictive value for Xpert diagnosis of active TB, at 

full coverage by 2014, would be 96.9% (95% CI: 93.4–98.7), compared to 88.4% (81.5–93.1) for the 

status quo algorithm. The negative predictive values for Xpert and the status quo would be 93.9% 

(88.8–97.2) and 79.3% (67.6–87.9), respectively. We estimate the positive predictive value for the 

diagnosis of RIF resistance by Xpert to be 67.3% (51.3–82.0) and the negative predictive value 

99.9% (99.8–100.0). The relatively low positive predictive value indicates that Xpert is expected to 

produce a number of false positive diagnoses of RIF resistance, with relatively modest implications 

for treatment outcomes, as we assume that a subsequent DST is required before individuals receive 

an MDR-TB diagnosis. Under the Xpert algorithm, 5.8 (95% CI: 3.8–9.2) patients are tested for TB 

for each active case starting treatment, compared to 7.5 (4.9–12.1) under the status quo, a 

consequence of improved sensitivity in the Xpert algorithm. The average duration of infectiousness 

is 9.9 mo (95% CI: 6.7–14.0) under the Xpert algorithm compared to 12.8 mo (9.6–14.0) under the 

status quo. The benefit of the reduced duration of infectiousness is primarily accrued among 

individuals with smear-negative TB, for whom the duration of infectiousness is reduced from 19.3 

mo (13.8–24.6) under the status quo to 12.1 mo (7.8–18.0) under the Xpert scenario. Results for 

those with smear-positive disease are comparable under both scenarios. Treatment effectiveness 

(the probability of cure for individuals starting treatment) rises only marginally under the Xpert 

scenario, with the probability of cure 2.7 (95% CI: 1.6–4.4) percentage points higher than in the 

status quo scenario. Table 2.2 presents estimates for the average cost per programmatic outcome 

for the status quo and Xpert strategies, summed over the first 10 y of Xpert implementation (2012–

2022). These results show that adopting the Xpert algorithm increases the cost of achieving various 

diagnostic and treatment outcomes. 
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Table 2.2. Average programmatic outcomes and costs over 10 years following choice of 

strategy (2011 US dollars)*  

 
Status quo 

strategy 

Xpert 

strategy 

Programmatic measures for DOTS diagnosis 

Average annual DOTS diagnosis costs (US $, millions) 27 [15 –46] 37 [21 –61] 

Average annual TB suspects (000s) 892 [519– 1,508] 829 [487 – 1,400] 

Average annual true positive diagnoses (000s) 151 [100– 215] 175 [120 – 245] 

Average diagnosis cost per suspect (US $) 31 [25 – 38] 45 [40 – 50] 

Average diagnosis cost per true positive diagnosis (US 
$) 181 [117 – 287] 211 [136 – 334] 

Programmatic measures for DOTS treatment 

Average annual DOTS treatment costs (US $, 
millions) 57 [30 – 102] 81 [42 – 137] 

Average treatment volume (000s) 57 [38– 85] 69 [48– 100] 

Average annual true positive treatment initiations 
(000s) 122 [81 – 175] 147 [103– 206] 

Average annual cures (000s) 100 [66– 146] 121 [84– 172] 

Average treatment cost per month (US $) 84 [59 – 135] 98 [67 – 147] 

Average treatment cost per TB case initiated (US $) 469 [321 – 761] 556 [371 –861] 

Average treatment cost per TB case cured (US $) 575 [396 – 914] 675 [461 – 1,008] 

* Results are based on $30 Xpert per-test cost. Range in brackets represents the 95% posterior interval 

for each estimate. 

 

2.3.3. Population health impact of introducing Xpert 

Introduction of Xpert is projected to produce immediate and sustained changes in TB epidemiology 

(Figure 2.4). Within 10 y after the introduction of Xpert, prevalence would be lower by 186 (95% 

CI: 86–350) per 100,000 (28% [95% CI: 14–40]), incidence by 35 (13–79) per 100,000 (6% [2–

13]), and annual TB mortality by 50 (23–89) per 100,000 (21% [10–32]), compared to status quo 

projections. The absolute number of MDR-TB cases after 10 y would be lower by 25% (6–44) in the 

Xpert scenario compared to the status quo scenario. The decline in MDR-TB cases parallels the 
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overall decline in TB prevalence in these projections. There is no significant change expected in 

MDR-TB as a percentage of all TB under the Xpert scenario (4.3% [−17.5 to 34.6] greater after 10 

y). Figure 2.5 shows the incremental differences between Xpert and the status quo for these health 

outcomes, including uncertainty intervals around these differences. 

 

  

Figure 2.4. Epidemiologic outcomes in Xpert and status quo scenarios, 2012–2032 
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Figure 2.5. Incremental difference in epidemiologic outcomes between Xpert and status quo 

scenarios, 2012-2032 

 

Summing the health effects of Xpert introduction over the first 10 y of implementation, this strategy 

is estimated to prevent 132,000 (95% CI: 55,000–284,000) of the estimated 2.6 million (1.7–4.3 

million) new TB cases and 182,000 (97,000–302,000) of the estimated 1.2 million (0.6–2.0 million) 

TB deaths projected for southern Africa under the status quo. 
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2.3.4. Health system costs of introducing Xpert 

Figure 2.6 shows the additional annual costs associated with the Xpert scenario compared to the 

status quo, subdivided by type of cost.  

 

 

Figure 2.6. Incremental costs of Xpert strategy (based on US$30 Xpert per-test cost) 

compared to status quo strategy, by cost category, 2012–2032 (2011 US dollars) 

 

TB program costs rise rapidly as Xpert scales up to full coverage over 2012–2015. While 

implementation of Xpert requires increased spending on TB diagnosis and treatment, the major 

financial impact of Xpert introduction in this region is on HIV treatment programs. This is because 

prompt TB treatment extends survival among TB/HIV-coinfected individuals, leading to increases 

in HIV treatment demand. The model predicts that at 10 y after Xpert introduction, HIV treatment 

costs will comprise 58% (95% CI: 40–72) of the total incremental costs associated with the Xpert 

strategy (assuming an Xpert per-test cost of US$30). Considering only the additional costs incurred 

by national DOTS programs, almost three-quarters (71% [47–87]) of these will be due to growth in 
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TB treatment costs, with almost all of this increase coming from a higher volume of MDR-TB 

treatment. 

2.3.5. Cost-effectiveness of Xpert strategy versus the status quo 

Table 2.3 shows ICERs for the Xpert strategy versus the status quo strategy under 10-y and 20-y 

analytic horizons and a range of Xpert costs. Assuming an Xpert cost of US$30 per test, the Xpert 

scenario is expected to avert approximately half a million DALYs during the first 10 y following 

introduction, at a cost of US$959 (95% CI: 633–1,485) per DALY averted.  

Figure 2.7 presents the costs per DALY averted through implementation of Xpert in each of the five 

southern African countries. In almost all cases, the cost-effectiveness ratios fall below the standard 

benchmarks for cost-effectiveness suggested by WHO, whereby interventions with cost-

effectiveness ratios less than three-times annual per-capita GDP are regarded as potentially cost-

effective, and interventions with cost-effectiveness ratios less than annual per-capita GDP are 

deemed very cost-effective. Among these five countries, per-capita GDP in 2010 ranged from above 

US$7,000 in South Africa and Botswana down to US$982 in Lesotho [73]. 
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Table 2.3. Cost-effectiveness results for Xpert compared to status quo in southern Africa* 

Outcome 
Xpert cost = 

US$20 

Xpert cost 

= US$30 

Xpert cost 

= US$40 

10-year analytic horizon (costs and benefits summed over 2012-2022) 

Incremental costs, health 
System (US $, millions) 

401 [248 – 623] 460 [294 – 699] 520 [333 – 772] 

Incremental costs, DOTS 
program only (US $, 
millions) 

225 [119 – 378] 284 [166 – 448] 344 [209 – 522] 

Incremental life-years 
Saved (000s) 

421 [234 –679] 421 [234 –679] 421 [234 –679] 

Incremental DALYs averted 
(000s) 

480 [261 – 809] 480 [261 – 809] 480 [261 – 809] 

Incremental cost per life-
year saved* 

952 [606 – 1,326] 1,093 [746 – 1,592] 1,234 [836 – 1,872] 

Incremental cost per DALY 
averted* 

836 [531 – 1,223] 959 [633 – 1,485] 1,083 [716 – 1,760] 

20-year analytic horizon (costs and benefits summed over 2012-2032) 

Incremental costs, health 
System (US $, millions) 

1,103 [594 – 1,979] 1,217 [691 – 2,093] 1,330 [784 – 2,205] 

Incremental costs, DOTS 
program only (US $, 
millions) 

481 [205 – 993] 594 [295 – 1,125] 707 [379 – 1,262] 

Incremental life-years 
Saved (000s) 

1,500 [800 – 2,570] 1,500 [800 – 2,570] 1,500 [800 – 2,570] 

Incremental DALYs averted 
(000s) 

1,550 [800 – 2,770] 1,550 [800 – 2,770] 1,550 [800 – 2,770] 

Incremental cost per life-
year saved* 

734 [459 – 1,173] 810 [504 – 1,311] 885 [557 – 1,467] 

Incremental cost per DALY 
averted* 

711 [422 – 1,187] 784 [476 – 1,345] 857 [523 – 1,534] 

* Incremental cost-effectiveness ratios calculated using health system costs (includes DOTS costs). Both 

costs and health outcomes discounted at 3%. Range in brackets represents the 95% posterior interval 

for each estimate. 
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Figure 2.7. Cost-effectiveness of Xpert strategy compared to status quo strategy in five 

southern African countries (2011 US dollars)* 

*For each ratio, the diamond indicates the point estimate (mean incremental costs divided by mean 

incremental DALYs averted), and the bar indicates the width of the 95% posterior interval. Results 

based on US$30 Xpert per-test cost. 
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2.3.6. Sensitivity analyses 

We conducted one-way sensitivity analyses for all model inputs. Figure 2.8 shows the results for 

South Africa for the ten parameters producing the greatest variation in the cost-effectiveness ratio 

when varied by ±1 standard deviation from their posterior means. A complete listing of these one-

way sensitivity analyses for each country is given in Tables 2.6-2.10. 

 

 

Figure 2.8. Results from univariate sensitivity analyses, showing 10 parameters with 

greatest influence on the cost-effectiveness of Xpert compared to status quo, South Africa* 

* Sensitivity analyses on the incremental cost per DALY averted (2011 US dollars [US $]) over a 10-y 

analytic horizon, assuming a US$30 Xpert per-test cost. In each one-way analysis, one parameter was 

varied ±1 standard deviation from its posterior mean, with all other variables fixed at their posterior 

means. 
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While the overall uncertainty in model results—as expressed in the posterior intervals and in the 

cost-effectiveness acceptability curves described below—is not small, the uncertainty generated by 

any individual parameter is relatively small, and does not change the general conclusions of the 

study. Complete results, by country, for the one-way sensitivity analyses on all parameters are 

reported in Section 2.6. Partial rank correlation coefficients, which reflect a probabilistic approach 

to identifying influential parameters, were calculated for all model inputs based on the simulation 

results, and yielded conclusions that were largely consistent with those based on the one-way 

sensitivity analyses (results for South Africa presented in Figure 2.9).  

 

Figure 2.9. Partial rank correlation coefficients for 10 parameters with greatest influence on 

the cost-effectiveness of Xpert compared to status quo, South Africa, 10-year time horizon 
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The cost-effectiveness ratios presented in Table 2.3 and Figure 2.7 attempt to capture the major 

changes in health system resource use and health outcomes resulting from the adoption of the 

Xpert algorithm, including increases in TB treatment and HIV treatment volume. The increase in TB 

treatment volume is a direct consequence of better case-finding under the Xpert algorithm. The 

increase in ART volume is an indirect consequence of Xpert introduction, resulting from improved 

survival of TB/HIV-coinfected individuals who are currently receiving ART or who will go on to 

receive ART in the future. As shown in Figure 2.6, the increase in health system costs due to 

increased ART volume is substantial. In order to disentangle the direct effect of Xpert from this 

secondary effect through HIV survival, we constructed a scenario in which access to ART under a 

scaled-up Xpert approach was constrained to be the same as in the status quo scenario (as might be 

the case if the future HIV treatment budget were fixed and did not increase as a function of HIV 

treatment need). While artificial, this scenario allowed us to estimate the cost-effectiveness of Xpert 

adoption separate from the effects on HIV treatment. In this scenario, incremental costs and DALYs 

averted dropped by 35%–40% and 10%–15%, respectively, compared to the main analysis, and the 

cost per DALY averted (assuming a US$30 per-test cost for Xpert) dropped to US$656 (95% CI: 

386–1,115) over a 10-y analytic horizon. 

Further sensitivity analyses (described in Section 2.6) tested the robustness of the cost-

effectiveness results to the use of clinical diagnosis as part of the status quo algorithm, to the 

removal of inpatient care from MDR-TB treatment, to the provision of empiric MDR-TB treatment 

while awaiting the results from DST for all patients diagnosed with RIF resistance by Xpert, and to a 

revised assumption about ART cost trends, in which ART prices drop 50% over 10 y. Each of these 

changes produced a change in the 10-y ICER of <20% and did not change the qualitative 

conclusions about Xpert cost-effectiveness. Detailed three-way sensitivity analyses were conducted 

to understand how current coverage of culture (among treatment-naïve and treatment-experienced 

patients) and DST affected the incremental costs, health benefits, and cost-effectiveness of Xpert in 
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each country. These analyses (Figures 2.13-2.17) show that if use of culture under the status quo 

algorithm is higher than the value used in the main analysis, this reduces the incremental costs and 

health benefits produced by adopting Xpert and results in a less favorable cost-effectiveness ratio. 

In some countries, very high values of culture use would result in the status quo strategy 

dominating the Xpert strategy, i.e., having lower costs and greater health benefits. The coverage 

levels that produce such a result (80% of all treatment- naïve and treatment-experienced TB 

patients diagnosed via culture), however, are unlikely to be in place at present, given current 

infrastructure and program constraints. Higher than expected DST access under the status quo 

would produce modest reductions in incremental costs and minimal changes in cost-effectiveness 

ratios. 

We also considered an alternative Xpert algorithm that requires more aggressive investigation (via 

culture, chest X-ray, and antibiotic trial) of Xpert-determined TB-negative individuals with HIV-

positive or unknown status, as described in recent South African Xpert guidelines [74]. The ICER for 

this aggressive Xpert algorithm, compared to the base-case Xpert algorithm evaluated in the main 

analysis, was US$2,128 (95% CI: 1,215–3,954) per DALY averted, suggesting that while this more 

aggressive algorithm may be cost-effective in some settings, limited programmatic resources might 

yield higher benefits by expanding access to a simplified Xpert algorithm. 

Finally, we constructed cost-effectiveness acceptability curves to consider the likelihood that Xpert 

would be cost-effective under different thresholds for societal willingness to pay for additional 

years of healthy life (Figure 2.10). If society were willing to pay up to the average per-capita GDP 

(US$6,850 for the region) per averted DALY, our results suggest essentially no uncertainty in the 

conclusion that Xpert would be cost-effective. At a threshold of US$1,000 (representing <15% of 

per-capita GDP in the region), the probability that Xpert would be cost-effective was 85%, when we 

considered the benefits that would accumulate over 20 y, or 55%, over a 10-y horizon. 
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Figure 2.10. Cost-effectiveness acceptability curves showing probability that Xpert strategy 

is cost-effective as a function of willingness to pay for health benefits 

  

 Discussion 2.4.

In this study, we used a dynamic, calibrated mathematical model of TB to evaluate the potential 

health and economic consequences associated with scaling up the new Xpert MTB/RIF test in 

settings with high TB burden, prevalent MDR-TB, and high concurrent prevalence of HIV. Our 

modeling approach enables quantification of the population-level health effects of alternative 

diagnostic strategies, projections of impact over the short term and longer time horizons, and 

assessment of the economic impact and cost-effectiveness of scaling up Xpert compared to 

continuation of the status quo diagnostic approach.  
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Our results indicate that the introduction of the Xpert MTB/RIF diagnostic has the potential to 

produce a substantial reduction in TB morbidity and mortality in southern Africa. For individuals 

with smear-negative TB, the benefits of Xpert implementation would be immediate, leading to the 

diagnosis and early treatment of many individuals who would be missed by the conventional 

diagnostic algorithm. Over a longer time frame, the introduction of Xpert would reduce 

transmission and reduce the reservoir of latent TB infection in the population, but these secondary 

effects are smaller than might have been anticipated. Even accounting for indirect transmission 

benefits, we project that TB incidence will remain substantial after three decades of Xpert use, in 

the absence of other modifications to the status quo TB control strategy. This is due to the large 

existing pool of latently infected individuals whose progression to active disease would be 

unmitigated by improved diagnostics, and to the fact that a substantial fraction of the additional 

cases diagnosed using Xpert will be smear-negative cases, who are less likely to transmit infection 

than smear-positive cases. 

Along with the projected health benefits of scaling up Xpert will come significantly increased 

demands on healthcare resources. The large increase in funding required under the Xpert scenario 

raises the question of affordability. Although our cost-effectiveness results suggest that the 

introduction of Xpert represents good value for money according to typical international 

benchmarks, it does not automatically follow that TB program budgets will be able to absorb these 

changes. Whereas current debate about the costs of Xpert roll-out focuses largely on equipment and 

consumables connected directly to the assay, our results show that the indirect cost consequences 

associated with improved case-finding overshadow the direct costs of diagnosis. If current 

guidelines are followed, the adoption of Xpert places three key demands on a health system that are 

additional to the direct costs of diagnosis: providing first-line TB treatment to the large number of 

additional pan-sensitive TB cases that will be identified, providing additional HIV treatment to 

coinfected individuals who will live longer as a result of better TB care, and providing second-line 
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TB treatment to the limited number of individuals diagnosed with drug-resistant TB. While our 

analysis accounts for all three demands, we recognize that response to each of these demands could 

be evaluated as a separate policy question. Such analyses are beyond the scope of our present 

study, but it is nevertheless important to note how the economics of Xpert are dependent on the 

additional interventions triggered by Xpert introduction—which are sensitive to both 

epidemiologic context and policy decisions. It is likely that existing resources and infrastructure 

will be called upon to support the introduction of Xpert and the cascade of complementary services 

this will trigger, and our findings underscore the concern raised by other commentators regarding 

the possible pitfalls of introducing Xpert into health systems that are already facing capacity 

constraints [26,29]. 

An important observation in this study is that substantial increases in HIV treatment costs are 

expected following introduction of Xpert. This critical insight has a large influence on the cost-

effectiveness of Xpert that would be missed in simpler models that do not capture the concurrent 

dynamics of TB and HIV, and is consistent with other analyses pointing to the importance of HIV 

and ART access for TB outcomes in this setting [27,75]. Sensitivity analyses show that if future HIV 

treatment access were limited by a hard budget constraint, this would actually result in a more 

attractive cost-effectiveness ratio for Xpert adoption (reducing the ICER to less than US$700 per 

DALY over a 10-y analytic horizon), with the subtraction of ART costs from the numerator of the 

ICER outweighing the reduction in health benefits in the denominator. Note that this finding 

provides no evidence about the appropriate level of ART access in the future, but does provide a 

clear illustration of the interlinked nature of TB and HIV policy in settings with dual epidemics. 

Although the absolute increase in HIV treatment spending would eventually be larger than the 

increase in TB program costs, the relative effects on total budgets for HIV and TB control are 

reversed; we estimate that introduction of Xpert would result in a 2% increase in HIV treatment 

costs after 10 y, but a 40% increase in the costs of TB control.  
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Providing treatment to additional cases diagnosed with MDR-TB represents another major 

component of the incremental costs of Xpert adoption. In our base-case analysis, we assumed that 

second-line TB treatment would be available for diagnosed MDR-TB cases, which resulted in an 

estimated 2- to 3-fold increase in the volume of MDR-TB treatment under an Xpert scale-up 

scenario. If second-line therapy were less available than we assumed, the cost-effectiveness of 

Xpert would actually improve in the short term (at the cost of faster growth in drug resistance), as 

the reduction in treatment costs would outweigh the reduction in survival among MDR-TB patients 

receiving ineffective first-line regimens. Recent empirical cost analyses suggest that MDR-TB care 

costs may be even higher than estimated in our analysis, with a South African study estimating per-

patient costs of over US$17,000 during the inpatient phase of therapy alone, more than 40 times the 

cost of treating drug-sensitive TB [76]. While this might motivate the development of more efficient 

approaches to MDR-TB treatment, it also highlights the trade-offs involved in Xpert introduction.  

Although the scenarios considered in this analysis assumed that DST would be used prior to the 

initiation of patients on second-line regimens, the availability of DST remains limited in some 

settings. Of note, the 67% positive predictive value of the Xpert test for RIF resistance in this setting 

suggests that a positive result on the Xpert RIF test would be insufficient evidence to initiate 

individuals on second-line regimens, and further screening would be necessary. Further, the 

benefits achieved through better detection and treatment of drug-resistant TB would be offset by 

increases in the number of cases developing resistance, resulting from Xpert’s better case detection 

and the resulting increase in treatment volume. Consequently, the percentage of all TB cases with 

MDR-TB after 10 and 20 y is projected to be higher under the Xpert scenario, although this result is 

not statistically significant, and—given the overall reduction in TB prevalence produced by Xpert—

the absolute number of MDR-TB cases would be lower than under the status quo. 
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A recent modeling study on Xpert introduction in three countries [77] reported an ICER of US$138 

per DALY in South Africa for Xpert versus the status quo, which is around 5–8 times lower than the 

estimated ratios in our study. Because the prior study used a cohort model of patients with 

suspected TB, its results pertained only to the direct effects of diagnosis and treatment in a defined 

cohort, rather than reflecting the population-level health and economic consequences. The higher 

ratios in our study relate in part to our inclusion of HIV treatment costs, which are relevant to a 

health system or societal perspective. Exclusion of these costs from the prior analysis resulted in a 

more favorable assessment of Xpert, since the survival benefits of antiretroviral treatment were 

credited to Xpert when estimating DALYs averted, but at an implicit zero cost. An additional point of 

difference is that this prior study assumed no access to culture as part of the status quo algorithm, 

which also contributed to a lower cost-effectiveness ratio for Xpert when compared to the base-

case assumptions about culture access used in our analysis. Another recent analysis looked at the 

use of Xpert for TB screening prior to ART initiation in South Africa. This analysis included ART 

costs in the cost-effectiveness ratio, and reported a cost-effectiveness ratio of US$5,100 per life-

year saved for the Xpert algorithm compared to current diagnostics [78]. This analysis considered 

only the health benefits for the individual being screened, rather than counting the cases averted by 

reducing transmission, and focused on a population in which ART costs would dominate the cost-

effectiveness ratio, and so it is understandable that the cost-effectiveness ratio was considerably 

higher than the cost per life-year saved estimated in our study. 

Our analysis has several limitations. The application of any mathematical model of TB is inevitably 

limited by uncertainty regarding the true values of epidemiologic and programmatic parameters. 

Our approach aims to reduce this parameter uncertainty through calibration, and to provide a valid 

quantitative expression of what parameter uncertainty remains based on Bayesian statistical 

inference; however, the uncertainty associated with model structure is impossible to quantify 

without building and assessing the whole range of possible model structures that might be adopted. 
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For example, the results of this analysis would be different if the interdependency of TB and HIV 

epidemics were not considered, or if the indirect effect of Xpert on TB transmission were not 

captured. It will therefore be important to undertake continued empirical research evaluating the 

impact of Xpert as it is rolled out in practice, with the information generated by these evaluation 

efforts used to progressively refine the mathematical models used to estimate long-term 

intervention effects.  

In the results reported here, we constrained estimates on costs and health outcomes to account 

only for those that would accrue during either the first 10 y or the first 20 y following introduction 

of Xpert. While the choice of a limited time horizon acknowledges our increasing uncertainty about 

the distant future and reflects the immediacy of policy decisions, it also makes our results 

somewhat conservative. This is particularly true for the 10-y results, which truncate the full 

streams of future benefits that will be enjoyed by those patients who avert TB mortality or infection 

during the 10-y analysis period. Likewise, we observe that cost-effectiveness ratios are more 

attractive over the 20-y horizon than the 10-y horizon, reflecting the compounding benefits of 

interrupting transmission dynamics through better diagnosis and treatment. Moreover, the 

restriction of our study to adult populations will underestimate the total burden of disease that 

might be averted, with Xpert adoption likely to reduce pediatric TB through reduced exposure to 

actively infected adults as well as the direct application of the test for pediatric diagnosis [79,80]. 

Finally, we note that the results of the present analysis emphasize the importance of interactions 

between TB and HIV epidemiology in settings where both are highly prevalent, but we caution 

against generalizing these results to regions where HIV rates are meaningfully different from those 

in southern Africa. Additional analyses are urgently needed to assess the consequences of 

introducing Xpert elsewhere, particularly regions of low HIV prevalence or with different TB drug 

resistance patterns. Similarly, this study focused on the relative benefits of the status quo algorithm 
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and the Xpert algorithm suggested by WHO for diagnosis of patients with suspected TB in settings 

with high HIV burden. While this is an important comparison to make, there is abundant scope for 

considering a wide array of alternatives, for example, considering different potential roles for 

sputum smear microscopy or chest X-ray within diagnostic algorithms designed around Xpert, or 

use of Xpert for different purposes, such as prior to provision of INH preventive therapy for 

individuals with HIV, or as part of active case-finding efforts [81]. Because the model developed for 

this analysis reflects detailed structure relating both to HIV and to patterns of resistance to major 

anti-TB drugs, it offers substantial flexibility to accommodate adaptation to other settings. In view 

of these features, and our statistical approach to calibrate this model to available epidemiologic 

data, we envision that the model can provide a durable platform for evaluating an array of different 

diagnostic strategies in diverse settings in the future. 
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 Additional information  2.6.

2.6.1. Model overview and structure 

Analyses were conducted using a dynamic compartmental model of tuberculosis (TB) in adult 

populations. The model simulates transitions between health states deterministically, recalculating 

the population distribution across states in discrete monthly time steps. The model was 

constructed and run using R statistical computing software. 

The model follows the conventions of earlier TB models [1-7], with additional detail to 

accommodate evaluation of alternative diagnostic strategies. The model structure is defined by a 

set of core TB states, and these states are further subdivided to account for: (1) aspects of HIV 

infection, progression and treatment relevant to TB epidemiology; (2) multiple circulating TB 

strains, with different drug resistance profiles; and (3) tracking of TB treatment history.  

2.6.1.1. Core TB states 

The core TB states capture important features of TB transmission, natural history, and treatment. 

Eight states are included. Individuals who have never been infected reside in the susceptible state. 

Those who are infected but do not have active disease are in the latent infection/recovered state. 

Active disease is categorized as smear-negative or smear-positive. Smear-negative or smear-

positive active cases may be treated either through the national TB control program (DOTS), or 

through providers outside of the national program (non-DOTS).  

2.6.1.2. HIV subdivisions 

HIV co-infection can alter the rate of progression of TB disease, with HIV-infected individuals 

having a higher probability of primary progressive TB upon initial infection [8,9], a higher rate of 

breakdown from latent infection to active TB [10], a lower probability of smear-positivity amongst 

those with active disease [11-13] and higher mortality rates [11,14,15]. The HIV sub-model draws 
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on structure and assumptions from an array of published HIV models [16-19]. There are seven HIV 

subdivisions. Individuals may be HIV-negative, they may be in one of three categories reflecting 

untreated HIV infection with a specified CD4 cell count (>350 cells/µL, 200-350 cells/µL, and <200 

cells/µL), or they may be receiving antiretroviral therapy (ART) in one of three categories 

distinguished by the CD4 count at treatment initiation.  

2.6.1.3. Drug resistance subdivisions 

Five subdivisions were created to account for differences in drug resistance among circulating TB 

strains, including: (1) pan-sensitive TB, (2) isoniazid (INH) mono-resistant TB, (3) rifampicin (RIF) 

mono-resistant TB, (4) resistance to both INH and RIF (MDR-TB), and (5) resistance to INH and RIF 

plus one or more second-line drugs (MDR+/XDR-TB).  

2.6.1.4. Treatment history subdivisions 

A final subdivision of model states distinguishes treatment-naïve from treatment-experienced 

individuals, as diagnostic algorithms may dictate different confirmatory tests depending on an 

individual’s history of prior treatment. 

2.6.1.5. Summary of model structure 

At any point in time, all individuals in the model are categorized by the combination of their TB 

status and their status with respect to each of the three subdivisions. Thus, each of the 8 core states 

is ‘exploded’ into 70 unique sub-states (resulting from 7 HIV categories × 5 drug resistance 

categories × 2 treatment history categories), which yields a total of 8 × 70 = 560 unique 

compartments in the model. We note that some of these 560 compartments are null, in instances 

where the crossing of specific categories is meaningless; for example, susceptible individuals are 

defined by having never been infected, which means that they cannot be characterized in terms of a 

TB strain with a specific drug resistance profile. 



70 
 

2.6.2. Transitions between model states and subdivisions 

The model transitions may be represented by a set of difference equations. Table 2.4 defines the 

general notation used in the formal description of the model that follows.  
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Table 2.4. Definition of core model states and transitions 

Symbol Description 

Core model states  

   Number of individuals in the susceptible state at time t 

   Number of individuals in the latent/recovered state at time t 

   Number of individuals in the smear-negative active TB state at time t 

   Number of individuals in the smear-positive active TB state at time t 

   Number of individuals in smear-negative DOTS treatment state, at time t 

   Number of individuals in smear-negative non-DOTS treatment state, at time t  

   Number of individuals in smear-positive DOTS treatment state, at time t 

   Number of individuals in smear-positive non-DOTS treatment state, at time t 

Time-varying model transitions 

   New entrants at time t 

   Force of infection at time t 

        
Rate of attending TB testing site, in DOTS (D) or non-DOTS (N) program, for 
individuals with active TB, at time t 

          
Probability of positive diagnosis for individuals attending testing site in DOTS or 
non-DOTS program, for state   {   }, at time t 

          

Probability of loss to follow-up between initial presentation and treatment 
initiation, for individuals attending testing site in DOTS or non-DOTS program, 
for state   {   }, at time t 

    Default rate for treatment state   {       }, at time t 

    
Probability of treatment success, for individuals completing treatment in state 
  {       }, at time t 

    

All-cause mortality rate for model state i at time t, calculated as the sum of 
background mortality at time t (   ), and disease-specific excess mortality 
(   ,     ,        ) 

Time-invariant model transitions 

  Partial immunity afforded by prior infection 

  Probability of fast breakdown to active TB, for new infections  

  Probability of smear positivity, for incident TB cases 

  Rate of breakdown from latent / recovered to active TB  

  Rate of conversion from smear-negative to smear-positive active TB 

  Rate of self-cure for active TB 

   Rate of treatment completion for treatment state   

  Probability that failed treatment cases are identified and returned to treatment 
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2.6.2.1. Transitions between core TB states 

We begin with a set of model equations that describe changes in the population distribution across 

the eight core TB states between one time step and the next. In the following equations    indicates 

the number of residents in state   at time  , and  ̇ 
 
(with a dot above the X) indicates the number of 

residents in state   at time    .  

 ̇                   

 ̇         (   )    (   )                                   

                   

 ̇          (   )     (   )     (   )   (   )      (     )(   )

     (     )(   )                                     ( 

     )           (      ) 
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The total population is given by 
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  ∑  

 

   

 

Individuals enter the model in the susceptible state (  ), where they face a time-varying risk of TB 

infection. Formally, the force of infection,   , describes the hazard rate (at time  ) by which a 

susceptible individual acquires TB. The population is assumed to mix randomly with density-

independent contact rates, so transmission is modeled as frequency-dependent. The force of 

infection allows for varying infectivity across different categories of disease, and for temporal 

trends in contact rates, which yields the following formulation in the simple case of a single 

circulating TB strain: 

   ∑
  

 
 

     

where    is the transmission parameter for those with untreated, smear-positive, active disease at 

time  , and    is the infectivity of individuals in core state   relative to those with untreated, smear-

positive active disease.  

Upon infection, individuals progress either directly to active disease or to latent infection. 

Individuals with latent infection may subsequently progress to active TB, or they may be re-infected 

at a rate that is subject to the partial immunity conferred by an existing infection. Active disease is 

categorized as smear-positive or smear-negative. Smear-negative cases may progress to smear-

positive, and all individuals with active disease may spontaneously self-cure, which returns them to 

the latent/recovered state. An individual with active disease can be diagnosed as a TB case, 

according to the characteristics of the diagnostic algorithm, and initiated on treatment. Treatment 

may be provided either through the national TB control program (DOTS), or through providers 

outside of the national program (non-DOTS). Treated individuals may complete treatment, default 

(returning to active disease) or die. Those who complete treatment are categorized as failures 
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(returning to active disease) or cures (returning to the latent/recovered state). In addition to these 

transitions, all individuals in the core model are subject to a background mortality rate that is 

updated in each time step based on demographic data for each country, and to TB-related mortality 

specific to each active disease state. 

2.6.2.2. Transitions between HIV subdivisions 

Rates of transition from one HIV subdivision to another are based on estimates of HIV incidence, 

disease progression and treatment initiation (see Section 2.6.3.4 and Table 2.5). These rates are 

assumed independent of core TB states and other subdivisions. HIV incidence is modeled as a 

transition from the HIV-negative category to the HIV-positive, CD4 count >350 cells/µL category, 

with time-varying incidence rates defined as exogenous model parameters. HIV-positive individuals 

not on ART may progress over time to lower CD4 counts. Untreated HIV-positive individuals 

transition onto ART at rates specific to CD4 count category, which are allowed to vary over time to 

capture changing eligibility criteria and coverage of testing and referral. HIV-related mortality 

occurs at rates specific to each subdivision. Certain parameters governing the natural history of TB 

vary with respect to HIV status, as indicated in Table 2.5. 

2.6.2.3. Transitions between drug resistance subdivisions 

Transitions between TB strain subdivisions occur through infection, superinfection and acquired 

resistance. First, we elaborate the specification for the force of infection to allow for multiple 

circulating strains distinguished by their drug resistance profiles. Individuals may be infected by 

any of the five types of strains. When calculating the force of infection for a particular strain (   for 

strain s) we allow for differential fitness across strains, for example indicating lower 

transmissibility among drug resistant vs. drug sensitive strains. The total force of infection (λ) 

equals the sum across the five strain-specific forces of infection (  ). The general formulation for 

the force of infection is thus given by: 
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(    )

 

where    is the relative reduction in fitness for strain s compared to the corresponding pan-

sensitive strain. An individual in the susceptible state who is newly infected with TB transitions to 

the subdivision of the infecting strain. An individual with latent TB who is superinfected by a 

different strain transitions to the subdivision of the superinfecting strain. Following Lipsitch et al. 

[20], we allow for superinfection by the same strain in order to preserve model neutrality with 

respect to strain distribution. 

Individuals may also develop acquired drug resistance during TB treatment, such that individuals 

with pan-sensitive TB can develop mono-INH resistance, mono-RIF resistance, or MDR-TB directly. 

Individuals with mono-INH or mono-RIF can develop MDR-TB, and individuals with MDR-TB can 

develop MDR+/XDR-TB. Cases of acquired resistance arise as individuals default from or fail 

treatment, with rates of acquiring resistance specified for each combination of current strain and 

specific treatment regimen (Table 2.5).  

2.6.2.4. Transitions between treatment history subdivisions 

Individuals enter the model in the treatment-naïve category. Treatment-naïve individuals move 

into the treatment-experienced category upon the first transition out of any of the TB treatment 

states (  ,   ,    or   ) in the core model. 

2.6.3. Model parameterization 

2.6.3.1. Initialization 

The model was used to estimate TB prevalence and incidence starting in 1950 onwards, with this 

long historical projection allowing the simulation of a realistic TB epidemic as well as providing 

prevalence and incidence estimates for the recent past to compare to independent data in the 
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calibration procedure. First, we simulated a virgin epidemic, in which one infectious source case is 

introduced into a population of susceptibles. This epidemic was run to equilibrium, which was 

assumed to represent the starting conditions in 1950. The model was then run from 1950 through 

the end of 2011 to produce a historical time trend in TB epidemiology, with time-varying parameter 

values capturing changes in birth rates, background mortality rates, TB contact rates, access to TB 

and HIV treatment interventions, and treatment success and default rates.  

Table 2.5 summarizes estimates and ranges for all model parameters. Following is a description of 

key data sources used to derive these values and ranges. 

2.6.3.2. Demographics 

Demographic inputs were estimated separately for each country. Historical estimates for mortality 

excluding HIV were obtained from the World Health Organization (unpublished data), and future 

background mortality was held constant at current values. Historical estimates and future 

projections for population growth were obtained from the United Nations Population Division [21]. 

2.6.3.3. TB epidemiology, diagnosis and treatment 

Estimates for transition rates between TB-related health states were drawn from the literature and 

chosen to be consistent with prior TB modeling work [3-5,22-24]. ART delays the 

immunosuppression associated with HIV thereby reducing the effect of HIV on TB disease 

progression. We operationalized this as an ART effectiveness parameter (z); the values of TB 

natural history parameters for individuals on ART were calculated as weighted sums of parameter 

values for HIV-negative and untreated HIV-positives, with weights z and (   ) respectively.  

Individuals receiving TB treatment were assumed to have reduced infectiousness compared to 

untreated individuals, with the reduction in infectiousness approximated as 1 minus the failure 

probability for each regimen/strain pair. Diagnostic algorithms were based on current practice and 
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on WHO guidelines for Xpert implementation [25]. Values for the sensitivity and specificity for each 

diagnostic test were derived from the published literature [26-28]. As the model distinguishes 

between smear-negative and smear-positive TB the sensitivity of smear was defined as 0% and 

100%, respectively, for these two groups. As sputum culture is considered the gold standard for 

diagnosis the sensitivity of this test was assumed to be 100%. Few data are available on the 

percentage of individuals testing negative on smear microscopy who subsequently have this 

diagnosis confirmed by sputum culture. Dowdy et al. [23] estimated this percentage as 5% and 37% 

for treatment-naïve and treatment-experienced individuals, respectively, based on 2004 South 

African data. It is likely that access to sputum coverage will have risen since then, and we assumed 

starting values for these parameters of 20% and 80% respectively. In addition, 80% of individuals 

who are diagnosed positive with a history of prior treatment were assumed to receive DST. 

Parameters relating to treatment program coverage and performance were based on routine 

monitoring data aggregated by the WHO Stop TB Department [29]. Access to DOTS TB programs 

(parameterized as the rate at which those with active TB attend a health center providing TB 

diagnosis and treatment) was estimated from reported trends in the case detection rate (CDR). 

First, a simple time trend was fit to national CDR data using a logistic regression model (see Figure 

2.11). As the CDR more closely approximates a probability rather than a rate, we transformed the 

predicted CDR (CD R) to calculate the attendance rate (whereby rate = 1 – e –CD R). For the pre-1990 

period, the rate of attendance for DOTS diagnosis was assumed to increase from zero to the 1990 

value over a 4-year period. For future years the attendance rate was held constant at the most 

recent value for which data were available. The imperfections of the CDR as a measure of the 

probability of detection are well understood [30], and this uncertainty was reflected in the analysis 

by assuming a wide prior distribution for the attendance rate, with a range spanning from zero to 

two times the point estimate. There is little information on non-DOTS diagnosis, but this was 

assumed to start earlier (1970) and to continue at a low level in the future (rate of 0.2 per year, also 
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varying within a range spanning zero to two times the point estimate). The volume of non-DOTS 

care was calibrated to produce observed drug resistance levels.  

Rates of treatment default were based on reported program outcomes [29] for each country and 

calculated in a similar fashion to the attendance rate, by fitting a simple time trend to the national 

program data using a logistic regression model (Figure 2.11), and transforming the estimated 

probability of default to obtain the annualized default rate. TB-specific excess mortality rates were 

assumed to persist for the first two months of treatment before dropping to zero, and the treatment 

mortality rates produced by this assumption were consistent with reported program outcomes.  

The probability of treatment success (probability of cure or completion among all individuals 

finishing a treatment regimen) will be determined by the appropriateness of the drug regimen as 

well as other characteristics of the treatment program—such as quality of adherence support—

which might change over time. To capture the influence of these other program characteristics we 

assumed that the effectiveness of the first-line regimen in pan-sensitive TB was equivalent to the 

fraction of all individuals cured or completing treatment estimated from national program data. 

This was operationalized as a time trend fit to the observed data in a logistic regression model 

(Figure 2.11). The probabilities of treatment success for other strain-regimen combinations were 

assumed to be fixed proportions of this value, shown in Table 2.5.  

It is assumed that diagnosis and treatment was more rudimentary in the early years of TB control 

programs. This assumption was operationalized in the model as a linear increase in the availability 

of culture, DST, and second-line regimens over the last 20 years, from an initial scenario in which 

there was no access to advanced tests or second line regimens. 

Little information is available to estimate rates of acquired resistance by regimen and initial strain. 

We based our estimates on data reported in Lew et al. [31], adjusted for the prevalence of 
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resistance to other first-line drugs (streptomycin, ethambutol) not tracked in the model (values 

shown in Table 2.5). 

2.6.3.4. HIV epidemiology and treatment 

Estimates for HIV incidence and ART coverage were obtained from UNAIDS (unpublished data). For 

future years, HIV incidence was assumed to decline at an exponential rate estimated from the last 7 

years of incidence data. Untreated HIV-positive individuals in the model transition onto ART at 

rates calculated to match national reporting data on ART program scale-up. ART coverage (the 

fraction of eligible individuals receiving ART) was assumed to increase from current levels to the 

WHO universal access target of 80% coverage [32] over the course of 10 years. For Botswana, 

which was providing ART to over 83% of those in need by 2009, coverage was maintained at 

current levels. Early HIV treatment guidelines suggested a CD4 count criterion of <200 cells/µL for 

initiating ART [33], while recent revisions to the guidelines have raised this CD4 count criterion to 

<350 cells/µL [34]. For this reason all ART initiations prior to 2010 were assumed to come from the 

CD4 count <200 cells/µL group, and for 2010 onwards the fraction of HIV initiations coming from 

the CD4 count 200–350 cells/µL group was assumed to rise such that by 2015 individuals in the 

CD4 count 200–350 and <200 cells/µL groups would have equal probability of initiation on ART. 

Estimates for HIV-specific mortality rates (with and without ART) were drawn from the literature 

[35-40]. 

2.6.3.5. Resource use and costs 

Costs were assessed from a health system perspective and expressed in 2011 US dollars. Costs 

reflected resources used to deliver TB diagnosis and treatment, as provided by both public and 

private providers, and those used in providing ART to HIV-infected individuals. An ingredients 

approach to costing was used, by which the total cost to provide a particular diagnostic procedure 
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or a course of treatment was calculated as the number of units of each specific type of resource 

input needed to deliver the service, multiplied by the unit cost of each resource input.  

Average costs for each type of service are shown in Table 2.5. Unit costs for service delivery 

(excluding Xpert) were calculated as the average of values reported in the literature, after 

adjustment for inflation and differences in price levels. These adjustments were undertaken by (i) 

inflating values to 2011 prices using the GDP deflator in the country in which the data were derived, 

then (ii) adjusting for price levels between countries using per-capita GDP as a price index and (iii) 

converting to US dollars based on market exchange rates. Treatment costs for TB and HIV included 

drugs, clinic visits and monitoring tests, as well as inpatient care for individuals receiving treatment 

for MDR-TB. Drug costs were derived from average prices reported to the WHO price reporting 

mechanism [41]. Quantities of treatment monitoring visits and laboratory tests (including 

monitoring smears and cultures) followed a previous global analysis [1]. The cost of clinic visits 

associated with TB diagnosis was based on the cost of a 10-minute outpatient clinic visit as 

reported for each country by the WHO-CHOICE project, and the cost of a clinic visit during TB 

treatment based on the cost of a short (<5 minute) outpatient clinic visit from the same source. 

Inpatient care for MDR-TB treatment was assumed to last for 4 months, with the cost per inpatient 

day estimated from the WHO-CHOICE data. For Xpert, limited data are available on the per-test cost 

of providing the test in routine programmatic settings, although information reported in WHO 

implementation guidance suggests an economic cost of US$25-35 in southern Africa (including 

consumables, equipment, personnel, transport, facilities and managerial overheads), and a recent 

costing study in South Africa suggested a per-test cost of US$26-US$36 in the national program 

[42]. As the per-test cost of Xpert is of interest to decision-makers and may be sensitive to 

negotiation, results were calculated and reported separately for three values for the Xpert per-test 

cost: US$20, US$30 and US$40. 
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2.6.3.6. Other parameters 

Disability weights were derived from estimates published by the Global Burden of Disease study 

[43,44]. Published disability weights generally only cover individual conditions, and so to calculate 

disability weights for comorbid TB-HIV states we assumed a multiplicative functional form, 

whereby the combined weight was equal to one minus the product of one minus the disability 

weight for each of the individual conditions [45,46]. An annual discount rate of 3% was applied to 

all future costs and benefits included in the cost-effectiveness analysis. This value was varied 

between 0 and 10% in univariate sensitivity analyses. 

Table 2.5. Base-case parameter values and ranges 

Description Base-case value Range* Source 

Parameters related to    

New entrants at time t Time-varying — [21] 

Parameters related to    

Transmission parameter for individuals 
with (pan-sensitive) smear-positive TB in 
1950 (     ) 

11.0 [8.3-14.3] Values chosen to 
produce plausible 
value on burn-in 

Annual percentage decline in transmission 
parameter 

0.7% [0.2%-1.6%] 
[4] 

Infectivity of smear-negative TB, relative to 
smear-positive TB (  ) 

0.22 [0.12-0.37] 
[3] 

Fitness cost,drug-resistant TB strains (  ):  

Mono-INH resistant 

Mono-RIF resistant 

MDR-TB 

MDR+ / XDR-TB 

 

0.05 

0.15 

0.27 

0.27 

 

[0.03-0.08] 

[0.08-0.23] 

[0.15-0.42] 

[0.15-0.42] [5,22,47,48] 

Parameters related to     and     

Rate of attending TB testing site, for 
individuals with active TB 

Time-varying 0-200% of 
base-case 
value 

Trend estimated 
from country 
program data 
1990-2011 [29] 
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Table 2.5. Base-case parameter values and ranges (continued) 

Description Base-case value Range* Source 

Parameters related to    

New entrants at time t Time-varying — [21] 

Parameters related to    

Transmission parameter for individuals 
with (pan-sensitive) smear-positive TB in 
1950 (     ) 

11.0 [8.3-14.3] Values chosen to 
produce plausible 
value on burn-in 

Annual percentage decline in transmission 
parameter 

0.7% [0.2%-1.6%] 
[4] 

Infectivity of smear-negative TB, relative to 
smear-positive TB (  ) 

0.22 [0.12-0.37] 
[3] 

Fitness cost,drug-resistant TB strains (  ):  

Mono-INH resistant 

Mono-RIF resistant 

MDR-TB 

MDR+ / XDR-TB 

 

0.05 

0.15 

0.27 

0.27 

 

[0.03-0.08] 

[0.08-0.23] 

[0.15-0.42] 

[0.15-0.42] [5,22,47,48] 

Parameters related to     and     

Rate of attending TB testing site, for 
individuals with active TB 

Time-varying 0-200% of 
base-case 
value 

Trend estimated 
from country 
program data 
1990-2011 [29] 

Rate ratio of attending TB testing, for 
individuals without active TB compared to 
those with active TB 

0.015 [0.009-0.023] Calibrated to 
observed ratio of 
TB testing to TB 
notifications [29] 

Parameters related to yDit and yNit 

Sensitivity of sputum smear microscopy: 

Smear-negative TB  

Smear-positive TB  

 

0.0 

1.0 

 

— 

— Assumed 

Specificity of sputum smear microscopy 0.974 [0.965-0.982] [27] 

Sensitivity of sputum culture 1.0 — Assumed 

Specificity of sputum culture 0.984 [0.978-0.989] [28] 

Sensitivity of Xpert for TB: 

Smear-negative TB  

Smear-positive TB  

 

0.725 

0.982 

 

[0.655-0.788] 

[0.969-0.991] [26] 

Specificity of Xpert for TB 0.992 [0.982-0.997] [26] 

Sensitivity of Xpert for RIF resistance 0.976 [0.946-0.992] [26] 
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Table 2.5. Base-case parameter values and ranges (continued) 

Description Base-case value Range* Source 

Specificity of Xpert for RIF resistance 0.981 [0.966-0.990] [26] 

Probability of sputum culture following a 
negative sputum smear (status quo): 

Treatment-naïve patients 

Treatment-experienced patients 

 

 

0.20 

0.80 

 

 

[0.11-0.31] 

[0.69-0.89] [23] 

Probability of DST following a positive TB 
diagnosis (status quo): 

Treatment-naïve patients 

Treatment-experienced patients 

 

 

0.00 

0.80 

 

 

— 

[0.69-0.89] [23] 

Sensitivity of clinical diagnosis 0.209 [0.12-0.33] [49] 

Specificity of clinical diagnosis 0.953 [0.92-0.97] [49] 

Parameters related to      and      

Probability of loss to follow-up between 
presentation and treatment initiation: 

With prompt diagnosis (smear, Xpert) 

With delayed diagnosis (culture, DST) 

 

 

0.15 

0.25 

 

 

[0.09 – 0.24] 

[0.14 – 0.39] [24] 

Parameters related to     

Treatment default rate, DOTS Time-varying 50-150% of 
point 
estimate 

Trend estimated 
from country 
program data 
1990-2011 [29] 

Treatment default rate, non-DOTS  0.58 [0.27-0.85] [27] 

Parameters related to     

Probability of treatment success, for 
individuals with pan-sensitive TB 
completing first-line regimen  

Time-varying 50-150% of 
point 
estimate 

Trend estimated 
from country 
program data 
1990-2011 [29] 

Risk ratio of treatment success, relative to 
pan-sensitive TB with first-line regimen: 

First-line regimen, partially-sens strain 

First-line regimen, non-sens strain 

Second-line regimen, sens strain 

Second-line regimen, non-sens strain 

Non-DOTS regimen, non-MDR strain 

Non-DOTS regimen, MDR strain 

 

 

0.83 

0.44 

0.93 

0.44 

0.73 

0.44 

 

 

[0.73-0.90] 

[0.23-0.67] 

[0.89-0.96] 

[0.23-0.67] 

[0.58-0.85] 

[0.23-0.67] [50-54] 
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Table 2.5. Base-case parameter values and ranges (continued) 

Description Base-case value Range* Source 

Parameters related to     

Background mortality rate, (ages 15+) Time-varying — WHO unpublished 
data 

Excess mortality rate, active TB (μTB): 

Smear-negative 

Smear-positive 

 

0.21 

0.30 

 

[0.18 – 0.25] 

[0.21 – 0.41] [4] 

Excess mortality rate, HIV (μHIV): 

CD4 >350 cells/µl, no ART 

CD4 200–350 cells/µl, no ART 

CD4 <200 cells/µl, no ART 

On ART initiated at CD4 >350 cells/µl 

On ART initiated at CD4 200-350 cells/µl 

On ART initiated at CD4 <200 cells/µl 

 

0. 008 

0.030 

0.230 

0.008 

0.023 

0.050 

 

[0.005-0.012] 

[0.018-0.048] 

[0.136-0.366] 

[0.005-0.012] 

[0.014-0.037] 

[0.031-0.076] [35-40] 

Excess mortality rate, CD4<200, active TB 
(μTB-HIV) 

0.80 [0.472-1.272] 
[14,15] 

Parameters related to m 

Partial immunity from prior infection:  

HIV-neg 

HIV-pos, CD4 >350 cells/µl, no ART 

HIV-pos, CD4 200–350 cells/µl, no ART 

HIV-pos, CD4 <200 cells/µl, no ART 

 

0.65 

0.45 

0.25 

0.25 

 

[0.37-0.87] 

[0.23-0.68] 

[0.14-0.39] 

[0.14-0.39] [2,3,5,47] 

Parameters related to p 

Probability of fast breakdown to active TB, 
for new infections:  

HIV-neg 

HIV-pos, CD4 >350 cells/µl, no ART 

HIV-pos, CD4 200–350 cells/µl, no ART 

HIV-pos, CD4 <200 cells/µl, no ART 

 

 

0.115 

0.33 

0.67 

0.94 

 

 

[0.09-0.14] 

[0.18-0.51] 

[0.49-0.82] 

[0.70-1.00] [4,55] 

Parameters related to f 

Probability of smear-positivity, for 
incident TB cases:  

HIV-neg 

HIV-pos, CD4 >350 cells/µl, no ART 

HIV-pos, CD4 200–350 cells/µl, no ART 

HIV-pos, CD4 <200 cells/µl, no ART 

 

 

0.62 

0.45 

0.35 

0.35 

 

 

[0.42-0.80] 

[0.23-0.68] 

[0.19-0.54] 

[0.19-0.54] [3,11,55] 
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Table 2.5. Base-case parameter values and ranges (continued) 

Description Base-case value Range* Source 

Parameters related to τ 

Rate of breakdown from latent/recovered 
to active TB (per 100,000):  

HIV-neg 

HIV-pos, CD4 >350 cells/µl, no ART 

HIV-pos, CD4 200–350 cells/µl, no ART 

HIV-pos, CD4 <200 cells/µl, no ART 

 

 

0.001 

0.003 

0.085 

0.170 

 

 

[0.0003-0.0024] 

[0.001-0.006] 

[0.060-0.130] 

[0.100-0.270] [3,4,56] 

Parameters related to α 

Rate of conversion from smear-negative to 
smear-positive active TB 

0.015 [0.010-0.023] 
[4] 

Parameters related to σ 

Rate of self-cure for active TB:   

HIV-neg 

HIV-pos, CD4 >350 cells/µl, no ART 

HIV-pos, CD4 200–350 cells/µl, no ART 

HIV-pos, CD4 <200 cells/µl, no ART 

 

0.2 

0.1 

0.0 

0.0 

 

[0.15-0.25] 

[0.06-0.16] 

— 

— [4,5,57] 

Parameters related to    

Duration of TB treatment (   ⁄ ):  

First-line 

Mono-INH resistant 

Mono-RIF resistant 

MDR-TB 

MDR+/XDR-TB 

Non-DOTS (averaged) 

 

6 mo. 

9 mo. 

18 mo. 

21 mo. 

21 mo. 

18 mo. 

 

— 

— 

— 

— 

— 

— [58] 

Parameters related to v 

Probability failed treatment cases are 
identified and returned to treatment 

0.5 [0.25-0.75] 
Assumed 
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Table 2.5. Base-case parameter values and ranges (continued) 

Description Base-case value Range* Source 

Additional parameters related to TB strain subdivisions 

Rates of acquisition of TB drug resistance: 

Pan-sensitive  Mono-INH resistant, 
1st-line regimen 

Pan-sensitive  Mono-RIF resistant, 1st 
-line regimen 

Pan-sensitive  MDR-TB, 1st -line 
regimen 

Mono-RIF or Mono-INH resistant  
MDR-TB, appropriate 2nd-line regimen 

Mono-RIF or Mono-INH resistant  
MDR-TB, inappropriate 2nd -regimen 

MDR-TB  MDR+/XDR-TB, appropriate 
2nd -line regimen 

MDR-TB  MDR+/XDR-TB, 
inappropriate 2nd -line regimen 

Rate ratio of acquired resistance, pan-
sensitive, non-DOTS regimen 

 

0.020 

 

0.003 

 

0.010 

 

0.020 

 

0.230 

 

0.020 

 

0.230 

 

3.0 

 

[0.012-0.032] 

 

[0.002-0.005] 

 

[0.006-0.016] 

 

[0.012-0.032] 

 

[0.139-0.359] 

 

[0.012-0.032] 

 

[0.139-0.359] 

 

[1.8-4.8] [31] 

Additional parameters related to HIV subdivisions 

HIV incidence Time-varying Annual 
change varied 
±5% 

UNAIDS 
unpublished 
estimates 

Rate of HIV progression for individuals not 
on ART: 

CD4 >350 cells/µl to CD4 200–350 
cells/µl 

CD4 200–350 cells/µl to CD4 <200 
cells/µl 

 

 

0.134 

 

0.505 

 

 

[0.08-0.21] 

 

[0.30-0.81] 
[59-62] 

Historical ART coverage for treatment-
eligible HIV-positive individuals 

Time-varying — UNAIDS 
unpublished 
estimates 

Future ART coverage for treatment-
eligible HIV-positive individuals 

0.8 [0.47-0.96] 
[32] 

Effectiveness of ART in reversing effect of 
HIV on TB natural history (all TB 
transition parameters subdivided by HIV 
status, excluding mortality) 

0.7 [0.47-0.87] 

[63-65] 

Proportion of HIV-negative individuals 
with prior HIV test result 

0.5  

[0.25-0.75] [66-68] 
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Table 2.5. Base-case parameter values and ranges (continued) 

Description Base-case value Range* Source 

Additional parameters related to costs and health outcomes 

Per-test cost of Xpert $20, $30, $40 Assumed 
fixed [25,69,70] 

Per-test cost of smear diagnosis:  

Botswana 

Lesotho 

Namibia 

South Africa 

Swaziland 

 

$6.13 

$3.31 

$5.31 

$5.94 

$4.24 

 

[4.18-8.68] 

[2.26-4.68] 

[3.63-7.51] 

[4.06-8.39] 

[2.90-5.99] [24,71-77] 

Per-test cost of culture:  

Botswana 

Lesotho 

Namibia 

South Africa 

Swaziland 

 

$15.83 

$8.56 

$13.72 

$15.33 

$10.94 

 

[13.07-18.99] 

[7.07-10.27] 

[11.33-16.46] 

[12.66-18.39] 

[9.04 -13.13] [24,71,73,74,77] 

Per-test cost of chest X-ray:  

Botswana 

Lesotho 

Namibia 

South Africa 

Swaziland 

 

$16.69 

$9.03 

$14.46 

$16.16 

$11.54 

 

[11.35-23.70] 

[6.14-12.81] 

[9.83-20.52] 

[10.99-22.94] 

[7.85-16.38] [71,76,78] 

Per-test cost of drug sensitivity testing: 

Botswana 

Lesotho 

Namibia 

South Africa 

Swaziland 

 

$81.97 

$44.32 

$71.02 

$79.37 

$56.65 

 

[61.44-
107.17] 

[33.22-57.94] 

[53.24-92.85] 

[59.50-103.77] 

[42.47-74.07] [79,80] 

Cost of outpatient diagnostic visit:  

Botswana 

Lesotho 

Namibia 

South Africa 

Swaziland 

 

$10.32 

$2.94 

$7.99 

$10.30 

$6.21 

 

[6.09-16.40] 

[1.73-4.67] 

[4.71-12.70] 

[6.08-16.39] 

[3.66-9.87] [81] 
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Table 2.5. Base-case parameter values and ranges (continued) 

Description Base-case value Range* Source 

Cost of outpatient treatment visit:  

Botswana 

Lesotho 

Namibia 

South Africa 

Swaziland 

 

$6.85 

$1.95 

$5.31 

$6.85 

$4.13 

 

[4.04-10.89] 

[1.15-3.10] 

[3.13-8.44] 

[4.04-10.89] 

[2.44-6.57] [81] 

Cost of inpatient care, per day:  

Botswana 

Lesotho 

Namibia 

South Africa 

Swaziland 

 

$38.99 

$8.78 

$28.76 

$39.38 

$21.91 

 

[23.00-61.99] 

[5.18-13.96] 

[16.97-45.73] 

[23.23-62.61] 

[12.93-34.84] [81] 

Monthly TB regimen cost:  

First-line 

Mono-INH resistant 

Mono-RIF resistant 

MDR-TB 

MDR+/XDR-TB 

 

$5.86 

$18.02 

$33.91 

$119.37 

$179.06 

 

[3.46-9.32] 

[10.63-28.65] 

[20.01-53.92] 

[70.43-189.79] 

[105.64-284.7] [41] 

Monthly frequency of treatment activities, 
averaged over treatment course:  

Clinic visits (first-line) 

Clinic visits (second-line) 
Monitoring smears (first-line) 

Monitoring smears (second-line) 

Sputum cultures (second-line) 

Chest X-rays (second-line) 

 

 

5.9 

22.3 

1.0 

1.0 

0.43 

0.14 

 

 

[3.5-9.4] 

[13.2-35.4] 

[0.6-1.6] 

[0.6-1.6] 

[0.25-0.68] 

[0.08-0.22] [1] 

Number of months of inpatient care with 
MDR-TB treatment 

4.0 [2.4-6.4] 
[82] 

Monthly cost of ART:  

Botswana 

Lesotho 

Namibia 

South Africa 

Swaziland 

 

$104.97 

$69.63 

$94.68 

$102.53 

$81.20 

 

[84-80-128.48] 

[57.22-83.92] 

[76.78-115.52] 

[82.90-125.40] 

[66.25-98.52] [41,83-87] 
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Table 2.5. Base-case parameter values and ranges (continued) 

Description Base-case value Range* Source 

Disability weights:  

Active TB 

HIV-pos, CD4 >350 cells/µl, no ART 

HIV- pos, CD4 200–350 cells/µl, no ART 

HIV- pos, CD4 <200 cells/µl, no ART 

HIV- pos, ART initiated at CD4 >350  

HIV- pos, ART initat CD4 200–350  

HIV- pos, ART initat CD4 <200  

 

0.271 

0.135 

0.320 

0.505 

0.135 

0.151 

0.167 

 

[0.151-0.422] 

[0.078-0.213] 

[0.176-0.496] 

[0.252-0.757] 

[0.078-0.213] 

[0.087-0.238] 

[0.096-0.262] [43,44] 

Discount rate 3.0% [0-10%] [88,89] 

All costs are given in 2011 US dollars 

* Ranges for parameters were derived from the literature where sufficient data existed, and otherwise 

were calculated as ± 50% of the point estimate value. 
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Figure 2.11. Time-varying parameter inputs for TB diagnosis and treatment 

 

2.6.4. Model calibration 

We adopted a Bayesian approach to calibrate the model, following the prior work of Raftery, 

Alkema and colleagues [90,91]. The approach enables the synthesis of multiple sources of 

information on the values of model outputs, and allows for characterization of the uncertainty in 

model results using Bayesian posterior intervals and similar metrics.  
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The disease model (M) can be considered a deterministic mapping from the parameter space of the 

model inputs (Θ) to that of the model outputs (Φ), such that M: θ → φ. For some of these outputs 

(φ1) we have external data (X) related to φ1 through a defined probability model. An example of φ1 

would be model projections of MDR-TB prevalence for 2010, and an example for X would be the 

estimate for MDR-TB prevalence obtained from a population-based survey conducted in the same 

year. For other outputs (φ2) — generally those about we would like to make inferences — we have 

no external data, but can estimate their distribution based on the prior information about θ and φ2, 

relying on the deterministic disease model to link these three sets of parameters. As we have 

probabilistic prior information on θ and φ1, we can use this information to estimate the posterior 

density of θ: 

 ( | )   ( )   ( | ) 

where p(θ) is the prior distribution of the model inputs, and  ( | ) is the likelihood function for θ 

constructed with the external data X. While this likelihood function cannot be estimated directly, we 

can transform θ into the output parameter space to estimate the likelihood: 

 ( | )   ( )   ( | ( )) 

  ( )   ( |  )  

Having obtained a posterior distribution for the model inputs, we can then estimate the posterior 

density of φ2 through the model, as  ( ( | )). An analytic solution can be difficult or impossible to 

calculate for disease models of moderate or greater complexity, but the posterior distributions can 

be approximated using numerical methods. Following Alkema et al. [90], we used a sampling / 

importance resampling (SIR) algorithm [92]: 
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The prior uncertainty was quantified for each model parameter, expressed as the ranges given in 

Table 2.5. Each range was assumed to represent the 95% equal tailed interval for a log-normal 

distribution (for parameters defined over positive numbers, e.g., rates, costs) or logit-normal 

distribution (for parameters defined over the interval 0–1, e.g., probabilities, disability weights).  

For each country, a likelihood function was constructed to calibrate the model, based on (a) WHO 

estimates [29] for TB prevalence and incidence in 1990 and 2009 (the earliest and most recent 

estimates available, respectively); and (b) results from a country-level drug resistance survey, 

where available [93]. The uncertainty around prevalence and incidence estimates was assumed to 

be distributed normally, with a variance calculated from the width of the uncertainty intervals 

reported with the WHO estimates. The sample size and MDR-TB prevalence reported by the drug 

resistance surveys were used to parameterize two beta distributions (one for treatment-

experienced and one for treatment-naïve individuals), assuming a design effect of 2.0 for the survey 

sample. These likelihood functions were assumed to be mutually independent, and multiplied to 

create a joint likelihood function.  

For each country 20,000 random parameter sets were drawn via Latin hypercube sampling, and a 

separate simulation conducted for each of these parameter sets. A likelihood statistic was 

calculated for each of these model runs by applying the joint likelihood function to the model 

outputs produced by a particular parameter set. 

The 20,000 parameter sets from the first stage sample were then resampled with replacement to 

create a final array of parameter sets, using the likelihoods as sampling weights. A sample size of 

100,000 was used for this second sample as this step is not computationally intensive. 

Results were calculated by running the model for the resampled parameter sets. For each quantity 

of interest, the point estimate was calculated as the mean of the results for the second stage sample, 
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and 95% posterior intervals (the Bayesian equivalent of confidence intervals) calculated from the 

2.5th and 97.5th percentiles of the simulation results for each quantity of interest. 

This procedure was conducted separately for each country. Figure 2.12 shows the results of the 

calibration for TB prevalence, incidence and MDR-TB prevalence in South Africa, overlaid with the 

WHO estimates and drug resistance survey data. Posterior distributions for health outcomes and 

costs for the southern Africa region were calculated by summing the outcomes for each country.  

 

 

Figure 2.12. Calibrated outcomes for South Africa based on sampling / importance 

resampling 
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2.6.5. Sensitivity and uncertainty analyses 

We adopted four approaches to investigate the sensitivity of results to changes in model inputs.  

2.6.5.1. Deterministic one-way senstitivity analyses 

Traditional deterministic one-way sensitivity analyses describe how the value of a model output 

responds to deliberate changes in the value of a particular input parameter, when all other 

variables are held at their expected values. For all input parameters, we evaluated how the 10-year 

incremental cost-effectiveness ratio for Xpert vs. the status quo changed as each individual 

parameter was varied ±1 standard deviation from the mean of its posterior distribution, while all 

other variables were held at their posterior mean values. The resulting information represents a set 

of 'what-if' analyses, useful for identifying situations where the optimal policy decision might 

change if the value of an individual parameter were found to differ substantially from prior 

expectations. The main paper (Figure 2.8) reported on results for the 10 most influential 

parameters identified through this process for South Africa. A full listing of results, by country, is 

shown here in Tables 2.6-2.10. 

2.6.5.2. Analysis of partial rank correlation coefficients 

Partial rank correlation coefficients (PRCCs) represent a complementary approach for investigating 

uncertainty, providing information on the relative influence that individual parameters have on 

model outcomes based on the results of a probabilistic sensitivity analysis [4,94,95]. We calculated 

PRCCs using the resampled parameter sets produced by the calibration proceedure. Results for the 

10 parameters having the greatest influence on the cost-effectiveness ratio for Xpert in South 

Africa, under a 10-year time horizon, are shown in Figure 2.9. 
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Table 2.6. Univariate sensitivity analysis, Botswana (base-case ICER =$1,289) 

Parameter description L
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Transmission parameter for individuals with smear-pos 
TB in 1950 

9.6 12.2 1,381 1,248 

Annual percentage decline in transmission parameter 0.004 0.010 1,236 1,394 

Infectivity of smear-neg TB, relative to smear-pos TB  0.17 0.30 1,447 1,167 

Fitness cost for drug-resistant TB strains (% of base-case) 82% 134% 1,392 1,218 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 1990 (% of base-case) 

53% 174% 1,292 1,285 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 2010 (% of base-case) 

90% 191% 1,071 1,561 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 1990 (% of base-case) 

48% 136% 1,242 1,335 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 2010 (% of base-case) 

50% 140% 1,245 1,334 

Rate ratio of TB testing, for individuals without active TB 
compared to those with active TB 

0.011 0.019 1,203 1,374 

Specificity of sputum smear microscopy 0.97 0.98 1,256 1,321 

Specificity of sputum culture  0.98 0.99 1,284 1,293 

Sensitivity of Xpert for TB, smear-neg TB  0.69 0.76 1,314 1,267 

Sensitivity of Xpert for TB, smear-pos TB  0.98 0.99 1,295 1,282 

Specificity of Xpert for TB 0.99 1.00 1,316 1,261 

Sensitivity of Xpert for RIF resistance 0.96 0.99 1,280 1,297 

Specificity of Xpert for RIF resistance 0.98 0.99 1,291 1,286 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-naïve patients 

0.16 0.27 1,192 1,389 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-experienced patients 

0.75 0.85 1,289 1,288 

Probability of DST following a positive TB diagnosis 
(status quo), tx-experienced patients 

0.75 0.85 1,324 1,253 

Probability of loss to follow-up between initial 
presentation and tx initiation, with prompt diagnosis 

0.12 0.19 1,281 1,298 

Probability of loss to follow-up between initial 
presentation and tx initiation, with delayed diagnosis 

0.18 0.30 1,343 1,238 

Tx default rate, DOTS (% of base-case) 78% 129% 1,278 1,293 

Tx default rate, non-DOTS  0.39 0.70 1,363 1,218 

Probability of tx success, individuals with pan-sensitive 
TB completing 1st-line regimen (% of base-case) 

77% 125% 1,304 1,283 
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Table 2.6. Univariate sensitivity analysis, Botswana (base-case ICER =$1289) (continued) 

Parameter description L
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Risk ratio of tx success, 1st-line regimen, semi-sensitive 
strain 

0.79 0.87 1,296 1,282 

Risk ratio of tx success, 1st-line regimen, non-sensitive 
strain 

0.32 0.56 1,303 1,278 

Risk ratio of tx success, 2nd-line regimen, sensitive strain 0.91 0.95 1,301 1,277 

Risk ratio of tx success, 2nd-line regimen, non-sensitive 
strain 

0.34 0.58 1,339 1,260 

Risk ratio of tx success, non-DOTS regimen, non-MDR 
strain 

0.65 0.81 1,287 1,290 

Risk ratio of tx success, non-DOTS regimen, MDR strain 0.32 0.56 1,302 1,277 

Excess mortality rate for active TB, smear-neg 0.20 0.23 1,282 1,295 

Excess mortality rate for active TB, smear-pos 0.26 0.37 1,322 1,267 

Excess mortality rate for HIV, CD4 >350 cells/µl, no ART 0.006 0.010 1,285 1,292 

Excess mortality rate for HIV, CD4 200-350 cells/µl, no 
ART 

0.023 0.038 1,287 1,290 

Excess mortality rate for HIV, CD4 <200 cells/µl, no ART 0.17 0.28 1,285 1,291 

Excess mortality rate for HIV, on ART initiated at CD4 
>350 cells/µl 

0.006 0.010 1,289 1,289 

Excess mortality rate for HIV, on ART initiated at CD4 
200-350 cells/µl 

0.017 0.028 1,286 1,291 

Excess mortality rate for HIV, on ART initiated at CD4 
<200 cells/µl 

0.038 0.062 1,275 1,302 

Excess mortality rate for advanced HIV (CD4 <200 
cells/µl) and active TB without ART 

0.62 1.04 1,287 1,290 

TB tx mortality rates (% of base-case) 77% 127% 1,308 1,271 

Partial immunity afforded by prior infection, HIV-neg 0.60 0.81 1,283 1,303 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 >350 cells/µl, no ART 

0.35 0.58 1,291 1,287 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 200-350 cells/µl, no ART 

0.19 0.31 1,288 1,290 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 <200 cells/µl, no ART 

0.18 0.32 1,288 1,289 

Probability of fast breakdown to active TB, with new 
infection, HIV-neg 

0.10 0.12 1,333 1,256 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 >350 cells/µl, no ART 

0.24 0.41 1,298 1,282 
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Table 2.6. Univariate sensitivity analysis, Botswana (base-case ICER =$1289) (continued) 

Parameter description L
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Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 200-350 cells/µl, no ART 

0.59 0.77 1,290 1,287 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 <200 cells/µl, no ART 

0.87 1.00 1,289 1,288 

Probability of smear-positivity, for incident TB cases, HIV-
neg 

0.56 0.74 1,190 1,428 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 >350 cells/µl, no ART 

0.34 0.57 1,262 1,317 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.27 0.44 1,272 1,307 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 <200 cells/µl, no ART 

0.26 0.44 1,273 1,305 

Rate of breakdown, latent/recovered to active TB, HIV-
neg 

0.0006 0.0014 1,339 1,251 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 >350 cells/µl, no ART 

0.002 0.004 1,296 1,281 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.08 0.11 1,305 1,275 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 <200 cells/µl, no ART 

0.14 0.22 1,314 1,273 

Rate of conversion, smear-neg to smear-pos active TB 0.012 0.019 1,286 1,291 

Rate of self-cure for active TB, HIV-neg 0.19 0.24 1,258 1,321 

Rate of self-cure for active TB, HIV-pos, CD4 >350 cells/µl, 
no ART 

0.08 0.13 1,284 1,292 

Probability that failed tx cases are correctly identified and 
returned to tx 

0.38 0.63 1,294 1,283 

Rate of acquisition of TB drug resistance (% of base-case) 77% 127% 1,179 1,414 

HIV incidence trend, post-2011 (% of base-case) 98% 103% 1,290 1,287 

Rate of HIV progression for individuals not on ART, from 
CD4 >350 cells/µl to CD4 200-350 cells/µl 

0.11 0.17 1,266 1,308 

Rate of HIV progression for individuals not on ART, from 
CD4 200-350 cells/µl to CD4 <200 cells/µl 

0.35 0.66 1,287 1,290 

Future ART coverage for tx-eligible HIV-pos individuals 0.66 0.93 1,180 1,371 

Effectiveness of ART in reversing effect of HIV on TB 
natural history  

0.54 0.75 1,213 1,393 

Per-test cost of smear diagnosis 4.9 7.5 1,334 1,243 

Per-test cost of culture 14.4 17.4 1,301 1,276 
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Table 2.6. Univariate sensitivity analysis, Botswana (base-case ICER =$1289) (continued) 

Parameter description L
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Per-test cost of chest X-ray 13.5 19.8 1,288 1,289 

Per-test cost of drug sensitivity testing 71.0 94.5 1,296 1,281 

Cost of outpatient diagnostic visit 7.7 13.1 1,321 1,256 

Cost of outpatient tx visit 5.0 9.0 1,281 1,296 

Cost of inpatient care, per day 28.6 48.8 1,246 1,331 

Monthly TB regimen costs (% of base-case) 0.74 1.27 1,267 1,310 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (1st-line) 

4.3 7.5 1,299 1,278 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (2nd-line) 

15.9 27.4 1,266 1,311 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (1st-line) 

0.73 1.25 1,290 1,287 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (2nd-line) 

0.74 1.26 1,288 1,289 

Monthly frequency of tx activities, averaged over tx 
course, sputum cultures (2nd-line) 

0.31 0.54 1,288 1,290 

Monthly frequency of tx activities, averaged over tx 
course, chest X-rays (2nd-line) 

0.11 0.18 1,288 1,289 

Number of months of inpatient care with MDR-TB tx 3.0 5.1 1,246 1,331 

Monthly cost of ART 93.3 116.0 1,227 1,350 

Disability weight, active TB 0.20 0.34 1,366 1,219 

Disability weight, HIV-pos, CD4 >350 cells/µl, no ART 0.10 0.17 1,285 1,292 

Disability weight, HIV-pos, CD4 200-350 cells/µl, no ART 0.23 0.39 1,289 1,289 

Disability weight, HIV-pos, CD4 <200 cells/µl, no ART 0.36 0.64 1,282 1,295 

Disability weight, HIV-pos, ART initiated CD4 >350  0.10 0.17 1,278 1,300 

Disability weight, HIV-pos, ART initiated CD4 200-350  0.12 0.19 1,284 1,293 

Disability weight, HIV-pos, ART initiated CD4 <200  0.13 0.21 1,271 1,307 

Annual discount rate 0 10% 1,265 1,348 
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Table 2.7. Univariate sensitivity analysis, Lesotho (base-case ICER =$1071)  

Parameter description L
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Transmission parameter for individuals with smear-pos 
TB in 1950 

9.7 12.4 1,281 942 

Annual percentage decline in transmission parameter 0.004 0.010 896 1,294 

Infectivity of smear-neg TB, relative to smear-pos TB  0.18 0.30 1,254 933 

Fitness cost for drug-resistant TB strains (% of base-case) 79% 131% 1,085 1,062 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 1990 (% of base-case) 

58% 185% 1,045 1,090 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 2010 (% of base-case) 

60% 139% 714 1,537 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 1990 (% of base-case) 

46% 139% 1,060 1,082 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 2010 (% of base-case) 

48% 152% 1,068 1,075 

Rate ratio of TB testing, for individuals without active TB 
compared to those with active TB 

0.012 0.019 931 1,212 

Specificity of sputum smear microscopy 0.97 0.98 1,058 1,085 

Specificity of sputum culture  0.98 0.99 1,070 1,073 

Sensitivity of Xpert for TB, smear-neg TB  0.69 0.76 1,101 1,046 

Sensitivity of Xpert for TB, smear-pos TB  0.98 0.99 1,077 1,067 

Specificity of Xpert for TB 0.99 1.00 1,083 1,060 

Sensitivity of Xpert for RIF resistance 0.97 0.99 1,070 1,073 

Specificity of Xpert for RIF resistance 0.98 0.99 1,072 1,071 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-naïve patients 

0.16 0.27 937 1,227 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-experienced patients 

0.74 0.85 1,067 1,076 

Probability of DST following a positive TB diagnosis 
(status quo), tx-experienced patients 

0.75 0.85 1,078 1,065 

Probability of loss to follow-up between initial 
presentation and tx initiation, with prompt diagnosis 

0.11 0.18 1,060 1,085 

Probability of loss to follow-up between initial 
presentation and tx initiation, with delayed diagnosis 

0.18 0.32 1,141 1,008 

Tx default rate, DOTS (% of base-case) 73% 120% 1,064 1,074 

Tx default rate, non-DOTS  0.48 0.78 1,086 1,058 

Probability of tx success, individuals with pan-sensitive 
TB completing 1st-line regimen (% of base-case) 

76% 127% 1,067 1,073 
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Table 2.7. Univariate sensitivity analysis, Lesotho (base-case ICER =$1071) (continued) 

Parameter description L
o

w
 p

ar
. 

v
al

u
e 

H
ig

h
 p

ar
. 

v
al

u
e 

IC
E

R
 w

/ 
lo

w
 v

al
u

e 

IC
E

R
 w

/ 
h

ig
h

 v
al

u
e 

Risk ratio of tx success, 1st-line regimen, semi-sensitive 
strain 

0.79 0.87 1,073 1,070 

Risk ratio of tx success, 1st-line regimen, non-sensitive 
strain 

0.36 0.58 1,071 1,072 

Risk ratio of tx success, 2nd-line regimen, sensitive strain 0.91 0.95 1,074 1,069 

Risk ratio of tx success, 2nd-line regimen, non-sensitive 
strain 

0.35 0.57 1,078 1,067 

Risk ratio of tx success, non-DOTS regimen, non-MDR 
strain 

0.66 0.81 1,066 1,077 

Risk ratio of tx success, non-DOTS regimen, MDR strain 0.32 0.56 1,073 1,070 

Excess mortality rate for active TB, smear-neg 0.20 0.23 1,066 1,078 

Excess mortality rate for active TB, smear-pos 0.27 0.39 1,046 1,104 

Excess mortality rate for HIV, CD4 >350 cells/µl, no ART 0.006 0.010 1,063 1,080 

Excess mortality rate for HIV, CD4 200-350 cells/µl, no 
ART 

0.023 0.038 1,061 1,082 

Excess mortality rate for HIV, CD4 <200 cells/µl, no ART 0.16 0.25 1,021 1,114 

Excess mortality rate for HIV, on ART initiated at CD4 
>350 cells/µl 

0.006 0.010 1,071 1,071 

Excess mortality rate for HIV, on ART initiated at CD4 
200-350 cells/µl 

0.017 0.029 1,070 1,073 

Excess mortality rate for HIV, on ART initiated at CD4 
<200 cells/µl 

0.039 0.061 1,054 1,089 

Excess mortality rate for advanced HIV (CD4 <200 
cells/µl) and active TB without ART 

0.61 1.00 1,033 1,103 

TB tx mortality rates (% of base-case) 78% 130% 1,068 1,075 

Partial immunity afforded by prior infection, HIV-neg 0.62 0.82 1,033 1,111 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 >350 cells/µl, no ART 

0.33 0.57 1,069 1,074 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 200-350 cells/µl, no ART 

0.18 0.31 1,069 1,074 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 <200 cells/µl, no ART 

0.18 0.32 1,067 1,076 

Probability of fast breakdown to active TB, with new 
infection, HIV-neg 

0.10 0.12 1,159 1,000 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 >350 cells/µl, no ART 

0.25 0.43 1,109 1,036 
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Table 2.7. Univariate sensitivity analysis, Lesotho (base-case ICER =$1071) (continued) 

Parameter description L
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Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 200-350 cells/µl, no ART 

0.58 0.76 1,077 1,066 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 <200 cells/µl, no ART 

0.85 1.00 1,078 1,067 

Probability of smear-positivity, for incident TB cases, HIV-
neg 

0.53 0.72 1,043 1,120 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 >350 cells/µl, no ART 

0.33 0.58 1,051 1,093 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.26 0.44 1,058 1,085 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 <200 cells/µl, no ART 

0.27 0.44 1,060 1,084 

Rate of breakdown, latent/recovered to active TB, HIV-
neg 

0.0005 0.00122 1,137 1,025 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 >350 cells/µl, no ART 

0.002 0.004 1,082 1,061 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.08 0.11 1,099 1,048 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 <200 cells/µl, no ART 

0.15 0.24 1,140 1,025 

Rate of conversion, smear-neg to smear-pos active TB 0.011 0.018 1,071 1,072 

Rate of self-cure for active TB, HIV-neg 0.18 0.24 1,027 1,119 

Rate of self-cure for active TB, HIV-pos, CD4 >350 cells/µl, 
no ART 

0.07 0.13 1,065 1,078 

Probability that failed tx cases are correctly identified and 
returned to tx 

0.39 0.65 1,072 1,071 

Rate of acquisition of TB drug resistance (% of base-case) 66% 108% 1,052 1,094 

HIV incidence trend, post-2011 (% of base-case) 98% 102% 1,076 1,066 

Rate of HIV progression for individuals not on ART, from 
CD4 >350 cells/µl to CD4 200-350 cells/µl 

0.11 0.18 1,092 1,066 

Rate of HIV progression for individuals not on ART, from 
CD4 200-350 cells/µl to CD4 <200 cells/µl 

0.36 0.61 1,028 1,102 

Future ART coverage for tx-eligible HIV-pos individuals 0.67 0.91 1,009 1,134 

Effectiveness of ART in reversing effect of HIV on TB 
natural history  

0.58 0.79 1,000 1,157 

Per-test cost of smear diagnosis 2.7 3.8 1,091 1,052 

Per-test cost of culture 7.7 9.4 1,078 1,065 
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Table 2.7. Univariate sensitivity analysis, Lesotho (base-case ICER =$1071) (continued) 

Parameter description L
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Per-test cost of chest X-ray 7.2 10.6 1,071 1,072 

Per-test cost of drug sensitivity testing 37.9 51.1 1,075 1,068 

Cost of outpatient diagnostic visit 2.2 3.8 1,080 1,063 

Cost of outpatient tx visit 1.5 2.5 1,073 1,070 

Cost of inpatient care, per day 6.6 10.9 1,068 1,075 

Monthly TB regimen costs (% of base-case) 0.75 1.24 1,064 1,079 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (1st-line) 

4.3 7.4 1,074 1,069 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (2nd-line) 

16.9 28.0 1,069 1,074 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (1st-line) 

0.76 1.29 1,072 1,071 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (2nd-line) 

0.75 1.22 1,071 1,072 

Monthly frequency of tx activities, averaged over tx 
course, sputum cultures (2nd-line) 

0.32 0.54 1,071 1,072 

Monthly frequency of tx activities, averaged over tx 
course, chest X-rays (2nd-line) 

0.10 0.18 1,071 1,072 

Number of months of inpatient care with MDR-TB tx 3.0 5.1 1,067 1,076 

Monthly cost of ART 62.5 76.5 1,035 1,108 

Disability weight, active TB 0.21 0.35 1,130 1,019 

Disability weight, HIV-pos, CD4 >350 cells/µl, no ART 0.10 0.17 1,067 1,076 

Disability weight, HIV-pos, CD4 200-350 cells/µl, no ART 0.24 0.40 1,071 1,071 

Disability weight, HIV-pos, CD4 <200 cells/µl, no ART 0.36 0.64 1,064 1,079 

Disability weight, HIV-pos, ART initiated CD4 >350  0.10 0.17 1,067 1,076 

Disability weight, HIV-pos, ART initiated CD4 200-350  0.12 0.19 1,065 1,078 

Disability weight, HIV-pos, ART initiated CD4 <200  0.12 0.21 1,053 1,091 

Annual discount rate 0 10% 1,050 1,126 
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Table 2.8. Univariate sensitivity analysis, Namibia (base-case ICER =$863)  
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Transmission parameter for individuals with smear-pos 
TB in 1950 

10.0 12.8 955 811 

Annual percentage decline in transmission parameter 0.003 0.007 803 942 

Infectivity of smear-neg TB, relative to smear-pos TB  0.19 0.33 992 768 

Fitness cost for drug-resistant TB strains (% of base-case) 79% 132% 916 828 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 1990 (% of base-case) 

52% 137% 864 862 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 2010 (% of base-case) 

42% 96% 688 1,088 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 1990 (% of base-case) 

47% 153% 839 887 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 2010 (% of base-case) 

44% 132% 838 890 

Rate ratio of TB testing, for individuals without active TB 
compared to those with active TB 

0.011 0.019 786 941 

Specificity of sputum smear microscopy 0.97 0.98 848 879 

Specificity of sputum culture  0.98 0.99 861 866 

Sensitivity of Xpert for TB, smear-neg TB  0.69 0.76 883 846 

Sensitivity of Xpert for TB, smear-pos TB  0.98 0.99 870 857 

Specificity of Xpert for TB 0.99 1.00 878 849 

Sensitivity of Xpert for RIF resistance 0.97 0.99 859 868 

Specificity of Xpert for RIF resistance 0.98 0.99 865 862 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-naïve patients 

0.15 0.25 804 928 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-experienced patients 

0.75 0.86 864 863 

Probability of DST following a positive TB diagnosis 
(status quo), tx-experienced patients 

0.75 0.86 881 846 

Probability of loss to follow-up between initial 
presentation and tx initiation, with prompt diagnosis 

0.12 0.19 858 870 

Probability of loss to follow-up between initial 
presentation and tx initiation, with delayed diagnosis 

0.19 0.31 895 834 

Tx default rate, DOTS (% of base-case) 74% 116% 858 866 

Tx default rate, non-DOTS  0.45 0.75 908 822 

Probability of tx success, individuals with pan-sensitive 
TB completing 1st-line regimen (% of base-case) 

73% 129% 873 861 
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Table 2.8. Univariate sensitivity analysis, Namibia (base-case ICER =$863) (continued) 
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Risk ratio of tx success, 1st-line regimen, semi-sensitive 
strain 

0.79 0.87 866 861 

Risk ratio of tx success, 1st-line regimen, non-sensitive 
strain 

0.36 0.60 866 861 

Risk ratio of tx success, 2nd-line regimen, sensitive strain 0.91 0.95 869 858 

Risk ratio of tx success, 2nd-line regimen, non-sensitive 
strain 

0.33 0.56 877 855 

Risk ratio of tx success, non-DOTS regimen, non-MDR 
strain 

0.67 0.81 861 865 

Risk ratio of tx success, non-DOTS regimen, MDR strain 0.33 0.54 869 859 

Excess mortality rate for active TB, smear-neg 0.19 0.23 851 876 

Excess mortality rate for active TB, smear-pos 0.27 0.37 886 848 

Excess mortality rate for HIV, CD4 >350 cells/µl, no ART 0.006 0.009 861 866 

Excess mortality rate for HIV, CD4 200-350 cells/µl, no 
ART 

0.022 0.036 861 866 

Excess mortality rate for HIV, CD4 <200 cells/µl, no ART 0.16 0.26 858 870 

Excess mortality rate for HIV, on ART initiated at CD4 
>350 cells/µl 

0.006 0.010 863 863 

Excess mortality rate for HIV, on ART initiated at CD4 
200-350 cells/µl 

0.017 0.028 863 864 

Excess mortality rate for HIV, on ART initiated at CD4 
<200 cells/µl 

0.037 0.061 855 873 

Excess mortality rate for advanced HIV (CD4 <200 
cells/µl) and active TB without ART 

0.61 0.97 860 866 

TB tx mortality rates (% of base-case) 78% 126% 871 857 

Partial immunity afforded by prior infection, HIV-neg 0.61 0.83 847 885 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 >350 cells/µl, no ART 

0.32 0.55 863 864 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 200-350 cells/µl, no ART 

0.19 0.31 862 865 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 <200 cells/µl, no ART 

0.18 0.31 861 866 

Probability of fast breakdown to active TB, with new 
infection, HIV-neg 

0.10 0.12 920 819 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 >350 cells/µl, no ART 

0.26 0.43 868 860 
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Table 2.8. Univariate sensitivity analysis, Namibia (base-case ICER =$863) (continued) 

Parameter description L
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Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 200-350 cells/µl, no ART 

0.58 0.75 864 863 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 <200 cells/µl, no ART 

0.87 1.00 864 863 

Probability of smear-positivity, for incident TB cases, HIV-
neg 

0.54 0.72 783 981 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 >350 cells/µl, no ART 

0.35 0.58 855 873 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.27 0.47 858 869 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 <200 cells/µl, no ART 

0.28 0.45 860 867 

Rate of breakdown, latent/recovered to active TB, HIV-
neg 

0.0005 0.00141 911 826 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 >350 cells/µl, no ART 

0.002 0.004 866 861 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.08 0.12 871 857 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 <200 cells/µl, no ART 

0.15 0.25 885 850 

Rate of conversion, smear-neg to smear-pos active TB 0.012 0.018 862 865 

Rate of self-cure for active TB, HIV-neg 0.18 0.24 831 898 

Rate of self-cure for active TB, HIV-pos, CD4 >350 cells/µl, 
no ART 

0.08 0.13 861 865 

Probability that failed tx cases are correctly identified and 
returned to tx 

0.37 0.64 866 861 

Rate of acquisition of TB drug resistance (% of base-case) 70% 113% 812 921 

HIV incidence trend, post-2011 (% of base-case) 97% 103% 863 864 

Rate of HIV progression for individuals not on ART, from 
CD4 >350 cells/µl to CD4 200-350 cells/µl 

0.12 0.19 860 870 

Rate of HIV progression for individuals not on ART, from 
CD4 200-350 cells/µl to CD4 <200 cells/µl 

0.35 0.61 858 868 

Future ART coverage for tx-eligible HIV-pos individuals 0.65 0.92 816 911 

Effectiveness of ART in reversing effect of HIV on TB 
natural history  

0.50 0.71 824 917 

Per-test cost of smear diagnosis 4.3 6.3 886 841 

Per-test cost of culture 12.5 15.2 871 856 
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Table 2.8. Univariate sensitivity analysis, Namibia (base-case ICER =$863) (continued) 

Parameter description L
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Per-test cost of chest X-ray 11.7 17.0 863 864 

Per-test cost of drug sensitivity testing 61.0 80.5 867 860 

Cost of outpatient diagnostic visit 5.9 10.0 878 849 

Cost of outpatient tx visit 3.9 6.6 854 873 

Cost of inpatient care, per day 20.9 35.3 845 882 

Monthly TB regimen costs (% of base-case) 0.73 1.25 850 877 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (1st-line) 

4.4 7.2 863 864 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (2nd-line) 

16.6 28.9 852 874 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (1st-line) 

0.75 1.22 863 864 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (2nd-line) 

0.76 1.25 863 864 

Monthly frequency of tx activities, averaged over tx 
course, sputum cultures (2nd-line) 

0.32 0.54 863 864 

Monthly frequency of tx activities, averaged over tx 
course, chest X-rays (2nd-line) 

0.11 0.18 863 864 

Number of months of inpatient care with MDR-TB tx 3.0 5.2 845 882 

Monthly cost of ART 84.6 104.0 829 898 

Disability weight, active TB 0.21 0.34 912 820 

Disability weight, HIV-pos, CD4 >350 cells/µl, no ART 0.10 0.17 863 864 

Disability weight, HIV-pos, CD4 200-350 cells/µl, no ART 0.25 0.40 863 863 

Disability weight, HIV-pos, CD4 <200 cells/µl, no ART 0.38 0.64 861 866 

Disability weight, HIV-pos, ART initiated CD4 >350  0.10 0.17 860 867 

Disability weight, HIV-pos, ART initiated CD4 200-350  0.12 0.19 861 866 

Disability weight, HIV-pos, ART initiated CD4 <200  0.13 0.21 854 873 

Annual discount rate 0 10% 843 915 
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Table 2.9. Univariate sensitivity analysis, South Africa (base-case ICER =$986)  
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Transmission parameter for individuals with smear-pos 
TB in 1950 

10.4 13.2 979 1,019 

Annual percentage decline in transmission parameter 0.003 0.007 1,012 983 

Infectivity of smear-neg TB, relative to smear-pos TB  0.17 0.28 1,087 907 

Fitness cost for drug-resistant TB strains (% of base-case) 68% 106% 1,105 903 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 1990 (% of base-case) 

51% 159% 1,027 958 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 2010 (% of base-case) 

52% 126% 903 1,085 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 1990 (% of base-case) 

65% 178% 918 1,055 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 2010 (% of base-case) 

48% 165% 905 1,070 

Rate ratio of TB testing, for individuals without active TB 
compared to those with active TB 

0.011 0.019 959 1,013 

Specificity of sputum smear microscopy 0.97 0.98 976 996 

Specificity of sputum culture  0.98 0.99 985 987 

Sensitivity of Xpert for TB, smear-neg TB  0.70 0.76 1,003 971 

Sensitivity of Xpert for TB, smear-pos TB  0.98 0.99 994 978 

Specificity of Xpert for TB 0.99 1.00 994 978 

Sensitivity of Xpert for RIF resistance 0.97 0.99 979 993 

Specificity of Xpert for RIF resistance 0.98 0.99 988 985 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-naïve patients 

0.15 0.27 925 1,057 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-experienced patients 

0.75 0.86 987 985 

Probability of DST following a positive TB diagnosis 
(status quo), tx-experienced patients 

0.76 0.85 1,011 961 

Probability of loss to follow-up between initial 
presentation and tx initiation, with prompt diagnosis 

0.11 0.20 987 987 

Probability of loss to follow-up between initial 
presentation and tx initiation, with delayed diagnosis 

0.20 0.32 1,014 960 

Tx default rate, DOTS (% of base-case) 67% 119% 983 986 

Tx default rate, non-DOTS  0.37 0.65 1,083 896 

Probability of tx success, individuals with pan-sensitive 
TB completing 1st-line regimen (% of base-case) 

71% 125% 1,025 973 



108 
 

Table 2.9. Univariate sensitivity analysis, South Africa (base-case ICER =$986) (continued) 
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Risk ratio of tx success, 1st-line regimen, semi-sensitive 
strain 

0.79 0.88 993 980 

Risk ratio of tx success, 1st-line regimen, non-sensitive 
strain 

0.32 0.54 1,029 959 

Risk ratio of tx success, 2nd-line regimen, sensitive strain 0.91 0.95 998 975 

Risk ratio of tx success, 2nd-line regimen, non-sensitive 
strain 

0.32 0.56 1,041 950 

Risk ratio of tx success, non-DOTS regimen, non-MDR 
strain 

0.67 0.81 985 987 

Risk ratio of tx success, non-DOTS regimen, MDR strain 0.33 0.55 1,016 961 

Excess mortality rate for active TB, smear-neg 0.19 0.23 983 989 

Excess mortality rate for active TB, smear-pos 0.26 0.37 1,072 922 

Excess mortality rate for HIV, CD4 >350 cells/µl, no ART 0.006 0.010 985 987 

Excess mortality rate for HIV, CD4 200-350 cells/µl, no 
ART 

0.021 0.036 986 986 

Excess mortality rate for HIV, CD4 <200 cells/µl, no ART 0.16 0.26 993 980 

Excess mortality rate for HIV, on ART initiated at CD4 
>350 cells/µl 

0.006 0.010 986 986 

Excess mortality rate for HIV, on ART initiated at CD4 
200-350 cells/µl 

0.018 0.029 986 986 

Excess mortality rate for HIV, on ART initiated at CD4 
<200 cells/µl 

0.040 0.063 988 984 

Excess mortality rate for advanced HIV (CD4 <200 
cells/µl) and active TB without ART 

0.60 1.02 983 987 

TB tx mortality rates (% of base-case) 73% 125% 1,012 962 

Partial immunity afforded by prior infection, HIV-neg 0.58 0.81 1,044 967 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 >350 cells/µl, no ART 

0.33 0.54 988 985 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 200-350 cells/µl, no ART 

0.18 0.30 985 987 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 <200 cells/µl, no ART 

0.19 0.32 985 987 

Probability of fast breakdown to active TB, with new 
infection, HIV-neg 

0.10 0.13 988 997 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 >350 cells/µl, no ART 

0.27 0.42 986 988 
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Table 2.9. Univariate sensitivity analysis, South Africa (base-case ICER =$986) (continued) 
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Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 200-350 cells/µl, no ART 

0.58 0.76 984 988 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 <200 cells/µl, no ART 

0.88 1.00 985 987 

Probability of smear-positivity, for incident TB cases, HIV-
neg 

0.57 0.74 876 1,134 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 >350 cells/µl, no ART 

0.37 0.62 956 1,020 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.28 0.46 973 1,000 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 <200 cells/µl, no ART 

0.28 0.48 970 1,003 

Rate of breakdown, latent/recovered to active TB, HIV-
neg 

0.0005 0.00126 991 983 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 >350 cells/µl, no ART 

0.002 0.004 987 985 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.08 0.11 984 988 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 <200 cells/µl, no ART 

0.14 0.23 979 995 

Rate of conversion, smear-neg to smear-pos active TB 0.012 0.018 984 988 

Rate of self-cure for active TB, HIV-neg 0.18 0.23 975 998 

Rate of self-cure for active TB, HIV-pos, CD4 >350 cells/µl, 
no ART 

0.08 0.12 983 989 

Probability that failed tx cases are correctly identified and 
returned to tx 

0.38 0.62 994 978 

Rate of acquisition of TB drug resistance (% of base-case) 85% 123% 888 1,094 

HIV incidence trend, post-2011 (% of base-case) 98% 103% 986 987 

Rate of HIV progression for individuals not on ART, from 
CD4 >350 cells/µl to CD4 200-350 cells/µl 

0.11 0.17 960 1,005 

Rate of HIV progression for individuals not on ART, from 
CD4 200-350 cells/µl to CD4 <200 cells/µl 

0.37 0.63 980 990 

Future ART coverage for tx-eligible HIV-pos individuals 0.67 0.93 941 1,026 

Effectiveness of ART in reversing effect of HIV on TB 
natural history  

0.60 0.80 978 994 

Per-test cost of smear diagnosis 4.8 7.0 998 974 

Per-test cost of culture 14.2 17.1 990 982 
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Table 2.9. Univariate sensitivity analysis, South Africa (base-case ICER =$986) (continued) 
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Per-test cost of chest X-ray 13.6 19.3 986 986 

Per-test cost of drug sensitivity testing 66.7 89.5 989 983 

Cost of outpatient diagnostic visit 7.9 12.6 997 975 

Cost of outpatient tx visit 5.0 8.3 952 1,020 

Cost of inpatient care, per day 28.9 49.9 938 1,034 

Monthly TB regimen costs (% of base-case) 0.79 1.27 961 1,011 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (1st-line) 

4.3 7.5 977 995 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (2nd-line) 

16.0 27.9 956 1,016 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (1st-line) 

0.77 1.21 985 987 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (2nd-line) 

0.75 1.18 985 987 

Monthly frequency of tx activities, averaged over tx 
course, sputum cultures (2nd-line) 

0.32 0.52 985 987 

Monthly frequency of tx activities, averaged over tx 
course, chest X-rays (2nd-line) 

0.11 0.17 986 986 

Number of months of inpatient care with MDR-TB tx 3.0 4.7 945 1,027 

Monthly cost of ART 91.9 114.0 943 1,029 

Disability weight, active TB 0.20 0.32 1,037 940 

Disability weight, HIV-pos, CD4 >350 cells/µl, no ART 0.10 0.17 983 989 

Disability weight, HIV-pos, CD4 200-350 cells/µl, no ART 0.23 0.38 986 986 

Disability weight, HIV-pos, CD4 <200 cells/µl, no ART 0.38 0.63 982 990 

Disability weight, HIV-pos, ART initiated CD4 >350  0.11 0.17 983 989 

Disability weight, HIV-pos, ART initiated CD4 200-350  0.12 0.20 982 990 

Disability weight, HIV-pos, ART initiated CD4 <200  0.13 0.21 973 999 

Annual discount rate 0 10% 966 1,038 
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Table 2.10. Univariate sensitivity analysis, Swaziland (base-case ICER =$770)  
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Transmission parameter for individuals with smear-pos 
TB in 1950 

9.9 12.6 819 751 

Annual percentage decline in transmission parameter 0.003 0.008 742 827 

Infectivity of smear-neg TB, relative to smear-pos TB  0.18 0.32 880 695 

Fitness cost for drug-resistant TB strains (% of base-case) 77% 130% 837 729 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 1990 (% of base-case) 

56% 182% 783 762 

Rate of attending TB testing site, for individuals with 
active TB, DOTS, 2010 (% of base-case) 

73% 193% 648 940 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 1990 (% of base-case) 

48% 143% 751 789 

Rate of attending TB testing site, for individuals with 
active TB, non-DOTS, 2010 (% of base-case) 

53% 153% 746 796 

Rate ratio of TB testing, for individuals without active TB 
compared to those with active TB 

0.011 0.019 731 810 

Specificity of sputum smear microscopy 0.97 0.98 764 777 

Specificity of sputum culture  0.98 0.99 770 771 

Sensitivity of Xpert for TB, smear-neg TB  0.70 0.77 784 758 

Sensitivity of Xpert for TB, smear-pos TB  0.98 0.99 774 767 

Specificity of Xpert for TB 0.99 1.00 776 765 

Sensitivity of Xpert for RIF resistance 0.96 0.99 767 774 

Specificity of Xpert for RIF resistance 0.98 0.99 772 769 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-naïve patients 

0.15 0.27 713 837 

Probability of sputum culture following a negative 
sputum smear (status quo), tx-experienced patients 

0.75 0.86 771 770 

Probability of DST following a positive TB diagnosis 
(status quo), tx-experienced patients 

0.75 0.85 785 756 

Probability of loss to follow-up between initial 
presentation and tx initiation, with prompt diagnosis 

0.12 0.19 767 775 

Probability of loss to follow-up between initial 
presentation and tx initiation, with delayed diagnosis 

0.18 0.31 797 746 

Tx default rate, DOTS (% of base-case) 75% 125% 766 772 

Tx default rate, non-DOTS  0.43 0.72 807 736 

Probability of tx success, individuals with pan-sensitive 
TB completing 1st-line regimen (% of base-case) 

73% 121% 784 765 
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Table 2.10. Univariate sensitivity analysis, Swaziland (base-case ICER =$770) (continued) 
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Risk ratio of tx success, 1st-line regimen, semi-sensitive 
strain 

0.79 0.87 774 767 

Risk ratio of tx success, 1st-line regimen, non-sensitive 
strain 

0.35 0.58 782 763 

Risk ratio of tx success, 2nd-line regimen, sensitive strain 0.91 0.95 776 765 

Risk ratio of tx success, 2nd-line regimen, non-sensitive 
strain 

0.33 0.57 791 758 

Risk ratio of tx success, non-DOTS regimen, non-MDR 
strain 

0.65 0.81 769 772 

Risk ratio of tx success, non-DOTS regimen, MDR strain 0.33 0.55 778 764 

Excess mortality rate for active TB, smear-neg 0.20 0.23 765 776 

Excess mortality rate for active TB, smear-pos 0.27 0.39 800 748 

Excess mortality rate for HIV, CD4 >350 cells/µl, no ART 0.006 0.010 768 773 

Excess mortality rate for HIV, CD4 200-350 cells/µl, no 
ART 

0.023 0.038 769 772 

Excess mortality rate for HIV, CD4 <200 cells/µl, no ART 0.16 0.26 772 769 

Excess mortality rate for HIV, on ART initiated at CD4 
>350 cells/µl 

0.006 0.010 770 770 

Excess mortality rate for HIV, on ART initiated at CD4 
200-350 cells/µl 

0.017 0.029 770 770 

Excess mortality rate for HIV, on ART initiated at CD4 
<200 cells/µl 

0.039 0.062 769 773 

Excess mortality rate for advanced HIV (CD4 <200 
cells/µl) and active TB without ART 

0.65 1.08 759 779 

TB tx mortality rates (% of base-case) 77% 130% 784 758 

Partial immunity afforded by prior infection, HIV-neg 0.60 0.81 766 778 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 >350 cells/µl, no ART 

0.33 0.56 769 772 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 200-350 cells/µl, no ART 

0.18 0.31 769 772 

Partial immunity afforded by prior infection, HIV-pos, 
CD4 <200 cells/µl, no ART 

0.18 0.33 768 773 

Probability of fast breakdown to active TB, with new 
infection, HIV-neg 

0.10 0.12 795 751 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 >350 cells/µl, no ART 

0.26 0.44 789 756 
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Table 2.10. Univariate sensitivity analysis, Swaziland (base-case ICER =$770) (continued) 
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Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 200-350 cells/µl, no ART 

0.58 0.76 771 770 

Probability of fast breakdown to active TB, with new 
infection, HIV-pos, CD4 <200 cells/µl, no ART 

0.88 1.00 772 770 

Probability of smear-positivity, for incident TB cases, HIV-
neg 

0.54 0.72 715 842 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 >350 cells/µl, no ART 

0.36 0.60 749 795 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.27 0.45 764 778 

Probability of smear-positivity, for incident TB cases, HIV-
pos, CD4 <200 cells/µl, no ART 

0.27 0.45 763 779 

Rate of breakdown, latent/recovered to active TB, HIV-
neg 

0.0005 0.00128 779 763 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 >350 cells/µl, no ART 

0.002 0.004 773 768 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 200-350 cells/µl, no ART 

0.08 0.12 773 769 

Rate of breakdown, latent/recovered to active TB, HIV-
pos, CD4 <200 cells/µl, no ART 

0.14 0.24 777 769 

Rate of conversion, smear-neg to smear-pos active TB 0.012 0.018 769 772 

Rate of self-cure for active TB, HIV-neg 0.18 0.24 756 785 

Rate of self-cure for active TB, HIV-pos, CD4 >350 cells/µl, 
no ART 

0.07 0.13 765 775 

Probability that failed tx cases are correctly identified and 
returned to tx 

0.38 0.65 774 767 

Rate of acquisition of TB drug resistance (% of base-case) 70% 116% 716 833 

HIV incidence trend, post-2011 (% of base-case) 97% 102% 772 769 

Rate of HIV progression for individuals not on ART, from 
CD4 >350 cells/µl to CD4 200-350 cells/µl 

0.11 0.17 751 785 

Rate of HIV progression for individuals not on ART, from 
CD4 200-350 cells/µl to CD4 <200 cells/µl 

0.39 0.66 760 778 

Future ART coverage for tx-eligible HIV-pos individuals 0.66 0.92 722 814 

Effectiveness of ART in reversing effect of HIV on TB 
natural history  

0.56 0.78 745 802 

Per-test cost of smear diagnosis 3.4 5.0 780 761 

Per-test cost of culture 10.0 11.9 773 767 
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Table 2.10. Univariate sensitivity analysis, Swaziland (base-case ICER =$770) (continued) 
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Per-test cost of chest X-ray 9.4 13.5 770 771 

Per-test cost of drug sensitivity testing 48.6 64.8 773 768 

Cost of outpatient diagnostic visit 4.6 8.0 779 762 

Cost of outpatient tx visit 3.1 5.4 757 784 

Cost of inpatient care, per day 15.8 27.5 753 788 

Monthly TB regimen costs (% of base-case) 0.72 1.20 755 786 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (1st-line) 

4.4 7.4 766 775 

Monthly frequency of tx activities, averaged over tx 
course, clinic visits (2nd-line) 

16.5 27.4 761 780 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (1st-line) 

0.76 1.29 770 771 

Monthly frequency of tx activities, averaged over tx 
course, monitoring smears (2nd-line) 

0.71 1.24 770 771 

Monthly frequency of tx activities, averaged over tx 
course, sputum cultures (2nd-line) 

0.34 0.57 770 771 

Monthly frequency of tx activities, averaged over tx 
course, chest X-rays (2nd-line) 

0.10 0.18 770 771 

Number of months of inpatient care with MDR-TB tx 2.9 5.2 753 788 

Monthly cost of ART 73.7 89.6 733 808 

Disability weight, active TB 0.21 0.35 814 731 

Disability weight, HIV-pos, CD4 >350 cells/µl, no ART 0.10 0.17 767 774 

Disability weight, HIV-pos, CD4 200-350 cells/µl, no ART 0.25 0.41 770 770 

Disability weight, HIV-pos, CD4 <200 cells/µl, no ART 0.36 0.62 766 775 

Disability weight, HIV-pos, ART initiated CD4 >350  0.11 0.17 767 774 

Disability weight, HIV-pos, ART initiated CD4 200-350  0.12 0.19 767 774 

Disability weight, HIV-pos, ART initiated CD4 <200  0.13 0.21 759 783 

Annual discount rate 0 10% 758 802 
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2.6.5.3. Alternative scenarios relating to HIV treatment, TB diagnostic algorithms and MDR-TB 

treatment 

In addition to the one-way sensitivity analyses described above, we defined a range of additional 

scenarios that included alternative assumptions regarding HIV treatment, TB diagnostic algorithms, 

and MDR-TB treatment components. In each of these further analyses, we adjusted the model 

inputs relating to each new scenario then re-ran the whole simulation, calculating point estimates 

and posterior 95% intervals as described for the main analysis. 

The cost-effectiveness ratios from the main analysis aim to capture the major changes in health 

system resource use and health outcomes resulting from the adoption of the Xpert algorithm, 

including increases in TB treatment and HIV treatment volume. The increase in TB treatment 

volume is a direct consequence of better case-finding under the Xpert algorithm. The increase in 

ART volume is an indirect consequence of Xpert introduction, resulting from improved survival of 

TB-HIV coinfected individuals currently receiving ART or those who would go on to receive ART in 

the future. In order to disentangle the direct effect of Xpert from this secondary effect through HIV 

survival, we constructed a scenario in which access to ART under a scaled-up Xpert approach was 

constrained to be the same as in the status quo scenario (as might be the case if the future HIV 

treatment budget were fixed and did not increase as a function of HIV treatment need). While 

artificial, this scenario allowed us to estimate the cost-effectiveness of Xpert adoption separate 

from the effects on HIV treatment. In this scenario, incremental costs and DALYs averted dropped 

by 35-40% and 10-15%, respectively, compared to the main analysis, and the cost per DALY 

averted dropped to US$656 [386 - 1,115] over a 10-year analytic horizon (assuming a US$30 per-

test cost for Xpert). While this analysis is informative, we emphasize that a policy-maker aiming to 

maximize the effectiveness of the entire health portfolio should use the ICER generated in the main 

analysis unless planning to limit ART enrollment without consideration of actual treatment need.  
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We also investigated the potential consequences of time-trends in ART prices. In the main analysis 

the per-patient costs of ART were assumed to be constant. Recent analyses have observed a net 

downward trend [86], although an upward trend might be possible, with the uncertainty reflecting 

a tradeoff between price reductions and increasing use of more expensive second-line therapies. 

We investigated the possible consequences of ART price reductions by recalculating the results 

under an assumption that ART costs would drop by 50% every 10 years. This change reduced the 

cost per DALY to US$812 [522-1,283] over the 10-year analytic horizon and to US$552 [320 - 

1,023] over 20 years, reductions of 15% and 30% compared to the results in the main analysis. 

Similar to ART, MDR-TB treatment is another expensive service with increased volume under the 

Xpert strategy, due to both better TB case-finding and better identification of drug resistance. 

Inpatient care adds substantially to MDR-TB treatment costs, yet there is limited evidence that it 

improves treatment outcomes [82,96]. We constructed a scenario to investigate how Xpert cost-

effectiveness would change if inpatient care were no longer required for MDR-TB treatment, 

assuming this would produce no net change in health outcomes. This change was found to reduce 

incremental health system costs of the Xpert algorithm by 15%, and to reduce the cost per DALY 

averted by the same percentage, to US$812 [522 - 1,283] over a 10-year analytic horizon. 

Our main analysis focused on an Xpert algorithm in which a negative Xpert diagnosis would be 

treated as definitive, whereas South Africa has developed local guidelines that call for more 

aggressive investigation (including culture, chest X-ray and antibiotic trial) for Xpert-negative 

individuals who have positive or unknown HIV status [97]. We compared this algorithm to the 

Xpert algorithm used in the main analysis, assuming that all truly HIV-positive individuals would be 

categorized as ‘HIV-positive or unknown’ at TB diagnosis, while 50% (range 25-75%) of all truly 

HIV-negative individuals would have a prior HIV test confirming this status, based on recent 

population based surveys [66-68]. In this comparison the South African Xpert algorithm was found 
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to increase incremental costs by 60% and incremental DALYs averted by 27%, which resulted in an 

incremental cost-effectiveness ratio of US$2,128 [1,215-3,954] per DALY averted (10-year analytic 

horizon, US$30 Xpert cost) for the more aggressive strategy compared to the base-case Xpert 

algorithm. We also conducted sensitivity analyses on how the cost-effectiveness of Xpert might 

change if all individuals with a positive Xpert RIF result receive empiric MDR-TB treatment while 

waiting for the DST result to be returned (a delay estimated at 80 days [98]). This change had a 

modest effect, raising incremental costs by 8%, and resulting in a cost per DALY averted of 

US$1,038 [683-1,584] (10-year analytic horizon, US$30 year Xpert cost). 

In another set of sensitivity analyses we tested the robustness of the results to changes in the status 

quo algorithm. In the main analysis we assumed incomplete access to TB culture and DST. If instead 

we assumed 100% access to TB culture, such that all treatment-experienced patients testing 

negative with sputum smear received a confirmatory TB culture, incremental costs and DALYs 

averted by the Xpert algorithm both dropped by 3%, with little change in the cost per DALY 

averted, which was estimated as US$956 [628-1,491]. If we also assumed that 100% of treatment-

experienced patients diagnosed with TB received DST, then incremental costs and DALYS averted 

by the Xpert algorithm dropped by 15% and 4%, respectively, compared to the main analysis, and 

the cost per DALY averted dropped marginally to US$851 [570-1,323]. We also conducted a three-

way sensitivity analysis that considered a much wider range of estimates for culture and DST 

access, investigating the possibility of country-level differences in access to these diagnostic 

services. The results of these changes on incremental costs, incremental health benefits, and 

incremental cost-effectiveness ratios are shown in Figures 2.13-2.17. This figure shows that if use 

of culture under the status quo algorithm is higher than the value used in the main analysis, this 

would reduce the incremental costs and health benefits produced by adopting Xpert and result in a 

less favorable cost-effectiveness ratio. In some countries very high values of culture use would 

result in the status quo strategy dominating the Xpert strategy, i.e., having lower costs and greater 
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health benefits. The coverage levels that produce such a result (80% of all treatment- naïve and 

treatment-experienced patients diagnosed via culture), however, are unlikely to be in place at 

present given current infrastructure and program constraints. Higher than expected DST access 

under the status quo would produce modest reductions in incremental costs and minimal changes 

in cost-effectiveness ratios. 

Similarly, allowing for the possibility of clinical diagnosis as part of the base case algorithm did not 

substantially alter the cost-effectiveness of Xpert. When we compared the Xpert algorithm to an 

altered status quo algorithm in which all individuals with suspected TB testing negative with 

sputum smear receive clinical diagnosis (which might include chest X-ray or antibiotic trial [49]) to 

confirm the negative diagnosis, this increased the incremental cost-effectiveness ratio for Xpert by 

approximately 10%, to US$1,052 [643 - 1,785], with both incremental costs and DALYs averted 

approximately one-third lower than estimated in the main analysis. 
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Figure 2.13. Three-way sensitivity analyses showing effects of changes in culture and DST 

coverage on major study outcomes in Botswana 

* Costs, DALYs and ICERs assessed over a 10-year analytic horizon with a US$30 Xpert unit cost. All 

other parameters held at their mean posterior values. 
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Figure 2.14. Three-way sensitivity analyses showing effects of changes in culture and DST 

coverage on major study outcomes in Lesotho 

* Costs, DALYs and ICERs assessed over a 10-year analytic horizon with a US$30 Xpert unit cost. All 

other parameters held at their mean posterior values. 
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Figure 2.15. Three-way sensitivity analyses showing effects of changes in culture and DST 

coverage on major study outcomes in Namibia 

* Costs, DALYs and ICERs assessed over a 10-year analytic horizon with a US$30 Xpert unit cost. All 

other parameters held at their mean posterior values. 
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Figure 2.16. Three-way sensitivity analyses showing effects of changes in culture and DST 

coverage on major study outcomes in South Africa 

* Costs, DALYs and ICERs assessed over a 10-year analytic horizon with a US$30 Xpert unit cost. All 

other parameters held at their mean posterior values. 
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Figure 2.17. Three-way sensitivity analyses showing effects of changes in culture and DST 

coverage on major study outcomes in Swaziland 

* Costs, DALYs and ICERs assessed over a 10-year analytic horizon with a US$30 Xpert unit cost. All 

other parameters held at their mean posterior values. 
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Abstract 

In this analysis I estimate the relative value of new research on various targets related to HIV 

control in South Africa. There has been growing enthusiasm for expanding HIV treatment programs 

in highly-affected settings, due to new evidence that antiretroviral therapy (ART) may reduce HIV 

transmission. Expanding ART programs would likely require substantial resources, and there is 

considerable uncertainty about the impact of such expansion on long-term outcomes. The best 

strategy for ART expansion is also unclear—policy debate has focused on relaxing ART eligibility 

criteria, but this must compete with efforts to increase enrollment among groups already eligible 

according to current guidelines. This uncertainty hinders the development of long-term HIV control 

strategy. In this analysis I used Value of Information (VOI) methods to identify the types of new 

research that would be most valuable to this policy debate, using South Africa as a case study. I 

implemented this analysis using a mathematical model of HIV epidemiology in the adult population. 

The model simulated HIV transmission through durable sexual partnerships and casual sexual 

contacts, disease progression for HIV-infected individuals, and initiation and receipt of ART. I used 

this model to project the costs and health outcomes resulting from various ART policies that might 

be adopted, and used Monte Carlo methods to quantify how uncertainty in epidemiology, 

programmatic performance, and costs translated into uncertainty about policy outcomes. These 

results were used to estimate VOI for individual parameters or groups of parameters. Issues found 

to have the highest potential value of information included issues of cost and implementation, 

relative infectiousness during late HIV and the reduction in infectiousness for individuals on ART, 

and the therapeutic health benefits of early ART initiation. These findings generally held up across 

different time horizons and other analytic assumptions. Another notable finding was the apparent 

unimportance of information about transmission during early HIV infection, despite earlier 

research suggesting that transmission during early HIV infection could substantially reduce the 

impact of ART expansion. This analysis also developed new methods for estimating VOI in the 
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context of numerically calibrated models, which may be of increasing relevance as a greater 

number of analyses adopt these calibration techniques. 
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 Introduction 3.1.

Policy decisions are made under conditions of uncertainty. While rational policy makers will adopt 

policies that appear to give the best expected outcomes given the current state of knowledge, better 

information may change policy choices and improve expected outcomes. As research can improve 

information before consequential policy decisions are made, the value of research can be can 

estimated from the expected improvement in policy choices and outcomes. This approach can be 

used to guide the magnitude and direction of new research investments. 

This paper examines the value of new research related to HIV control in developing countries. In 

2011, there was $US16.8 billion spent globally on HIV control, the majority in developing countries 

[1]. Most of this funding is devoted to providing care and antiretroviral therapy (ART), with over 8 

million individuals in low and middle-income countries now receiving ART [1]. The progressive 

expansion of treatment services is seen as one of the successes of global HIV control, with many 

institutions promoting the goal of universal treatment access [2]. Despite these advances many 

countries are not yet providing treatment services to all who might benefit, and in 2011 there were 

an estimated 6.8 million individuals eligible for treatment according to current WHO guidelines 

who were not yet receiving ART [1]. Treatment programs continue to face constrained budgets, 

with both domestic and external HIV spending under increasing pressure [3]. 

While the therapeutic benefits of ART are well established [4], there has been increasing evidence 

that ART may also have a role to play in HIV prevention, building on the facts that ART reduces HIV 

viral load in treated individuals [5], and that a lower viral load is associated with reduced rates of 

HIV transmission [6]. Evidence from observational analyses supports this relationship [7,8], and 

results reported for a recent clinical trial (HPTN 052) confirm the effectiveness of ART for reducing 

transmission in serodiscordant couples, with transmission rates reduced by 96% (95% CI: 73-99%) 

[9].  
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These results have important implications for HIV control in the many highly-affected countries 

with ongoing generalized HIV epidemics. Analyses have used mathematical models to explore the 

potential of expanded ART eligibility as a policyfor reducing HIV incidence at a population-level 

[10,11], and policy makers are considering an increased prioritization of ART within the HIV 

control portfolio. Expansion of ART may come at the expense of other health interventions unless 

further funding is available [12], and policy changes to extend ART eligibility beyond current 

guidelines must compete with efforts to increase enrollment among groups already eligible 

according to current guidelines. A recent study by a consortium of HIV modeling groups found that 

in 4 highly affected settings (South Africa, Zambia, India, Vietnam) improving ART coverage 

(through improved HIV testing and linkage to care) and expanding eligibility both have the 

potential to generate substantial health gains, and would be considered cost-effective according to 

conventional benchmarks [13]. This study also revealed substantial uncertainty about the projected 

resource requirements and epidemic impact of competing policies. Uncertainty about the 

appropriate timing of treatment initiation has been highlighted as a barrier to developing long-term 

HIV control strategy [14]. 

Even if ART could be scaled up to high coverage with expanded eligibility criteria, it will not be 

possible to enroll individuals with early HIV infection. These are individuals who have recently 

acquired HIV, and are therefore unlikely to be aware of their HIV status. Given the short duration 

and difficult diagnosis of early HIV, it is unlikely that this group would be affected by a policy 

aiming to use treatment of infected individuals to reduce transmission. The extremely high levels of 

viral load observed during early infection has been linked to increased transmission risk [15], and 

an observational study from Uganda has estimated that each log increment in the viral load 

produces a 2-3 fold increase in transmission risk [6]. There are few additional studies to confirm 

this finding, and this is reflected in prior modelling studies that reveal substantial uncertainty about 

the proportion of all infections attributable to transmission during early HIV infection [16]. A recent 
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Malawian study used a mathematical model to examine the role of acute HIV infection in overall 

transmission dynamics, suggested that 38% (19-52%) of all transmissions could be attributed to 

individuals in the first 5 months following initial infection [17]. Uncertainty about the role of 

transmission during early HIV has relevance for the programmatic response to the HPTN 052 

results – if the proportion of new infections coming from transmission during early HIV infection is 

low, efforts to scale-up ART programs may produce substantial incidence reductions. If the 

proportion of new infections coming from transmission during early HIV infection is high, the 

prevention benefits of aggressive treatment scale-up may be less, and the cost-effectiveness of ART 

may not differ substantially from analyses focused on the therapeutic benefits alone [18–20]. 

Other information gaps add to the uncertainty around optimal ART policy. While it now seems clear 

that ART can reduce transmission, the magnitude of this effect is still uncertain. The HPTN 052 trial 

is the only randomized study to date to report on the prevention benefits of ART, and while it 

identified a 20-fold reduction in transmission risk, these findings were estimated from only 28 

transmission events within study couples [9]. There is also substantial uncertainty about the 

therapeutic benefits of early ART initiation for individuals with high CD4 cell count, with no 

randomized trials yet reported and conflicting evidence from analyses of observational data [21]. 

Finally, there is substantial uncertainty about the costs and difficulty of policy implementation, as 

ART scale-up will require identifying, enrolling, and retaining patients who may not currently know 

their HIV status or be experiencing HIV symptoms. 

This study aims to estimate the potential value of new research on the various uncertainties related 

to ART policy. Understanding the relative value of different research investments will allow 

programs to identify and prioritize high-value research and improve expected outcomes. 

This research approach—quantifying the value of research through its potential to improve 

decision-making—draws on a class of methods known as value of information (VOI) analysis [22–
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24]. In the absence of further research, it is assumed that HIV control programs will allocate 

funding across the HIV control portfolio in a way that will maximize valued health outcomes on 

expectation, averaging over the joint distribution of possible costs and health outcomes for each 

possible intervention portfolio.. Given the substantial uncertainty that exists, it is possible that a 

portfolio will be chosen that achieves worse health outcomes than would be produced by other 

portfolios under consideration, but without further research this cannot be known ex ante. If new 

research is undertaken before the policy decision is made, this can reduce the uncertainty faced by 

policy-makers and reduce the probability that a suboptimal policy will be chosen. The incremental 

gains in expected outcomes (reductions in expected costs and/or improvement in expected health 

outcomes) that result from this improved policy choice can be used to estimate the value of 

undertaking the research. 

The application of VOI methods to real-world policy problems is growing [25,26]. There has so far 

been little use of VOI methods to address HIV control questions, though some recent examples 

exist: Leelahavarong et al. [27] undertake a VOI analysis as part of an examination of HIV vaccine 

cost-effectiveness in Thailand, while Maheswara and Barton [28] estimate VOI in the context of an 

analysis of TB case-finding and prevention activities for HIV-infected populations. 

In the present study the VOI analysis is operationalized in the context of a dynamic HIV 

transmission model of the South African epidemic, focusing on a decision currently facing policy 

makers: whether to expand HIV treatment services, given the growing evidence base that it may 

reduce transmission, and if so how this should be accomplished. With 5.6 million HIV-positive 

individuals [1], the HIV epidemic in South Africa is almost twice as large as in any other country, 

and represents one-sixth of the world’s HIV-infected population. South Africa also reflects 

characteristics common to other highly-affected settings, with ongoing HIV transmission in the 

general community, limited success of conventional prevention approaches, and scarce resources 
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for increased HIV spending. For this reason, South Africa represents a focus of HIV research and 

policy dialogue, and insights learned in this setting will be relevant locally as well as in other similar 

settings. 

In addition to providing guidance on a substantive question—how should new HIV research 

funding be directed to maximize health gains—this study also addresses a specific methodological 

question, that of how various VOI estimates can be obtained when the distribution of model 

parameters is not available in closed-form. This situation arises in the context of common model 

calibration techniques (such as used in this analysis), where the joint distribution of model 

parameters, after they have been calibrated, is represented by a sample of parameter sets rather 

than an equation. This situation poses no problem for calculating the expected value of perfect 

information (EVPI), as this outcome can be calculated directly using the sample of parameter sets. 

In contrast, published methods for estimating the expected value of partial perfect information 

(EVPPI) [22,29] require the expected value of model outcomes (specifically, net monetary benefit 

achieved by each policy) to be estimated conditional on the value of the parameter (or group of 

parameters) that is the subject of the analysis. This can be straight-forward if the parameter 

distribution is available in closed form (particularly if the parameters are uncorrelated). In 

contrast, it is not immediately clear how to estimate EVPPI when the parameter distribution is 

represented by a fixed sample of parameter sets, as there is no way to generate new samples from 

the conditional distribution of other parameters once the value of one parameter has been fixed. 

While a ‘brute force’ solution to this problem is possible—recalibrating the model for many 

different values of a given parameter—such an approach would likely be infeasible in many 

analysis, where the computational burden of a single calibration may be large. Formal calibration 

procedures are increasingly being used to improve the predictive validity of complex disease 

models, it is therefore useful to describe methods for estimating VOI in this class of analyses. 
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 Methods 3.2.

3.2.1. General approach 

We assumed that the South African national HIV control program chooses between policies based 

on their potential costs and health benefits. The trade-off between these two goals can be 

operationalized as a willingness-to-pay (WTP) threshold, describing the maximum rate at which the 

program would be willing to expend resources in order to gain health benefits. For a given WTP 

threshold, the health and economic consequences of a policy can be summarized as net monetary 

benefit (NMB), a measure of the social welfare generated by health programs, combining both costs 

and health benefits [30]. In the absence of new research, we assumed a policy would be preferred if 

it maximizes NMB on expectation. The expected NMB (E(NMB)) obtained under this ’no research’ 

scenario can be compared to alternative scenarios in which new research is commissioned in order 

to reduce decision uncertainty. We assumed that the national program would consistently apply the 

same decision rule, choosing the policy option that maximizes E(NMB) in light of new research 

findings. The potential benefits of research can then be quantified as the difference in E(NMB) 

between ‘no research’ and alternative scenarios. 

3.2.2. Policy options 

We characterized the policy decision facing the national program in terms of two dimensions: the 

criteria determining ART eligibility, and the intensity of HIV testing programs undertaken to 

identify HIV-positive individuals for care. This second dimension was operationalized as the rate of 

HIV testing in the general population. Three different eligibility criteria were considered: 

A. ART eligibility for HIV-infected individuals with CD4 cell count <350 cells/µL (current 

eligibility). 

B. ART eligibility for individuals with CD4 cell count <500 cells/µL. 
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C. ART eligibility for all HIV-positive individuals. 

Five different HIV testing scenarios were considered: 

1. Continuation of current HIV testing rates and restriction of total ART patient volume to 

current levels, such that any patients leaving ART cohorts are replaced, but no new patient 

slots are added. 

2. Continuation of current HIV testing rates, with individuals initiating ART per eligibility 

guidelines. 

3. Expanded HIV testing programs raising the average rate of testing to 1.5 times its current 

level, with individuals initiating ART per eligibility guidelines. 

4. Expanded HIV testing programs raising the average rate of testing to 2.0 times its current 

level, with individuals initiating ART per eligibility guidelines. 

5. Expanded HIV testing programs raising the average rate of testing to 3.0 times its current 

level, with individuals initiating ART per eligibility guidelines. 

Each of these coverage scenarios was applied to each of the possible eligibility criteria, giving 15 

possible policies1. We assumed any changes in ART eligibility and coverage would be introduced 

over a 12-month period starting in 2013 and then remain in force for the duration of the analysis. 

  

                                                             

1 For convenience, the policies are labeled with a letter-number combination, such that “B1” denotes a policy 

combining the second eligibility policy and the first coverage policy. 
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3.2.3. Model overview 

We used a mathematical model to project the costs and health outcomes resulting from the various 

policy options that might be adopted by the South African national HIV control program. The model 

was developed to represent an HIV epidemic in the South African adult population, simulating 

transmission of HIV infection through durable sexual partnerships and casual sexual contacts, the 

progression of HIV disease for HIV-infected individuals, and initiation and receipt of antiretroviral 

therapy. We parameterized the model to the South African epidemic, with probability distributions 

constructed for each model parameter to represent current uncertainty about these values. We 

used a Bayesian approach to calibrate these probability distributions to agree with empirical data 

on HIV prevalence trends, distribution across CD4 count categories, and survival following HIV 

infection. We used this calibrated model to estimate future outcomes of the policy options 

described in Section 3.2.2, and then used the results to estimate VOI for individual parameters or 

groups of parameters. Finally, we compared VOI estimates for different parameters to draw 

conclusions about high-priority research targets for informing ART policy. 

3.2.4. Model structure 

The structure of the model was based on approaches adopted by other published HIV transmission 

models [17,31–37]. The model distributes the adult population across compartments that 

distinguish HIV status, CD4 cell count categories, receipt of ART, sex, and sexual behavior 

characteristics. A schematic of the model is shown in Figure 3.1. A fraction of the population 

residing in one compartment may transition into another compartment at weekly timesteps, 

according to transition probabilities defined by model parameter values. 
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Figure 3.1. Schematic of model compartments, transitions, and sexual interactions 

 

3.2.5. Sexual networks 

Multiple studies have demonstrated that the nature of sexual interaction has important 

implications for the dynamics of generalized HIV epidemics [31–34,37–39]. This concern is 

particularly important when addressing the issue of early HIV infection, with Eaton and colleagues 

demonstrating that the role of early infection in HIV epidemics differs between models that assume 

random, instantaneous sexual contacts and those that capture more realistic patterns of sexual 

mixing [38]. Similarly, an earlier analysis by Kretzschmar and Dietz demonstrate that models that 

explicitly account for disease transmission within durable sexual partnerships (pair models) 

attribute a smaller fraction of overall transmission to early infection, compared to random mixing 

models [31]. A number of analyses have applied pair models to understand real epidemics, most 
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notably Xiridou and colleagues in a series of studies related to homosexual [32,33] and 

heterosexual [40,41] HIV transmission in the Netherlands, and more recently Powers et al. 

(hereafter ‘Powers’) in an analysis of heterosexual HIV transmission in Lilongwe, Malawi [17]. The 

Powers analysis is particularly relevant to the current study, in that the primary goal of the analysis 

was to understand the role of early infection in a generalized heterosexual HIV epidemic that bears 

some similarities to South Africa’s. In developing the model for the current analysis we adopted 

many features of the Powers model, described in detail below.  

3.2.5.1. Durable sexual partnerships 

We modeled sexual interaction as occurring through either durable sexual partnerships or casual 

sex. Durable sexual partnerships (pairs) were modeled explicitly, with a distinct model 

compartment devoted to each allowed type of heterosexual pairing (e.g., an HIV-negative female 

paired with an HIV-positive male with CD4<200). Following earlier approaches, the population is 

divided into distinct sexual activity strata to capture, in a simplified form, the heterogeneity in risk 

behaviors across the population. Sexual risk strata differ in the rate of formation/dissolution of 

pairs as well as other sexual behaviors. Pairs are allowed to form within each risk stratum (high-

risk and low-risk) but not across strata [17,35,37]. Within each pair, sexual activity is assumed to be 

constant over the duration of the partnership (conditional on HIV stage), and the rates of other 

model transitions (e.g., mortality, disease progression) are assumed to be unaffected by pair 

membership. 

For each timestep, let      be the total number of pairs formed by individuals in risk stratum r (high 

or low), HIV state i (as shown in the top section of Figure 3.1), and sex s, where s=w for women and 

s=m for men. Let     represent the total number of pairs formed by a particular risk stratum and 

sex. The rate that an individual in model compartment sri attempts to enter a pair relationship is 

calculated as the product of the average rate for healthy individuals in the risk stratum   , and a 
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multiplier    that accounts for lower pair formation rates in individuals with advanced HIV 

infection. Empirical estimates of the pair formation rate    are unavailable, and following Powers 

we approximated    from the pair dissolution rate   , the fraction of the risk stratum in a steady 

pair relationship   , and the combined exit rate from the sexually active population (a combination 

of the background mortality rate    and the rate at which individuals age out of the sexually active 

population  )[17]: 

   
  (    (    ))

(    )
 

 (1) 

An estimate of the fraction of low-risk types in a pair relationship was derived from data on 

cohabiting couples reported in the 2001 South African census [42]. Estimates of the fraction of 

high-risk types in a pair relationship, partnership dissolution rates for high- and low-risk types, and 

relative partnership formation rate for individuals with advanced HIV infection were drawn from a 

detailed modeling study of sexual behavior and HIV risk in South Africa by Johnson and colleagues 

[34]. 

For a given sex and risk stratum, the total number of unpaired individuals attempting to enter a 

pair relationship can be calculated as the product of the pair formation rate for each HIV health 

state and the number of individuals in each HIV health state (    ), summed across HIV health 

states: 

    ∑        

   

 

 (2) 

The value of     as calculated for each sex will not necessarily match, and an adjustment factor is 

calculated within the model such that the total number of new pairs formed in risk stratum r is the 
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mean of     and    . The transition rate   for an unpaired individual in compartment sri to a 

paired compartment with an unpaired individual in compartment    ̂ can be then be expressed as2: 

       ̂
       

(       )

     
 

  ̂  ̂    ̂

∑   ̂  ̂    ̂ ̂  ̂
                ̂  

 (3) 

The rate of sexual contact within pair relationships (  
 ) and the reduction in coital frequency 

associated with advanced HIV infection (  ) were drawn from Johnson et al. [34].  

3.2.5.2. Casual sex 

Casual sex was modeled as instantaneous ‘one-off’ sexual contacts between males and females. The 

model allows for casual sex involving both paired and unpaired individuals, and across sexual risk 

strata, with individuals in each of these groups participating in casual sex at different rates. The 

Powers analysis assumed random mixing, whereby individuals exhibit no preference as to the 

characteristics of sexual partners [17]. However, other modeled analyses have shown that mixing 

patterns between subgroups with different characteristics can affect epidemic outcomes, 

suggesting that an assumption of random mixing may be inappropriate [43]. In our model the 

possibility of assortative mixing (i.e., allowing for unequal preferences regarding sexual partners of 

different types) is operationalized as a mixing matrix M, the cells of which describe the relative 

preference of an individual in a given subgroup for forming a partnership with members of other 

subgroups (Figure 3.2). Two parameters are used to specify mixing patterns: d, which determines 

the degree of assortativity between risk strata, and e, which determines the relative frequency of 

casual sex between paired individuals. The mixing matrix shown in Figure 3.2 can be understood as 

                                                             

2 In other applications a geometric mean has been to correct the different estimates of    . Sensitivity analysis 

using a geometric mean showed that the results are insensitive to this assumption. 
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a linear interpolation between 4 extremes: (a) random mixing (for d=e=1), (b) complete with-like 

assortative mixing within risk strata (for d=0, e=1), (3) random mixing except with no casual sex 

between two individuals both in pair relationships (for d=1, e=0), and (4) complete with-like 

assortative mixing within risk strata and no casual sex between two individuals both in pair 

relationships (for d=e=0) [35,37]. Consistent with this interpretation, the parameters d and e are 

assumed to fall within the range [0,1]. The value of d was drawn from Johnson et al. 2009 [34]. No 

estimates were available for e, and a weakly-informative probability distribution was specified 

centered at 0.5. While HIV health state was assumed to affect the rate at which individuals 

participate in casual sex, it was assumed not to affect mixing patterns3. 

  

                                                             

3 Of note, the restriction of the model to heterosexual sex can be seen as an assumption of complete ‘with-

unlike’ mixing, ruling out sexual contact or pair formation between individuals of the same sex. Similarly, the 

assumption of pair formation within risk strata assumes complete ‘with-like’ mixing. To relax these 

assumptions would involve a substantial expansion of the state-space of the model. 
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Figure 3.2. Mixing matrix for casual sex (M) 

 

The total number of sexual contacts  ̃   (where subscript j indicates one of the 4 categories created 

by high- vs. low-risk, unpaired vs. paired,) attempted by each group is calculated as: 

 ̃   ∑       
       

   

 

 (4) 

In this equation, subscript j indicates one of the 4 categories created by high- vs. low-risk, unpaired 

vs. paired, and the tilde on  ̃   indicates these are attempted partnerships. As the number of 

attempted contacts for various groups will not automatically match (as described below)  ̃   is 

distinguished from     , the number of realized contacts. In addition,   
  indicates the annualized 

rate of casual sex for healthy individuals in group j,    indicates the rate of casual sex for each HIV 

health state relative to healthy individuals, and    is a time-varying parameter allowing for time 

changes in the rate of risky sexual behavior, a phenomenon identified by earlier analyses [39,44]. 

For the purposes of this analysis risky sexual behavior was defined as including casual sex as well 

as any sex involving high-risk individuals. Values for   
  were drawn from the 2003 Demographic 
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and Health Survey [45], and values for    were drawn from Johnson et al. 2009 [34]. The parameter 

   is operationalized as a logistic curve with an initial value of 1.0 that declines to asymptote to a 

new, lower level at some point during the historical development of the epidemic. Values for the 

start year of this change, the time taken to reach the new level, and the magnitude of the reduction 

were drawn from Johnson et al. 2009 [34].  

The total sexual contact attempts for each group can be distributed among the 4 groups of the 

opposite sex, where       ̂ represents cells of the mixing matrix: 

 ̃     ̂      
 ̃  ̂        ̂

∑  ̃  ̂        ̂ ̂  ̂

              ̂ 

 (5) 

As the number of sexual contact attempts will not automatically match (e.g., the number of sexual 

contacts attempted by high-risk paired men with low-risk unpaired women will not automatically 

match the number of sexual contacts attempted by low-risk unpaired women with high-risk paired 

men), these two approaches must be balanced, with the actual number of casual sexual contacts 

between groups    and   ̂ calculated as: 

      ̂  ( ̃     ̂    ̃  ̂    )
 
  

 (6) 

 

3.2.6. HIV transmission 

3.2.6.1. Transmission within discordant pairs 

The rate of HIV acquisition by HIV-negative members of HIV discordant pairs is determined by the 

number of sexual contacts and the per-contact transmission risk. Both of these quantities are 

allowed to vary by risk stratum and by the health state of the HIV-positive member of the pair, and 

the per-contact risk is also allowed to differ depending on the sex of the HIV-negative member of 
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the pair, based on evidence of sex differentials in HIV acquisition risk [46,47]. Due to the potential 

for high numbers of sexual contacts within pairs the probability of transmission within a single 

timestep (  
 

 and   
 

 for low-risk and high-risk pairs respectively) is calculated with a Bernoulli 

model: 

  
 

   (            )
  

 
    

 (7) 

  
 

   (            )
  

 
       

 (8) 

where o is the per-act transmission risk [47],   is the relative transmission risk related to the sex of 

the HIV-negative partner [47],    is the relative transmission risk related to risk stratum (proxying 

for unmodeled differences in the prevalence of other sexually transmitted infections that increase 

transmission risk [17,48,49]),    is the relative transmission risk related to HIV health state and 

ART status of the HIV-positive partner [50,51] , and   
 

 is the number of within-pair sex acts per 

timestep, by risk stratum [34]. 

3.2.6.2. Transmission through casual sex 

The rate of HIV acquisition through casual sex for a particular HIV-negative group (    
 ) is 

calculated as the sum of acquisition risk across all casual sexual partners, adjusted for individuals’ 

risk factors: 

    
  ∑∑ ∑

        ̂

    
            ̂    ̂

 ̂  ̂ ̂  ̂ ̂  ̂

 

 (9) 

Note that the subscript on    refers to the sex of the HIV-negative partner, the subscript on   ̂ refers 

to the HIV-positive partner, and     ̂ refers to both individuals, such that if either or both is high-

risk then the risk-ratio for to the high-risk stratum is applied. 
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The total HIV acquisition rate for an individual model compartment is calculated as the sum of the 

rates from pairs and casual sex. 

3.2.7. HIV progression 

HIV progression is modeled as the transition between discrete CD4 categories, with transition rates 

    ̂ for the transition between HIV state   and state   ̂. Following HIV acquisition, individuals enter 

the early HIV compartment, then transition rapidly to either the CD4>500 or CD4 350-500 

compartment. The average duration of time spent with early HIV infection (and thus the sum of exit 

rates to subsequent CD4 cell count compartments) was based on a reanalysis of historical data on 

transmission during untreated HIV infection in Rakai, Uganda [50]. Following early infection, 

individuals transition to compartments representing progressively lower CD4 cell counts until they 

reach the CD4<200 compartment, in which they remain until death or ART uptake. Rates of 

transition between these CD4 compartments were based on data from observational cohorts [52–

54]. 

3.2.8. Model entry, aging, and mortality 

Individuals enter the model as unpaired HIV-negative adults (≥15 years). Time trends in new 

entrants were calculated from annual birth estimates obtained from the UN Population Division 

[55], lagged by 15 years and adjusted for intervening mortality. The model has a simplified age 

structure that distinguishes individuals 15-49 years of age from those aged 50 years and above. It 

was assumed for simplicity that sexual transmission of HIV occurs prior to age 50 years, consistent 

with earlier studies [17]. As pairs are only modeled to capture infection risks within sexual 

relationships, the model does not track pairs at ages above 50 years. Age-based background 

mortality rates [56] for 15-49 and ≥50 age groups were derived from the Actuarial Society of South 

Africa [56]. Disease-specific mortality rates for each HIV health state were derived from 

observational cohort data [57–61]. In the model, overall mortality rates are assumed to be the sum 
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of background and disease-specific mortality rates. Uncertainty in time varying parameters for 

model entry and background mortality is introduced by multiplying the time trend by random noise 

centered at 1.0. 

3.2.9. HIV care and treatment 

In the model, individuals can transition onto ART from any HIV health state except early HIV, as it is 

assumed that the difficulty of diagnosis during this period, in addition to delays in treatment 

initiation, will prevent individuals with early HIV from starting ART. The rate of treatment initiation 

for each HIV health state (  ) is determined by eligibility policy and the number of individuals in 

that health state receiving pre-ART care, as described below. Individuals receiving ART default from 

treatment at a fixed rate   
   . For individuals initiating ART with CD4<350, this rate is based on a 

recent systematic review [62]. There are few data on which to base the default rate for individuals 

initiating ART at higher CD4 counts, but a higher rate is plausible since these individuals will lack 

first-hand experience of the reduction in HIV symptoms associated with ART, and this rate was 

assumed to be double the rate for individuals initiating ART with CD4<350. Individuals defaulting 

from ART return to their original untreated health state. 

Although pre-ART care (referred to simply as “pre-ART”) is not represented by an explicit set of 

model compartments, it is an important component of the process of identifying individuals and 

linking them to ART, mediating the rate of ART initiation following a change in ART policy. The 

resources required to provide pre-ART also represent a non-trivial component of HIV treatment 

costs [63]. For these reasons the number of individuals receiving pre-ART is tracked in the model, 

and all individuals are assumed to pass through pre-ART before initiating ART. Individuals are 

initiated on pre-ART following identification in HIV testing programs. The average rate of HIV 

testing in the untreated population (i.e., all individuals not on ART or pre-ART) was specified as a 

time-varying policy input, with historical testing rates defined to be consistent with published 
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estimates of testing volume [64] and reproduce ART volume observed in prior years [65] in 

combination with historical ART eligibility criteria as described below. HIV-positive individuals are 

assumed to test at a higher rate than HIV-negative individuals based on consistent findings from 

population-based surveys [66]. Programmatic experience suggests that a substantial fraction of 

individuals testing HIV-positive will not initiate pre-ART, and the rate of primary default was 

derived from a systematic review by Rosen and Fox [67]. Individuals enrolled on pre-ART can 

subsequently default from care [67], die, or be initiated on ART. ART initiation rates prior to 2013 

were based on historical ART eligibility criteria [68–71], which restricted general ART eligibility to 

individuals with CD4<200 cells/µL until 2010, then extended eligibility to include individuals with 

CD4<350 cells/µL by 2011 and maintained at this level until 2013. After 2013, modeled ART 

eligibility is determined by the policy scenario being modeled, as described in Section 3.2.2. 

Individuals who are enrolled on pre-ART and meeting CD4-based ART eligibility criteria are 

assumed to initiate ART on average one month after becoming eligible. Mortality rates, sexual 

behavior and other transitions are assumed to be unaffected by receipt of pre-ART. 

3.2.10. Simulation  

To undertake one simulation, the model is initiated in 1975, with individuals distributed across 

model compartments to represent an uninfected population. HIV is introduced into this population 

at a random point in time, centered at 1980 (Normally distributed with an equal-tailed 95% 

interval of +/- 5 years), and historical HIV eligibility guidelines and testing rates are modeled until 

the end of 2012. One of the policy options specified in Section 3.2.2 is introduced at the beginning of 

the year 2013 and assumed to be fully adopted by the end of 2013, then maintained at a constant 

level for a further 19 years, for a total analytic horizon of 20 years. 

Simulations are limited to a 20-year analytic horizon as modeled epidemiology will be increasingly 

unreliable over longer time periods. However, restricting the analysis to this period ignores any 
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subsequent health benefits and costs, particularly the life-years gained through averted HIV 

mortality and averted transmission. These delayed costs and health outcomes may be of interest to 

decision-makers. For this reason, two sets of results were calculated: one set where only outcomes 

realized over the 20 years were included in the analysis (“truncated time horizon”), and one set 

where long-term outcomes were calculated for those individuals alive at the end of the initial 20-

year simulation (“extended time horizon”). This second approach was operationalized by assuming 

no further HIV transmission, ART initiation4 or population entry, and running the model for a 

further 100 years to capture the remaining life spans of both infected and uninfected persons of all 

ages, with outcomes being aggregated over the full 120 year period. 

3.2.11. Parameter estimates and calibration 

A Bayesian approach was used to calibrate model parameters to empirical data on HIV 

epidemiology in South Africa. . Under this approach, probability distributions were first specified to 

represent current uncertainty in model parameters (the ‘prior’). A likelihood function (the 

‘likelihood’) was then created to assess the level of agreement between modeled estimates and 

empirical data. This likelihood combined evidence from three sources (time trends in national HIV 

prevalence, survival in the absence of ART, and the CD4 cell count distribution in untreated HIV-

positive individuals), with the overall likelihood calculated as the product of these three individual 

likelihoods. Finally, an iterative algorithm used to synthesis these various information sources via 

Bayes Theorem. Each of these steps is described in detail below.  

 

                                                             

4 In sensitivity analyses we tested an alternate assumption in which all HIV-positive individuals were initiated 

on ART at the end of the initial 20-year period, with qualitatively similar results.  
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3.2.11.1. Parameter estimates 

The estimates used to parameterize the model are shown in Table 3.1. There is substantial 

uncertainty about many of these parameters, and this uncertainty was operationalized as a prior 

probability distribution. For each parameter the prior distribution was centered at the mean shown 

in Table 3.1, with dispersion such that 2.5% of the distribution fell outside of the upper and lower 

bounds shown in the table (analogous to an equal-tailed 95% confidence interval). The functional 

form of the prior distributions was based on the range over which the parameter is defined: for 

parameters defined over the range [0,1] a logit-Normal prior was used (e.g., probabilities, disability 

weights), and for parameters defined over non-negative numbers a log-Normal prior was used (e.g., 

rates, costs)5. 

  

                                                             

5 While alternate functional forms might be considered, the logit-Normal and log-Normal were adopted as 

they were more easily adapted to the use with incremental mixture importance resampling (IMIS) calibration 

approach. 



158 
 

Table 3.1. Prior distributions for model parameters 

Parameter Description Value (Bounds) Source 

Sexual behavior parameters 

Rate of partnership dissolution, by risk stratum: 

Low-risk 

High-risk 

 

0.017 [0.011, 0.025] 

2.0 [1.3, 3.0] [34] 

Fraction of population in a pair, by risk stratum: 

Low-risk 

High-risk 

 

0.63 [0.47, 0.77] 

0.88 [0.82, 0.92] 

[42] 

[34] 

Relative partnership formation rate, by HIV health 
state: 

HIV-positive, CD4<200, no ART 

HIV-positive, CD4 200-350, no ART 

HIV-positive, CD4<350, ART 

All others 

 

0.25 [0.16, 0.37] 

0.65 [0.42, 0.96] 

0.80 [0.52, 1.18] 

1.00 
[34] 

Sexual mixing parameter for casual sex between 
risk strata 

0.56 [0.13, 0.93] 
[34] 

Sexual mixing parameter for casual sex between 
paired individuals 

 

0.50 [0.10, 0.90] Assumed 

Rate of sex acts within pairs, by risk stratum: 

Low-risk 

High-risk  

 

42 [27, 63] 

42 [27, 63] [34] 

Rate of casual sex acts, by risk stratum and pair 
status: 

Low-risk, in pair 

Low-risk, not in pair 

High-risk, in pair 

High-risk, not in pair 

 

4.4 [2.8, 6.5] 

4.4 [2.8, 6.5] 

4.4 [2.8, 6.5] 

4.4 [2.8, 6.5] 
[45] 

Relative frequency of sexual acts , by HIV health 
state: 

HIV-positive, CD4<200, no ART 

HIV-positive, CD4 200-350, no ART 

HIV-positive, CD4<350, ART 

All others (reference) 

 

0.65 [0.42, 0.96] 

0.25 [0.16, 0.37] 

0.80 [0.52, 1.18] 

1.0 
[34] 
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Table 3.1. Prior distributions for model parameters (continued) 

Parameter Description Value (Bounds) Source 

Relative rate of risky sexual behavior over time, 
parameterized as a logistic curve (see Figure 3.3): 

Initial value (reference): 

Final value: 

Start year of behavior change: 

Years to reach final value: 

 

 

1.0 

0.60 [0.42, 0.76] 

1995 [1990, 2000] 

10.0 [5.9, 15.9] [34] 

Parameters related to HIV transmission risk 

Start year of modeled HIV epidemic 1980 [1975, 1985] Assumed 

Fraction of population HIV-positive at start year of 
epidemic (HIV seed) 

 

0.0010 [0.0006, 
0.0015] Assumed 

Per-act transmission risk for an individual with 
asymptomatic HIV, in the low-risk stratum, for 
male-to-female transmission  

 

 

0.003 [0.001, 0.006] [47] 

Relative HIV transmission risk, by HIV health state: 

Early HIV 

CD4>350, excl. early HIV (reference) 

CD4<350 

 

26.5 [5.1, 83.0] 

1.0 

7.3 [1.6, 21.4] 

 

 

[50] 

 

 

 

Relative transmission risk for individuals receiving 
ART, compared to untreated individuals 

0.040 [0.006, 0.144] 
[51] 

Relative HIV transmission risk, by risk stratum: 

Low-risk (reference) 

High-risk 

 

1.0 

2.0 [1.3, 3.0] [17] 

Relative HIV transmission risk: 

Male-to-female (reference) 

Female-to-make 

 

1.0 

1.5 [1.2, 1.8] [47] 

Parameters related to HIV progression  

Transition rates between CD4 compartments: 

Early HIV to CD4>500 or 350-500 

Fraction exiting early HIV to CD4>500 

CD4>500 to CD4 350-500 

CD4 350-500 to CD4 200-350 

CD4 200-350 to CD4>200 

 

4.1 [1.5, 9.2] 

0.70 [0.56, 0.81] 

0.15 [0.10, 0.22] 

0.41 [0.26, 0.61] 

0.41 [0.26, 0.61] 

[50] 

 

 

 

[52–54] 
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Table 3.1. Prior distributions for model parameters (continued) 

Parameter Description Value (Bounds) Source 

Parameters related to model entry, aging and mortality 

Adult population in 1975 (millions) 14.9 [55] 

Absolute number of new entrants to adulthood (age 
≥15years) 

Time-varying, 

see Figure 3.3 [55] 

Fraction of new entrants female 0.51 [0.50, 0.52] [55] 

Fraction of new entrants entering low-risk stratum 0.70 [0.56, 0.81] [34] 

Rate at which individuals age out of the sexually 
active population  

 

0.029 
By 

construction 

Background mortality by age group: 

Age 15-49 years 

Age ≥50 years 

 

Time-varying, 

see Figure 3.3 [56] 

HIV specific mortality, by HIV health state: 

No ART, early HIV 

No ART, CD4>500 

No ART, CD4 350-500 

No ART, CD4 200-350 

No ART, CD4<200 

ART, initiated at CD4>500 

ART, initiated at CD4 350-500 

ART, initiated at CD4 200-350 

ART, initiated at CD4<200 

 

0.006 [0.001, 0.020] 

0.006 [0.001, 0.020] 

0.016 [0.008, 0.030] 

0.042 [0.029, 0.058] 

0.31 [0.27, 0.35] 

0.006 [0.001, 0.020] 

0.006 [0.001, 0.020] 

0.023 [0.014, 0.037] 

0.050 [0.031, 0.076] [57–61] 

Parameters related to service delivery 

Rate of HIV testing in HIV-negative individuals as 
compared to HIV-positive individuals  

 

0.63 [0.56, 0.71] [66] 

Probability of primary default between HIV 
diagnosis and pre-ART 

 

0.42 [0.31, 0.53] [67] 

Rate of default from pre-ART care, by HIV health 
state: 

CD4<350  

CD4>350  

 

0.25 [0.15, 0.40] 

0.75 [0.53, 1.03] 
[67] 

Rate of default from ART, by health state at ART 
initiation: 

CD4<350 at ART initiation 

CD4>350 at ART initiation 

 

 

0.10 [0.07, 0.15] 

0.21 [0.13, 0.30] [62] 
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Table 3.1. Prior distributions for model parameters (continued) 

Parameter Description Value (Bounds) Source 

Parameters related to cost and health state valuation 

Disability weights, by HIV health state: 

No ART, early HIV 

No ART, CD4 200-350 

No ART, CD4<200 

ART 

 

0.053 [0.033, 0.081] 

0.22 [0.15, 0.31] 

0.55 [0.38, 0.71] 

0.053 [0.034, 0.079] [72] 

Costs of health care received by individuals with 
symptomatic HIV, not on ART or pre-ART: 

No ART, CD4 350-500 (annual) 

No ART, CD4 200-350 (annual) 

No ART, CD4<200 (annual) 

 

 

13 [7, 21] 

46 [35, 60] 

167 [160, 175] [13] 

Costs of pre-ART services (annual) 238 [161, 338] [13] 

Costs of ART services 

ART initiation (per event) 

Antiretroviral drugs (annual) 

Non-ARV costs (annual) 

 

95 [70, 127] 

172 [127, 227] 

422 [340, 517] 

[13] 

Cost of HIV testing and counseling (per client) 20 [15, 27] [13] 

Cost of care during terminal illness 160 [88, 268] [13] 

Mark-up on direct service provision costs to account 
for program-level management and administrative 
support 

 

0.50 [0.29, 0.79] 
[13] 

Discount rate 0.03 [73] 
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Figure 3.3. Prior distributions for time-varying model parameters  

 

3.2.11.2. Likelihood for HIV prevalence 

Two sources of HIV prevalence data were available: annual HIV prevalence estimates from sentinel 

surveillance at antenatal care (ANC) centers [74], and national population-based seroprevalence 

surveys conducted in 2002, 2005, and 2008 [75]. The estimates from population-based surveys 

were assumed to be unbiased but their small number provides limited information on long-term 

trends. In contrast, the estimates from ANC sites are generally based on a larger sample and are 

available as a complete annual time series 1990-2010. However, data from ANC sites are thought to 

provide biased estimates of general population prevalence, with pregnant women at higher relative 

risk of HIV compared to the general community [76]. As part of its Epidemic Projection Package for 
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estimating national HIV prevalence and incidence trends [77], the UNAIDS Reference Group on 

Estimates, Modelling and Projections has developed an approach for incorporating both surveys 

and ANC surveillance into a single likelihood, by assuming that the bias in the ANC data represents 

a constant additive term in probit space [78,79]. We adopt a modified version of this likelihood, 

expressed as the log-likelihood shown below: 

    (  |      )   (
 

 
  (  )  

(   ) 

   )  ∑(
 

 
  (  )  

(        )
 

   
)

   

 

 (10) 

where: 

   = parameter set i, 

    = modeled HIV prevalence estimate for year t (t   T), produced by parameter set   , 

T = years in which ANC sentinel surveillance was conducted (1990-2010 inclusive), 

   = probit-transformed ANC prevalence estimate in year t, 

   = variance for ANC prevalence estimate in year t, calculated as 

          (   (  )
 )  (    )   , 

   = effective sample size of ANC survey in year t, calculated by dividing the reported sample size 

by a design effect of 2.0 to account for clustering6, 

   = constant term for bias in ANC prevalence estimates,  

   = prior mean for bias term  , calculated as   
∑ (     ) 

 
, 

   = prior variance for bias term  , calculated as    
∑ (      ) 

  , 

    = probit-transformed prevalence estimate from population-based survey in year z, 

                                                             

6 While this design effect is assumed, 95% uncertainty intervals calculated using these variance estimates 

approximate the confidence intervals reported in the survey report [74].  
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z  = year in which population-based survey was conducted (z   2002, 2005, 2008), 

   = variance estimate for population-based prevalence survey in year z, 

  = multiplier on   to account for selective non-participation in population-based prevalence 

surveys, and 

  = number of population-based prevalence surveys conducted (    for South Africa). 

 

By considering selective non-participation in population-based prevalence surveys (via the term d) 

the likelihood function shown in equation 10 differs from the likelihood described by Alkema and 

colleagues [78]. This change is motivated by recent re-analyses of national prevalence surveys 

using Heckman-type selection models [80,81]. In its review of the issue, the UNAIDS Reference 

Group on Estimates, Modelling and Projections concluded that appropriate consideration of this 

potential bias may extend reported confidence intervals by up to a factor of 4.5 [82]. In this analysis 

we assumed d = 2.0. 

In addition, the assumption that the bias in the ANC data (operationalized as b) would be constant 

in probit space may not hold over a wide range of prevalence. As all the population-based 

prevalence surveys (used to estimate b) were conducted at a time of high prevalence (15.6-16.9%), 

we excluded from the likelihood all years where the maximum of the likelihood function would fall 

below 1% prevalence (1990-1992). Figure 3.4 summarizes the various data used for the prevalence 

likelihood. 
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Figure 3.4. Data used for HIV prevalence likelihood  

 

3.2.11.3. Likelihood for HIV-positive survival in the absence of ART 

Glynn and colleagues report estimates of median survival from seroconversion to death in a 

retrospective cohort of South African mine workers [83]. As this study was conducted before ART 

became widely available, the results can be used to calibrate modeled estimates of survival for 

untreated HIV-positive individuals from the time of initial infection. In this study median survival 

was 10.5 years (95% CI: 10.0-10.8). As the raw data were unavailable, a Normal likelihood was 

constructed based on this summary estimate: 

    (  |    )   
(    ) 

   
 

 (11)  

where: 

   = parameter set i, 
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   = modeled estimate of median survival following HIV seroconversion, produced by parameter 

set   , 

  = median survival of 10.5 years reported by Glynn et al., 

  = factor to expand Normal likelihood to account for unobserved bias, value=2.0, and 

   = variance of median survival estimate, calculated as (
         

      
)
 
   = 0.083. 

This study was conducted in a select population (mine workers) whose survival might differ from 

the general population. For this reason the variance of the likelihood function was expanded by a 

factor of 2.0 to account for the possibility of unobserved bias. 

3.2.11.4. Likelihood for CD4 cell count distribution in untreated HIV-positive individuals 

A number of studies report information on the distribution of CD4 cell counts in ART-naïve 

individuals. While some of these studies report on populations whose CD4 distribution will clearly 

differ from the general population7, three studies report on groups whose CD4 distribution might 

be similar to the general population. These include data collected in 2002 from a single township 

with high HIV prevalence [84], data from a 2004 national survey of public school educators [85], 

and data collected in 2005 from health care workers in two public hospitals in Gauteng province 

[86]. These data are summarized in Figure 3.5. 

  

                                                             

7 For example, Holmes et al. report on a population of ART-naïve patients attending an HIV treatment clinic 

[53]. As a consequence of attending the clinic, these individuals are more likely to be experiencing HIV 

symptoms and have lower CD4 cell counts compared to HIV-positive individuals in the general population.  
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Figure 3.5. Data used for CD4 cell count distribution likelihood 

 

These data were summarized in the following multinomial likelihood: 

    (  | )  ∑∑
   

 
  

  (   ) 

 (12)  

where: 

   = parameter set i, 

    = modeled estimate of the fraction of the untreated HIV-positive population in CD4 stratum k 

in the year in which data were collected for study j , produced by parameter set   , 

    = number of individuals in CD4 stratum k in study j, and 

  = factor to expand multinomial likelihood to account for unobserved bias, value=2.0. 

 

The study populations on which this likelihood is based represent specific groups (a single 

township, educators, health care workers) whose CD4 distributions might differ from the general 

population. As with the survival likelihood, an additional term (d) was included in order to increase 

the dispersion of the likelihood to account for the possibility of unobserved bias. 
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The likelihoods for prevalence, survival, and CD4 distribution were assumed to be independent, and 

consequently the overall log-likelihood was calculated as the sum of the individual log-likelihoods: 

                       
 (13) 

3.2.11.5. Calibration approach 

The posterior distribution of the model parameters was approximated using Incremental Mixture 

Importance Sampling (IMIS) [87]. Similar to the Markov chain Monte Carlo methods conventionally 

used for Bayesian inference, IMIS produces a table of parameter sets that represent independent 

draws from the joint posterior parameter distribution, which are obtained by updating the joint 

prior distribution p(θ) with the information contained in the likelihood function described in 

Sections 3.2.11.2-3.2.11.4. The algorithm proceeds by drawing a sample from the prior distribution 

of the model parameters, similar to Rubin’s Sampling Importance Resampling approach [88] on 

which IMIS is based, and then iteratively adds extra draws to this sample in regions of the 

parameter space that the likelihood suggests are under-sampled with respect to the posterior 

distribution. The following description closely follows the exposition provided by Raftery and Bao 

2010 [87]: 

Initial stage: 

a. Draw a large number (  ) of parameter sets from the prior distribution  ( ).  

b. For each of these parameter sets,    , run the model and estimate the outcomes needed to 

evaluate the likelihood function (HIV prevalence, HIV survival, CD4 distribution in 

untreated individuals).  

c. For each parameter set    calculate the likelihood,  (  ), and use these to calculate 

importance weights   
 : 
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 (  )

∑  (  ) 
 

 (14) 

Importance sampling stage: for k=1,2,… repeat the following steps 

d. Choose the parameter set with the highest importance weight,   , and use this parameter 

set as the center of a new multivariate Normal distribution,   , created to sample 

underrepresented parts of the parameter space. Estimate the variance-covariance matrix 

of this distribution,   , as the weighted covariance of the B parameter sets with the 

smallest Mahalonobis distance to   , where distances are calculated with respect to the 

covariance of the prior distribution. 

e. Sample B new parameter sets from   . 

f. Run the model and calculate the likelihood for each of these new parameter sets. 

g. Combine all parameter sets and calculate importance weights for the new parameter sets: 

  
   

 (  ) (  )

  (  )
 

 (15) 

where c is a constant chosen so that the weights sum to 1, and   (  ) is the mixture 

distribution calculates as a mixture of the prior and the new multivariate Normal 

distribution: 

  ( )  
   ( )   ∑    

   

  
 

 (16) 

where         . 

h. Evaluate the stopping criterion: that the expected fraction of unique parameter sets in the 

resample is greater or equal to   
 

 
 (i.e., 0.632, which is the expected fraction when the 
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importance weights are all equal). The expected fraction of unique parameter sets is 

calculated as ∑ (  (    
 )

 
)

  
   .  

i. If the stopping criterion is not met, repeat steps d to h. If the stopping criterion is met, 

resample J parameter sets with replacement from the set of all    parameter sets, using 

the importance weights as sampling weights. These J parameter sets represent a draw 

from the posterior distribution. 

   (the size of the initial sample), B (the size of each additional importance sample) , and J (the 

number of resample in the final draw), are user specified inputs, set to 5 million, 50,000, and 

100,000 respectively in this analysis. 

 The stopping criterion described above is difficult to obtain for a problem with a high-dimensional 

posterior, and for this reason an alternative approach was adopted, whereby the algorithm was 

stopped after 20 iterations and all parameter sets were retained whose likelihood was statistically 

indistinguishable from the maximum likelihood8. The resulting sample of 70,840 parameter sets 

was used for all subsequent analyses. Figure 3.6 compares the results produced by the calibrated 

model against the calibration data.  

                                                             

8 This included all parameter sets i where      (
  

      
)      , and where the 65.2 threshold for the test 

statistic is derived from a    distribution with 48 degrees of freedom and   = 0.05. 
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Figure 3.6. Results of calibrated model vs. calibration data 
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3.2.12. Estimating costs 

We adopted a health system perspective for the analysis and costs were assessed incrementally, 

such that any cost categories unaffected by the changes in ART policy examined in this analysis 

were omitted from the costing. All costs are expressed in 2012 US dollars. Costs were assessed for 

the following categories: 

(a) direct costs of care received by ART patients, 

(b) direct costs of care received by pre-ART patients, 

(c) direct costs of programs to identify and link HIV-positive individuals to care,  

(d) averted costs due to reduced health care utilization outside of the HIV program, and 

(e) costs of higher-level programmatic support. 

 

3.2.12.1. ART costs 

ART costs were subdivided into ARV drug costs and non-ARV costs. The total cost of ARV drugs in a 

given year was calculated by multiplying the number of person-years of ART in that year by the 

annual ART regimen unit cost. The ART regimen unit cost represents the average annual cost of the 

current distribution of ART regimens in South Africa, estimated as part of a recent analysis of WHO 

guideline changes [13]. This and other unit costs are shown in Table 3.1. 

Nnon-ARV costs were subdivided into ART initiation costs and established patient costs. ART 

initiation costs—accounting for the additional laboratory tests and clinic visits incurred during a 

patient’s initial months on ART [63]—were calculated by multiplying the number of individuals 

initiating ART in a given year by the ART initiation unit cost, which was obtained from an evidence 

synthesis of available costing data [13]. Established patient costs—accounting for the regular 

clinical care and laboratory monitoring received by ART patients, as well as all other site-level 

activities required for the functioning of the ART program—were calculated by multiplying the 

number of person-years of ART in a given year by the established ART patient unit cost, obtained 
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from the earlier evidence synthesis. Total ART costs were calculated as the sum of ARV costs, ART 

initiation costs, and established patient costs. 

3.2.12.2. Pre-ART costs 

Pre-ART patients receive regular clinical and laboratory monitoring of ART eligibility, as well as 

routine care and prophylaxis / treatment of opportunistic infections [89]. Pre-ART costs for a given 

year were calculated by multiplying the number of patient-years of pre-ART in that year (tracked in 

the model, as described in Section 3.2.9) by the pre-ART unit cost, obtained from the earlier 

evidence synthesis. 

3.2.12.3. HIV testing costs 

HIV testing costs in a given year were calculated as the product of the number of people receiving 

HIV tests in that year (as described in Section 3.2.9) and the unit cost of HIV testing and counseling, 

obtained from the earlier evidence synthesis. 

3.2.12.4. Averted costs outside of the HIV program 

Individuals with symptomatic HIV who are not receiving care or treatment in a dedicated HIV 

program may exhibit greater utilization of care within the routine health system. These other care 

costs were subdivided into annual health care utilization costs and end-of-life care costs.  

Annual health care utilization costs were estimated for HIV-positive individuals not on pre-ART or 

ART with a CD4 count <500 cells/µL. For each CD4 count category (350-500, 200-350, <200), 

health care utilization costs in a given year were calculated as the product of the number of person-

years spent in that state and the health care utilization unit cost for that state, obtained from the 

earlier evidence synthesis. 
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End-of-life care costs were assumed to be the same for all individuals, and total end-of-life care 

costs for a given year were estimated as the number of deaths in that year multiplied by the unit 

cost per death, reflecting the additional utilization and inpatient care received during terminal 

illness. 

3.2.12.5. Programmatic support  

Program costs—the costs of management, administration, supervision, training, M&E and other 

activities undertaken to support direct service provision—are frequently omitted from empirical 

costing exercises, but can represent a non-trivial fraction of total costs. Estimates of program costs 

for PMTCT services suggest that these costs can represent 4–18% of total costs, and for HIV 

education services this percentage has been estimated as 34–97% [90]. For this analysis the mark-

up on direct service provision to take account of program costs was based on the input of costing 

and programmatic experts participating in the WHO guidelines analysis described previously [13]. 

In that analysis, program costs were divided into a fixed component, invariant to changes in 

program scale, and a variable component that scaled linearly with total direct costs (excluding 

ARVs). As this was an incremental costing the fixed costs could be ignored. The variable component 

represents a fixed multiple of direct costs, and this multiple was estimated at 50% (with a wide 

uncertainty interval), such that program costs would represent 33% of total service provision costs 

(excluding ARVs) [13].  

3.2.13. Estimating health outcomes 

Health consequences were summarized as incremental DALYs averted. For each year the total 

number of DALYs averted was calculated by summing the number of person-years lived in each HIV 

health state, multiplying this total by one minus the disability weight for that state (zero unless 

listed in Table 3.1), and summing across all HIV health states. The same basic estimation approach 

was used for truncated and extended time horizons, though the period over which results were 
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aggregated differed (20 years and 120 years respectively). No age-weighting was used, consistent 

with the approach used in the most recent iteration of the Global Burden of Disease (GBD) study 

[91]. However, unlike the current GBD approach, future health gains (and costs) were discounted, 

using a rate of 3% per year [73]. 

3.2.14. Value function and decision rule 

It was assumed that:  

- Policy makers are rational in their choice of policy options (i.e., hold preferences over any 

set of policy options that are complete and transitive), 

- Faced with uncertain outcomes, policy makers value each outcome proportional to its 

probability of occurring, consistent with Von Neumann–Morgenstern Expected Utility 

Theory, and 

- Policy makers hold preferences consistent with a utility function that is linearly 

increasing in health benefits (as operationalized in Section 3.2.13) and linearly 

decreasing in costs (as operationalized in Section 3.2.12), that these arguments exhibit 

additive independence, and that these outcomes (health system costs and DALYS 

averted) summarize all relevant consequences of the policies in question. 

If these conditions hold, relative preference for different policy options can be summarized as Net 

Monetary Benefit (NMB) [30], where for a policy i the expected value of Net Monetary Benefit is 

given by: 

 (    )    (      )   
 

 
∑∑(          )

      

(   )   

 (17) 
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In equation 17 j indexes for parameter sets randomly drawn from the posterior parameter 

distribution, t indexes for year following policy introduction9, B represents total health benefits (in 

DALYs averted), C represents total costs, d represents the discount rate, and   represents the policy 

makers’ rate of exchange between health benefits and cost savings.  

As a consequence of the assumptions described above, decision makers will choose the policy that 

maximizes NMB on expectation, obtaining            
 

   (    ). For the purposes of this 

analysis we also assumed that the preferences expressed by policy makers are consistent with 

general societal preferences, such that by making optimal choices according to the choice function 

described above policy makers are also maximizing social welfare. 

The NMB framework also provides a direct measure of the welfare loss from sub-optimal decision-

making, with              representing the monetized value of the welfare loss through 

choosing policy i instead of the optimal policy, and the maximum value we should be willing to pay 

to switch from i to the optimal policy. 

3.2.15. Value of information analysis 

To assess the relative value of new research investments we followed the general framework 

described by earlier authors for estimating VOI [22,23,29,92,93]. 

 

 

                                                             

9 Note that T=20 for the truncated time horizon and T=120 for the extended time horizon, as discussed in 

Section 3.2.9. 
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3.2.15.1. Expected value of perfect information 

The expected value of perfect information (EVPI) represents the additional welfare that would be 

gained if all decision uncertainty were resolved before a policy is chosen, as compared to a scenario 

where no new information is collected: 

       (             )  (           ) 

               (   
 

      )     
 

   (    )  

 (18) 

Within the context of the calibrated model, this can be operationalized as: 
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∑   
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∑      
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 (19) 

where j indexes for parameter set drawn from the posterior parameter distribution. 

Results are presented for EVPI as a function of WTP per DALY averted ( ), to understand the upper 

bound of the possible value of new research. However, this metric gives little insight as to the 

absolute or relative value of new information on specific research targets. 

3.2.15.2. Expected value of partial perfect information 

The expected value of partial perfect information (EVPPI) represents the expected value of the 

additional welfare that would be gained if the decision uncertainty around an individual parameter 

or subset of parameters were resolved before a policy is chosen, as compared to the ‘no new 

information’ scenario: 

         (                  )  (           ) 

                     
(   

 
     (    |  ))     

 
   (    ) 

 (20) 
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where   represents the parameter or set of parameters on which perfect information is gained, and 

   represents the complement of  .        would typically be calculated by (i) drawing a single 

realization of   , (ii) drawing a large sample from     conditional on the realized value of    , (iii) 

finding the maximum average     in this sample that can be achieved by choosing between the 

different policy options i, (iv) repeating steps i-iii for a large sample from    and averaging the 

results, and finally (v) subtracting  (          ) from this total [22]. The first step in this 

algorithm is difficult to operationalize in the context of the calibrated model, as for each realization 

of    in the posterior parameter distribution (the set of 70,840 parameter sets described in Section 

3.2.11.5), we have only a single realization of     , and no obvious way of generating new samples 

(aside from recalibrating the model with this parameter fixed). As all parameters are sampled from 

a continuous prior distribution, this issue remains even if a very large number of samples are 

obtained from the posterior parameter distribution. To resolve this problem, it is assumed that 

    (    |  ) will be similar to     (    |   
) for those parameter sets that lie close to    

 in 

   (where k indexes a single realization of   ), such that: 

   
   

    (    |(   
  ))      (    |   

)                

 (21) 

 

This property (that the change in     (    |  ) as a function of    is continuous) is not an 

inherent property of decision problems10, yet it is true by construction for the model developed for 

this analysis. It is also true (due to the structure of the model) that the change in     (    |  ) as 

                                                             

10 For example, this continuity property may not hold in decision problems that feature sequential decisions 

made by different actors, as when    crosses a threshold such that the first actor changes their optimal policy 

there may then be a step change in the outcomes for other actors. 
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a function of    is smooth (i.e., the first derivative of     (    |  ) with respect to any parameter 

in   is continuous). Based on these properties, we can approximate     (    |  ) by fitting a 

smooth curve (or smooth surface if there is more than one parameter in  ) through     |  , as 

calculated from the 70,840 posterior draws from the calibration. The resulting function, 

 ̂   (    |  ), allows us to estimate  (    |  ) for any policy and for any specific values of    in 

the range of those represented in the posterior parameter distribution11. For each policy, this 

function is created using locally-weighted polynomial regression (LOESS), an approach to 

estimating smooth curves or surfaces by fitting low-order polynomial functions to local subsets of 

data [94,95], operationalized using the loess function in R’s stats package [96]. 

The following algorithm was used to estimate       : 

(i) For each policy i, the function  ̂   (    |  ) was estimated by fitting a LOESS regression 

for      as a function of the parameters in  . For most analyses z consisted of a single 

parameter, but when   represented multiple parameters all interaction terms were 

included in the LOESS regression.  

(ii) For each parameter set in  , the optimal policy given perfect information about   was 

identified as the policy that maximizes the function  ̂   (    |  ) at   . The rational 

decision maker should chose this policy, and obtain the actual value of     produced by 

this policy (i.e., not the value predicted by the function). 

(iii)  These actual values are averaged across all j    , and  (          ) was subtracted from 

the result, with this difference representing       . 

                                                             

11  ̂   (    |  ) actually represents a set of functions, one for each policy i. 
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EVPPI results were calculated as a function of the WTP threshold, and used to make judgments 

about the relative value of perfect information for each parameter. EVPPI represents an upper 

bound of the value of new research, because the information obtained from research studies will 

not be perfect. In addition, as research on relative infectiousness might plausibly provide 

information on multiple phases of infection, EVPPI was calculated for the group of parameters 

determining relative transmission risk during early infection, late stage disease, and for those on 

ART. 

As it examines the value of perfect information on a particular parameter, EVPPI provides an upper 

bound on the value of empirical research, which only provides sample information. While the 

expected value of partial sample information (EVPSI) can be calculated, to do so requires an explicit 

description of the practical research design that would be used to collect new information, the 

expected sampling variance, and any biases that might affect the relationship between research 

results and the population-level variables of interest. As many research approaches are possible for 

a given subject, with differing costs and informational value, one could generate a function that 

describes EVPSI for each research target as a function of the level of investment, then choose the 

level of expenditure that maximizes EVPSI minus research costs. As the EVPSI of different 

parameters may not be independent (or if the opportunity cost of increased research spending is 

not fixed), optimizing the overall research portfolio would require simultaneously choosing a level 

of investment for all research targets so as to maximize the overall NMB generated by research 

minus the total costs of this research. Such an analysis—requiring estimates of the informational 

value and costs of many different research designs on different targets— is not feasible in the 

context of the current study. Instead, the relative magnitude of EVPPI for different research targets 

was used to draw conclusions about the relative urgency of new research in different areas, and 

identify areas where new research could meaningfully influence policy.  



181 
 

3.2.16. Sensitivity analyses 

3.2.16.1. Health benefits attributable to the therapeutic effects of ART 

Sensitivity analyses were undertaken to estimate the fraction of health benefits that were 

attributable to the therapeutic effects of ART (c.f. the effects of reduced HIV transmission by ART 

patients). For each policy option, this fraction was calculated by comparing the number of DALYs 

averted by that policy in the main analysis (i.e., including both therapeutic and preventive benefits 

of ART) to the number of DALYs averted by that policy in an analysis in which future HIV infection 

risk is unaffected by ART policy, with all scenarios following the same HIV incidence trend as the 

current policy (policy A2, with ART eligibility of CD4 <350, and continuation of current testing 

rates).  

3.2.16.2. Different assumptions about discount rates 

Sensitivity analyses were undertaken to test the robustness of policy choices to changes in the 

discount rate applied to costs and health benefits. Three analyses were undertaken: one in which 

the discount rate for both costs and health benefits was set to 0% (i.e., no discounting), one in 

which this rate was set to 6%, and one in which costs were discounted at 3% (as in the main 

analysis) but health benefits were not discounted. 

3.2.16.3. Changes in the choice set  

For the value of information analysis, a sensitivity analysis was undertaken to understand the 

sensitivity of the VOI results to changes in the choice set. In this sensitivity analysis, the VOI results 

were recalculated under the assumption that the choice of coverage policy was already determined, 

representing continuation of current testing policy and continued ART enrollment (i.e., the choice 

set only includes policies A2, B2, and C2).  
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3.2.16.4. Fraction of transmission attributable to early infection 

A sensitivity analysis was undertaken to test whether the VOI results obtained for the parameter 

for increased transmission risk during early infection was sensitive to changes in the fraction of all 

transmission occurring during early infection. This sensitivity analysis was undertaken using a 

Bayesian melding approach [97], by adding an additional prior on this outcome (i.e., the fraction of 

all transmission attributable to individuals with early infection). This additional prior was 

operationalized as a Normal distribution with mean and standard deviation based on the estimate 

reported by Powers (38% (19-52) of all transmission attributable to early infection). This 

sensitivity analysis was implemented by reweighting the parameter sets, with weights proportional 

to the density of this additional prior when evaluated at the value of this outcome (fraction of 

transmission attributable to early infection) generated by each parameter set. The result of this 

reweighting was a 70% increase in the fraction of transmission attributable to early infection, to 

25% (15-39%). 

 

 Results 3.3.

3.3.1. Epidemiological estimates and projections 

Figure 3.7 presents modeled results for various epidemiological outcomes over the period 1985-

2032, with future projections calculated under the assumption that current ART access and 

eligibility policies would be maintained (corresponding to policy A2, as described in Section 3.2.2). 
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Figure 3.7. Epidemiological outcomes, 1985-2032, with current ART eligibility and coverage 

policy 

 

The top left panel of this figure shows the rapid increase in HIV prevalence between 1990 and 

2005, followed by a delayed and more gradual rise in the HIV population with CD4 cell count <350 

cells/µL, the current ART eligibility threshold. The numbers of individuals receiving ART rises 

rapidly from 2005 to 2012 but subsequently plateaus as the majority of eligible individuals are 

initiated on treatment. The top right panel shows time changes in the distribution of the HIV-



184 
 

positive population across CD4 cell count categories, initially dominated by early HIV during the 

early exponential growth of the epidemic, then with increasing numbers of individuals with low 

CD4 cell count as the epidemic matures. The bottom left panel shows HIV incidence and HIV 

mortality (defined as deaths of HIV-positive individuals), revealing the large lag in HIV mortality 

until 2005, after which the two curves move together, matching the rapid rise and subsequent 

plateau in HIV prevalence seen in the top right panel. The lower right panel explores the 

contributions of early and late HIV infection to overall HIV transmission, revealing a transition from 

early in the epidemic where most transmission is from individuals with early HIV, to late in the 

epidemic where almost half of all transmission is from individuals with CD4<350 (transmission 

from individuals in other disease stages not shown). This panel also reveals substantial uncertainty 

in this distribution of transmission across disease states, suggesting that a wide variety of values 

are compatible with the calibration data. These results—with 15% (7-26)12 of all current 

transmission from individuals with early HIV—can be compared to the analysis of Powers and 

colleagues, who found 38% (19-52) of all transmission in 2010 in Lilongwe Malawi to derive from 

individuals in their first 5 months following infection. The other modeled results for sub-Saharan 

Africa summarized by Cohen et al. [16] provide additional points of comparison, with the fraction of 

new infections attributable to early HIV ranging from 10-30% when the Powers result is excluded. 

Figure 3.8 shows summary epidemiological outcomes after 5 and 20 years for each of the 15 policy 

options assessed in the analysis. The policies are labeled with a letter-number combination, with 

the letter indicating ART eligibility threshold (“A” for CD4<350, “B”, for CD4<500, and “C” for all 

HIV-positive) and the number indicating coverage scenario (“1” for testing at current rates with 

fixed ART volume, “2” for testing at current rates, “3” for testing at 1.5x current rates, “4” for testing 

                                                             

12 Ranges in parentheses represent equal-tailed 95% posterior intervals. 
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at 2x current rates, and “5” for testing at 3x current rates). Both cumulative incidence and 

cumulative mortality are seen to drop as coverage is expanded (holding eligibility constant), and as 

eligibility is expanded (holding coverage constant). The one exception to this relationship is in the 

set of policies where the number of ART slots is constrained to its 2012 level (policies A1, B1, C1). 

For these policies that assume a fixed capacity constraint on ART volume, an eligibility policy that 

expands ART eligibility to all HIV-positive individuals (policy C1) will reduce cumulative HIV 

incidence over 20 years to 5.9 (4.5-7.5) million individuals compared to 6.2 (4.8-7.8) new infections 

with current eligibility (policy A1), a 5.1% (1.9-10.1) reduction. However, this policy change would 

marginally increase cumulative HIV mortality over the same period, from 6.9 (5.5-8.4) to 7.0 (5.6-

8.6) million, a 1.9% (-0.2-3.9) increase in total deaths, due to relatively healthy individuals 

crowding out symptomatic individuals from limited ART slots. 
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Figure 3.8. Major epidemiological outcomes at 5 and 20 years after policy introduction* 

* Policies are labeled with a letter-number combination, with the letter indicating ART eligibility 

threshold (“A” for CD4<350, “B”, for CD4<500, and “C” for all HIV-positive) and the number indicating 

coverage scenario (“1” for testing at current rates with fixed ART volume, “2” for testing at current rates, 

“3” for testing at 1.5x current rates, “4” for testing at 2x current rates, and “5” for testing at 3x current 

rates. 
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Over 20 years, compared to continuation of current eligibility and ART coverage (policy A2), the 

policy with most aggressive ART expansion (policy C5) is estimated to reduce cumulative HIV 

incidence by 3.1 million (2.4-3.9) new infections, a reduction of 58% (44-68), and reduce 

cumulative HIV mortality by 2.0 million (1.6-2.6), a reduction of 34% (29-38). The reductions in 

incidence and mortality that result from more aggressive eligibility and coverage policy will have 

countervailing effects on HIV prevalence. The third column of Figure 3.8, which shows the 

reduction in HIV prevalence compared to 2012 levels13, suggests there would be a net reduction in 

prevalence as both ART eligibility and coverage are expanded, despite the improved survival of 

HIV-positive individuals initiated on ART. The most aggressive ART expansion policy (policy C5) is 

projected to reduce prevalence by 5.9% (3.5-7.6) between 2012 and 2032, as compared to 2.5% 

(1.2-3.6) for the current policy (policy A2). 

Figure 3.9 shows the total DALYs averted by each policy, as compared to the status quo (policy A2). 

This figure presents results for the main analysis, when both preventive and therapeutic benefits of 

ART are taken into account, compared to a sensitivity analysis that considers only therapeutic 

health benefits by artificially holding HIV incidence equal for all policies. The fraction of total health 

benefits attributable to the therapeutic effects of ART are substantially higher under the truncated 

time horizon (representing all DALYs averted within the 20 year following policy introduction) as 

compared to the extended time horizon, which also includes lifetime health consequences for those 

alive at the end of the 20-year time horizon. This finding is consistent with the benefits of ART in 

averting transmission being substantially delayed relative to other outcomes, as newly infected 

individuals may live for many years (especially in an environment of good ART access) before the 

onset of substantial morbidity or early death. However, if these delayed health benefits are 

                                                             

13 Prevalence in 2012 is estimated to be 16.2% [14.2-18.4]. 
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considered, these results suggest the prevention benefits of ART are substantial compared to the 

therapeutic benefits. It is also notable that the fraction of total health benefits attributable to the 

therapeutic effect of ART are lower in policies that expand ART eligibility alone (e.g., under the 

truncated time horizon 63% of DALYs averted by policy C2 are attributable to therapeutic effects, 

and 34% under the extended time horizon), as compared to policies that expand coverage alone 

(e.g., under the truncated time horizon 89% of DALYs averted by policy A5 are attributable to 

therapeutic effects, and 49% under the extended time horizon). This suggests that the ratio of 

prevention benefits to therapeutic benefits will be higher for individuals initiating ART at higher 

CD4 cell counts, as compared to individuals initiating ART at low CD4 cell counts (i.e., early 

initiation of ART may be more important for preventing transmission than extending survival).  
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Figure 3.9. Total DALYs averted, and DALYs averted by therapeutic effects alone (i.e., 

excluding prevention benefits) for each policy compared to to policy A2* 

* Policies are labeled with a letter-number combination, with the letter indicating ART eligibility 

threshold (“A” for CD4<350, “B”, for CD4<500, and “C” for all HIV-positive) and the number indicating 

coverage scenario (“1” for testing at current rates with fixed ART volume, “2” for testing at current rates, 

“3” for testing at 1.5x current rates, “4” for testing at 2x current rates, and “5” for testing at 3x current 

rates. Estimates for DALYs averted from therapeutic health benefits alone are based on analyses where 

HIV infection risk is held constant at values generated by policy A2. ‘Pct. IHB’ represents the percentage 

of DALYs averted from therapeutic health benefits as compared to total health benefits (as calculated in 

the main analysis). Policy A2 used as the reference category. 
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3.3.2. Cost projections 

The effect of changing policy on costs differed across cost categories. Figure 3.10 shows the 

incremental difference in mean annual costs over the period 2012-2032 for a subset of four policy 

options, in order to illustrate the effects of different types of policy as compared to continuation of 

current policy (A2). 

Policy A1, in the top left panel of Figure 3.10, represents a very conservative approach to ART scale-

up, with ART eligibility held at CD4<350 (as in the status quo), and with ART volume capped at 

2012 levels. The cap on ART volume results in lower ART costs compared to the status quo (from 

both ARVs and non-ARV services), which are partially offset by increased pre-ART and other care 

costs (other care being care received outside of the HIV program). Policy C2, in the top right panel, 

is identical to the status quo except with greatly expanded ART eligibility (to all HIV-positive 

individuals), while policy A5, in the bottom left panel, is identical to the status quo except with 

greatly expanded ART coverage. Both changes result in higher overall costs. For policy C2, 

increased ART costs are partially offset by savings in pre-ART. In contrast, policy A5 results in 

increases in both ART and pre-ART costs, as well as large increases in testing costs, only modestly 

offset by savings in costs outside of the HIV program. These cost savings are realized because 

individuals with symptomatic HIV, who had previously been receiving care in the routine health 

system, would instead receive care through the HIV program (ART or pre-ART depending on 

eligibility). The combined effect of these factors is that the overall incremental costs under policy 

A5 appear much higher than policy C2 over all years (all panels use the same vertical scale). The 

lower right panel of Figure 3.8 shows the consequences of expanding HIV eligibility to include all 

HIV-positive individuals as well greatly expanded HIV testing programs (policy C5). Cumulative 

incremental costs are highest under this policy scenario, though the time trend in incremental costs 
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decreases after the initial years, potentially due to decreased long-term incidence trends compared 

to current policy. 

 

 

Figure 3.10. Disaggregation of total incremental costs by year and by cost category, for four 

policy options as compared to continuation of current eligibility and coverage (policy A2)* 

* Policies are labeled with a letter-number combination, with the letter indicating ART eligibility 

threshold (“A” for CD4<350, “B”, for CD4<500, and “C” for all HIV-positive) and the number indicating 

coverage scenario (“1” for testing at current rates with fixed ART volume, “2” for testing at current rates, 

“3” for testing at 1.5x current rates, “4” for testing at 2x current rates, and “5” for testing at 3x current 

rates. 
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Figure 3.11 presents summary estimates of total undiscounted costs for all policies over the 20 

years since policy introduction, as compared to continuation of current eligibility and coverage 

(policy A2). As can be seen in the figure, those policies that assume ART volume is constrained at 

2012 levels (policies A1, B1, and C1) produce cost-savings compared to the status quo, while 

policies that involve expanding eligibility and coverage result in higher overall costs. This is 

particularly true for increases in coverage (e.g., policy A5, lower left), whereas expansions in ART 

eligibility (e.g., policy C2, upper right) produce relatively modest increases in total costs over the 

whole 20 years. 

 

 

Figure 3.11. Summary estimates of total incremental costs over 20 years for competing 

policies, compared to continuation of current ART eligibility and coverage (policy A2)* 

* Policies are labeled with a letter-number combination, with the letter indicating ART eligibility 

threshold (“A” for CD4<350, “B”, for CD4<500, and “C” for all HIV-positive) and the number indicating 

coverage scenario (“1” for testing at current rates with fixed ART volume, “2” for testing at current rates, 

“3” for testing at 1.5x current rates, “4” for testing at 2x current rates, and “5” for testing at 3x current 

rates. 
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3.3.3. Decision-making with no new information 

Absent the opportunity to seek or act on new information, decision uncertainty can be ignored and 

policy choices made based on the expected values of uncertain outcomes14 [92,98–100]. Expected 

incremental costs (2012 US dollars, millions), health benefits (DALYs averted, millions) and 

incremental cost-effective ratios (ICERs) for competing ART policies are presented in Table 3.2, and 

cost-effectiveness results summarized graphically in Figure 3.12. All outcomes are discounted at 

3% per year. 

Results are presented for two time horizons: a truncated time horizon including only those costs 

and health outcomes realized within 20 years following policy introduction, and a extended time 

horizon that includes lifetime outcomes for all individuals alive at the end of the 20 year time 

horizon, in order to fully capture the value of reductions in mortality and HIV incidence (as 

described in Section 3.2.10). 

  

                                                             

14 Following the assumptions described under Section 3.2.14. 
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Table 3.2. Incremental costs, DALYs averted, and cost-effectiveness ratios (US dollars per 

DALY averted) of competing policy options, assessed over both extended and truncated time 

horizons* 

Policy 
Option 

Truncated time horizon: excludes 
health benefits and costs realized after 

20 year horizon 

Extended time horizon: includes health 
benefits and costs realized after 20 

year horizon 

Cost 
Inc.   
Cost 

DALYs 
Averted 

Inc. 
DALYs 

Averted ICER Cost 
Inc.    
Cost 

DALYs 
Averted 

Inc. 
DALYs 

Averted ICER 

C1 --- --- --- --- --- --- --- --- --- --- 

B1 196 196 2.04 2.04 96 575 575 0.30 0.30 [1] 

A1 407 211 2.60 0.56 380 1,135 1,135 -0.90 -0.90 [2] 

A2 5,074 4,667 8.48 5.88 793 7,447 7,447 13.93 13.93 [1] 

B2 6,897 1,823 10.30 1.82 1,004 9,063 9,063 22.15 22.15 [1] 

C2 9,854 2,957 11.37 1.08 [1] 11,830 11,830 33.17 33.17 357 

A3 11,800 4,903 10.88 0.59 [2] 15,010 3,176 21.28 -11.89 [2] 

B3 14,320 7,421 13.65 3.36 2,210 17,110 5,279 32.06 -1.11 [2] 

C3 16,840 2,522 14.55 0.90 2,805 19,110 7,284 43.85 10.68 682 

A4 17,760 923 12.86 -1.69 [2] 21,450 2,339 26.66 -17.19 [2] 

B4 20,220 3,379 15.70 1.15 [1] 23,290 4,181 38.37 -5.48 [2] 

C4 22,350 5,515 16.45 1.90 2,902 24,700 5,585 50.35 6.50 859 

A5 27,680 5,326 15.15 -1.30 [2] 31,870 7,169 33.08 -17.28 [2] 

B5 30,030 7,672 18.04 1.59 [1] 33,310 8,611 45.86 -4.50 [2] 

C5 31,640 9,281 18.59 2.13 4,350 33,950 9,253 57.75 7.40 1,251 

[1] Dominated by extended dominance   [2] Dominated by strong dominance 

* Costs represent 2012 US dollars, both costs and outcomes are discounted at 3%. Policies are labeled with a 

letter-number combination, with the letter indicating ART eligibility threshold (“A” for CD4<350, “B”, for 

CD4<500, and “C” for all HIV-positive) and the number indicating coverage scenario (“1” for testing at current 

rates with fixed ART volume, “2” for testing at current rates, “3” for testing at 1.5x current rates, “4” for 

testing at 2x current rates, and “5” for testing at 3x current rates. 
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Figure 3.12. Cost-effectiveness of competing policies, assessed over extended and truncated 

time horizons* 

* Policies are labeled with a letter-number combination, with the letter indicating ART eligibility 

threshold (“A” for CD4<350, “B”, for CD4<500, and “C” for all HIV-positive) and the number indicating 

coverage scenario (“1” for testing at current rates with fixed ART volume, “2” for testing at current rates, 

“3” for 1.5x current rates, “4” for 2x current rates, and “5” for 3x current rates.  
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Figure 3.12 shows that, under the truncated time horizon (top panel), a large number of eligibility-

coverage combinations lie on the efficient frontier. However, under the extended time horizon 

(bottom panel) it appears that policies that allow ART eligibility for all HIV-positive individuals 

(policies C1-C5) together dominate the other policies. The relative impacts of expanding coverage 

and expanding eligibility are shown in Figure 3.13, which plots the progression of costs and health 

benefits as eligibility is expanded under each coverage policy (top panels), and as coverage is 

expanded under each eligibility policy (bottom panels). For example, the base of the blue arrow in 

the lower panels represents a policy with ART eligibility at CD4<500 and a fixed cap on ART volume 

(policy B1). Following the arrow towards the tip represents the change in costs and health 

outcomes as coverage policy is progressively expanded while eligibility policy is fixed at CD4<500, 

to the point where the tip of the arrow represents policy B5, with ART eligibility still at CD4<500 

but with very aggressive HIV testing programs. 
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Figure 3.13. Change in costs and health benefits as one policy dimension is expanded while 

the other is held fixed, for both truncated and extended time horizons*  

* Policy dimensions are labeled with letters and numbers, with the letter indicating ART eligibility 

threshold (“A” for CD4<350, “B”, for CD4<500, and “C” for all HIV-positive) and the number indicating 

coverage scenario (“1” for testing at current rates with fixed ART volume, “2” for testing at current rates, 

“3” for 1.5x current rates, “4” for 2x current rates, and “5” for 3x current rates.  

 

Under the truncated time horizon (panels on left), expansions in both eligibility and coverage have 

approximately similar slopes, and both exhibit decreasing returns to continued expansion, though 
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the magnitude of effects is greater with coverage expansion15. In contrast, under the extended time 

horizon (panels on right) expansions in coverage appear to produce substantially greater health 

gain per unit expenditure, without evidence of decreasing returns. The difference in results 

between the two time horizons can be linked back to the 20-year prevalence results shown in 

Figure 3.8, where policies expanding ART eligibility to all HIV-positive individuals (policies C1-C5) 

appear most effective at reducing prevalence relative to the other policies, mainly as a result of the 

incidence reductions associated with these policies. Reducing incidence is particularly influential in 

this extended time horizon, with each averted HIV infection producing substantial benefits in both 

cost savings and DALYs averted. The exact magnitude of these benefits will depend on the eligibility 

and coverage policy in place, but at one extreme in a scenario with no access to HIV-specific care or 

treatment the consequence would be 17.0 (16.1-17.7) DALYs averted and $825 (680-1019) in cost 

savings for each infection averted (discounted from the time the infection is averted). At the other 

extreme, in a scenario with immediate access to ART for all HIV-positive individuals, the 

consequences of preventing one HIV infection would be 3.5 (2.3-5.6) DALYs averted and $15,400 

(12,000-19,400) in cost-savings for each infection averted16. In either case the benefits of incidence 

reduction are substantial, and only fully realized under the extended time horizon. This reinforces 

the findings shown in Figure 3.9, which compares the therapeutic and total benefits of ART under 

different time horizons. 

                                                             

15 Expanding eligibility with constrained ART volume (policies A1, B1, and C1) behaves differently, with 

results reflecting the increased competition for ART slots as increasingly health individuals become ART-

eligible.  

16 These results are obtained by comparing discounted lifetime costs and health benefits for a newly infected 

HIV-positive individual with the same outcomes calculated for an HIV-negative individual, under different 

health care access scenarios.  
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Given that the consequences of ART policy change accumulate over many years, the choice of 

discount rate could be influential for decision-making. Figure 3.14 shows the cost-effectiveness of 

competing policies under different discounting schemes. In the top panel, the use of a 0% discount 

rate implies that equal weight is given to all outcomes independent of when they occur. In contrast, 

the middle panel shows results calculated with a 6% discount rate, greatly down-weighting the 

value of consequences occurring many years in the future. Perhaps surprisingly, there is little 

change in the policies appearing on the efficient frontier under either scenario, or their ordering. 

However, the cost-effectiveness ratios for a given policy comparison are substantially higher as the 

discount rate increases (for example, under the extended time horizon the ICER for moving to 

policy C3 from policy C2 is 3.7 times larger with the 6% discount rate as compared to no 

discounting). This finding results from the health benefits of expanded ART access being 

experienced substantially later than the costs incurred to produce them. For a decision maker with 

a high rate of time preference, these results suggest that a more conservative approach to ART 

expansion will be optimal for a given willingness-to-pay for health benefits. 

The lower panel of Figure 3.14 describes the cost-effectiveness of competing policies in a scenario 

where costs are discounted at a conventional 3% discount rate while health benefits are 

undiscounted. To present health benefits undiscounted is consistent with recent methodological 

changes made by the Global Burden of Disease Study that developed DALYs [91]. Perhaps more 

importantly, to discount costs but not health benefits implies that the relative value of averting a 

DALY increases by 3.1% each year. While this assumption might be implausible in a stable 

economy, it can be justified in the context of economic growth [101]. If one accepts that the 

marginal utility of averting DALYs is constant as the overall level of health increases, while the 

marginal utility of other consumption is decreasing, an increasing share of overall consumption 

should be devoted to averting DALYs as an economy grows (in per-capita terms). Per-capita GDP in 

South Africa rose at an average annual rate of 6% between 1960 and 2012, and 12% over the last 
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10 years [102]. It is not clear that the potential continuation of these growth rates supports a 3.1% 

annual increase in the value of averting DALYs, but it is not impossible. As with other sensitivity 

analyses shown in this figure, this discounting approach leads to little change in the identity and 

ordering of the policies on the efficient frontier, but does produce a substantial reduction in the 

ICERs for a given policy comparison. If a decision maker were to hold beliefs and preferences 

consistent with this discounting scheme, these results suggest that a more aggressive approach to 

ART expansion will be optimal for a given willingness-to-pay for health benefits. 
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Figure 3.14. Cost-effectiveness of competing policies with different discount rates applied to 

future costs and health benefits* 

* Policies are labeled with a letter-number combination, with the letter indicating ART eligibility 

threshold (“A” for CD4<350, “B”, for CD4<500, and “C” for all HIV-positive) and the number indicating 

coverage scenario (“1” for testing at current rates with fixed ART volume, “2” for testing at current rates, 

“3” for 1.5x current rates, “4” for 2x current rates, and “5” for 3x current rates.  
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3.3.4. Decision uncertainty 

The cost-effectiveness results described above specify the optimal policy choice for a given WTP 

threshold. Cost-effectiveness acceptability curves (CEACs) are one approach to understanding the 

uncertainty in these results, plotting the probability that each policy is optimal as a function of the 

WTP threshold [103]. Figure 3.15 presents CEACs for both truncated and extended time horizons. 

These plots reinforce the finding of Section 3.3.3 – that while a multitude of policies have non-

negligible probability of being optimal under the truncated time horizon, the policies with eligibility 

for all HIV-positive individuals appear to be optimal with high probability under the extended time 

horizon.  
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Figure 3.15. Cost-effectiveness acceptability curves for competing policies*  

* Policies with P(Cost-Effective)<0.05 are not shown. Policies are labeled with a letter-number 

combination, with the letter indicating ART eligibility threshold (“A” for CD4<350, “B”, for CD4<500, and 

“C” for all HIV-positive) and the number indicating coverage scenario (“1” for testing at current rates 

with fixed ART volume, “2” for testing at current rates, “3” for 1.5x current rates, “4” for 2x current rates, 

and “5” for 3x current rates. 
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The CEACs also provide information relevant to the value of information. Under the framework 

adopted for the VOI analysis, information is only valuable to the extent that it allows decision 

makers to choose a policy that they would previously have avoided, such that a policy appearing 

sub-optimal with prior information is proven optimal once new information is obtained. If, based 

on prior information, we know that there is no chance that collecting new information will lead us 

to change our policy decision, then there is no value to new research. This appears to be the case for 

all but a narrow band of WTP values under the extended time horizon, where if WTP is less than 

~$100 per DALY averted, or greater than ~$2,000 per DALY averted, the policy deemed optimal 

based on expected values is almost certain to be cost-effective were full information available. In 

contrast, under the truncated time horizon there is substantial uncertainty as to the optimal policy 

over a wide range of WTP values. 

3.3.5. Value of information 

3.3.5.1. Expected value of perfect information 

Figure 3.16 plots the expected value of perfect information—the net monetary benefit that would 

be obtained through complete resolution of all decision uncertainty—as a function of WTP. While 

not providing information on how to direct new research, the EVPI results show that there is 

potential for substantial value from new research that would reduce decision uncertainty. As noted 

earlier, under the extended time horizon this possibility is limited to situations where WTP is less 

than $2,000 per DALY averted. 
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Figure 3.16. Value of perfect information, and probability that new information will lead to a 

different policy being chosen, as a function of willingness-to-pay and under truncated and 

extended time horizons  
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3.3.5.2. Expected value of partial perfect information 

Figure 3.17 presents the expected value of partial perfect information (EVPPI) for selected 

individual model parameters. The figure shows the ten parameters with the highest EVPPI values as 

well as the relative transmission risk for early HIV (not in the top 10), given pre-specified interest 

in this parameter. EVPPI provides information on the value of resolving all uncertainty around a 

particular parameter, and in this analysis is used to understand the relative value of competing 

research targets. Though findings differ depending on the time horizon, parameters related to 

service provision (unit costs, default rates) are prominent. Parameters relating to HIV transmission 

risks do appear in the top ten, though the relative transmission risk associated with early HIV does 

not (but is included in the figure for purposes of comparison). Also notable from these results is the 

critical importance of the WTP threshold both for the absolute VOI as well as the relative ranking of 

different parameters. This feature results from characteristics of the policies that have non-zero 

probability of being optimal at a given WTP threshold (these probabilities are plotted in Figure 

3.16). The local maxima observed in Figure 3.17 generally correspond to WTP values where two 

policies are equally optimal on expectation. For example the first major set of peaks under the 

extended time horizon occur at a WTP of $357, which is the threshold between policies C1 and C2 

(representing a change in policy from fixed ART volume to a policy of continued ART scale-up based 

on current testing volume, with all individuals eligible for ART) being optimal (on expectation). At 

this point, EVPPI is highest for non-ARV ART costs, the relative transmission risk associated with 

ART, and pre-ART costs, suggesting the incremental difference between E(NMB) for C1 and C2 is 

most sensitive to these parameters. In contrast, the choice between policy C4 and C5 (raising the 

rate of HIV testing to very high levels, with all individuals eligible for ART), represented by the 

peaks at $1,251, appears most sensitive to HIV testing costs, the multiplier on costs to account for 

programmatic support, and the probability of primary default following HIV testing. 
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Figure 3.17. Expected value of partial perfect information for individual model parameters  
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While Figure 3.17 describes VOI for individual parameters, it is likely that some research designs 

would inform multiple parameters simultaneously. This is particularly true of research on relative 

infectiousness during different disease stages. Earlier work has described how the sum of VOI 

calculated for individual parameters is not necessarily equal to the joint VOI for the group of 

parameters [22], which could be either sub- or super-additive depending on the context. For this 

reason further analyses were undertaken to estimate EVPPI for the group of parameters relating to 

relative infectiousness during different disease stages (relative transmission risk for early HIV vs. 

CD4>350, relative transmission risk for CD4<350 vs. CD4>350, and relative transmission risk for 

ART vs. no ART). These results are shown in Figure 3.18, along with VOI results for these 

parameters individually. The joint EVPPI for all three parameters is superimposed on top of the 

naïve sum of EVPPI for the three parameters individually, showing that VOI of the individual 

parameters is approximately additive, though appears to be super-additive for WTP values where 

two policies are equally optimal on expectation (and decision uncertainty high), and sub-additive 

otherwise. It is also clear from the figure that while there would be substantial VOI from resolving 

uncertainty around relative transmission risk during later-stage HIV (CD4<350) and while on ART, 

there is comparatively little value in further improving our understanding of relative infectiousness 

during early HIV.  
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Figure 3.18. Expected value of partial perfect information on relative infectiousness by 

disease stage 

 

Describing VOI as a function of WTP provides insight into the relationship between VOI and the 

specific policies with a positive probability of being optimal at a given WTP threshold, and 

highlights the importance of WTP to both absolute VOI and the relative importance of different 

parameters. However, it is also useful to summarize results based on current understanding of WTP 

in this setting. There is currently a poor understanding about WTP for health gains in developing 

countries such as South Africa, and active discussion is occurring regarding the criteria upon which 

WTP estimates should be based [104]. If WTP estimates are based on our understanding about 
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what countries should be willing to pay to improve health, a number of international agencies 

suggest thresholds based on small multiples of per capita GDP or GNI [105–107]. The most 

commonly cited of these are the thresholds proposed by the WHO-CHOICE initiative, suggesting 1x 

per capita GDP per DALY averted as an upper bound for interventions to be described as ‘very cost-

effective’, and 3x per capita GDP per DALY averted as an upper bound for interventions to be 

described as ‘cost-effective’ [107]. For South Africa, these thresholds would be $7,500 and $22,500 

respectively, based on per capita GDP in 2012 [108]17. In contrast, thresholds motivated by 

concepts of affordability tend to be lower, reflecting that fact that total spending on health is often 

less than might be suggested by the GDP based thresholds described above [109]. Earlier World 

Bank and WHO publications have suggested thresholds of US$100 per DALY averted as an upper 

bound for describing ‘highly attractive interventions’, and US$500 per DALY averted for describing 

‘attractive interventions’ in middle-income countries such as South Africa [110,111]. While inflation, 

economic growth, and the expansion of donor-funded health aid would suggest a threshold based 

on affordability concerns may be higher today, it is still likely that affordability and budgetary 

concerns will impose additional constraints, and dictate a lower WTP than that suggested by the 

WHO-CHOICE per-capita GDP approach. Given this uncertainty, summary results were calculated 

by assuming WTP would fall somewhere between $0 and $7,500 per DALY averted, with all values 

within this region being equally probable. The ten parameters for which EVPPI is highest by this 

approach are shown in Figure 3.19, for both truncated and extended time horizons. Included in this 

ranking is the joint EVPPI for the three parameters for relative transmission risk by disease stage. 

                                                             

17 The WHO-CHOICE thresholds were originally described in terms of international dollars per DALY averted, 

reflecting concerns about purchasing power parity when regional thresholds are used. However, within a 

single country setting the calculation of both threshold and ICERs in US dollars (or other monetary unit) 

represents a simple currency conversion and does not affect the decision-making in any way. 
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While absolute values are shown in this figure, these values should be interpreted as upper bounds 

to the value of any research, given the impossibility of resolving all uncertainty around a particular 

parameter. 

 

 

Figure 3.19. Expected value of partial perfect information, summary rankings 

  

The results shown in Figure 3.19 generally confirm the findings reported in earlier figures, with 

parameters related to cost and service provision figuring prominently. The relative importance of 

resolving uncertainty around the three transmission risk parameters appears to be high (rank 2nd 

under the truncated time horizon, 3rd under the extended time horizon), though given the results 
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shown in Figure 3.15, this value stems largely from the resolution of uncertainty around 

transmission risk during later HIV and while on ART, rather than during early HIV. For the 

individual parameter for relative transmission risk during early HIV, the ranking is 46 out of 71 

under the truncated time horizon, and 27 out of 71 under the extended time horizon. In both cases 

this parameter accounts for approximately 1% of the value of information estimated for the most 

valuable research targets shown in Figure 3.19. 

It is possible that the low EVPPI estimated for relative transmission risk during early HIV is a 

consequence of the relatively small fraction of new infections estimated to come from early HIV, as 

described under Figure 3.7. To test this possibility, a sensitivity analysis was undertaken in which 

the fraction of transmission attributable to early infection was increased to 25% (15-39%), 

approximately 1.7 times its value in the main analysis18. When the VOI results are recalculated for 

this new scenario, EVPPI for the relative transmission risk during early HIV increases by 50-100%. 

However, this change is not sufficient to change the overall finding that EVPPI of relative 

transmission risk during early HIV is comparatively low, and the higher value obtained in this 

sensitivity analysis is still 50 times smaller than the highest values shown in Figure 3.19. 

Additional sensitivity analyses were undertaken to assess the robustness of the results to changes 

in the choice set, by rerunning the cost-effectiveness analysis and VOI analysis under the 

assumption that testing policy was fixed (i.e., the current approach would be continued), and that 

the only policy changes being considered involved expansions in eligibility (i.e., policies A2, B2, and 

C2).  

                                                             

18 This change was achieved by recalibrating the model with an additional calibration target specified for the 

fraction of transmission attributable to early infection, as described in Section 3.2.16.4. 
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Cost-Effectiveness Ratios and Efficient Frontier 

 

Cost-Effectiveness Acceptability Curves 

 

Figure 3.20. Cost-effectiveness results for a choice set including only policies A2, B2 and C2 

 

The cost-effectiveness results obtained in this new analysis are shown in Figure 3.20, and the 

qualitative findings generally mirror those of the main analysis, though with all three policies now 

on the efficient frontier. EVPI results for this restricted choice set are shown in Figure 3.21 plotted 

as a function of WTP, and compared to the EVPI results obtained in the main analysis. As in that 

analysis, the local maxima coincide with WTP values where two policies appear equally optimal 

based on current information, and where new information would be most valuable for discerning 
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which policy is truly optimal. EVPI is generally lower if the choice set is restricted in this way 

(compared to the main analysis), and this can be understood by comparing the cost-effectiveness 

acceptability curves shown in Figures 3.15 and 3.20. In the main analysis (Figure 3.15) the range of 

WTP values where there is uncertainty as to the optimal policy is much wider, and the number of 

policies with a non-trivial probability of being optimal is larger. The VOI approach adopted for this 

analysis assumes that information is more valuable if it helps us resolve uncertainty about which 

policy will provide the best outcomes. A consequence of this approach is that greater decision 

uncertainty will lead to greater value of information, and this is relationship is reflected in the 

results of this sensitivity analysis. It should be noted that EVPI is not universally lower for the 

restricted choice set, as EVPI with the restricted choice set is higher under the extended time 

horizon if WTP is less than approximately $300 per DALY averted. In the main analysis under the 

extended time horizon, policy C1 (a fixed cap on ART scale-up with eligibility for all) is found to be 

optimal with high probability if WTP is less than $300 per DALY averted (Figure 3.15). In contrast, 

policy C1 is not available with the restricted choice set, and there is non-trivial uncertainty as to 

which of the three policies is optimal, particularly at a WTP of $200 per DALY averted, where all 

three policies have an approximately equal probability of being optimal. Thus the higher EVPI for 

the restricted choice in this particular context reinforces the relationship between decision 

uncertainty and VOI.  
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Figure 3.21. EVPI for a choice set including only policies A2, B2 and C2, compared to EVPI 

calculated for the original choice set 

  

Figure 3.22 presents EVPPI estimates for the same 11 parameters shown in Figure 3.17, now 

calculated for the restricted choice set in which testing intensity is fixed. The EVPPI estimates from 

the main analysis are shown in grey for purposes of comparison. The qualitative findings from the 

comparison of EVPI results also apply here, with EVPPI generally lower in the analysis with the 

restricted choice set, though not universally so. It is notable that EVPPI for better information on 

HIV testing costs, found to be substantial in the main VOI analysis, appears to be zero with the 

restricted choice set. This is consistent with the idea that the value of information on HIV testing 

programs will be substantially reduced whren changes in HIV testing policy are no longer being 

considered.  
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Figure 3.22. EVPPI for a choice set including only policies A2, B2 and C2, compared to EVPI 

calculated for the original choice set*  

* Parameters shown in figure are those with the highest EVPPI estimated in the main analyses (Figure 

3.17). Grey lines represent the EVPPI estimates from the main analysis, for purposes of comparison. 
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 Discussion 3.4.

This analysis finds that scaling-up ART in South Africa, either through expanded ART eligibility 

criteria or through more aggressive HIV testing programs, would lead to substantial reductions in 

the burden of disease associated with HIV. Expanded ART provision is shown to substantially 

reduce HIV-associated mortality, and absent other effects the improved survival of HIV-positive 

individuals would lead to increased HIV prevalence. However, results suggest that the net effect of 

expanded ART will be to reduce HIV prevalence over the long term, as the increase in prevalence 

due to reduced HIV mortality is outweighed by reductions in transmission. Over a extended time 

horizon, the DALYs averted through the preventative effects of ART represent over half of the total 

health benefits generated by ART. These prevention-related health benefits—representing the 

gains in quality and length of life among HIV-negative individuals who would otherwise be infected 

with HIV—are a delayed consequence of expanded ART, and might be incompletely captured by 

analyses that aggregate results over a truncated time horizon. In an analysis where health outcomes 

experienced after 20 years are ignored, the therapeutic effects of ART are the major driver of health 

impact, and the overall health benefits of expanded ART are substantially smaller.  

Expanded ART also requires large increases in health system costs, with higher costs within HIV 

programs being only modestly offset by savings in routine health services. Policies involving more 

aggressive HIV testing programs appear to add substantially to overall costs. These cost increases 

come not only from the HIV testing programs but also from higher pre-ART costs for the larger 

cohort of individuals in care but not yet eligible for ART, as well as higher ART costs. In contrast, 

under policies involving expanded ART eligibility, higher ART costs are partially offset by 

reductions in pre-ART costs, as previously enrolled pre-ART patients are shifted onto ART. 

The cost-effectiveness findings of this analysis suggest that expanding ART access in some way, 

either through raising CD4 cell count-based eligibility criteria or through more aggressive testing 
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programs, would be cost-effective under a wide range of assumptions. This finding appears robust, 

despite substantial uncertainties about important features of the epidemic and intervention 

policies. Over a extended time horizon, policies involving expanded ART eligibility criteria appear 

particularly effective at producing health benefits at comparatively low cost. This result is 

surprising, given that the therapeutic benefits of early ART initiation will be lower than providing 

ART to symptomatic individuals who otherwise would not receive it (as might be accomplished by 

expanded HIV testing programs). This result reflects the importance of HIV prevention to long-term 

health outcomes, as well as the comparatively lower costs of this ART scale-up approach, as 

discussed above. One condition under which this finding—that expanding ART access is cost-

effective—may not apply is where policy makers operate under time horizons far shorter than 

those adopted here. Because spending on ART programs precedes the benefits it generates, the 

health benefits of ART may not accumulate sufficiently under a short time horizon to justify the 

costs in an acutely resource-constrained setting. Of course, in this situation the demand for new 

research will also likely be low, as the lag between investment and pay-off may be even longer for 

research. 

The results describing epidemiologic and economic outcomes are broadly consistent with other 

analyses investigating the long-term costs and population health outcomes of ART expansion in 

South Africa [11,13,112,113], though not finding the possibility of long-term cost-savings suggested 

by some authors [112]. These results form the basis of a value-of-information analysis to identify 

priority targets for new HIV research. 

Perhaps the most notable finding of the VOI results is the apparent unimportance of information 

about transmission during early HIV infection. Resolving uncertainty for this parameter (the 

relative risk of transmission during early HIV infection) accounts for approximately 1% of the value 

of information estimated for the most valuable research targets under both truncated and extended 
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time horizons. One possible explanation for this finding is that the estimated fraction of all new 

infections attributable to individuals with early HIV infection is smaller in our analysis than in some 

other analyses, particularly Powers et al. [17], who also adopted a pair model. In the Powers 

analysis, the majority of HIV transmission occurred within high-risk pairs with very high rates of 

partner turnover, so the potential for newly-infected individuals to be sequestered within pair 

relationships (a defining feature of pair models) may not have been realized. In addition, the 

Powers model had an average duration of early HIV of 4.8 months, while our analysis used a mean 

value of 2.9 months from Hollingsworth et al. [50], and these differences in the definition of early 

HIV could also affect the fraction of total infections coming from this group. In sensitivity analyses 

that increased the fraction of transmission attributable to early infection by 70%, to a point 

approximately half way between the original value and that reported by the Powers analysis, the 

VOI of information about transmission during early HIV infection rose by 50-100% of its original 

value. While confirming the intuition that this VOI would rise as the fraction of transmission 

attributable to early infection increased, this new value was insufficient to produce any meaningful 

change in the relative importance of this parameter relative to other model parameters. Even if this 

analysis were adjusted to obtain a fraction of transmission attributable to early infection similar to 

that reported by Powers, it is unlikely the VOI analysis would find information about transmission 

during early HIV infection to be a priority research target. 

While there are important differences between this analysis and that conducted by Powers et al., it 

is possible that the conclusion of the VOI analysis—that relative infectiousness during early HIV is 

effectively irrelevant for ART policy—might be a general feature of HIV epidemics. A heuristic 

approach to motivate this idea is to consider transmission during early HIV as a multiplier applied 

to any new HIV transmission – thus if an intervention is able to avert one primary infection, it might 

end up averting 1.5 infections in total if one counts the subsequent secondary transmissions that 

occur while the primarily infected individual is experiencing early HIV. In a scenario where 
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transmission during early HIV represents a large fraction of all new infections, the fraction of all 

transmission that could be averted by treatment of individuals in other disease stages will be 

smaller, and so ART would prevent fewer primary transmissions. However, the number of 

secondary transmissions averted for each primary transmission will be higher (e.g., instead of 1.5 

the multiplier might be 1.8). Conversely, if early HIV contributes a small fraction of all infections, 

then although a greater fraction of all transmissions could be averted by expanding ART access to 

individuals in later disease stages, the number of secondary infections averted will be smaller (e.g., 

instead of 1.5 the multiplier might be 1.3). In sum the total change in HIV incidence following a 

change in ART policy may be different between these two scenarios, but this difference will be 

smaller than originally anticipated. 

In contrast to early HIV infection, the issues found to have the highest potential value of 

information include (1) issues of cost and implementation, (2) relative infectiousness during late 

HIV and the reduction in infectiousness for individuals on ART, and (3) the therapeutic health 

benefits of ART for individuals with CD4 cell counts above current eligibility guidelines. The 

prevention benefits of ART are the subject of an increasing volume of research. The most notable 

trial reported thus far is the HPTN 052 trial, which found compelling reductions in HIV 

transmission for individuals initiated on ART [9]. A number of similar trials and observational 

studies are planned or ongoing, investigating different population groups and aspects of 

implementation [114,115], and for this reason we are likely to have improved information about 

the relative infectiousness of ART patients in the near future. These and other trials [116,117] will 

also provide information on the therapeutic benefits of early ART initiation. There has been less 

systematic investigation of HIV intervention costs beyond small single-center studies, though 

examples exist [118], particularly focused on the costs of HIV treatment [63,119–121]. One 

challenge for new research on HIV costs is generalizability: while the knowledge generated by trials 

of ART effectiveness may generalize broadly, the costs of service provision are a consequence of 
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complex social and institutional interactions, and might change substantially across settings or as 

intervention approaches change. Despite these difficulties, the findings of this analysis—that 

reducing uncertainty around the costs of competing policies is a high priority relative to other 

concerns—suggest that greater investment in understanding HIV intervention costs may be 

warranted. Similarly, operational issues—such as improved understanding of the pathways for 

diagnosis and treatment initiation—will also likely differ substantially across settings, yet may 

benefit from greater research funding.  

The decision to highlight comparative VOI results (as opposed to the absolute dollar values) reflects 

the belief that that comparative findings will be more robust to some the limitations of the analysis. 

Among the limitations of using the absolute EVPPI estimates is the fact that the analysis was 

conducted in a single setting (South Africa), yet the information generated by new research would 

likely aid decision-making in other settings, and therefore the total global value may be much 

higher than the absolute values estimated in this analysis. Even within South Africa, there are likely 

a large number of policy decisions, big and small, to which new information might be applied. While 

likely not simply additive, the more decisions for which research might be relevant (and the more 

influential those decisions), the greater will be the value of that information. It is important to 

consider those research targets—such as an improved understanding of the population growth 

rate—that will be relevant to a large number of decision problems but have a small impact on any 

single decision. Research targets with these characteristics will be systematically undervalued by 

the approach adopted for this analysis, which by necessity focused on a single policy decision in 

great detail. For this reason, the VOI estimates for broadly applicable issues like population growth 

or background mortality rates should be interpreted with caution. In addition, the fact that these 

VOI results focus on perfect information means that any new research is likely to produce lower-

value information, and the absolute EVPPI estimated reported in this study will not be attainable. 
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The application of VOI methods requires a formal description of the mechanism by which 

information about candidate policies is translated into a single policy choice. This choice function is 

a mathematical summary of the policy-making process, yet while the choice function adopted for 

this analysis reflects presumably reasonable assumptions—that policy makers will favor policies 

that improve health outcomes, and avoid policies that increase costs, that they will pay more 

attention to near term outcomes than outcomes realized in the distant future, that they will respond 

rationally to new information by updating their beliefs about policy outcomes—the relative 

weighting of different concerns has a central impact on the VOI results. This can be seen in the 

sensitivity of the VOI findings to changes in policy parameters such as the WTP threshold, the 

discount rate, and the time horizon. Because different policy makers might adopt different values of 

these parameters, results are presented for a range of different values for these parameters. Even 

where findings appear robust to a range of different assumptions about these values, there may be 

complex features of the ‘true’ choice function that are not explored by changing these values. For 

example, a concern for equity—which might be expressed as equity in total experience of health, 

equity in the distribution of health gains, or equitable access to care—would require different 

inputs from those currently considered in the choice function, as well as explicit mathematical 

specifications of how these equity concerns would be traded off against concerns for aggregate 

health gains and costs. Another example relates to WTP, which is operationalized as a single value, 

ignoring the possibility that the opportunity cost of spending may depend on the purpose to which 

spending is devoted (major donors may have preferences for certain health interventions, and 

funding may not be entirely fungible across budget categories), or on the absolute value of total 

spending, with progressively more valuable interventions forgone as total ART spending is 

increased. While not reflected in the results shown here, these concerns will impact actual decision-

making.  
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Another simplification made to operationalize this analysis is the focus on a single policy decision. 

In reality the pattern of possible decisions may be more complicated than allowed for in this 

analysis. For example, it is likely that major policy decisions could be delayed, with a country like 

South Africa learning from the experience of other countries more willing to pursue aggressive ART 

scale-up. Similarly, even once a policy is chosen, this decision could be revised in the future as 

accumulating surveillance data and routine program reports provide empirical evidence of policy 

outcomes. Such sequential decision-making could be operationalized within the VOI approach used 

here, but would require additional assumptions about the rate at which programs generate 

evidence useful for decision makers, the points at which policy choices might be reviewed, and the 

implementation costs of policy change. 

Just as importantly, it is clear that a technocratic representation of health care resource 

allocation—that policies are chosen based on a single social welfare function, and that policy 

makers are sensitive to the changing state of knowledge about competing policies—is a crude 

approximation of the real policy-making process in many settings, and that explanations focusing 

on structural elements of the decision process, such as the interaction of key stakeholder groups, as 

well as a broader understanding of the priorities that motivate decision makers, may have greater 

explanatory power. This is exemplified by the unprecedented investment in global HIV control by 

western donors since 2000. It is difficult to interpret this as the outcome of a cost-effectiveness 

analysis, and contemporary accounts, both critical and supportive, emphasis political explanations 

for these policy choices [122,123]. If real-world decision-making differs substantially from a 

normative model of decision-making such as used in this analysis, then the implications for VOI are 

unclear. One possibility is that VOI will fluctuate over the course of time, with research much more 

valuable if it is available during those windows of opportunity when major policy change can be 

considered [124], and less valuable otherwise. In this circumstance, conventional VOI analyses may 

still give reasonable estimates of the long-term average value of research. Another possibility is that 
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conventional analyses will systematically overestimate the overall value of research: if it is accepted 

that sub-optimal policy-making is only partly attributable to inadequate information, such that sub-

optimal policies will still be chosen or retained after decision uncertainty is resolved, then the value 

of resolving that decision uncertainty may well be lower. It is important to note that this is not a 

necessary consequence: one can conceive of a situation where factors promoting sub-optimal 

decision-making (such as a policy maker’s desire to please narrowly focused interest groups) play a 

much greater role in decisions when there is a poor understanding of policy outcomes. Essentially, 

when it is unclear which policy will best improve social welfare, the policy maker has greater 

liberty to adopt policies that promote other objectives. In contrast, when decision uncertainty is 

resolved, the task of justifying sub-optimal policy becomes more difficult. In this circumstance, the 

improvement in social welfare generated by research may be greater than predicted by 

conventional VOI approaches, as the discrepancy between actual decision-making and optimal 

decision-making (measured in relevant units of social welfare loss) may be smaller once decision-

uncertainty is reduced. 

In addition to addressing substantive questions about relative value of new research targets, this 

analysis also developed methods for the application of VOI methods in the context of calibrated 

models. These methods are more demanding than conventional approaches, yet will be of 

increasing relevance as a greater number of analyses adopt numerical methods to calibrate 

complex disease models, as it is the lack of an analytic representation of this calibrated parameter 

distribution that necessitates these new methods. While this analysis did not calculate measures of 

partial sample information (EVPSI), as would be required to understand the value of new 

information produced by realistic study designs, it is anticipated that the approach used in this 

analysis could be extended to estimate these quantities, by reweighting the parameter sets in light 

of the anticipated distribution of new information (as described in Section 3.2.16.4), and this 

extension will be addressed in future work.   
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Abstract 

Cigarette smoking causes out of every five deaths in the U.S., and both state and federal 

governments have introduced cigarette excise taxes to limit cigarette consumption. Many states 

have raised these taxes in recent years, with the real value of the average state cigarette tax rising 

by over 200% between 1996 and 2013.  

In this study we developed a mechanistic model of smoking behavior and associated health 

outcomes in the 50 U.S. states and District of Columbia, and used this model to assess the impact of 

state cigarette taxes introduced over the 17 years from 1996 to 2013. This analysis allowed 

separate effects on smoking initiation, smoking intensity, and quitting behavior, and estimated 

these effects in the context of a demographic model directly linking smoking behavior with 

mortality risks. Causal effects of cigarette taxes were estimated with data from the 1996-2012 

rounds of the CDC’s Behavioral Risk Factor Surveillance System. Our analyses made use of inter-

state variation in the timing and magnitude of new cigarette taxes to identify causal effects.   

Our analyses suggest that average national cigarette consumption by the beginning of 2013 was 

4.4% (95% posterior interval: 3.7, 5.3) lower among men, and 3.6% (2.6, 4.2) lower among women, 

compared to a counterfactual scenario in which no new state cigarette taxes were introduced after 

1996, for an overall reduction of 4.0% (3.3,4.6). The behavioral effects of tax increases were 

projected to be larger over a longer time horizon, with the average number of years spent smoking 

estimated to drop by 10 (7, 12) months for the 2013 birth cohort if exposed to 2013 vs. 1996 tax 

levels, for a 6.1% (4.5, 7.8) reduction in overall consumption. Estimates of the price elasticity of 

demand implied by these results varied from -0.14 to -0.39 depending on sex and the time horizon. 

These elasticities are smaller than conventional estimates for cigarette taxes and cigarette 

consumption, but are in line with other studies of inter-state tax variation. 
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Our analyses suggest 27 thousand (22, 34) deaths have been averted by state cigarette taxes 

introduced over the period 1996-2013, for an extra 119 thousand (92, 151) life-years lived. While 

these mortality reductions are relatively small, projections of future health outcomes under 

scenarios that compared 2013 and 1996 tax levels suggest that health benefits will largely accrue in 

future decades, with over a million extra life-years lived in the decade 2020-2029. We estimate a 

2.0 (1.4, 2.7) month overall gain in life expectancy for the 2013 birth cohort due to state tax 

increases since 1996, with larger gains for men. 

These analyses provide further evidence about the magnitude and distribution of effects of recent 

state cigarette taxes on smoking behavior and related mortality. Our analytic approach closely 

integrates the task of causal inference about cigarette taxation with the task of estimating final 

health outcomes. We hope that this analysis contributes to the knowledge base about cigarette 

taxation by providing a more nuanced understanding of the long-term consequences of cigarette 

tax policy.   
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 Background  4.1.

Both the federal government and individual U.S. states impose excise taxes on the sale of cigarettes. 

These taxes are assessed at the point of sale as a fixed mark-up on the quantity of cigarettes sold. 

Levying taxes on tobacco products serves multiple objectives for states, but a primary goal is to 

reduce smoking rates and in so doing reduce the risks of lung cancer and other adverse health 

effects associated with smoking [1,2]. Since 1995, individual states have raised the excise tax on 

cigarettes in 136 instances, with the average state excise tax rising from $0.31 (interquartile range 

= $0.19-$0.41) at the beginning of 1995 to $1.49 ($0.61-$2.00) by the end of 2012, more than four 

times its 1995 level. Over this same period, the federal excise tax rose from $0.24 to $1.01. State 

excise taxes produce the majority of tax revenue from cigarette sales in the United States, with 

$17.3 billion collected in the year ending June 30, 2011, as compared to $15.5 billion for federally 

imposed taxes and $0.4 billion for taxes imposed by municipalities [3]. 

Cigarette smoking is known to cause or aggravate a large number of health problems, leading to 

substantial mortality and morbidity [4–6]. In the United States, smoking is estimated to cause one 

quarter of all deaths between the ages of 35 and 70 [7], with smokers facing a life expectancy 

shortened by more than 10 years compared to individuals who have never smoked [4]. Individuals 

who quit smoking have been shown to regain much of this loss in life expectancy, especially those 

who quit at younger ages [4,8], and reduced smoking intensity is also associated with health 

benefits [5]. 

A large body of research suggests that raising cigarette taxes will reduce cigarette consumption [9], 

either through reducing smoking initiation, increasing quitting, or reduced smoking frequency. 

Many studies have investigated the relationship between taxation and smoking behavior, and the 

price elasticity of demand is generally found to be in the range of -0.4, implying that a 10% price 

increase would produce a 4% reduction in demand, with greater elasticity estimated for younger 
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age groups [10]. A number of studies have focused on state excise taxes in the U.S., with variation in 

these taxes between states and over time used to separate the causal effect of excise taxes from 

other influences on smoking behavior [11–20]. There is also reason to believe that the effects of 

these state-level tax changes may differ from changes in the federal tax, given the greater 

opportunity for smokers to avoid the effect of state-level tax increases by shifting purchasing to 

states with lower tax rates [21,22]. Evidence on the impact of state cigarette taxes on smoking 

behavior is mixed, with effect sizes estimated by previous studies smaller and less robust [11–20] 

than would be predicted from the broader evidence base on tax effects. 

In general, analyses of state excise taxes focus on individual aspects of smoking behavior (e.g., 

smoking initiation, smoking prevalence, smoking intensity) and do not directly estimate the change 

in health outcomes resulting from changes in tax policy. Where these health impacts are estimated, 

it is commonly through simple multiplicative calculations used to explore possible ramifications of 

changes in smoking behavior, with a lower level of rigor than is applied to the analysis of behavioral 

outcomes. One exception to this is in the context of the California Tobacco Control Program, where 

Fichtenberg and Glantz were able to identify statistically significant reductions in the mortality 

associated with heart disease following the introduction of the program in 1989 [17]. The California 

program combined a $0.25 per pack increase in the state tobacco tax with an aggressive anti-

smoking media campaign and additional programs fostering a smoke-free environment, and it is 

difficult to attribute the changes in cardiovascular mortality to tax changes alone. This is especially 

true given the partial rebound in cardiovascular mortality observed after the non-tax elements of 

the program were cut back in 1992 [17].  

The present analysis takes a different approach to estimating the effects of cigarette excise taxes on 

mortality risks. The causal effects of cigarette excise taxes on smoking behavior are quantified in 

the context of a mechanistic population model, which directly relates individual age, sex, and 
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smoking behavior to mortality rates. This model simulates the distribution of smoking behaviors 

across the U.S. population, and calibrates the parameters determining this model—including 

parameters describing the effect of tax changes on smoking behavior—to observed patterns of 

smoking behavior reported by the Behavioral Risk Factor Surveillance System (BRFSS) between 

1996 and 2013 [23]. With this analytic approach, it is possible to distinguish the separate effects of 

state cigarette taxes on smoking initiation, cessation, and smoking intensity, and to estimate the 

consequences for summary health outcomes such as mortality and life expectancy. These outcomes 

are available for individual states as well as individual sex and age groups. This analysis is used to 

estimate the effects of recent increases in state cigarette taxes on smoking behavior and on 

smoking-related mortality over the period 1996-2013, and to predict changes in long-term trends 

in smoking behavior and related mortality attributable to the state cigarette taxes. 

 

 Methods 4.2.

4.2.1. General approach 

A mathematical model was constructed to predict changes in smoking behavior as a function of 

individual characteristics and multiple state-level predictors. Model parameters were estimated 

using a likelihood function that summarized BRFSS survey data collected between 1996 and 2013, 

with the estimation approach designed to identify the causal effect of state-level cigarette tax 

changes on smoking behavior. The fitted model was then used to predict changes in smoking 

behavior and related mortality under various tax scenarios, in order to describe the health 

consequences of changes in state-level cigarette tax policy. 
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4.2.2. Identification strategy 

States with higher cigarette excise taxes tend to have a lower prevalence of smoking behavior. 

However, this empirical relationship cannot be interpreted as causal, given the possibility of other 

state characteristics that determine both tax policy and smoking behavior. Randomized 

experiments allow stronger identification of causal effects, yet experiments to address issues of tax 

policy are rare, and the more rigorous studies of cigarette policy within the U.S. generally adopt 

quasi-experimental designs to estimate the causal effects of tax policy from observed variation in 

cigarette taxation. A common approach is to include state and year fixed effects as part of a 

regression of some indicator of smoking behavior on tax rates and other predictors [11,15,24,25]. 

This identification strategy assumes that the average year-on-year change in the smoking outcome 

would be the same in states that introduce cigarette taxes as those that do not, were no taxes 

introduced. If these trends are found to systematically differ in states that raise cigarette taxes, as 

compared to those that do not, this difference is attributed to the tax change.  

While appealing the inclusion of state and year fixed effects can introduce challenges, due to the 

shear number of predictors used to fit the model. Arguing that state anti-smoking sentiment is the 

key confounder of the observed relationship between tax policy and smoking behavior, DeCicca et 

al. proposed a new indicator of state-level anti-smoking sentiment [12] as an alternative to state 

and year fixed effects. They calculated this measure from a factor analysis of attitudes towards 

tobacco control and smoking behavior reported in the Community Population Survey. They found 

that inclusion of this anti-smoking indicator in regression equations performs similarly to the state 

and years fixed effects specification, and use this identification strategy to investigate the 

relationship between cigarette prices and smoking behavior among youths [12] and older adults 

[11]. The present analysis adopts the identification approach developed by DeCicca et al., by 

including a measure of state-level anti-smoking behavior in the model equations used to predict 
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smoking initiation, smoking intensity, and quitting behavior. Figure 4.1 shows a directed acyclic 

graph describing the causal relationships assumed in this analysis. 

 

Figure 4.1. Directed acyclic graph describing causal relationships assumed in this analysis 

 

4.2.3. Simulation model 

A mathematical model was developed to represent successive cohorts of the total U.S. population 

(distinguished by sex, year of age, and state of residency), and describe how the smoking behavior 

of each cohort changes over time. A schematic of the compartments and transitions of this model is 

shown in Figure 4.2. These compartments are structured to match the categorization of smoking 

behavior in the BRFSS, as well categories used by Thun et al. [5] to define smoking-attributable 

mortality risks. The use of an approach that allows for different effects on various aspects of 

smoking behavior expands on work by DeCicca et al., who report analyses that explicitly allow for 

changes in smoking initiation and cessation behavior to explain overall changes in smoking 

participation as a result of tax changes [13]. The model developed for this analysis also bears 
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similarities to simulation models used to estimate health outcomes based on exogenous estimates 

of tax effects [14,26–28]. 

 

 

Figure 4.2. Schematic of simulation model, showing model compartments and transitions for 

a single cohort* 

* Capital letters (e.g., N) indicate the number of individuals in each model compartment. Lower case 

letters (e.g., nc) indicate transition probabilities. Former smokier compartments 0 though 9 represent 

time since quitting. 

 

The analysis is initiated with individuals distributed across the different model compartments to 

reflect the existing distribution in the population at the beginning of 1996. The distribution of 

individuals across model compartments is then updated each quarter, with individuals 

transitioning to different compartments based on transition probabilities which are themselves 

updated each quarter. Individuals in the ‘Never’ compartment remain in this compartment unless 
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they begin smoking. Those who start smoking transition to the ‘Current’ smoker compartments. 

Current smokers are divided in those who smoke ‘Some Days’ those who smoke ‘Every Day’, to 

allow for differences in smoking intensity within the smoking population. Current smokers can 

transition between these two intensity levels or quit smoking, with those who quit transitioning to 

the first ‘Former’ compartment. Former smokers progress through Former compartments 0 

through 9 to track time since quitting (representing <1, 1, 2-4, 5-9, 10-14, 15-19, 20-29, 30-39, 40-

49, and ≥50 years since quitting, respectively). Individuals in any of the Former smoker 

compartments can relapse, returning to the Current smoker compartments. In addition, individuals 

in any compartment can die and transition to the ‘Dead’ compartment, with mortality risks 

determined by age and smoking behavior, as well as by time trends in background mortality. 

A separate cohort is formed to represent each year of age for all individuals alive in 1996 (ages 0-

99, for 100 age categories), each state (including the District of Columbia, for 51 state categories), 

and each sex, producing a total of 100 x 51 x 2 = 10,200 cohorts. The distribution of individuals in 

each cohort across smoking behavior categories is updated every quarter from the beginning of 

1996 to early 2013 (70 quarters in total), representing the total time period during which survey 

responses were being collected for BRFSS rounds 1996 to 2012.  

4.2.4. Parameterization 

The outcomes of the model (changes in smoking prevalence and related mortality) are determined 

by transition probabilities that describe the rates at which individuals move between different 

model compartments. These transition probabilities are described in detail below. In Figure 4.2 and 

in the description below, the number of individuals in each compartment is specified by capital 

letters (N for never smokers, S for current smokers who smoke some days, E for current smokers 

who smoke every day (C representing the sum of all current smokers), and F0 through F9 for 

former smokers categorized by time since smoking), with subscripts atgi for age a (in whole years), 
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calendar time t (in quarters since the beginning of 1996), sex g, and state i. The transition 

probability between two compartments is specified as a lower case combination of the first letter of 

the names of each compartment. For example, esatgi indicates the transition probability from the 

Every compartment to the Some compartment for a particular age, time, sex and state. 

4.2.4.1. Smoking initiation 

The probability of smoking initiation is determined by the parameter       . This parameter is 

assumed to be a function of individual age, calendar time, sex, and the state in which an individual 

resides. The effects of age and time on the smoking initiation probability are allowed to vary 

smoothly, each operationalized as a penalized B-spline with knots every 10 years1 [29,30]. The 

effect of state of residence is assumed to operate through a set of independent variables, including a 

measure of state-level unemployment, indicators for the presence or absence of state-level clean air 

laws (for workplaces, bars, and restaurants separately), the indicator of anti-smoking sentiment 

described by DeCicca et al. [12], and the state cigarette tax, in 2013 constant dollars. 

Unemployment, clean air laws, and tax rates are all time-varying variables, while anti-smoking 

sentiment is assessed in 1995-1996, the year before the BRFSS time series begins. For each state, 

the tax variable is set equal to zero in 1995, such that the variable represents absolute increases in 

                                                             

1 These splines are operationalized with cubic basis splines and a 2nd degree difference penalty. For age, a 

total of 10 knots are used (every 10 years from age 0 to age 100) requiring 13 basis splines and thus 13 spline 

parameters. For calendar time, a total of 3 knots are used (every 10 years at 1996, 2006, and 2016), requiring 

5 basis splines. As two independent splines are used, a model thus specified would effectively have two 

intercept terms. To resolve this issue, the value of the year spline is fixed at zero at the beginning of the time 

series in 1996, by specifying the first spline parameter     as function of the 2nd and 3rd spline parameters: 

             . 
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the state cigarette tax since this time point. As transition probabilities are defined over the interval 

[0, 1], the logit of the transition probability is modeled as a linear function of these predictors. The 

model is estimated separately for each sex. 

      (      )      (     )        (     )                                  

                         [1] 

        : quarterly probability of smoking initiation for individuals with age a in quarter t, sex g, and 

state i 

   : age (in quarters) 

  : calendar time (in quarters) 

     : unemployment rate, in quarter t and state i  

     : indicator variable for laws restricting smoking in workplaces, in quarter t and state i 

      : indicator variable for laws restricting smoking in restaurants, , in quarter t and state i  

      : indicator variable for laws restricting smoking in bars, , in quarter t and state i  

      : measure of state anti-smoking sentiment for state i 

     : cigarette excise tax in quarter t in state i, in dollars per pack  

           : a set of penalized B-splines allowing smooth curves to be fitted to age and time 

As the survey data used to fit the model are collected from individuals >18 years of age, age-related 

changes in smoking initiation risks will be poorly identified in younger age groups. To prevent 

implausible results, smoking initiation probabilities are set to zero for all individuals younger than 
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10 years old. In addition, given the cross-sectional nature of the BRFSS data, it is impossible to 

distinguish whether newly initiating individuals begin smoking with higher or lower intensity 

relative to other smokers. For this reason new smokers are assumed to enter the Some and Every 

compartments proportionally to the distribution of individuals already in those compartments, 

operationalized as the parameters        and        for the transition probabilities from Never to 

Some and Never to Every respectively: 

               
     

           
 [2] 

              (  
     

           
) [3] 

 

4.2.4.2. Smoking intensity 

Individuals transition between Some and Every compartments as determined by the parameters 

       and        (transition probabilities for Every to Some, and from Some to Every respectively). 

The rate at which individuals move between levels of smoking intensity (i.e., the true values of 

       and       ) is not identifiable from the BRFSS data, which only provides information on 

overall changes in distribution between these two categories2. Instead, these transition 

probabilities are operationalized as a function of the distribution across the two compartments, for 

a particular age, year, and state. Where  (      |      ) represents the probability of being in the 

Every compartment, conditional on being in one of the Current smoker compartments, the values of 

       and        were calculated using the following equations: 

                                                             

2 In addition, there is no evidence that this information would be relevant to subsequent smoking behavior or 

mortality risks. 
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        (      |      ) [4] 

       (   (      |      )) [5] 

These equations implicitly assume that any changes in the predictors of smoking intensity will have 

an instantaneous effect on the distribution between Some Day and Every Day smokers3.  

As with        , the logit of  (      |      ) is estimated as a linear function of age, calendar time, 

and multiple state-level predictors: 

     ( (      |      ))      (     )        (     )                        

                                   [6] 

 (      |      ) : the fraction of current smokers in the who smoke every day, for individuals with 

age a in quarter t, sex g, and state i 

   : age (in quarters) 

  : calendar time (in quarters) 

     : unemployment rate, in quarter t and state i  

     : indicator variable for laws restricting smoking in workplaces, in quarter t and state i 

      : indicator variable for laws restricting smoking in restaurants, , in quarter t and state i  

      : indicator variable for laws restricting smoking in bars, , in quarter t and state i  

                                                             

3 While it is plausible that smoking intensity could change slowly in response to these determinants, it is 

unlikely that such effects could be identified with the cross-sectional data used for this analysis. 
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      : measure of state anti-smoking sentiment for state i 

     : cigarette excise tax in quarter t in state i, in dollars per pack  

           : a set of penalized B-splines allowing smooth curves to be fitted to age and time 

4.2.4.3. Smoking cessation and relapse 

Individuals transition between the Current smoking compartments and the Former smoking 

compartments as determined by the parameters         (which describes the probability of 

quitting for current smokers) and         through         (which describe probabilities of relapse 

for former smokers as a function of time since quitting). The parameters         and         are 

calculated using a similar approach to that used to model changes in smoking intensity, with the 

parameter  (      |              ) defined as the number of current smokers (for a particular 

combination of age, time, sex and state), divided by the number of current smokers plus those who 

have quit within the last 12 months4.  

         (      |              ) [7] 

        (   (      |              ))  [8] 

These equations implicitly assume that any changes in the predictors of smoking cessation will 

have an instantaneous effect on the distribution between the Current compartment and the first 

Former compartment. Lower values of  (      |              ) will indicate higher rates of 

quitting and transition out of the Current compartments. As the Current compartments are 

                                                             

4 This can be thought of as the fraction who elected not to quit, of those smoking 12 months ago. 
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subdivided into Some and Every, the transition parameters for these compartments need to be 

defined: 

                  
      

             
 [9] 

                 (  
      

                
)  [10] 

                              [11] 

This assumes that individuals who reinitiate smoking are distributed across the Some and Every 

compartments based on the current distribution between these compartments, and that individuals 

in the Some and Every compartments share the same probability of transition to the first Former 

compartment. 

As with other transition probabilities, the logit of  (      |              ) is estimated as a linear 

function of age, calendar time, and multiple state-level predictors: 

     ( (      |              ))      (     )        (     )                    

                                        

 [12] 

 (      |              ) : the fraction of current smokers, out of all individuals who smoke or quit 

within the last 12 months for individuals with age a in quarter t, sex g, and state i 

   : age (in quarters) 

  : calendar time (in quarters) 

     : unemployment rate, in quarter t and state i  
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     : indicator variable for laws restricting smoking in workplaces, in quarter t and state i 

      : indicator variable for laws restricting smoking in restaurants, , in quarter t and state i  

      : indicator variable for laws restricting smoking in bars, , in quarter t and state i  

      : measure of state anti-smoking sentiment for state i 

     : cigarette excise tax in quarter t in state i, in dollars per pack  

           : a set of penalized B-splines allowing smooth curves to be fitted to age and time 

Probabilities of smoking relapse for individuals who have quit for >12 months (Former 

compartments 1 - 9) are estimated using a proportional hazards assumption, whereby the rate of 

reinitiating smoking is assumed to represent a fixed multiple of the rate estimated for those who 

have quit in the last 12 months (this rate being a transformation of the probability         ). The 

decline in the rate of smoking relapse as a function of time is modeled using a Weibull distribution 

(previously used by other analyses to model hazards of smoking relapse [31]). The survival 

function associated with the Weibull distribution,  ( )  can be used to compute  (   )  the 

probability of relapse between the time when an individual enters a particular Former 

compartment ( ), and the time when an individual moves to the next Former compartment ( ). 

 (   )   
 ( )  ( )

 ( )
   

 
 (

 
 
)
 

  
 (
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)
      (     )   

  [13] 

This probability can be used to calculate the average relapse rate for the compartment,  ̅(   ): 

 ̅(   )   
   (   (   ))

   
  

   (  (   
 (     )   

))

   
    

     

(   )   [14] 
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The ratio of these average relapse rates (where     represents the rate ratio of relapse for Former 

compartment j relative to the first Former compartment) can be used to calculate the transition 

probabilities for smoking relapse for all Former compartments as a function of         and the 

Weibull parameter k (note that Weibull parameter λ drops out of the equation). 

     
  

    
 

(     ) 
     

  
    

 

(     )      
(  

    
 )(     )

(  
    

 )(     )
 [15] 

              (         )          
  (         )

(  
    

 )(     )

(  
    

 )(     )                     [16] 

4.2.4.4. Progression through former smoker states 

Former smokers who do not die or relapse will progress through Former compartments 0 to 9 in 

sequence. The transition probabilities for this progression are defined deterministically as the 

inverse of the number of quarters each state represents. Thus the transition probability from the 

first to the second Former compartment (f01) is equal to ¼, producing an average sojourn time of 1 

year for individuals in the first Former compartment who do not die or relapse. 

4.2.4.5. Mortality 

Mortality risks are operationalized as a function of age, calendar time, sex, and smoking behavior 

compartment: 

             
 
     

                                                      [17] 

      : quarterly mortality risk for individuals in compartment j, age a, quarter t, and sex g 

    
   : smoking-deleted background mortality rate for age a, quarter t, and sex g 
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     : mortality rate ratio for sex g and compartment j, relative to a never smoking population of 

the same sex (i.e.,        ) 

4.2.4.6. Model formulae 

The model is implemented as a set of difference equations. These formulae operationalize the 

description given above5.  

       (       )(               ) [18] 

      (        )(         )(        )    (       )         (       )(         )      

 ∑    
 

   
 (        )        

[19] 

       (       )(         )(        )    (       )         (       )(         )      

 ∑    
 

   
 (        )        

[20] 

         (        )(                 )(     )    (       )          (      )        [21] 

         (        )(                 )(     )     (        )(                 )    [22] 

         (        )(                 )(     )     (        )(                 )    [23] 

         (        )(                 )(     )     (        )(                 )    [24] 

         (        )(                 )(     )     (        )(                 )    [25] 

         (        )(                 )(     )     (        )(                 )    [26] 

                                                             

5 These equations implicitly assume a single value for each transition probability for all individuals of a given 

age/time/sex/state subgroup, while in reality we would expect that individuals within a particular subgroup 

might differ in their propensity to begin smoking, to quit smoking, to relapse, etc. For this reason the model 

can be seen as an approximation that calculates subgroup-level averages for each of the model parameters, 

but that individual level outcomes (for example, the change in smoking initiation risk associated with a 

change in cigarette tax rates) may differ from these group-level averages. 
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         (        )(                 )(     )     (        )(                 )    [27] 

         (        )(                 )(     )     (        )(                 )    [28] 

         (        )(                 )(     )     (        )(                 )    [29] 

         (        )(                 )(     )     (        )(                 )    [30] 

         (        )(                 )     (        )(                 )    [31] 

                                                                                 

                                                   [32] 

 

In these equations, subscript z indicates a particular subgroup atgi, and z+1 indicates the next 

quarter for the same subgroup (i.e., where both a and t have been incremented up by 1). 

4.2.5. Data sources 

4.2.5.1. Data on smoking behavior 

The CDC’s Behavioral Risk Factor Surveillance Survey (BRFSS) is a large telephone survey of 

Americans aged >18 years, conducted annually to monitor national and state-level prevalence of 

behavioral risk factors for premature morbidity and mortality [23]. Since being initiated in 1984, 

the BRFSS has asked respondents several questions related to smoking behavior, including current 

smoking status, past smoking status, time since quitting, and smoking intensity. A major change in 

the question about smoking intensity occurred between 1995 and 1996 surveys, and for this reason 

the analysis is restricted to the period 1996-2013, over which smoking-related survey questions 

were largely unchanged. 

Current smoking status: one set of questions allows respondents to be categorized by current 

smoking status, specifically those who report having never smoked, current smokers who report 

smoking “some days”, current smokers who report smoking “every day”, and former smokers. This 

set of questions has been asked each year from 1996 to 2013. The data from these questions were 
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used to construct a likelihood function for the distribution of individuals across compartments N, S, 

E, and the sum of compartments F0-F9.  

Smoking intensity: differences in smoking intensity are associated with differences in smoking 

attributable mortality risks, and Thun et al. report mortality risk ratios for current smokers as a 

function of the number of cigarettes smoked per day [5]. While the categorization of current 

smokers in the BRFSS (those who smoke “some days” vs. those who smoke “every day”) indicates 

qualitative differences in smoking intensity, these descriptions need to be mapped to a quantitative 

measure of cigarette consumption in order to calculate the appropriate mortality risks. To provide 

a cross-walk from the survey responses to the Thun et al. mortality estimates we use additional 

data from survey questions on the number of cigarettes smoked each day. These questions were 

posed to individuals who reported smoking “every day” in survey years 1996 to 2000. Figure 4.3 

shows the relationship between the average number of cigarettes smoked each day for individuals 

reporting smoking every day, as a function of age, sex, and survey year.  

 

  

Figure 4.3. Average number of cigarettes smoked each day for individuals reporting smoking 

every day, as a function of age, sex, and BRFSS survey year 
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As can be seen in Figure 4.3, smoking intensity varies somewhat between different ages, and also 

between men and women. However, these differences are relatively minor, and were ignored for 

the purposes of calculating the fraction of “every day” smokers who fell into different categories of 

cigarettes smoked per day. These percentages were calculated as 13% smoking <10 cigarettes per 

day, 32% smoking 10-19 cigarettes per day, 47% smoking 20-39 cigarettes per day, and 8% 

smoking ≥40 cigarettes per day. No such questions was asked for individuals reporting smoking 

only “some days”, and these individuals were assumed to smoke <10 cigarettes per day (the lowest 

risk category) for the purposes of estimating smoking mortality rate ratios for each model 

compartment. 

Time since quitting: an additional set of questions allows former smokers to be categorized 

according to time since quitting. These questions have changed over the years, allowing the 

following categorization: 

Survey years 1996-2000 <1 year6, 1-4 years, 5-14 years, and 15+ years since quitting 

Survey years 2001-2005 <1 year, 1-4 years, 5-9 years, and 10+ years since quitting 

Survey years 2006-2008 Question not asked 

Survey years 2009-2013 As in 2001-2005 

  

For the years when these questions were asked, data were used to construct a likelihood function 

for the distribution of individuals across former smoker states, with modelled former smoker 

categories grouped to fit the categorization used in the survey questions. 

                                                             

6 The survey questions allow the group reporting <1 year since quitting to be broken up into several smaller 

categories, but this level of granularity was ignored for the analysis.  
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Survey weighting: the BRFSS publishes weights to be used to adjust for known biases in the BRFSS 

sampling frame, such that summary estimates calculated using these weights should be 

representative of the adult U.S. population. Using probability weights will have consequences for 

the uncertainty represented by the likelihood, and although these issues have been apparent for 

many years [32,33], the methodological difficulties have not yet been fully resolved [34]. While 

regression methods for the analysis of weighted data are better developed, the appropriate use of 

weights in an analysis such as required for the present study is not immediately apparent. If 

weights are used directly when constructing a likelihood, the implied sample size (and hence the 

relative dispersion of the likelihood) may not reflect the strength of information in the data7. If 

these weights are not used, the likelihood may not be reflective of the general U.S. population and 

parameter estimates will be biased. A revised weighting scheme was developed to satisfy these two 

concerns: 

(i) For each combination of age (in whole years), quarter, sex, and state, the distribution of 

survey respondents across smoking behavior categories (never, current some days, current 

every day, and former) was calculated using the published weights. 

(ii) For each combination of age (in whole years), quarter, sex, and state, the effective sample size 

(ESS) was calculated, where     (∑      ) (∑   
 

   )⁄  for the vector of survey weights w 

and observations    . 

(iii) The distribution across smoking behavior categories calculated in (i) was scaled by a common 

factor such that the sum matched the ESS calculated in (ii). For each combination of age, 

                                                             

7 With unequal weights, the effective sample size will always be less than the original sample size. At the 

extreme, a set of probability weights equal to 1.0 for one observation and 0.0 otherwise will always have an 

effective sample size of 1.0, irrespective of the original sample size. 
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quarter, sex, and state, this adjustment can be considered as a new weight  ̂  applied to the 

raw survey data: 

 ̂  
  (∑      )  

(∑      )(∑   
 

   )
 [33] 

 

The survey dataset, once processed in this way, preserves the weighted distribution across smoking 

behavior categories while also reflecting the reduction in effective sample size associated with non-

equal weights. The same approach was used to adjust the survey data describing time since quitting 

among former smokers. 

Finally, the respondent-level data were summarized into total counts by age, sex, state, quarter, and 

smoking behavior category. This allowed the large datasets to be manipulated more efficiently 

during analysis while retaining the same informational content. 

4.2.5.2. Data on smoking-related mortality risks 

Several recently published studies summarize smoking-related mortality risks in different 

populations [4–6]. The present analysis utilizes estimates reported by Thun et al., who synthesize 

data from multiple large observational cohorts to estimate relative risks of smoking mortality as a 

function of sex, current smoking behavior, smoking frequency, and time since quitting [5].  

4.2.5.3. Data on smoking-deleted background mortality 

Smoking is known to cause a non-trivial fraction of total U.S. mortality [35,36]. For this reason, the 

background mortality estimates used for this analysis must have smoking-attributable mortality 

removed, to prevent double counting of this mortality risk and overestimation of total mortality 

rates. While the National Center for Health Statistics publishes cause-deleted life tables for various 
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health concerns [37], smoking is not included in these estimates. Smoking-deleted mortality 

estimates were created for this analysis following an approach described by Levy et al. [27].  

For a given age (a), sex (g), and time (t), the all-cause mortality rate (    
   ) can be related to the 

smoking-deleted mortality rate (    
 ), the relative risks associated with each smoking behavior 

category (    for smoking category j), and the distribution of smoking behavior in the population 

(where       represents the fraction of the population in smoking state j for a particular age, sex, 

and time): 

    
    ∑          

        [34] 

This can be rearranged to express smoking-deleted mortality as a function of the other terms: 

    
  

    
   

∑           
 [35] 

This relationship was used to estimate smoking-deleted mortality rates for both men and women, 

for each single year of age, for years 1996-2013. To do so, yearly all-cause mortality estimates were 

derived from life tables published by the U.S. Centers for Disease Control [38,39]. As single-year life 

tables were not available for the year 1996 and had not yet been published for years 2009-2013, 

mortality rates for these years were obtained by extrapolating time trends during the period 1997-

2008. Data on relative mortality risks for different smoking categories were taken from Thun et al. 

[5] as described above, and estimates of the prevalence of smoking behaviors by age, year, and sex 

were created by fitting smooth curves8 to the BRFSS survey data described earlier. The BRFSS does 

not collect information on individuals <18 years old, and it was assumed that smoking behavior 

                                                             

8 These curves were estimated using local polynomial regression via R’s LOESS package. 
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imparted no excess mortality risk in this population. Calculations described under Section 4.2.5.1 

(smoking intensity) were used to provide a crosswalk between descriptions of smoking intensity 

found in the BRFSS and those used by Thun et al. For former smokers, the categories used by the 

BRFSS and Thun et al. do not completely align in terms of time since quitting, and the mortality 

rates for each of these former smoking categories was calculated as the average across the relevant 

categories in the Thun et al. estimates. Table 4.1 summarizes the approach used to calculate relative 

risks for each BRFSS smoker category, and also shows the relative mortality risks produced. 

  



262 
 

Table 4.1. Crosswalk between smoking categories used in the BRFSS and those reported in 

Thun et al., for the purposes of estimating smoking deleted mortality rates 

Category from BRFSS 

Smoking category from Thun et al. 
used to estimate relative mortality 
risk (vs. never smokers) 

Relative mortality risk 
calculated from Thun et al.  

Current smoker, 
smoke some days 

Current smoker, smoke <10 cigarettes 
per day 

Male: 2.21 Female: 2.27 

Current smoker, 
smoke every day 

Weighted average across current 
smoker categories, with weight based 
on distribution in BRFSS:  

<10 cigarettes per day (wt=0.13) 

10-19 cigarettes per day (wt=0.32) 

20-39 cigarettes per day (wt=0.47) 

≥40 cigarettes per day (wt=0.08) 

Male: 3.00 Female: 3.14 

Former smoker, quit 
0-1 months 

 <2 years since quitting Male: 2.77 Female: 2.34 

Former smoker, quit 
1-3 months 

 <2 years since quitting Male: 2.77 Female: 2.34 

Former smoker, quit 
3-6 months 

 <2 years since quitting Male: 2.77 Female: 2.34 

Former smoker, quit 
6-12 months 

 <2 years since quitting Male: 2.77 Female: 2.34 

Former smoker, quit 
1-5 years 

2-4 years since quitting Male: 2.65 Female: 2.02 

Former smoker, quit 
5-15 years* 

Average of 5-9 and 10-19 years since 
quitting 

Male: 2.08 Female: 2.02 

Former smoker, quit 
15+ years* 

Average of 20-29, 30-39, 40-49, and 
≥50 years since quitting 

Male: 1.18 Female: 1.11 

Former smoker, quit 
5-10 years** 

5-9 years since quitting Male: 2.16 Female: 2.25 

Former smoker, quit 
10+ years** 

Average of 10-19, 20-29, 30-39, 40-
49, and ≥50 since quitting 

Male: 1.34 Female: 1.24 

*BRFSS question format used until 2000. ** BRFSS question format used from 2000 onwards. 

  

These various data were combined using equation 35 to estimate smoking-deleted background 

mortality rates for each sex, age, and calendar year, which were then used in the main analysis. 
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Cohorts were modeled from the age at which they started in the model until 100 years of age, at 

which point a mortality risk of 1.0 was imposed. 

While not required for parameter estimation, projections of future smoking-deleted mortality rates 

are needed to estimate health consequences realized in future years. Mortality rates for future 

years were obtained by adjusting the historical estimates described above for anticipated trends in 

all-cause mortality for each sex and year of age derived from future life tables published by the U.S. 

Social Security Administration [40]. 

4.2.5.4. Data on population size and distribution in 1996 

Estimates of the 1996 population, disaggregated by age, sex, state, and smoking behavior category 

were required to initially populate the model (i.e., for t=0). These values were estimated by 

obtaining U.S. Census Bureau data on population size for each year of age, sex, and state in January 

1996 [41]. These population totals were distributed across smoking behavior categories based on 

1996 data from the BRFSS. 

4.2.5.5. Data on births from 1996 onwards 

While not required for parameter estimation, data on births from 1996 onwards are required to 

reconstruct a full cross-section of the population for estimating total changes in smoking behavior 

and mortality outcomes. Historical data on births by sex, year, and state were obtained from the 

National Vital Statistics System [42]. Estimates for future years were obtained from the U.S. Census 

Bureau’s 2012 National Population Projections [43]. As these projections are only available at a 

national level, they were used to calculate the projected percentage change in total births over 

future years, which were then applied to the historical state-level births data in order to estimate 

annual state-level births for future years. 
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4.2.5.6. Data on predictors of smoking behavior 

State cigarette taxes: Data on time changes in state cigarette excise taxes were obtained from a 

historical compilation of tobacco tax data [3]. For each state the value of the tax at the beginning of 

1996 was subtracted from the time series, so that the variable represented absolute changes in the 

state cigarette tax since this time point. All values were converted to 2013 constant dollars using 

the CPI [44]. 

State unemployment rates: Data on seasonally-adjusted state-level unemployment rates were 

obtained from the U.S. Bureau of Labor Statistics [45].  

State clean air laws: Summary data on state clean air regulations were obtained from the American 

Non-Smokers’ Rights Foundation’s Tobacco Control Laws Database [46]. These summaries 

categorize the strength of clean air regulation on a 4 point scale from no coverage to 100% smoke-

free. For each type of clean air regulation, a variable was created by dichotomizing this scale at its 

midpoint, equal to 1.0 if a state’s regulations were 100% smoke-free, or smoke-free with minor 

qualifications, and 0.0 otherwise. 

State anti-smoking sentiment: estimates of state-level anti-smoking sentiment in 1995-96 were 

drawn from DeCicca et al. [12]. This measure is a synthetic index created from a factor analysis of 

multiple TUS-CPS survey questions describing an individual’s level of support for various anti-

smoking measures, promotion of tobacco products, and household rules about smoking in the 

home. More negative values on this index represent stronger state-level anti-smoking sentiment. 

The values used in the present analysis (i.e., estimates for 1995-96) had a mean of -0.01 and a 

standard deviation of 0.16. Values for each state are shown in Table 4.2.  
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Table 4.2. Value of anti-smoking sentiment index for each state* 

State ANTIi State ANTIi State ANTIi 

Utah 0.40 New Hampshire 0.06 Illinois -0.06 

California 0.32 North Dakota 0.04 Louisiana -0.08 

Maine 0.19 Iowa 0.04 Delaware -0.08 

Idaho 0.19 South Dakota 0.04 Pennsylvania -0.09 

Oregon 0.18 New York 0.03 Arkansas -0.10 

Vermont 0.17 Nebraska 0.03 Michigan -0.11 

Washington 0.17 Rhode Island 0.02 Oklahoma -0.11 

Hawaii 0.16 DC 0.02 Virginia -0.12 

Arizona 0.12 Colorado 0.00 Tennessee -0.16 

Minnesota 0.09 Montana 0.00 Indiana -0.18 

Connecticut 0.07 New Jersey 0.00 Ohio -0.22 

Florida 0.07 Georgia -0.03 Missouri -0.23 

Massachusetts 0.07 Mississippi -0.04 South Carolina -0.23 

Texas 0.07 Alabama -0.05 Nevada -0.26 

Maryland 0.06 Kansas -0.05 West Virginia -0.27 

New Mexico 0.06 Wyoming -0.06 North Carolina -0.38 

Alaska 0.06 Wisconsin -0.06 Kentucky -0.45 

* States ordered by values of the index. More negative values on this index represent stronger 

state-level anti-smoking sentiment. 

 

All independent variables were standardized (demeaned and scaled to a standard deviation of 1.0) 

prior to analysis to allow more efficient estimation of results. 

4.2.6. Parameter estimation 

A Bayesian approach was used to estimate the parameters determining smoking behavior, which 

include all parameters in equations 1, 6, and 12, and parameter k from equation 16. Prior 

distributions were specified for all model parameters and a likelihood function created for the 

BRFSS data. A modified version of the incremental mixture importance sampling (IMIS) algorithm 
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[47] was used to estimate the posterior parameter distribution. All analyses were undertaken using 

the R statistical computing environment [48], with the model itself coded in C++ using the Rcpp 

package [49]. 

4.2.6.1. Prior distributions for model parameters 

Prior distributions were specified for parameters describing smoking behavior (Table 4.3). For 

coefficients on unemployment rates, anti-smoking sentiment, clean air laws and cigarette taxes 

(this includes parameters αqg, βqg, δqg, and q, which appear in equations 1, 6 and 12), weakly-

informative priors were adopted, based on a Normal distribution with mean zero and standard 

deviation of 10. The smoothness penalties on the age and year splines were calculated using an 

approach described by Lang and Brezger [50], whereby a Normal prior distribution was adopted 

for the 2nd difference of the spline coefficients, with mean zero and the standard deviation itself 

estimated as part of the analysis. The hyper-prior for this standard deviation was based on a half-

Cauchy distribution [51] with mean zero and standard deviation 5. The 2nd differences used to 

assess smoothness were calculated directly from the spline coefficients. For example, for the spline 

on age used to model the parameter        (equation 1), these 2nd differences are calculated as 

   (                ) for j ∊ [1,2,…11]. A non-informative prior was assumed for parameter k, 

which is used to estimate the decline in relapse risk as a function of time since quitting (equation 

16). This prior was operationalized as a Beta distribution with both parameters equal to 1 

(equivalent to a uniform distribution over the interval [0,1])9. Priors for mortality rate ratios for 

different smoking behavior compartments were based on the Gamma distribution. The parameters 

                                                             

9 By construction the domain of k is restricted to real positive numbers. However, this domain is further 

restricted to the [0,1] interval to reflect the empirical finding that smoking relapse hazards decrease over 

time [31,61], consistent with values of k<1.0. 
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for these distributions were estimated from the Thun et al. results described earlier [5], by 

identifying Gamma distribution parameters that recreated published means and confidence 

intervals. These mortality rate ratios were held constant at their mean estimate during parameter 

estimation, but allowed to vary when projecting outcomes under different cigarette tax scenarios10. 

Table 4.2 summarizes prior distributions for all model parameters. 

  

                                                             

10 It is conventional to allow all uncertain parameters to vary during parameter estimation, as even 

parameters with informative priors may be updated by the likelihood. However, when these mortality rate 

ratios were allowed to vary as part of parameter estimation, it was found that the posterior modes for these 

parameters were shifted far from their original values. While this might be appropriate in some 

circumstances, it is unlikely that the information available in BRFSS data provides evidence to update our 

current understanding of smoking-related mortality risks. Further investigation revealed that these changes 

were related to the likelihood for time since quitting among former smokers. In effect, the number of 

individuals represented in the BRFSS data was so large, and the likelihood so strong, that the estimation 

procedure was obtaining a better fit to the survey data via changes in the mortality rates, despite the 

relatively strong prior. This bias would likely be resolved by introducing further flexibility to the model, yet to 

do so could threaten the feasibility of the estimation approach as well as the identification strategy. Instead, 

this bias to the mortality rate ratios was resolved by holding them fixed during parameter estimation. This 

approach implicitly assumes (i) that the BRFSS data provide no evidence for updating the information on 

smoking mortality risks estimated by Thun et al., and (ii) there is no important dependence between these 

parameters and the other model parameters. 
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Table 4.3. Prior distributions for model parameters 

Name Description 
Functional 

form Parameterization 

Implied mean and 

95% bounds 

αqg, βqg, and δqg, 
for q in [3 - 8] 
and g in [men , 
women] 

Coefficients on variables 
for unemployment rate, 
clean air laws, anti-
smoking sentiment, and 
tax rates  

Normal  Mu Sigma 

 0.0 10.0 

 

Mean (bounds) 

0.0 (±19.6) 

 

α1g, β1g, δ1g, for g 
in [men , 
women] 

Spline parameters for 
age. Each represents a 
vector of 13 values. 

Prior constructed 
around vector of 2nd 
differences (11 values) 

Normal    Mu Sigma 

α1g,  0.0     
 

β1g 0.0     
 

δ1g 0.0     
 

Mean (bounds) 

0.0 (±          
) 

0.0 (±          
) 

0.0 (±          
) 

α2g, β2g, δ2g, for g 
in [men , 
women] 

Spline parameters for 
year. Each represents a 
vector of 5 values. 

Prior constructed 
around vector of 2nd 
differences (3 values) 

Normal   Mu Sigma 

α2g,  0.0     
 

β2g 0.0     
 

δ2g 0.0     
 

Mean (bounds) 

0.0 (±          
) 

0.0 (±          
) 

0.0 (±          
) 

    
,     

,     
,

     
,     

, 

and     
, for g in 

[men , women] 

Standard deviation of 
2nd differences of spline 
parameters 

Half-
Cauchy 

 Mu Scale 

 0.0 5.0 

Mean (bounds) 

Undefined (0.2, 127) 

kg , for g in [men 
, women] 

Parameter determining 
relative hazard of 
smoking relapse in 
former smokers 

Beta  Alpha Beta 

 1.0 1.0 

 

Mean (bounds) 

0.5 (0.025, 0.975) 
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Table 4.3 Prior distributions for model parameters (continued) 

Name Description 
Functional 

form Parameterization 

Implied mean and 

95% bounds 

ρgj for j in [n, s, 
e, f0-f9] and g 
in [men , 
women] 

Mortality rate ratios for 
smoking behavior 
compartments 

Gamma        MEN               WOMEN 

 Scale Rate  Scale Rate 

ρs 1303 589 2740 1207 

ρe 1468 488 1001 318 

ρf0 307 111 821 351 

ρf1 307 111 821 351 

ρf2 510 192 1185 587 

ρf3 796 369 1470 653 

ρf4 2105 1058 4023 2260 

ρf5 2105 1058 4023 2260 

ρf6 2489 1778 3255 2485 

ρf7 2287 1874 2905 2641 

ρf8 1536 1397 2012 1954 

ρf9 1088 1078 909 909 

                MEN                    WOMEN 

 Mean (bounds)  Mean (bounds) 

 2.21 (2.09, 2.33) 2.27 (2.19, 2.36) 

 3.01 (2.86, 3.17) 3.14 (2.95, 3.34) 

 2.77 (2.47, 3.09) 2.34 (2.18, 2.50) 

 2.77 (2.47, 3.09) 2.34 (2.18, 2.50) 

 2.65 (2.42, 2.89) 2.02 (1.91, 2.14) 

 2.16 (2.01, 2.31) 2.25 (2.14, 2.37) 

 1.99 (1.91, 2.08) 1.78 (1.73, 1.84) 

 1.99 (1.91, 2.08) 1.78 (1.73, 1.84) 

 1.40 (1.35, 1.46) 1.31 (1.27, 1.36) 

 1.22 (1.17, 1.27) 1.10 (1.06, 1.14) 

 1.10 (1.05, 1.16) 1.03 (0.99, 1.08) 

 1.01 (0.95, 1.07) 1.00 (0.94, 1.07) 

 

4.2.6.2. Likelihood function 

The survey data, weighted and summarized into total counts for each age, sex, quarter, state, and 

smoking category (as described in Section 4.2.5.1) were used to create likelihood functions for the 

modeled distribution of the population across smoking behavior categories. Likelihood functions 

were constructed for each age, sex, quarter, and state for which data were available, with each 

individual likelihood function summarizing the distribution of surveyed individuals across smoking 
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behavior categories in a given age/sex/year/state subgroup. A generalized multinomial likelihood11 

was used, and constant terms of the log-likelihood dropped to allow more efficient computation. 

The functional form for this log-likelihood is shown below, for modeled outcomes      , given 

survey data      . 

   (     |     )   ∑   (     
 

)       
 

     [36] 

In this equation   represents modeled outcomes produced by a parameter set θ (i.e.,  ( )   ), 

     
 

 represents the observed count in smoking behavior category j for the model subgroup with 

age a, time t, sex g and state i, and      
 

 represents the fraction of the cohort in compartment j, for 

that same subgroup, as estimated by the model. Separate log-likelihoods were constructed for the 

different data sources described in Section 4.2.5.1, with      describing the distribution across 

current smoking compartments (4 categories: N ,S, E and the sum of F0 to F9),       describing the 

distribution of former smokers by time since quitting according to the BRFSS question format used 

before 2000 (four categories: F0, F1+F2, F3+F4, and the sum of F5 to F9), and       describing the 

distribution of former smokers by time since quitting according to the BRFSS question format used 

from 2000 onwards (four categories: F0, F1+F2, F3, and the sum of F4 to F9). All these separate 

likelihoods were assumed to be independent, conditional on a given set of parameter values. As a 

parameter set defines a unique value for every model outcome, the overall log-likelihood for a 

                                                             

11 The conventional multinomial likelihood is restricted to positive integers. However, following survey 

weighting adjustment (Section 4.2.5.1) the data for this analysis included fractions, and consequently the 

likelihood needed to be defined for all positive real numbers. The likelihood used here represents a 

generalization of the standard Multinomial likelihood, though the functional form of the log-likelihood is 

identical to the log-likelihood of the conventional multinomial once constant terms have been dropped. 
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particular parameter set was calculated as the sum across the three likelihoods for all 

age/time/state subgroups (note: as parameters are estimated separately for men and women, no 

single likelihood was constructed across both sexes). 

   (  |  )  ∑ ∑ ∑ ∑     (     |     )                                            [37] 

4.2.6.3. Computation 

The posterior parameter distribution was estimated using a modified IMIS algorithm [47]. As 

originally described, this algorithm begins by drawing a first sample from the prior distribution. 

Next, further samples are drawn from new importance sampling distributions iteratively created to 

explore under-sampled regions of the parameter space. This iterative creation of and sampling 

from new importance sampling distributions proceeds until the total set of samples approximates 

the posterior distribution of interest. This approach is particularly useful in situations where it is 

expected that parameters will be correlated in the posterior (these situations have been found to 

impair the performance of conventional Markov chain Monte Carlo approaches).  

One complication for the present analysis is that the prior is sufficiently diffuse, and the likelihood 

sufficiently strong, that a random sample from the prior (even if very large) is unlikely to fall 

anywhere near the mode of the posterior distribution. While the published version of IMIS would 

likely still succeed in this situation, the algorithm would be very slow in locating and sampling from 

the region of maximum likelihood. In order to more efficiently operationalize this analysis, a 

revised version of IMIS was implemented whereby an optimization approach was used to identify 

the mode of the posterior, and then the curvature of the log-posterior at this location used to create 

the variance-covariance matrix of the first importance sampling distribution (which is based on a 
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multivariate Normal)12. Using an optimization approach to identify the posterior mode brings with 

it a risk of being caught in a local maximum, and for this reason the optimization was undertaken 

10 times, each time initialized at randomly chosen starting points. A new importance sampling 

distribution was constructed around the results of each of these optimizations, similar to the ‘IMIS-

opt’ approach described by Raftery and Bao [47]. The analysis then followed the IMIS algorithm as 

originally described, until stable estimates were achieved. Figure 4.4 presents the progression of 

estimates for the mean and posterior intervals of key parameters and outcomes for successive 

iterations of the IMIS algorithm, and shows no systematic change in mean estimates or width of 

posterior intervals. Study results were estimated following 27 iterations of the algorithm. 

 

  

                                                             

12 This revision to the IMIS algorithm was discussed with Adrian Raftery (Adrian Raftery, personal 

communication, October 27th 2013). 
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Figure 4.4. Estimates for the mean and posterior intervals of major parameters and 

outcomes for successive iterations of the IMIS algorithm 

 

4.2.7. Validation 

Smoking behaviors and health outcomes estimated by the fitted model were compared to a number 

of independent datasets to ensure the analysis was consistent with available evidence. The 

distribution of smoking behavior at different time points, as estimated by the model, was compared 

to estimates derived from the Current Population Survey’s Tobacco Use Supplement (TUS-CPS). The 

TUS-CPS is an occasional supplement to Current Population Survey that uses a similar question 

format to the BRFSS to collect information on cigarette smoking and related behaviors [52]. 

Population demographics, describing the distribution of the population by state, age, and sex, were 

compared to estimates from the 2010 U.S. Census [53]. Modeled estimates for total mortality were 

compared to 2010 estimates produced by the CDC’s National Vital Statistics System [54].  
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4.2.8. Comparison of alternative cigarette tax scenarios 

Two cigarette taxation scenarios were compared using the fitted model. These comparisons were 

used to estimate the causal effect of recent state cigarette tax increases during the period of the 

analysis 1996-2013.  

Status quo scenario (taxes introduced): under this scenario, cigarette taxes in each state follow their 

historical trajectory, as described previously. 

Counterfactual scenario (no new state taxes since 1996): under this counterfactual scenario, state 

cigarette taxes are assumes to stay at their 1996 values. 

In both scenarios, all other determinants of smoking behavior were assumed to follow their 

historical trajectory, as in the main analysis. This implicitly assumes that changes in state cigarette 

taxes have no causal effect on other determinants of smoking behavior. The comparison of these 

two scenarios allows us to explore the implications of increased state cigarette taxes on smoking 

behavior, total cigarette consumption13, and health outcomes realized between 1996 and 2013. 

Additional analyses were undertaken to explore the long-term consequences of these tax changes 

beyond 2013. In the first of these analyses the scenarios described above were extended for a 

further four decades into the future, to understand how the changes in smoking behavior and 

                                                             

13 Calculations for total consumption required estimates of the relative cigarette consumption of Some Day vs. 

Every Day smokers. For this analysis it was assumed that Some Day smokers consumed cigarettes at 0.21 the 

rate of Every Day smokers, based on the distributions of smoking intensity for Some Day and Every Day 

smokers described in Table 4.1. Estimates of total consumption were robust to different assumptions about 

this value. It was also assumed that any change in smoking intensity induced by tax changes was fully 

captured by the change in distribution between Some Day vs. Every Day smokers. 
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health outcomes associated with the 1996-2013 tax increases would accumulate over time. For 

these analyses, background mortality rates and birth rates were assumed to follow long-term 

secular trends based on published estimates [40,43] , but all other variables were held at their final 

values, and taxes were fixed at their 2013 values under both status quo and counterfactual 

scenarios. As these assumptions require the value of the tax to be fixed in 2013 constant dollars, 

these scenarios can be thought of as including ongoing minor tax increases to offset the effect of 

inflation in reducing the real value of the tax.  

A third set of analyses calculated life expectancy for the 2013 birth cohort if exposed to status quo 

or counterfactual tax scenarios. For this analysis, a single birth cohort was simulated from birth to 

death under the two competing tax regimes, with all other variables, including background 

mortality rates, held constant at their 2013 values (consistent with conventional approaches for 

estimating life expectancy). Taxes were assumed fixed in 2013 constant dollars, so that the real 

value is maintained over the lifetime. 

In addition to producing estimates of behavioral and health outcomes, analyses were undertaken to 

estimate the price elasticity of demand associated with the tax increases. For a particular 

comparison, these elasticity estimates (e) were calculated as shown in equation 38, where A 

indicates the status quo scenario (taxes introduced), B represents the counterfactual scenario 

(taxes fixed at 1996 levels), Q represents total national consumption estimated under a particular 

scenario, and P represents average pack price for that same scenario.    was taken to be the 2013 

average national pack price net of sales taxes14, equal to $5.74 [55], and    was taken to be 

                                                             

14 For the large majority of states, sales taxes on tobacco products are applied as a percentage mark-up after 

state and federal excise taxes have been added, thus the absolute price increase produced by an increase in 
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   minus the national average value for state cigarette taxes imposed since 1996, which was 

calculated as part of the analysis. This approach assumes that cigarette prices, net of taxes, are not 

affected by the taxes themselves. In sensitivity analyses we tested an alternate assumption whereby 

the pass-through of taxes to prices was assumed to be 1.11 [56]. 

  
     

  
   

     

  
 [38] 

Elasticity estimates were calculated for men and women as well as overall, for the period 1996-

2013. Long-run elasticity estimates were also calculated in the context of the life-expectancy 

analysis, given that decreased smoking initiation behavior, if this were a consequence of tax 

increases, would have a delayed effect on overall smoking prevalence. These delayed effects could 

result in long-run elasticity estimates that are greater than those estimated over a shorter time 

horizon. 

 

  Results 4.3.

4.3.1. Fit to BRFSS smoking data 

Figures 4.5-4.7 compare modeled estimates of smoking behavior to the BRFSS data used to fit the 

model. Figure 4.5 presents the distribution of the national population across smoking behaviors as 

a function of age, year, and sex, and there appears to be a close calibration to the BRFSS data. Figure 

                                                                                                                                                                                                    

 

the excise tax will be larger than the tax itself. For this reason the correct elasticity estimates are obtained by 

removing the sales taxes before the elasticities are computed. 
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4.6 further disaggregates these estimates by state, and while in general there is close agreement 

with the survey data, there are a small number of states where modeled estimates diverge from 

those estimated directly from the BRFSS data. For example, for men in both Georgia and Oklahoma, 

the model fails to capture observed reductions in the fraction of never smokers, as well as increases 

in former smokers, over the early 2000s. These discrepancies indicate that estimated outcomes for 

some individual states should be interpreted with caution, but in general the fit to the observed 

distribution across smoking behaviors is good. 

Figure 4.7 disaggregates former smokers by time since quitting. Again, the fit to the survey data 

appears acceptable, despite changes in question format following 2000, and despite survey data on 

time since quitting not being collected in 2006-2008.  



278 
 

 

Figure 4.5. Comparison of modeled estimates to BRFSS data on smoking behavior, as a 

function of age and year* 

* Size of plotting symbols for survey data proportional to square root sample size. Estimates shown for 

2013 Q1 represent data collected during the 2012 round of the BRFSS. 
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Figure 4.6. Comparison of modeled estimates to BRFSS data on smoking behavior, as a 

function of year and state* 

* Size of plotting symbols for survey data proportional to square root sample size. Survey data and 

modeled estimates for state populations aged ≥18 years old.  
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Figure 4.7. Comparison of modeled estimates to BRFSS data on time since quitting in former 

smokers, as a function of age and year* 

* Size of plotting symbols for survey data proportional to square root sample size. Survey question 

categorization for time since quitting revised in 2001 (indicated by different plotting color). Questions 

on time since quitting not asked 2006-2008. Estimates shown for 2013 Q1 represent data collected 

during the 2012 round of the BRFSS. 
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4.3.2. Validation 

Model projections were compared to several independent data sources. To validate smoking 

prevalence estimates, modeled results were compared to data from successive rounds of the TUS-

CPS collected between 1999 and 2011. These comparisons are shown in Figure 4.8. Compared to 

the model estimates, the TUS-CPS data generally show a similar prevalence of current smoking 

behavior, but a lower prevalence of individuals reporting former smoking, with this difference 

made up by an increased fraction reporting having never smoked. The differences between 

modeled estimates and TUS-CPS data are largest in younger age groups, where the modeled 

estimates predict higher fractions of both current and former smokers. Given the close fit of model 

estimates to the BRFSS data, these discrepancies likely reflect differences associated with the 

instruments or the sampling frame of these two surveys.  
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Figure 4.8. Comparison of modeled estimates to independent data on smoking prevalence 

from the Tobacco Use Supplement of the Current Population Survey* 

* Unless stated otherwise, modeled estimates and TUS-CPS estimates relate to the population ≥15 years 

old (top and middle panels). 

 

Figure 4.9 presents modeled estimates of all cause mortality in 2010 for discrete age groups, as 

compared to estimates for the same quantities published by the CDC’s National Vital Statistics 

System. This comparison examines whether the approach used to create smoking-deleted life 

tables, then reintroducing smoking-attributable mortality risks, correctly recovers all-cause 

mortality rates. There is almost exact agreement with the published estimates for all age groups.  
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Figure 4.9. All-cause mortality rate for 2010 by age group and sex, comparing modeled 

estimates to published estimates from the CDC’s National Vital Statistics System 

 

Figure 4.10 compares modeled estimates of the size and distribution of the U.S. population with 

results from the 2010 census. For a number of age categories the modeled estimates appear to 

underestimate both female and male population size (top panel). This is particularly true between 

ages 15 and 40. This difference may be due to immigration, which is not captured in the model. The 

size of this difference, with modeled estimates of the total population on 2010 approximately 20 

million smaller than census estimates, is consistent with Census Bureau estimates of immigration 

over this period (though at the high end). In addition, the age groups with the greatest discrepancy 

match the age groups with the highest observed levels of immigration [57]. A consequence of 

underestimating total population size is that absolute estimates of health outcomes reported in 

later sections of the results (e.g., life-years saved, or deaths averted) will represent a modest 

underestimate. The discrepancy between modeled population and census estimates is not evenly 

distributed by state, with Arizona, Florida and Nevada exhibiting the greatest relative difference. 



284 
 

 

Figure 4.10. Population size and distribution in 2010, comparing modeled estimates to data 

from the 2010 U.S. Census 
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4.3.3. Parameter estimates for predictors of smoking behavior 

Table 4.4 presents posterior mean and 95% posterior intervals for predictors of smoking behavior. 

Coefficients on the TX variable are generally negative, suggesting a reduction in smoking behavior 

associated with cigarette tax increases. However, the interpretation of these values for overall 

smoking prevalence and health outcomes is difficult, as smoking behavior will be determined by 

multiple parameters simultaneously. Whether changes in individual predictors are associated with 

meaningful and or statistically significant changes in smoking behavior and health outcomes is best 

understood by comparing results when the model is re-estimated under alternative taxation 

scenarios. These alternative scenarios are examined in Section 4.3.4. 

 

Table 4.4. Posterior mean values for predictors of smoking behavior* 

 

Risk of smoking initiation 

(nc) 

Probability of smoking every 

day, in current smokers 

(P(E|C)) 

Probability of continued 

smoking, among current 

smokers (P(C|F0C))) 

 
Men Women Men Women Men Women 

Unemployment rate 

(UN) 
-0.010 

(-0.028,0.003) 
-0.061 

(-0.069,-0.054) 
-0.025 

(-0.029,-0.020) 
-0.020 

(-0.024,-0.017) 
0.025 

(0.019,0.029) 
0.028 

(0.025,0.030) 

Smoking restricted 

in workplaces (WP) 
-0.015 

(-0.057,0.057) 
0.079 

(0.036,0.116) 
-0.017 

(-0.046,0.056) 
-0.013 

(-0.028,-0.002) 
0.038 

(0.017,0.053) 
0.050 

(0.040,0.063) 

Smoking restricted 

in restaurant (RST) 
-0.241 

(-0.271,-0.197) 
-0.242 

(-0.272,-0.210) 
0.075 

(0.056,0.095) 
0.059 

(0.046,0.071) 
0.015 

(0.005,0.028) 
-0.012 

(-0.020,-0.003) 

Smoking restricted 

in bars (BAR) 
0.076 

(0.016,0.125) 
-0.211 

(-0.256,-0.168) 
-0.022 

(-0.081,0.017) 
-0.034 

(-0.050,-0.019) 
-0.043 

(-0.078,0.003) 
-0.061 

(-0.074,-0.047) 

Anti-smoking 

sentiment (ANTI) 
-0.538 

(-0.649,-0.447) 
-0.651 

(-0.698,-0.608) 
-0.759 

(-0.804,-0.706) 
-0.679 

(-0.716,-0.635) 
-0.240 

(-0.285,-0.193) 
-0.258 

(-0.284,-0.236) 

State cigarette tax 

increases (TX) 
-0.056 

(-0.088,-0.032) 
0.007 

(-0.015,0.028) 
-0.020 

(-0.037,-0.006) 
-0.025 

(-0.035,-0.014) 
-0.055 

(-0.065,-0.045) 
-0.066 

(-0.072,-0.060) 

* Parameters for age and year splines not shown. Coefficients for continuous variables 

(unemployment rate, anti-smoking sentiment, cigarette tax) transformed to original scale. 95% 

posterior intervals shown in parentheses. 
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4.3.4. Causal effects of state cigarette taxes introduced over the period 1995-2013 

4.3.4.1. Effect on smoking behavior 

All results in this section compare the recent history of increasing state cigarette taxes with a 

counterfactual scenario in which these taxes were not introduced (i.e., all state cigarette taxes 

assumed to remain at their 1996 values). By comparing the incremental differences between these 

two scenarios we can understand the change in smoking behavior and other outcomes caused by 

the increase in state cigarette taxes since 1996.  

Figure 4.11 shows the change in various measures of smoking behavior due to the recent tax 

increases, averaged at a national level. The cigarette taxes are seen to have caused improvements in 

most indicators of smoking behavior. By the end of 2012, male smoking prevalence in the United 

States is estimated to be 4.0% (3.3, 4.8)15 lower that it would have been in the absence of the state 

cigarette taxes introduced since 1996, and female smoking prevalence is estimated to be 2.8% (1.8, 

3.5) lower. Other indicators of smoking behavior—the fraction of the population who have ever 

smoked and the fraction of smokers who smoke every day—exhibit smaller changes. In the case of 

women, the fraction of the population who have ever smoked is estimated to rise, though the 

posterior 95% interval for this outcome includes zero. These various changes contribute to total 

cigarette consumption, which is estimated to be 4.4% (3.7, 5.3) lower among men and 3.6% (2.6, 

4.2) lower among women (for a 4.0% (3.3, 4.6) overall reduction) by the end of 2012 compared to 

the counterfactual scenario that held taxes at their 1996 levels. 

  

                                                             

15 Values in parentheses represent equal-tailed 95% posterior intervals.  
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Figure 4.11. Change in various measures of smoking behavior (national-average) due to 

increases in state cigarette taxes over the period 1996-2013* 

*All estimates are assessed in the total population, by sex. Reduction in every day smokers represents 

change in the fraction of current smokers who smoke every day.  

 

Figure 4.12 presents results for the reduction in smoking prevalence due to recent cigarette taxes 

broken down by state. The cigarette tax for each state, in nominal dollars, is also plotted for 

comparison. As can be seen, reductions in smoking prevalence accrue in proportion to the 

magnitude of tax increases for a given state, with these reductions spread over the years following 

the tax increase. These changes in smoking prevalence are marginally larger for men than for 

women, consistent with the results presented in Figure 4.11.  
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Figure 4.12. Reductions in state-level smoking prevalence due to increases in state cigarette 

taxes over the period 1996-2013* 

*All estimates are reported for the total population of each state, by sex.  

 

4.3.4.2. Effect on population health outcomes 

Over the entire period 1996-2013, increases in state cigarette taxes are estimated to have reduced 

the total time spent smoking by 10.9 million (9.6, 12.4) person-years when summed nationally (6.3 

million (5.2, 7.4) years among men and 4.6 million (3.9, 5.3) year among women). Smoking 

predisposes individuals to a large number of health conditions that could lead to premature 

mortality, and reductions in smoking behavior are estimated to have produced improvements in 
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health outcomes. Overall during the period 1996-2013, the increase in state cigarette taxes is 

estimated to have reduced the number of deaths by 14.4 thousand (9.9, 19.7) among men and 13.0 

thousand (9.9, 16.8) among for women, for a total of 27.4 thousand (21.8, 34.1) deaths averted. 

These reductions in mortality were associated with an extra 61 thousand (39, 85) years of life lived 

by men and an extra 58 thousand (44, 78) years of life lived by women, for a total of 119 thousand 

(92, 151) life-years saved. Figure 4.13 disaggregates the total change in person-years smoking, 

deaths averted, and life-years saved by age group. Though the major reductions in years spent 

smoking are estimated to accrue during ages 20-59 the impact on mortality is felt in later years, 

with most deaths averted between ages 60-79. The same pattern can be observed for the additional 

life-years lived due to the tax increases. 

 

 

Figure 4.13. Changes in major behavioral and health outcomes over 1996-2013 due to 

increase in state cigarette taxes, disaggregated by age group* 

* Figure compares a scenario in which state cigarette taxes follow their historical trajectory to a 

counterfactual scenario in which taxes are held constant at their 1996 values. 
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The results described above and in Figure 4.13 relate to the period 1996-2013. However, part of the 

benefits of the taxes introduced over this period will not be felt for many years, as tax-related 

changes in smoking initiation and cessation rates will take time to affect overall smoking 

prevalence, and subsequent changes in survival will be even further delayed. Figure 4.14 extends 

the analysis for an additional four decades into the future to understand how changes in smoking 

behavior and health outcomes might accumulate over a longer timeframe16. For each major 

outcome—reductions in years spent smoking, deaths averted, and life-years saved—the effect of 

the taxes increase in each successive decade. For estimates of the total years spent smoking, this 

increase slows over time, but the number of deaths averted increases approximately linearly until 

2030-2039, after which point the reduction in mortality tapers as those who avoided smoking-

related mortality begin to succumb to other ailments later in life. The number of life-years gained 

are estimated to increase with each successive decade, with over 6 million life-years saved over the 

next four decades compared to a scenario in which no new state cigarette taxes were introduce 

after 1996.  

                                                             

16 This analysis compares a scenario in which state cigarette taxes are held at their 1996 values for the entire 

projection period, to one in which state cigarette taxes follow their historical trajectory and then remain 

constant at their current value for the remaining projection period. Projected trends in births and background 

mortality are based on published estimates, and all other variables (e.g., unemployment rates) are held at 

their 2013 values. 
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Figure 4.14. Projected changes in major behavioral and health outcomes over the next four 

decades due to increase in state cigarette taxes introduced between 1996 and 2013, by 

decade* 

* Figure compares a scenario in which state cigarette taxes follow their historical trajectory and then 

hold constant at 2013 values to a counterfactual scenario in which taxes are held constant at their 1996 

values. 

 

The long term improvement in health outcomes can also be understood through changes in lifetime 

smoking patterns and life expectancy. We projected lifetime smoking patterns and life expectancy 

for the 2013 national birth cohort under the assumption that the cohort would be exposed to state 

cigarette taxes in force at the beginning of 2013. We compared these values to estimates calculated 

under the counterfactual scenario where individuals are exposed to 1996 cigarette tax levels. With 

taxes at their 1996 levels, the average number of years spent smoking over the lifetime is 13.6 

(12.4, 15.0), and this value drops to 12.8 (11.8, 14.2) under the 2013 tax scenario. In combination 

with changes in smoking intensity, these reductions in years spent smoking are estimated to 

produce a 6.1% (4.5, 7.8) reduction in average lifetime cigarette consumption compared to the 

counterfactual scenario. The effect of these changes in smoking behavior is estimated to increased 

overall life expectancy from 78.7 (78.4, 79.0) years under the 1996 tax scenario to 78.9 (78.5, 79.1) 

years under the 2013 tax scenario, a gain in life expectancy equal to 2.0 (1.4, 2.7) months when 
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averaged over the entire 2013 birth cohort, representing a total of 2.7 million (1.9, 3.6) extra life-

years lived. These life expectancy gains are predominantly due to greater survival at older ages, 

with 90% of the additional life-years lived being enjoyed by individuals over 60 years of age. These 

results are summarized in Table 4.5 for each sex, with men enjoying greater gains in life expectancy 

compared to women. 

Table 4.5. Changes in lifetime smoking behavior and life expectancy for the 2013 national 

birth cohort exposed to 1996 tax levels as compared to 2013 tax levels* 

  Outcomes calculated 
for 1996 state 

cigarette tax levels 

Outcomes calculated 
for 2013 state 

cigarette tax levels 
Incremental 

difference 

Average no. 
years spent 
smoking 

Men 12.9  (11.6, 14.2) 11.8  (10.7, 13.1) -1.1  (-1.4,-0.8) 

Women 14.3  (12.4, 16.7) 13.9  (12.0, 16.5) -0.4  (-0.7,-0.1) 

All 13.6  (12.4, 15.0) 12.8  (11.8, 14.2) -0.8  (-1.0,-0.5) 

Life expectancy Men 77.0  (76.6, 77.3) 77.2  (76.9, 77.5) 0.25  (0.18, 0.34) 

Women 80.5  (79.9, 80.9) 80.6  (79.9, 81.0) 0.09  (0.01,0.14) 

All 78.7  (78.4, 79.0) 78.9  (78.5, 79.1) 0.17  (0.11, 0.22) 

*Difference calculated as value from 2013 tax scenario minus value from 1996 tax scenario. 95% 

posterior intervals shown in parentheses. 

 

4.3.5. Price elasticity of demand 

Estimates of the price elasticity of demand were estimated using two approaches. In the first 

approach, elasticities were calculated based on the price changes and behavioral outcomes 

estimated for the period 1996-2013. With this approach, the elasticity was estimated to be -0.18 (-

0.22, -0.15) for men and -0.14 (-0.16, -0.10) for women, producing an overall elasticity of -0.16 (-

0.18, -0.13). The second approach attempted to estimate long-run elasticities, given the delayed 

effect of changes in smoking initiation rates and quitting rates on overall cigarette consumption. 

These long-run elasticity estimates were calculated in the context of the life-expectancy analysis, 
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comparing changes in price to predicted changes in lifetime cigarette consumption. Under this 

second approach, elasticity was estimated as -0.39 (-0.50, -0.30) for men, and -0.16 (-0.25, -0.06) for 

women, for an overall long-run elasticity of -0.27 (-0.35, -0.20). 

4.3.6. Sensitivity analyses 

We tested the robustness of the results to changes in how the state cigarette tax variable was 

operationalized. In the main analysis this variable described tax increases from 1996 levels for each 

state. In a sensitivity analysis we revised this variable to represent the absolute state cigarette tax 

(i.e., not set to zero in 1996 for each state). The results of this sensitivity analysis were similar to 

those of the original analysis, though with major health outcomes (total deaths averted and life-

years saved) approximately 10-20% larger in the revised analysis. Table 4.6 compares main 

analysis and sensitivity analysis for a number of major outcomes. 
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Table 4.6. Comparison of parameter estimates and major outcomes from different 

approaches to operationalizing the effect of cigarette taxes on smoking behavior* 

 Men Women 

 

Main 
analysis 

Sensitivity 
analysis Difference 

Main 
analysis 

Sensitivity 
analysis Difference 

Coefficient for tax effect on 
smoking initiation -0.056 -0.080 -0.024 0.007 -0.022 -0.029 

Coefficient for tax effect on 
smoking intensity -0.020 -0.024 -0.004 -0.025 -0.028 -0.003 

Coefficient for tax effect on 
smoking cessation -0.055 -0.047 0.009 -0.066 -0.065 0.001 

Reduction in smoking 
prevalence (%) by end 2012 
due to taxes 4.00 4.12 0.12 2.86 3.43 0.57 

Reduction in ever smokers (%) 
by end 2012 due to taxes 0.74 1.05 0.30 -0.10 0.23 0.34 

Reduction in every day 
smokers (%) by end 2012 due 
to taxes 0.57 0.63 0.06 0.82 0.89 0.07 

Reduction in years spent 
smoking 1996-2013 due to 
taxes (millions) 6.3 6.3 0.0 4.6 5.1 0.5 

Reduction in total deaths 
1996-2013 due to taxes 
(thousands) 14.4 16.8 2.4 13.0 14.2 1.2 

Total life-years saved 1996-
2013 due to taxes (thousands) 60.6 72.2 11.6 58.4 63.7 5.3 

* For the main analysis, the state cigarette tax variable represented any increase in taxes from 1996 

levels in each state, in 2013 constant dollars. For the sensitivity analysis, the state cigarette tax variable 

represented the absolute value of state cigarette taxes, in 2013 constant dollars. Difference represents 

value from sensitivity analysis minus value from main analysis. 

 

We also assessed the robustness of results to alternative assumptions about future smoking 

patterns. In the analysis that projects results over the next four decades, assumptions must be made 

about secular trends in smoking behavior. In the main analysis it was assumed that all 

determinants of smoking behavior were fixed at their 2013 values. In sensitivity analyses we 
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allowed the changes in background smoking behaviors (as operationalized through the splines for 

time) estimated over the period 1996-2013 to be extrapolated linearly in to the future. This 

alternate set of assumptions produces lower estimates for future smoking prevalence, consistent 

with historical trends. The future benefits of the 1996-2013 tax increases is also lower with these 

alternate assumptions, with the absolute reduction in life-years spent smoking (as shown in Figure 

4.14) reduced by 8% (6, 11), total deaths reduced by 14% (12, 17) and total life-years saved 

reduced by 9% (7, 10). 

Finally, we assessed the sensitivity of elasticity estimates to a different assumption about the pass-

through of taxes to prices. For the main analysis it was assumed that taxes would be passed through 

to prices one-to-one. In this sensitivity analysis we altered this assumption to assume a pass-

through of 1.11 (i.e., that a $1.00 increase in the tax would produce a $1.11 increase in the price), 

based on analyses of interstate cigarette price variation over the period 1960-1990 by Keeler et al. 

[56]. Under these revised assumptions elasticity estimates are reduced. For changes in cigarette 

consumption by 2013, elasticity is estimated as -0.16 (-0.19,-0.13) for men, -0.12 (-0.14, -0.09) for 

women and -0.14 (-0.16, -0.11) overall. For long-run changes in cigarette consumption (calculated 

over the lifetime of a single cohort), elasticity is estimated as -0.34 (-0.44,-0.27) for men, -0.14 (-

0.22, -0.05) for women and -0.24 (-0.30, -0.17) overall. For all of these individual results, the 

revised assumption produces a reduction in the magnitude of the elasticity estimate of 11-13% 

compared to the main analysis. 

 

 Discussion 4.4.

This analysis used a novel approach to estimate the causal effect of recent increases in state 

cigarette taxes on smoking behaviors. These effects were estimated in the context of a behavioral 
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model that explicitly described the different processes contributing to overall smoking prevalence, 

allowing for separate effects of taxation on smoking initiation, smoking intensity, and smoking 

cessation. Based on data from 17 rounds of BRFSS survey data, the state cigarette taxes introduced 

over the period 1996-2013 were estimated to have produced a 4% drop in overall cigarette 

consumption, compared to a counterfactual scenario that assumed no changes in state taxes over 

this period, with these behavioral effects estimated to be slightly larger for men than for women. 

While other analyses have assessed the impact of state cigarette taxes on smoking behavior, the 

specific states and time periods involved differ. For this reason the magnitude of the behavioral 

effects assessed by this and other studies can best be compared in terms of the elasticities implied 

by the results. In our study, the elasticity of demand for all adults was estimated to be -0.16 based 

on estimated differences in cigarette consumption in 2013, and -0.27 over the long-run. These 

estimates are considerably lower than the conventional understanding of the price elasticity for 

cigarettes [9], with a meta-analysis of published estimates finding a median value of -0.4 for short-

run elasticity [10]. In contrast, the relative magnitude of the different elasticities we estimate 

conforms to expectations, with elasticity estimated to be of greater magnitude for men as compared 

to women17, and over the long-run as compared to the short-run.  

Our elasticity estimates can also be compared to the other recent studies that estimate tax effects 

from cross-state variation in taxes. Using 1991-2005 data from the Youth Risk Behavior Surveys, 

                                                             

17 Our results conflict with those of Stehr [24], who finds that women are nearly twice as responsive to 

cigarette taxes as men, arguing that conventional estimates are biased due to a failure to control for 

differences in the distribution of male and female smoking participation across states. Our analysis explicitly 

allows for these inter-state differences, suggesting that the surprising findings reported by Stehr may have 

some other explanation. 
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Carpenter and Cook [15] estimate elasticities that range from -0.56 to -0.25 for youth smokers18. In 

contrast, using 1992-2002 data from the National Education Longitudinal Study DeCicca et al. 

estimate elasticities for youth smoking that are both small and statistically insignificant (ranging 

from -0.11 to 0.08) [12]. Similarly, using data from the 1997 cohort of the National Longitudinal 

Survey of Youth, Nonnemaker and Farrelly find effects of cigarette taxes on youth smoking to be 

smaller than conventional estimates and sensitive to changes in specification [16]. While much of 

the published literature on inter-state variation focusses on youth smoking, DeCicca and McLeod 

estimate outcomes for older adults, finding elasticities that range from -0.3 to -0.2 using data from 

BRFSS rounds 2000-2005 [11]. In sum, the elasticities estimated from inter-state variation in 

cigarette excise taxes are general smaller than other estimates, and our findings are consistent with 

this trend.  

One feature of the relationship between state-level cigarette prices and purchasing behavior is the 

possibility for cross-border purchasing. It is possible that, in the face of differences in cigarette 

prices between abutting states, consumers respond to tax increases (and therefore price increases) 

in one state by moving cigarette purchasing to lower tax jurisdictions. If true, this effect would 

reduce the effect of cigarette taxes relative to a scenario in which consumers faced a common price, 

or a situation where taxes were raised across all jurisdictions (as would happen with changes in the 

federal tax). Recent work by DeCicca et al. investigated the magnitude of such cross-border 

purchases using data from the TUS-CPS, and concluded that cross-border purchases account for one 

quarter of the total reduction in purchases within a state following a price increase [21]. Stehr 

reaches a similar finding by comparing BRFSS data on smoking behaviors to state-level cigarette 

sales data [58]. As a consequence of cross-border purchasing, a naïve analysis of cigarette sales 

                                                             

18 For whom elasticities are thought to be higher than the general population [10]. 
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would over-estimate total changes in consumption for a state that raises its cigarette tax. This is not 

a problem for our analysis and ones like it, which use data on reported behaviors and so should not 

be affected by this bias. However, the existence of cross-border purchasing as a result of price 

differentials implies that tax changes in one jurisdiction should affect smoking behaviors in other 

jurisdictions. Such spillover effects would undermine the stable-unit treatment value assumption 

(SUTVA) that underlies the causal identification strategy for studies such as ours. If a tax hike in one 

state not only increases cigarette prices in that state but also increases effective prices for smokers 

living in abutting states, then the true benefits of state-level cigarette tax increases will be larger 

than what is estimated in our analysis, and this provides one potential explanation for lower 

elasticity estimates derived from studies of variation between U.S. states. 

In addition to estimating tax-related changes in smoking behavior over the period 1996-2013, our 

analysis compared future trends in smoking behavior with taxes maintained at their 2013 levels to 

a counterfactual scenario that assumed no new taxes since 1996. The results of this analysis must 

be viewed as more speculative than the findings reported for the 1996-2013 period, as they depend 

on assumptions about future trends in smoking behavior. This analysis also assumes that the 

responsiveness to cigarette taxes observed in the study period will be maintained in the future. The 

major finding from this part of the analysis is that estimates of smoking prevalence in these two 

scenarios continue to diverge over time, such that the reduction in total years spent smoking for the 

10 year period 2020-2029 is more than double the 11 million reduction in years spent smoking 

estimated for the 17 years 1996-2013. These long-term effects are consistent with our findings of 

long-run elasticities that are higher than those estimated for the short-run. Despite the greater 

uncertainty associated with the long-term projections, it seems clear that the behavioral outcomes 

of cigarette tax changes will continue to increase for many years after taxes are introduced.  



299 
 

The analytic model used for this study directly linked changes in current smoking behavior and 

smoking history to mortality risks. As a consequence of tax-related reductions in smoking behavior, 

our analysis estimated a mortality reduction of 27,000 deaths over the period 1996-2013, 

compared to a counterfactual scenario with no state tax increases since 1996. These survival gains 

were associated with 119,000 additional life-years lived over the same period, with these benefits 

mainly accruing to older adults. These mortality reductions are relatively modest, and when 

averaged over the 17 year period 1996-2013 represent less that 0.5% of the approximately 

400,000 annual deaths attributed to smoking in the United States [35]. Even more than the changes 

in smoking prevalence, the reductions in mortality and extra years of life lived because of tax 

increases are estimated to be substantially delayed following tax introduction. In the analysis 

where outcomes were estimated for future decades, comparing 2013 tax levels to 1996 levels, 

reductions in mortality for the 10 year period 2020-2029 are more than triple the 27,400 estimate 

for total deaths averted for the 17 years 1996-2013, and the number of extra life-years lived is nine 

times the 119,000 extra life-years lived for the 1996-2013 period. While the health benefits 

estimated by this study are more substantial if future years are taken into account, these aggregate 

outcomes are still dwarfed by contemporary estimates of the total benefits of tobacco control 

measures in the U.S. Evaluating the effects of tobacco control since the surgeon general’s report on 

smoking in 1964, Holford et al. estimate 157 million life-years saved by 2012 compared to a 

counterfactual with no tobacco control [59]. Our estimate for total life-years saved for the period 

1996-2049 represents 4% of this total, despite covering a longer period (54 years vs. 49 years) and 

a larger population due to population growth. Our estimates of life expectancy gains are similarly 

small in comparison, representing 10% of the 2.3 year life expectancy gain Holford et al. estimate 

for men and 5% of the 1.6 year life expectancy gain estimated for women. These comparisons 

reinforce the relatively modest reductions in smoking behavior we estimate to have resulted from 

recent state cigarette tax increases. 
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This analysis has a number of limitations in addition to those mentioned already. A key assumption 

of the identification strategy is that controlling for state-level anti-smoking sentiment (and doing so 

using the index created by DeCicca et al. [12]) removes the relationship between this and other 

unmeasured factors that otherwise confound the observed relationship between the cigarette taxes 

that states impose and the smoking behavior of their residents. If this assumption does not hold, it 

is possible that our analysis will have over-estimated the effects of state cigarette taxes on smoking 

behavior, and that the effects estimated are not truly causal. Another assumption of our analysis is 

that the smoking behavior of a state’s residents does not meaningfully influence the level of anti-

smoking sentiment, and consequently the likelihood of further tobacco control legislation being 

introduced in the future. If there is a causal relationship between smoking behavior and anti-

smoking sentiment it is likely negative, with a reduction in the number of individuals smoking 

weakening opposition to tobacco control19. What is more certain is that stronger anti-smoking 

sentiment will raise the probability of future cigarette tax hikes and other controls. If both of these 

relationships exist as described it is possible that our analysis, by ignoring the potential positive 

feedback between anti-smoking sentiment, smoking behaviors and tobacco control policies, has 

mischaracterized (and potentially underestimated) the causal effects of cigarette taxes. On a more 

concrete issue, the fact that the demographic model appears to underestimate population growth 

due to immigration means that the estimates of absolute impact (e.g., total life-years saved) will be 

modestly lower than they would be otherwise, particularly for future projections.  

                                                             

19 A major argument for this relationship is self-interest, that people will be less willing to support price 

increases and other restrictions on an activity if they are directly affected by these controls. However, this is 

only speculation, and other arguments might predict a positive relationship.  
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Another limitation of this analysis is that it ignores important differences in smoking behaviors 

observed for individuals of different race, education, and income level. These differences have been 

well documented, with smoking prevalence substantially lower for those with some higher 

education, for those above the federal poverty line, and for those identifying as Asian or Hispanic 

[60]. Instead, the analysis calculates population-level averages for each subgroup of state, sex, age, 

and birth cohort. While the results will be valid for the subgroup as a whole, they may obscure 

important differences not only in general smoking behaviors but also the responsiveness to 

cigarette tax increases. The decision to average over some important individual-level predictors of 

smoking behavior was driven by concerns about model complexity, however it is possible that 

future research will allow investigation of tax effects among additional population groups and these 

stratifications are available in the BRFSS data. However, one group not included in the BRFSS is 

individuals under 18 years of age. This group was modeled for the analysis, in order to obtain 

correct estimates of overall population-level effects. The BRFSS data does provide indirect 

information on smoking initiation rates during this period, in that the aggregate effect of smoking 

initiation during the early and mid teens will need to match the smoking prevalence levels observed 

among older teens once they are eligible for the survey. Consequently, while aggregate smoking 

initiation behavior estimated for those below 18 will be correct, our results provide little insight 

into the specific timing of smoking initiation for those younger than 18. 

Finally, it is possible that choices made in determining the structure of the model influence the 

outcomes that are reported. While we believe that the model equations represent a plausible 

formalization for how cigarette taxes might influence smoking behavior and subsequent mortality, 

we accept that other equally defensible model structures are possible. The use of a mechanistic 

model of smoking behavior and population demographics allows us to report detailed estimates of 

how outcomes are distributed across time, sex, age, and state. As far as we know, the use of a 

mechanistic model for identifying the causal effects of cigarette taxation is novel, and provides new 
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opportunities for understanding the relationship between taxes, behaviors and health outcomes. In 

particular, by allowing the estimation of many different quantities that can be compared to 

empirical data, we believe this approach allows natural opportunities for model refinement (for 

example, the comparison of modeled life tables to published life tables (Figure 4.10) reveals that 

more accurate long-term projections may be obtained by allowing for immigration), and allows the 

identification of misspecifications when simulated results don’t match real world data.  

 

  



303 
 

 Citations 4.5.

1  U.S. Department of Health and Human Services. Ending the tobacco epidemic: a tobacco control 

strategic action plan for the U.S. Department of Health and Human Services. Washington, DC: 

Office of the Assistant Secretary for Health; 2010.  

2  Institute of Medicine. Ending the tobacco problem: a blueprint for the nation. Washington DC: 

Institute of Medicine; 2007.  

3  Orzechowski and Walker. The tax burden on tobacco, historical compilation volume 46, 2011. 

Arlington, VA: Orzechowski and Walker; 2011.  

4  Jha P, Ramasundarahettige C, Landsman V, Rostron B, Thun M, Anderson RN, et al. 21st-

century hazards of smoking and benefits of cessation in the United States. New Engl J Med 

2013; 368:341–50. 

5  Thun MJ, Carter BD, Feskanich D, Freedman ND, Prentice R, Lopez AD, et al. 50-year trends in 

smoking-related mortality in the United States. New Engl J Med 2013; 368:351–64. 

6  Pirie K, Peto R, Reeves GK, Green J, Beral V. The 21st century hazards of smoking and benefits 

of stopping: a prospective study of one million women in the UK. Lancet 2013; 381:133–141. 

7  U.S. Department of Health and Human Services. The health consequences of smoking: a report of 

the Surgeon General. Washington, DC: Government Printing Office; 2004.  

8  Taylor DH, Hasselblad V, Henley SJ, Thun MJ, Sloan FA. Benefits of smoking cessation for 

longevity. Am J Public Heal 2002; 92:990–6. 

9  Chaloupka FJ, Yurekli A, Fong GT. Tobacco taxes as a tobacco control strategy. Tob Control 

2012; 21:172–80. 

10  Gallet CA, List JA. Cigarette demand: a meta-analysis of elasticities. Heal Econ 2003; 12:821–35. 

11  DeCicca P, McLeod L. Cigarette taxes and older adult smoking: evidence from recent large tax 

increases. J Heal Econ 2008; 27:918–29. 

12  DeCicca P, Kenkel D, Mathios A, Shin Y-J, Lim J-Y. Youth smoking, cigarette prices, and anti-

smoking sentiment. Heal Econ 2008; 17:733–49. 



304 
 

13  DeCicca P, Kenkel D, Mathios A. Cigarette taxes and the transition from youth to adult smoking: 

smoking initiation, cessation, and participation. J Heal Econ 2008; 27:904–17. 

14  Levy DT, Hyland A, Higbee C, Remer L, Compton C. The role of public policies in reducing 

smoking prevalence in California: results from the California tobacco policy simulation model. 

Health Policy 2007; 82:167–85. 

15  Carpenter C, Cook PJ. Cigarette taxes and youth smoking: new evidence from national, state, 

and local Youth Risk Behavior Surveys. J Heal Econ 2008; 27:287–99. 

16  Nonnemaker JM, Farrelly MC. Smoking initiation among youth: the role of cigarette excise 

taxes and prices by race/ethnicity and gender. J Heal Econ 2011; 30:560–7. 

17  Fichtenberg CM, Glantz SA. Association of the California Tobacco Control Program with 

declines in cigarette consumption and mortality from heart disease. New Engl J Med 2000; 

343:1772–7. 

18  Gilpin EA, Messer K, White MM, Pierce JP. What contributed to the major decline in per capita 

cigarette consumption during California’s comprehensive tobacco control programme? Tob 

Control 2006; 15:308–16. 

19  Barnoya J, Glantz S. Association of the California tobacco control program with declines in lung 

cancer incidence. Cancer Cause Control 2004; 15:689–95. 

20  Al-Delaimy WK, Pierce JP, Messer K, White MM, Trinidad DR, Gilpin EA. The California Tobacco 

Control Program’s effect on adult smokers: (2) Daily cigarette consumption levels. Tob Control 

2007; 16:91–5. 

21  DeCicca P, Kenkel D, Liu F. Excise tax avoidance: The case of state cigarette taxes. J Heal Econ 

2013; 32:1130–1141. 

22  Merriman D. The micro-geography of tax avoidance: evidence from littered cigarette packs in 

Chicago. Econ Policy 2010; 2:61–84. 

23  Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System 

survey data. Atlanta GA: U.S. Department of Health and Human Services; 1984.  

24  Stehr M. The effect of cigarette taxes on smoking among men and women. Heal Econ 2007; 

16:1333–43. 



305 
 

25  Sloan FA, Trogdon JG. The impact of the Master Settlement Agreement on cigarette 

consumption. J Policy Anal Manag 2004; 23:843–55. 

26  Levy DT, Bauer JE, Lee H-R. Simulation modeling and tobacco control: creating more robust 

public health policies. Am J Public Heal 2006; 96:494–8. 

27  Levy D, de Almeida LM, Szklo A. The Brazil SimSmoke policy simulation model: the effect of 

strong tobacco control policies on smoking prevalence and smoking-attributable deaths in a 

middle income nation. PLoS Med 2012; 9:e1001336. 

28  Levy DT, Chaloupka F, Gitchell J, Mendez D, Warner KE. The use of simulation models for the 

surveillance, justification and understanding of tobacco control policies. Heal Care Manag Sci 

2002; 5:113–20. 

29  Eilers P, Marx B. Flexible smoothing with B-splines and penalties. Stat Sci 1996; 11:89–121. 

30  Hogan DR, Salomon JA. Spline-based modelling of trends in the force of HIV infection, with 

application to the UNAIDS Estimation and Projection Package. Sex Transm Infect 2012; 88 

Suppl 2:i52–7. 

31  Kirshenbaum AP, Olsen DM, Bickel WK. A quantitative review of the ubiquitous relapse curve. J 

Subst Abus Treat 2009; 36:8–17. 

32  Binder D. On the variances of asymptotically normal estimators from complex surveys. Int Stat 

Rev 1983; 51:279–92. 

33  Pfeffermann D. The role of sampling weights when modeling survey data. Int Stat Rev 1993; 

61:317–37. 

34  Gelman A. Struggles with survey weighting and regression modeling. Stat Sci 2007; 22:153–

164. 

35  Adhikari B, Kahende J, Malarcher A, Pechacek T, Tong V. Smoking-attributable mortality, years 

of potential life lost, and productivity losses--United States, 2000-2004. MMWR 2008; 

57:1226–8. 

36  Rostron B. Smoking-attributable mortality by cause in the United States: revising the CDC’s 

data and estimates. Nicotine Tob Res 2013; 15:238–46. 



306 
 

37  Arias E, Heron M, Tejada-Vera B. United States life tables eliminating certain causes of death, 

1999–2001. Natl Vital Stat Reports 2013; 61:1–128. 

38  Arias E. United States life tables, 2008. Natl Vital Stat Reports 2012; 61:1–63. 

39  Anderson RN. United States life tables, 1997. Natl Vital Stat Reports 1999; 47:1–37. 

40  Bell FC, Miller ML. Life tables for the United States Social Security Area 1900-2100. Actuarial 

Study No. 120. Washington DC: Office of the Chief Actuary, Social Security Administration; 

2005.  

41  U.S. Census Bureau Population Division. Population estimates for the U.S. and states by single 

year of age and sex. U.S. Census Bureau Population Division; 2000.  

42  National Center for Health Statistics. Natality public-use data on CDC WONDER Online Database, 

for years 1995-2002 published November 2005, for years 2003-2006 published March 2009, and 

for years 2007-2010 published December 2012. Atlanta GA: National Center for Health Statistics, 

Division of Vital Statistics; 2012.  

43  U.S. Census Bureau. 2012 national population projections. Washington DC: U.S. Census Bureau; 

2012.  

44  U.S. Bureau of Labor Statistics. Consumer price index: current series, all urban consumers. 

Washington DC: U.S. Bureau of Labor Statistics; 2013.  

45  U.S. Bureau of Labor Statistics. Local area unemployment statistics. U.S. Bureau of Labor 

Statistics; 2013.  

46  American Nonsmoker’s Rights Foundation. U.S. Tobacco Control Laws Database. Berkeley CA: 

American Nonsmoker’s Rights Foundation; 2013.  

47  Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized epidemics using 

Incremental Mixture Importance Sampling. Biometrics 2010; 66:1162–73. 

48  R Core Team. R: A language and environment for statistical computing. 2013. doi:ISBN 3-

900051-07-0 

49  Eddelbuettel D, Francois R. Rcpp: Seamless R and C++ Integration. J Stat Softw 2011; 40:1–18. 

50  Lang S, Brezger A. Bayesian p-splines. J Comput Graph Stat 2004; 13:183–212. 



307 
 

51  Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal 

2006; 1:515–33. 

52  U.S. Department of Commerce and Census Bureau. Tobacco Use Supplement to the Current 

Population Survey (2010-11). Washington DC: U.S. Department of Commerce and Census 

Bureau; 2012.  

53  U.S. Census Bureau. 2010 Census. Washington DC: U.S. Census Bureau; 2010.  

54  Hoyert DL, Xu J. Deaths: preliminary data for 2011. Natl Vital Stat Reports 2012; 61:6–51. 

55  Boonn A. State excise and sales taxes per pack of cigarettes: total Amounts and state rankings. 

Washington DC: Campaign for Tobacco-Free Kids; 2013.  

56  Keeler TE, Hu TW, Barnett PG, Manning WG, Sung HY. Do cigarette producers price-

discriminate by state? An empirical analysis of local cigarette pricing and taxation. J Health 

Econ 1996; 15:499–512. 

57  Bhaskar R, Cortes R, Scopilliti M, Jensen E, Dick C, Armstrong D, et al. Estimating net 

international migration for 2010 demographic analysis: an overview of methods and results. 

Washington DC: U.S. Census Bureau; 2013.  

58  Stehr M. Cigarette tax avoidance and evasion. J Health Econ 2005; 24:277–97. 

59  Holford TR, Meza R, Warner KE, Meernik C, Jeon J, Moolgavkar SH, et al. Tobacco control and 

the reduction in smoking-related premature deaths in the United States, 1964-2012. JAMA 

2014; 311:164. 

60  Rock V, Malarcher A, Kahende J, Asman K, Husten C, Caraballo R. Cigarette smoking among 

adults -- United States, 2006. MMWR 2007; 56:1157–61. 

61  Hughes JR, Keely J, Naud S. Shape of the relapse curve and long-term abstinence among 

untreated smokers. Addiction 2004; 99:29–38.  


