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Leveraging genetic association data to investigate the polygenic architecture of human 

traits and diseases 

 

ABSTRACT 

 

Many human traits and diseases have a polygenic architecture, where phenotype is 

partially determined by variation in many genes. These complex traits or diseases can be highly 

heritable and genome-wide association studies (GWAS) have been relatively successful in the 

identification of associated variants. However, these variants typically do not account for most of 

the heritability and thus, the genetic architecture remains uncertain. 

This dissertation describes analytical approaches to look for evidence of models of 

genetic architecture that could explain the remaining heritability.  We develop methods to make 

predictions under various models, and compare the expected results from these predictions 

against the observed data for several traits and diseases. First, in studies of height (a classical 

polygenic trait), we modeled the expected cumulative effect of common variants identified from 

GWAS and compared the model with empirical data in individuals from the tails of the height 

distribution. We found that these common variants are predictive of stature, but have less than 

expected effects specifically at the short end of the height distribution. This result is consistent 

with models where rare variants with moderate effect, influence stature only in the shortest 

individuals. Second, we showed that under genetic models where low frequency variants make 
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polygenic contributions to disease, there will be an excess of low frequency risk-increasing 

variants detected in GWAS. As such, by comparing the number of detected risk-increasing to 

risk-decreasing variants, one can detect a signal of the contribution to polygenic inheritance from 

low frequency variants. Finally, we examine the genetic architecture of sitting height ratio 

(SHR), a measure of body proportion that varies dramatically between individuals of African and 

European ancestry. We find that the SHR difference between populations is largely due to 

polygenic architecture; there is no evidence for any major locus accounting for most of this 

difference. 

These results show that, with the appropriate computational and genetic models, one can 

use empirical results of genetics studies to make inferences regarding genetic architecture of 

human traits and diseases. Doing so can help investigators prioritize strategies for uncovering the 

remaining unexplained heritability.  
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A PREAMBLE 

Mendelian inheritance 

It has long been recognized that physical traits are more likely to be shared by parents and 

their offspring, between siblings or close relatives as well as between individuals of similar 

ethnic ancestry [1]. Such a phenomenon is known as heritability and the modern explanation of 

heritability was first broadly described by Gregor Mendel more than two centuries ago, where he 

showed that some traits of pea plants follow a specific pattern of inheritance [2]. Mendel 

theorized that each individual possesses a pair of alleles for each trait and will randomly pass on 

one of the alleles to its offspring. The offspring would then inherit two alleles, one from its father 

and one from its mother and the pair of alleles would determine the trait of the offspring. Such a 

pattern is now popularly known as Mendelian inheritance. 

Polygenic inheritance 

In the beginning of the 20
th

 century, there were anthropologists and biologists who argued 

that since Mendelian inheritance predicts that traits would be discrete in nature, it cannot account 

for the number of continuous or quantitative traits (e.g. height) observed in humans and thus the 

theory cannot be applied to humans. However, in 1918, R. A. Fisher demonstrated that if there 

were multiple allele pairs, that each pair is responsible for only a fraction of the trait and each of 

these pairs observed the same pattern of Mendelian inheritance, it could account for most of the 

continuous or quantitative traits observed in humans [3]. This proposed model of Fisher is what 

we now call polygenic inheritance. 

Disease mapping 

Today, we know that the source of heritability is largely from within the variants contained 
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in the DNA of genes of our diploid chromosomes although there is some indication that 

epigenetics, molecular factors that attach to DNA, can have a role as well [4]. With the invention 

of methods like molecular cloning and the subsequent typing of genetic markers, it became 

possible to map heritable diseases to their respective genetic locus. Doing so allowed researchers 

to pinpoint the exact genetic variants that are responsible for causing the disease. Studying the 

genes underlying these variants can potentially inform us about the disease etiology and thereby 

be informative for developing therapeutics. Therefore to map a disease to a genetic locus, one 

must be able to determine if a genetic marker is associated with disease status. 

Linkage analysis 

There many types of genetic markers that can be used for this purpose. One of the earliest 

markers that were used for this purpose were microsatellite markers or short tandem repeats 

(STRs) [5]. These STR alleles can be genotyped in a variety of ways, from performing gel-

electrophoresis to parallel sequencing [6]. However, more recently, since the completion of the 

human genome project [7] and the international hapmap project [8], single nucleotide 

polymorphisms (SNPs) have become the dominant marker of choice as it is more abundant and 

covers more of the human genome than any of the other known markers [9]. Having determined 

the marker, determining if the genetic marker is associated with disease status is the next 

problem. One of the first methodology used for determining this is linkage analysis [10,11]. 

Linkage analysis is a process by which researcher use genetic markers to determine if disease 

status co-segregates with any of these markers more so than by random chance by studying the 

inheritance pattern of these markers in families that have the trait or disease. The degree of co-

segregation is measured by the LOD (logarithm of odds) score and a LOD score of 3.0 or greater 

is usually taken as evidence that the genetic locus represented by the marker harbors the variant 
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that causes the disease. This approach has been very successful at identifying Mendelian 

diseased genes [12] but fall short when trying to identify genes for complex disease [13]. 

 Linkage analysis not amenable for complex diseases 

There are a number of reasons why linkage analysis is not amenable to identifying genes 

associated with complex diseases. First, complex diseases are thought to be genetically 

influenced by multiple genes rather than a single gene. This could mean that an affected 

individual could be genetically predisposed to having the disease because of variants from many 

genes, each of which causes a small increase to the risk of obtaining the disease (polygenic 

inheritance). This could also mean that while for each family, only mutations in a single gene is 

responsible, that gene is different for different families (locus heterogeneity). For example, an 

autosomal recessive disease like Fanconi Anemia has about 16 different genes [14]. If the 

number of genes were to be much more, for example 160 instead of 16, then there would be a 

good chance that every family analyzed for the disease will have a different causal gene and thus 

no overlapping genes. Whichever the case maybe, be it polygenic inheritance of locus 

heterogeneity, linkage analysis will be less powered for complex diseases as the genetic basis for 

each affected child within each family or across families is different. 

Genetic Association Studies 

Polygenic inheritance is a defining feature of most complex traits and one of the major 

reasons why linkage analysis in family pedigrees is not amenable to identifying genes 

responsible for complex traits. The problem is further compounded by the fact that many 

complex traits are influence by non-genetic (environmental) factors as well. To solve this 

problem, researchers suggested that genetic association studies rather than linkage analysis 

would be more effective in identifying the responsible genetic loci under the assumption of 
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polygenic inheritance. Instead of examining chromosome markers that co-segregate with disease 

status in family pedigrees, genetic association studies examine the frequency of the allele in a 

large population cohort to determine if the allele frequency is correlated with the trait or disease 

status. Indeed, researchers have shown that for studies with the same sample sizes, genetic 

association studies significantly outperforms linkage analysis under the assumption of polygenic 

inheritance. The process of performing genetic association studies have now evolved into a 

process known as Genome wide association studies (GWAS), where markers on the entire 

genome are systematically tested at the appropriate threshold of significance such that the 

significant results are robust and reproducible [15]. To date, there are many successful GWAS 

that are published highlighting the overall success of GWAS as a methodology for identifying 

genetic loci associated with complex traits or diseases. 

Missing heritability 

Although genome wide association studies (GWAS) have been largely successful, the 

variants identified typically do not explain most of the trait’s heritability. This result is known as 

the missing heritability problem and there are suggested hypotheses to explain the missing 

heritability [16]. One such hypothesis is that a substantial fraction of the heritability of the 

disease or trait is due to rare genetic variants [17]. As these variants are rare in the population, 

they are not well assayed by many of the genotyping arrays available nor are they amenable to 

imputation [18]. Another hypothesis is that there are more common variants with even smaller 

effect sizes and these studies are not well powered to detect these variants. A solution to answer 

this question would be to perform whole-genome sequencing instead of using genotyping arrays 

on even more number of samples although performing such an experiment can be costly as 

whole-genome sequencing is still significantly more expensive than genotyping arrays. 
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Therefore, perhaps it would be useful to determine if the exercise of performing sequencing 

and/or studying more samples to answer this question would be fruitful from the results from 

existing GWAS. In this dissertation, I present various methods to infer from GWAS results the 

genetic landscape that could explain the remaining trait heritability. Apart from performing 

GWAS, I described two different and independent approaches for making this inference without 

the need for performing additional whole-genome or whole-exome sequencing. 

Approaches to examine genetic architecture 

The first approach is one that explores the possibility of rare genetic variants contributing to 

the trait by examining the effect of the variants identified through GWAS on individuals at the 

tails of the distribution (Chapter 2). Using human height as our model phenotype, we showed 

that common variants identified through GWAS at the short end of the distribution are less 

predictive than expected. This result can be explained by the presence of rare genetic variants 

contributing to short stature. The second approach is one that explores the summary statistics 

obtained from GWAS (Chapter 3). By examining the direction of effect (odds-ratios or effect 

sizes), an excess of risk-increasing variants compared to risk-decreasing one can be indicative of 

polygenic inheritance from low-frequency or rare genetic variants, especially for dichotomous 

traits or diseases. In the subsequent chapter (Chapter 4), I will describe our study to determine 

genetic variants that can explain the heritable complex trait of body proportion using sitting-

height ratio (SHR) as the phenotype. SHR is thought to be heritable and the SHR of European 

Americans is known to be significantly larger than African Americans. I will provide evidence 

that this difference in SHR is largely genetically driven as well as polygenic. Finally, I will 

conclude with a summary of the findings presented and discuss the potential implications and 

possible future research stemming from the discoveries described in this dissertation. 
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THE HERITABILITY OF COMPLEX TRAITS 

A description of heritability 

Complex traits or diseases are broadly defined as phenotypes that do not follow a Mendelian 

pattern of inheritance. Such traits are usually relatively common, i.e. at least 1% of the 

population have the trait or disease in contrast to Mendelian disorders, which are usually much 

rarer [19]. A main question in human biology is whether the expression of a trait of interest is 

due to genetic factors, environmental factors or just a product of stochasticity. To measure the 

contribution of genetic factors to the trait, one can measure the heritability. Heritability is a 

measurement of how much genetics play a role of explaining the difference of the trait between 

individuals of a population [20]. It can be loosely described as how much of the trait that you 

have is due to you inheriting it from your parents. It is also a technical term, defined as the ratio 

of variances, specifically the proportion of total variance in a population for a trait that is 

attributable to genetic variation [20]. This distinction of its varied use in literature is sometimes 

not made which can be a source of confusion [21]. Heritability can also be divided into 2 

categories, the first being broad-sense heritability and the second being narrow-sense heritability. 

Broad-sense heritability (H
2
) describes the attribution of total genetic variation to the trait’s 

variability while narrow-sense heritability (h
2
) describes the attribution of only additive genetic 

variation to the trait’s variability. 

Methods for estimating heritability 

 As heritability is not a physical trait that can be directly measured, one can only use 

various methods to provide an estimate. One of the first methods would be to determine if 

average phenotypic value of the parents (mid-parental phenotype) is correlated with the 

offspring’s phenotypic value. This method was first used by Francis Galton over a 100 years ago 
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to show that human height is heritable [22]. The correlation can be measured by linear regression 

and studies have put the estimate of height as high as 80% (h
2
 ~ 0.8) [23]. This method can also 

be adapted to use correlation estimates of full-siblings instead of parent-offspring although some 

other adjustments are required. Another popular way of measuring heritability would be the use 

of Falconer's formula in twin studies [24]. Given that dizygotic (DZ) twins on average are only 

50% identical by descent (IBD) while monozygotic (MZ) twins are 100% IBD, MZ twins are 

therefore expected to be two times more similar than DZ twins. As DZ twins are approximately 

50% IBD, heritability can be estimated by taking twice the difference of the phenotypic 

correlation between MZ twins and DZ twins. More recently, with the introduction of whole-

genome genotyping arrays, heritability can be now be estimated by taking the correlation of 

phenotypic values with IBD estimates from full siblings [25] as well as using the correlation of 

all common SNPs in predicting the phenotype [26]. Heritability is not necessary constant over 

time. Heritability can decrease with increased environmental variability. It has been suggested 

that heritability for morphological traits will decrease in poorer environmental conditions [27], 

e.g. nutrient poor environment. This fits the theory that in a poor environment, competition for 

resources will cause increased environmental variability that will influence the outcome of the 

trait. Nonetheless, heritability estimates provide us with a way to determine which traits are 

mainly genetically influenced and which traits are mainly environmentally influenced. 

Heritability and genetic architecture 

It is known that it is not a single gene but a multitude of genes that are responsible for 

complex traits or diseases. We also find that most of these complex traits or diseases, their 

occurrences are not as rare as most of the Mendelian diseases with prevalence rate very much 

greater than 1 in 1000 individuals. For example, a study of the incidence of Schizophrenia 
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reported an average lifetime morbid risk for schizophrenia to be 7.2 per 1000 persons [28]. A 

study of prevalence of type 2 diabetes in adolescents put the prevalence as high as 110 per 1000 

persons (11%) [29].   Given that the disease can be common in the population, we can ask if the 

genetic variants that are responsible for the disease are common or rare in the population. Asking 

this question would illustrate 2 concepts. The first is what is known as the “common disease, 

common variant hypothesis”. In this scenario, it is thought that the genetic variants that give rise 

to risk of disease is relatively common but that each variant’s contribution to disease risk is 

small. This means that the effect size per allele is small, that is the effect size usually less than 

0.1 standard deviations or has an odds-ratio less than 1.1. In such a mode of inheritance, also 

known as polygenic inheritance, the genetic cause of the disease per individual or family is due 

to all the risk variants collectively. The next concept is what is known as the “common disease, 

rare variant hypothesis”. In this case, the genetic variants that give rise to the risk of disease are 

very rare and each variant’s contribution to disease risk is large. The effect size per allele can be 

large, perhaps more than 0.5 standard deviations or an odds-ratio greater than 1.6. For this mode 

of inheritance, also called locus heterogeneity, the genetic cause of the disease per individual or 

family is due largely to only 1 gene and other individuals or family with the disease have other 

genes responsible for their disease. Although these “hypotheses” are seemingly different, they do 

not have to be mutually exclusive. Effectively, these “hypotheses” can be unified by addressing 

the effect sizes and variant frequencies for the spectrum of genetic variants that give rise to the 

disease. For such traits, the variant cannot be common and have a large effect. If that is true, the 

trait or disease would be monogenic and would be classified as a Mendelian disorder. As such, it 

is not inconceivable that a disease could have both rare large effect alleles as well as common 

small effect alleles. For example, even when GWAS show that most variants that are associated 
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with height have small effects [30], there are very rare alleles that can give rise to short stature, 

e.g. Achondroplasia [31] as well as rare alleles that give rise to tall stature, e.g. Marfan syndrome 

[32]. The same can be said for many other complex traits or disease and it is important to be 

aware of the genetic architecture giving rise to the trait or disease. 

Heritability and polygenic inheritance 

To explain the heritability of non-Mendelian complex traits and diseases, the pattern of 

inheritance is usually assumed to be polygenic, i.e. many variants across multiple genes each 

contribute a small fraction of the heritability. Examples of complex traits include asthma, 

schizophrenia, type 2 diabetes, inflammatory bowel disease and coronary heart disease. These 

traits are highly heritable [33–37] even though they do not follow a Mendelian pattern of 

inheritance. In type 2 diabetes, the first notable gene with variation conferring risk to the disease 

was TCF7L2 [38]. While not completely penetrant, individuals having a single copy of the risk 

allele are 1.45 times more likely to get type 2 diabetes than individuals without the risk allele. 

Since then, studies with much larger sample sizes have yielded about 30 distinct loci that are 

associated with the risk of getting type 2 diabetes [39]. A similar situation exists for 

schizophrenia, where prior to having sufficiently large sample sizes, no single locus or gene was 

determined to be significantly associated with schizophrenia [40]. However, in one of the earlier 

studies of schizophrenia with just over 3,000 cases and 3,000 controls, the authors reported a 

significant signal of polygenic inheritance from common variants [41]. In that study, the authors 

used the common variants that were marginally associated in their samples to model a 

“polygenic score”, a score that represents the overall cumulative predictability of these common 

variants to schizophrenia risk. They found that the polygenic score is significantly predictive of 

schizophrenia in an independent cohort of individuals. This suggest that there are many, perhaps 
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thousands of variants that modulates the risk of acquiring schizophrenia, each of which have 

only a very small effect on the overall risk and they are not discovered to be significant because 

the study is simply underpowered and further studies with many more samples would be 

necessary. Indeed, when larger sample sizes were available for association, we begin to see 

significant loci emerge [42]. Other complex traits have similar stories where multiple loci have 

been discovered, each of which confers only a fraction of the total risk. 

Quantitative traits and polygenic inheritance 

 Quantitative traits that are approximately normally distributed in a population are usually 

complex traits as well. If such a trait is heritable, then it is unlikely for variation only within a 

single gene or locus to influence the trait. Traits like height, body mass index (BMI), lipid levels, 

fasting glucose levels, blood pressure are just some notable examples. There are now well over a 

hundred loci that are associated with human height [30], each locus only has a very small effect 

on the overall height. For example, a variant in the HMGA2 locus (rs1351394), one of the first 

loci discovered to be associated with height, has an allele frequency of 49% and an effect size of 

0.054 standard deviations or approximately 0.3 centimeters. That means every height increasing 

allele of this variant predicts on average an increase of only a 0.3 centimeter increase in overall 

height, which is just a small effect. For other quantitative traits, similar results were reported 

from association studies like BMI [43], LDL cholesterol [44] and blood pressure [45], etc, where 

many common variants have been found to be associated with these traits with each of these 

variants explaining only a small fraction of the overall trait. Because of the highly polygenic 

nature of such complex traits, methods like linkage analysis that were successful in identify loci 

for Mendelian disorders can be suboptimal when applied on complex traits. Therefore, new 

methodologies and paradigms were developed to map the variants in genes that influence 
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complex traits. We will discuss this in more detail in the next section. 

 

METHODS FOR STUDYING GENETICS OF COMPLEX TRAITS 

Single nucleotide polymorphisms (SNPs) 

 The principle for determining if variants in a gene cause or modulate risk for a disease or 

a trait is to be able to determine if they are associated with the disease or trait in a non-random 

way. As whole genome deep coverage sequencing in a large number of individuals is not feasible 

at this point in time (too costly), we rely on genetic markers for mapping a trait or disease to a 

genetic locus. The genetic marker that is currently very widely used for such a purpose is single-

nucleotide polymorphisms (SNPs). SNPs are single base pair differences within the genome that 

is polymorphic in a population. As we are diploid for most of our chromosomes (males are 

largely hemizygous for the X-chromosome), some individuals in the population might have a 

different pair of alleles than other individuals for any particular SNP. These usually bi-allelic 

markers are found in abundance throughout the genome, much more frequently than STRs [46]. 

For each SNP, because of their bi-allelic nature as well as being diploid, each individual would 

largely be of only 3 genotypic states. For example, if the alleles for the SNP are “A” and “C”, 

then the 3 possible genotypic states would be homozygous “AA”, heterozygous “AC” or 

homozygous “CC”. SNPs were discovered and made publically available in a major way from 

the efforts of the International Hapmap Project [47]. In the phase 2 release of the project, they 

reported more than 3 million SNPs from 4 geographically diverse populations [9]. To find and 

characterize even more SNPs, the 1000 genomes project, a project that aims to characterize 

genomic variation from whole genome sequencing, reported their findings of about 15 million 

SNPs [48].  
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SNP genotyping strategies 

While it might not be difficult or tedious to determine the genotypic state of any SNP in 

an individual, genotyping many SNPs for many individuals can be challenging, both from a 

technical as well as a cost perspective. Methods such as Sanger sequencing [49] and PCR-RFLP 

[50] were possible methods for performing SNP genotyping but is too tedious and expensive to 

perform them in high-throughput (many SNPs) over many individuals. As such, there was a need 

for a relatively cheap and fast technology that could genotype thousand of SNPs efficiently in 

many individuals. With success from efforts to characterize SNPs within human populations, that 

knowledge made it possible for the design of high-density SNP genotyping arrays. SNP 

genotyping arrays work in principle by probing for sequence variation of many targets in parallel 

by immobilizing the probe sequences on a surface and determine the genotype by reading out the 

strength to which these probe sequences are bound to their targets. These arrays can easily 

genotype many SNPs across the genome in a cost efficient manner [51]. There are now many 

companies that sell these high-density SNP genotyping arrays that can perform genotyping for 

over a million SNPs per sample. However, high-density SNP genotyping arrays might become 

less and less utilized with the growth and availability of whole-genome sequencing. Whole-

genome sequencing cost have gone down significantly and it may come to a point in the near 

future that whole-genome sequencing will be the major strategy used by researchers to perform 

genotyping of genetic variants on a large scale. 

Genotype imputation 

While it is possible to genotype many SNPs in parallel, it is still not possible to genotype 

all or most of the known SNPs in the human genome from SNP genotyping arrays. This is 

because there are just too many SNPs and it is impossible to fit all or most of them onto a single 
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genotyping array. As such, these SNP genotyping arrays have only a subset of the total possible 

SNPs from the human genome. Another potential problem would be that different companies that 

design and sell these arrays do not use the same subset of SNPs. This problem can be solved by 

performing genotype imputation. Genotype imputation is the process of determining the 

genotypes of unknown markers with some level of certainty using the genotype information of 

neighboring markers. This is possible because linkage disequilibrium, that variants within the 

genome are not independent [52]. This is because the human population is relatively new and 

variants that were introduced into the population tend to travel together. With enough time, 

recombination events between the variants will break the variants’ correlation and bring about 

linkage equilibrium which will make imputation impossible. Genotype imputation can be 

performed computationally with the use of a reference panel. The reference panel is typically a 

more complete catalog of SNP genotypes obtained from a large cohort of individuals. Some 

examples of these panels would be those provided by the International Hapmap Project [47] as 

well as the 1000 genomes project [48] although it is not uncommon to use panels from other 

sources as well. With these panels together with the genotypes of one’s samples, one can 

computationally impute the variants that are present in the panels but not genotyped in the 

samples. Some of the more utilized software for this purpose include BEAGLE [53], MACH 

[54] and IMPUTE2 [55] just to name a few. With imputation, SNPs that were directly genotyped 

in one set of samples that were not directly genotyped in other sets of samples can now be use 

for association studies. 

Performing genome wide association 

  Linkage analysis has been shown to be less successful at identifying loci associated with 

complex traits than with Mendelian traits [13]. An arguably more effective approach would be to 
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perform a Genome wide association study (GWAS). Instead of tracking genetic markers in 

affected familial pedigrees, one can instead design a study and determine if the frequency of the 

genetic markers are significantly different between case individuals and control individuals. In 

such study designs, case individuals (cases) are usually randomly selected unrelated individuals 

that are affected and control individuals (controls) are randomly selected unrelated individuals 

that are unaffected. Assuming a scenario where 2 SNPs are genotyped in 1000 cases and 1000 

controls (Figure 1.1), one can measure the frequency of the alleles in both SNPs to determine if 

the allele frequencies are significantly different by performing a chi-squared test. In this 

example, SNP1 is significantly associated (P = 2.82 x 10
-13

) at a genome wide significance. The 

genome wide significance threshold is taken to be  P < 5x10
-8

 although it has been suggested 

that it could be relaxed just a little [56]. The genome wide significance threshold has to be 

stringent to correct for multiple hypothesis testing given that GWAS test multiple markers at the 

same time [57].  SNP2 on the other hand is only marginally associated (P = 0.001) and does not 

reach genome wide significance. This process can be systematically pursued for all the SNPs that 

were genotyped via the high-density SNP arrays and subsequently imputed from a reference 

panel. The first successful GWAS was performed on a disease called Age-related macular 

degeneration in 2005 [58]. In that study of 96 cases and 50 controls, they reported 2 strongly 

associated SNPs (P < 10
-7

) in the complement factor H gene (CFH). Since then, there are many 

more GWAS performed with more than 10,000 SNPs identified as genome wide significant for 

various different traits and diseases in more than 1000 publications [59]. The large growth of 

GWAS can be attributed to the affordability of high density SNP arrays as well as freely 

available bioinformatics tools like PLINK [60] for data analysis. Besides performing 



16 

 

 

Figure 1.1: An example of GWAS on cases versus controls. SNP1 and SNP2 are genotyped in 

1000 cases and 1000 controls (1 stickman = 100 individuals). SNP1 is significantly associated 

with disease status while SNP2 is only marginally associated and does not reach genome wide 

significance. Genome wide significance is assumed to be P < 5 x 10
-8

. 
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case-control analyses, GWAS can also be performed on quantitative traits like height, BMI, 

blood pressure and lipid levels. Since there are no cases or controls, GWAS on quantitative traits 

seek to determine if the allele dosages for each SNP is significantly trending, either increasing or 

decreasing with the trait. This is usually done by linear regression of the allele dosages against 

the quantitative trait via a simple linear model [61]. For example, we simulated a scenario where 

a SNP with minor allele frequency of 30% have a 0.5 standard deviation effect (β) on the 

phenotype. After performing a linear regression of the allele dosages against the phenotypic 

score, we find a strong correlation between the SNP and the phenotype (Figure 1.2A) resulting in 

an estimated β of 0.47 and a very strong association signal (P=2.97 x 10
-22

).  On the other hand, 

when we simulated a scenario where the SNP has no effect, then there is no strong correlation 

(Figure 1.2B). This example shows that GWAS can be use not only for dichotomous traits, but 

also for quantitative traits. 

GWAS ineffective if causal variants not linked to SNPs 

Linkage disequilibrium (LD) is a major factor for the success of GWAS. This is because, 

the vast majority of the time, SNP markers tested for association with diseases are not the actual 

genetic variant that has an effect but rather simply a marker that is in linkage disequilibrium with 

the disease variant. The disease variants could be SNPs, copy number polymorphisms (CNVs), 

short tandem repeats, insertion or deletion polymorphisms (indels) and perhaps even inversion 

polymorphisms. In most cases, there should be a SNP that is in LD (tagging) the causal variant. 

For example, many SNPs have been shown to be strong tagging the common inversion 

polymorphism on the human chromosome 17 [62]. It has also been shown that some SNPs from 

GWAS hits are strongly tagging CNVs and that these CNVs are suggested to be the causal 

variants [63]. However, we cannot discount the possibility that the causal variant is not 
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Figure 1.2: An example of GWAS on quantitative trait. Phenotypic score represents the 

quantitative trait. SNP genotype dosage is the number of effect alleles (0, 1 or 2) that each 

individual has. The association of between genotype and phenotype is shown by the least-

squared regression line. (A) The least squared regression line (red) shows a positive correlation 

of genotype dosage with phenotype (β=0.47, P=2.97 x 10
-22

). (B) The least squared regression 

line (grey) shows no correlation of genotype dosage with phenotype (β=0.06, P=0.21). 
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well-tagged by SNPs. For example, a recent study showed that CNVs in two amylase genes 

(AMY1 and AMY2) are associated with obesity and that these regions are hard to be mapped by 

SNPs [64]. Only by genotyping the copy number did the authors observed the association. 

Therefore, besides performing GWAS using only SNPs as markers, it may be in some cases, 

useful to also genotype other potential markers, especially in genomic regions not well covered 

by SNPs. 

Not straightforward to implicate causal gene from GWAS locus 

While linkage disequilibrium allows one to find loci associated with disease, it is not 

clear which gene within the identified locus is the gene that is causal. Because of linkage 

disequilibrium, the region implicated in GWAS can span many genes and in that respect, linkage 

disequilibrium is more of a problem than a solution. To overcome this, solutions such as systems 

approaches that examines all the loci associated with the disease to determine its molecular 

architecture may be the way forward [65]. Using methods to determine if certain genes within 

various loci identified through GWAS are more biologically connected, those genes are more 

likely to be the causal gene within each of their locus. For example, in one study, the authors 

used a variety of biological functional databases to determine the degree of connectivity between 

genes [66]. In another study, the authors described an approach to form relationships between 

genes by analyzing PubMed abstracts [67]. These approaches have been successfully applied to 

results from GWAS and can prioritize the genes within each locus as to which of them are more 

likely to be the causal gene. 

Population stratification 

Genome wide association studies (GWAS) may also be confounded by population 

stratification. Unlike linkage analysis where studies are perform on familial pedigrees; GWAS on 
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the other hand compares genetic markers between unrelated cases against controls. As such, 

markers that reflect differences in the underlying structure of the population between cases and 

controls may have significant associations when performing GWAS. For example, a SNP in the 

LCT gene locus had significant association with height but the association is largely driven by 

population stratification [68]. Many methods have been developed to try and correct for 

population stratification. One of the more popular methods would be to include principal 

components as covariates when performing the statistical association with linear or logistic 

regression [69]. A study performed to determine the efficacy of the available methods showed 

that most of the methods work comparatively well to address the problem of population 

stratification [70]. Therefore population stratification is now not a major problem and can be 

adequately corrected for. 

Admixture mapping 

Another possible method besides GWAS would be admixture mapping. Admixture 

mapping, also known as “mapping by admixture linkage disequilibrium” (MALD) is a method 

that uses genetically mixed populations to determine if the local ancestry of different ancestral 

populations is correlated with a trait or disease [71]. For example, African Americans have 

genetic ancestry of largely African descent with a proportion being of European origin [72]. If 

one could determine the genomic regions of European ancestry, one could test if having 

European ancestry in these regions is associated with trait differences between individuals. 

Following this idea, methods were developed to accurately determine which regions in an 

individual’s genome are of any particular ancestry. One of the first approach that is used 

extensively for this purpose is to perform the prediction using a hidden markov model (HMM) 

[73]. By systematically walking through each marker consecutively, HMM can be use to predict 
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the most likely ancestral state of the genetic marker given its frequency in each ancestral 

population. The more divergent the frequencies are in different population, the more likely the 

prediction will be accurate. The accuracy can be further improved by incorporating both linked 

markers as well as the use of an explicit population genetic model [74]. Admixture mapping has 

been performed on a multitude of phenotypes, including prostate cancer [75], body mass index 

[76,77], blood lipids [78], just to name a few. One of the reasons why admixture mapping might 

perform better than GWAS is because of admixture linkage disequilibrium. One of the initial 

reasons why GWAS on African populations might yield fewer results than GWAS performed on 

European or non-African populations is because the average linkage disequilibrium (LD) block 

in Africans is much smaller as they are a relatively older population [79,80]. As such, when there 

are relatively few SNPs genotyped for performing GWAS, it might be sufficient for studies in 

non-African populations but inadequate in populations of African ancestry. However, since 

admixture LD, LD of genomic regions due to admixture from a different population, is much 

stronger, this allows association signals to be discovered even with relatively lower marker 

density. However, this also means that if an admixture signal were to be discovered, it would be 

much harder to pinpoint the gene responsible for the association. GWAS on the other hand would 

be more sensitive and better powered if there is high density coverage of the genome, either from 

using high density SNP arrays or whole genome sequencing strategies. Given that high density 

SNP arrays are now widely used, GWAS might now be a better strategy to uncover genetic loci 

associated with disease. 

 

COMPLEX PHENOTYPES 

Human height is a classical complex trait 
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 Human height is probably the best example of a heritable trait that has a polygenic 

architecture [81]. It is the example that Fisher used to reconcile how quantitative traits could also 

adhere to Mendelian inheritance [3]. Instead of having a single gene influencing the outcome of 

one’s height, having many genes do so can explain the distribution of height in the population, 

which is in most cases, normally distributed [82]. However, we do know about diseases that are 

caused by rare mutations that have large effects on one’s stature. These diseases, in most cases, 

have other obvious phenotypes besides the change in stature. For example, Achondroplasia, the 

most common cause of dwarfism is caused by a rare mutation in the FGFR3 gene. Individual 

carrying the mutant allele have on average about a 6 standard deviation decrease in height. The 

prevalence of Achondroplasia is extremely rare, affecting only about 1 in 25,000 individuals 

[83]. Another example would be Marfan syndrome, a genetic disorder caused by mutations in the 

FBN1 gene. Individuals with this Marfan syndrome are unusually tall, on average about 2 

standard deviations taller. The prevalence of Marfan syndrome is rare, affecting only about 1 in 

9802 individuals [84]. In both of these examples, individuals with Achondroplasia or Marfan 

syndrome have other consequential phenotypes as well besides their short or tall stature. 

Achondroplasia individuals usually present with other phenotypes like short fingers and toes 

[85]. Individuals with Marfan syndrome normally present with cardiovascular or vision problems 

too [86]. Nonetheless, rare Mendelian diseases like these do not explain for most of the variation 

of height in the population. 

The alleles of height 

 Most of the variation of height is probably due to common variants that have small effect 

sizes. Indeed, the first such gene implicated in height is HMGA2 [87]. Identified from an initial 

GWAS of just under 5000 individuals, it harbors a common variant that has only an estimated 
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effect size of 0.4 cm per allele. Since then, many more common variants with small effects 

robustly associated with height have been discovered [30]. Among these variants, there are some 

that are associated with human syndromes characterized by abnormal skeletal growth. For 

example, the gene ACAN, of which there is a signal of common variant association with height, 

have been shown to be responsible for syndromes like Osteochondritis dissecans [88] and 

Spondyloepimetaphyseal dysplasia [89]. This suggests that while the common variants might be 

altering the gene activity in a minor way resulting in a small change in overall height, deleterious 

variants in these genes can cause severe reduction in stature. Thus the question remains as to 

what the genetic architecture is for non-syndromic individuals with short or tall stature. Is there a 

contribution of such large effect variants that can explain a person’s tall or short stature in the 

general population? Or is a person’s tall or short stature driven mainly by small effect common 

variants? In chapter 2, we shall discuss a method to infer the genetic architecture of individuals 

at the tails of the height distribution by examining the recently discovered common variants 

associated with height. 

Body proportion is more constrained than height 

While height is a commonly measured anthropometric that varies within a population, 

our heights are not as constrained and individuals can be relatively short or tall without any 

adverse effect on our health. Most of the problems associated with extreme tall or short stature 

are usually because of other adverse phenotypes associated with the tall or short stature. For 

example, individuals with Turner syndrome, a disease cause by monosomy X have short stature 

but commonly have other problems like Lymphedema or cardiovascular related problems. Also, 

given that women are about 2 standard deviations shorter than men shows that short stature itself 

is does not necessary have any health consequences and can vary within the population. On the 
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other hand, our body proportions are more well-defined. Humans have expected ratios of limb 

lengths that are vastly different from other species. For example, unlike humans, chimpanzees 

have arms longer than their legs [90]. 

Sitting height ratio as a measurement of body proportion 

There certain measurements other than our full body height that can be use to judge our 

body proportions. Iliac length, subischial leg length, thigh length, knee height, sitting height are 

just some such measurements [91]. Another such measurement is arm span, which is a good 

proxy for overall height [92]. These measurements can be measured in a clinic but require either 

precise instruments or trained practitioners that they are usually not measured of patients when 

they pay a visit to their doctors even though they may be as informative as knowing our overall 

height and weight. However, one of the measurements that exist in some publically available 

data-sets is measurements of sitting height. Sitting height is the total stature that is comprised by 

the head and trunk. It is usually measured by first having the person sit on a table, then taking the 

measurement of the distance from the surface of the table to the top of the person’s head. If one 

were to divide the sitting height with a person’s height, one can calculate the sitting height ratio 

(SHR) which can then be a measure of body proportion. While short and tall stature is the 

characteristic of many skeletal dysplasia and overgrowth syndromes respectively, many of these 

syndromes can also cause severe deviations of SHR. For example, adult individuals with 

Achondroplasia have average SHR values of 0.66, very much higher than the population 

average, which is around 0.53 [93]. Another type of dysplasia, Spondyloepiphyseal dysplasia, is 

a syndrome characterized by severe short spines and neck. These patient’s hands and feet are of 

normal length suggesting that their SHR values will be lower than average [94]. Next, 

individuals with Marfan syndrome have above average heights and may have lower than average 
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SHR values [95]. However, some individuals with mutations causing severe short stature might 

have SHR within the normal range. For example, a patient with premature pubarche and severe 

short stature has normal SHR [96]. SHR has also been used as a rudimentary predictor of 

phenotypes like body mass index, Age of Menarche and risk of diabetes [97]. Sitting height ratio 

(SHR) is a measurement that changes with age. More of our stature is due to our head and trunk 

as children than as adults, evidenced from the gradual decreasing of SHR till we reach adulthood 

[95]. 

 Sitting height ratio and ancestry 

SHR also differs significantly from individuals with different ancestries. Accordingly, 

individuals of Asian ancestry have higher SHRs than individuals of European ancestry and 

individuals of European ancestry have higher SHRs than individuals of African ancestry [91]. 

The question remains as to whether genetics is the primary driving force for the difference 

between SHR in different populations and whether these SHR differences between populations is 

a polygenic phenomenal or driven by only a single or a few genes. In chapter 4, I shall present 

some recent findings that will reveal more about the genetic architecture of SHR. 

 

ACCUMULATING EVIDENCE FROM MULTIPLE STUDIES 

Being underpowered 

While Genome wide association studies (GWAS) have been very successful at 

elucidating loci that are associated with complex traits and diseases [98], this has not always 

been the case. Studies performed with limited samples are just underpowered for any genome 

wide significant associations to be discovered. The power to detect any SNP to be associated 
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with the trait is directly correlated to the variance of the phenotype explained by the SNP. This 

means that the larger the effect size or the more frequent the SNP is, the more power there is for 

the SNP to be detected as genome wide significant. However, given that for complex traits, the 

effect sizes for any given variant is very small, larger numbers of samples are required for any 

loci to be discovered. 

Combining results by meta-analysis 

 While most studies may be underpowered due to small sample sizes, different studies 

performed on different samples with similar phenotypes could be combined or pooled together in 

an effort to increase the power of the study. Ideally, the genotypes and phenotypes could be 

shared among different research groups such that every group would have access to other group’s 

data to perform the joint study. However, this is usually not feasible due to data sharing 

constraints such as the lack of storage space, privacy issues as well as the unwillingness of 

research groups to share their data prior to publication of their results. As such, for a typical 

GWAS, the association is performed on individual cohorts. Each of these cohorts has whole 

genome SNP data, usually produced by genotyping arrays as well as their corresponding 

phenotypes. The phenotype can be either a quantitative one, e.g. height, body mass index, blood 

pressure, etc, where there is a numerical value attached to each individual or a dichotomous one, 

e.g. type 2 diabetes, schizophrenia, etc, where each individual is either affected with the disease 

(cases) or are unaffected (controls). A dichotomous phenotype can be modeled as a phenotype 

with an underlying quantitative trait distribution, of which individuals whose trait value 

exceeded a threshold are affected and individuals who do not are unaffected [99]. For example, 

in the case of obesity, the underlying phenotype can be body mass index (bmi) and individuals 

whose bmi exceeds 30 can be classified as obese while those whose bmi are below 30 are not 
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[100]. However, in most dichotomous traits or diseases, this underlying trait is usually 

unobservable or unknown. Testing for genetic factors associated with the trait or disease is 

usually done by performing linear regression (quantitative trait), logistic regression 

(dichotomous traits) or some other test of correlation of the SNP dosages with the phenotype. 

Performing the test will produce resulting statistics for each SNP and by combining the statistics 

produced across cohorts through a process known as meta-analysis [101], one would be able to 

obtain the resulting summary statistics for the GWAS. 

GWAS summary statistics 

The resulting summary statistics contains the necessary information to determine which 

SNPs are significantly associated with the trait or disease in question. Typically, the summary 

statistics is reported in the following manner. Each row represents the result of the test for a SNP 

and each column reports a specific result for that SNP. There would a SNP identifier, usually the 

dbSNP rs-number [102], the allele frequency, the odds-ratio or effect size as well as the 

significance of the result, reported as the 2-tailed P-value. For a dichotomous trait, the odds-ratio 

(OR) would tell us the direction of effect of the allele, whether they are associated with increased 

or decreased risk for being affected by the trait or disease. An OR > 1 would indicate increased 

risk while an OR < 1 would indicate decreased risk. For a quantitative trait, the effect size (β) 

would be the equivalent, with a positive β indicating that the allele is associated with increased 

trait values and vice-versa. In either case, the P-value gives us the strength of the association and 

a P-value < 5 x 10
-8

 is suggested to be the genome-wide significant threshold [57]. SNPs that 

have P-values that are less than this threshold are said to have reached genome-wide significance 

and they are usually reported to be significantly associated with the trait or disease in question. 

Genes in the vicinity of such SNPs are then suspected to be involved with the trait or disease 
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etiology and are usually reported as well. 

Independent loci 

Even though by performing the GWAS, the SNPs that achieved genome-wide 

significance are not necessary independent and one must consider the effect of linkage 

disequilibrium (LD). As discussed earlier, there are many variants, SNPs included, in the genome 

that are correlated with one another due to LD. The SNP with the lowest P-value is called the 

“lead SNP” with SNPs in strong LD (usually taken as r
2
 > 0.5) with it labeled as tagging SNPs. 

Together these SNPs represent only a single locus of association as the signal may well be only 

from a single source of variation within this region in the genome. To determine the total number 

of independent loci that is significantly associated with the trait, one can perform a process 

known as LD-pruning. This process orders the SNPs from most significant to least and 

systematically takes away significant SNPs that are in LD with any of the SNPs prior. On top of 

LD-pruning, one could also perform conditional analysis where SNPs in LD with the lead SNP 

can be tested again with the dosage of the lead SNP as a covariate. If the significant association 

is solely due to LD, the resulting P-value would not be significant. However, if the resulting P-

value is still significant, then that SNP’s significance cannot be explained just by LD and 

therefore could be counted as a separate locus associated with the trait or disease. This process 

could also be done in a high throughput manner taking existing summary statistics and LD 

information [103]. 

Not quite genome wide significant  

While the genome-wide significant signals are said to be robust associations discovered 

with the trait or disease, SNPs that do not reach genome-wide significance could still be 

informative. While these marginally associated SNPs cannot be individually considered as robust 
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associations, they may inform us about the genetic architecture of the trait or disease as a whole. 

For example, in the GWAS of human height, the QQ-plots show a significant deviation of the 

marginally associated SNPs from the null model. This is indicative of the fact that there are more 

marginally associated SNPs than that expected under the null model and thus informs us that 

there are more associations to be discovered. In other cases, the QQ-plot might now show much 

of a deviation. Nonetheless, this suggests that the marginally associated SNPs can be informative 

even if most GWAS publications chose only to report the genome-wide significant ones. In 

chapter 3, I will discuss in depth a new method that can exploit the marginally associated SNPs 

to determine if there is evidence of polygenic inheritance. 

 

SUMMARY 

 It is well known that many human traits and diseases do not follow a Mendelian pattern 

of inheritance; that most of these traits and diseases are influenced by variation in many genes, 

each of which contribute a small effect to the total heritability of the trait. These traits and 

diseases are highly heritable and therefore, mapping these traits and diseases to their genetic 

locus can be useful for understanding the disease etiology thereby informative for the 

development of potential therapeutics. Performing genetic association studies (GWAS), where 

one performs genetic genotyping on many genetic markers to determine if they are associated 

with the trait or disease has become a common technique for identifying such genetic loci. 

However, these loci discovered in most GWAS do not account for most of the heritability and 

thus our genetic understanding of these diseases is far from complete. This dissertation aims to 

leverage on results from GWAS to infer the genetic architecture of various complex human traits 

and diseases which could lead to increasing our understanding of disease etiology. 
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ABSTRACT 

Common genetic variants have been shown to explain a fraction of the inherited variation 

for many common diseases and quantitative traits, including height, a classic polygenic trait. The 

extent to which common variation determines the phenotype of highly heritable traits such as 

height is uncertain, as is the extent to which common variation is relevant to individuals with 

more extreme phenotypes. To address these questions, we studied 1,214 individuals from the top 

and bottom extremes of the height distribution (tallest and shortest ~1.5%), drawn from ~78,000 

individuals from the HUNT and FINRISK cohorts. We found that common variants still 

influence height at the extremes of the distribution: common variants (49/141) were nominally 

associated with height in the expected direction more often than is expected by chance (p <5x10
-

28
) and the odds ratios in the extreme samples were consistent with the effects estimated 

previously in population-based data.  To examine more closely whether the common variants 

have the expected effects, we calculated a weighted allele score (WAS), which is a weighted 

prediction of height for each individual based on the previously estimated effect sizes of the 

common variants in the overall population. The average WAS is consistent with expectation in 

the tall individuals, but was not as extreme as expected in the shortest individuals (p<0.006), 

indicating that some of the short stature is explained by factors other than common genetic 

variation. The discrepancy was more pronounced (p<10
-6

) in the most extreme individuals 

(height <0.25 percentile). The results at the extreme short tails are consistent with a large number 

of models incorporating either rare genetic, non-additive or rare non-genetic factors that decrease 

height. We conclude that common genetic variants are associated with height at the extremes as 

well as across the population, but that additional factors become more prominent at the shorter 

extreme. 
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AUTHOR SUMMARY 

Although there are many loci in the human genome that have been discovered to be 

significantly associated with height, it is unclear if these loci have similar effects in extremely 

tall and short individuals. Here, we examine hundreds of extremely tall and short individuals in 2 

population-based cohorts to see if these known height determining loci are as predictive as 

expected in these individuals. We found that these loci are generally as predictive of height as 

expected in these individuals but that they begin to be less predictive in the most extremely short 

individuals. We showed that this result is consistent with models that not only include the 

common variants but also multiple low frequency genetic variants that substantially decrease 

height. However, this result is also consistent with non-additive genetic effects or rare non-

genetic factors that substantially decrease height. This finding suggests the possibility of a major 

role of low frequency variants, particularly in individuals with extreme phenotypes and has 

implications on whole-genome or whole-exome sequencing efforts to discover rare genetic 

variation associated with complex traits. 

 

INTRODUCTION 

Height is a highly heritable trait, with estimates of heritability as high as 90% [1]. Recent 

genome-wide association studies of height have discovered over 180 common variants 

associated with height [2]. These variants have small effect sizes and collectively explain 

approximately 10% of the heritability. While these 180 common variants are robustly associated 

with height when studied as a quantitative trait in the general population, it is not known whether 

these variants have similar associations with stature in individuals at the extreme tails of the 

height distribution. If these common variants do not show the expected association with stature 
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at the extremes (based on their continuous distribution effect sizes), then other factors beyond 

common variants must contribute to extreme stature. Although there are multiple possible 

scenarios, one possible explanation is the existence of rare or low frequency variants with larger 

effect sizes, which have been proposed to explain a portion of the heritability not accounted for 

by the known common variants [3–5] and which may provide novel biological insights into 

mechanisms that affects height. Understanding the role of common variants in the tails of the 

height distribution will also provide methodological insight into the utility of extreme tails 

analysis for future genetic studies of quantitative traits. 

In this chapter, we describe our approach to determine whether common alleles known to 

be associated with height in the general population have the expected distribution in individuals 

from the extremes of the height distribution. We used DNA samples from individuals with 

extreme heights from two population-based cohorts of Finnish (FINRISK) and Norwegian 

(HUNT) ancestry and genotyped them for common variants known to be associated with height. 

Under a polygenic model in which there are many variants and each variant additively 

contributes a small effect to the phenotype, we found that for individuals within ~2.81 standard 

deviations of the mean, the common variants have the predicted associations with height, 

consistent with their effect sizes estimated from the previous population study [2]. However, in 

individuals with more extreme short stature (the shortest 0.25% of the distribution), common 

variants play a less prominent role in explaining phenotype, and the data are consistent with 

various models in which rare variants, non-additive effects or rare non-genetic factors contribute 

to short stature in these individuals. 

 

RESULTS 
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Individual common variants are associated with height in the extremes 

 We attempted to genotype SNPs at the 180 loci previously associated with height in 

individuals from the short and tall extremes of the FINRISK and HUNT cohorts and then 

performed association analyses for each SNP with height using the Cochran-Mantel-Haenszel 

test and logistic regression respectively. In FINRISK, SNPs at 158 of the height loci were 

successfully genotyped in 181 short and 192 tall individuals from the 1% tails of the height 

distribution. In the HUNT study, SNPs at 160 of the height loci were successfully genotyped in 

385 short and 456 tall individuals from the ~1.5% tails of height. Here we focus on the 279 short 

and 309 tall individuals from the 1% tails of the HUNT study, so as to provide consistency with 

the FINRISK study. In both cohorts, the majority of SNPs had effect directions consistent with 

the published results [2] (HUNT 137/160, p<0.0001; FINRISK 122/155, p<0.0001) and there 

was a significant enrichment in SNPs reaching nominal significance for association with height 

(Table 2.1; Table 2.2). We then combined the data from both cohorts in a meta-analysis of 141 

overlapping loci (Table 2.3). Ninety-one percent of SNPs (128/141, p<0.0001) had directions of 

effect consistent with previously published results [2] and 49 SNPs had p-values <0.05, as 

opposed to 7 expected by chance (p<5x10
-28

). This result confirms that, as a group, SNPs found 

to be associated with height in the general population are also associated with height at the 

extremes of the phenotypic spectrum. 

 

The effect sizes of individual common variants on height are similar in the extremes and 

the general population 

 We next tested whether the observed odds ratios (OR) are consistent with the expected 

odds ratios, based on the previously estimated effect sizes from the GIANT study [2] and study 
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Table 2.1: Individual SNP analysis for HUNT cohort 

 

Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs425277 1 2059032 PRKCZ t 0.0240 0.28 1.19 1.14 

rs6657613 1 17200787 MFAP2 t 0.0328 0.52 1.19 1.19 

rs2903545 1 23413695 HTR1D t 0.0215 0.59 1.16 1.12 

rs4601530 1 24916698 CLIC4 c 0.0238 0.74 1.02 1.14 

rs7532866 1 26614131 LIN28 a 0.0222 0.68 1.16 1.13 

rs11209376 1 41270935 SCMH1 g 0.0319 0.22 1.33 1.19 

rs17391694 1 78396214 GIPC2 t 0.0399 0.13 1.25 1.24 

rs6699417 1 88896031 PKN2 t 0.0217 0.63 1.12 1.12 

rs10874746 1 93096559 RPL5 c 0.0217 0.64 1.12 1.12 

rs12731372 1 118654498 SPAG17 c 0.0379 0.75 1.25 1.22 

rs11205277 1 148159496 SF3B4 g 0.0452 0.44 1.46 1.27 

rs17346473 1 170349716 DNM3 g 0.0365 0.30 0.95 1.21 

rs1014719 1 175069389 PAPPA2 t 0.0253 0.55 1.21 1.14 

rs1046934 1 182290152 TSEN15 c 0.0459 0.35 1.21 1.28 

rs10863936 1 210304421 DTL g 0.0220 0.47 1.13 1.12 

rs6684205 1 216676325 TGFB2 g 0.0328 0.26 1.15 1.19 

rs11118346 1 217810342 LYPLAL1 c 0.0264 0.58 1.12 1.15 

rs1172294 2 25022704 DNAJC27 a 0.0334 0.50 1.42 1.19 

rs1545552 2 33213842 LTBP1 g 0.0246 0.72 1.27 1.14 

rs2341459 2 44621706 C2orf34 t 0.0276 0.28 1.18 1.16 

rs3791675 2 55964813 EFEMP1 c 0.0496 0.75 1.65 1.30 

rs1913671 2 88680998 EIF2AK3 c 0.0268 0.37 1.31 1.15 

rs7567288 2 134151294 NCKAP5 c 0.0309 0.22 1.11 1.18 

rs3770047 2 178393780 PDE11A g 0.0402 0.06 0.99 1.24 

rs12470505 2 219616613 CCDC108/IHH t 0.0483 0.91 0.85 1.29 

rs6756793 2 224737163 SERPINE2 t 0.0248 0.55 1.30 1.14 

rs12694997 2 241911659 SEPT2 g 0.0274 0.77 1.07 1.16 

rs2597513 3 13530836 HDAC11 c 0.0392 0.10 1.73 1.23 

rs13088462 3 51046753 DOCK3 c 0.0543 0.07 1.49 1.34 

rs2336725 3 53093779 RTF1 c 0.0263 0.46 0.96 1.15 

rs9833926 3 56625218 C3orf63 a 0.0216 0.50 1.24 1.12 

rs17806888 3 67499012 SUCLG2 t 0.0399 0.90 1.40 1.24 

rs11128265 3 72538487 RYBP a 0.0304 0.80 1.27 1.18 

rs6765930 3 130503468 C3orf47 g 0.0352 0.79 1.24 1.21 

rs9844666 3 137456906 PCCB g 0.0284 0.76 1.36 1.16 

rs724016 3 142588260 ZBTB38 g 0.0670 0.46 1.52 1.43 
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Table 2.1 (Continued) 

 

Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs572169 3 173648421 GHSR t 0.0355 0.33 1.32 1.21 

rs720390 3 187031377 IGF2BP2 a 0.0305 0.36 1.24 1.18 

rs2247341 4 1671115 SLBP/FGFR3 a 0.0251 0.38 1.29 1.14 

rs6449353 4 17642586 LCORL t 0.0714 0.86 1.52 1.46 

rs17081935 4 57518233 POLR2B t 0.0306 0.19 1.01 1.18 

rs7697556 4 73734177 ADAMTS3 t 0.0219 0.48 1.21 1.12 

rs1975474 4 82397961 PRKG2/BMP3 g 0.0376 0.30 1.30 1.22 

rs10010325 4 106325802 TET2 a 0.0214 0.47 1.21 1.12 

rs7689420 4 145787802 HHIP c 0.0687 0.84 1.28 1.44 

rs955748 4 184452669 WWC2 g 0.0243 0.78 1.23 1.14 

rs13154066 5 32867427 NPR3 t 0.0350 0.39 1.12 1.20 

rs6897117 5 55022532 SLC38A9 t 0.0278 0.27 1.28 1.16 

rs6894139 5 88363538 MEF2C t 0.0266 0.56 1.18 1.15 

rs13177718 5 108141243 FER c 0.0412 0.90 1.48 1.25 

rs274546 5 131727766 SLC22A5 g 0.0278 0.59 1.27 1.16 

rs526896 5 134384604 PITX1 t 0.0315 0.72 1.14 1.18 

rs4282339 5 168188818 SLIT3 g 0.0352 0.81 1.08 1.21 

rs12153391 5 171136043 FBXW11 c 0.0329 0.76 1.21 1.19 

rs889014 5 172916720 BOD1 c 0.0290 0.67 1.15 1.17 

rs422421 5 176449932 FGFR4/NSD1 c 0.0332 0.79 1.13 1.19 

rs6879260 5 179663620 GFPT2 c 0.0281 0.60 1.24 1.16 

rs12198986 6 7665058 BMP6 a 0.0359 0.46 1.34 1.21 

rs806794 6 26308656 Histone cluster a 0.0528 0.71 0.98 1.32 

rs3129109 6 29192211 OR2J3 c 0.0257 0.64 0.90 1.15 

rs2596530 6 31495352 MICA g 0.0341 0.53 1.38 1.20 

rs6457617 6 32771829 HLA locus c 0.0238 0.52 1.38 1.14 

rs2780226 6 34307070 HMGA1 c 0.0790 0.08 1.39 1.52 

rs6457821 6 35510783 PPARD/FANCE c 0.1210 0.98 0.98 1.90 

rs12530016 6 44974300 SUPT3H/RUNX2 g 0.0305 0.80 1.55 1.18 

rs310405 6 81857081 FAM46A a 0.0300 0.52 1.08 1.17 

rs7759938 6 105485647 LIN28B c 0.0420 0.35 1.00 1.25 

rs3757235 6 109818534 ZBTB24 c 0.0216 0.58 0.91 1.12 

rs6915129 6 117629512 VGLL2 c 0.0216 0.60 1.13 1.12 

rs1490384 6 126892853 C6orf173 t 0.0370 0.54 1.17 1.22 

rs6569648 6 130390812 L3MBTL3 c 0.0358 0.24 1.26 1.21 

rs7763064 6 142838982 GPR126 g 0.0445 0.72 1.31 1.27 

rs543650 6 152152636 ESR1 g 0.0318 0.59 1.25 1.18 
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Table 2.1 (Continued) 

 

Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs12206717 6 158830686 TULP4 g 0.0487 0.95 0.91 1.30 

rs798489 7 2768329 GNA12 c 0.0515 0.75 1.37 1.32 

rs1708299 7 28156471 JAZF1 a 0.0417 0.34 1.43 1.25 

rs6959212 7 38094851 STARD3NL c 0.0229 0.68 1.24 1.13 

rs42235 7 92086012 CDK6 t 0.0548 0.30 1.25 1.34 

rs822552 7 148281567 PDIA4 g 0.0302 0.27 1.20 1.17 

rs17088190 8 24167275 ADAM28 c 0.0278 0.75 0.91 1.16 

rs6473015 8 78341040 PEX2 c 0.0320 0.32 1.25 1.19 

rs6470764 8 130794847 GSDMC c 0.0469 0.83 0.92 1.28 

rs894345 8 135682763 ZFAT c 0.0297 0.59 1.17 1.17 

rs7864648 9 16358732 BNC2 t 0.0246 0.35 0.96 1.14 

rs11144688 9 77732106 PCSK5 g 0.0548 0.87 1.14 1.34 

rs296886 9 85781846 C9orf64 g 0.0250 0.19 1.04 1.14 

rs181338 9 88297981 ZCCHC6 t 0.0234 0.53 1.20 1.13 

rs2814828 9 90001002 SPIN1 t 0.0268 0.24 1.31 1.15 

rs9969804 9 94468941 IPPK a 0.0281 0.45 0.94 1.16 

rs1257763 9 95933766 PTPDC1 a 0.0685 0.06 1.31 1.44 

rs473902 9 97296056 PTCH1/FANCC t 0.0741 0.93 1.01 1.48 

rs7027110 9 108638867 ZNF462 a 0.0337 0.22 0.81 1.20 

rs1468758 9 112846903 LPAR1 c 0.0258 0.76 1.03 1.15 

rs751543 9 118162163 PAPPA t 0.0287 0.69 1.13 1.17 

rs7466269 9 132453905 FUBP3 a 0.0359 0.66 1.39 1.21 

rs12338076 9 138261561 QSOX2 c 0.0304 0.29 0.95 1.18 

rs7909670 10 12958770 CCDC3 c 0.0219 0.55 1.11 1.12 

rs7332 10 80784066 PPIF g 0.0252 0.50 1.30 1.14 

rs11599750 10 101795432 CPN1 c 0.0230 0.66 1.12 1.13 

rs2237886 11 2767307 KCNQ1 t 0.0429 0.11 1.16 1.26 

rs7937898 11 12660137 TEAD1 g 0.0239 0.48 0.90 1.14 

rs1330 11 17272605 NUCB2 t 0.0241 0.38 1.16 1.14 

rs2904315 11 48066524 PTPRJ/SLC39A13 a 0.0311 0.30 1.04 1.18 

rs1814175 11 49515748 FOLH1 t 0.0230 0.44 1.15 1.13 

rs3782089 11 65093395 SSSCA1 c 0.0583 0.93 1.10 1.36 

rs7112925 11 66582736 RHOD c 0.0229 0.64 1.20 1.13 

rs606452 11 74953826 SERPINH1 a 0.0397 0.16 1.12 1.24 

rs494459 11 118079885 TREH t 0.0207 0.43 0.99 1.12 

rs654723 11 128091365 FLI1 a 0.0237 0.61 1.19 1.13 

rs2954980 12 11750815 ETV6 t 0.0295 0.36 1.11 1.17 
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Table 2.1 (Continued) 

 

Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs10770705 12 20748734 SLCO1C1 a 0.0314 0.34 1.14 1.18 

rs2638953 12 28425682 CCDC91 c 0.0356 0.69 1.53 1.21 

rs2066807 12 55026949 STAT2 g 0.0520 0.08 1.68 1.32 

rs1351394 12 64638093 HMGA2 t 0.0535 0.55 1.31 1.33 

rs10748128 12 68113925 FRS2 t 0.0347 0.37 1.36 1.20 

rs11107116 12 92502635 SOCS2 t 0.0524 0.21 1.68 1.32 

rs12298826 12 122394981 SBNO1 g 0.0350 0.21 0.85 1.20 

rs7332115 13 32045548 PDS5B/BRCA2 g 0.0250 0.39 1.10 1.14 

rs3118906 13 50004789 DLEU7 g 0.0518 0.75 1.24 1.32 

rs4773624 13 90817730 GPC5 g 0.0286 0.40 1.11 1.16 

rs1950500 14 23900690 NFATC4 t 0.0323 0.24 1.55 1.19 

rs10483727 14 60142628 SIX6 t 0.0322 0.38 1.25 1.19 

rs6573834 14 67878151 RAD51L1 c 0.0253 0.80 1.01 1.14 

rs862031 14 74061608 LTBP2 g 0.0224 0.64 1.42 1.13 

rs10150088 14 91573329 TRIP11 t 0.0270 0.60 1.05 1.15 

rs16964211 15 49317787 CYP19A1 g 0.0511 0.95 1.32 1.31 

rs7178424 15 60167551 C2CD4A c 0.0235 0.51 1.12 1.13 

rs10152591 15 67835211 TLE3 a 0.0447 0.88 1.15 1.27 

rs3759901 15 70298469 MYO9A a 0.0555 0.02 0.94 1.34 

rs5742915 15 72123686 PML c 0.0308 0.47 0.91 1.18 

rs11259936 15 82371586 ADAMTSL3 c 0.0419 0.48 1.30 1.25 

rs16942341 15 87189909 ACAN c 0.1335 0.98 1.26 2.04 

rs4965598 15 98577137 ADAMTS17 c 0.0353 0.30 1.20 1.21 

rs1659127 16 14295806 MKL2 a 0.0240 0.29 1.05 1.14 

rs4640244 17 21224816 KCNJ12 a 0.0279 0.56 1.01 1.16 

rs3110496 17 24941897 ANKRD13B g 0.0229 0.67 0.81 1.13 

rs3764419 17 26188149 ATAD5/RNF135 c 0.0374 0.62 1.12 1.22 

rs17780080 17 27367259 LRRC37B a 0.0344 0.17 1.01 1.20 

rs1043515 17 34175722 PIP4K2B g 0.0219 0.54 1.38 1.12 

rs4986172 17 40571807 ACBD4 c 0.0283 0.68 1.02 1.16 

rs11652146 17 44777362 ZNF652 g 0.0255 0.30 0.96 1.15 

rs227723 17 52133903 NOG t 0.0272 0.28 1.13 1.16 

rs2079795 17 56851431 TBX2 t 0.0395 0.33 1.23 1.23 

rs12325866 17 59109706 CSH1/GH1 a 0.0343 0.28 1.36 1.20 

rs11867479 17 65601802 KCNJ16/KCNJ2 t 0.0240 0.36 1.24 1.14 

rs4800452 18 18981609 CABLES1 t 0.0475 0.80 1.33 1.29 

rs2078286 18 45132860 DYM a 0.0372 0.41 1.20 1.22 
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Table 2.1 (Continued) 

 

Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs6567160 18 55980115 MC4R c 0.0245 0.27 1.15 1.14 

rs12980348 19 2132607 DOT1L g 0.0323 0.36 1.30 1.19 

rs891088 19 7135762 INSR g 0.0251 0.23 0.91 1.14 

rs4542783 19 8548160 ADAMTS10 t 0.0313 0.55 1.07 1.18 

rs2279008 19 17144303 MYO9B t 0.0308 0.75 1.04 1.18 

rs17318596 19 46628935 ATP5SL a 0.0290 0.38 1.31 1.17 

rs1741344 20 4049800 SMOX c 0.0263 0.39 1.14 1.15 

rs2145272 20 6574218 BMP2 g 0.0386 0.34 1.25 1.23 

rs7274811 20 31796842 ZNF341 g 0.0402 0.76 1.47 1.24 

rs143384 20 33489170 GDF5 g 0.0639 0.41 1.42 1.41 

rs1567865 20 47315374 ZNFX1 t 0.0337 0.22 1.15 1.20 

rs2834440 21 34612369 KCNE2 a 0.0247 0.62 1.23 1.14 

rs4821083 22 31386341 SYN3 t 0.0332 0.84 1.15 1.19 

 

The table shows the results for the SNPs used in the individual association analysis in the HUNT 

cohort. 
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Table 2.2: Individual SNP analysis for FINRISK cohort 

 
Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs425277 1 2069172 PTCH1/FANCC T 0.024 0.30 1.18 1.14 

rs2284746 1 17306675 FAM46A A 0.0354 0.52 1.52 1.21 

rs1738475 1 23536891 NPR3 C 0.0216 0.61 1.14 1.12 

rs4601530 1 24916698 FUBP3 A 0.0238 0.27 1.25 1.14 

rs2154319 1 41745770 OR2J3 T 0.0335 0.74 1.18 1.20 

rs17391694 1 78623626 SLC38A9 T 0.0399 0.12 2.31 1.24 

rs6699417 1 89123443 SBNO1 T 0.0217 0.66 0.75 1.12 

rs10874746 1 93323971 DNM3 T 0.0217 0.36 0.98 1.12 

rs9428104 1 118855587 ADAMTS10 C 0.0375 0.22 1.09 1.22 

rs11205277 1 149892872 TGFB2 G 0.0452 0.62 1.76 1.28 

rs17346452 1 172053287 WWC2 A 0.038 0.77 1.37 1.23 

rs1325598 1 175058872 RTF1 T 0.0256 0.45 1.12 1.15 

rs1046934 1 184023529 SCMH1 C 0.0459 0.63 1.47 1.28 

rs10863936 1 212237798 SF3B4 G 0.022 0.53 1.10 1.13 

rs6684205 1 218609702 CCDC53/GNPTAB A 0.0328 0.67 1.16 1.19 

rs11118346 1 219743719 TSEN15 C 0.0264 0.50 1.30 1.15 

rs10799445 1 227911883 SPAG17 A 0.0306 0.72 1.73 1.18 

rs4665736 2 25187599 PPIF T 0.0335 0.59 1.22 1.20 

rs6714546 2 33361425 LTBP1 C 0.0254 0.28 1.53 1.15 

rs17511102 2 37960613 CEP120 A 0.0601 0.90 2.05 1.38 

rs2341459 2 44768202 ZBTB24 T 0.0276 0.31 1.59 1.16 

rs3791675 2 56111309 BNC2 G 0.0496 0.25 1.25 1.31 

rs11684404 2 88924622 DNAJC27 C 0.027 0.65 0.89 1.16 

rs7567288 2 134151294 IGF1R G 0.0309 0.75 1.05 1.18 

rs1351164 2 217980143 RYBP T 0.0279 0.75 1.62 1.16 

rs12470505 2 219908369 NCKAP5 T 0.0483 0.88 1.37 1.30 

rs2629046 2 225047744 GPR126 T 0.0247 0.55 1.11 1.14 

rs2580816 2 232797966 C6orf173 C 0.0412 0.20 1.65 1.25 

rs12694997 2 241911659 NPPC C 0.0274 0.24 0.88 1.16 

rs2597513 3 13555836 L3MBTL3 C 0.0392 0.88 0.77 1.24 

rs13088462 3 51071713 DOCK3 C 0.0543 0.92 1.02 1.34 

rs2336725 3 53093779 LIN28B C 0.0263 0.55 1.48 1.15 

rs9835332 3 56642722 GDF5 A 0.0217 0.48 1.03 1.12 

rs9863706 3 72437413 KCNE2 A 0.0304 0.21 0.98 1.18 

rs9844666 3 135974216 ZNFX1 G 0.0284 0.23 0.99 1.17 

rs724016 3 142588510 C2CD4A C 0.067 0.58 1.58 1.44 

rs572169 3 172165727 SERPINH1 T 0.0355 0.33 1.06 1.21 

rs720390 3 185548683 CYP19A1 A 0.0305 0.43 1.17 1.18 

rs2247341 4 1671115 HMGA1 A 0.0251 0.40 0.96 1.14 

rs6449353 4 18033488 ETV6 T 0.0714 0.87 1.40 1.47 

rs17081935 4 57823476 TET2 T 0.0306 0.22 1.00 1.18 

rs7697556 4 73515313 CTU2/GALNS T 0.0219 0.49 1.49 1.13 

rs10010325 4 106106353 PRKCZ A 0.0214 0.45 1.12 1.12 

rs7689420 4 145568352 MKL2 G 0.0687 0.19 1.81 1.45 

rs955748 4 184215675 BMP2 A 0.0243 0.24 0.87 1.14 
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Table 2.2 (Continued) 

 
Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs1173727 5 32830521 LTBP1 T 0.0356 0.38 1.47 1.21 

rs11958779 5 55001899 EFEMP1 T 0.0282 0.72 0.89 1.16 

rs10037512 5 88354675 MFAP2 T 0.0267 0.58 1.45 1.15 

rs1582931 5 122657199 SLBP/FGFR3 G 0.0254 0.49 0.93 1.15 

rs274546 5 131727766 TULP4 A 0.0278 0.45 1.58 1.16 

rs526896 5 134384604 SSSCA1 T 0.0315 0.72 1.27 1.19 

rs4282339 5 168256240 ZNF462 G 0.0352 0.22 0.90 1.21 

rs12153391 5 171203438 EIF2AK3 T 0.0329 0.28 1.31 1.19 

rs889014 5 172984114 MC4R T 0.029 0.40 1.17 1.17 

rs422421 5 176517326 PTPDC1 G 0.0332 0.22 1.19 1.20 

rs6879260 5 179731014 PDS5B/BRCA2 T 0.0281 0.38 1.38 1.16 

rs3812163 6 7670759 PCSK5 A 0.0366 0.57 1.08 1.22 

rs1047014 6 19949472 PKN2 C 0.0291 0.75 1.19 1.17 

rs806794 6 26200677 KCNJ16/KCNJ2 A 0.0528 0.64 1.21 1.33 

rs3129109 6 29084232 PEX2 A 0.0257 0.37 0.88 1.15 

rs2256183 6 31380529 PPARD/FANCE A 0.0345 0.37 1.29 1.20 

rs2780226 6 34199092 TWISTNB T 0.079 0.92 1.19 1.53 

rs9472414 6 44946506 SMOX T 0.0306 0.22 0.92 1.18 

rs9360921 6 76265642 INSR G 0.0479 0.85 1.83 1.29 

rs310405 6 81800362 CDK6 A 0.03 0.48 1.40 1.18 

rs7759938 6 105378954 KCNJ12 G 0.042 0.71 1.48 1.25 

rs1046943 6 109783941 GIPC2 A 0.0223 0.53 0.96 1.13 

rs961764 6 117522156 ZNF341 G 0.0228 0.41 1.47 1.13 

rs1490384 6 126851160 GHSR T 0.037 0.49 1.11 1.22 

rs6569648 6 130349119 SOCS2 T 0.0358 0.76 1.26 1.21 

rs7763064 6 142797289 ANKRD13B G 0.0445 0.29 1.92 1.27 

rs543650 6 152110943 RHOD C 0.0318 0.47 1.34 1.19 

rs9456307 6 158929442 MYO9B T 0.0499 0.07 1.48 1.31 

rs798489 7 2801803 NOG A 0.0515 0.33 1.19 1.32 

rs4470914 7 19616522 PAPPA T 0.0328 0.17 1.22 1.19 

rs12534093 7 23502974 TNS1 T 0.0298 0.20 1.24 1.17 

rs1708299 7 28189946 HHIP A 0.0417 0.32 0.95 1.25 

rs6959212 7 38128326 DLEU7 G 0.0229 0.30 0.93 1.13 

rs42235 7 92248076 SPIN1 T 0.0548 0.32 1.33 1.34 

rs822552 7 148650634 DYM G 0.0302 0.74 1.22 1.18 

rs7460090 8 57194163 ADAMTSL3 T 0.0546 0.86 1.23 1.34 

rs6473015 8 78178485 STAT2 G 0.032 0.74 1.41 1.19 

rs6470764 8 130725665 CCDC91 C 0.0469 0.19 1.21 1.29 

rs12680655 8 135637337 SERPINE2 C 0.0298 0.55 1.21 1.17 

rs7864648 9 16358732 PIP4K2B T 0.0246 0.35 1.18 1.14 

rs11144688 9 78542286 DTL A 0.0548 0.12 0.91 1.34 

rs7853377 9 86552205 LRRC37B A 0.0256 0.76 1.88 1.15 

rs2778031 9 90835726 GNA12 T 0.0273 0.23 1.25 1.16 

rs1257763 9 96893945 CCDC108/IHH A 0.0685 0.06 1.17 1.45 
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Table 2.2 (Continued) 

 
Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs473902 9 98256235 CPN1 T 0.0741 0.90 1.08 1.49 

rs7027110 9 108638867 GPC5 A 0.0337 0.23 0.98 1.20 

rs751543 9 119122342 ADAMTS17 T 0.0287 0.73 1.23 1.17 

rs7466269 9 133464084 ACAN A 0.0359 0.60 1.03 1.21 

rs7849585 9 138251691 ATAD5/RNF135 T 0.0324 0.32 1.06 1.19 

rs7909670 10 12918764 ACBD4 C 0.0219 0.46 1.02 1.13 

rs2145998 10 81121696 Histone G 0.0252 0.56 0.98 1.15 

rs11599750 10 101805442 JMJD4 A 0.023 0.34 1.17 1.13 

rs2237886 11 2810731 MICA T 0.0429 0.11 1.58 1.26 

rs7926971 11 12698040 NME2 C 0.0244 0.58 1.16 1.14 

rs1330 11 17316029 C3orf63 T 0.0241 0.33 1.07 1.14 

rs1814175 11 49559172 FBXW11 T 0.023 0.30 1.31 1.13 

rs3782089 11 65336819 ZFAT C 0.0583 0.07 0.84 1.37 

rs7112925 11 66826160 NFATC4 C 0.0229 0.32 1.05 1.13 

rs634552 11 75282052 FLI1 T 0.0412 0.17 1.43 1.25 

rs494459 11 118574675 TEAD1 T 0.0207 0.41 1.13 1.12 

rs654723 11 128586155 HMGA2 A 0.0237 0.64 1.13 1.14 

rs2856321 12 11855773 JAZF1 A 0.0298 0.65 1.22 1.17 

rs10770705 12 20857467 RPL5 A 0.0314 0.30 1.29 1.18 

rs2638953 12 28534415 ESR1 C 0.0356 0.70 0.96 1.21 

rs2066807 12 56740682 FGFR4/NSD1 T 0.052 0.93 1.19 1.32 

rs1351394 12 66351826 PCCB T 0.0535 0.49 1.45 1.33 

rs11107116 12 93978504 PAPPA2 T 0.0524 0.24 1.04 1.33 

rs7971536 12 102373788 ZNF652 G 0.0247 0.41 0.78 1.14 

rs11830103 12 122389499 CDC42EP3 T 0.0351 0.78 1.12 1.21 

rs1809889 12 124801226 SLIT3 T 0.0315 0.31 1.33 1.19 

rs7332115 13 33147548 PML C 0.025 0.58 0.92 1.14 

rs3118905 13 51105334 SDR16C5 T 0.052 0.33 1.31 1.32 

rs7319045 13 92024574 MYO9A A 0.029 0.45 1.49 1.17 

rs1950500 14 24830850 BOD1 T 0.0323 0.30 1.06 1.19 

rs1570106 14 68813115 IGF2BP2 G 0.0256 0.23 1.38 1.15 

rs7155279 14 91555634 RAD51L1 C 0.0285 0.35 0.95 1.17 

rs16964211 15 49317787 ADAMTS3 C 0.0511 0.09 1.39 1.32 

rs7178424 15 62380259 TRIP11 T 0.0235 0.54 1.34 1.14 

rs12902421 15 72161403 SEPT2 A 0.0691 0.95 0.96 1.45 

rs5742915 15 74336633 TREH T 0.0308 0.56 0.98 1.18 

rs11259936 15 84580582 LYPLAL1 T 0.0419 0.47 1.82 1.25 

rs16942341 15 89388905 POLR2B C 0.1335 0.05 1.90 2.06 

rs4965598 15 98577137 NUCB2 T 0.0353 0.68 1.17 1.21 

rs2871865 15 99194896 STARD3NL C 0.0535 0.88 1.45 1.33 

rs1659127 16 14388305 LCORL A 0.024 0.35 1.09 1.14 

rs8052560 16 87304743 TBX2 A 0.0392 0.79 1.07 1.24 

rs4640244 17 21284223 CCDC3 A 0.0279 0.59 1.24 1.16 

rs3110496 17 24941897 PDIA4 C 0.0229 0.36 1.01 1.13 

rs3764419 17 29164023 GSDMC C 0.0374 0.39 1.18 1.22 
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Table 2.2 (Continued) 

 
Rsid Chr Pos Closest gene Effect allele Effect size Freq Observed OR Expected OR 

rs17780086 17 30343282 SLC22A5 A 0.0346 0.16 1.16 1.21 

rs1043515 17 36922196 CLIC4 C 0.0219 0.46 1.14 1.13 

rs4986172 17 43216281 FOLH1 C 0.0283 0.39 0.97 1.16 

rs4605213 17 46599746 QSOX2 C 0.0234 0.32 1.21 1.13 

rs2072153 17 47390014 GFPT2 C 0.0264 0.30 0.99 1.15 

rs227724 17 52133816 SUPT3H/RUNX2 A 0.0272 0.61 1.07 1.16 

rs2079795 17 59496649 BMP6 T 0.0395 0.30 1.58 1.24 

rs11867479 17 68090207 C2orf34 T 0.024 0.34 0.97 1.14 

rs9967417 18 46959500 SYN3 C 0.0381 0.62 0.98 1.23 

rs17782313 18 57851097 PITX1 G 0.0249 0.80 1.15 1.14 

rs12982744 19 2177193 HDAC11 C 0.0325 0.61 1.36 1.19 

rs891088 19 7184762 DOT1L G 0.0251 0.70 0.96 1.14 

rs4072910 19 8644031 C9orf64 G 0.0289 0.48 1.18 1.17 

rs2279008 19 17283303 SENP6 T 0.0308 0.68 1.45 1.18 

rs1741344 20 4101800 MEF2C C 0.0263 0.64 0.94 1.15 

rs2145272 20 6626218 ID4 C 0.0386 0.69 1.42 1.23 

rs7274811 20 32333181 TLE3 A 0.0402 0.24 1.29 1.24 

rs143384 20 33489170 ZBTB38 G 0.0639 0.55 1.68 1.41 

rs237743 20 47903019 VGLL2 A 0.0338 0.21 1.30 1.20 

rs2834442 21 35690786 IGF2BP3 A 0.0269 0.67 1.16 1.16 

rs4821083 22 31386341 KCNQ1 T 0.0332 0.84 1.09 1.20 

 

The table shows the results for the SNPs used in the individual association analysis in the 

FINRISK cohort. 
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Table 2.3: Meta-analysis of individual SNPs for HUNT and FINRISK cohort 

 
Rsid Chr Pos Closest gene Effect 

allele 

Freq Effect Size Observed 

OR 

P-value Expected 

OR 

rs425277 1 2069172 PRKCZ t 0.28 0.02 1.19 0.0932 1.14 

rs2284746 1 17306675 MFAP2 t 0.50 0.03 1.30 0.0045 1.19 

rs1738475 1 23536891 HTR1D t 0.59 0.02 1.15 0.1364 1.12 

rs4601530 1 24916698 CLIC4 c 0.74 0.02 1.10 0.3495 1.14 

rs2154319 1 41745770 SCMH1 g 0.23 0.03 1.27 0.0355 1.19 

rs17391694 1 78623626 GIPC2 t 0.11 0.04 1.56 0.0008 1.24 

rs6699417 1 89123443 PKN2 t 0.62 0.02 0.97 0.7864 1.12 

rs10874746 1 93323971 RPL5 c 0.63 0.02 1.06 0.5108 1.12 

rs9428104 1 118855587 SPAG17 c 0.76 0.04 1.19 0.1106 1.22 

rs11205277 1 149892872 SF3B4 g 0.42 0.05 1.56 0.0000 1.27 

rs17346452 1 172053287 DNM3 g 0.27 0.04 1.07 0.5121 1.21 

rs1325598 1 175058872 PAPPA2 a 0.57 0.03 1.17 0.0992 1.14 

rs1046934 1 184023529 TSEN15 c 0.36 0.05 1.32 0.0050 1.28 

rs10863936 1 212237798 DTL g 0.46 0.02 1.12 0.2176 1.12 

rs6684205 1 218609702 TGFB2 g 0.29 0.03 1.15 0.1579 1.19 

rs11118346 1 219743719 LYPLAL1 c 0.54 0.03 1.19 0.0702 1.15 

rs4665736 2 25187599 DNAJC27 a 0.53 0.03 1.35 0.0017 1.19 

rs6714546 2 33361425 LTBP1 g 0.72 0.02 1.36 0.0033 1.14 

rs2341459 2 44768202 C2orf34 t 0.27 0.03 1.34 0.0040 1.16 

rs3791675 2 56111309 EFEMP1 c 0.77 0.05 1.49 0.0002 1.30 

rs11684404 2 88924622 EIF2AK3 c 0.33 0.03 1.11 0.2966 1.15 

rs7567288 2 134151294 NCKAP5 c 0.20 0.03 1.08 0.4521 1.18 

rs12470505 2 219908369 CCDC108/IHH t 0.90 0.05 1.05 0.7572 1.29 

rs2629046 2 225047744 SERPINE2 t 0.55 0.02 1.21 0.0364 1.14 

rs12694997 2 241911659 SEPT2 g 0.76 0.03 1.00 0.9930 1.16 

rs2597513 3 13555836 HDAC11 c 0.11 0.04 1.28 0.1184 1.23 

rs13088462 3 51071713 DOCK3 c 0.06 0.05 1.32 0.1658 1.34 

rs2336725 3 53093779 RTF1 c 0.46 0.03 1.14 0.1695 1.15 

rs9835332 3 56642722 C3orf63 a 0.54 0.02 1.16 0.1039 1.12 

rs9863706 3 72437413 RYBP a 0.79 0.03 1.15 0.2250 1.18 

rs9844666 3 135974216 PCCB g 0.74 0.03 1.21 0.0929 1.16 

rs724016 3 142588510 ZBTB38 g 0.43 0.07 1.55 0.0000 1.43 

rs572169 3 172165727 GHSR t 0.31 0.04 1.21 0.0543 1.21 

rs720390 3 185548683 IGF2BP2 a 0.39 0.03 1.21 0.0528 1.18 

rs2247341 4 1671115 SLBP/FGFR3 a 0.36 0.03 1.13 0.2082 1.14 

rs6449353 4 18033488 LCORL t 0.85 0.07 1.48 0.0111 1.46 

rs17081935 4 57823476 POLR2B t 0.19 0.03 1.01 0.9645 1.18 

rs7697556 4 73515313 ADAMTS3 t 0.48 0.02 1.31 0.0036 1.12 

rs10010325 4 106106353 TET2 a 0.49 0.02 1.17 0.0885 1.12 

rs7689420 4 145568352 HHIP c 0.84 0.07 1.45 0.0043 1.44 

rs955748 4 184215675 WWC2 g 0.75 0.02 1.08 0.4925 1.14 

rs1173727 5 32830521 NPR3 t 0.39 0.04 1.26 0.0176 1.21 

rs11958779 5 55001899 SLC38A9 t 0.30 0.03 1.10 0.3480 1.16 

rs10037512 5 88354675 MEF2C t 0.56 0.03 1.29 0.0086 1.15 
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Table 2.3 (Continued) 

 
Rsid Chr Pos Closest gene Effect 

allele 

Freq Effect Size Observed 

OR 

P-value Expected 

OR 

rs274546 5 131727766 SLC22A5 g 0.61 0.03 1.39 0.0005 1.16 

rs526896 5 134384604 PITX1 t 0.73 0.03 1.18 0.1189 1.18 

rs4282339 5 168256240 SLIT3 g 0.80 0.04 1.01 0.9540 1.21 

rs12153391 5 171203438 FBXW11 c 0.75 0.03 1.25 0.0350 1.19 

rs889014 5 172984114 BOD1 c 0.64 0.03 1.16 0.1339 1.17 

rs422421 5 176517326 FGFR4/NSD1 c 0.78 0.03 1.15 0.2751 1.19 

rs6879260 5 179731014 GFPT2 c 0.61 0.03 1.29 0.0067 1.16 

rs3812163 6 7670759 BMP6 a 0.47 0.04 1.22 0.0320 1.21 

rs806794 6 26200677 Histone a 0.71 0.05 1.08 0.4548 1.33 

rs3129109 6 29084232 OR2J3 c 0.60 0.03 0.89 0.2318 1.15 

rs2256183 6 31380529 MICA g 0.45 0.03 1.35 0.0016 1.20 

rs2780226 6 34199092 HMGA1 c 0.08 0.08 1.32 0.1486 1.52 

rs9472414 6 44946506 SUPT3H/RUNX2 g 0.79 0.03 1.26 0.0438 1.18 

rs310405 6 81800362 FAM46A a 0.53 0.03 1.20 0.0566 1.17 

rs7759938 6 105378954 LIN28B c 0.32 0.04 1.17 0.1087 1.25 

rs1046943 6 109783941 ZBTB24 c 0.58 0.02 0.93 0.4634 1.12 

rs961764 6 117522156 VGLL2 c 0.59 0.02 1.26 0.0156 1.12 

rs1490384 6 126851160 C6orf173 t 0.50 0.04 1.15 0.1290 1.22 

rs6569648 6 130349119 L3MBTL3 c 0.24 0.04 1.26 0.0383 1.21 

rs7763064 6 142797289 GPR126 g 0.71 0.04 1.50 0.0002 1.27 

rs543650 6 152110943 ESR1 g 0.60 0.03 1.28 0.0075 1.18 

rs9456307 6 158929442 TULP4 g 0.94 0.05 1.01 0.9579 1.30 

rs798489 7 2801803 GNA12 c 0.71 0.05 1.29 0.0106 1.32 

rs1708299 7 28189946 JAZF1 a 0.31 0.04 1.22 0.0498 1.25 

rs6959212 7 38128326 STARD3NL c 0.68 0.02 1.12 0.2541 1.13 

rs42235 7 92248076 CDK6 t 0.31 0.05 1.28 0.0188 1.34 

rs822552 7 148650634 PDIA4 g 0.25 0.03 1.21 0.0714 1.17 

rs6473015 8 78178485 PEX2 c 0.29 0.03 1.29 0.0147 1.19 

rs6470764 8 130725665 GSDMC c 0.79 0.05 1.01 0.9297 1.28 

rs12680655 8 135637337 ZFAT a 0.60 0.03 1.18 0.0854 1.17 

rs7864648 9 16358732 BNC2 t 0.32 0.02 1.04 0.6868 1.14 

rs11144688 9 78542286 PCSK5 g 0.89 0.05 1.05 0.7566 1.34 

rs7853377 9 86552205 C9orf64 g 0.23 0.03 1.30 0.0289 1.14 

rs2778031 9 90835726 SPIN1 t 0.24 0.03 1.29 0.0167 1.15 

rs1257763 9 96893945 PTPDC1 a 0.04 0.07 1.27 0.2484 1.44 

rs473902 9 98256235 PTCH1/FANCC t 0.92 0.07 1.04 0.8135 1.48 

rs7027110 9 108638867 ZNF462 a 0.23 0.03 0.87 0.2405 1.20 

rs751543 9 119122342 PAPPA t 0.71 0.03 1.17 0.1351 1.17 

rs7466269 9 133464084 FUBP3 a 0.64 0.04 1.24 0.0246 1.21 

rs7849585 9 138251691 QSOX2 c 0.33 0.03 0.99 0.9361 1.18 

rs7909670 10 12918764 CCDC3 c 0.57 0.02 1.07 0.4500 1.12 

rs2145998 10 81121696 PPIF g 0.52 0.03 1.16 0.1120 1.14 

rs11599750 10 101805442 CPN1 c 0.61 0.02 1.14 0.1950 1.13 

rs2237886 11 2810731 KCNQ1 t 0.11 0.04 1.28 0.1129 1.26 

rs7926971 11 12698040 TEAD1 g 0.46 0.02 0.99 0.9516 1.14 
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Table 2.3 (Continued) 

 
Rsid Chr Pos Closest gene Effect 

allele 

Freq Effect Size Observed 

OR 

P-value Expected 

OR 

rs1330 11 17316029 NUCB2 t 0.35 0.02 1.13 0.2302 1.14 

rs1814175 11 49559172 FOLH1 t 0.34 0.02 1.21 0.0438 1.13 

rs3782089 11 65336819 SSSCA1 c 0.94 0.06 1.01 0.9532 1.36 

rs7112925 11 66826160 RHOD c 0.64 0.02 1.14 0.1905 1.13 

rs634552 11 75282052 SERPINH1 a 0.14 0.04 1.26 0.0734 1.24 

rs494459 11 118574675 TREH t 0.40 0.02 1.04 0.6646 1.12 

rs654723 11 128586155 FLI1 a 0.61 0.02 1.17 0.1041 1.13 

rs2856321 12 11855773 ETV6 t 0.36 0.03 1.15 0.1499 1.17 

rs10770705 12 20857467 SLCO1C1 a 0.33 0.03 1.19 0.0721 1.18 

rs2638953 12 28534415 CCDC91 c 0.68 0.04 1.28 0.0133 1.21 

rs2066807 12 56740682 STAT2 g 0.08 0.05 1.49 0.0334 1.32 

rs1351394 12 66351826 HMGA2 t 0.49 0.05 1.36 0.0009 1.33 

rs11107116 12 93978504 SOCS2 t 0.22 0.05 1.34 0.0106 1.32 

rs11830103 12 122389499 SBNO1 g 0.22 0.04 0.95 0.6298 1.21 

rs1809889 12 124801226 FAM101A t 0.29 0.03 1.28 0.0150 1.18 

rs7332115 13 33147548 PDS5B/BRCA2 g 0.38 0.03 1.03 0.7892 1.14 

rs3118905 13 51105334 DLEU7 g 0.71 0.05 1.27 0.0230 1.32 

rs7319045 13 92024574 GPC5 g 0.39 0.03 1.24 0.0188 1.16 

rs1950500 14 24830850 NFATC4 t 0.30 0.03 1.33 0.0075 1.19 

rs1570106 14 68813115 RAD51L1 c 0.79 0.03 1.15 0.2214 1.14 

rs7155279 14 91555634 TRIP11 t 0.62 0.03 1.01 0.9025 1.15 

rs16964211 15 49317787 CYP19A1 g 0.95 0.05 1.35 0.1532 1.31 

rs7178424 15 62380259 C2CD4A c 0.54 0.02 1.19 0.0699 1.13 

rs12902421 15 72161403 MYO9A a 0.03 0.06 0.94 0.8741 1.34 

rs5742915 15 74336633 PML c 0.47 0.03 0.94 0.4832 1.18 

rs11259936 15 84580582 ADAMTSL3 c 0.52 0.04 1.49 0.0000 1.25 

rs16942341 15 89388905 ACAN c 0.97 0.13 1.43 0.2533 2.04 

rs4965598 15 98577137 ADAMTS17 c 0.32 0.04 1.19 0.0952 1.21 

rs1659127 16 14388305 MKL2 a 0.34 0.02 1.07 0.5156 1.14 

rs4640244 17 21284223 KCNJ12 a 0.61 0.03 1.09 0.3451 1.16 

rs3110496 17 24941897 ANKRD13B g 0.67 0.02 0.89 0.2488 1.13 

rs3764419 17 29164023 ATAD5/RNF135 c 0.61 0.04 1.14 0.1612 1.22 

rs17780086 17 30343282 LRRC37B a 0.15 0.03 1.06 0.6451 1.20 

rs1043515 17 36922196 PIP4K2B g 0.54 0.02 1.28 0.0067 1.12 

rs4986172 17 43216281 ACBD4 c 0.65 0.03 1.00 0.9611 1.16 

rs2072153 17 47390014 ZNF652 g 0.31 0.03 0.98 0.8110 1.15 

rs227724 17 52133816 NOG t 0.32 0.03 1.10 0.2980 1.16 

rs2079795 17 59496649 TBX2 t 0.33 0.04 1.34 0.0032 1.23 

rs11867479 17 68090207 KCNJ16/KCNJ2 t 0.35 0.02 1.14 0.1713 1.14 

rs9967417 18 46959500 DYM a 0.42 0.04 1.12 0.2481 1.22 

rs17782313 18 57851097 MC4R c 0.24 0.02 1.15 0.2121 1.14 

rs12982744 19 2177193 DOT1L g 0.41 0.03 1.32 0.0043 1.19 

rs891088 19 7184762 INSR g 0.26 0.03 0.93 0.5104 1.14 

rs4072910 19 8644031 ADAMTS10 t 0.56 0.03 1.12 0.2580 1.18 

rs2279008 19 17283303 MYO9B t 0.75 0.03 1.20 0.0657 1.18 
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Table 2.3 (Continued) 

 
Rsid Chr Pos Closest gene Effect 

allele 

Freq Effect Size Observed 

OR 

P-value Expected 

OR 

rs1741344 20 4101800 SMOX c 0.37 0.03 1.07 0.4895 1.15 

rs2145272 20 6626218 BMP2 g 0.35 0.04 1.31 0.0099 1.23 

rs7274811 20 32333181 ZNF341 g 0.77 0.04 1.40 0.0018 1.24 

rs143384 20 33489170 GDF5 g 0.42 0.06 1.52 0.0000 1.41 

rs237743 20 47903019 ZNFX1 t 0.21 0.03 1.20 0.0900 1.20 

rs2834442 21 35690786 KCNE2 a 0.62 0.02 1.20 0.0613 1.14 

rs4821083 22 31386341 SYN3 t 0.83 0.03 1.13 0.3619 1.19 

 

The table shows the results for the SNPs used in the meta-analysis of the HUNT and FINRISK 

cohorts. 
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specific allele frequencies (see Materials and Methods). Overall, the number of SNPs with 

observed odds ratio greater than expected odds ratios was no different than expectation under the 

model of equal effect sizes in extremes and the general population (HUNT 79/160 SNPs, p=0.94; 

FINRISK 75/155 SNPs, p=0.48 and combined 75/141, p=0.45); (Table 2.1; Table 2.2 and Table 

2.3). Next, for each SNP we tested for a difference between the expected and observed odds ratio 

in the individual studies and in the meta-analysis. Overall there were no more or fewer 

significant associations than would be expected under the equal effect size model (Figure 2.1). 

This result demonstrates that the individual SNPs have similar effects at the extremes as in the 

general population. 

 

Weighted Allele Score (WAS) analysis: The additive effect of the common variants differs 

significantly from expected in the short extremes 

 After determining that the individual SNPs have similar effects at the extremes of the 

height distribution as in the general population, we then performed additional analyses on the 

combined set of height-associated variants. We asked whether extremely short and extremely tall 

individuals show overall enrichment of height-decreasing and height-increasing alleles, 

respectively, to the extent expected under a purely polygenic additive model. If the enrichment is 

less than expected, this result would suggest that the common variants are not explaining as 

much of the phenotypic variation in the extremes as in the general population. To test this 

possibility, we first calculated the weighted allele score (WAS) for each individual using the 

height-associated SNPs previously described. The WAS is the cumulative effect of all of the 

SNPs on height weighted by each SNP's estimated effect size (β). In Figure 2.2, we show a plot 

of each individual’s WAS based on the 143 loci genotyped in both cohorts versus the individual  
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Figure 2.1: QQ Plot of p-values for individual SNPs based on the meta-analysis of HUNT 

and FINRISK. The figure shows a Q-Q plot of the p-values of the difference between the 

observed odd-ratios and the expected odd-ratios. 
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Figure 2.2: Plot of weighted allele scores (WAS) against Height Z-scores for HUNT and 

FINRISK Cohorts. The plot shows the WAS, a measure of the genetic prediction of height by 

known common variants, against the height Z-scores. The tall individuals (Z-score > 2.14) have 

generally larger WAS than the short individuals (Z-score < -2.14). Individuals from the HUNT 

study are labeled blue and individuals from the FINRISK study are labeled red. 
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height Z-scores. As expected, the WAS are significantly different between the tall extremes and 

the short extremes (p<3x10
-86

), with individuals in the tall extreme having higher WAS on 

average than individuals in the short extremes.  

We then tested whether the WAS in the short and tall groups are within expectations based 

on the population specific allele frequencies and previously estimated effect sizes of these SNPs, 

assuming a purely polygenic model. To generate the distribution of WAS under these 

expectations, we simulated populations that mimicked our ascertainment of extreme samples 

from the HUNT and FINRISK populations (see Materials and Methods). For each cohort, we 

compared the observed mean WAS with the distribution of mean WAS under the simulated model 

(Figure 2.3 and Figure 2.4). For the HUNT study the sample of 1224 individuals from the middle 

of the distribution suggest our modeling is behaving as expected (Figure 2.3). Finally, we 

analyzed the data by combining both studies using the 143 SNPs present in both data-sets 

(Figure 2.5). In each study separately and in the combined analysis, the mean observed WAS for 

the tall individuals was within expectation, but we observed a significant upward deviation of the 

mean observed WAS in the short extremes (p=0.006 for the combined-analysis). These results 

suggest that the collective effect of the common variants in the short extremes do not account for 

as much of the phenotypic variation in height as predicted from the effects seen in the general 

population. 

 

The reduced effect of common variants is limited to the most extreme short individuals 

Having established that the common variants do not explain as much phenotypic 

variation in the short extremes, we then sought to determine if this finding was accentuated in  
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Figure 2.3: Comparison of the observed versus simulated mean weighted allele score (WAS) 

in the HUNT study. The plot shows the result of comparing the mean WAS of the short and tall 

individuals observed in the HUNT cohort against that obtained from simulation. Each row 

represents a different stratification of the extremes identical to those defined in Figure 2.5. The 

plot also show the mean WAS of 1224 non-extreme individuals taken from the middle of the 

height distribution. There is no difference between the mean WAS of the non-extreme individuals 

from that obtained from simulation (p=0.56). 
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Figure 2.4: Comparison of the observed versus simulated mean weighted allele score (WAS) 

in the FINRISK study. The plot shows the result of comparing the mean WAS of the short and 

tall individuals observed in the FINRISK cohort against that obtained from simulation. Each row 

represents a different stratification of the extremes identical to those defined in Figure 2.5. 
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Figure 2.5: Comparison of the observed versus simulated mean weighted allele score (WAS) 

in the combined cohort. The plot shows the result of comparing the mean WAS of the short and 

tall individuals observed from both the HUNT and FINRISK cohorts against that obtained from 

simulation. Each row represents a different stratification of the extremes. The percentiles and 

numbers of individuals in the short and tall extreme respectively are listed for each stratum. The 

p-values represent the comparison between the observed and simulated mean WAS. The observed 

mean WAS for the tall individuals were not different from the simulation in any of the strata. The 

observed mean WAS for the short individuals was not different from the simulation in the first 

stratum. As a progressively more extreme sample is used, the short individuals’ mean WAS 

becomes progressively more significantly different than the simulation.  
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individuals with the most extreme short stature. We stratified our analysis in several ways 

(Figure 2.5; Figure 2.3; Figure 2.4). First, we removed the most extreme individuals: those below 

the 0.25 percentile and above the 99.75 percentile. In the combined cohorts, the mean observed 

WAS in the short extremes was no longer significantly different than expected (p=0.526), 

indicating that the shift in WAS is driven by the most extremely short individuals. To further 

explore this hypothesis, we then selected more extreme individuals at two thresholds, including 

only the top and bottom 0.5% or 0.25% of the population (see Materials and Methods). For both 

strata, there was a more pronounced deviation of the mean observed WAS in the short extremes 

(p=7.12 x 10
-6

 and p=9.88 x 10
-7 

for the 0.5% and 0.25% extremes respectively), but again no 

deviation in the tall extremes. Similar observations occurred when we analyzed the cohorts 

separately using the same stratification procedure (Figure 2.3; Figure 2.4). We repeated the 

analysis using Z-scores based on inverse normal transformation, and with the three -6 SD 

outliers removed, and the results were essentially unchanged. The difference observed in the 

WAS analysis is also supported by the individual SNP analysis: when we performed the 

combined analysis described above for the 0.25% extremes rather than the entire cohort, 60% 

(84/139) of the SNPS have an observed effect size smaller than expected (p=0.02) (data not 

shown). This analyses clearly suggest that the initial marginally significant shift of the mean 

observed WAS in the short extremes is primarily driven by the most extreme short individuals. 

Therefore, in general, as one selects individuals with more extreme short stature, in particular 

those with heights below the 0.25 percentile, the common variants play a much smaller role in 

explaining stature, indicating that there must be other factors contributing to the phenotypic 

variation in these extremely short individuals. 
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Low frequency or rare variants with larger effect sizes could explain the phenotypic 

variation in the short extremes 

We hypothesized that lower frequency and rare genetic variants with larger effect sizes 

than the common variants may explain the phenotypic variation in the short extremes. To test this 

hypothesis, we performed population simulations with rare-variants of various allele frequencies 

and effect sizes, and asked if our observed data were consistent with these simulated scenarios 

(Figure 2.6). As a negative control, we first modeled an additional 180 SNPs, each with allele 

frequency of 0.3 and average effect sizes of -0.05 SD, which is similar to the allele frequency 

and effect size for previously discovered common variants associated with height. In this 

simulation, the mean WAS distribution did not change, indicating that adding additional common 

variants of similar effect sizes cannot explain the phenotypic variation in the short extremes. We 

then modeled a single rare variant of very large effect: frequency 0.005 and effect size of -4 SD.  

In this model, the mean WAS distribution in the extremely short individuals shifts more than we 

observed in our population. This simulation essentially excludes the possibility of a 0.5% variant 

of very large effect within our cohort. Such a variant would also be likely to be discovered in 

linkage studies of several thousand sib-pairs [6]. 

However, there are several rare variant models that would likely not have been detected 

in previous linkage analyses of height and generate a shift in the mean WAS consistent with our 

observed data (Figure 2.6). One such possibility is a single low frequency variant (allele 

frequency = 0.005) with an effect size of -2 SD; another model consistent with our data includes 

10 variants each with an allele frequency of 0.005 and a moderate effect size of -1 SD.  These 

simulations suggest that individuals with very short stature may harbor small numbers of low 

frequency variants of moderately large effect or a greater number of low  
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Figure 2.6: Comparison of the observed versus simulated mean WAS with models 

incorporating additional variants. The plot shows the result of comparing the mean WAS of the 

short and tall individuals observed from both the HUNT and FINRISK cohorts against that 

obtained from simulation with different scenarios of additional variants. All rows use the 

approximate 1.5% tails of the height distribution as extremes, resulting in 566 short and 648 tall 

individuals. The 1
st
 row shows the result where the model has no additional variants affecting 

height and thus is identical to that from the 2
nd

 row of Figure 2.5. The 2
nd

 row shows a model 

where there are 180 additional common variants that slightly decreases height (allele frequency = 

0.3 and effect size (β) = -0.05). This model does not result in any significant change to the 

simulated WAS of the short individuals and the observed WAS is still significantly different 

(p=0.00756). The 3
rd

 row shows a model where there is 1 additional low frequency variant with a 

large height decreasing effect (allele frequency = 0.005 and effect size (β) = -4). This model 

results in a large shift in the simulated WAS of the short individuals to the right. The observed 

WAS is still significantly different (p=4.54 x 10
-8

) than the simulation but in the opposite 

direction and thus is not consistent with our data. The 4
th

 row shows a model where there is 1 

additional low frequency variant that decreases height significantly (allele frequency = 0.005 and 

effect size (β) = -2). This model results in a shift in the simulated WAS of the short individuals to 

the right such that the observed WAS is no longer different from the simulation (p=0.544). The 5
th

 

row shows a model where there are 10 additional low frequency variants that moderately 

decreases height (allele frequency = 0.005 and effect size (β) = -1). This model also results in a 

shift in the simulated WAS of the short individuals to the right such that the observed WAS is no 

longer different from the simulation (p=0.39). The final two models are consistent with our 

observed data. 
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Figure 2.6 (Continued)   
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frequency variants of moderate effects contributing to their short stature. This result stands in 

contrast to the remainder of the height distribution in which a polygenic effect of common and 

rare variants with small effects could explain the majority of the heritability of height, even 

though only a small percentage of height-associated common variants have been identified. 

 

Sibling analysis provides support for a different genetic architecture in extreme short 

individuals  

To provide further support for a different genetic architecture in individuals in the 

extreme short tails we performed an analysis in siblings from the HUNT study. We queried the 

entire HUNT database (N=106,455) and identified 21,365 siblings pairs. The correlation of age 

and gender adjusted height between siblings was high (r = 0.466). We then identified 98 

individuals (aged between 20-70yrs) with a Z-score < -2.81 (~0.25% tails) and 80 with a Z-score 

> 2.81 who also had at least one sibling in the database (the results are similar if we use inverse 

normal transformation). The average height Z-score for the siblings of the extreme short group 

was -0.97 (95% CI: -0.80, -1.15); the average Z-score for the full siblings of the extreme tall 

group was 1.29 (95% CI: 1.14, 1.45) which are significantly different (t-test, p=0.007 after 

reversing signs for the short group). We then performed this same analysis for the 0.25% to 1.5% 

tails individuals and there was no significant difference in z-scores of siblings between the short 

(-1.05 95% CI: -1.13, -0.97) and tall (1.11 95% CI: 1.03, 1.18) groups (t-test, p=0.28). So the 

differential regression to the mean appears to be limited to the shortest ~0.25% of individuals 

with this group regressing more quickly than the tall extreme group. This is consistent with the 

results we observe with the weighted allele score (WAS) approach. We do not have the twin data 

that would allow us to separate out the environmental and genetic effects in this group and our 
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data is consistent with both. If the effect were due to genetics, then a model with de novo 

mutations and/or multiple recessive rare variants could cause an increased regression to the mean 

in extremely short individuals, although there are other plausible explanations. 

 

DISCUSSION 

We have assessed whether common variants robustly associated with height in the 

general population also associate with height at the extreme tails of the height distribution. We 

further tested whether this association is to the extent expected under a purely polygenic model. 

By genotyping ~160 height SNPs identified from the GIANT study [2] (that explain ~10% of the 

population variation in height) in individuals from the ~1% tails of height from two large 

population based cohorts, we have shown that the polygenic model can explain the associations 

in the ~1% tails of height. However, our data indicate that the polygenic model starts to break 

down in extreme short individuals near the 0.25 percentile cut off. This conclusion is supported 

by our sibling analysis, which demonstrated that siblings in the 0.25% short tail regress to the 

mean more than those in the 0.25% tall group. Interestingly, the overall height distribution also 

shows a slight asymmetric deviation from normality, with an excess of individuals with 

extremely short stature but not for extremely tall stature. 

While in general the individuals in the ~1% tails carry as many height increasing alleles 

as would be predicted based on their height, there was a clear deviation for individuals in the 

shortest 0.25% tail. On average, these individuals carry significantly more “tall” alleles at the 

160 SNPs than would be expected if common alleles were explaining their short stature. This 

suggests that the heights of these individuals are explained by factors other than common 

variants. Our simulations suggest that rare variants could explain this difference in the 0.25% 
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shortest tail. For example, 10 rare variants with modest effects on height (1SD) are consistent 

with our observed data, as is a single variant with a 2SD effect. The sibling analysis also suggests 

a role for de novo or multiple recessive variants in the extreme short individuals. While rare 

height-decreasing variants of large effect are a plausible explanation, there are many other 

genetic models consistent with our data, including a mixture of height-decreasing with a smaller 

number of height-increasing rare variants, or variants having non-additive effects. While non-

additive genetic effects could explain the data, no evidence was found for dominance or gene-

gene interaction effects for the SNPs used in this study in the original GIANT publication [2]. It 

is also possible that these individuals are short for non-genetic reasons. One could suggest that 

these individuals are short because of differences in ancestry, but we have taken steps to remove 

any possible ethnic outliers from our extremes (see Materials and Methods). Measurement or 

recording error is another possibility, although the fact that the tall group does not show this 

effect (which presumably is equally likely to contain measurement error as the short group) 

suggests this is an unlikely explanation. Non-genetic factors could also be a possibility, for 

example, poor early-life nutrition, severe infection, or other chronic childhood diseases could 

have prevented these individuals from reaching their genetic height potential.  

This result also suggests that these families would be good candidates to investigate in 

sequencing studies, as they may be enriched for rare or de novo, higher penetrance alleles. More 

generally, the weighted allele score (WAS) method developed here could be used to select 

individuals to sequence in the search for these types of rarer variants, not only for height but also 

for other polygenic traits and diseases. Specifically, individuals in the extreme tails of a trait 

distribution who have an unexpectedly high or low weighted allele score may be particularly 

useful to sequence, especially if multiple relatives with these characteristics were present in the 
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extreme tails. 

Our study also demonstrates empirically that selecting individuals from the extreme tails 

of a complex trait distribution is an efficient approach for genetic studies, as was proposed both 

for linkage studies [7,8] and association studies [9,10]. Despite a quite modest sample size 

(N<1000), we replicated a large fraction of the individual SNPs identified in the GIANT study in 

our extreme height analysis.  Ninety-one percent of the SNPs had odds ratios that were 

directionally consistent with the direction in the published GIANT study (p<0.0001), and 35% 

(49/141) of SNPS had p<0.05 in the consistent direction. Our analyses also demonstrate that, 

outside of the 0.25% tails, this level of association is entirely consistent with that expected given 

the extreme tail ascertainment of our samples and the individual SNP continuous distribution 

effect sizes. Given this result, the ascertainment of our 923 samples from the ~1% to 0.25% tails 

provides equivalent power to approximately 6000 samples randomly selected from the general 

population for a variant explaining approximately 0.1% of the variation in height. Indeed, the 

ability to detect associations in samples ascertained for extreme phenotypes has been recently 

demonstrated in studies of bone mineral density [11], body mass index [12], triglyceride levels 

[13], and type 2 diabetes (using a liability threshold model [14]). Also, our results suggest that 

the statistical power of detecting these small effect variants would be reduced if we were to 

include the most extreme tails of the phenotypic distribution (in our case, the shortest 0.25% of 

individuals), consistent with predictions made based on simulation studies of mixtures of 

common and rare variants [15]. Nonetheless, our findings suggest that the use of individuals with 

the most extreme phenotypes could be particularly valuable to detect rarer variants with larger 

effect sizes more efficiently. 

In conclusion, we have shown that common genetic variants associated with height in the 
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general population are also associated with height at the ~1% tails of the height distribution. Our 

data suggest that common variants play less of a role, and the effect of rarer larger-effect alleles 

and/or strong environmental factors start to predominate around the 0.25% extreme. This finding 

may also have broader implications for studies of disease, in that the polygenic model may apply 

well to those diseases that represent the tails of an underlying normal distribution, but perhaps 

less well to diseases that correspond to more extreme phenotypes. 

 

MATERIALS AND METHODS 

Ethics statement 

Both studies were conducted according to the principles expressed in the Declaration of 

Helsinki.  Attendance was voluntary, and each participant signed a written informed consent 

including information on genetic analyses.  Local institutional review boards approved study 

protocols. 

 

Subjects 

The HUNT study 

The Nord-Trøndelag Health Study (HUNT) is a comprehensive population based health 

study (www.ntnu.edu/hunt) with personal and family medical histories on approximately 

120,000 people from Nord-Trøndelag County, Norway, collected during three intensive studies 

(HUNT 1, 2, and 3).  Inviting all citizens aged 20 and over, information was collected from self-

reported questionnaires consisting of >200 health-related questions, standardized clinical 
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examinations, urine and non-fasting venous blood sample.  The population in Nord-Trøndelag 

County is ethnically homogeneous, <3% of non-Caucasian ethnicity, making it especially 

suitable for epidemiological genetic research.  Height was measured by trained personnel to the 

nearest 1.0 cm with the participants wearing light clothes without shoes according to 

standardized methods [16].  

For this study we sourced data from HUNT 2 (1995-97) in which 65,258 individuals 

participated (71.2% of invited). We generated age and gender standardized height for the whole 

population, and selected the shortest 1000 individuals and the tallest 1000 individuals from the 

54,909 participants aged between 18 and 70yrs. We removed known 1st degree relatives based 

on information from the Medical Birth Registry of Norway, those reporting to be living outside 

of Norway their first year of life, and those with low DNA concentrations. We then genotyped 

the remaining shortest 471 individuals (<-2.14 SDs) and the tallest 479 individuals (>2.14 SDs) 

from the cohort. We also genotyped 1,458 individuals of all ages with a Z-score between +/- 2 

SDs as our middle group. 

 

The FINRISK Study 

FINRISK is a Finnish national survey on risk factors of chronic and non-communicable 

diseases. It is carried out every five years since 1972 using independent, random and 

representative population samples from different parts of Finland [17]. For this study, we 

selected individuals from 4 different sub-populations divided by geography (East vs. West 

Finland) and gender (Table 2.4). Individuals aged 25 to 74 years were included. We then took 

approximately the tallest and shortest 50 individuals (Table 2.4) from each tail of the distribution  
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Table 2.4: The FINRISK cohort divided into 4 sub-populations 

 

Cohort No. of 

Individuals 

No. of short 

extremes 

No. of tall 

extremes 

men/west 4271 53 51 

men/east 6582 52 52 

women/west 5025 52 52 

women/east 7610 52 52 

Total 23488 209 207 

Total successfully 

genotyped 

 186 192 

Total with genotypes used  181 192 

 

The table shows the number of individuals used for each of the FINRISK sub-populations. The 

FINRISK cohort is sub-divided between male and female as well as individuals from east and 

west Finland. 
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from each sub-population (extremes) and performed genotyping. 

 

Genotyping and Quality Control 

HUNT study 

Blood sampling was done whenever subjects attended HUNT 2.  DNA was extracted 

from peripheral blood leukocytes from whole blood or blood clots stored in the HUNT Biobank, 

using the Puregene kit (Gentra Systems, Minneapolis, MN) manually or with an Autopure LS 

(Gentra Systems).  Laboratory technicians were blinded to the results of the height 

measurements.  Details on the DNA extraction and the HUNT Biobank are described elsewhere 

[16].   

Genotyping of short and tall individuals were done at the Norwegian University of 

Science and Techonology, Norway using the iSelect Metabochip (Illumina, San Diego, CA) and 

the Infinium HD ultra protocol.  Each 96-well plate included both tall and short individuals and 

one sample of identical reference DNA.  Genotype calling was done using GenTrain version 2.0 

in GenomeStudio V2010.3 (Illumina, San Diego, CA).  Genotyping of the middle group was 

done on the Metabochip at the Center for Inherited Disease Research (CIDR, MD) and called 

with BeadStudio 3.3.7 with Gentrain version 1.0 (Illumina, San Diego, CA).   

Samples that did not meet a 99% completion threshold were excluded from further analysis 

(N=19; 0.7%).  Additional post-genotyping exclusions based on gender discrepancy (N=11) and 

first-degree relatedness (pi-hat >0.2; N=152, 6.3%) were done using PLINK [18]. Ethnic outliers 

(N=174, 7.2%) were excluded using the EIGENSTRAT software package [19].  After quality 

assessment 2,063 individuals (85.7%) remained for further analysis, 385 (81.2%) short, 456 
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(95.2%) tall and 1,224 (83.9%) individuals in the middle group. 

106 SNPs of the 180 GIANT height hits were directly typed on the Metabochip.  In 

addition, we used the SNP Annotation and Proxy Search to map 54 of the remaining 74 SNPs 

with a HapMap r2 > 0.8 linkage disequilibrium proxy result [20]. These 160 SNPs (i.e. 106 

directly typed and 54 proxies) were used in subsequent analyses. All SNPs showed a genotyping 

success rate >98% and were in Hardy Weinberg equilibrium. 

 

FINRISK study 

We directly genotyped the samples for the 180 previously identified height SNPs. The 

genotyping was done at Children’s Hospital Boston using Sequenom iPLEX genotyping 

(Sequenom, Inc, San Diego, CA, USA). In total, 186 short individuals and 192 tall individuals 

were successfully genotyped for 158 SNPs. All 158 SNPs had a genotyping success rate ≥ 90% 

and the overall genotyping rate was 97.85%. One of these SNPs (rs1809889) is not part of the 

180 GIANT SNPs, but data were available for this SNP from the GIANT meta-analysis so it was 

included in our analysis. 

We genotyped an additional 49 ancestry informative markers (AIMs) to identify ethnic 

outliers [21]. We inputted genotype data from our subjects as well as the reference HAPMAP 

samples (CEU, YRI, CHB+JPT) for the 49 AIMs together with 130 height SNPs into Structure 

2.3.3 [22]. We detected 5 ethnic outliers with >10% Asian ancestry who were excluded from 

further analysis leaving a total of 181 short and 192 tall individuals as our FINRISK study group. 

 

Statistical Analysis 



76 

 

Individual SNP analysis 

For FINRISK, we calculated the observed odds ratio for each of our 158 SNPs using the 

Cochran-Manzel-Hansel test, which is a stratified chi-square test. We stratified the individuals 

into 4 sub-cohorts based on geography and gender (Table 2.4) and performed the test using 

PLINK [18]. The observed odds-ratio for each SNP was recorded, along with the 95% 

confidence interval.  For HUNT the observed odds-ratio and 95% confidence intervals and the 

single association analysis was performed using logistic regression in PLINK. 

For both cohorts, we calculated the expected odds ratio for each SNP by estimating the 

odds of the height-increasing versus the height-decreasing allele in both the tall extremes (cases) 

and the short extremes (controls) assuming a standard normal distribution for standardized 

height, i.e. height ~ Normal(0,1). For a given SNP, we defined the height-increasing effect size as 

β and the height-increasing allele frequency as p. The mean height for the height-increasing 

allele would be Mi = β (1 - p) and the mean height for the height-decreasing allele would be Md = 

- β p. The variance of height for the both alleles would be V = 1 – β
2
 p (1-p). We then calculated 

the odds of observing the height-increasing allele versus the height-decreasing allele for both the 

tall extremes (cases) and the short extremes (controls) by taking the ratio of the probabilities of 

each allele being seen in the cases and the controls respectively. These are calculated as: 
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where N(x|M,V) denotes the density function at x of a Normal distribution with mean M and 

variance V. We use a cut-off of +/-2.326 to denote the approximate 1% tails. We then calculated 

the expected odds-ratio by taking the ratio between Oddscases over Oddscontrols, i.e. 

                     
         

            
 

To assess whether individual SNPs had odds ratios significantly different from expectation, we 

generated upper and lower 95% confidence limits for the expected distribution based on the 

GIANT beta and standard errors estimates as above, and used the natural log of these confidence 

limits to estimate an approximate standard error for the expected odds ratio, i.e. 

              
                     

      
 

We then assessed significance by a Z-test of the difference between observed odds ratio and 

expected odds ratio to obtain the Zscore, i.e. 

        
                               

              
               

 

 

Meta-analysis  

The HUNT and FINRISK studies genotyped different sets of SNPS, with only 98 of the 

SNPs matching exactly across the studies. We therefore used forty-three of the HUNT SNPs that 

had r
2
 > 0.8 HapMap proxies with a genotyped FINRISK SNPs. We used the inverse variance 

method to meta-analyze the odds ratios for these 141 SNPs from the two studies. As opposed to 

the individual studies, where study specific allele frequencies were used, we used the GIANT 

allele frequency information to generate the expected odds ratios for the meta-analysis. This did 
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not appreciably affect the results for individual SNP analysis within the individual studies, and 

the meta-analyzed results were consistent to those in the two individual studies. 

 

Modeling the Weighted Allele Score (WAS) 

To calculate the Weighted Allele Score (WAS) for each individual, we took the sum of the 

effective allele dosages of the height SNPs multiplied by their respective estimated effect sizes 

(βs) using the Stage 1 betas from the GIANT study, as shown in the formula below. 

               

 

   

 

β and SNP are the effect size and effective allele dosage (0, 1 or 2) of the height SNPs and WAS 

is the weighted allele score. N is the total number of SNPs available to calculate the weighted 

allele score. α is the mean of the sum such that the expected WAS is 0 as shown by the formula 

below. 

                   

 

   

 

Frequency is the allele frequency of the effect allele obtained from the Finnish or HUNT 

estimates.  

We calculated the statistical difference between the WAS of the short versus the tall 

individuals by performing a 2-tailed 2-sample t-test to obtain the respective p-value. All the 

calculations were done using the R statistical software package. 
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Obtaining Finnish allele frequency estimates 

The allele frequency estimate for each SNP was obtained by taking only the Finnish 

individuals from the GIANT height study and calculating the expected allele frequency. The 

cohorts used were the FUSION NIDDM Case control study from Finland, the GenMets Case 

control study from Finland and the FINRISK component of the MIGen cohort. The total number 

of individuals used for obtaining the estimates is 3618. 

 

Simulating the distribution of WAS under the null model 

The null model assumes that the only factors determining height (Z-score) are the 

cumulative additive effects of the GIANT height SNPs and noise. We modeled the Z-score with 

the formula below. 

                 
           

Zscore is the height Z-score, N(0, σ
2

remaining) is a normally distributed random variable with mean 

0 and variance σ
2

remaining. σ
2

remaining is calculated such that the variance of Zscore is 1, i.e. 

σ
2

remaining  is 1 – var(WAS). The variance of WAS can be calculated with the formula below, 

               
                           

 

   

 

On the other hand, a simulated individual's effective allele dosage is obtained by sampling from a 

set of binomial distributions with N=2 and p being the allele frequencies of each SNP. The 

simulated effective allele dosages can then be used to calculate each individual's WAS. The 
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simulation approach for each cohort was modeled to mirror the methods of subject selection. 

 

Simulating FINRISK 

For the FINRISK study, the simulations were performed using the following steps. We 

first generated the effective allele dosages for each SNP for 200,000 individuals by random 

sampling. We then randomly sampled 4271, 6582, 5025 and 7610 individuals to represent the 4 

sub-populations and obtained their Z-scores using the previously described modeling. For each 

subgroup, we picked the appropriate number of the most extreme individuals to mimic the actual 

sample selection. We then pooled the short and tall extremes together and randomly dropped 

individuals to obtain exactly 181 short extremes and 192 tall extremes. We then randomly drop 

SNPs from the simulated individuals to mimic the missing genotype rate in FINRISK and then 

calculate the Weighted Allele Score (WAS) for each simulated individual. This simulation process 

was repeated 10,000 times. For the stratified analyses of various height cut-offs, we adjusted the 

numbers of selected individuals in each strata by taking the floor of the expected number of 

individuals in that strata. In our cohort, the top 0.5% extremes included 21, 32, 25 and 38 

individuals from each tail of the 4 sub-populations respectively, and for the top 0.25% extremes 

included 10, 16, 12 and 19 individuals from each tail of the 4 sub-populations. For the top ~1% 

to 0.25% extremes, we included all our extremes but excluded the top 10, 16, 12 and 19 

individuals from each tail of the 4 sub-populations. 

 

Simulating HUNT 

The simulations for HUNT were performed as follows. We generated the effective allele 
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dosages for each SNP for 400,000 individuals by random sampling. We then randomly selected 

50,000 individuals and obtained their Z-scores. 

We then selected all short and tall extremes with a Z-score cut-off of -2.14 and +2.14 

respectively. Next, we randomly selected 385 short extremes and 456 tall extremes and 

calculated the WAS. This process was repeated 10,000 times. As in the FINRISK simulation, the 

number of individuals varies for each stratified analysis. Because we performed stratified 

analyses for varying levels of height cut-offs, our definition for the top 0.5% extremes is a Z-

score cut-off below -2.57 and above +2.57 and for the top 0.25% extremes is a Z-score cut-off 

below -2.81 and above +2.81. For the top ~1.5% to 0.25% extremes, we used only extremes that 

had Z-scores between -2.14 and -2.81 for the short extremes and between 2.14 and 2.81 for the 

tall extremes. 

 

Determining if the mean observed WAS is significantly different from the simulated 

expectation  

We evaluated the significance of the mean observed WAS by determining the p-value of the 

mean observed WAS from the null distribution of the mean WAS obtained from the simulations. 

The two-tailed p-value is calculated by evaluating the mean observed WAS from 

Normal(μsimulation , σ
2

simulation) where μsimulation is the mean of the mean WAS and σ
2

simulation is the 

variance of the mean WAS from the simulations. 

 

Modeling Rare-variants with moderate to large effect sizes 

Modeling the rare-variant effect into the simulation is accomplished by adding an additional 
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rare-variant term into the calculation of the height Z-score without changing the definition of 

WAS as shown in the equation below. 

                  

 

   

             
           

where n is the number of independent rare-variants, B represents the effect size of the rare-

variants, and  V is the allele dosage of the rare-variant. αrv is the mean of the rare-variants score 

such that the rare-variants do not change the expected Z-score, i.e. the expected Z-score is still 0. 

Similarly, αrv can be calculated by the following formula, 

            

 

   

 

σ
2

remaining in this case will have to be adjusted for the rare-variants such that the variance of the Z-

score remains at 1, i.e. σ
2

remaining is 1 – var(WAS) – var(Σ B V). F is the allele frequency of the 

rare-variants. Simulations done with modeling rare-variants are identical to the prior simulations 

of FINRISK or HUNT except that the new terms are used for calculating the Z-score. 
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ABSTRACT 

In most complex diseases, much of the heritability remains unaccounted for by common 

variants. It has been postulated that lower frequency variants contribute to the remaining 

heritability. Here, we describe a method to test for polygenic inheritance from lower frequency 

variants using GWAS summary association statistics. We explored scenarios with many causal 

low frequency variants and showed that there is more power to detect risk variants than 

protective variants, resulting in an increase in the ratio of detected risk to protective variants (R/P 

ratio). Such an excess can also occur if risk variants are present and kept at lower frequencies 

because of negative selection. The R/P ratio can be falsely elevated because of reasons unrelated 

to polygenic inheritance, such as uneven sample sizes or asymmetric population stratification, so 

precautions to correct for these confounders are essential. We tested our method on published 

GWAS results and observed a strong signal in some diseases (schizophrenia and type 2 diabetes) 

but not others. We also explored the shared genetic component in overlapping phenotypes related 

to inflammatory bowel disease (Crohn’s disease [CD] and ulcerative colitis [UC]) and diabetic 

nephropathy (macroalbuminuria and end stage renal disease [ESRD]). While the signal was still 

present when both CD and UC were jointly analyzed, the signal was lost when 

macroalbuminuria and ESRD were jointly analyzed, suggesting that these phenotypes should 

best be studied separately. Thus, our method may also help guide the design of future genetic 

studies of various traits and diseases. 

 

INTRODUCTION 

Most common diseases involve a mix of both genetic and environmental factors and do 
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not follow simple patterns of Mendelian inheritance. In such diseases, the genetic component is 

usually polygenic: genetic variation in many genes individually contribute a small or a moderate 

component of disease risk [1]. Genome-wide association studies (GWAS) have identified 

numerous genomic loci in which common variants (≥5% frequency) are associated with complex 

diseases [2]. Even in some of the largest and most successful GWAS to date, much of the genetic 

contribution to phenotype remains unexplained (sometimes called “missing heritability”) [3,4], 

suggesting that lower frequency variants, not well surveyed by GWAS, may also contribute to 

the missing heritability. Indeed, in some diseases such as autism spectrum disorders (ASD [MIM 

209850]), inherited rare (<1% frequency) and low frequency (<5% frequency) variants have 

been recently shown to play an important role in the genetic architecture of the disorder [5,6], 

suggesting that more loci with low frequency variants could be identified if appropriate 

additional studies were performed. In other diseases, there is as yet little evidence of a substantial 

role for low frequency variation, leaving open the question of whether studies of low frequency 

variation will be fruitful for those diseases. 

The relative success of different approaches in identifying more contributing loci will 

depend on what type of variation accounts for the missing heritability. Low frequency variants 

may remain undetected because they may not be well-represented or well-tagged by markers on 

genotyping arrays and therefore would not be well-imputed [7]. Along these lines, the statistical 

power to detect low frequency variants in GWAS is much lower than common variants if their 

underlying effect sizes are similar[8]. Knowing whether low frequency variants contribute to the 

missing heritability of a disease is important because approaches better-suited to identify 

additional common variants differ from those aimed at identifying rarer variants (genotyping 

arrays with common variants compared to arrays with lower frequency variants or sequencing). 
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Methods for detecting a contribution from common variants to the missing heritability 

have been described previously. In a GWAS of schizophrenia (SCZ [MIM 181500]) [9], Purcell 

and colleagues developed the concept of a polygenic score by combining the effects of multiple 

common variants that are modestly associated with schizophrenia. They showed that the score is 

predictive of schizophrenia in an independent cohort, thus indicating that there is a polygenic 

signal from many yet-to-be-detected common variants in schizophrenia. Yang and colleagues 

adopted a different approach by assessing the narrow-sense heritability of human height with a 

linear-model analysis using hundreds of thousands of common variants [10]. They found that at 

least 45% of the variance of height can be accounted for by common variants, indicating that 

there are many common variants associated with height that have yet to be discovered. Although 

both methods can be used to detect a signal of polygenic inheritance from common variants in 

complex diseases, these tests were not designed to specifically test for low frequency variants, 

and also require individual-level genotype data. 

In this chapter, we describe an approach that can be applied directly to GWAS summary 

statistics to ascertain the presence of polygenic inheritance from low frequency variants. We 

observed that, if low frequency variants contribute to disease susceptibility, there can be an 

excess of associated risk variants compared to protective variants at a given significance level. 

Here, risk variants are defined as variants for which the minor allele is associated with increased 

risk of disease and protective variants are defined as variants for which the minor allele is 

associated with decreased risk of disease. Under the null model, there should be no excess of 

associated risk variants compared to protective variants. We calculated the risk to protective ratio 

(R/P ratio): the ratio of the number of detected risk variants over the number of detected 

protective variants, to test for such an excess of risk variants. We explored various scenarios that 
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could give rise to an increased in the R/P ratio. First, we showed empirically and analytically that 

when low allele frequency variants contribute to polygenic inheritance of a disease with low 

prevalence, there is an elevated R/P ratio because of greater power to detect risk variants than 

protective variants. Next, we showed through simulations that under a scenario of polygenic 

inheritance that includes negative selection, risk variants can have lower average frequencies 

than protective variants leading to an elevated R/P ratio within the lower frequency range. 

However, we also showed that such an elevated R/P ratio can occur because of reasons unrelated 

to polygenic inheritance. First, we showed that an uneven sample size of having substantially 

more controls than cases can produce an apparent increase in the R/P ratio and therefore, where 

the sample size is not balanced between cases and controls, one should compare the observed 

R/P ratio against that obtained through simulations with the same number of cases and controls. 

Next, we showed that particular scenarios of asymmetric population stratification can  produce a 

similar excess of low frequency risk variants and recommend that precautions for detecting and 

correcting for such stratification should be performed before one can confidently interpret an 

excess of risk variants as being a signal of polygenic inheritance. 

We then applied our method to results from published GWAS for several diseases, 

including schizophrenia [11], bipolar disorder (BIP [MIM 125480]) [12], major depressive 

disorder (MDD [MIM 608516]) [13], type 2 diabetes (T2D [MIM 125853]) [14] and various 

classes of obesity (OB [MIM 601665]) [15]. We observed strong signals of increased risk 

variants in several of the diseases but little or no signal in others, suggesting that efforts to 

discover low frequency and rare variants will be more fruitful for the diseases with such a signal. 

We further used our method to test whether apparently related phenotypes share low frequency 

or rare genetic contributors and hence should be analyzed together or separately. By applying the 
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method to phenotypes related to diabetic nephropathy (DN [MIM 603933] [16] and 

inflammatory bowel disease (IBD [MIM 266600]) [17], we found that the polygenic signal was 

eliminated when individuals with macroalbuminuria and individuals with end stage renal disease 

were analyzed together, whereas we still observed a significant signal when individuals with 

Crohn’s disease and ulcerative colitis were analyzed together. Thus, our method has the potential 

to guide the strategy in searching for additional genetic loci as well as in prioritizing the choice 

of phenotype for future studies of rare genetic variation in polygenic traits and diseases.  

 

MATERIALS AND METHODS 

Testing for an excess of risk variants from GWAS summary statistics 

Calculating the R/P ratio statistic from observed GWAS summary statistics 

The four input fields we used for R/P ratio calculations for each SNP are: an identifier 

(rsID), the minor allele frequency, the association P-value, and a field to determine the direction 

of effect, i.e. either an odds-ratio (OR) or an effect size (β). The ORs or βs were adjusted to 

reflect the effect of the minor allele by inverting the ORs or changing the sign of the βs if they 

were reported for the major allele. Each variant was assigned as risk if the OR > 1 or β > 0 and 

protective if the OR < 1 or β < 0. Neutral variants, i.e. OR = 1 or β = 0 were discarded from the 

analysis. We removed SNPs not present in the Hapmap CEU population (phase 2 release 28) 

[18,19],not in the 1,000 Genomes EUR population [20] as well as SNPs with minor allele 

frequency less than 1%. We sorted the remaining variants in order from most significant to least 

and performed LD-pruning by systematically going through the variants and removing variants 

that have an r
2
 > 0.1 with any of the more significantly associated variants. We used PLINK [21] 
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to calculate r
2
 correlations of variant-pairs within a 1 mega-base window from 379 EUR 

individuals of the 1,000 Genomes. To measure the excess of risk variants in the lower frequency 

range, we separated the low frequency variants into 3 distinct bins, i.e. 1%-5%, 5%-10% and 

10%-15%. We also included the 30%-50% bin as a negative-control, where we should not 

observe any excess of risk variants. For each bin, we counted the number of detected risk 

variants and the number of detected protective variants that meet significance cutoffs of P < 

0.001 and P < 0.01. We calculated the R/P ratio as, 

          
                            

                                  
 

 

Assessing the significance of the observed Risk/Protective (R/P) ratio 

To assess the significance of an elevation in R/P ratio, we simulated individuals using 

HAPGEN  [22] by using parameters from the Hapmap CEU population (phase 3, r2) to obtain 

the null distribution of the log2 R/P ratio statistic. We first simulated 100,000 individuals to form 

a pool of individuals that we can subsequently sample from. Next, we randomly sampled the 

same number of individuals in cases and controls as were used in the actual GWAS, performed 

the association test using PLINK, with LD-pruning and R/P ratio calculations identical to the 

procedure described above. We repeated this process 1000 times to obtain accurate estimates of 

the sample mean ( ) and standard deviation ( ) of the log2 R/P ratio under the null for each of 

our frequency bins and P-value cutoffs. We calculated the significance of the observed log2 R/P 

ratio by performing a one-tailed Z-test to obtain the Zscore and P-value (P), i.e. 
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We defined P < 0.01 as our significance threshold for calling a significant excess of risk variants. 

 

Calculating non-centrality parameter (NCP) for comparing power between risk and 

protective variants 

Power calculation 

The power of a variant is expressed by calculating the expected non-centrality parameter 

(NCP) of the χ
2
 distribution for the alternative distribution. The greater the NCP, the more power 

there is to detect the effective variant. The algorithm for calculating NCP is identical to the 

genetic power calculator[8] for case-control threshold-selected quantitative traits, assuming an 

additive model of the QTL effect, i.e. the dominance to additive QTL effect parameter is set to 0. 

The variance explained for a SNP with allele frequency as p and effect size as β is β
2
2p(1-p). For 

risk variants, we calculated the NCP (NCPrisk) for multiple values of effect sizes (β), ranging 

from 0 to 0.5 with intervals of 0.01. Similarly, for protective variants, we calculated the NCP 

(NCPprotective) for multiple values of β, ranging from 0 to -0.5 with intervals of 0.01. The relative 

difference in power between risk and protective variants is measured by the NCP ratio. The NCP 

ratio is calculated as, 
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Base Model 

We define the base model as a set of parameters used for calculating NCP. 10,000 cases, 

10,000 controls, effective and marker variant frequency set to 1%. The prevalence is set as 1%, 

i.e. the trait threshold’s lower and upper limit is 2.33 and 9 respectively for cases and -9 and 2.33 

for controls. We have used 9 and -9 as surrogates for infinity (+∞ and -∞ respectively) but any 

sufficiently large number will not change the conclusions of the downstream analyses. Complete 

linkage disequilibrium (LD) between the causal variant and marker variant is assumed, i.e. D’ = 

1. 

Simulating R/P ratios for negative selection 

Obtaining frequencies and effect sizes 

If the variants that have an effect on the phenotype are under negative selection, it can 

lead to scenarios where there are more risk variants than protective variants to begin with, 

especially for low frequency variants. To illustrate this, we simulated neutral variants and causal 

variants under negative selection using previously published models and parameters that result in 

an allele spectrum similar to that observed in European population [23,24]. We used the forward 

simulation package ForSim [25] to simulate coding sequence variation in the European 

population in 1000 genes. The average gene coding length was set as 1500bp. We used a 

mutation rate per site of 2x10
-8 

and a uniform locus-wide recombination rate of 2Mb/cM. We 

modeled the distribution of selection coefficients (s) for de novo missense mutations by a gamma 

distribution [26]. We used the conventional 4-parameter model of the history of the European 

population with long-term constant size (N=8100 for 45,000 generations) followed by a 

bottleneck (N=2000) and then by exponential growth (1.5% increase per generation for 370 
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generations) to achieve a final population size of approximately 500,000 individuals [23,24]. We 

obtained 823 non-neutral variants that have minor allele frequencies ≥ 1% and assigned them as 

effective variants and assuming that the allele under negative selection confers risk, i.e. positive 

effect (Figure 3.1). By considering only additive genetic effects, we assigned effect sizes as: 

β=s
τ
(1+ε) as suggested in Eyre-Walker [27]. Here, β is the variant’s additive effect on the 

quantitative trait; s is the absolute value of the variant’s selection coefficient and ε is a normally 

distributed random noise parameter which was set to having mean 0 and standard deviation 0.05. 

τ is the degree of coupling between β and s and was set at 0.5 for our analyses. The effect sizes 

are scaled so that these 823 variants explain 60% of the phenotypic variance. 
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Figure 3.1: The frequency and effect sizes for the 823 SNPs under selection. The plot shows 

the minor allele frequency (x-axis) and effect size in standard deviation units (y-axis) for the 823 

SNPs that were obtained through simulating a trait under negative selection. 
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Obtaining phenotypes and calculating R/P ratio for the selection model 

We use the 100,000 HAPGEN simulated individuals and selected 823 matched SNPs 

such that the frequency matches the variants generated by ForSim. We then assigned these 

matched SNPs with effect sizes determined earlier. We calculated the phenotypic Zscore for each 

of our 100,000 individuals in the same way that we did in a previous study [28], i.e. by 

calculating the weighted allele score (WAS) and adding it to a randomly generated variable 

sampled from a normal distribution of mean 0 and variance 0.4 such that the total variance 

explained is 1. We then sampled 2,000 individuals with phenotypic Zscores > 1.645 (5% 

prevalence) as cases and another 2,000 individuals with phenotypic Zscores ≤ 1.645 as controls. 

We used PLINK to perform the association test on all the variants and calculated the R/P ratio 

within the same frequency bins as well as P-value cutoffs as described above. This process was 

repeated 1,000 times to obtain the distribution of the R/P ratio. For the control model, we 

randomly sampled 2,000 individuals as cases and 2,000 individuals as controls and calculated the 

R/P ratio as described above. 

 

Simulating R/P ratios for population stratification 

We use HAPGEN to simulate 4,000 distinct individuals from the Hapmap CEU 

population (phase 3, r2) as well as another 4000 distinct individuals from the Hapmap TSI 

population (phase 3, r2). For complete stratification, we randomly sampled 1,000 individuals 

from the CEU pool as controls and 1,000 individuals the TSI pool as cases. We simulated 

asymmetric mixtures of 1, 5 and 10 percent by randomly sampling 1000 individuals from the 

CEU pool as controls and sampled 10, 50 and 100 individuals from the TSI pool as cases, 
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respectively, and made up the remainder of the cases from the CEU pool. We used PLINK to 

perform the association test on all the variants and calculated the R/P ratio within the same 

frequency bins as well as P-value cutoffs as described above. Each process was repeated 1,000 

times to obtain the distribution of the R/P ratio. All PCA analysis was performed using smartpca 

from the EIGENSOFT 3.0 package [29]. All meta-analysis of GWAS summary statistics were 

performed using METAL[30]. Inflation of the GWAS test statistic due to population stratification 

was assessed by genomic control inflation factor (λGC) [31]. 

 

Calculating R/P ratio from published GWAS summary statistics 

Schizophrenia, major depressive disorder and bipolar disorder 

GWAS summary statistics were provided from published results of schizophrenia [11], 

bipolar disorder [12] and major depressive disorder [13]. SNPs that failed imputation (INFO < 

0.6) were discarded. The number of cases and controls used for simulating the null distribution 

are as follows: Schizophrenia (SCZ), 9,394 cases and 12,462 controls; major depressive disorder 

(MDD), 9,240 cases and 9,519 controls; bipolar disorder (BIP), 7,481 cases and 9,250 controls. 

 

Type 2 diabetes 

GWAS summary statistics were provided from published results of type 2 diabetes [14]. 

SNPs that passed imputation for less than 15,000 individuals (Ncases < 15,000) were discarded. 

The number of cases and controls used for simulating the null distribution are 15,000 cases and 

50,337 controls. 
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Obesity 

GWAS summary statistics were provided from published results of various classes of 

obesity[15]. SNPs that passed imputation for less than 50,000 individuals (Ncases < 50,000), 

10,000 individuals (Ncases < 10,000), 2,000 individuals (Ncases < 2,000) and 1,000 individuals 

(Ncases < 1,000) were discarded for the overweight (BMI > 25), class1 (BMI > 30), class2 (BMI > 

35) and class3 (BMI > 40) datasets respectively. The number of cases and controls used for 

simulating the null distribution are as follows: overweight, 50,000 cases and 35,715 controls; 

class1, 10,000 cases and 20325 controls; class2, 2,000 cases and 12,466 controls; Class3, 1,000 

cases and 18,346 controls. 

 

Inflammatory bowel disease 

GWAS summary statistics were provided from published results of Crohn’s disease (CD) 

[32], ulcerative colitis (UC) [33] and the combined case cohort of both Crohn’s disease and 

ulcerative colitis (CD+UC) [17]. SNPs that failed imputation (INFO < 0.6) were discarded. The 

number of cases and controls used for simulating the null distribution are as follows: CD, 5,956 

cases and 14,927 controls; UC, 6,968 cases and 20,464 controls; CD+UC, 12,882 cases and 

21,770 controls. 

 

Diabetic nephropathy 

GWAS summary statistics were provided from published results of phenotypes related to 
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diabetic nephropathy [16] which are Macroalbuminuria (MACRO) and End stage renal disease 

(ESRD). SNPs that failed imputation in at least 1 cohort were discarded. The number of cases 

and controls used for simulating the null distribution are as follows: macroalbuminuria versus 

control (MACROctrl), 1,478 cases and 3,315 controls; end stage renal disease versus control 

(ESRDctrl), 1,399 cases and 3,315 controls; ESRD versus controls that include MACRO 

(ESRDctrl+macro), 1,399 cases and 5,253 controls; combined MACRO and ESRD versus control 

([MACRO + ESRD]ctrl), 2,916 cases and 3,315 controls. 

 

RESULTS 

We developed a method to detect and assess the significance of an excess of risk variants, 

measured by the ratio of risk variants to protective variants (R/P ratio) within a series of 

frequency bins and P-value cutoffs (see Materials and Methods). We proceeded to show that 

under an assumption of polygenic inheritance from low frequency variants, there is more 

statistical power to detect risk variants than protective variants, which can result in an increased 

R/P ratio. We also showed that such an excess can also occur if risk variants are kept at lower 

frequencies because of negative selection. However, such an excess can also occur because of 

reasons unrelated to a contribution of rare variants to disease risk: uneven sample sizes or 

asymmetric population stratification. Therefore, steps have to be taken to account for these latter 

possibilities before one can confidently interpret the excess of risk variants as a true signal of 

polygenic inheritance. Finally, we applied the method to GWAS summary statistics from several 

published studies. 
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Significantly higher power to detect low frequency risk variants of moderate to large effect 

The liability threshold model for disease [34] has been shown to be consistent with 

results from GWAS for multiple diseases [35]. This model assumes that there is an underlying 

unmeasured trait related to disease risk, and that individuals are affected with disease only when 

the value of the trait exceeds a particular threshold. Under such a model, we discovered that the 

statistical power to detect risk variants is higher than the power to detect protective variants, even 

when they have the same effect size with respect to the underlying unmeasured trait. For 

example, we calculated power using a pre-defined set of parameters defined as the ‘base model’ 

(see Materials and Methods). From our calculations, we observed that, as effect size increases, 

there is significantly more power to detect risk than protective variants as indicated by the 

increase in the NCP ratio (Figure 3.2). This result shows that for this scenario, where the number 

of risk and protective variants are equal and have similar absolute effect sizes, the difference in 

power can create an excess of detected risk variants over protective variants which can result in 

an increased R/P ratio. 

 

The difference in power is larger under certain scenarios 

We explored how the difference in power to detect risk and protective variants would be 

affected when we varied the parameters in the model under which we calculated power. First, we 

calculated power using the base model but varied the minor allele frequency from 1% to 15%. 

The difference in power for risk and protective variants decreases as the variant frequency 

increases (Figure 3.3A). Second, we varied the disease prevalence from 1% (trait Z-score > 2.33) 

to 15% (trait Z-score > 1.03). Here, the difference in power decreases with increasing disease  
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Figure 3.2: Comparing the power to detect risk and protective variants with the same 

underlying effect size. The plot shows the power as the non-centrality parameter (NCP) for 

detecting minor alleles that confer risk (risk variants) and minor alleles that confer protection 

(protective variants) with varying absolute effect sizes (0 < β < 0.5 in standard deviation units) 

using parameters from the base model (see Materials and Methods). It also shows the NCP Ratio, 

which is the NCP of risk variants divided by the NCP of protective variants with the same 

absolute effect size (right vertical axis). The equivalent odds-ratio (OR) for the risk variants is 

also shown on the horizontal axis. 
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Figure 3.3: Effects of varying various parameters on the NCP Ratio. The plots show the 

difference in power for detecting risk versus protective variants through the NCP Ratio under 

varying parameters. Unless otherwise specified, the parameters used for calculating NCP are 

from the base model (see Materials and Methods). (A) Minor allele frequency of the associated 

variant varying from 1% to 15%. (B) Disease prevalence (threshold of liability) varying from 1% 

to 15%. (C) Linkage disequilibrium (LD) between the causal variant and the marker variant as a 

function of D’ (varying from 0.5 to 0.8). (D) The marker variant frequency is set at 5% with the 

causal variant frequency ranging from 1% to 4%. 
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prevalence (Figure 3.3B), and there is no difference in power at any effect size when the disease 

prevalence is exactly 50%. Third, we varied the linkage disequilibrium (LD) between the 

associated variant and the causal variant from moderate LD (D’ = 0.5) to strong LD (D’ = 0.8). 

While there is a general loss of power with decreasing LD, the difference in power between risk 

and protective variants increases with decreasing LD (Figure 3.3C). Along similar lines, when 

we assumed that low frequency causal variants are being tagged by variants of higher 

frequencies (fixing the frequency of the tagged variant at 5% and varying the frequency of the 

causal variant from 4% to 1%), we also observed a greater difference in power as the causal 

variant frequency decreased (Figure 3.3D). These results show that the difference in power 

between risk and protective variants should be more obvious when testing variants within the 

low frequency range (< 5% frequency), in polygenic diseases with lower prevalence, and when 

the markers being tested are proxies for lower frequency causal variants. The driving force 

behind this result is that cases are ascertained from individuals with an extreme distribution of 

liability scores whereas controls have a much broader distribution of liability scores. 

Consequently, given an equal number of cases and controls, the increase in minor allele count of 

a risk variant in the cases is greater than the increase in minor allele count of an equally strong 

protective variant in the controls, leading to higher power for detecting the risk variant (see 

Appendix for derived formulae that confirm the increase in power). Thus, if rare or low 

frequency variants play a substantial role in certain diseases with polygenic architecture, these 

results predict that we could observe an increased R/P ratio for low frequency variants in the 

GWAS summary statistics for these diseases. 
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Excess of risk variants can be caused by negative selection 

Beyond the differences in power, an excess of risk compared to protective variants can 

also occur if there is negative selection against the disease, leading risk variants to be kept at 

lower frequencies than protective variants. To illustrate this scenario, we simulated negative 

selection by coupling effects on evolutionary fitness and on a quantitative trait for a set of 

variants (frequency ≥ 1%), and then assigning case-control status based on the trait values (see 

Materials and Methods). We observed an increase in the R/P ratio for the frequency bins within 

1% to 15% but not for the 30-50% frequency bin (Figure 3.4). These results show that under a 

model where rare variants contribute to disease and are under negative selection, we could also 

observe an increase in the R/P ratio for low frequency variants in the GWAS summary statistics 

for these diseases. 

 

Excess of risk variants arise from having more controls than cases 

The previous results show that polygenic inheritance from lower frequency variants can 

lead to an increase in the R/P ratio, but such an increase can also occur in other settings. Under 

the null hypothesis, one would expect that on average, the number of detected risk variants to be 

equal to the number of detected protective variants resulting in an expected R/P ratio of 1. 

However, in our simulations, we observed that the expected R/P ratio can deviate from 1 because 

of an imbalance between the number of cases and controls. Specifically, if there are substantially 

more controls than cases, a feature present in some GWAS of dichotomous traits, it would result 

in the increase of the expected R/P ratio (R/P ratio > 1). To illustrate this, we randomly simulated 

1,000 cases and 3,000 controls (1k/3k) and measured the distribution of the R/P ratio under a null  



105 

 

 
Figure 3.4: The distribution of the R/P ratio from simulating variants under negative 

selection. The figure shows the distribution of the log2 R/P ratio for various frequency bins and 

P-value cutoffs from simulating variants under negative selection. The selection model (red) uses 

the 823 effective variants while the control (black) model assumes no variants affect the 

phenotype. 

  



106 

 

 
Figure 3.5: The null distribution of the R/P ratio with larger number of controls than cases. 
The figure shows the distribution of the log2 R/P ratio for various frequency bins and P-value 

cutoffs from simulating larger number of controls than cases. The 1k/3k (red) model simulates 

the null distribution of the log2 R/P ratio for 1,000 cases and 3,000 controls. The 10k/30k 

(orange) model simulates the null distribution of the log2 R/P ratio for 10,000 cases and 30,000 

controls. The control (black) model simulates the null distribution of the log2 R/P ratio for 1,000 

cases and 1,000 controls. 
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model of no association (see Materials and Methods). We observed that there is an increase in the 

R/P ratio distribution for 1k/3k for the low frequency bins (Figure 3.5). This increase is not seen 

with common variants (30-50% frequency bin), nor if the number of cases and controls are equal 

(Figure 3.5). Of note, with larger sample sizes (10,000 cases and 30,000 controls; 10k/30k, we 

observed that the increase in R/P ratio is substantially attenuated (Figure 3.5). These results show 

that an excess of controls can increase the expected R/P ratio, and should be accounted for by 

comparing the observed R/P ratio against those obtained through simulations under a null model. 

These results also show that with sufficiently large number of cases (e.g. > 10,000 cases), the 

increase in the expected R/P ratio due to this imbalance will be minimal. 

 

Excess of risk variants can be due to asymmetric population stratification 

We also considered whether an excess of risk variants could be seen in GWAS that are 

confounded by population stratification. As a first test, we randomly simulated 1,000 individuals 

of either northern European ancestry (CEU, based on allele frequencies in the CEU HapMap 

sample) or southern European ancestry (TSI, based on allele frequencies in the TSI HapMap 

sample). In one experiment, we simulated 1,000 CEU individuals as controls and 1,000 TSI 

individuals as cases (see Materials and Methods), and as a stratification-free experiment, we 

simulated 1,000 CEU controls and 1,000 CEU cases. We found that while there was a large 

excess of apparent associations for both risk and protective variants, leading to enormous 

inflation of the genomic control test statistic (λGC ~ 22.9), the resulting R/P ratio did not deviate 

substantially from expectations under the null (Figure 3.6). Therefore, even extreme scenarios 

with the usual forms of population stratification should not cause substantial deviations of the  
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Figure 3.6: The distribution of the R/P ratio from simulating population stratification. The 

figure shows the distribution of the log2 R/P ratio for various frequency bins and P-value cutoffs 

from simulating population stratification. The stratification model (red) simulates the association 

perform with cases only from the TSI population and controls only from the CEU population. 

The control model (black) simulates both cases and controls from the CEU population. 
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Figure 3.7: The distribution of the R/P ratio from simulating asymmetric population 

stratification. The figure shows the distribution of the log2 R/P ratio for various frequency bins 

and P-value cutoffs from simulating asymmetric population stratification. The models for 

asymmetric population stratification are as follows. Mixed 10%, 5% and 1% indicates 10%, 5% 

and 1% of the cases are TSI individuals respective while the rest of the individuals used are of 

CEU ancestry. The control model comprises of only CEUs without any population stratification. 
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R/P ratio. However, we reasoned that a special case of asymmetric population stratification could 

potentially cause the R/P ratio to depart from expectations under the null. Specifically, if there 

were a mixture of different populations only in cases but not in controls, or vice-versa, it could 

lead to an increase or decrease of the R/P ratio. To test this, we randomly simulated a series of 

models where controls are homogenous (CEU), while cases are a mixture of CEU and TSI (see 

Materials and Methods). At a 1% mixture in cases (λGC ~ 1.01), we did not observe any 

significant excess of risk variants, but at 5% mixture (λGC ~ 1.06), we observed an excess of risk 

variants within the low frequency ranges (Figure 3.7). This excess is even larger with a 10% 

mixture (λGC ~ 1.24) (Figure 3.7). Variants within the common frequency range do not show an 

excess of risk variants (Figure 3.7). These results show that such asymmetric population 

stratification can increase the R/P ratio, with only moderate increases in the genomic control 

statistics. As a corollary, if the mixture were to exist in controls but not cases, we would expect 

the R/P ratio to decrease. 

Finally, we meta-analyzed the results from the asymmetrically stratified GWAS with 

results from non-stratified GWAS (see Materials and Methods) to determine the effect on the R/P 

ratio if only a subset of the studies had asymmetric population stratification. We found that the 

increase in the R/P ratio is attenuated after meta-analysis (Figure 3.8). These results indicate that 

while asymmetric population stratification can give rise to an excess of risk variants, combining 

such results with non-stratified results can reduce the magnitude of the signal. Because this 

particular type of stratification is unlikely to be present in most of the cohorts prior to meta-

analysis, it may be useful to examine the summary statistics of each study individually to 

determine if the increased R/P ratio is derived from a subset of studies in the GWAS  
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Figure 3.8: The distribution of the R/P ratio from simulating asymmetric population 

stratification after meta-analysis. The figure shows the distribution of the log2 R/P ratio for 

various frequency bins and P-value cutoffs from simulating asymmetric population stratification 

after meta-analysis with non-stratified data. The model “mixed 10%” and “metaanalyzed” refers 

to asymmetric population stratification of 10% mixture of TSI individuals of the cases before and 

after being meta-analyzed with 4 other datasets without such stratification respectively. The 

control model indicates no asymmetric population stratification. 

meta-analysis. 
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Ideally, if an increased R/P ratio is observed, principal component analysis or other methods 

should also be applied to the primary data to search for outliers present exclusively in cases, to 

further rule out asymmetric population stratification as a cause of an increased R/P ratio. 

 

Using the R/P ratio in actual GWAS results to search for signals of low frequency variants 

contributing to disease risk 

Schizophrenia, major depressive disorder and bipolar disorder 

We applied our method to data from several psychiatric disorders: schizophrenia [11], bipolar 

disorder [12] and major depressive disorder [13]. We observed a significant increase in the R/P 

ratio only for schizophrenia in the 1-5% frequency bin, at a cutoff of P < 0.01 (P = 2.42 x 10
-7

) 

(Table 3.1). We did not observe any significant differences in the other frequency bins nor for 

any of the other psychiatric disorders (Table 3.1). These results are indicative of polygenic 

inheritance from low frequency variants in schizophrenia but do not provide similar support for a 

role of low frequency variants in major depressive disorder or bipolar disorder. 

 

Type 2 diabetes 

Next, we applied our method to GWAS results of type 2 diabetes [14]. The R/P ratio for 

type 2 diabetes was significantly increased in the low frequency bins (Table 3.2). The most 

significant difference was observed in the 1-5% bin with cutoff of P < 0.01 (P = 3.08 x 10
-15

).  
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Table 3.1: Schizophrenia, Major depressive disorder and Bipolar disorder 

  SCZ MDD BIP 

Freq 

(%) 

Pvalue 

cutoff 

O(R/P) E(R/P) P O(R/P) E(R/P) P O(R/P) E(R/P) P 

1-5 0.001 1.864 1.127 0.0298 1.210 1.058 0.269 0.884 1.110 0.748 

 0.01 1.623 1.032 2.42e-7 1.169 1.006 0.048 0.953 1.028 0.778 

5-10 0.001 1.348 1.057 0.1279 0.933 1.039 0.623 1.038 1.077 0.509 

 0.01 1.230 1.019 0.0111 0.914 1.005 0.865 0.973 1.013 0.678 

10-15 0.001 1.050 1.082 0.4926 1.348 1.035 0.126 1.038 1.055 0.473 

 0.01 1.054 1.019 0.3335 1.193 1.005 0.027 1.046 1.015 0.349 

30-50 0.001 1.063 1.022 0.3736 1.098 1.003 0.264 1.122 1.039 0.291 

 0.01 1.001 1.003 0.5010 0.944 1.001 0.836 1.070 1.009 0.165 

 

The observed, expected R/P ratios and P-values obtained from analyzing GWAS summary 

statistics of psychiatric disorders: Schizophrenia (SCZ), major depressive disorder (MDD) and 

bipolar disorder (BIP). O(R/P) refers to the observed R/P ratio while E(R/P) refers to the 

expected R/P ratio obtained through simulations. P refers to the p-value obtained from a 1-tailed 

Z-test (In bold: P < 0.01). 
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Table 3.2: Type 2 diabetes 

  T2D 

Freq 

(%) 

Pvalue 

cutoff 

O(R/P) E(R/P) P 

1-5 0.001 3.833 1.205 5.89e-6 

 0.01 2.009 1.069 3.08e-15 

5-10 0.001 1.636 1.131 0.043 

 0.01 1.439 1.051 2.28e-5 

10-15 0.001 1.660 1.081 0.031 

 0.01 1.400 1.033 8.36e-4 

30-50 0.001 1.041 1.038 0.459 

 0.01 1.035 1.008 0.308 

 

The observed, expected R/P ratios and P-values obtained from analyzing GWAS summary 

statistics of type 2 diabetes (T2D). O(R/P) refers to the observed R/P ratio while E(R/P) refers to 

the expected R/P ratio obtained through simulations. P refers to the p-value obtained from a 1-

tailed Z-test (In bold: P < 0.01).  
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We also observed a significant excess of risk variants in the 10-15% bin (P < 0.01, P = 2.28 x 10
-

5
). As the difference in power between risk and protective variants becomes minimal as the 

variant frequency increases, this observed excess of risk variants is more likely due to negative 

selection on diabetes risk alleles, tagging of low frequency variants by the more common SNPs 

in this frequency range, and/or possibly asymmetric population stratification. Nonetheless, these 

results are indicative of polygenic inheritance from low frequency variants in type 2 diabetes. 

 

Obesity 

We also applied our method to GWAS results for various classes of obesity [15]: overweight 

(BMI > 25), class 1 (BMI > 30), class 2 (BMI > 35) and class 3 (BMI > 40). The controls used 

for each class of obesity were individuals with BMI < 25. We observed a significant increase in 

the 1-5% frequency bin with a cutoff of P < 0.01 for only the class 1 dataset (P = 8.8 x 10
-6

) 

(Table 3.3). Also, while we generally observed a gradual increase in the R/P ratio with increasing 

BMI definitions of obesity, which could be consistent with a role of lower frequency variants, the 

increase in R/P ratio could also be explained by having more controls than cases. We did not 

observe any significant excess of risk variants for the low frequency bins in the class 2 or class 3 

datasets, likely because of the severely reduced sample sizes for the more extreme BMI 

definitions of obesity. 

 

Testing whether related phenotypes are likely to share low frequency causal variants 

To increase the power of GWAS, some studies have pooled apparently related phenotypes  
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Table 3.3: Obesity 

  Overweight Class1 

Freq 

(%) 

Pvalue 

cutoff 

O(R/P) E(R/P) P O(R/P) E(R/P) P 

1-5 0.001 1.188 0.997 0.228 0.917 1.164 0.758 

 0.01 1.120 0.986 0.078 1.536 1.050 8.8e-6 

5-10 0.001 1.026 0.998 0.408 1.139 1.098 0.393 

 0.01 1.023 0.991 0.328 0.937 1.023 0.838 

10-15 0.001 0.784 0.999 0.826 0.971 1.087 0.610 

 0.01 1.109 1.003 0.113 1.013 1.028 0.544 

30-50 0.001 1.121 0.991 0.194 1.059 1.020 0.380 

 0.01 1.022 0.999 0.340 1.045 1.004 0.225 

  Class2 Class3 

Freq 

(%) 

Pvalue 

cutoff 

O(R/P) E(R/P) P E(R/P) O(R/P) P 

1-5 0.001 2.462 2.410 0.410 3.700 3.454 0.354 

 0.01 1.533 1.376 0.114 1.814 1.617 0.111 

5-10 0.001 0.697 1.640 0.999 1.857 2.067 0.607 

 0.01 1.108 1.222 0.871 1.227 1.346 0.845 

10-15 0.001 1.276 1.567 0.713 1.385 1.766 0.779 

 0.01 1.066 1.208 0.883 1.269 1.267 0.479 

30-50 0.001 0.949 1.094 0.763 1.019 1.112 0.696 

 0.01 0.985 1.035 0.816 0.955 1.044 0.946 

 

The observed, expected R/P ratios and P-values obtained from analyzing GWAS summary statistics of 

clinical classes of obesity: Overweight (BMI > 25), Class1 (BMI > 30), Class2 (BMI > 35) and Class3 

(BMI > 40). O(R/P) refers to the observed R/P ratio while E(R/P) refers to the expected R/P ratio 

obtained through simulations. P refers to the p-value obtained from a 1-tailed Z-test (In bold: P < 

0.01).
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into a single case group [16,17]. We applied our method to measure the R/P ratio on published 

GWAS results of these related phenotypes. We reasoned that our method could also be used to 

test if pooling related phenotypes would increase power to detect low frequency variants, using 

only the GWAS summary statistics. We applied our method to GWAS results from two different 

pairs of related phenotypes, one pair for inflammatory bowel disease and one pair for diabetic 

nephropathy. 

 

Inflammatory bowel disease 

The two major types of inflammatory bowel disease are Crohn’s disease (CD) and ulcerative 

colitis (UC)[36]. We examined the R/P ratio in GWAS results for Crohn’s disease [32], ulcerative 

colitis[33] and the combined case cohort of both Crohn’s disease and ulcerative colitis [17]. We 

observed significant increases in the R/P ratio for both Crohn’s disease and ulcerative colitis 

within the low frequency bins (Table 3.4). The most significant increases were found in the 1-5% 

bin with cutoff of P < 0.01 (CD: P = 1.55 x 10
-10

, UC: P = 2.25 x 10
-9

), consistent with a 

polygenic role of low frequency variants in both diseases. However, when Crohn’s disease and 

ulcerative colitis were combined as a single case group (CD + UC), the increase in R/P ratio is 

less significant than in the individual GWAS results (Table 3.4). These results suggest that there 

are some low frequency genetic contributors to Crohn’s disease and ulcerative colitis that are not 

shared by both diseases. However, because the signal is still present (albeit attenuated) when 

both diseases were studied together, it also suggests that the two diseases do share some 

overlapping low frequency genetic contributors, although the attenuated signal could reflect  
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Table 3.4: Inflammatory bowel disease: Crohn’s disease and Ulcerative Colitis 

  CD UC CD+UC 

Freq 

(%) 

Pvalue 

cutoff 

O(R/P) E(R/P) P O(R/P) E(R/P) P O(R/P) E(R/P) P 

1-5 0.001 2.545 1.347 0.017 1.958 1.358 0.075 1.385 1.159 0.222 

 0.01 1.994 1.111 1.55e-10 1.866 1.106 2.25e-9 1.457 1.048 1.6e-4 

5-10 0.001 1.148 1.162 0.477 1.490 1.192 0.153 1.099 1.107 0.463 

 0.01 1.314 1.069 1.4e-3 1.460 1.066 8.59e-5 1.239 1.027 0.012 

10-15 0.001 1.200 1.181 0.424 1.279 1.186 0.337 1.583 1.076 0.059 

 0.01 1.043 1.059 0.551 1.213 1.066 0.075 1.104 1.026 0.205 

30-50 0.001 0.925 1.035 0.743 1.163 1.037 0.217 1.036 1.026 0.445 

 0.01 1.052 1.018 0.266 1.004 1.009 0.524 1.043 1.005 0.251 

 

The observed, expected R/P ratios and P-values obtained from analyzing GWAS summary 

statistics of inflammatory bowel diseases: Crohn’s disease (CD), Ulcerative colitis (UC) and the 

combined CD and UC as a single case group (CD+UC). O(R/P) refers to the observed R/P ratio 

while E(R/P) refers to the expected R/P ratio obtained through simulations. P refers to the p-

value obtained from a 1-tailed Z-test (In bold: P < 0.01).   
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Table 3.5: Diabetic Nephropathy: Macroalbuminuria and End stage renal disease 

  MACROctrl ESRDctrl 

Freq 

(%) 

Pvalue 

cutoff 

O(R/P) E(R/P) P O(R/P) E(R/P) P 

1-5 0.001 2.000 1.655 0.205 1.944 1.706 0.283 

 0.01 1.560 1.198 1.4e-3 1.705 1.207 6.4e-5 

5-10 0.001 1.563 1.359 0.253 1.278 1.404 0.585 

 0.01 1.200 1.116 0.175 1.240 1.143 0.147 

10-15 0.001 0.893 1.275 0.892 1.343 1.304 0.403 

 0.01 1.208 1.104 0.150 1.190 1.128 0.258 

30-50 0.001 1.122 1.066 0.343 1.198 1.051 0.197 

 0.01 0.990 1.023 0.690 1.152 1.014 0.017 

  ESRDctrl+macro [MACRO + ESRD]ctrl 

Freq 

(%) 

Pvalue 

cutoff 

O(R/P) E(R/P) P E(R/P) O(R/P) P 

1-5 0.001 2.667 2.008 0.146 1.087 1.133 0.504 

 0.01 2.270 1.285 9e-11 1.026 1.042 0.550 

5-10 0.001 1.533 1.584 0.496 0.875 1.071 0.754 

 0.01 1.552 1.187 2.9e-4 1.045 1.017 0.352 

10-15 0.001 1.462 1.397 0.380 0.912 1.038 0.640 

 0.01 1.310 1.160 0.078 1.053 1.009 0.290 

30-50 0.001 0.968 1.076 0.719 1.037 1.001 0.382 

 0.01 1.038 1.032 0.449 0.981 1.003 0.652 

 

The observed, expected R/P ratios and P-values obtained from analyzing GWAS summary 

statistics of diabetic nephropathy: macroalbuminuria (MACROctrls), end stage renal disease 

(ESRDctrls), ESRD versus controls that include MACRO (ESRDctrls+macro) and the combined 

MACRO and ESRD as a single case group ([MACRO + ESRD]ctrls). O(R/P) refers to the 

observed R/P ratio while E(R/P) refers to the expected R/P ratio obtained through simulations. P 

refers to the p-value obtained from a 1-tailed Z-test (In bold: P < 0.01). 
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persistence of two separate individual signals that are diluted after combination of the two sets of 

cases. 

 

Diabetic nephropathy 

We performed a similar analysis on two phenotypes used to characterize diabetic 

nephropathy[16]: macroalbuminuria (MACRO) and end stage renal disease (ESRD). Unlike 

inflammatory bowel disease, MACRO and ESRD are not necessarily distinct; MACRO is a 

milder form of diabetic nephropathy and some of those individuals progress to develop ESRD. 

The controls used for that study were diabetic individuals that did not develop nephropathy. We 

analyzed the GWAS results performed for individuals with macroalbuminuria versus controls 

(MACROctrl), individuals with end stage renal disease versus controls (ESRDctrl), individuals 

with end stage renal disease versus controls that also include individuals with macroalbuminuria 

(ESRDctrl+macro) and a combined case cohort that includes both individuals with 

macroalbuminuria and end stage renal disease versus controls ([MACRO + ESRD]ctrl). For the 

analyses of MACROctrl and of ESRDctrl, we observed significant increases to the R/P ratio in the 

1-5% bin with cutoff of P < 0.01 (MACROctrl: P = 0.001, ESRDctrl: P = 6.4 x 10
-5

) (Table 3.5). 

For the ESRDctrl+macro analysis, where individuals with macroalbuminuria are included within the 

controls, there is an even larger increase of the R/P ratio (ESRDctrl+macro: P = 9 x 10
-11

) (Table 

3.5). However, when MACROctrl and ESRDctrl were combined into a single case group 

([MACRO + ESRD]ctrl), none of the frequency bins showed significant increases in the R/P ratio 

(Table 3.5). These results suggest that while there are low frequency contributors to both 

macroalbuminuria and end stage renal disease, these contributors do not substantially overlap. 
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There is no detectable increase in the R/P ratio when both phenotypes are combined, unlike our 

observations for inflammatory bowel disease. Thus, these results indicate that studies of low 

frequency variation for diabetic nephropathy would be more fruitful if MACRO and ESRD are 

tested separately. 

 

DISCUSSION 

We have shown that our method for measuring the R/P ratio can be used as a test for the 

presence of multiple low frequency or rare genetic contributors to disease risk. This method can 

be applied to GWAS summary statistics, even if there are few or no genome-wide significant 

associations. We analyzed results from multiple published GWAS studies, and found significant 

signals in some but not all diseases. These results support the hypotheses that the diseases where 

the R/P ratio is increased have a polygenic contribution from as-yet undetected low frequency or 

rare variants.  

Some existing methods for detecting polygenic inheritance [9,10,37] use variants that 

achieve nominal significance in GWAS to determine if they are informative as predictors of 

phenotype. Because our method assesses the direction of effect of these variants against the null 

model, our method represents a rather different, independent approach for assessing polygenic 

inheritance of low frequency variants. Furthermore, our method does not require having 

identified associated loci or the availability of individual level data. For example, in 

schizophrenia, it has been shown that a substantial proportion of schizophrenia disease risk is the 

result of variants with frequency > 1% [38]. Our finding suggests that some of disease risk is 

accounted for by variants within the low frequency range (frequency < 5%). In a recent exome 
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sequencing study of 2,536 schizophrenia cases and 2,543 controls[39], Purcell and colleagues 

showed a polygenic burden of rare disruptive mutations, which is consistent with our 

observation. Similarly, for type 2 diabetes, our results suggest the presence of low frequency or 

rare variants contributing to disease risk, even though most of the variants known to be 

associated with disease risk are common (frequency ≥ 5%) [14]. 

We also showed that negative selection under polygenic inheritance can increase the R/P 

ratio for low frequency variants, because risk variants would be kept at lower frequencies while 

the protective variants could drift to higher frequencies. Indeed, in a previous study [40], Park 

and colleagues showed that across most qualitative traits, minor alleles conferred risk more often 

than protection which they concluded to be evidence for purifying selection. While this can be 

the case for some diseases, we also showed that this increase in the R/P ratio can also arise 

because there is more power to detect risk variants than protective variants. Furthermore, we 

have established that if there are substantially more controls than cases, a feature present in many 

GWAS, this imbalance can distort the null distribution such that there would appear to be more 

risk than protective variants. However, this imbalance can be accounted for through simulations, 

as we have demonstrated. 

Our method also provides a simple and early way of assessing the utility of different 

phenotype definitions for genetic studies of low frequency variation simply from GWAS 

summary statistics. Our results for inflammatory bowel disease are consistent with the idea that 

Crohn’s disease and ulcerative colitis have some overlapping genetic contributors. Indeed, a 

previous study exploring the effect of common Crohn’s disease variants on ulcerative colitis 

identified significant overlaps between the two diseases, but also loci specific to Crohn’s disease 

[41]. For diabetic nephropathy, where there are few established loci from which to draw 
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conclusions from, we observed signals for both macroalbuminuria and particularly for end stage 

renal disease when analyzed separately, but no significant signal when both diseases were 

combined as a single case group. This suggests that macroalbuminuria and end-stage renal 

disease are distinct in their genetic architecture and would be more productive if they were to be 

studied separately. Interestingly, the same GWAS on diabetic nephropathy discovered a single 

genome-wide significant locus only when end stage renal disease was treated separately from 

macroalbuminuria [16], consistent with our observation. 

Finally, asymmetric population stratification between cases and controls can lead to both 

false positive associations (as evidenced by an increased genomic control inflation factor) [42], 

and also an increase in the R/P ratio. Thus, while our observations of higher than expected R/P 

ratios in some of the published GWAS datasets are suggestive of a role of low frequency 

variants, we cannot completely rule out that some of these signals could be in part explained by 

asymmetric population stratification. Of note, none of the R/P ratios showed a deficit of risk 

variants (which would be expected under some models of asymmetric population stratification), 

suggesting that asymmetric population stratification is not widespread. Furthermore, these 

GWAS have used methods to detect and correct for population stratification. 

In conclusion, our method can be used to screen for polygenic inheritance from low 

frequency or rare variants in diseases where GWAS have been performed. Our method can also 

be extended to other summary statistics, e.g. studies from sequencing or exome-chip genotyping, 

to assess low frequency variants that were directly genotyped rather than imputed. This method 

can serve as a simple approach to guide researchers in prioritizing strategies in searching for as 

yet unexplained heritability for specific diseases. For example, in a study of epilepsy [43], 

Heinzen and colleagues failed to identify any rare variants of large effect through exome 
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sequencing; analysis of GWAS data for epilepsy can in theory help guide decisions about 

embarking on additional studies of low frequency or rare variants with larger sample sizes. 

Although a lack of a signal from our method does not rule out a role for low frequency variants, 

and may reflect a combination of small sample sizes, and a set of effect sizes and frequencies 

that do not significantly alter the R/P ratio, a positive signal can provide greater confidence about 

the likelihood that low frequency or rare variants contribute to disease risk. 

 

APPENDIX 

Calculating NCP from various given parameters 

We define the following parameters required to calculate the non-centrality parameter 

(NCP) as a function of effect size of minor allele (β), minor allele frequency (p), liability 

threshold (t), number of case individuals (Nd) and number of control individuals (Nc). We denote 

the minor allele (effect allele) as a1 and the major allele (non-effect allele) as a2. As such, the 

liability distribution of a1 is N(x, μ1, σ
2
) and the liability distribution of a2 is N(x, μ2, σ

2
) such that 

N(x, μ,σ
2
) is the probability density function of a normal distribution with mean μ and variance 

σ
2
. 

The mean liabilities for a1 and a2 are as follows: 

Mean liability for a1 = μ1 = β - β p = β q 

Mean liability for a2 = μ2 = - β p 

where q is the major allele frequency such that p + q = 1. The variance remaining σ
2 

is: 

Variance remaining = σ
2 

=1 – β 
2
 p q 
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Next, we calculate a series of conditional probabilities as follows:  

                   

 

 

       

                   

 

 

       

                       

 

  

       

                       

 

  

       

With these conditional probabilities, we proceed to calculate the expected allele frequencies of 

both the minor allele and major allele in both cases and controls using Bayes’ theorem. These are 

calculated as: 

                
            

           
 

 

 

                       

                     
               

           
 

  

 

                          

We then calculate the NCP by the χ
2
 statistic from a 2 by 2 contingency table for the expectation 

of the observed number of a1 and a2 in both cases and controls. 
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 Case Control Total 

a1 2 Nd Pd1 2 Nc Pc1 2 A 

a2 2 Nd (1- Pd1) 2 Nc (1- Pc1) 2 B 

Total 2 Nd 2 Nc 2 T 

 

where, 

A = Nd Pd1 + Nc Pc1 

B = Nd (1- Pd1) + Nc (1- Pc1) 

T = A + B = Nd + Nc 

The expected number for each cell is the row total times the column total divided by the grand 

total. 

Thus, the NCP is calculated as: 
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After some algebra and simplification, 

 

     
  

  
             

  

Therefore, 

                   
   

     

                            
) 

We verified that these formulae were correct by comparing to simulated results. 

 

Determining NCP ratio between risk and protective variants with the same magnitude of 

effect 

We formulated the various probabilities between risk and protective variants. Assuming β 

to be positive, the risk variant would have the following probabilities, 

    
         

 

 
       

       
 

 
    

 

      
          

 

  
     

       
 

  
    

 

and the protective variant with the same magnitude of effect would have the following 

probabilities, 
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Assuming that there are equal number of cases and controls (N1 = N2), then 

       
        
 

 
      

       
 

 
    

 
         

 

  
     

       
 

  
    

 

 

 

The ratio between risk and protective variants with the similar magnitude of β is therefore 

          

 
        
 

 
      

       
 

 
    

 
         
 

  
     

       
 

  
    

  

 
         
 

 
      

       
 

 
    

 
          
 

  
     

       
 

  
    

  

 

 

We can transform the distributions such that, 
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Then, 
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When prevalence is 50% (t=0),  

       

 

   
 

             

   
 

 

     

and therefore 

            

This shows that when prevalence is 50% (t=0) and there are equal sample numbers in cases and 

controls (N1 = N2), the NCP between risk and protective variants with identical magnitudes of 

effect (β) would be the same regardless of any other parameters. 

For the case where t > 0, if 
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then the NCP for risk variants will be greater than the NCP for protective variants and the NCP 

ratio will be greater than 1.  When t > βq, this will be true because the normal distribution is 

monotonic decreasing above z=0 (y=0).  

To extend this to the more general case of t>0, we first examine the individual components, 

       

 

    
 

            

 

  

            

    
 

  

     

 
 

 
       

 

  
   

 

 
       

    

   
   

 
 

 
     

 

  
      

    

   
   

where eft is the error function. Similarly, 

       

    
 

 

            

    
 

  

            

 

  

     

 
 

 
       

    

   
   

 

 
       

 

  
   

 
 

 
     

    

   
      

 

  
   

Therefore, 
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Taking the first 2 terms of the Taylor-series expansion of the error function and approximating σ 

to 1 (σ ≈ 1), 

    
 

  
   

 

 
     

    

   
  

 

 
     

    

   
  

  
 

  
 
 

  
 

  

   
   

 

 
 
 

  
  

    

  
 
       

   
  

 

 
 
 

  
  

    

  
 
       

   
  

 
 

  
 
   

   
 

   

   
 
      

   
 
       

   
 
      

   
 
       

   
  

 
 

  
 
                    

   
  

 
 

  
 
                                                   

   
  

 
 

  
 
      

  
  

As such, if t >0, 

 

  
 
      

  
    

Therefore, if t > 0, 

       

 

    
 

             

    
 

 

     

            

Therefore, for diseases with low prevalence (t > 0), there is more power to detect risk variants 
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compared with the protective variant.  
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ABSTRACT 

 Body proportion is a phenotype that is determined by the ratio of different components of 

the human anatomy. While there are many genetic studies that have been performed for height, 

little is known about the genetics underlying our body proportion and the genes regulating our 

proportion might play a more important role for growth and development. Here we report our 

findings of our analysis on sitting height ratio (SHR), the ratio of sitting height to overall height. 

We show that genetics contribute in a major way to explain the difference in SHR between 

African Americans and European Americans. After adjusting for height, age, sex, body mass 

index and the relevant principal components, the genome-wide association study (GWAS) in 

African and Europeans Americans uncover 3 loci associated with SHR. One of the loci 

(rs5959358) resides on the X-chromosome and was reported to be also associated with height. 

Comparing the known loci associated with height with the results of SHR reveal that most of the 

loci are associated with alterations of SHR too. While these confirm that SHR is largely 

genetically determined, nonetheless more samples are required to reveal the full genetic 

architecture in SHR determination. 

 

INTRODUCTION 

 Human height is a commonly used trait to illustrate a highly heritable that is polygenic. 

Our height however, is in reality a summation of many different components, e.g. head length, 

trunk length, leg length, etc. One of the first reports on how these individual lengths should 

correlate with each other was given by Leonardo da Vinci in his illustration of Vitruvian Man 

circa 1490. In it, he recorded the expected proportions of these measurements in relation with 

each other for the human body. Further research have postulated that some of these 
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measurements may be predictors of diseases [1]. For example, there is evidence that leg length 

can be a predictor of metabolic disorders underlying type 2 diabetes [2]. 

 One such measurement is sitting height. Sitting height is defined as total stature that is 

comprised by head and trunk and is usually measured by having the individual sit on a table and 

measuring the length from the table surface to the top of the person’s head. Since sitting height is 

a component of an individual’s total height, the sitting height ratio (SHR), defined as the sitting 

height divided by total height is an indicator of an individual’s body proportion. The SHR of an 

individual changes as we grow. Unlike height which increases as we age, SHR rapidly decreases 

as we progress from being a baby to being a teenager an increases slightly as we become adults 

[3,4]. In the extreme case, individuals affected with skeletal dysplasias not only have short 

stature, but also have disproportionate SHR [5]. Depending on the type of skeletal dysplasia, the 

SHR can be severely increased. For example, individuals with Achondroplasia have average 

SHR of 0.66 (normal range: 0.52-0.53) [6]. On the other hand, individuals with 

spondyloepiphyseal and spondylometaepiphyseal dysplasias may have normal SHR values [7]. 

The SHR is also slightly different between people from different ancestries. Individuals 

of Asian ancestry have higher SHR than individuals of European ancestry and individuals of 

European ancestry have higher SHR than individuals of African ancestry [8]. This difference is 

assumed to be due to genetic factors, although it remains unclear whether the difference is due to 

many variants with small effect sizes or a few variants with large effect sizes. 

 In this chapter, we described our approach to determine if there is a strong genetic 

influence on the SHR difference between individuals of different ancestry. We found that SHR is 

highly correlated with the degree to which African Americans have admixed of European 

ancestry. The more European ancestry an African American has, the higher his or her SHR, 
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consistant with the reported observations. We performed genome wide association study of SHR 

with both European Americans as well as African Americans and reported 3 loci associated with 

SHR. We then examine several variants that were known to be associated with height and 

observed that many of these variants were also marginally associated with SHR. These results 

suggest that variants associated with height that are also associated with SHR might be in genes 

that regulate development of the growth plate. 

 

RESULTS 

European Americans have higher sitting height ratios (SHR) than African Americans 

 We used the ARIC [9] and CARDIA [10] cohorts as they include both European and 

African Americans with both sitting height and height measurements. After removing individuals 

that failed our quality control (see Materials and Methods), we have 7,257 European American 

individuals and 2,354 African American individuals from ARIC. For CARDIA, we have 1,047 

European American individuals and 715 African American individuals. Comparing the sitting 

height ratio (SHR) between European and African American individuals, we find that European 

Americans have higher SHR values than their African Americans (Figure 4.1). In both ARIC and 

CARDIA, the mean SHR for European Americans is 0.53 while the mean SHR for African 

Americans is 0.51. After correcting SHR for covariates like height, age, sex, BMI and expressed 

SHR in terms of a Zscore (see Materials and Methods), we observed that there is more than a 1 

standard deviation difference (ARIC = 1.16, CARDIA = 1.06) between European Americans and 

African Americans. This result is consistent with earlier findings that European Americans have 

higher SHR than African Americans [8]. 
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Figure 4.1: Sitting height, height and sitting height ratio (SHR) distribution. We examined 

the sitting height, heights and sitting height ratios (SHRs) for individuals in both the ARIC and 

CARDIA cohorts. European Americans (EA) are colored in blue while African Americans (AA) 

are colored in red. (A) The top panel plots the sitting heights versus total height for the 

individuals in the ARIC cohort (N=9,611). The bottom panel represents the histogram of SHR of 

European American and African Americans where there is about a 1.18 standard deviation 

difference between the 2 populations. (B) The CARDIA cohort (N=1,762). The bottom panel 

shows the histogram of SHR of EA and AA where there is about a 1.06 standard deviation 

difference between the 2 populations. 
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Degree of European admixture is predictive of sitting height ratio (SHR) in African 

Americans 

 To determine if the SHR difference between European and African Americans has a 

genetic component, we reasoned that we could test this by exploring the genetic landscape of 

African Americans. As it is common for African Americans to high levels (>10%) of European 

ancestry [11], the level of European ancestry in any given African American should be correlated 

with SHR, if there is a genetic component to this difference. Given that European Americans 

have higher SHR than African Americans, we expect this correlation to be positive. To test this, 

we used principal component analysis to determine the degree of European admixture for the 

African Americans in both the ARIC and CARDIA (see Materials and Methods). We observed 

that there is a gradient of percentage European admixture in the African Americans (Figure 4.2A-

B) with some African Americans having as much as 60% European ancestry. There are 

significance positive correlations between the percentage European admixture and normalized 

sitting height ratios (SHR) (Figure 4.2C-D). This result shows that the SHR difference between 

European and African Americans has a significant genetic component. 

 

Analysis of African American individuals identifies variant associated with sitting height 

ratio (SHR) 

 Given evidence for a genetic component, we proceeded to test for genetic markers that 

are associated with sitting height ratio (SHR). We performed genome wide association on the 

using the genotypes of the African American individuals from both the ARIC and CARDIA 

cohorts and performed the meta-analysis by combining the results from both cohorts (see 

Materials and Methods). We observed a genome-wide significant signal at the chromosome   
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Figure 4.2: Association of global European ancestry with sitting height ratio (SHR). The 

plots show the degree of European admixture for each African American individual and how it 

correlates with SHR. A and C show the degree of European admixture in the 2 cohorts by 

principal component analysis. Individuals closer to CEU (blue) have more European ancestry 

than individuals close to YRI (red). B and D show the association of European ancestry with 

SHR using linear regression. (A) Global European ancestry for ARIC. (B) Correlating global 

European ancestry with SHR for ARIC. (C) Global European ancestry for CARDIA. (D) 

Correlating global European ancestry with SHR for CARDIA. 
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Figure 4.3: Genome wide association study (GWAS) of African American individuals. The 

Manhattan plot of the GWAS performed for the African American individuals from the ARIC 

and CARDIA cohorts. Only 1 locus (rs201786365) reached genome wide significance. 
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3p21.33 locus of which the lead variant (rs201786365) has an association statistic of P=1.252 x 

10
-8

 with the minor allele (MAF = 0.14) associated with increased SHR (β = 0.21) (Figure 4.3). 

This variant is present only in African Americans and is fixed as the major allele in European 

Americans. As such, this variant does not explain for the SHR difference between African and 

European Americans. The closest gene in the locus to the lead SNP is ABHD5 of which 

mutations in the gene has been associated with Chanarin-Dorfman syndrome [12]. 

 

Analysis of European American individuals identifies 2 loci associated with sitting height 

ratio (SHR) 

 We continued to explore for genetic associations for SHR by performing the test on our 

European American individuals. We performed the test on the European American individuals in 

the ARIC, CARDIA, CHS, FHS cohorts (see Materials and Methods). We observed a genome-

wide significant signal at the chromosome 18p11.23 locus of which the lead variant 

(rs140449984) has an association statistic of P=3.70 x 10
-9 

with the minor allele (MAF = 0.07) 

associated with decreased SHR (β = -0.149) (Figure 4.4). This variant lies within an intron of the 

PTPRM gene, which the protein encoded is a member of protein tyrosine phosphatase (PTP) 

family. 

 Additionally, we observed a significant signal on the X-chromosome (rs5959358) that the 

minor allele (MAF = 0.37) is associated with decrease SHR (β = -0.097, P = 9.71 x 10
-8

) only in 

women (Figure 4.5). Interestingly, the locus, which is in the vicinity of ITM2A, has been shown 

to be associated with height and also reported to escape dosage compensation [13]. That reported 

variant (rs1751138) is also associated with decrease SHR (β = -0.0945, P = 3.18 x 10
-7

) and is in 

strong linkage disequilibrium (LD) with rs5959358. 
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Figure 4.4: Genome wide association study (GWAS) of European American individuals. 

The Manhattan plot of the GWAS performed for the European American individuals from the 

ARIC, CARDIA, CHS and FHS cohorts. Only 1 locus reached genome wide significance. The 

lead variant (rs140449984) is in the PTPRM gene. 
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Figure 4.5: Genome wide association study (GWAS) of the X-chromosome in European 

American women. The plot of the X-chromosome association performed for the European 

American women from the ARIC, CARDIA, CHS and FHS cohorts. The strongest association 

signal (rs5959358) has the closest gene (ITM2A) that was previously reported to harbor variants 

that escape dosage compensation. 
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Variants associated with height are also associated with sitting height ratio (SHR) 

 As sitting height is one of the components of height, we reasoned that variants that alter 

our height may be enriched for variants that also alter our SHR. To test this, we obtained a set of 

421 LD-independent variants that have been shown to be robustly associated with height (Wood 

et. al., unpublished) and determine if they are also associated with SHR. Although none of these 

421 variants reached genome-wide significance, we observed that as a whole, the 421 height 

associated variants are also significantly associated with SHR (Figure 4.6). We observed 49 of 

the 421 variants to have SHR P-values less than 0.05, which is significant (Expected=21.05/421; 

P=2x10
-8

). The strongest associated variant (rs2079795) has an association with SHR with a P-

value of approximately 3 x 10
-6

. Also, the variant associated with height in GDF5, which was 

previously suggested to also have some association with sitting height [14] had some marginal 

association with SHR (P=0.01) (Table 4.1). These results are indicative that SHR is polygenic 

and a substantial number of height associated alleles do alter the SHR as well. 

 

DISCUSSION 

 We have shown that body proportion as determined by our sitting height ratio (SHR) is 

mainly genetically driven. SHR also appears to be more constraint than height as while a 

standard deviation (SD) of height is 6.08 cm (ARIC), an SD of sitting height adjusted for height 

is just 1.95 centimeters (ARIC). Also, in general, men and women can differ in heights as much 

as 12cm [15], the sitting height adjusted for height difference between men and women is just 

approximately 0.47cm (ARIC). This is suggestive that the genes underlying the variability of 

SHR might just be more relevant than height to development as there is more selective pressure 

to keep our SHR within an acceptable range. However, we and others have shown that there is a 
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Figure 4.6: QQ-plot of the 421 LD-independent SNPs known to be associated with height. 

The plot shows the 421 height SNPs are as a group, also associated with sitting height ratio 

(SHR) even if none of them reached genome wide significance. The x-axis is the expected -log10 

of the P-values while the y-axis is the observed -log10 of the P-values obtained from the 

association with SHR from the European American individuals. The gray points represent 5 

different random samplings of 421 different variants from the GWAS of SHR from the European 

American individuals. 
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Table 4.1: The effect sizes, P-values of the 421 height associated SNPs with sitting height 

ratio (SHR). 

      Height Sitting height ratio  

Rsid Chr Position Ref Alt Reffreq Effect Size P-value Effect Size P-value Closest 

Gene 

rs2079795 17 56851431 t c 0.33 0.045 8.60E-48 -0.067 2.99E-06 C17orf82 

rs310421 6 81848782 t g 0.54 0.028 1.40E-21 0.0508 0.0001647 FAM46A 

rs4369779 18 18989406 c t 0.79 0.056 1.40E-54 -0.0557 0.0006526 CABLES1 

rs1614303 10 123386796 t g 0.83 0.023 1.50E-09 -0.0579 0.0009193 FGFR2 

rs42039 7 92082358 t c 0.27 0.051 4.10E-39 -0.0518 0.0009542 CDK6 

rs217181 16 70671503 t c 0.2 0.024 2.20E-10 -0.055 0.0009664 HPR 

rs3790086 16 68445208 c g 0.56 0.023 9.80E-16 0.0417 0.001443 WWP2 

rs4803468 19 46614192 a g 0.42 0.029 1.20E-20 0.0421 0.001541 BCKDHA 

rs3807931 7 20348199 a g 0.45 0.027 4.00E-21 -0.0425 0.001648 ITGB8 

rs3825199 12 92501085 g a 0.23 0.054 1.90E-53 0.0504 0.001875 SOCS2 

rs3791679 2 55950396 a g 0.77 0.084 1.30E-96 -0.0467 0.002166 EFEMP1 

rs2224538 20 37985492 t c 0.65 0.018 4.90E-09 0.0404 0.002936 MAFB 

rs3760318 17 26271841 g a 0.63 0.054 2.30E-59 -0.0399 0.00306 CENTA2 

rs8006657 14 54314899 g a 0.59 0.024 3.70E-15 0.0396 0.003301 SAMD4A 

rs1966913 16 65941727 a t 0.96 0.042 1.00E-08 -0.092 0.004018 LRRC36 

rs7733195 5 172927230 g a 0.64 0.028 3.40E-20 0.0404 0.004234 FAM44B 

rs6485978 11 12634991 c t 0.46 0.022 2.10E-14 -0.036 0.006102 TEAD1 

rs12323101 13 32041406 a g 0.37 0.021 2.40E-12 0.0374 0.007877 PDS5B 

rs11642612 16 29937696 c a 0.4 0.017 3.20E-08 -0.0351 0.008347 FLJ25404 

rs17081935 4 57518233 t c 0.2 0.03 5.00E-16 -0.0444 0.009117 C4orf14 

rs9428104 1 118657110 g a 0.75 0.044 1.10E-37 -0.0386 0.01043 SPAG17 

rs16968242 15 74527274 g c 0.07 0.034 6.20E-09 -0.0634 0.01065 SCAPER 

rs143384 20 33489170 g a 0.42 0.063 1.30E-71 0.0343 0.01146 GDF5 

rs314263 6 105499438 c t 0.32 0.043 3.10E-43 -0.0365 0.01148 LIN28B 

rs2888893 12 105862761 c t 0.51 0.017 7.30E-09 -0.0334 0.01289 C12orf23 

rs11659752 18 75323850 t g 0.7 0.025 2.10E-13 -0.0361 0.0133 NFATC1 

rs212524 1 21455898 c t 0.6 0.021 4.70E-12 0.0326 0.01502 ECE1 

rs10877030 12 56542981 t g 0.68 0.023 2.80E-13 0.0347 0.01597 CTDSP2 

rs2871865 15 97012419 c g 0.88 0.059 8.10E-32 0.0499 0.01789 IGF1R 

rs3116168 2 232698075 c t 0.73 0.022 2.40E-09 -0.0337 0.01866 DIS3L2 

rs10770705 12 20748734 a c 0.34 0.03 4.80E-22 -0.0338 0.01879 SLCO1C1 

rs1797625 3 114309105 t a 0.36 0.018 1.00E-09 -0.0318 0.01912 C3orf17 

rs1884897 20 6560832 a g 0.36 0.038 4.70E-33 -0.0313 0.02021 BMP2 

rs1658351 3 57988613 c t 0.35 0.023 3.00E-13 0.0318 0.021 FLNB 

rs2597513 3 13530836 c t 0.11 0.042 1.10E-18 -0.0476 0.02557 HDAC11 

rs953199 9 99522797 c a 0.76 0.02 6.10E-09 0.0331 0.0278 XPA 
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Table 4.1 (Continued) 

      Height Sitting height ratio  

Rsid Chr Position Ref Alt Reffreq Effect Size P-value Effect Size P-value Closest 

Gene 

rs7517682 1 103292177 g a 0.44 0.022 9.20E-14 0.0282 0.03245 COL11A1 

rs7544462 1 37735343 a c 0.91 0.032 1.10E-09 -0.0517 0.03251 C1orf149 

rs1326023 20 54275785 a g 0.3 0.024 9.80E-14 0.0299 0.03458 MC3R 

rs17349981 15 80018975 a t 0.85 0.028 2.40E-11 0.0399 0.03573 MEX3B 

rs9825951 3 100752611 t a 0.35 0.02 4.20E-10 -0.0287 0.03733 COL8A1 

rs7701414 5 131613857 g a 0.44 0.041 4.90E-42 -0.0276 0.0396 PDLIM4 

rs12519505 5 77541632 c t 0.78 0.023 3.20E-10 0.0327 0.04161 AP3B1 

rs3814333 1 182273742 t c 0.32 0.049 1.90E-53 -0.0288 0.04288 GLT25D2 

rs2763273 6 168577472 c t 0.76 0.022 1.80E-10 -0.0325 0.04334 SMOC2 

rs1171615 10 61139096 c t 0.22 0.022 4.50E-09 -0.0371 0.04364 SLC16A9 

rs11640018 16 73885809 c t 0.37 0.019 2.10E-09 -0.0275 0.04409 CFDP1 

rs12779328 10 12983979 c t 0.72 0.028 1.50E-17 -0.0298 0.0446 CCDC3 

rs4953951 2 135903815 c t 0.9 0.035 4.30E-11 -0.0433 0.04661 ZRANB3 

rs12120956 1 113004094 g a 0.77 0.025 9.90E-13 -0.0313 0.05032 CAPZA1 

rs7033487 9 118169078 t c 0.79 0.041 3.50E-29 0.0316 0.05056 PAPPA 

rs10948222 6 45352393 c t 0.58 0.032 8.70E-22 0.0266 0.05165 SUPT3H 

rs1055144 7 25837634 t c 0.19 0.022 1.80E-09 -0.0327 0.05777 NFE2L3 

rs2272566 11 234552 a g 0.48 0.016 2.40E-08 -0.0246 0.05786 PSMD13 

rs606452 11 74953826 a c 0.14 0.043 6.40E-23 -0.0352 0.05948 SERPINH1 

rs936339 3 144018195 t c 0.19 0.022 2.00E-08 -0.031 0.06448 PCOLCE2 

rs4802134 19 43038525 a g 0.21 0.027 2.90E-11 0.0279 0.06557 SIPA1L3 

rs1546391 3 116180147 g c 0.07 0.042 2.50E-12 -0.0446 0.06734 ZBTB20 

rs7534365 1 148142748 c t 0.19 0.045 3.50E-20 -0.0336 0.06785 SV2A 

rs7985356 13 114045564 t a 0.77 0.023 2.50E-11 0.0285 0.07016 CDC16 

rs26868 16 2189377 a t 0.47 0.025 2.70E-13 0.0264 0.07022 CASKIN1 

rs12186664 5 95655981 t a 0.32 0.021 6.00E-12 -0.0255 0.07265 PCSK1 

rs9650315 8 57318152 g t 0.87 0.057 2.50E-34 0.0352 0.07642 CHCHD7 

rs798497 7 2762483 a g 0.7 0.057 2.70E-71 0.0262 0.07826 GNA12 

rs1405212 6 117597357 c t 0.59 0.023 4.60E-14 0.0242 0.08067 VGLL2 

rs2166898 2 121329129 g a 0.84 0.027 8.70E-11 -0.0305 0.08378 GLI2 

rs6446315 4 5086488 g a 0.17 0.025 3.60E-09 -0.0309 0.08545 CYTL1 

rs2034172 3 55386803 g a 0.68 0.018 2.50E-08 0.0247 0.08616 WNT5A 

rs4686904 3 188921216 c t 0.35 0.022 1.00E-12 -0.0232 0.08732 BCL6 

rs8103992 19 19526643 a c 0.2 0.024 3.60E-10 0.0274 0.08779 PBX4 

rs2338115 17 34183104 t c 0.54 0.024 1.10E-16 0.0222 0.08954 PIP4K2B 

rs1461503 11 122350285 c a 0.57 0.018 3.70E-10 -0.0222 0.09167 BSX 

rs2093210 14 60027032 c t 0.42 0.039 7.50E-36 0.022 0.09649 C14orf39 
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Table 4.1 (Continued) 

      Height Sitting height ratio  

Rsid Chr Position Ref Alt Reffreq Effect Size P-value Effect Size P-value Closest 

Gene 

rs9967417 18 45213498 g c 0.43 0.037 1.20E-32 0.0218 0.101 DYM 

rs2275325 1 202067358 c g 0.28 0.019 5.00E-09 -0.0241 0.1031 ZC3H11A 

rs3885668 2 10095930 c t 0.43 0.022 6.90E-14 0.022 0.1049 KLF11 

rs6955948 7 150139653 t c 0.28 0.031 8.80E-20 0.0242 0.1052 TMEM176A 

rs4868126 5 171216074 g t 0.6 0.025 2.70E-11 -0.025 0.108 FBXW11 

rs2633761 3 4703104 a g 0.5 0.017 3.70E-09 0.021 0.1086 ITPR1 

rs820848 5 74000416 g a 0.29 0.021 3.60E-09 0.0239 0.1169 HEXB 

rs1681630 11 47925728 t c 0.34 0.031 1.10E-23 -0.0214 0.1218 PTPRJ 

rs422421 5 176449932 c t 0.78 0.034 1.70E-20 -0.0243 0.1277 FGFR4 

rs17574650 5 42472673 c a 0.11 0.036 1.50E-11 -0.0353 0.1278 GHR 

rs3802758 11 45892611 a g 0.94 0.041 5.10E-10 -0.0349 0.1346 PEX16 

rs1562975 4 109628057 a g 0.3 0.025 4.00E-15 -0.0217 0.1376 RPL34 

rs7659107 4 114961698 g a 0.23 0.024 6.60E-12 -0.024 0.1385 CAMK2D 

rs10997979 10 69607198 g a 0.5 0.018 3.50E-10 0.0196 0.1405 MYPN 

rs862034 14 74060499 g a 0.64 0.03 2.60E-23 -0.0199 0.1408 LTBP2 

rs6441170 3 159289654 c t 0.38 0.022 8.60E-14 -0.0198 0.1409 SHOX2 

rs6694089 1 170350504 a g 0.28 0.027 2.00E-13 0.0211 0.141 DNM3 

rs6061231 20 60390312 c a 0.72 0.02 1.70E-10 -0.0212 0.1436 RPS21 

rs11144688 9 77732106 g a 0.89 0.064 5.90E-24 -0.03 0.1437 PCSK5 

rs10767838 11 30304503 a g 0.72 0.025 1.80E-14 0.0212 0.1457 C11orf46 

rs17792664 14 20960523 g c 0.14 0.033 2.70E-14 -0.0275 0.1459 CHD8 

rs12209223 6 76221309 a c 0.12 0.046 1.90E-20 -0.0321 0.1466 FILIP1 

rs2326458 16 83545180 c a 0.25 0.022 4.50E-10 -0.0218 0.1478 ZDHHC7 

rs6584575 10 105567399 a g 0.1 0.032 1.20E-09 -0.0323 0.1492 SH3PXD2A 

rs291979 10 121119787 a g 0.23 0.03 5.50E-18 -0.023 0.1492 GRK5 

rs17410035 5 31576899 t g 0.33 0.017 1.70E-08 -0.0205 0.1524 C5orf22 

rs1935157 1 219383881 g c 0.3 0.024 3.10E-14 -0.0206 0.1525 HLX 

rs9816693 3 38022958 c g 0.17 0.031 3.60E-15 0.0248 0.1548 VILL 

rs8052560 16 87304743 a c 0.79 0.037 8.40E-17 -0.0235 0.1634 C16orf84 

rs17511102 2 37814117 t a 0.09 0.049 2.80E-17 -0.0334 0.1665 CDC42EP3 

rs17264185 15 64784141 g a 0.27 0.021 1.30E-10 -0.0203 0.1679 SMAD6 

rs7971536 12 100897919 t a 0.54 0.028 5.00E-18 0.0185 0.1685 CCDC53 

rs181338 9 88297981 t c 0.51 0.029 5.70E-24 -0.0178 0.1697 ZCCHC6 

rs4735677 8 78310746 t a 0.28 0.036 1.20E-29 -0.0203 0.1706 PXMP3 

rs552707 7 28171828 t c 0.31 0.047 7.40E-49 -0.02 0.1752 JAZF1 

rs2956605 8 76045609 a c 0.38 0.027 1.70E-17 -0.0186 0.1891 CRISPLD1 

rs13177718 5 108141243 c t 0.92 0.054 5.40E-19 -0.0337 0.1902 FER 
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Table 4.1 (Continued) 

      Height Sitting height ratio  

Rsid Chr Position Ref Alt Reffreq Effect Size P-value Effect Size P-value Closest 

Gene 

rs2834442 21 34612656 a t 0.64 0.024 5.70E-15 -0.0179 0.1907 KCNE2 

rs3809790 17 24979666 c t 0.53 0.022 1.50E-13 0.0173 0.1914 SSH2 

rs6894139 5 88363538 t g 0.56 0.031 4.50E-25 -0.0175 0.1918 MEF2C 

rs11612228 12 447245 t c 0.38 0.02 3.70E-10 -0.0192 0.1925 B4GALNT3 

rs2164747 12 102868966 g a 0.1 0.028 9.10E-09 -0.0278 0.1969 HSP90B1 

rs301901 5 37082383 a g 0.57 0.026 4.50E-19 0.0172 0.1997 NIPBL 

rs12228415 12 14411968 g a 0.45 0.017 2.70E-08 -0.0173 0.2032 ATF7IP 

rs7727731 5 64710202 t c 0.11 0.033 2.10E-11 -0.0259 0.2171 ADAMTS6 

rs9858528 3 184838099 a g 0.74 0.021 8.50E-11 -0.0179 0.2196 KLHL24 

rs9766 17 38106367 a g 0.54 0.021 2.40E-13 -0.0161 0.2203 EZH1 

rs12214804 6 34296844 c t 0.08 0.087 1.60E-52 0.0302 0.2221 HMGA1 

rs8756 12 64646019 c a 0.49 0.054 1.30E-71 -0.0163 0.2235 HMGA2 

rs17450430 20 47205671 t a 0.24 0.034 6.20E-24 -0.0188 0.2251 STAU1 

rs8180991 8 126569532 c g 0.77 0.029 2.80E-16 -0.0193 0.2274 TRIB1 

rs891088 19 7135762 g a 0.26 0.027 1.30E-15 -0.0177 0.229 INSR 

rs273945 7 137262106 c a 0.58 0.018 2.90E-09 0.0164 0.2322 CREB3L2 

rs17806888 3 67499012 t c 0.88 0.033 4.30E-12 0.0236 0.2343 SUCLG2 

rs2211866 21 38609977 a g 0.41 0.022 1.90E-13 -0.0157 0.2349 KCNJ15 

rs9977276 21 46260755 g t 0.78 0.023 1.30E-10 0.0185 0.2354 COL6A1 

rs12855 1 51212681 t c 0.09 0.036 1.00E-12 0.0266 0.2363 CDKN2C 

rs584828 17 35852756 c t 0.6 0.028 3.30E-20 0.0159 0.2396 IGFBP4 

rs7043114 9 94427804 c t 0.44 0.028 1.30E-22 -0.0154 0.2401 IPPK 

rs1812175 4 145794294 g a 0.84 0.052 8.40E-30 -0.0211 0.2404 HHIP 

rs11867479 17 65601802 t c 0.35 0.025 2.00E-15 -0.0164 0.243 KCNJ16 

rs11616380 13 79603316 t g 0.28 0.02 1.20E-09 -0.0176 0.2431 SPRY2 

rs955748 4 184452669 g a 0.76 0.028 4.80E-16 0.0184 0.2436 WWC2 

rs2117563 17 70880580 g a 0.83 0.025 2.10E-10 -0.0196 0.2467 GRB2 

rs4548838 15 98578713 t c 0.46 0.034 9.10E-30 -0.0152 0.2487 ADAMTS17 

rs12190423 6 72259432 g c 0.62 0.016 4.30E-08 0.016 0.2497 OGFRL1 

rs11152213 18 56003928 c a 0.25 0.025 9.20E-13 -0.0176 0.2518 MC4R 

rs9880211 3 137590239 g a 0.75 0.032 1.30E-20 -0.0173 0.2531 STAG1 

rs4974480 3 135661252 t a 0.68 0.037 5.70E-23 -0.0158 0.2552 ANAPC13 

rs12470505 2 219616613 t g 0.9 0.046 4.00E-20 -0.0246 0.256 CCDC108 

rs4875421 8 4814740 t a 0.46 0.019 1.10E-10 0.0153 0.2567 CSMD1 

rs4725061 7 8053164 g a 0.44 0.02 1.50E-10 0.016 0.2569 GLCCI1 

rs7181724 15 92352611 g a 0.45 0.02 2.40E-10 0.0155 0.2573 MCTP2 

rs7259684 19 12047611 g a 0.07 0.039 1.70E-09 0.0271 0.2587 LOC729747 
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Table 4.1 (Continued) 

      Height Sitting height ratio  

Rsid Chr Position Ref Alt Reffreq Effect Size P-value Effect Size P-value Closest 

Gene 

rs7567851 2 178392966 c g 0.08 0.039 2.20E-12 0.0268 0.2604 PDE11A 

rs10083886 17 67434950 t c 0.26 0.02 3.40E-09 -0.0163 0.2621 SOX9 

rs11047239 12 24099047 g c 0.3 0.022 4.10E-12 0.0166 0.2622 SOX5 

rs7319045 13 90822575 a g 0.39 0.024 3.70E-15 0.0156 0.2668 GPC5 

rs1113765 7 55856828 g a 0.82 0.025 1.00E-10 0.019 0.2709 SEPT14 

rs6949739 7 46383928 t a 0.91 0.037 4.80E-12 0.0285 0.2725 IGFBP3 

rs10131337 14 36214267 t c 0.24 0.027 5.60E-13 0.0173 0.2743 PAX9 

rs16834765 1 32144029 t c 0.06 0.045 1.40E-12 -0.0305 0.2747 PTP4A2 

rs11750568 5 178468319 a g 0.33 0.019 4.20E-10 -0.0153 0.2805 ADAMTS2 

rs12513181 4 124055106 c a 0.26 0.019 2.10E-08 0.0161 0.285 NUDT6 

rs6879260 5 179663620 c t 0.61 0.027 1.10E-17 -0.0146 0.286 GFPT2 

rs13088462 3 51046753 c t 0.06 0.053 1.10E-14 0.0322 0.2916 DOCK3 

rs4239020 17 77769930 c t 0.33 0.021 1.50E-11 0.0146 0.2968 CCDC57 

rs17113369 1 95559811 t c 0.97 0.07 2.40E-08 0.0374 0.2995 RWDD3 

rs4656220 1 168915901 t c 0.39 0.022 7.50E-12 0.0146 0.2998 PRRX1 

rs6794009 3 61488535 g a 0.44 0.016 2.80E-08 -0.0134 0.3011 PTPRG 

rs2306694 12 54966903 g a 0.07 0.047 1.20E-16 0.0277 0.3015 CS 

rs6920372 6 109830632 g a 0.59 0.026 5.70E-19 0.0138 0.3081 PPIL6 

rs2662027 5 56290242 g t 0.9 0.032 1.40E-11 0.022 0.3082 MIER3 

rs10880969 12 45113290 c t 0.7 0.023 1.10E-12 0.0146 0.3117 SLC38A2 

rs14062 18 17704301 g a 0.67 0.018 1.60E-08 0.014 0.3175 MIB1 

rs7834383 8 13317848 t g 0.36 0.021 1.90E-11 -0.0144 0.3186 DLC1 

rs2581830 3 53109138 t c 0.4 0.025 7.60E-16 0.013 0.328 RFT1 

rs2748483 6 146377253 a t 0.55 0.018 2.40E-09 -0.0132 0.3281 GRM1 

rs3782089 11 65093395 c t 0.94 0.053 1.00E-15 -0.0258 0.3288 SSSCA1 

rs199515 17 42211804 c g 0.8 0.023 1.60E-09 0.0163 0.3297 WNT3 

rs6696239 1 225816691 g a 0.81 0.038 2.80E-25 -0.0164 0.3299 ZNF678 

rs6420435 16 80741702 a c 0.21 0.025 1.80E-11 -0.0151 0.3308 MPHOSPH6 

rs2306596 4 39020335 a c 0.52 0.02 1.80E-11 0.0132 0.3354 RFC1 

rs316618 15 39583790 t a 0.78 0.026 9.80E-13 -0.0155 0.3393 LTK 

rs724016 3 142588260 g a 0.44 0.078 1.10E-156 0.0123 0.3484 ZBTB38 

rs12621643 2 223626227 g t 0.7 0.019 1.70E-08 -0.0133 0.3489 KCNE4 

rs7692995 4 17545732 t c 0.85 0.101 5.20E-100 -0.0169 0.3516 LCORL 

rs1265097 6 31214438 c a 0.89 0.04 6.50E-15 0.02 0.3538 PSORS1C1 

rs7033940 9 6430419 g c 0.87 0.024 3.80E-08 0.0182 0.354 UHRF2 

rs692964 18 13084132 g a 0.4 0.019 2.30E-10 -0.0123 0.3556 CEP192 

rs1036821 8 135719665 g a 0.7 0.047 2.80E-38 -0.0137 0.3563 ZFAT 
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rs780094 2 27594741 c t 0.61 0.021 7.50E-12 0.0122 0.3564 GCKR 

rs7466269 9 132453905 a g 0.64 0.033 1.70E-26 -0.0126 0.3606 FUBP3 

rs989393 9 100783157 t c 0.71 0.023 5.80E-13 -0.013 0.3611 COL15A1 

rs26024 5 127723921 c a 0.35 0.023 3.90E-13 -0.0128 0.3654 FBN2 

rs4640244 17 21224816 a g 0.61 0.025 6.60E-14 -0.0136 0.3668 KCNJ12 

rs11221442 11 128082834 g c 0.75 0.027 3.00E-14 -0.0137 0.3672 FLI1 

rs11683207 2 97699722 t c 0.8 0.024 5.70E-09 -0.0183 0.3723 ZAP70 

rs12987566 2 171860892 t c 0.27 0.023 1.30E-12 0.013 0.377 METTL8 

rs1832871 6 158642022 a g 0.34 0.021 9.20E-12 -0.0124 0.3786 TULP4 

rs3739707 9 112832527 c a 0.75 0.024 1.60E-11 -0.0133 0.3793 LPAR1 

rs870183 17 546561 g a 0.53 0.017 3.80E-09 0.0114 0.381 VPS53 

rs4812586 20 34978087 a g 0.84 0.033 1.70E-16 -0.0163 0.3847 SAMHD1 

rs2961830 5 50490489 a t 0.35 0.019 1.10E-09 0.0121 0.3886 ISL1 

rs1036477 15 46702218 a g 0.9 0.032 2.80E-11 -0.0179 0.39 FBN1 

rs354196 2 54819911 g a 0.53 0.021 1.90E-12 -0.0112 0.3937 SPTBN1 

rs17038954 2 1624680 t c 0.06 0.04 1.10E-10 -0.0241 0.3959 PXDN 

rs2510396 11 68174228 c g 0.86 0.029 2.60E-12 0.0158 0.3969 GAL 

rs5742915 15 72123686 c t 0.47 0.038 1.20E-34 0.0115 0.4033 PML 

rs34651 5 72179761 c t 0.08 0.042 4.20E-13 -0.0207 0.4079 TNPO1 

rs13416119 2 42316434 a g 0.9 0.029 4.90E-09 0.0197 0.409 EML4 

rs7273787 20 4046567 g a 0.35 0.022 3.00E-12 -0.0113 0.411 SMOX 

rs6974574 7 38076598 t a 0.69 0.031 2.30E-19 -0.0116 0.4115 STARD3NL 

rs10779751 1 11206923 a g 0.28 0.02 5.80E-10 0.0118 0.4139 FRAP1 

rs6952113 7 120564855 g a 0.62 0.018 1.10E-09 -0.0112 0.4145 C7orf58 

rs738288 22 38237607 g a 0.47 0.019 1.50E-10 0.0106 0.4151 SMCR7L 

rs1047014 6 19949472 c t 0.25 0.033 7.50E-20 0.0135 0.4209 ID4 

rs17807185 7 77146231 g a 0.38 0.022 3.30E-13 0.0107 0.4358 RSBN1L 

rs12904334 15 70629759 a g 0.02 0.094 1.50E-13 0.0417 0.4384 ARIH1 

rs3132297 9 136441687 g a 0.83 0.024 6.40E-09 0.0136 0.4409 RXRA 

rs2815379 1 67283062 g a 0.71 0.018 2.50E-08 -0.011 0.4445 SLC35D1 

rs1923367 10 80802835 g c 0.52 0.029 3.20E-22 0.0104 0.4457 ZCCHC24 

rs7177711 15 60167263 a g 0.54 0.021 1.60E-13 0.0101 0.4471 FAM148A 

rs6988484 8 49576333 c t 0.25 0.023 4.20E-12 -0.0116 0.4482 EFCAB1 

rs2057291 20 56905438 a g 0.34 0.02 4.80E-10 0.0104 0.4508 GNAS 

rs12137162 1 19635983 a c 0.28 0.019 4.90E-09 0.0109 0.4535 CAPZB 

rs1550162 8 117632713 g a 0.29 0.024 2.90E-14 0.011 0.4641 EIF3H 

rs6813055 4 88849055 a t 0.49 0.017 5.50E-09 0.0098 0.4663 DMP1 
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rs4072910 19 8550031 g c 0.56 0.031 9.90E-18 -0.0101 0.4685 ADAMTS10 

rs7551732 1 88911629 a t 0.61 0.027 2.50E-19 -0.0096 0.471 PKN2 

rs1401795 17 52194651 a g 0.51 0.03 5.00E-25 -0.0093 0.4711 C17orf67 

rs4425077 2 216118761 g c 0.41 0.02 1.40E-11 -0.0095 0.4726 FN1 

rs9841435 3 192593854 g a 0.32 0.019 6.10E-10 0.0099 0.4745 CCDC50 

rs4350272 10 25096124 a g 0.28 0.02 2.00E-09 0.0108 0.4747 ARHGAP21 

rs7980687 12 122388664 a g 0.2 0.036 1.30E-21 0.0118 0.4763 SBNO1 

rs888403 18 2756938 g a 0.36 0.019 1.00E-08 -0.0104 0.4772 SMCHD1 

rs564914 1 47687820 t a 0.39 0.025 4.10E-17 0.0096 0.4773 FOXD2 

rs17122659 12 58243190 g a 0.12 0.032 6.80E-11 -0.0154 0.4782 SLC16A7 

rs749234 2 144947819 a g 0.32 0.018 1.30E-08 0.0099 0.4809 ZEB2 

rs4605213 17 46599746 c g 0.34 0.019 2.00E-09 -0.0098 0.482 NME1-
NME2 

rs567401 1 85760746 t c 0.17 0.028 3.10E-11 -0.0132 0.4906 DDAH1 

rs7743622 6 132772065 g c 0.58 0.018 4.60E-08 -0.0094 0.4917 MOXD1 

rs9292468 5 32854830 t c 0.4 0.053 4.80E-46 -0.0092 0.4987 C5orf23 

rs9434723 1 9214869 a g 0.16 0.028 8.60E-12 -0.0122 0.5023 H6PD 

rs3812040 5 39461777 t c 0.72 0.024 3.50E-13 0.0102 0.5048 DAB2 

rs757081 11 17308259 g c 0.34 0.024 3.20E-14 -0.0092 0.5057 NUCB2 

rs9309101 2 43483116 g a 0.33 0.02 3.20E-10 0.0092 0.5068 THADA 

rs11687941 2 241840083 c g 0.75 0.025 4.00E-13 -0.01 0.5077 HDLBP 

rs7112925 11 66582736 c t 0.64 0.023 2.60E-14 -0.0089 0.5116 RHOD 

rs11835818 12 120979192 c t 0.49 0.017 4.30E-09 0.0088 0.5121 BCL7A 

rs11090631 22 44225035 t c 0.2 0.022 1.50E-08 -0.011 0.5143 RIBC2 

rs17783015 12 88755517 c t 0.84 0.025 5.20E-10 0.0122 0.5169 ATP2B1 

rs318095 17 44329733 t c 0.46 0.023 3.30E-15 0.0083 0.5228 ATP5G1 

rs7849585 9 138251691 t g 0.33 0.036 9.80E-29 0.0091 0.5248 QSOX2 

rs16964211 15 49317787 g a 0.95 0.044 4.80E-09 0.0188 0.5248 CYP19A1 

rs817300 9 97420043 g a 0.93 0.07 2.20E-23 -0.0177 0.5274 PTCH1 

rs7567288 2 134151294 c t 0.2 0.028 3.80E-13 -0.0107 0.529 NAP5 

rs486359 6 160694431 c g 0.49 0.017 1.60E-08 0.0085 0.5299 SLC22A3 

rs17250196 7 99655132 t g 0.07 0.044 8.70E-10 0.0205 0.5335 GATS/ 

rs2023693 16 20787541 g a 0.6 0.017 1.40E-08 0.0081 0.5388 DCUN1D3 

rs2682587 19 48774269 a c 0.2 0.024 4.30E-10 -0.0103 0.5442 XRCC1 

rs429433 8 8785304 a g 0.05 0.046 6.70E-11 -0.0228 0.5449 MFHAS1 

rs1659127 16 14295806 a g 0.34 0.03 1.20E-19 -0.0087 0.546 MKL2 

rs2145357 6 116558135 g a 0.27 0.022 1.70E-11 0.0091 0.5461 NT5DC1 

rs763318 4 12572672 g a 0.53 0.025 4.40E-17 -0.008 0.5476 RAB28 



156 

 

Table 4.1 (Continued) 

      Height Sitting height ratio  

Rsid Chr Position Ref Alt Reffreq Effect Size P-value Effect Size P-value Closest 

Gene 

rs32855 5 79871948 a g 0.78 0.024 4.50E-11 0.0098 0.5518 FAM151B 

rs2631676 10 93027389 g a 0.19 0.028 1.50E-12 0.0103 0.5539 PCGF5 

rs2974438 5 168183481 g a 0.8 0.038 3.90E-26 -0.0098 0.5541 SLIT3 

rs4883972 13 73956482 c g 0.55 0.019 1.70E-10 0.008 0.5565 KLF12 

rs2806561 1 23377382 a g 0.57 0.027 2.70E-21 0.0076 0.5588 LUZP1 

rs2856321 12 11747040 g a 0.36 0.031 1.00E-25 -0.0081 0.5603 ETV6 

rs12871822 13 48099041 g t 0.34 0.018 2.70E-09 -0.0082 0.5645 CYSLTR2 

rs7162825 15 61226239 t c 0.5 0.016 2.80E-08 0.0073 0.5716 LACTB 

rs6435143 2 202902501 a c 0.44 0.019 2.40E-10 0.0074 0.5737 NOP5 

rs7027110 9 108638867 a g 0.23 0.032 2.30E-20 -0.0087 0.5738 ZNF462 

rs4896582 6 142745570 g a 0.7 0.051 6.90E-58 -0.0082 0.5769 GPR126 

rs497273 12 119689065 c g 0.38 0.019 2.80E-10 -0.0079 0.5774 SPPL3 

rs12882130 14 102948527 c g 0.63 0.024 2.90E-14 -0.0077 0.5819 MARK3 

rs6540834 1 212694042 c t 0.66 0.028 1.70E-17 0.0073 0.5822 PTPN14 

rs6561319 13 46010121 a c 0.64 0.021 1.50E-11 -0.0076 0.5827 LRCH1 

rs11855014 15 83529838 g a 0.71 0.022 1.40E-10 -0.0078 0.5926 PDE8A 

rs2013265 8 24148445 c t 0.75 0.027 9.20E-17 0.008 0.6017 ADAM28 

rs165189 5 139125931 g a 0.15 0.031 2.70E-11 0.0104 0.6018 PSD2 

rs6962887 7 134696326 t g 0.68 0.022 9.60E-11 0.0078 0.6019 CNOT4 

rs10748128 12 68113925 t g 0.35 0.038 4.60E-29 0.0078 0.6033 FRS2 

rs39623 5 129082520 a t 0.08 0.045 7.20E-17 0.0129 0.6075 ADAMTS19 

rs2715094 7 50697946 g a 0.25 0.021 1.20E-09 -0.008 0.6112 GRB10 

rs2289195 2 25316987 a g 0.43 0.042 3.00E-34 -0.0068 0.613 DNMT3A 

rs4986172 17 40571807 c t 0.65 0.038 1.60E-31 0.0069 0.6196 ACBD4 

rs7652177 3 173451771 g c 0.51 0.037 1.00E-36 0.0065 0.6207 FNDC3B 

rs540652 2 169415674 t c 0.46 0.021 6.20E-13 -0.0065 0.6215 NOSTRIN 

rs6688100 1 158666210 t c 0.48 0.016 2.20E-08 -0.0064 0.6225 VANGL2 

rs3818416 13 77372469 c a 0.78 0.021 4.60E-09 0.0078 0.6246 EDNRB 

rs7899004 10 104331425 t c 0.56 0.024 4.30E-17 -0.0066 0.6268 SUFU 

rs9993613 4 73694878 t g 0.47 0.03 7.80E-25 -0.0065 0.6312 ADAMTS3 

rs6761041 2 224738373 t c 0.55 0.024 1.70E-16 -0.0062 0.6318 SERPINE2 

rs16895130 6 42032909 g a 0.28 0.025 2.00E-14 -0.0072 0.6319 CCND3 

rs12474201 2 46774789 a g 0.36 0.029 1.70E-20 -0.0065 0.6333 SOCS5 

rs6971575 7 95877584 c g 0.29 0.022 3.60E-10 -0.007 0.6408 SLC25A13 

rs1996422 4 48382108 g a 0.28 0.022 1.30E-11 -0.0073 0.6428 FRYL 

rs10790381 11 119762705 a g 0.82 0.027 1.20E-12 -0.0081 0.643 ARHGEF12 

rs2123731 19 4880473 a g 0.73 0.025 6.80E-13 -0.0067 0.6462 UHRF1 
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rs6902771 6 152199574 t c 0.46 0.029 1.50E-21 0.0062 0.6485 ESR1 

rs6658763 1 145158997 c t 0.92 0.034 5.10E-10 0.011 0.6504 FMO5 

rs6439168 3 130533633 g a 0.79 0.038 5.20E-26 -0.0071 0.6545 H1FX 

rs2120335 2 68348506 g a 0.59 0.018 8.40E-10 0.0059 0.6546 PPP3R1 

rs6080830 20 17719113 a g 0.56 0.016 1.50E-08 -0.0058 0.6559 BANF2 

rs2149163 9 16445833 c g 0.4 0.02 2.90E-11 0.0059 0.656 BNC2 

rs4843367 16 84975391 c t 0.66 0.02 7.10E-10 -0.006 0.6634 FOXF1 

rs10152739 15 36271158 t a 0.25 0.023 3.00E-11 -0.0064 0.6699 SPRED1 

rs13113518 4 56094405 c t 0.36 0.017 1.60E-08 0.0059 0.6711 CLOCK 

rs17556750 4 82374592 a c 0.31 0.044 2.80E-43 -0.0061 0.6781 PRKG2 

rs10972628 9 35927611 g a 0.74 0.02 1.20E-08 -0.006 0.6846 OR2S2 

rs11156098 6 156629523 t c 0.12 0.029 5.40E-10 -0.0088 0.6867 ARID1B 

rs7007200 8 109854114 g c 0.69 0.017 4.70E-08 0.0059 0.6896 TMEM74 

rs3812423 8 25354627 g c 0.64 0.021 1.00E-12 0.0056 0.6905 KCTD9 

rs11648796 16 732191 g a 0.25 0.034 7.70E-19 -0.0068 0.6928 NARFL 

rs11799609 1 241684940 t g 0.16 0.026 7.00E-10 0.0073 0.6986 SDCCAG8 

rs10794175 10 126348063 t g 0.43 0.021 4.00E-12 0.0052 0.6991 FAM53B 

rs11880992 19 2127403 a g 0.4 0.032 1.10E-26 -0.0051 0.7003 DOT1L 

rs932445 6 2112224 t c 0.59 0.021 1.10E-11 0.0053 0.7006 GMDS 

rs4601530 1 24916698 c t 0.74 0.026 5.90E-15 0.0056 0.704 CLIC4 

rs2072268 17 63814947 g a 0.52 0.021 1.70E-11 -0.0053 0.7058 ARSG 

rs11616067 12 114877557 a g 0.76 0.02 1.00E-08 0.0059 0.709 MED13L 

rs7716219 5 54990828 t c 0.31 0.029 2.50E-21 0.0055 0.7092 SLC38A9 

rs4624820 5 141661972 a g 0.52 0.018 1.80E-10 -0.005 0.7095 SPRY4 

rs12693589 2 191540907 c t 0.25 0.022 5.50E-11 0.0055 0.7114 STAT1 

rs2302580 4 8659534 c t 0.58 0.029 1.20E-15 -0.0052 0.7155 CPZ 

rs992157 2 218863025 a g 0.57 0.018 1.60E-09 -0.0048 0.7166 PNKD 

rs761391 6 85504822 c t 0.46 0.021 6.10E-10 -0.0049 0.7183 TBX18 

rs2811594 1 93115870 g a 0.63 0.023 3.10E-13 0.0048 0.7187 FAM69A 

rs2058092 14 73002719 t c 0.56 0.017 8.40E-09 0.0047 0.7243 NUMB 

rs6714546 2 33214929 g a 0.72 0.035 2.40E-24 0.0051 0.7327 LTBP1 

rs17330192 6 17697354 c t 0.28 0.019 1.20E-08 -0.0052 0.7348 FAM8A1 

rs10883563 10 102674370 a c 0.55 0.023 3.20E-15 0.0045 0.7387 FAM178A 

rs2175513 3 68705056 g a 0.43 0.017 2.00E-08 0.0044 0.7396 FAM19A1 

rs7853235 9 85850602 t c 0.2 0.029 8.80E-15 0.0053 0.7503 RMI1 

rs3923086 17 60979950 c a 0.6 0.025 2.80E-14 -0.0046 0.7511 AXIN2 

rs1980850 14 67716941 g a 0.83 0.029 2.40E-13 -0.0053 0.7554 RAD51L1 



158 

 

Table 4.1 (Continued) 

      Height Sitting height ratio  

Rsid Chr Position Ref Alt Reffreq Effect Size P-value Effect Size P-value Closest 

Gene 

rs2298265 1 149525667 c t 0.88 0.03 6.90E-11 -0.0061 0.7574 ZNF687 

rs1155939 6 126907826 a c 0.5 0.042 1.30E-47 0.0041 0.7606 C6orf173 

rs7253628 19 35739109 g a 0.16 0.024 6.20E-10 0.0054 0.7612 ZNF536 

rs1325596 1 175060689 a g 0.57 0.025 2.10E-18 0.0039 0.7621 PAPPA2 

rs6746356 2 174524144 a c 0.75 0.019 1.80E-08 0.0045 0.7647 SP3 

rs11618507 13 29070751 t g 0.25 0.023 1.80E-10 0.0049 0.7678 SLC7A1 

rs975210 15 68151406 a g 0.18 0.034 7.90E-17 0.0053 0.7698 TLE3 

rs929637 7 12243047 g t 0.78 0.022 1.90E-10 0.0046 0.7731 TMEM106B 

rs1571892 9 93298657 c a 0.29 0.017 5.00E-08 0.0041 0.7733 NFIL3 

rs12669267 7 72942572 c t 0.87 0.029 2.60E-08 -0.0065 0.7742 WBSCR28 

rs6838153 4 122940449 g a 0.34 0.021 7.90E-12 -0.0039 0.7831 EXOSC9 

rs9835332 3 56642722 g c 0.54 0.028 3.00E-22 -0.0035 0.7845 C3orf63 

rs8058684 16 52072619 a g 0.3 0.021 6.40E-11 0.0038 0.787 RBL2 

rs7261425 20 20016635 c g 0.71 0.021 5.10E-10 0.0039 0.7874 C20orf26 

rs999599 9 116051416 t c 0.37 0.017 9.70E-09 -0.0036 0.7884 COL27A1 

rs8097893 18 73112043 a g 0.95 0.044 1.30E-10 0.0088 0.7893 GALR1 

rs12639764 4 106435654 t c 0.62 0.027 5.00E-20 0.0036 0.7913 TET2 

rs1074683 20 31768314 c g 0.76 0.047 2.40E-42 0.004 0.7939 PXMP4 

rs1420023 12 12767378 c g 0.88 0.028 1.60E-08 0.0056 0.7965 CDKN1B 

rs2284746 1 17179262 g c 0.52 0.04 1.20E-40 0.0033 0.8027 MFAP2 

rs7154721 14 91497101 t c 0.57 0.027 1.30E-20 0.0032 0.8072 TRIP11 

rs2345835 2 18438433 c t 0.54 0.019 3.40E-10 -0.0033 0.809 RDH14 

rs12435366 14 34908140 c t 0.73 0.023 3.60E-11 0.0038 0.8099 NFKBIA 

rs1552173 17 74230437 c t 0.46 0.018 2.00E-10 -0.0031 0.8137 PSCD1 

rs6600365 1 41328840 c t 0.43 0.027 9.90E-21 -0.0031 0.8151 SCMH1 

rs833152 2 182927346 c a 0.42 0.016 4.00E-08 0.003 0.8195 PDE1A 

rs12538407 7 23487841 a g 0.6 0.043 1.00E-35 -0.0031 0.8212 IGF2BP3 

rs11624136 14 58758573 a g 0.5 0.017 3.30E-09 -0.0029 0.8215 DAAM1 

rs2829941 21 26130806 t g 0.61 0.017 3.20E-08 -0.003 0.8222 APP 

rs632124 11 118118445 a t 0.42 0.022 2.20E-14 0.0029 0.8267 DDX6 

rs13006748 2 20015300 c g 0.3 0.023 1.00E-11 0.003 0.8387 WDR35 

rs568610 8 27583914 t c 0.24 0.023 1.20E-11 -0.0031 0.8416 SCARA3 

rs2280470 15 87196630 a g 0.33 0.031 5.50E-21 0.0028 0.8419 ACAN 

rs9217 17 7303812 c t 0.37 0.03 4.40E-23 -0.0026 0.846 ZBTB4 

rs1950500 14 23900690 t c 0.3 0.031 2.70E-22 0.0028 0.8481 NFATC4 

rs4785393 16 48816984 g a 0.16 0.023 1.80E-08 0.0032 0.8497 PAPD5 

rs806794 6 26308656 a g 0.71 0.055 7.80E-59 -0.0028 0.8512 HIST1H2BF 
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rs2059877 19 52880621 t g 0.26 0.019 2.30E-08 -0.0027 0.8556 GLTSCR1 

rs3958122 4 1663729 t c 0.35 0.027 1.20E-17 -0.0025 0.8564 SLBP 

rs7284476 22 36459278 a g 0.43 0.016 4.60E-08 -0.0024 0.8576 TRIOBP 

rs9291926 5 67635412 t g 0.49 0.019 9.30E-10 0.0024 0.8582 PIK3R1 

rs4733724 8 130792910 a g 0.8 0.05 2.60E-42 -0.003 0.8588 MLZE 

rs7740107 6 130416154 t a 0.26 0.034 5.10E-22 0.0027 0.8606 L3MBTL3 

rs11049611 12 28491511 c t 0.7 0.037 6.30E-30 -0.0025 0.8613 CCDC91 

rs991946 6 166249852 c t 0.52 0.022 6.80E-14 -0.0023 0.8628 T 

rs1582931 5 122685098 g a 0.52 0.028 2.70E-20 0.0023 0.8635 CCDC100 

rs8017130 14 22828996 g a 0.69 0.023 6.50E-12 -0.0025 0.8655 HOMEZ 

rs13388725 2 108413622 g a 0.41 0.018 2.40E-09 0.0022 0.8672 GCC2 

rs10863936 1 210304421 g a 0.47 0.021 9.00E-13 -0.0022 0.8677 DTL 

rs6911389 6 144121322 t g 0.35 0.018 1.40E-08 -0.0024 0.8686 PHACTR2 

rs1599473 8 120544539 g t 0.75 0.026 4.10E-14 -0.0024 0.8772 NOV 

rs9395264 6 47582981 g t 0.68 0.02 1.10E-10 -0.0022 0.8805 CD2AP 

rs10995319 10 52432893 t c 0.76 0.019 2.20E-08 0.0022 0.8871 PRKG1 

rs4332428 10 4955434 a g 0.88 0.036 1.10E-15 -0.0028 0.8916 AKR1C1 

rs3915129 3 41218746 g t 0.47 0.016 3.80E-08 0.0017 0.8946 CTNNB1 

rs11783655 8 145109561 t a 0.61 0.019 5.40E-10 0.0018 0.8956 PLEC1 

rs11684404 2 88705737 c t 0.34 0.032 2.30E-25 -0.0018 0.8967 EIF2AK3 

rs1544196 1 222699405 g a 0.77 0.019 2.80E-08 -0.002 0.8991 WDR26 

rs13150868 4 152400121 t g 0.44 0.018 1.20E-09 -0.0016 0.9087 ESSPL 

rs9392918 6 7653630 c t 0.47 0.041 2.40E-43 0.0015 0.9126 BMP6 

rs10780910 9 90039075 t a 0.43 0.028 6.20E-21 0.0014 0.9148 SPIN1 

rs3118905 13 50003335 g a 0.72 0.044 1.60E-33 0.0016 0.9167 DLEU7 

rs8103068 19 17383869 t c 0.86 0.032 5.00E-12 0.0021 0.9176 BST2 

rs2247870 5 90187345 a g 0.55 0.017 1.60E-08 -0.0013 0.9211 GPR98 

rs915506 10 97795064 g a 0.65 0.019 1.50E-10 0.0013 0.9275 CCNJ 

rs7069985 10 27930837 g a 0.25 0.023 1.30E-11 -0.0014 0.9301 RAB18 

rs1945237 11 55986645 c t 0.09 0.03 8.70E-09 -0.0021 0.9312 OR5M9 

rs1576900 9 18619792 g a 0.7 0.019 6.50E-09 -0.0012 0.9342 ADAMTSL1 

rs2781373 14 64637968 g a 0.62 0.021 2.90E-12 0.0011 0.9376 MAX 

rs425277 1 2059032 t c 0.28 0.028 4.80E-17 -0.0011 0.9407 PRKCZ 

rs17391694 1 78396214 t c 0.12 0.04 4.00E-14 -0.0015 0.9437 GIPC2 

rs8102380 19 10662185 g a 0.31 0.021 5.90E-12 0.0008 0.9538 ILF3 

rs11779459 8 124049732 t c 0.35 0.018 3.40E-08 -0.0008 0.9573 ZHX2 

rs822531 7 148260692 t c 0.78 0.035 1.10E-18 0.001 0.9574 EZH2 
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Table 4.1 (Continued) 

      Height Sitting height ratio  

Rsid Chr Position Ref Alt Reffreq Effect Size P-value Effect Size P-value Closest 

Gene 

rs720390 3 187031377 a g 0.38 0.068 8.70E-58 -0.0007 0.9626 IGF2BP2 

rs12330322 3 72538045 c t 0.78 0.034 3.50E-22 0.0007 0.9668 RYBP 

rs991967 1 216682074 c a 0.28 0.038 4.10E-32 0.0006 0.9687 TGFB2 

rs3763631 9 35798334 c g 0.69 0.021 3.40E-11 0.0005 0.9711 NPR2 

rs897080 2 44627706 c t 0.26 0.033 2.60E-21 -0.0004 0.9778 C2orf34 

rs7162542 15 82305294 g c 0.55 0.03 7.70E-16 -0.0003 0.9806 ADAMTSL3 

rs7568069 2 71437993 g a 0.42 0.021 1.40E-13 0.0003 0.9811 ZNF638 

rs6462432 7 32902049 a g 0.39 0.017 1.80E-08 -0.0003 0.9842 KBTBD2 

rs6691924 1 54726833 t c 0.9 0.031 4.70E-10 -0.0004 0.9853 ACOT11 

rs526896 5 134384604 t g 0.73 0.037 2.60E-27 -0.0003 0.9855 PITX1 

rs2854207 17 59300839 g c 0.27 0.04 4.20E-28 0.0001 0.9921 CSH2 

rs2074977 19 3385028 c a 0.36 0.028 4.60E-20 -0.0001 0.9927 NFIC 

rs1199734 13 20468246 g t 0.81 0.021 4.00E-08 0.0001 0.9942 LATS2 

rs2237886 11 2767307 t c 0.11 0.042 1.60E-17 -0.0001 0.9969 KCNQ1 

rs8069300 17 11924957 g c 0.47 0.016 1.70E-08 0 0.9985 MAP2K4 

 

The 421 height associated SNPs and their effect sizes and P-values with sitting height ratio 

(SHR). The reference allele has been aligned such that the effect size for height is always 

positive. The variants are ordered with decreasing significance to SHR. 
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large difference of SHR between people of different ancestral background and there is more than 

1 standard deviation difference between the SHR of European American and African Americans. 

While uncovering the underlying genetic reason for such a difference could improve our 

understanding of developmental biology during growth, differences of other phenotypes between 

European and African Americans could also be studied to determine if genetics is the primary 

cause for the difference. For example, studies of cancer rates have shown that African Americans 

have significantly higher incident rates of cancer [16] and subsequent genetic studies have 

uncovered common variants associated with prostate cancer that could explain for the greater 

incidence in African Americans [17,18]. 

 Interestingly, we managed to observe some loci that reach genome wide significance 

even with our relatively small sample size. The lead variant (rs201786365) discovered in our 

African American samples is not in any genes. The closest gene (120kb upstream) is ABHD5, 

where mutations in ABHD5 (also known as CGI-58) has been associated with Chanarin-Dorfman 

syndrome, a syndrome characterized by the individual’s inability to process triglycerides which 

can lead to having short stature [19]. The variants discovered from our studies in European 

Americans, rs140449984 (PTPRM) and rs5959358 (ITM2A) are also interesting. PTPRM, while 

not known to be associated with height, is associated with a syndrome called deletion 18p 

syndrome which can lead to mental and growth retardation, and craniofacial dysmorphism [20]. 

While the variant (rs5959358) does not lie in any gene, the closest gene, ITM2A (70kb 

upstream), a gene found on the X-chromosome is associated with SHR in women but not in men. 

The locus have also been reported to be strongly associated with height [13]. This result suggests 

that the variant responsible for altering SHR plays a role in escaping dosage compensation in 

women that results in altered SHR [13,21,22]. Finally, we also show that most of the SNPs 
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associated with height do show effects that alter SHR. While variants that increase height have 

slightly higher probability to be associated with decreased SHR (e.g. FGFR2, CDK6), some 

variants that increase height are also associated with increase SHR (e.g. FAM46A, WWP2). 

Other variants while having a strong effect on overall height, they do not seem to be associated 

with SHR (e.g. HMGA2, ZBTB38). These 3 classes of genes might be clustered distinct 

biological pathways that have very different mechanism on how they alter overall height. 

 In conclusion, this study is a large scale whole genome experiment to discover the 

underlying genetic basis for differences in body proportion using the sitting height ratio (SHR) as 

a read out. We uncovered a few loci that are significantly associated with SHR and that there are 

a significant number of loci associated with height that also alters the SHR. These results suggest 

that SHR is also polygenic and further studies of larger sample sizes is required to explain the 

full genetic spectrum of SHR. 

 

MATERIALS AND METHODS 

Quality control (QC) 

The data were downloaded from dbGAP and passed through our quality control pipeline. The 

QC is largely done using PLINK [23] software. Samples that have ambiguous or incorrect gender 

were filtered out (using --check-sex option in PLINK). SNPs that have > 5% missing rate were 

filtered out. Samples that have > 2% missing SNPs were removed. SNPs that have minor allele 

frequencies < 1% were dropped. We then examine samples that have extreme heterozygosity and 

removed samples that were +/- 4 standard deviations (using –het option in PLINK). The SNP 

annotations for chromosome and base-pair positions were set to the coordinates of hg19 
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(GRCh37) using liftover. We then calculated pairwise IBD/IBS (using –genome option in 

PLINK) and remove individuals that have excessive matching with other individuals (PI_HAT > 

0.05). The samples were then superimposed on the HAPMAP [24] version 3 by comparing 

principal components using SMARTPCA [25]. Samples that do not belong to the right PCA 

cluster were removed. SNPs that have excessive plate-effects (P < 1 x 10
-7

) were dropped. For 

samples that are of European ancestry, SNPs that have excessive deviation from Hardy-Weinberg 

equilibrium (P < 1 x 10
-7

) were dropped. 

 

Determining global European ancestry in African American individuals 

For the African American individuals (ARIC and CARDIA cohorts), the global European 

ancestry was calculated by SMARTPCA from the CEU and YRI samples of HAPMAP version 3. 

The CEU individuals are proxies of European ancestry while the YRI individuals are proxies of 

African ancestry. The principal components were calculated using only the CEU and YRI 

individuals while projecting them onto the ARIC and CARDIA African Americans. The first 

principal component is taken to be the axis that represents the degree of global European 

admixture for each of our individuals. 

 

Genotype Imputation 

The genotypes were phased using SHAPEIT2 [26] and imputed using IMPUTE2 [27]. The 

imputation panel used were from the 1000 genomes [28] containing 379 Europeans, 246 Africans 

and African-Americans, 286 Asians and 181 Latin Americans. The imputation panel consists of 

approximately 22 million variants (SNPs and indels). For the X-chromosome, only the non-
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pseudo autosomal region was imputed. The phasing and imputation were done separately for 

males and females. 

 

Genome wide association 

The associations were performed using sitting height ratio (SHR) adjusted for sex, height, age 

and body mass index (BMI). SHR was calculated by taking sitting height divided by total height. 

Individuals that were missing for SHR or any of the above covariate were discarded. Only 

unrelated individuals were used, i.e. no pair of individuals has PI_HAT > 0.05. The SHR were 

inverse-normalized per cohort. The top 10 principal components (PCs) were calculated using 

SMARTPCA and any PCs that had an association with SHR (P < 0.05) were used as a covariate 

as well. For African American individuals, the global percentage European admixture was 

included as an additional covariate. The association for the imputed variants with SHR was 

performed by a linear regression (--linear command with PLINK). The resulting association 

results for each cohort were then meta-analyzed together using METAL [29] with GC correction 

turned on. Variants on the X-chromosome were analyzed separately between males and females. 

 

Atherosclerosis Risk In Communities (ARIC) cohort 

We obtained genotypic and phenotypic data from dbGAP. There were initially 13,113 samples 

(European + African Americans) and after performing the quality control (QC) procedure, there 

were 7,257 (3,551 males and 3,706 females) European Americans and 2,354 African Americans 

(894 males and 1,460 females). The genotypes were typed using the Affymetrix Genome-Wide 

Human SNP Array 6.0 platform. 
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Coronary Artery Risk Development in Young Adults (CARDIA) cohort 

We obtained genotypic and phenotypic data from dbGAP. There were initially 1,675 European 

American samples and after performing the quality control (QC) procedure, there were 1,047 

(494 males and 553 females) samples remaining. For African Americans, there were initially 

1,393 samples and after performing the QC procedure, there were 715 (275 males and 440 

females) samples remaining. The genotypes were typed using the Affymetrix Genome-Wide 

Human SNP Array 6.0 platform. 

 

Cardiovascular Health Study (CHS) cohort 

We obtained genotypic and phenotypic data from dbGAP. There were initially 3,980 European 

American samples and after performing the quality control (QC) procedure, there were 2,926 

(1,163 males and 1,763 females) samples remaining. The genotypes were typed using the 

Illumina HumanCNV370v1-Duo platform. 

 

Framingham Heart Study (FHS) cohort 

We obtained genotypic and phenotypic data from dbGAP. The FHS cohort is largely data with 

family pedigrees. Sitting height measurements were only observed for the original cohort. After 

removing samples that do not have sitting height measurements and that are unrelated, there 

were 713 (269 males and 444 females) samples remaining. The genotypes were typed using the 

Affymetrix 500K platform. 
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OVERVIEW 

 The development of whole genome genotyping technologies (DNA microarrays, whole 

genome sequencing, etc) coupled with computational capabilities for performing genotype-

phenotype associations have allowed genome wide association studies (GWAS) to be  successful 

at identifying genetic variants associated with many complex traits and diseases [1]. This is 

because GWASs are best suited for identifying variants for traits with polygenic architecture 

where many loci have only a small effect on the resulting phenotype [2]. There is now 

compelling evidence that many of these variants result in changes of RNA expression levels 

which could be the reason behind their association with the phenotype [3,4]. While GWASs have 

been largely successful, much of the heritability has not been explained by the currently 

discovered variants although as the sample sizes increase, the better powered GWASs will be in 

detecting variants with smaller effect sizes [5]. Nonetheless, even if GWASs yield no new 

variants associated with phenotypes, the landscape of the genetic association statistics from 

GWASs might still be informative in teaching us about the genetic architecture of the phenotype. 

In this dissertation, we demonstrated how one can leverage the results from GWASs to infer the 

role of rare and common variants to polygenic architecture. 

 

MAJOR FINDINGS AND IMPLICATIONS 

In chapter 2, we discussed experiments that analyze the common variant’s effects on 

height at the tails of the height distribution. The findings are: 

 Single SNP analysis shows that common variants have expected effects at the tails. 

 The short individuals have less than expected number of common short alleles (alleles 
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that are shown to reduce stature). 

 This effect is driven by the shortest individuals. 

 This result is consistent with rare variants having moderate effects on short stature. 

Given that the short individuals have less than expected number of common short alleles, there is 

a fair chance that there are many such rare variants that have moderate effects on short stature in 

the population. Studies have been performed to determine what some of these variants might be 

[6], but might still prove difficult given the lack of power as the allele frequencies of such 

variants are very low. There is also evidence that rare copy number variants (CNVs) in genomic 

regions can explain the short stature in some patients [7,8]. Therefore, one of the implications of 

our results is that if one wants to have a strategy for identifying rare variants that cause short 

stature in the population, the recruitment of individuals with short stature is critical. It would be 

better to first genotype individuals with short stature for their height-associated common variants 

and determine if these individuals have a deficit of height decreasing alleles. As the short stature 

individuals could be short because of rare variants and/or common variants, enriching for 

individuals with a deficit of common height decreasing alleles would enrich for individuals 

harboring rare variants. Our results also implicate the use of ‘extreme’ individuals for genetic 

studies, that such studies can be used to compliment our knowledge about the genetic 

architecture of the trait in question. 

 In chapter 3, we discussed a method to determine polygenic inheritance from low 

frequency variants by examining if there is an excess of risk conferring variants from summary 

statistics of association studies. The findings are, 

 An excess of low frequency risk-increasing variants can be a signal of polygenic 

inheritance as measured by an increase in the risk to protective (R/P) ratio. 
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 This excess can be due to risk-increasing variants being more statistically powered than 

risk-decreasing variants with the same magnitude of effect. 

 This excess can also be due to having more risk variants to begin with because of 

negative selection keeping risk variants at low frequencies. 

 There is a higher probability for false positive associations to be risk variants if there are 

substantially more controls than cases. 

 This excess can also be due to asymmetric population stratification because of badly 

designed GWAS. 

 An analysis of some published GWAS summary statistics reveal significantly increased 

R/P ratios for schizophrenia, type 2 diabetes and obesity. 

 Significant increased R/P ratios were observed for macroalbuminuria and end stage renal 

disease but not if these subtypes of diabetic nephropathy were combined into a single 

case group. 

These findings suggest that one could simply test for an excess of risk conferring variants to 

determine if the low frequency variants contribute as a whole to disease risk. Methods to detect 

for a contribution of low frequency or rare genetic variants to disease risk are crucial as they can 

inform researchers whether pursuing the hypothesis would be a fruitful endeavor. While methods 

like GCTA [9] and polygene score [10] can be adapted to perform such analyses, examining for 

the excess of risk conferring variants provide an independent support for low frequency 

polygenic contributors to disease risk and requires only summary statistics without the need for 

primary genotype data. Besides having such a method, the findings suggest that most GWAS are 

designed to better discover low frequency variants that confer risk to disease. While this is useful 

for explaining disease etiology, it may be suboptimal for discovering genes that might be useful 



173 

 

as drug targets for treatment. This is because genes that have low frequency variants that confer 

protection to disease are best suited as drug targets assuming that the variants confer some loss of 

function effect on the gene. For example, low frequency loss of function variants in PCSK9 have 

been found to have a protective effect against coronary heart disease [11] and now has become a 

drug target for lowering LDL cholesterol [12]. Our results suggest that if GWAS were designed 

such that cases are individuals strongly protected against disease and controls are everyone else, 

that design will be better optimized to discover rare protective variants. 

 In chapter 4, we examine the extent of genetic contribution to sitting height ratio (SHR) 

by performing genome wide association studies on African and European Americans. The 

findings are, 

 Degree of European admixed ancestry in African Americans strongly associated with 

sitting height ratio (SHR) suggests strong genetic contribution. 

 GWAS in African Americans discover a locus associated with SHR. 

 GWAS in European Americans discover 2 loci associated with SHR. 

 More than expected height-associated variants show association with SHR as well. 

 Some of these height-increasing allele decreases SHR while other increases SHR. 

These results show that the difference of sitting height ratios (SHRs) between European and 

African Americans is genetic and that GWAS performed can reveal variants that are associated 

with SHR. However, the few variants discovered through GWAS do not explain the difference 

between European and African Americans suggesting that this difference is polygenic. As such, 

to fully uncover the full extent of such a difference, many more samples are required. The excess 

of known height-associated variants associated with SHR is also interesting. While sitting height 

is a component of total height, the sitting height ratio is not. Given that we corrected for total 
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height when performing the linear regression, the association statistic represents the change 

between the upper-body to lower-body ratio. As such, these height-associated SNPs can be 

grouped into 3 categories, i.e. the height-increasing allele does not alter SHR, the height-

increasing allele decreases SHR and the height-increasing allele increases SHR. While we 

perhaps do not have enough height loci to investigate this, there is a strong hypothesis that the 

height-increasing alleles that increases SHR are probably in genes that function to increase spine 

length or that the alternate allele decreases femur or tibia length. On the other hand the height-

increasing alleles that decrease SHR may perhaps be working to increase the length of the femur 

or tibia. The variants that have no effect on SHR may perhaps be regulating hormonal output. 

Perhaps examining these 3-classes of variants will shed more light on the biology of growth and 

the relevant developmental pathways involved. 

 Genome wide association studies (GWAS) can inform us about the genetic architecture of 

traits and diseases. We argue that one should not merely look at only the genome wide significant 

results from GWASs and ignore variants that are insignificant. By performing computational 

modeling on the full range of results, one would be able to infer the genetic architecture of the 

trait or disease and perhaps shed light on the biological mechanism responsible for producing the 

change in the phenotype. 

 

FUTURE DIRECTIONS 

 In this section, we focus on the results from this dissertation to the understanding of 

disease etiology, the broader implications and potential future research directions and goals 

towards the broader aim of improving our understanding of genetic diseases as well as towards 

the discovery therapeutic strategies. It has been suggested that while there is a plethora of effort 
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for performing disease mapping through the use of GWAS, little has been discovered about the 

mechanisms of how these variants influence the disease pathology and even less so in terms of 

therapeutics. This trend might change in the future but there are several issues that might hinder 

the effort for understanding the mechanism of common variants to disease. First, as the effect 

sizes of these common variants are small, studying the variant’s effect either in in-vitro systems 

or animal models may not be feasible as the magnitude of effect may be too small to be observed 

from the readout. Next, given the many number of such variants, it may be impractical to 

simultaneously study most of them. As such, rare-variants with large effects might be better 

suited for such follow up studies. 

  We have observed from the results from studying individuals from the extreme ends of 

the height distribution, individuals with short stature could potentially be short because of rare 

variants of moderate effects. These effect sizes could be large enough to register a read out from 

studying animal models. In fact, it has been shown that human alleles could be introduced into 

zebrafish causing these zebrafish to have similar phenotypes [13]. Therefore, given that rare 

variants with moderate effects are not likely to be discovered from GWAS as the SNP markers 

from GWAS are mainly common, new approaches for rare variant discovery are needed. Some 

have suggested and performed either whole-genome, whole-exome or exome-chip experiments 

as an effort to discover rare variants associated with diseases. Results from our work suggest that 

analyzing the GWAS results may be informative as to how likely such efforts would be fruitful. 

From our studies of individuals with short and tall stature, we found that there is a less than 

expected number of short alleles for the short individuals suggesting that they may have rare 

variants that moderately cause a decrease in height. If one were to sample from short individuals 

where their common variant profile predicts tall stature or above-average stature, these 
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individuals would more likely to harbor such rare-variants. Such rare-variants could lie in genes 

there are known in pathways that regulate growth or could be from genes without much known 

biological function or mechanism. 

 There could be several approaches to studying these genes to elucidate their unknown 

biological function or mechanism. One approach would be to introduce these variants via 

genome-engineering methods into some model organism. Since, if these organisms have 

homologous genes such that the human version of these genes is still functional, it is possible to 

replace the organism’s endogenous gene with a human version harboring these variants. If the 

human allele of the gene causes a similar phenotype in the organism, in this case, short stature, it 

would be evidence that the allele is the causal variant responsible for the human phenotype and 

subsequent studies into the mechanism of action can be studied via the model organism. This 

strategy could be extended to phenotypes of other quantitative traits like body-mass-index 

(BMI), lipid levels and blood pressure. Although not widely done, modeling disease outcome 

using human alleles has been demonstrated to be successful in zebrafish [14]. The key would be 

to identify the rare-variants with large effects and we have shown that studying the phenotypic 

extremes can be more optimal for doing so. 

 While identifying rare variants with relatively larger effect sizes may be useful for 

understanding disease etiology, it may not be as useful for the development of therapeutics, in 

particular, the genes underlying these rare variants do not make good candidate drug targets. This 

is because these variants are usually deleterious variants and therefore targeting these genes is 

predictive of increasing risk to disease. Also, even if the variants are gain of function variants, 

targeting these genes would only work for individuals that have the risk allele, which would still 

be rare in the population. The truth is that most individuals are affected by complex diseases not 
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because of rare variants but by the cumulative effect of common variants in many genes together 

with environmental stimuli. Even when certain traits, like sitting height ratio, are highly 

differentiated between populations, the reason behind that differentiation is usually polygenic. 

Unless it becomes feasible to have drugs that target many genes concurrently where each target 

is only modestly affected, one would perhaps need a better solution for treating a polygenic 

disease. 

 One possibility would be to target genes where there are rare deleterious variants that 

have moderate protective effects. However, we have shown that for case-control association 

studies, there is more power to detect risk than protective variants. Therefore, in order to 

optimize power to detect protective variants, the “case” individuals used in a case-control 

association should be individuals that are protected against the disease. Finding such individuals 

however, is a challenge on its own as individuals who are protected against disease do not show 

up at a clinic. One possibility would be use a quantitative trait measurement that is a proxy for 

the disease. For example, one criterion for having type 2 diabetes is having fasting glucose levels 

above 125 mg/dL. If one were to be able to recruit individuals that have lower than normal 

fasting glucose levels as cases and controls to be anyone else, then that case-control study design 

would be more optimized for detecting such protective variants. Another approach would be to 

use unaffected individuals that have strong environmental exposure to getting the disease. For 

example, the use of healthy middle-aged adults that are obese but do not have type 2 diabetes 

could be used as cases. Since there is a high probability of getting type 2 diabetes if one is obese, 

non-diabetic obese individuals might harbor protective variants against type 2 diabetes. Perhaps, 

such a new paradigm for performing GWAS might be the way forward for optimizing the power 

to detect rare protective variants. 
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A POSTSCRIPT 

 We are at a point in time when research in human genetics for understanding complex 

diseases is in its critical moment. It was not too long ago where we do not have even a single 

gene or locus associated with any complex disease but now we have many, perhaps too many to 

even comprehend how it is possible to move forward. As genomic techniques improve and 

sequencing cost gets reduced, perhaps having a whole genome sequence for any single individual 

would be easily achieved. In the near future, having a genomic profile for any patient would be 

like measuring blood pressure today. It would be quick, easy and inexpensive. Therefore, the 

challenge of the future would be to determine how one could harness the genome’s sequence of 

every patient to improve our understanding of disease mechanisms as well as to aid in the 

development of new therapeutics. It is incumbent on us scientist to make that a reality and I 

strongly believe that we will succeed. It is only a matter of time. 
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