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Finance Implications of the Great Recession

Abstract

Macroeconomic events in the United States during the last ten years—the housing bubble, the

financial crisis and the subsequent, deep recession—brought several puzzles to the attention

of economists and policymakers. Why were there such large price booms and busts in places

like Las Vegas and Phoenix, where land was readily available and construction markets

were very active? Why are economies so slow to recover from recessions that coincide with

financial crises? Can policymakers use fiscal stimulus to increase output and accelerate

economic recovery after a recession?

My dissertation research contributes to how we think about these questions. Using

ideas from finance and behavioral economics and a variety of methods—economic theory,

new data, natural experiments and anecdotal exploration—I document several surprising

facts. In the case of housing bubbles, introducing speculation into the standard supply-and-

demand framework can reverse the conventional wisdom, so that supply can increase price

volatility and exacerbate booms. In the case of policy responses to recessions, forcing banks

to close can speed up local lending and financial frictions can amplify the effects of fiscal

stimulus.
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Introduction

Macroeconomic events in the United States during the last ten years—the housing bubble, the

financial crisis and the subsequent, deep recession—brought several puzzles to the attention

of economists and policymakers. Why were there such large price booms and busts in places

like Las Vegas and Phoenix, where land was readily available and construction markets

were very active? Why are economies so slow to recover from recessions that coincide with

financial crises? Can policymakers use fiscal stimulus to increase output and accelerate

economic recovery after a recession? My dissertation research contributes to how we think

about these questions. I apply insights from finance and behavioral economics while using

a variety of methods: new data, natural experiments, anecdotal exploration and rigorous

theory.

Two questions that have long intrigued economists and policymakers are whether tax

policy affects firm behavior and whether credit market imperfections force firms to forgo

profitable projects. Past research has struggled to find compelling natural experiments to

address these questions. Experiments are necessary in the case of tax policy because taxes

often change based on how the economy is performing, and in the case of credit market

imperfections because firms will tend to borrow less when their prospects look worse. The

first paper of my dissertation develops an experiment based on the idea that tax policy

can affect different firms in different ways, and we use tax changes to create an “as-if”

experiment in the amount of cash firms need to pursue their desired projects. By focusing

on policies that were an important part of the 2009 U.S. stimulus bill, we also provide new

evidence on how and when stimulus policy can be effective.
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An important innovation of our study is that we work with a dataset which includes

more than one hundred thousand public and private companies in the United States, built

from a database of two million corporate tax returns filed between 1993 and 2010. Most

studies of tax policy and investment behavior rely upon financial accounting data for public

companies or aggregate investment data. These sources are limiting in several ways. First,

public firms have broader access to capital markets than smaller, private firms, so the sample

of public firms does not offer the ideal setting for documenting credit constraints. Second,

with aggregate data it is difficult to isolate potential confounds since these policies do not

happen randomly, and impossible to uncover the mechanism of any observed response. In

contrast, our data include a granular account of investment activity; a precise tax account;

a large sample of small, private firms; and measures of capital structure, payouts and

employment. As a result, we are able to document how firms respond to tax policy at an

unprecedented level of detail.

We present three findings. First, bonus depreciation raised investment 17.3 percent

between 2001 and 2004 and 29.5 percent between 2008 and 2010. Second, financially

constrained firms respond more than unconstrained firms. Third, firms respond strongly

when the policy generates immediate cash flows but not when benefits only come in the

future. The implied discount rate firms apply to future cash flows is too high to match a

frictionless model and cannot be explained entirely by costly finance.

The second paper of my dissertation applies insights from behavioral finance to explain

why cities with ample land experienced dramatic house price booms and busts in the early

2000s. This is a puzzle that economists have struggled to solve, but which is critical because

these relatively unconstrained areas—including Arizona, inland California, Nevada and

Florida—became the epicenter of the subprime and foreclosure crises.

The paper is methodologically diverse, combining national, subnational and within-city

statistical analysis with rich anecdotal detail about Las Vegas, Phoenix and the behavior of

public homebuilders culled from the footnotes of their annual reports. Our theory focuses

on speculation by investors and homebuilders on the supply side of the market. Speculation
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is easier in the land market than in the housing market due to rental frictions. Therefore,

speculation amplifies house price booms the most in cities with ample undeveloped land.

This observation reverses the standard intuition that cities where construction is easier

experience smaller house price booms. It also explains why the largest house price booms

in the United States between 2000 and 2006 occurred in areas with elastic housing supply.

These episodes are most likely to occur in elastic cities approaching a long-run development

constraint.

The third paper of my dissertation studies bank failures and how regulatory intervention

affects local lending activity. It is motivated by an old question in economics: why are

economic recoveries following financial crises so sluggish? I present micro-level evidence

that, in the recovery from the U.S. Great Recession, loss overhang in the banking sector

restricted lending and slowed growth. Zombie banks suffer from a debt overhang problem

caused by unrealized losses on past loans. To deter regulatory action, zombies restrict new

lending in healthy categories, prop up lending in unhealthy categories, and overallocate

to safe, liquid assets. FDIC-induced failures allow zombies to hive off bad loans and as

a result lending resumes post resolution. In the slump that began in the United States in

2007, limited FDIC liquidity and manpower prevented it from a timely reboot of all zombie

balance sheets. As a consequence, counties afflicted with unhealed zombies displayed

a slower recovery in employment, even in tradable goods industries less subject to local

demand conditions.

Taken together, the research in this dissertation demonstrates how insights from finance

can help answer important macroeconomic and policy questions.
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Chapter 1

Do Financial Frictions Amplify Fiscal

Policy? Evidence from Business

Investment Stimulus1

1.1 Introduction

Going back to Hall and Jorgenson (1967), public and macroeconomists have asked how

taxes affect investment. The answer is central to the design of countercyclical fiscal policy,

since policymakers often use tax-based investment incentives to spur growth in times of

economic weakness. Such policies often coincide with disruptions in capital markets, so it is

natural to ask how taxes affect investment in the presence of financial frictions. However,

the standard theoretical and empirical treatments assume perfect capital markets.2 This

paper uses recent episodes of investment stimulus to study whether the effect of taxes on

1Co-authored with James Mahon

2Key theoretical studies include Hall and Jorgenson (1967), Tobin (1969), Hayashi (1982), Abel and Eberly
(1994), and Caballero and Engel (1999). Abel (1990) presents a unifying synthesis of the early theoretical
literature. Key empirical work includes Summers (1981), Auerbach and Hassett (1992), Cummins, Hassett and
Hubbard (1994), Goolsbee (1998), Chirinko, Fazzari and Meyer (1999), Desai and Goolsbee (2004), Cooper and
Haltiwanger (2006), and House and Shapiro (2008). Edgerton (2010) relaxes the frictionless assumption but, in
contrast to our study, finds mixed results.
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investment accords with the standard, frictionless model. We find that, by ignoring financial

frictions, the standard analysis overlooks a crucial driver of firm responses to tax policy.

The policy we study, “bonus” depreciation, accelerates the schedule for when firms

can deduct from taxable income the cost of investment purchases. Bonus alters the timing

of deductions but not their amount, so the economic incentive created by bonus works

because future deductions are worth less than current deductions. That is, bonus works

because of discounting: firms judge the benefits of bonus by the present discounted value

of deductions over time.3 Speeding up the timing of deductions reduces short term taxes,

but at the expense of higher taxes in the future. With a reasonable risk-adjusted discount

rate, bonus depreciation generates a modest subsidy, so the frictionless model predicts a

small effect of bonus on investment.4 But in the presence of financial frictions, firms sharply

discount future deductions. Thus financial frictions make bonus more appealing, since the

difference in today’s tax benefits dwarfs the present value comparison that matters in theory.

We study two episodes of bonus depreciation using a standard difference-in-differences

methodology to estimate the effect of these policies. We present three empirical findings.

First, bonus depreciation has a substantial effect on investment, much larger than past

estimates and much stronger than the conventional wisdom predicts. Estimates of how tax

changes affect investment vary, but the consensus prediction is that bonus depreciation has a

small positive effect.5 In contrast, we find that bonus depreciation raised eligible investment

by 17.3 percent on average between 2001 and 2004 and 29.5 percent between 2008 and 2010.

3Summers (1987) states this most clearly: “It is only because of discounting that depreciation schedules
affect investment decisions. . . ”

4Consider a firm making a $100 investment in computer equipment, which the IRS assigns a depreciation
life of five years. Under the normal schedule, a firm can only deduct from taxable income $20 in the year of the
purchase and must spread the remaining $80 over the next five years. Assuming a seven percent risk-adjusted
discount rate, the difference in present values for even full expensing—i.e., 100 percent bonus, which lets the
firm deduct $100 in the purchase year—implies a subsidy of less than four percent.

5Cummins, Hassett and Hubbard (1994) study many corporate tax reforms and public company investment
data and conclude that tax policy has a strong effect on investment. Using similar data and a different empirical
methodology, Chirinko, Fazzari and Meyer (1999) argue that tax policy has a small effect on investment and that
Cummins, Hassett and Hubbard (1994) misinterpret their results. Hassett and Hubbard (2002) survey empirical
work and conclude that the range of estimates for the user cost elasticity has narrowed to between -0.5 and -1.
Surveying this and more recent work, Bond and Van Reenen (2007) decide “it is perhaps a little too early to
agree with Hassett and Hubbard (2002) that there is a new ‘consensus’ on the size and robustness of this effect.”
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We estimate a user cost elasticity of approximately 1.6, outside the range of estimates of 0.5

to 1 surveyed by Hassett and Hubbard (2002) and more than double the consensus point

estimate.6

The first part of the paper details this finding and a litany of robustness tests. The

research design compares firms at the same point in time whose benefits from bonus differ.

Our strategy exploits technological differences between firms in narrowly defined industries.

Firms in industries with most of their investment in short duration categories act as the

“control group” because bonus only modestly alters their depreciation schedule. This natural

experiment separates the effect of bonus from other economic shocks happening at the

same time. If the parallel trends assumption holds—if investment growth for short and

long duration industries would have been similar absent the policy—then the experimental

design is valid.

The key threat to this design is that time-varying industry shocks may coincide with

bonus. This risk is limited for four reasons. First, graphical inspection of parallel trends

indicates smooth pretrends and a clear, steady break for short and long duration firms

during both the 2001 to 2004 and 2008 to 2010 bonus periods. The effects are the same size

in both periods, though different industries suffered in each recession. Second, the estimates

are stable across many specifications and after including firm-level cash flow controls,

industry Q, and flexible industry trends. Controlling for industry-level co-movement with

the macroeconomy actually increases our estimates. Third, the estimates pass a placebo test:

the effect of bonus on ineligible investment is indistinguishable from zero. Last, for firms

making eligible investments, bonus take-up rates (i.e., do firms fill in the bonus box on the

tax form?) are indeed higher in long duration industries. For these reasons, spurious factors

are unlikely to explain the large effect of bonus.

Firms respond to bonus depreciation as if they apply implausibly high discount rates to

investment decisions. This finding is inconsistent with a frictionless model of firm behavior.

6In Section 1.4, we collect estimates from past studies of tax reforms. The average user cost elasticity across
these studies is 0.69.
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In the second part of the paper, we explore alternative models that generate high effective

discount rates by adding financial frictions.7 One alternative is costly external finance,

which raises the total discount rate firms apply to evaluate projects. Another alternative is

managerial myopia, which raises effective discount rates by sharply discounting the future

relative to the present. Both models prove useful in explaining our findings.

Our second empirical finding is that, consistent with the costly external finance story,

financial constraints amplify the effects of investment stimulus. Nearly all prior empirical

tests of financial constraints use public firm data, which is problematic because public firms

have the best collateral, the strongest banking relationships and broad access to equity and

bond markets.8 In contrast, we work with an analysis sample of more than 120,000 public

and private companies drawn from two million corporate tax returns. Half the firms in our

sample are smaller than the smallest firms in Compustat.9 Our baseline estimate therefore

averages over substantial heterogeneity in firm type, including many firms likely to face

financial constraints.

The largest firms in our sample, those most like the firms in past studies, yield estimates

in line with the Hassett and Hubbard (2002) range. In contrast, small and medium-sized

firms, previously unstudied, show much stronger responses. Building on the differential

response by firm size, we perform a split sample analysis using several markers of ex ante

financial constraints. In addition to small firms, non-dividend payers and firms with low

cash holdings are 1.5 to 2.6 times more responsive than their unconstrained counterparts.

Moreover, we find that firms respond by borrowing and cutting dividends. These facts do

not match the frictionless model of investment behavior, in which firms divided by financial

7We use the term financial frictions as an umbrella term over a class of models that generate high effective
discount rates. Some of these—such as managerial myopia and agency theory—are not about external finance
per se, but refer instead to organizational frictions. These theories have not crossed from the finance literature
into standard public and macroeconomics treatments.

8Kaplan and Zingales (1997) find that very few of Fazzari, Hubbard and Petersen’s (1988a) most constrained
firms appear constrained by other measures.

9When aggregated, these small firms account for a large amount of economic activity. According to Census
tabulations in 2007 (http://www.census.gov/econ/susb/data/susb2007.html), firms with less than
$100 million in receipts (around the 80th percentile in our data) account for more than half of total employment
and one third of total receipts.
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constraint markers do not respond differently to bonus.

Firms with tax losses must wait to realize the benefits of tax breaks. Because many firms

in our sample are in a tax loss position when a policy shock occurs, we can ask whether firms

value future cash windfalls, namely, the larger deductions bonus depreciation provides them

in later years. Our third empirical finding is that, consistent with the managerial myopia

story, firms only respond to investment incentives when the policy immediately generates

cash flows. This finding holds even though firms can carry forward unused deductions

to offset future taxes, and it cannot be explained by differences in growth opportunities.

Furthermore, this fact contradicts a simple model of costly external finance, because firms

neglect how the policy affects borrowing in the future.

To confirm the myopia story, we study a second component of the depreciation schedule.

Firms making small investment outlays face a permanent kink in the tax schedule, which

creates a discontinuous change in marginal investment incentives. This sharp change in

incentives induces substantial investment bunching, with many firms electing amounts

within just a few hundred dollars of the kink. And when legislation raises the kink, the

bunching pattern follows. Consistent with myopia, bunching strongly depends on a firm’s

current tax status: firms just in positive tax position are far more likely to bunch than

firms on the other side of the discontinuity. For a different group of firms and a different

depreciation policy, we again find that firms ignore future tax benefits.

These facts do not match the predictions of a frictionless model, which cannot account

for the large baseline response, the differential response for constrained firms or the

nonresponse for nontaxable firms. The facts point instead toward models in which costly

finance matters and current benefits outweigh future benefits. We use an investment model

to clarify these findings. The model incorporates costly external finance and managerial

myopia into a general model in which the frictionless model of Hayashi (1982) is a special

case. These alternative theories make predictions about the discount rate firms apply to

future cash flows. The model shows how to combine reduced form estimates to distinguish

the frictionless benchmark from costly external finance and managerial myopia.
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The general model yields a set of theoretical moments—one comparing constrained

and unconstrained firms and one comparing taxable and nontaxable firms—which we can

combine with our empirical findings to measure financial frictions. With these comparisons

we can estimate the shadow cost of external funds and an implied present versus future

discount factor. We estimate the shadow cost of external funds to be between $0.63 and

$1.61 per dollar and an implied discount factor of 0.84. Combining these results, financially

constrained firms act as if $1 next year is worth just 38 cents today, yielding a total discount

rate of 97 percent. Thus accounting for the effect of bonus depreciation on investment

requires a major role for financial frictions.

Our paper sits at the intersection of several strands in the economics and finance litera-

tures. Most directly, the paper relates to studies of the effect of taxes on business investment.

Our data improve on past studies by including two periods of bonus depreciation; a granular

breakdown of eligible investment; a large sample of small, private firms; and better tax

variables. Earlier studies pool the effects of different tax reforms, which include depreciation

changes, tax rate changes and rule changes regarding corporate form. We focus on one

specific policy, bonus depreciation, and carefully dissect how firms respond. House and

Shapiro (2008) study the first episode of bonus depreciation using aggregate investment data.

Their design compares residuals from a prediction model for investment in short duration

(e.g., computers) and long duration (e.g., blast furnaces) categories. We compare firm-level

investment growth rates, so that our first difference does not depend on an estimated model.

In the literature on salience and taxation, our study offers an example of a strong tax policy

effect on economic behavior.10

The paper also relates to the literature on financial constraints.11 We use depreciation

10Our evidence is consistent with the strong behavioral response to and salience of the Earned Income Tax
Credit (Chetty, Friedman and Saez, 2013). It stands, for instance, in contrast to evidence that individuals react
incompletely to obscure taxes (Chetty, Looney and Kroft, 2009) and that business investment does not react to
changes in the dividend tax (Yagan, 2013).

11Fazzari, Hubbard and Petersen (1988a) argue that, if firms more likely to be financially constrained respond
more strongly to cash flow shocks, then financial constraints are responsible. Subsequent studies make this
argument while identifying quasi-experimental variation in cash flows or credit supply (Lamont, 1997; Rauh,
2006; Chaney, Sraer and Thesmar, 2012). We apply this insight to the case of bonus depreciation, which creates
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changes as a plausibly exogenous financial constraint shock.12 Unlike past studies, our

instrument also changes the relative price of investment. We use this feature and an

investment model to estimate the shadow price of internal funds from the difference between

constrained and unconstrained firm elasticities. Our findings imply that incorporating

financial frictions adds much explanatory power to neoclassical investment theory.13

Cummins, Hassett and Hubbard (1995) and Edgerton (2010) note that tax losses will

reduce the incentive of firms to respond to tax changes. The former study uses a sample of

sixty loss firms to conclude that losses reduce the effect of tax breaks on investment. The

latter maps financial accounting data to a tax account and finds mixed evidence that losses

matter.14 With our data, we can precisely measure whether a firm’s current tax position

means that the next dollar of investment affects this year’s tax bill. Our sample of loss firms

includes almost two hundred thousand loss year observations.

The outline of the paper is as follows. Section 1.2 formalizes intuition about how

bonus works and develops a set of testable hypotheses, which guide the empirical analysis.

Section 1.3 describes the corporate tax data, variable construction and sample selection

process. Section 1.4 describes the main empirical strategy for studying bonus depreciation,

the identification assumptions and presents results. Section 1.5 uses split sample tests by

markers of financial constraints and by tax position to show financial frictions can account for

the large baseline effect of bonus. We then develop a set of theoretical moments and combine

the empirical results to estimate implied discount rates. Section 1.6 studies substitution

margins and external finance responses to bonus. There, we use our heterogeneous size

a shock to the amount of cash firms need to perform their desired investment.

12See the conclusion of Fazzari, Hubbard and Petersen (1988a) and Fazzari, Hubbard and Petersen (1988b)
for a discussion of how taxes might affect investment in the presence of financial constraints. They focus on
average tax rates more generally and do not perform an empirical analysis along these lines.

13Hayashi (1982) derives the workhorse neoclassical model. Stein (2003) surveys models in which financial
frictions influence investment decisions.

14Recent work documents large differences between “book” and tax accounts, which introduces the risk of
measurement error into such a mapping (see, e.g., Mills, Newberry and Trautman (2002). Edgerton (2010) is
very careful with this procedure, but acknowledges that “[one] cannot rule out, however, the possibility that
difficulties in measuring firms’ taxable status drive the relative unimportance of taxable status observed in the
Compustat data.”
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results to estimate the aggregate investment effect. Section 1.7 discusses policy implications

and avenues for future research.

1.2 Hypothesis Development

To direct our empirical analysis, we develop a simple model of investment in the presence

of depreciation incentives, financial constraints and heterogeneous tax positions. We modify

the neoclassical investment model with adjustment costs (Abel, 1982; Hayashi, 1982) by

introducing an external finance wedge and managerial myopia. The model yields a formal

hypothesis corresponding to our baseline investment design: investment increases due

to bonus depreciation and increases more for industries doing longer lived investment.

We develop two further hypotheses corresponding to split sample tests. First, investment

responds more when firms face an external finance wedge. Second, investment responds

less when firms are in tax loss positions. Here, we focus on the intuition of the model

and the mapping from theory to empirical objects and tests. We use a simple one shot

static investment model with a reduced form credit wedge.15 Appendix A.1 derives the

hypotheses in an infinite horizon setting with adjustment costs and a dynamic leverage

constraint.

Consider a firm making a one shot investment decision. The firm begins with initial

profits π0 and chooses a level of investment I to determine the capital stock and hence

future profits.16 Future profits are given by π(I), taxed at the proportional corporate tax

rate τ. The firm discounts future flows at risk-adjusted rate r.

The tax code permits the firm to write off the cost of investment over time. The value of

these deductions depends on the tax rate and how the schedule interacts with the firm’s

15This wedge is a reduced form model of a set of capital market frictions, which might reflect, e.g., costly
monitoring problems or adverse selection (Stein, 2003).

16Normalize the price of investment to one.
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discount rate. We collapse the stream of future depreciation deductions owed for investment:

z0(β) = D0 + β
T

∑
t=1

1
(1 + r)t Dt, (1.1)

where Dt is the allowable deduction per dollar of investment in period t and T is the class

life of investment. z0(β) measures the present discounted value of one dollar of investment

deductions before tax. If the firm can immediately deduct the full dollar, then z0 equals one.

Because of discounting, z0 is lower for longer lived items (i.e., items with greater T), which

forms the core of our identification strategy.

In general, the stream of future deductions depends on future tax rates and discount

rates. Our empirical analysis assumes the effective tax rate does not change over time, except

when the firm is nontaxable.17 For discount rates, we begin by assuming a risk-adjusted

rate of seven percent to compute z0 in the data, which enables comparison to past work.

We then relax this assumption in Section 1.5.3 when we estimate an implied discount rate.

β is an additional discount term between zero and one, which reflects the possibility of

myopia.18 We use our heterogeneity analysis to identify this term separately.19

Bonus depreciation, the policy we study in our empirical analysis, allows the firm to

deduct a per dollar bonus, θ, at the time of the investment and then depreciate the remaining

1− θ according to the normal schedule:

z(β) = θ + (1− θ)z0(β) (1.2)

At different points in time, Congress has set θ equal to 0, 0.3, 0.5 or 1. We use these policy

17We use the top statutory tax rate in the set of specifications requiring a tax rate. This is an upper bound on
the more realistic effective marginal tax rate, which in turn depends on tax rate progressivity and the level of
other expenses relative to taxable income. See, e.g., Graham (1996, 2000) for a method tracing out the marginal
tax benefit curve. The policies we study will increase the use of investment as a tax shield regardless of where
the firm is on this marginal benefit curve. Except when current and all future taxes are zero, bonus increases
the marginal tax benefit of investment.

18The myopia model is closer to Akerlof (1991) and Laibson (1997) than it is to the model of managerial
myopia in Stein (1989). Stein’s (1989) model of managerial myopia specifically refers to the incentive to boost
current earnings as a way of signaling high quality to the stock market. We use the term to reflect any motive to
boost current earnings and neglect projects with long term payoffs and short term costs.

19We assume that β explicitly applies to depreciation deductions, which have both a present and future
component. In the case of profits, which only arrive in the future, we assume π incorporates β implicitly.
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shocks to identify the effect of bonus depreciation on investment. Industries differ by

average z0 prior to bonus, providing the basis for identification in a difference-in-differences

setup with continuous treatment.

We further generalize z by incorporating a nontaxable state. When the next dollar

of investment does not affect this year’s tax bill, then the firm must carry forward the

deductions to future years.20 Our general z reflects this case:

z(β, γ) = γz(β) + (1− γ)βφz(1), (1.3)

where γ ∈ {0, 1} is an indicator for current tax state and φ is a discounter that reflects both

the expected arrival time of the taxable state and the discount rate applied to the future and

subsequent periods when the firm switches. Note that for the nontaxable firm, β applies

to all future deductions. Even when β equals one, φ is less than one, so the value of these

deductions are lower when the firm is nontaxable. We measure φ in the data and apply our

split sample results to determine whether we can justify these findings in a model without

myopia.

External finance matters for all investment exceeding current cash flow. During the

investment period, the firm faces an external finance wedge that is linear in expenses net of

cash flows, that is,

c(I) = λ [(1− τz)I − (1− τ)π0] , (1.4)

where λ can be thought of as the shadow price on a borrowing constraint that may or

may not bind now or in the future. Thus, a dollar of cash inside the firm is worth 1 + λ.21

We include z in the net expense term and not just the first year deduction, to capture the

influence of depreciation deductions on future taxes and thus future borrowing. While

20This assumes that “carrybacks”—in which firms apply unused deductions this year against past tax
bills—have been exhausted or ignored. In ongoing work, we find that carryback take-up rates are surprisingly
low.

21Note that because we have assumed a linear external finance function, there will be no direct effect of cash
flows on investment, that is, the investment-cash flow sensitivity is zero. Because each dollar of investment can
only generate at most 35 cents of cash back, these policies cannot operate mainly through a direct cash windfall
channel.
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bonus depreciation relaxes the current constraint through reducing this year’s tax bill,

it does so at the expense of higher future taxes. The net effect is to reduce the present

discounted borrowing costs for the firm. However, if myopia plays a role (that is, for low

β), then only the current year change will matter. The two models thus yield different

predictions for constrained, nontaxable firms: constrained, myopic firms respond much

less to bonus when nontaxable than do constrained, farsighted firms. This is the feature

we use to distinguish costly external finance from myopia models, which are otherwise

observationally equivalent.

We derive a condition for optimal investment. Though the problem occurs over time,

we can write it as a static one shot investment problem by discounting future flows to the

present. Discarding elements not involving investment, the firm’s objective is

max
I

{
(1− τ)π(I)

1 + r
− (1− τz)I − λ(1− τz)I

}
(1.5)

Here, we assume π is weakly concave, which ensures that the problem yields a unique

interior solution.

The first order condition for optimal investment is

(1− τ)π′(I∗) = (1 + r)(1 + λ)(1− τz). (1.6)

Intuitively, the investment decision trades off the after-tax future benefits of the marginal

dollar of investment against its price (normalized to one) and the marginal external finance

cost, less the marginal benefit due to depreciation deductions. Deductions lower the hurdle

rate for investment both through their net present value and through relaxing the external

finance constraint. With costly external finance, optimal investment is strictly lower than

in the frictionless case or when inside cash can cover all investment expenses (i.e., when

λ = 0).

We derive three testable hypotheses from the model. The first concerns the average effect

of bonus depreciation on investment, while the latter two concern heterogeneous effects by

the presence of costly external finance and by tax position. Bonus depreciation increases
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the present value of deductions, reducing the price of investment. Thus bonus depreciation

should increase investment. Each hypothesis builds on the comparative static with respect

to the bonus parameter θ. In the Appendix, we show that investment is increasing in θ.

Hypothesis 1 Investment responds more strongly to bonus depreciation for industries with more

investment in longer lived eligible items. That is, ∂2 I/∂θ∂z0 < 0.

Bonus depreciation works through increasing θ. Hypothesis one concerns the basic effect of

this policy on investment. The more delayed the normal depreciation schedule is, the more

generous bonus will be. Longer lived items like telephone lines and heavy manufacturing

equipment have a more delayed baseline schedule than short lived items like computers (i.e.,

z0
Long < z0

Short). Thus, industries that buy more long lived equipment see a larger relative

price cut when bonus happens.

Our second hypothesis concerns how the investment response varies with costly external

finance.

Hypothesis 2 Investment responds more strongly to bonus depreciation for financially constrained

firms. That is, ∂2 I/∂θ∂λ > 0.

For financially constrained firms, bonus depreciation both reduces the price of investment

and reduces how much they have to borrow. The effective price change is thus larger

for constrained firms. We use several proxies for ex ante financial constraints—firm size,

dividend payment activity and liquid asset positions—to test for a difference in elasticities

between constrained and unconstrained firms. If financial constraints are unimportant, then

we should not find a consistent, systematic difference in elasticities for groups of firms

based on these proxies. We can use the difference in coefficients between constrained and

unconstrained firms to ask what the implied external finance spread. We formalize and

implement this intuition in Section 1.5.3.

Our third hypothesis concerns how the investment response varies with the firm’s

current tax position.
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Hypothesis 3 Investment responds more strongly to bonus depreciation for firms with current-year

taxable income. That is, ∂I/∂θ|γ=1 > ∂I/∂θ|γ=0.

Hypothesis three emerges in any model with some positive discounting, since future benefits

are worth less than immediate benefits. The main value of the comparison between taxable

and nontaxable groups derives from the calibration it offers. We can calibrate the expected

arrival of the taxable state for nontaxable firms and ask whether the difference between

elasticities for taxable and nontaxable firms requires some myopia (i.e., β < 1).

1.3 Business Tax Data

The analysis in this paper uses the most complete dataset yet applied to study business

investment incentives.22 The data include detailed information on equipment and structures

investment, offering a finer breakdown than previously available for a broad class of

industries. The sample includes many small, private firms and all of the largest US firms,

which enables the heterogeneity analysis we use to document financial constraints. Because

the data come from corporate tax returns, we can separate firms based on whether the next

dollar of investment affects this year’s taxes. This allows a split sample analysis that can

distinguish the myopia model from a simple model of costly external finance. In this section,

we describe where these data come from and the analysis sample, as well as how we map

the theory into empirical objects.

Sampling Process. Each year, the Statistics of Income (SOI) division of the IRS Research,

Analysis and Statistics unit produces a stratified sample of approximately 100,000 unaudited

corporate tax returns.23 Stratification occurs by form type,24 total assets, and proceeds.

22Yagan (2013) uses these data to study the 2003 dividend tax cut. Kitchen and Knittel (2011) use these data
to describe general patterns in bonus and Section 179 take-up.

23Details come from http://www.irs.gov/pub/irs-soi/08cosec3ccr.pdf.

24For example, C corporations file form 1120 and S corporations file form 1120S. Other form types include
real estate investment trusts, regulated investment companies, foreign corporations, life insurance companies,
and property and casualty insurance companies. Sampling frequencies reflect the distribution of these types in
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Each sample year includes returns with accounting periods ending between July of that

year and the following June. When necessary, we recode the tax year to align with the

implementation of the policies studied in this paper. In 2008, the sample represented about

1.8 percent of the total population of 6.4 million C and S corporation returns.

SOI uses these samples to generate annual publications documenting income character-

istics. The BEA uses them to finalize national income statistics. In addition, the Treasury’s

Office of Tax Analysis (OTA) uses the sample to perform policy analysis and revenue

estimation. To enable these aggregate statistics, SOI carefully reports sampling weights

which reflect each observation’s sampling frequency. Our aggregate estimates incorporate

these weights. Any corporation selected into the sample in a given year will be selected

again the next year, providing it continues to fall in a stratum with the same or higher

sampling rate. Shrinking firms are resampled at a lower rate, which introduces sampling

attrition. We address this attrition in several ways, including a nonparametric reweighting

procedure for figures and through assessing the robustness of our results in a balanced

panel.

Analysis Samples, Variable Definitions and Summary Statistics. We create a panel by

linking the cross sectional SOI study files using firm identifiers.25 The raw dataset has 1.84

million rows covering the years from 1993 to 2010. There are 355 thousand distinct firms in

this dataset, 19,711 firms with returns in each year of the sample and 62,478 firms with at

least 10 years of returns. Beginning with the sample of firms with valid data for each of the

main data items analyzed, we keep firm-years satisfying the following criteria: (a) having

non-zero total deductions or non-zero total income26 and (b) having an attached investment

the population. We focus on 1120 and 1120S, which cover the bulk of business activity in industries making
equipment investments.

25We thank OTA staff for providing the data crosswalk.

26Knittel et al. (2011) use a similar “de minimus” test to select business entities that engage in “substantial”
business activity.
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form.27 In addition, we exclude partial year returns, which occur when a firm closes or

changes its fiscal year. To analyze bonus depreciation, we exclude firms potentially affected

by Section 179, a small firm investment incentive which we analyze separately. Our main

bonus analysis sample consists of all firms with average eligible investment greater than

$100,000 during years of positive investment.28 This sample consists of 820,769 observations

for 128,151 distinct firms.

This section describes the economic concepts underlying the variables we study. Eli-

gible investment, our main variable of interest, includes expenditures for all equipment

investment put in place during the current year for which bonus and Section 179 incentives

apply.29 We conduct separate analyses for intensive and extensive margin responses. The

intensive margin variable is the logarithm of eligible investment. The extensive margin

variable is an indicator for positive eligible investment. We aggregate this indicator at the

industry level and transform it into a log odds ratio30 for our empirical analyses. In some

specifications, we use an alternative measure of investment, which is eligible investment

divided by lagged capital stock. Capital stock is the reported book value of all tangible,

depreciable assets. Sales equals operating revenue and assets equals total book assets. Total

debt equals the sum of non-equity liabilities excluding trade credit. Liquid assets equals

cash and other liquid securities. Payroll equals non-officer wage compensation. Rents

equals lease and rental expenses. Interest equals interest payments.

Our main policy variable of interest, zN,t, is the present discounted value of one dollar

of deductions for eligible investment. In each non-bonus year, we compute the share of

27Form 4562 is the tax form that corporations attach to their return to claim depreciation deductions on new
and past investments. An entity that claims no depreciation deductions need not attach form 4562. It is likely
that these firms do not engage in investment activity, and so their exclusion should not affect the interpretation
of results.

28The relevant threshold for Section 179 was $25,000 until 2003, when it increased to $100,000. In 2008, it
increased to $250,000 and then to $500,000 in 2010. Using alternative thresholds in the range from $50,000 to
$500,000 does not alter the results.

29Section 179 and bonus rules differ slightly, in that Section 179 also applies to used equipment purchases,
while bonus only applies to new equipment. The form does not require firms to list used purchases separately.

30I.e., we use log( p
1−p ) as our measure of the extensive margin.

18



eligible investment a firm reports in each category.31 We use these shares and the present

value of one dollar of eligible investment for each category to construct a weighted average,

firm-level z. Category z’s come from applying a seven percent discount rate to the pertinent

deduction schedule, while assuming a six-month convention for the purchase year.32,33

We follow compute zN at the four-digit NAICS industry level as the simple average of the

firm-level z’s across non-bonus years prior to 2001.34 In bonus years, we adjust z by the size

of the bonus. If θ is the additional expense allowed per dollar of investment (e.g., θ = .3 for

2001), then zN,t|θt = θt + (1− θt)× zN . The interaction between the time series variation in θ

and the cross sectional variation in zN delivers the identifying variation we use to test our

three hypotheses.

Table 1.1 collects summary statistics for the sample in our bonus depreciation analysis.

The average observation has $6.8 million in eligible investment, $180 million in sales and

$27 million in payroll. The size distribution of corporations is skewed, with median eligible

investment of just $370 thousand and median revenues of $26 million. The average net

present value of depreciation allowances, zN,t, is 0.88 in non-bonus years, implying that

eligible investment deductions for a dollar of investment are worth eighty-eight cents to

the average firm. zN,t increases to an average of 0.94 during bonus years. Cross sectional

differences in zN,t are similar in magnitude to the change induced by bonus, with zN,t

varying from 0.87 at the tenth percentile to 0.94 at the ninetieth. The first year deduction,

θN,t, increases from an average of 0.18 in non-bonus years to 0.58 in bonus years.

31Specifically, 3-, 5-, 7-, 10-, 15-, and 20-year Modified Accelerated Cost Recovery System (MACRS) property
and listed property.

32The category deduction schedules are available in IRS publication 946. We use a seven percent rate as a
frictionless benchmark that is likely larger than the rate firms should be using, which will tend to bias our
results downward. Summers (1987) argues that firms should apply a discount rate close to the risk-free rate
for depreciation deductions. Seven percent is the largest discount rate House and Shapiro (2008) apply when
computing the value of bonus depreciation.

33The six-month convention is applied because on average the property is in place for only half of the first
year.

34Like Cummins, Hassett and Hubbard (1994) and Edgerton (2010), we proxy for the firm-level benefit of
bonus depreciation with an industry measure of policy benefits. Unlike these studies, our measure derives
directly from tax data, reducing measurement error. It is possible to apply the same strategy at the firm level.
This approach does not alter our findings.
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The difference in z’s over time of just six cents per dollar before tax translates into

a benefit of just over two cents after tax, which is why some authors claim the effect of

bonus on investment should be small. However, if the discount rate firms apply to future

deductions includes a large external finance wedge or myopia, then this two cent difference

can increase to as much as the forty cent difference in average θ’s.

Table 1.1: Statistics: Bonus Analyses

Mean P10 Median P90 Count

Investment Variables
Investment (000s) 6,786.87 0.81 367.59 5,900.17 818,576
log(Investment) 6.27 4.10 6.14 8.81 735,341
Investment/Lagged Capital Stock 0.10 0.00 0.05 0.27 637,243
∆ log(Capital Stock) 0.08 -0.05 0.05 0.33 637,278
log(Odds RatioN) 1.28 0.54 1.34 2.05 818,107

Other Outcome Variables
∆ log(Debt) 0.04 -0.37 0.03 0.56 642,546
∆ log(Rent) 0.08 -0.38 0.04 0.66 574,305
∆ log(Wage Compensation) 0.06 -0.21 0.05 0.40 624,918
log(Structures Investment) 5.02 2.13 4.98 8.10 389,232

Policy Variables
zN,t 0.90 0.87 0.89 0.94 818,576

Characteristics
Assets (000s) 403,597.2 3,267.96 24,274.82 327,301.6 818,576
Sales (000s) 180,423.8 834.65 25,920.92 234,076.1 818,576
Capital Stock (000s) 89,977.09 932.00 7,214.53 80,122.69 818,576
Net Income Before

Depreciation (000s) 15,392.59 -2,397.92 1,474.65 17,174.55 818,576
Profit Margin 0.17 -0.07 0.05 0.68 777,968
Wage Compensation (000s) 26,826.36 372.09 4,199.88 38,526.46 818,576
Cash Flow/Lagged Capital Stock 0.05 -0.09 0.03 0.26 647,617

Notes: This table presents summary statistics for analysis of bonus depreciation. To preserve taxpayer anonymity,
“percentiles” are presented as means of all observations in the (P− 1, P + 1)th percentiles. Investment is bonus eligible
equipment investment. zN,t is the weighted present value for a dollar of eligible investment expense at the four-digit
NAICS level, with weights computed using shares of investment in each eligible category. The odds ratio is defined at the
four-digit NAICS level as the fraction of firms with positive investment divided by the fraction with zero investment. Cash
flow is net income before depreciation after taxes paid. Ratios are censored at the one percent level.

It is helpful to give a sense of the groups being compared, because our identification will

be based on assuming that industry-by-year shocks are not confounding the trends between

industry groups. The five most common three-digit industries (NAICS code) in the bottom
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three zN deciles are: motor vehicle and parts dealers (441), food manufacturing (311), real

estate (531), telecommunications (517), and fabricated metal product manufacturing (332). In

the top three deciles are: professional, scientific and technical services (541), specialty trade

contractors (238), computer and electronic product manufacturing (334), durable goods

wholesalers (423), and construction of buildings (236). Neither group of industries appears

to be skewed toward a spurious relative boom in the low z group. The telecommunications

industry suffered unusually during the early bonus period as did real estate in the later

period. Both industries are in the group for which we observe a larger investment response

due to bonus.

1.4 The Effect of Bonus Depreciation on Investment

We begin with a test of Hypothesis 1, which predicts that investment responds more strongly

to bonus depreciation for industries with more investment in longer lived eligible items.

In both bonus periods we study, we estimate large responses to bonus depreciation. The

estimates are similar in both periods. We assess the key risk of this design—that time-

varying industry shocks confound our estimates—using a variety of specifications, a placebo

test and differences in policy salience across space.

Policy Background. House and Shapiro (2008) provide a detailed discussion of the baseline

depreciation schedule35 and legislative history of the first round of bonus depreciation.

Kitchen and Knittel (2011) provide a brief legislative history of the second round.36 Appendix

A.2 summarizes the relevant legislation.

In 2001, firms buying qualified investments37 were allowed to immediately write off

30 percent of the cost of these investments. The bonus increased to 50 percent in 2003

35Known as the Modified Accelerated Cost Recovery System, or MACRS.

36See also the Treasury’s “Report to The Congress on Depreciation Recovery Periods and Methods” (2000).

37Depreciable tangible personal property with class life of twenty years or less, purchased for use in the
active conduct of a trade or business. Used equipment was excluded.
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and expired at the end of 2004. In 2008, 50 percent bonus depreciation was reinstated. It

was later extended to 100 percent bonus for tax years ending between September 2010 and

December 2011.38 The policies applied to equipment and excluded most structures.39

The policies were intended as economic stimulus. In the words of Congress, “increasing

and extending the additional first-year depreciation will accelerate purchases of equipment,

promote capital investment, modernization, and growth, and will help to spur an economic

recovery” (Committee on Ways & Means, 2003, p. 23). To avoid encouraging firms to delay

investment until the policy came online, legislators announced that the policy would apply

retroactively to include the time when the policy was under debate. Although the first

bonus legislation passed in early 2002, firms anticipating policy passage would have begun

responding in the fourth quarter of 2001. We therefore include firm-years with the tax year

ending within the legislated window in our treatment window.

Whether firms perceived the policy as temporary or permanent is a subject of debate.

The initial bill branded the policy as temporary stimulus, slating it to expire at the end of

2004, which it did. For this reason, House and Shapiro (2008) assume firms treat the policy as

temporary. In contrast, Desai and Goolsbee (2004) cite survey evidence indicating that many

firms expected the provisions to continue, and our empirical analysis in Section 1.6 offers

little evidence of intertemporal shifting.40 Expecting the policy to be temporary is critical to

House and Shapiro (2008), because their exercise relies upon how policies approximated as

instantaneous interact with the duration of investment goods approximated as infinitely

lived. Our design relies much less on this assumption. In our model, costly external finance

and myopia amplify the effects of both temporary and permanent policies. And our cross

38In the first bonus period, property had to be put in place after September 10, 2001 and before January 1,
2005. The start date for the second bonus period was December 31, 2007 and the end date was December 31,
2011.

39These provisions coincided with an increase in the Section 179 allowance for small investments from
$24,000 to $100,000 in 2003, from $125,000 to $250,000 in 2008, and from $250,000 to $500,000 in 2010. In our
main sample, we exclude firms with mean eligible investment greater than $100,000. Altering this threshold
does not change our results.

40Note that when production functions exhibit constant returns to scale, the effect of temporary and
permanent policies on investment will be the same (Abel, 1982).
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sectional identification relies much less on the response of the longest lived investment

goods.

Empirical Setup. Bonus depreciation provides a temporary reduction in the price and

a temporary increase in the first year deduction for eligible investment goods. Eligible

items are classified for deduction profiles over time based on their useful life. Identification

builds upon the idea that some industries benefited more from these cuts by virtue of

having longer duration investment patterns, that is, by having more investment in longer

class life categories. This cross-sectional variation permits a within-year comparison of

investment growth for firms in different industries.41 The policy variation is at the industry-

by-year level, so the key identifying assumption is that the policies are independent of other

industry-by-year shocks. Several robustness tests validate this assumption.

The regression framework implements the difference-in-differences (DD) specification,

f (Iit, Ki,t−1) = αi + βg(zN,t) + γXit + δt + ε it, (1.7)

where zN,t is measured at the four-digit NAICS industry level and increases temporarily

during the bonus years. The specific additive form we adopt in (1.7) for the unobserved

firm-level components, αi, can only be valid for a particular class of investment functions.

For example, if valid in levels, the design cannot be valid in logs. The investment data

summarized in Table 1.1 is highly skewed with a mean of $6.8 million and a median of

just $368 thousand. Thus, a multiplicative unobserved effect (that is, Ii = Ai I∗(z)) is the

most likely empirical model for investment levels. This delivers an additive model in

logarithms, which is the approach we pursue below. Because approximately eight percent

of our observations for eligible investment are equal to zero, we supplement the intensive

margin logs approach with a log odds model for the extensive margin. We measure the log

41This methodological approach was first applied in Cummins, Hassett and Hubbard (1994). See also
Cummins, Hassett and Hubbard (1996), Desai and Goolsbee (2004), House and Shapiro (2008) and Edgerton
(2010).
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odds ratio as log(P[I > 0]/(1− P[I > 0])) at the four-digit industry level.42

Studies often use an alternative empirical specification for f (I, K), where investment

is scaled by lagged assets or lagged capital stock. We prefer log investment for four

reasons. First, small firms are not always required to disclose balance sheet information,

so requiring reported assets would reduce our sample frame. Second, and related to the

first reason, requiring two consecutive years of data for a firm-year reduces our sample

by fifteen percent. Third, there is some concern that balance sheet data on tax accounts

are not reported correctly for consolidated companies due to failure to net out subsidiary

elements.43 Measurement error in the scaling variable introduces non-additive measurement

error into the dependent variable. Last, with multiple types of capital, the scaling variable

might not remove the unobserved firm effect from the model. This is especially a concern

because we cannot measure a firm’s stock of eligible capital and because firms vary in the

share of total investments made in eligible categories.44 While we prefer the log investment

model, we also report results using investment scaled by lagged capital stock, which allows

comparison to past studies.

Graphical Evidence. Figure 1.1 presents a visual implementation of this research design.

To allow a comparison that matches a regression analysis with fixed effects and firm-

level covariates, we construct residuals from a two-step regression procedure. First, we

nonparametrically reweight (i.e., Dinardo, Fortin and Lemieux (1996) reweight) the group-

by-year distribution within ten size bins based on assets crossed with ten size bins based on

sales.45 This procedure addresses sampling frame changes over time, which cause instability

42An alternative specification, with the odds ratio replaced by P[I > 0], works as well. However, the logs
odds ratio has better statistical properties (e.g., a more symmetric distribution).

43Mills, Newberry and Trautman (2002) analyze balance sheet accounting in tax data and document
difficulties in reconciling these accounts with book accounts.

44Abel (1990) notes that this issue and other violations of linear homogeneity can lead to spurious conclusions
(e.g., a reversed investment-Q relationship.

45The bins are set based on the size distribution in 2000.

24



in the aggregate distribution.46 In the second step, we run cross sectional regressions each

year of the outcome variable on an indicator for treatment group—either long duration or

short duration—and a rich set of controls, including ten-piece splines in assets, sales, profit

margin and age. We plot the residual group means from these regressions.47

We compare mean investment in calendar time for the top and bottom three deciles of

the investment duration distribution.48 Long duration industries show growth well above

that of the short duration industries, with this difference only appearing in the bonus years.

The difference between the slopes of these two lines in any year gives the difference-in-

differences estimate between these groups in that year. The other years provide placebo

tests of the natural experiment and indicate no false positives.

Statistical Results and Economic Magnitudes. Table 1.2 presents regressions of the form

in (1.7), where f (Iit, Ki,t−1) equals log(Iit) in the intensive margin model, log(PN [Iit >

0]/(1− PN [Iit > 0])) in the extensive margin model, and Iit/Ki,t−1 in the user cost model;

and g(zN,t) equals zN,t in the intensive and extensive margin models and (1− τzN,t)/(1− τ)

in the user cost model.49 The baseline specification includes year and firm fixed effects.

Standard errors are clustered at the firm level in the intensive margin and user cost models.50

Because log odds ratios are computed at the industry level, standard errors in the extensive

margin model are clustered at the industry level.

The first column reports an intensive margin semi-elasticity of investment with respect

46During the period we study, the size of the sample frame changed twice due to budgetary constraints.

47To align the first year of each series and ease comparison of trends, we subtract from each dot the group
mean in the first year and add back the pooled mean from the first year. All means are count weighted.

48Deciles are computed at the industry level.

49τ is set to 35 percent, the top statutory tax rate for all firms.

50This is consistent with recent work (e.g., Desai and Goolsbee (2004), Edgerton (2010), Yagan (2013)) and
enables us to compare our confidence bands to past estimates. The implicit assumption that errors within
industries are independent is strong, for the same reason that Bertrand, Duflo and Mullainathan (2004) criticize
papers that cluster at the individual level when studying state policy changes. Our results in this section are
robust to industry clustering, as are the tax splits in the next section. In the financial constraint splits regressions,
we discuss which inferences are robust to this more conservative structure. We are not aware of other studies
that restrict inference in this way and still show that taxes affect investment.
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Intensive Margin: Bonus I Intensive Margin: Bonus II

Extensive Margin: Bonus I Extensive Margin: Bonus II

Figure 1.1: Calendar Difference-in-Differences

Notes: Panel (a) plots the average logarithm of eligible investment over time for groups sorted according to their industry-
based treatment intensity. Treatment intensity depends on the average duration of investment, with long duration industries
(treatment groups) seeing a larger average price cut due to bonus than short duration industries (control groups). Panel
(b) plots the industry-level log odds ratio for the probability of positive eligible investment, thus offering a measure of the
extensive margin response. The treatment years for Bonus I are 2001 through 2004 and 2008 through 2010 for Bonus II. In
these years, the difference between changes in the red and the blue lines provides a difference-in-differences estimator for
the effect of bonus in that year for those groups. The earlier years provide placebo tests and a demonstration of parallel
trends. The averages plotted here result from a two-step regression procedure. First, we nonparametrically reweight the
group-by-year distribution (i.e., Dinardo, Fortin, and Lemieux (1996) reweight) within ten size bins based on assets crossed
with ten size bins based on sales to address sampling frame changes over time. Second, we run cross sectional regressions
each year of the outcome variable on an indicator for treatment group and a rich set of controls, including ten-piece splines
in assets, sales, profit margin and age. We plot the residual group means from these regressions. To align the first year of
each series and ease comparison of trends, we subtract from each dot the group mean in the first year and add back the
pooled mean from the first year. All means are count weighted.

to z of 3.7, an extensive margin semi-elasticity of 3.8 and a user cost elasticity of −1.6. The

average change in zN,t was 4.7 cents during the early bonus period and 8 cents during

the later period, implying average investment increases of 17.3(= 3.69× 4.7) and 29.5(=
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3.69 × 8) log points, respectively. These predictions should not be confused with the

aggregate effect of the policy, because they are based on equal-weighted regressions which

include many small firms. They only provide an informative aggregate prediction under

the strong assumption that the semi-elasticity is independent of firm size.

In the second column, including a control for contemporaneous cash flow scaled by

lagged capital does not alter the estimates. Columns three and four show a similar semi-

elasticity for both the early and late episodes. Column five controls for fourth order

polynomials in each of assets, sales, profit margin and firm age, as well as industry average

Q measured from Compustat at the four-digit level. Column six adds quadratic time

trends interacted with two-digit NAICS industry dummies, which causes the estimated

semi-elasticity to increase.51 These alternative control sets do not challenge our main finding:

the investment response to bonus depreciation is robust across many specifications.

Appendix Table A.1.2 collects from other studies estimates that we can compare to

our user cost model. Like our study, each one uses tax reforms crossed with industry

characteristics to estimate the effect of taxes on investment. Panel (a) of Table 1.3 plots the

estimates from these studies with confidence bands, highlights the consensus range, and

compares them to our estimate. The average user cost elasticity across these studies is 0.69,

which falls within Hassett and Hubbard (2002)’s consensus range of 0.5 to 1, but is less than

half our estimate of 1.60.52

Additional Robustness and Policy Salience. The calendar time plot in Figure 1.1 provides

several visual placebo tests through inspection of the parallel trends assumption in non-

bonus years. Because bonus depreciation excludes very long lived items (i.e., structures),

51We can replace the quadratic time trends with increasingly nonlinear trends or two digit industry-by-time
fixed effects. We can also replace the time trends with two-digit industry interacted with log GDP or GDP
growth. In each case, the estimates increase. This suggests that omitted industry-level factors bias our estimates
downward. Consistent with this story, Dew-Becker (2012) shows that long duration investment falls more
during recessions than short duration investment.

52In an investment model, the elasticity of investment with respect to the net of tax rate, 1− τz, equals the
price elasticity and interest rate elasticity, derived in Appendix A.1. Our empirical model delivers an elasticity
of 7.2. We are not aware of easily comparable estimates for prices or interest rates.
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Table 1.2: Investment Response to Bonus Depreciation

Intensive Margin: LHS Variable is log(Investment)

(1) (2) (3) (4) (5) (6)

zN,t 3.69∗∗∗ 3.78∗∗∗ 3.07∗∗∗ 3.02∗∗∗ 3.73∗∗∗ 4.69∗∗∗

(0.53) (0.57) (0.69) (0.81) (0.70) (0.62)

CFit/Ki,t−1 0.44∗∗∗

(0.016)

Observations 735341 580422 514035 221306 585914 722262
Clusters (Firms) 128001 100883 109678 63699 107985 124962
R2 0.71 0.74 0.73 0.80 0.72 0.71

Extensive Margin: LHS Variable is log(P(Investment > 0))

(1) (2) (3) (4) (5) (6)

zN,t 3.79∗∗ 3.87∗∗ 3.12 3.59∗∗ 3.99∗ 4.00∗∗∗

(1.24) (1.21) (2.00) (1.14) (1.69) (1.13)

CFit/Ki,t−1 0.029∗∗

(0.0100)

Observations 803659 641173 556011 247648 643913 803659
Clusters (Industries) 314 314 314 274 277 314
R2 0.87 0.88 0.88 0.93 0.90 0.90

User Cost: LHS Variable is Investment/Lagged Capital

(1) (2) (3) (4) (5) (6)
1−tcz
1−tc

-1.60∗∗∗ -1.53∗∗∗ -2.00∗∗∗ -1.42∗∗∗ -2.27∗∗∗ -1.50∗∗∗

(0.096) (0.095) (0.16) (0.13) (0.14) (0.10)

CFit/Ki,t−1 0.043∗∗∗

(0.0023)

Observations 637243 633598 426214 211029 510653 631295
Clusters (Firms) 103890 103220 87939 57343 90145 103565
R2 0.43 0.43 0.48 0.54 0.45 0.44

Year Effects Yes Yes Yes Yes Yes Yes
Firm Effects Yes Yes Yes Yes Yes Yes
Controls No No No No Yes No
Industry Trends No No No No No Yes

Notes: This table estimates regressions of the form

f (Iit, Ki,t−1) = αi + βg(zN,t) + γXit + δt + εit

where Iit is eligible investment expense and zN,t is the present value of a dollar of eligible investment computed at the
four-digit NAICS industry level, taking into account periods of bonus depreciation. Regression (2) augments the baseline
specification with current period cash flow scaled by lagged capital. Column (3) focuses on the early bonus period and
column (4) focuses on the later period. Column (5) controls for four-digit industry average Q for public companies and
quartics in assets, revenues, profit margin and firm age. Column (6) includes quadratic time trends interacted with
two-digit NAICS industry dummies. Ratios are censored at the one percent level. Standard errors clustered at the firm
level are in parentheses.
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Table 1.3: Investment Response to Bonus Depreciation: Robustness

Structures Net Investment Has Bonus Salience Split

Basic Trends Basic Trends Basic Trends High Low

(1) (2) (3) (4) (5) (6) (7) (8)

zN,t 0.52 1.10 1.07∗∗∗ 0.78∗∗∗ 0.95∗∗∗ 1.15∗∗∗ 5.09∗∗∗ 1.56
(0.78) (0.98) (0.23) (0.22) (0.13) (0.16) (0.87) (0.94)

Observations 389232 381921 637278 631680 818576 804128 211390 215205
Clusters (Firms) 92351 90166 103447 103147 128150 125534 29627 30836
R2 0.59 0.60 0.27 0.27 0.61 0.61 0.70 0.70
Year Effects Yes Yes Yes Yes Yes Yes Yes Yes
Firm Effects Yes Yes Yes Yes Yes Yes Yes Yes
Industry Trends No Yes No Yes No Yes No No

Notes: This table estimates regressions of the form

Yit = αi + βzN,t + δt + εit

where Yit is either the logarithm of structures investment (columns (1) and (2)), log growth in capital stock (columns (3)
and (4)), an indicator for take-up of bonus depreciation ((5) and (6)), or the logarithm of eligible investment ((7) and (8)).
zN,t is the present value of a dollar of eligible investment computed at the four-digit NAICS industry level, taking into
account periods of bonus depreciation. Columns (1), (3), (5), (7) and (8) implement the baseline specification in table 1.2.
Columns (2), (4) and (6) include quadratic time trends interacted with two-digit NAICS industry dummies. Columns (7)
and (8) split the sample into the top and bottom three deciles according to local geographic salience of the depreciation
schedule. We proxy for local salience using frequency of bunching by small firms at the Section 179 kink point in the
depreciation schedule. Standard errors clustered at the firm level are in parentheses.

we can use ineligible investment as an alternative intratemporal placebo test. The first two

columns of Table 1.3 present two specifications of the intensive margin model, which replace

eligible investment with structures investment. The first specification is the baseline model,

and the second includes two-digit industry dummies interacted with quadratic time trends.

We cannot distinguish the structures investment response from zero. Thus, the results pass

this placebo test.

Another concern with our results is that they may merely reflect a reporting response,

with much less actual investment taking place. The third and fourth columns of Table 1.3

provide a reality check. We replace our measure of investment derived from Form 4562 with

net investment, which is the difference in logarithms of the capital stock between year t and

year t− 1. Both the baseline and industry trend regressions confirm our gross investment

results with net investment responding strongly as well.
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Columns five and six of Table 1.3 offer a sanity check of our findings. Here, the

dependent variable is an indicator for whether the firm reports depreciation expense in

the specific form item applicable to bonus. Effectively, this is a test for bonus depreciation

take-up. The table indicates that the probability of taking up bonus is strongly increasing in

the strength of the incentive.

We present direct evidence that firms take the tax code into account when making

investment decisions. With respect to equipment investment, they pay special attention to

the depreciation schedule and the nonlinear incentives it creates. These nonlinear budget

sets should induce bunching of firms at rate kinks. Consistent with this logic, we find sharp

bunching at depreciation kink points. This evidence supports our claim that temporary

bonus depreciation incentives were also salient.

To show policy salience, we study a component of the depreciation schedule, Section 179,

which applies mainly to smaller firms. Under Section 179, taxpayers may elect to expense

qualifying investment up to a specified limit. With the exception of used equipment,53 all

investment eligible for Section 179 expensing is eligible for bonus depreciation. Focusing

on Section 179 thus serves as an out of sample test of policy salience that remains closely

linked to the bonus incentives at the core of the paper.

Each tax year, there is a maximum deduction and a threshold over which Section 179

expensing is phased out dollar for dollar. The kink and phase-out regions have increased

incrementally since 1993.54 When the tax schedule contains kinks and the underlying

distribution of types is relatively smooth, the empirical distribution should display excess

mass at these kinks (Hausman, 1981; Saez, 2010). Figure 1.2 shows how dramatic the

bunching behavior of eligible investment is in our setting. These figures plot frequencies

of observations in our dataset for eligible investment grouped in $250 bins. Each plot

represents a year or group of years with the same maximum deduction, demarcated here by

53Used equipment accounts for approximately six percent of equipment investment (Kitchen and Knittel,
2011).

54Appendix Table A.1.1 summarizes the changes in Section 179 depreciation rules over the past twenty years.
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a vertical line. The bunching within $250 of the kink tracks the policy shifts in the schedule

exactly and reflects a density five to fifteen times larger than the counterfactual distribution

nearby.55

In general, evidence of bunching at kink points reflects a mix of reporting and real

responses.56 The bunching evidence is informative in either case because these are both

behavioral responses, which show whether firms understand and respond to the schedule.

In the next section, we study managerial myopia by comparing bunching activity across

different groups of firms. This test does not depend on whether the response is real or

reported.

We can interact the bunching evidence with the basic regression model identifying the

response to bonus. The design of the test generates control and treatment groups from the

notion that firms differ in their tax code knowhow.57 We compute geographic proxies of

investment schedule sophistication through measuring the local propensity to bunch at the

Section 179 kink point. We use the low information areas as cross-sectional counterfactuals

for the high information areas. We then separately estimate the baseline model for each

group, effectively providing a difference-in-difference-in-differences estimate of the bonus

response.

55Excess mass ratios are computed using the algorithm and code in Chetty et al. (2011).

56See Saez (2010) for a discussion of this point. The bonus difference-in-differences (DD) design is less
vulnerable to misreporting. In that design, we can confirm the response by looking at other outcomes. In
addition, the DD estimator is much less sensitive to misreporting by a small fraction of total investment.
Moreover, the sample contains many firms who use external auditors, for whom misreporting investment
entails substantial risk and little benefit. Last, our conversations with tax preparers and corporate tax officers
suggest that misreporting investment is an inferior way to avoid taxes. This is because investment purchases are
typically easily verifiable, require receipts when audited, and usually reduce current taxable income by just a
fraction of each dollar claimed as spent. In the case of investment expenses depreciated over multiple years, the
audit risk of misreporting is also extended over the entire depreciation schedule.

57This test follows the design of Chetty, Friedman and Saez (2013), who use geographic differences in
individual bunching at a kink in the Earned Income Tax Credit schedule to study the labor supply response to
taxes.

31



19
93

-1
99

6
19

97
19

98
19

99

20
00

20
01

-2
00

2
20

03
20

04

20
05

20
06

20
07

20
08

-2
00

9

Fi
gu

re
1.

2:
D

ep
re

ci
at

io
n

Sc
he

du
le

Sa
lie

nc
e

N
ot

es
:T

he
se

fig
ur

es
ill

us
tr

at
e

th
e

sa
lie

nc
e

of
co

m
pl

ex
no

nl
in

ea
ri

tie
s

in
th

e
de

pr
ec

ia
tio

n
sc

he
du

le
.T

he
y

sh
ow

sh
ar

p
bu

nc
hi

ng
of

Se
ct

io
n

17
9

el
ig

ib
le

in
ve

st
m

en
ta

ro
un

d
th

e
de

pr
ec

ia
ti

on
sc

he
du

le
ki

nk
fr

om
19

93
th

ro
ug

h
20

09
.E

ac
h

pl
ot

is
a

hi
st

og
ra

m
of

el
ig

ib
le

in
ve

st
m

en
t

in
ou

r
sa

m
pl

e
in

th
e

re
gi

on
of

th
e

m
ax

im
um

de
du

ct
io

n
fo

r
a

ye
ar

or
gr

ou
p

of
ye

ar
s.

Ea
ch

do
tr

ep
re

se
nt

s
th

e
nu

m
be

r
of

fir
m

s
in

a
$2

50
-b

in
.T

he
ve

rt
ic

al
lin

es
co

rr
es

po
nd

to
th

e
ki

nk
po

in
tf

or
th

at
ye

ar
or

gr
ou

p
of

ye
ar

s.
Bu

nc
hi

ng
be

ha
vi

or
by

ge
og

ra
ph

y
se

rv
es

as
a

pr
ox

y
fo

r
ta

x
co

de
so

ph
is

tic
at

io
n.

32



We group firms by two-digit ZIP code, which is the lowest level of aggregation that

permits a reliable measure of bunching. For each ZIP-2, we pool all years and compute the

fraction of firms within $10,000 of the kink who bunch within $250 of it. This provides the

sorting variable. In this design, more bunching in a region indicates more awareness of

the tax code for that region. So, we should expect the growth in investment during bonus

periods to be increasing in the level of bunching. Columns seven and eight of Table 1.3

show that indeed the high bunching areas display a stronger response to bonus than do the

low bunching areas.58

To recapitulate, bonus depreciation has a large effect on investment, and spurious time-

varying industry factors cannot explain this fact. Such factors would cause parallel trends

to fail in the years prior to bonus. They would lead to different estimates in recessions

marked by weakness in different industries. They would lead ineligible investment to

expand. They would attenuate the estimated effect when regressions include flexible

industry-by-time controls. And they would lead to a similar response across geographies

where firms pay more and less attention to the depreciation schedule. The facts do not

match these predictions. Section 1.5, which presents heterogeneous effects by firm size,

further contradicts the omitted industry factor story.

These investment responses directly correspond to take-up of depreciation incentives—

bonus take-up rates rise with the policy’s generosity and many firms sharply bunch around

the Section 179 kink point—in contrast to recent work on partial salience of sales taxes

(Chetty, Looney and Kroft, 2009) and the nonresponse of investment to dividend tax changes

(Yagan, 2013). Net investment responds to bonus depreciation as well, even though the

reported balance sheet items do not affect taxable income. Section 1.6 shows that debt

issuance increases because of bonus depreciation and that payroll and dividend payments—

which are double reported—respond as well. Thus the observed response is a policy

response that does not reflect a mere reporting response, but rather reflects real economic

actions.

58Specifically, we compare the top and bottom three deciles of local bunching.
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1.5 Explaining the Large Response with Financial Frictions

The large response of investment to bonus depreciation is not consistent with a frictionless

model of firm behavior: the magnitudes imply implausibly high discount rates. In this

section, we explore alternative models that generate high effective discount rates.

One alternative is costly external finance, which raises the total discount rate firms apply

to evaluate projects. Our rich data environment enables us to study how the investment

response to tax incentives interacts with costly external finance. We perform a series of split

sample tests, using several common markers of ex ante financial constraints.59 Consistent

with this story, firms more likely to depend on costly external finance—small firms, non-

dividend payers and firms with low levels of cash—respond more strongly to bonus. Split

sample analysis by size also leads to a more accurate prediction for the aggregate policy

response.

Another alternative model is managerial myopia, which raises effective discount rates

by sharply discounting the future relative to the present. Consistent with this story, firms

only respond to investment incentives when the policy immediately generates after-tax cash

flows. For firms with positive taxable income before depreciation, expanding investment

reduces this year’s tax bill and brings extra cash into firm coffers today. Firms without this

immediate incentive can still carry forward the deductions incurred but must wait to receive

the tax benefits.60 We present evidence that, for both Section 179 and bonus depreciation,

this latter incentive is weak, and differences in growth opportunities cannot explain this

fact.

59See Fazzari, Hubbard and Petersen (1988a) for an early application of this methodology and Almeida,
Campello and Weisbach (2004) and Chaney, Sraer and Thesmar (2012) for recent examples.

60In the code, current loss firms have the option to “carry back” losses against past taxable income. The IRS
then credits the firm with a tax refund. Our logic assumes that firms have limited loss carryback opportunities
because, in the data, we find low take-up rates of carrybacks. Furthermore, carrybacks create a bias against our
finding a difference between taxable and nontaxable firms, because carrybacks create immediate incentives for
the nontaxable group.
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1.5.1 Heterogeneous Responses by Ex Ante Financial Constraints

We divide the sample along several markers of ex ante financial constraints used elsewhere

in the literature. Even for private unlisted firms, we can still measure size, payout frequency

and proxies for balance sheet strength. Figure 1.3 plots elasticities and confidence bands

from regressions run for each of ten deciles based on average sales.61 We plot both the

intensive margin elasticities and the user cost elasticities. The smallest firms in the sample

show the largest response to bonus, regardless of the specification. The user cost estimates

help us reconcile our findings with those in past studies. Larger firms show user cost

elasticities in line with the findings surveyed in Hassett and Hubbard (2002). It is only the

smaller firms, for whom data were previously unavailable, that yield estimates outside the

consensus range.

Table 1.4 presents a statistical test of the difference in elasticities across three markers

of ex ante constraints. For the sales regressions, we split the sample into deciles based

on average sales and compare the bottom three to the top three deciles.62 The average

semi-elasticity for small firms is twice that for large firms and statistically significantly

different with a p-value of 0.03.63 The second two columns present separate estimates

for firms who paid a dividend in any of the three years prior to the first round of bonus

depreciation.64 Here, the non-paying firms are significantly more responsive.

Our third sample split is based on whether firms enter the bonus period with relatively

low levels of liquid assets. We run a regression of liquid assets on a ten-piece linear spline

in total assets plus fixed effects for four-digit industry, time, and corporate form. We sort

firm-year observations based on the residuals from this regression lagged by one year, and

61Specifically, we use average sales from the three years before each bonus period. We use as many of these
six years as are available for each firm.

62When we measure size with total assets or payroll, the size results are unchanged.

63Cross equation tests are based on seemingly unrelated regressions with a variance-covariance matrix
clustered at the firm level.

64We only use the first round of bonus for the dividend split. The dividend tax cut of 2003, which had a
strong effect on corporate payouts (Yagan, 2013), may have influenced the stability of this marker for the later
period.
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(a) Past Estimates

−β

Time

1.0

0.5

0

CHH (1994)

CHH (1996)

DG (2004)

Edge (2010)

Hassett and Hubbard (2002) range

Us

(b) Estimates by Firm Size, Bonus Sample

Hassett and Hubbard (2002) range

Compustat

Figure 1.3: Heterogeneous Effects by Firm Size

Notes: These figures plot coefficients and confidence bands from user cost specifications (see the third row of Table 1.2) for
past studies of tax reforms and our sample. The sources for the coefficients in Panel (a) are in Appendix Table A.1.2. Panel
(b) splits the sample into deciles based on mean pre-policy sales. The average firm in Compustat during this time period
falls in the tenth size bin (with sales equal to $1.8B), which coincides with the Hassett and Hubbard (2002) survey range of
user cost elasticity estimates (-0.5 to -1).
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then report in the last two columns of Table 1.4 separate estimates for the top and bottom

three deciles. These are reported in the last two columns of Table 1.4. The results using this

marker of liquidity parallel those in the size and dividend tests, with the low liquidity firms

yielding an estimate of 7.2 as compared to 2.8 for the high liquidity firms.

Table 1.4: Heterogeneity by Ex Ante Constraints

Sales Div Payer? Lagged Cash

Small Big No Yes Low High

zN,t 6.29∗∗∗ 3.22∗∗∗ 5.98∗∗∗ 3.67∗∗∗ 7.21∗∗∗ 2.76∗∗

(1.21) (0.76) (0.88) (0.97) (1.38) (0.88)

Equality Test P = .030 P = .079 P = .000

Observations 177620 255266 274809 127523 176893 180933
Clusters (Firms) 29618 29637 39195 12543 45824 48936
R2 0.44 0.76 0.69 0.80 0.81 0.76

Year Effects Yes Yes Yes Yes Yes Yes
Firm Effects Yes Yes Yes Yes Yes Yes

Notes: This table estimates regressions from the baseline intensive margin specification presented in Table 1.2. Here, we
split the sample based on pre-policy markers of financial constraints. For the size splits, we divide the sample into deciles
based on the mean value of revenues, with the mean taken over years 1998 through 2000.Small firms fall into the bottom
three deciles and big firms fall into the top three deciles. For the dividend payer split, we divide the sample based on whether
the firm paid a dividend in any of the three years from 1998 through 2000. The dividend split only includes C corporations.
The lagged cash split is based on lagged residuals from a regression of liquid assets on a ten piece spline in total assets and
fixed effects for four-digit industry, year and corporate form. The comparison is between the top three and bottom three
deciles of these lagged residuals. Standard errors clustered at the firm level are in parentheses.

These constraint markers are imperfect.65 First, they do not directly measure the external

finance cost faced by new firms. This concern would tend to bias any differences existing

between groups toward zero, and thus against the results we present. A second concern

with sample splitting is that the splitting criteria are correlated with the investment error

term and so may bias the estimated coefficient of interest (Bond and Van Reenen, 2007).

This issue is important for investment-cash flow sensitivity tests because cash flow is likely

correlated with other components of the investment error term. Because our setting features

plausibly exogenous policy variation at the industry level, this concern is less important

65Criticism of split sample markers dates back to Poterba’s comments in Fazzari, Hubbard and Petersen
(1988a). See Farre-Mensa and Ljungqvist (2013) for a more recent assessment of their value in samples of public
and private companies.
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here. The key assumption we make is that interacting our splitting criterion, measured

prior to the policy change, with the policy variable and the year effects enables a valid

difference-in-differences design for each group.

1.5.2 Heterogeneous Responses by Tax Position

The Section 179 bunching environment presents an elegant setting to document the im-

mediacy of investment responses to tax policy. The simple idea is to separate firms based

on whether their investment decisions will fully offset current year taxable income, or

whether deductions will have to be carried forward to future years. We choose net income

before depreciation expense as our sorting variable. Firms for which this variable is positive

have an immediate incentive to invest and reduce their current tax bill. If firms for which

this variable is negative show an attenuated investment response and these groups are

sufficiently similar, we can infer that the immediate benefit accounts for this difference.

The panels of Figure 1.4 starkly confirm our intuition. In panel (a), we pool all years

in the sample, recenter eligible investment around the year’s respective kink, and split

the sample according to a firm’s taxable status. Firms in the left graph have positive net

income before depreciation and firms in the right graph have negative net income before

depreciation. For firms below the kink on the left, a dollar of Section 179 spending reduces

taxable income by a dollar in the current year. Retiming investment from the beginning of

next fiscal year to the end of the current fiscal year can have a large and immediate effect on

the firm’s tax liability. For firms below the kink on the right, the incentive is weaker because

the deduction only adds to current year losses, deferring recognition of this deduction until

future profitable years. As the figure demonstrates, firms with the immediate incentive to

bunch do so dramatically, while firms with the weaker, forward-looking incentive do not

bunch at all.

One objection to the taxable versus nontaxable split is that nontaxable firms have poor

growth opportunities and so are not comparable to taxable firms. We address this objection

in two ways. First, we restrict the sample to firms very near the zero net income before
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depreciation threshold to see whether the difference persists when we exclude firms with

large losses. Panel (a) of Figure A.1.1 plots bunch ratios for taxable and nontaxable firms,

estimated within a narrow bandwidth of the tax status threshold. The difference in bunching

appears almost immediately away from zero, with the confidence bands separating after

we include firms within $50 thousand dollars of the threshold. For loss firms, the observed

pattern cannot be distinguished from a smooth distribution, even for firms very close to

positive tax position. The bunching difference for nontaxable firms is not driven by firms

making very large losses.

(a) By Current Year Tax Status (b) By Lagged Loss Carryforward Stock

Figure 1.4: Bunching Behavior and Tax Incentives

Notes: These figures illustrate how bunching behavior responds to tax incentives. Firms bunch less when eligible investment
provides less cash back now. Panel (a) splits the sample based on whether firm net income before depreciation is greater
than or less than zero. Firms with net income before depreciation less than zero can carry back or forward deductions from
eligible investment but have no more current taxable income to shield. Panel (b) groups firms with current year taxable
income based on the size of their prior loss carryforward stocks. The x-axis measures increasing loss carryforward stocks
relative to current year income. The y-axis measures the excess mass at the kink point for that group. Firms with more
alternative tax shields find investment a less useful tax shield and therefore bunch less.

Table 1.5 replicates the tax status split idea in the context of bonus depreciation. We

modify the intensive margin model from Table 1.2 by interacting all variables with a

taxable indicator based on whether net income before depreciation is positive or negative.66

According to these regressions and consistent with bunching results, the positive effect of

66That is, we interact z, any controls, and the time fixed effects with the taxable indicator. We do not interact
the firm effects with the taxable indicator.
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bonus depreciation on investment is concentrated exclusively among taxable firms. The

semi-elasticity is statistically indistinguishable from zero for nontaxable firms, while it is 3.8

for taxable firms. In panel (b) of Figure A.1.1, we repeat the narrow bandwidth test for bonus

depreciation. The figure plots the coefficients on the interaction of taxable and nontaxable

status with the policy variable. The difference in coefficients in Table 1.5 emerges within $50

thousand of the tax status threshold, and these coefficients are statistically distinguishable

within $100 thousand of the threshold. Here as well, the results are not driven by differences

for firms far from positive tax positions.

Table 1.5: Heterogeneity by Tax Position

LHS Variable is Log(Investment)

(1) (2) (3) (4) (5) (6) (7)

Taxable 3.83∗∗∗ 3.08∗∗∗ 1.95∗ 6.43∗∗∗ 4.32∗∗∗ 4.15∗∗∗

× zN,t (0.79) (0.93) (0.92) (1.46) (0.96) (0.82)

zN,t -0.15 0.60 0.38 -3.03∗ -0.69 0.88 5.68∗∗∗

(0.90) (1.05) (1.06) (1.55) (1.15) (0.94) (1.70)

Medium LCF -2.56
× zN,t (1.46)

High LCF -3.70∗

× zN,t (1.55)

CFit/Ki,t−1 0.14∗∗∗

(0.028)

Taxable 0.27∗∗∗

× CFit/Ki,t−1 (0.035)

Observations 735341 580422 514035 221306 585914 722262 119628
Clusters (Firms) 128001 100883 109678 63699 107985 124962 40282
R2 0.71 0.74 0.74 0.80 0.73 0.72 0.84

Year Effects Yes Yes Yes Yes Yes Yes Yes
Firm Effects Yes Yes Yes Yes Yes Yes Yes
Controls No No No No Yes No No
Industry Trends No No No No No Yes No

Notes: This table estimates regressions from each intensive margin in columns (1) through (6) specification presented in
Table 1.2. For each firm year, we generate an indicator based on whether a firm is in taxable position prior to depreciation
expense. We fully interact this indicator with all controls and the time effects. Column (7) splits taxable firms into three
groups based on the size of their lagged loss carryforward stocks relative to net income before depreciation. We interact
these group indicators with zN,t and the time effects. Only firms with nonzero stocks of lagged loss carryforwards are
included. Standard errors clustered at the firm level are in parentheses.

To address the concern about nontaxable firms, Panel (b) of Figure 1.4 uses differences
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within the group of taxable firms. This plot shows again that bunching is due to tax

planning with regard to the immediate potential benefit. Here, we divide profitable firms

by their stock of loss carryforwards in the previous year. Each dot in this plot represents a

bunching histogram where the y-axis measures the degree of bunching using the excess

mass estimator in Chetty et al. (2011). The groups are sorted according to the ratio of lagged

loss carryforward stock to current year net income before depreciation, which proxies for

the availability of alternative tax shields. The scatter clearly indicates a negative relationship

between the presence of this alternative tax shield and the extent of eligible investment

manipulation.

We confirm this pattern in the bonus setting. Column (7) of Table 1.5 focuses on the

group of taxable firms with non-zero stocks of lagged loss carryforwards. We split this

group into three subgroups based on the size of their carryforward stock. Firms with large

stocks of loss carryforwards display a semi-elasticity with respect to z of 2 compared to a

semi-elasticity of 5.7 for firms with low loss carryforward stocks.

The finding for nontaxable firms contradicts a simple model of costly external finance,

because firms neglect how the policy affects borrowing in the future. On the other hand,

firms cannot be too myopic because the investment decision itself only pays off in the future.

Thus for myopia to be the explanation, firms must use different accounts to think about

investment decisions and the tax implications. Moreover, the myopia story needs complexity

to explain the finding for financially constrained firms—are small firms, non-dividend

payers and firms with low levels of cash more myopic? While plausible, there is no evidence

of this.

The facts presented in this section—the stronger response for financially constrained

firms and the nonresponse for nontaxable firms—do not match the predictions of a friction-

less model. The facts point instead toward models in which costly external finance matters

and current benefits outweigh future benefits, with neither alternative being obviously

redundant.

In the next section, we use an investment model and the estimates to calibrate a parameter
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for each alternative model.

1.5.3 Discount Rates and the Shadow Cost of Funds

Taken together, our empirical findings emphasize a financial frictions channel for how

investment incentives work. We use a standard investment model to quantify the importance

of this channel. Specifically, we ask what is the marginal value of cash, λ, implied by our

financial constraint split sample analysis, and what is the discount term, β, implied by our

tax status split sample analysis. The answers combine to tell us what discount rates firms

apply when making investment decisions.

In Appendix A.1, we derive the comparative static for investment with respect to the

bonus depreciation term θ:

I · ε I,θ ≡
∂I
∂θ

=
(1 + λ)pI

ψI I

∂z
∂θ

> 0, (1.8)

where ε I,θ is the semi-elasticity of investment with respect to θ, pI is the price of investment,

ψI I is the second derivative of the adjustment cost function, and z is defined as in (1.3).

In the Appendix, we state assumptions under which I · ψI I will be equal across groups.67

Under these assumptions, we can derive two empirical moments that combine our estimates

for constrained and unconstrained firms and for taxable and nontaxable firms and yield

simple formulas for λ and β.

The first empirical moment we use compares the estimated response with respect to

bonus for constrained and unconstrained firms. Assuming constrained firms face shadow

price λC and unconstrained firms face shadow price λU , we take the ratio of comparative

statics:
εC

I,z

εU
I,z
≡ m1 =

∂I/∂θ|λC

∂I/∂θ|λU

=
1 + λC

1 + λU
= 1 +

∆λ

1 + λU
, (1.9)

which reveals an implied credit spread between constrained and unconstrained firms. Table

1.6 presents m1 for each pair of estimates in Table 1.4. λ is the shadow price of relaxing the

67That is, we assume linear homogeneity of the marginal adjustment cost function. Nearly all studies in the
literature make this assumption, which is necessary for example for marginal q to equal average Q.
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Table 1.6: Calibrated Moments

Shadow Cost of Funds Calibration

Mean Sales Dividend Payers Lagged Cash Average

m1 1.95 1.63 2.61 2.06
λC|λU=0 0.95 0.63 1.61 1.06

Discount Factor Calibration

p φ r β

High φ .5 .88 .07 0.84
Low φ .1 .59 .07 0.92

Notes: This table computes empirical estimates for m1 and m2, as defined in the text. m1 reveals an implied credit spread
between constrained and unconstrained firms. m2 reveals the discount factor firms apply to all future cash flows relative to
current flows.

firm’s borrowing constraint. An alternative interpretation is that every after-tax dollar inside

the firm is worth 1 + λ dollars outside the firm. Our estimates reveal that, for financially

constrained firms, a dollar inside the firm is worth $2.06 on average outside the firm.

Is this estimate reasonable? There are not many existing benchmarks. Faulkender and

Wang (2006) attempt a calculation with a very different methodology, but that ultimately

arrives at a similar conclusion. They estimate the value of changes in cash in excess return

regressions, while attempting to control for a host of omitted factors. They find that for low

payout firms and for small firms the value of a dollar of after-tax cash is worth $1.67 and

$1.62, respectively. For these firms’ unconstrained counterparts, a dollar is only worth $1.07

and $1.12. The spreads in their study are comparable to ours, especially considering their

exercise operates within a group of firms we consider to be relatively unconstrained.68

We define a second empirical moment that compares taxable and nontaxable firms:

ε
γ=0
I,z

ε
γ=1
I,z

≡ m2 =
∂I/∂θ|γ=0

∂I/∂θ|γ=1
= βφ

1− z0
t (1)

1− z0
t (β)

, (1.10)

where φ is a discounter that reflects the average arrival of the taxable status event for

68Similarly, Koijen and Yogo (2012) find that a relaxed borrowing constraint for life insurers is worth $2.32
per dollar of inside capital.
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nontaxable firms. We proxy for φ by assuming a fixed transition probability p for nontaxable

firms and an infinite horizon for carryforward realization.69 This implies φ = p/(p + r).70

We calibrate the transition probability using the probability that an actually nontaxable firm

transitions into tax status in the next period. In our data, this probability is approximately

0.5.71 The sample we compare restricts the nontaxable group to include only firms that are

nearly taxable, so this p offers a conservative estimate of φ. We compute the implied β for

this p and for an extreme p equal to 0.1.

Note the external finance wedge falls out of this expression. This is true as long as

average shadow costs are the same across taxable and nontaxable groups. To maintain this

assumption, we use our loss carryforward group estimates to calibrate m2. That is, we

estimate semi-elasticities within the group of taxable firms sorted according to their past

stocks of alternative tax shields. For firms with large loss carryforward stocks relative to

current income, the marginal dollar of investment is unlikely to affect this year’s tax bill. At

the same time, we have less reason to believe these firms face substantially worse growth

opportunities or tighter financial constraints. This biases our estimates of β toward the

neoclassical benchmark of β equal to one.

Applying the estimates from the last column of Table 1.5 yields a value for m2 of

0.35(= (5.68− 3.7)/5.68). For p = 0.5, this maps to an implied discount factor (β) of 0.84.

Ignoring for the moment the other discount terms, β equal to 0.84 implies a discount rate of

approximately 17 percent. We are not aware of studies that attempt to measure discount

factors such as this for firms. Prior studies on individual decision making have found

similar magnitudes for short term discount rates in both lab and field experiments.72

69The actual expiration period for carryforwards is twenty years.

70That is, the expected arrival is p/(1 + r) + (1− p)p(1 + r)−2 + (1− p)2 p(1 + r)−3 + · · · = p/(1 + r) ·
[1/(1− (1− p)/(1 + r))] = p/(p + r).

71Auerbach and Poterba (1987) note more persistence of nontaxable positions than we do. Our measure is
based on net income before depreciation, in order to capture the state of having the next dollar of investment
affect this year’s tax bill. Their measure is based on whether firms exhaust their carryforward stocks. Below, we
assess the robustness of our results to varying φ.

72Laibson D. Repetto and Tobacman (2007) estimate short term discount rates of 40 percent in the context of
individual saving decisions. In a more general model, they estimate a short run discount rate of 15 percent and
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The discounting implied by β says that one dollar next year is worth 84 cents, before

taking into account risk or the shadow cost of funds. If we then apply the assumed risk

adjusted rate of 7 percent and the estimated shadow cost of funds of 1.06, we find that a

dollar next year is worth approximately 38 cents today for the credit constrained firms in our

sample. This substantial discount is not surprising, given the starkness of the reduced form

empirical results: nontaxable firms seem to ignore the future benefits and small, financially

constrained firms seem to value highly the immediate cash back due to bonus depreciation.

In the model, we use costly external finance and myopia to describe the deviations from a

rational benchmark we observe, but the exercise performed here provides just one of several

plausible calibrations of this basic fact. In general, models of firm behavior that do not

generate high discount rates are unlikely to fit the data for most firms.

1.6 Substitution Margins and External Finance

We ask whether increased investment involves substitution away from payroll or equipment

rentals, how firms finance their additional investment, and whether the increased investment

reflects intertemporal substitution or new investment. Studying external finance responses

helps us understand how firms paid for new investments. Understanding substitution

margins is critical for assessing the macroeconomic impact of these policies.

Table 1.7 presents estimates of the intratemporal and intertemporal substitution margins.

These regressions follow the baseline specification in equation 1.7, with a different left hand

side variable. For rents, payroll and debt, we focus on flows73 as outcomes that match

investment (i.e., capital stock flows) most closely. For payouts, we study the logarithm of

dividend payments and an indicator for whether dividends are non-zero, which separates

the intensive and extensive margins.

How flexible is the rent-versus-own margin for equipment investment? This is a crucial

a long run rate of 3 percent.

73Namely, differences in logs.
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question for assessing the real effect of these stimulus policies. If firms simply shift away

from leasing to take advantage of the tax benefits of buying, then the aggregate impact of

these policies will be minimal. In their tax returns, firms separately report rental payments

for computing net income. Unfortunately, this item does not permit decomposition into

equipment and structures leasing. Given this limitation, we can still ask what effect bonus

depreciation had on changes in rental payments. The first column of Table 1.7 shows that

growth in rental payments did not slow due to bonus, but rather increased somewhat.

Thus, we do not find evidence of substitution away from equipment leasing. The second

column of Table 1.7 reports the effect of bonus on growth in non-officer payrolls. Again, we

find no evidence of substitution, but rather coincident growth of payroll. Finding limited

substitution in both leasing and employment makes it more likely that bonus incentives

caused more output.

While increased depreciation deductions do allow firms to reduce their tax bills and keep

Table 1.7: Substitution Margins and External Finance

Dependent Variable

∆Rents ∆Payroll ∆Debt Dividends Payer? Investment

(1) (2) (3) (4) (5) (6)

zN,t 0.75∗∗ 1.49∗∗∗ 1.84∗∗∗ -2.14∗∗∗ -0.36∗∗∗ 4.22∗∗∗

(0.26) (0.20) (0.21) (0.54) (0.089) (0.62)

zN,t−2 -0.86
(0.69)

Observations 574305 624918 642546 133161 818576 476734
Clusters (Firms) 98443 102043 103868 28891 128150 84777
R2 0.18 0.23 0.20 0.90 0.68 0.76

Year Effects Yes Yes Yes Yes Yes Yes
Firm Effects Yes Yes Yes Yes Yes Yes

Notes: This table estimates regressions of the form

Xit = αi + βzN,t + Xit + δt + εit

where Xit equals the difference in the logarithm of the dependent variable in columns (1) through (3). In columns (4)
and (5), the dependent variable is the logarithm of dividends paid or an indicator for positive dividend payments. zN,t is
the present value of a dollar of eligible investment computed at the four-digit NAICS industry level, taking into account
periods of bonus depreciation. Column (6) includes contemporaneous and twice lagged zN,t. Standard errors clustered at
the firm level are in parentheses.
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more cash inside the firm, they must still raise adequate financing to make the purchases in

the first place. This point is especially critical if, as the data suggest, firms thought to be in

tight financial positions respond more. Here, we test whether bonus incentives affect net

issuance of debt and payout policy. Columns three through five of Table 1.7 provide some

insight. Increased equipment investment appears to coincide with significantly expanded

borrowing and reduced payouts both on the extensive and intensive margins.

We assess the extent of intertemporal substitution using a model that includes both

contemporaneous z and lagged z. Our data often do not include the fiscal year month, so it

is possible that we are marking some years as t when they should be t− 1 or t + 1. For most

of our tests, this issue introduces an attenuation but no systematic bias. However, when

testing for intertemporal substitution, we want to be sure that lagged z measures past policy

changes. Thus, column (6) of Table 1.7 includes regressions with twice lagged z added to

the baseline bonus model. The coefficient on lagged z is negative but not distinguishable

from zero and including lagged z does not alter the coefficient on contemporaneous z. This

implies limited intertemporal shifting of investment.

1.7 Conclusion

This paper combines methods from public and applied economics with insights from

finance to answer a first order macroeconomic question: how do taxes affect investment

behavior in the presence of financial frictions? We find that firms respond strongly to

incentives that directly target investment decisions. Our heterogeneity results—that the

investment response is larger for financially constrained firms, but only when the benefit is

immediate—show that financial frictions are critical for understanding investment behavior.

The results point toward a set of models in which costly external finance matters

and firms place more weight on current benefits than they would in a frictionless model.

Whether the high implied discount rate reflects an external finance wedge, managerial

myopia, agency considerations or a mix of these is an important question for future research.

Further study of the external finance mechanism would be valuable. A deeper study of the

47



employment effects of these policies is of direct interest to macroeconomic modelers.

A related question for future research concerns the effects of tax planning. How do tax

preparers affect the decision to take up these policies? More generally, do firms focus on

minimizing current taxes at the possible expense of future payoffs? The answer to these

questions might shed light on the role of agency problems and firm learning about optimal

management practices.

The empirical results imply that policies which target investment directly and yield

immediate payoffs are most likely to influence investment activity. Policies that target

financial constraints, such as direct loans, might have a similar effect if conditional on the

investment decision. In comparison to studies of consumer durable goods, we find less

evidence of intertemporal shifting, but more work on this question is needed. Data from the

period following the recent stimulus, once available, will be very useful.
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Chapter 2

Arrested Development: Theory and

Evidence of Supply-Side Speculation

in the Housing Market1

2.1 Introduction

How do prices aggregate information? We take up this question in a setting of particular

macroeconomic importance: housing markets. Housing is a key driver of the business

cycle (Leamer, 2007), and the causes of the financial crisis of 2008 and the Great Recession

originated in housing markets (Mian and Sufi, 2009, 2011). An enduring feature of these

markets is booms and busts in prices that coincide with widespread disagreement about

fundamentals (Shiller, 2005). This paper argues that these cycles are caused by how housing

markets aggregate beliefs.

Studying belief aggregation allows us to address some of the most puzzling aspects of

the U.S. housing boom that occurred between 2000 and 2006. According to the standard

model of housing markets, elastic housing supply prevents house price booms by allowing

1Co-authored with Charles G. Nathanson
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new construction to absorb rising demand.2 But the episode from 2000 to 2006 witnessed

several major anomalies, in which historically elastic cities experienced house price booms

despite continuing to build housing rapidly. And house prices rose more in many of

these cities—located in Arizona, Nevada, inland California, and Florida—than in cities

where it was difficult to build new housing. Further complicating the puzzle, house prices

remained flat in other elastic cities that were also rapidly building housing. Why was rapid

construction able to hold down house prices in some cities and not others?

We solve this puzzle by adding two ingredients to the standard model. The first is a

friction that makes owner-occupancy more efficient than renting. The second is disagreement

about long-run growth paths. In this framework the way housing markets aggregate beliefs

depends on a city’s land availability. Prices appear more optimistic when land is plentiful

and building houses is easy, reversing the standard model’s intuition for how land supply

influences prices. Crucially, optimism amplifies prices most when a city nears but has not

yet reached a long-run development constraint. This mechanism matches the data. The

anomalous cities are those that, as the boom began, found themselves in just this state of

“arrested development.”

We model a city of developers and residents with a fixed amount of land available for

development. Developers decide how many houses to build and how much land to buy.

Residents decide how much housing to consume and whether to buy or rent. They prefer

owning their houses over renting because of frictions in the rental market.3 Residents can

invest in the equity of developers, which provides exposure to land prices. Short-selling

land and housing is impossible, but residents can short-sell developer equity. Over time,

new residents arrive in the city, leading developers to build houses using their holdings of

undeveloped land. Because of this growth, the city gradually exhausts its land supply. What

today’s investors believe about future inflows determines the price of undeveloped land.

2See, for example, Glaeser, Gyourko and Saiz (2008), Gyourko (2009), and Saiz (2010).

3Such frictions include the effort spent monitoring tenants to prevent property damage (Henderson and
Ioannides, 1983), tax disadvantages (Poterba, 1984), and difficulty renting properties like single-family homes
that are designed for owners (Glaeser and Gyourko, 2009).
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House construction is instantaneous and developers bear a constant unit cost per house.

As a result, all variation in house prices is caused by movements in land prices and not

construction costs. Data from the U.S. boom support this feature of the model. Rapidly

rising land prices account for most of the house price increases across cities. In contrast,

construction costs remained relatively stable throughout the boom, and cost changes hardly

varied across cities. These aspects of the data distinguish our theory from those that stress

“time-to-build” factors such as input shortages or delivery lags (Mayer and Somerville, 2000;

Gao, 2014).

We study a demand shock that raises the current inflow of new residents and also

creates uncertainty about future inflows. Disagreement about long-run demand leads to

disagreement about future house prices. The most optimistic residents seek to speculate

through buying housing and through buying the equity of optimistic developers who are

buying land.

Our first result is that speculation is crowded out of the housing market and into the

land market. Consider an optimistic resident who wishes to speculate on future house

prices. Buying a house and renting it out is difficult because of the widespread preference

for owner-occupancy. And buying more housing for personal consumption is unappealing

because of diminishing marginal utility. Land however offers a pure, frictionless bet on real

estate. The optimistic resident chooses to invest in land through buying developer equity.

With data from the U.S. housing boom, we confirm several of the model’s predictions

about land speculation. In the model, developers run by optimistic CEOs use resident

financing to amass large land portfolios, buying land from less optimistic developers.

Consistent with this prediction, we find that supply-side speculation figures prominently

in the data. Between 2000 and 2006, the eight largest U.S. public homebuilders tripled

their land investments, an increase far exceeding their additional construction needs. Their

market equity then fell 74%, with most of the losses coming from write-downs on their land

portfolios. The model also predicts that short-selling of developer equity increases during a

boom because pessimistic residents disagree with the high valuations of the developer land
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portfolios. Matching this prediction, the short interest in homebuilder stocks rose from 2%

in 2001 to 12% in 2006. Rising short interest provides evidence of disagreement over the

value of homebuilder land portfolios and thus over future house prices.

Our second result concerns how house prices aggregate beliefs. Speculators are crowded

into the land market, while homeownership remains dispersed among residents of all beliefs.

Therefore, house prices reflect a weighted average of the optimistic belief of speculators

and the average owner-occupant belief. The weight on the optimistic belief equals the share

of the housing market on the margin that consists of the land market. Prices look most

optimistic where land is plentiful and building easy—that is, in cities where the short-run

elasticity of housing supply is large.

This optimism bias affects prices most when the city’s housing supply will become

inelastic soon. This observation, which constitutes our third result, explains why house

price booms occur in some elastic cities and not others. Consider a city in which the land

available for development is large relative to the city’s current size. Here, new construction

fully absorbs the demand shock now and in the foreseeable future, and so beliefs about

future house prices remain unchanged. The shock raises future price expectations only in

cities where construction will be difficult in the near future.

Speculation amplifies house price booms most in cities that exist in a state of arrested

development: they have ample land for construction today, but also face land barriers

that will restrict growth in the near future. This theoretical supply condition characterizes

the anomalous elastic cities during the U.S. housing boom. For instance, Las Vegas faces

a development boundary put in place by Congress in 1998 and depicted in Figure 2.1.

During the 2000-2006 housing boom, many investors believed the city would soon run out

of land.4 Likewise, Phoenix’s long-run development is constrained by Indian reservations

4Las Vegas provides a particularly clear illustration of our model. The ample raw land available in the
short-run allowed Las Vegas to build more houses per capita than any other large city in the U.S during the
boom. At the same time, speculation in the land markets caused land prices to quadruple between 2000 and
2006, rising from $150,000 per acre to $650,000 per acre, and then lose those gains. This in turn led to a boom and
bust in house prices. The high price of $150,000 for desert land before the boom and after the bust demonstrates
the binding nature of the city’s long-run development constraint. A New York Times article published in 2007
cites investors who believed the remaining land would be fully developed by 2017 (McKinley and Palmer, 2007).
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and National Forests that surround the metropolitan area (Land Advisors, 2010). In inland

California, much of the farmland around cities is protected by a state law that penalizes real

estate development on these parcels (Onsted, 2009).

When disagreement is strong enough, house prices increase more in these nearly de-

veloped cities than in a fully developed city. In the nearly developed cities, the extreme

optimistic beliefs of land speculators determine house prices, amplifying the house price

boom. Prices remain more stable in the fully developed city because they reflect the average

belief. This result explains the puzzling house price booms in elastic areas that motivate

this paper. Supply conditions in these places—elastic current supply, inelastic long-run

supply—lead disagreement to have the largest possible amplification effect on a house price

boom.

Our theory differs from several other explanations for the strong house price booms

that occurred in elastic areas between 2000 and 2006. One possibility is that these cities

experienced much larger demand shocks than the rest of the United States.5 Our analysis

assumes a constant demand shock across cities; the heterogeneity in city house prices

booms results entirely from differences in supply conditions. An additional possibility

is that uncertainty increased land values due to the embedded option to develop land

with different types of housing (Titman, 1983; Grenadier, 1996), and that this option value

increase was largest in cities with an intermediate amount of land. In our model, all housing

is identical, so this option does not exist. A final explanation is that developers hoarded

land to gain monopoly power, and the incentive to do so was strongest in cities about to

run out of land. This effect does not appear in our model because homebuilding is perfectly

The dramatic rise in land prices during the boom resulted from optimistic developers taking large positions
in the land market. In a striking example of supply-side speculation, a single land development fund, Focus
Property Group, outbid all other firms in every large parcel land auction between 2001 and 2005 conducted by
the federal government in Las Vegas, obtaining a 5% stake in the undeveloped land within the barrier. Focus
Property Group declared bankruptcy in 2009.

5For instance, the expansion of credit described by Mian and Sufi (2009) may have been largest in these cities.
Alternatively, historical increases in house prices in nearby areas may have spread to these cities, either through
behavioral contagion (DeFusco et al., 2013) or long-distance gentrification (Guerrieri, Hartley and Hurst, 2013).
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51Regional Transportation Plan, 2013-2035
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Figure 2-9: Las Vegas Valley Development: 1980-2030

20302008

Figure 2.1: Long-Run Development Constraints in Las Vegas

Notes: This figure comes from Page 51 of the Regional Transportation Commission of Southern Nevada’s Regional
Transportation Plan 2009-2035 (RTCSNV, 2012). The first three pictures display the Las Vegas metropolitan area in
1980, 1990, and 2008. The final picture represents the Regional Transportation Commission’s forecast for 2030. The
boundary is the development barrier stipulated by the Southern Nevada Public Land Management Act. The shaded gray
region denotes developed land.
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competitive, as is the case empirically at the metro-area level.6 Unlike these stories, our

approach explores the cross-sectional implications of disagreement, an understudied aspect

of housing cycles for which we provide direct evidence.

In addition to explaining the city-level cross-section, our model offers new predictions on

the cross-section of neighborhoods within a city. We allow some residents to prefer renting

over owner-occupancy, so that both rental and owner-occupied housing exist in equilibrium.

During periods of disagreement, optimistic speculators hold the rental housing, just as

they hold land. Prices appear more optimistic, and hence house price booms are larger, in

neighborhoods where a greater share of housing is rented. This prediction matches the data:

house prices increased more from 2000 to 2006 in neighborhoods where the share of rental

housing in 2000 was higher.

A long literature in macroeconomics and finance has studied how prices aggregate

information. When markets are complete and investors share a common prior, prices

usually are efficient and reflect the information of all market participants (Fama, 1970;

Grossman, 1976; Hellwig, 1980). Our paper sits among a body of work showing that

prices reflect only a limited and potentially biased subset of information when investors

persistently disagree with each other, and markets are incomplete. Many of these papers

focus on strategic considerations that arise in this setting, and the implications for asset

prices (Harrison and Kreps, 1978; Scheinkman and Xiong, 2003). A related literature, starting

with Miller (1977), demonstrates that prices can be biased even in the absence of strategic

considerations because optimists end up holding the asset.7 We show that this optimism

6Somerville (1999) demonstrates the high level of homebuilder competition at the metro-area level, although
he points out that construction is less competitive at the neighborhood level. Hoberg and Phillips (2010) argue
that price booms often occur in competitive industries because firms mistakenly believe they will obtain future
monopoly power.

7In these papers, all market participants are fundamental investors who ignore other investors’ beliefs
(Chen, Hong and Stein, 2002; Geanakoplos, 2009; Hong and Sraer, 2012; Simsek, 2013a,b). Pástor and Veronesi
(2003, 2009) also study environments in which investors care only about long-run fundamentals during booms
and busts, but their focus is on learning, and all investors agree as they are all identical. Piazzesi and Schneider
(2009) and Burnside, Eichenbaum and Rebelo (2013) also apply models of disagreement to the housing market.
Papers in which strategic behavior matters include Abreu and Brunnermeier (2003), Allen, Morris and Shin
(2006), and Hong, Scheinkman and Xiong (2006).
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bias is strongest in housing markets when land is plentiful or when much of the housing

stock is rented. In contrast, prices aggregate beliefs well in cities where the housing stock is

fixed and owner-occupied. In these areas, house prices reflect the average of all resident

beliefs, even though they are agreeing to disagree and short-selling housing is impossible.

The paper proceeds as follows. In Section 2.2, we document the puzzling aspects of the

cross-section of the U.S. housing boom, as well as the importance of supply-side speculation

in land markets. Section 2.3 models the housing market environment. Section 2.4 contains

our analysis of how house prices aggregate beliefs. In Section 2.5, we derive implications of

the model to explain the empirical cross-section of housing markets during the U.S. boom.

Section 2.6 contains new predictions on the cross-section of neighborhoods within a city,

and Section 2.7 concludes.

2.2 Stylized Facts of the U.S. Housing Boom and Bust

2.2.1 The Cross-Section of Cities

The Introduction mentions three puzzles about the cross-section of city experiences during

the boom. First, large house price booms occurred in elastic cities where new construction

historically had kept prices low. Second, the price booms in these elastic areas were as large

as, if not larger than, those happening in inelastic cities at the same time. Finally, house

prices remained flat in other elastic cities that were also rapidly building housing.

We document these puzzles using city-level house price and construction data. House

price data come from the Federal Housing Finance Agency’s metropolitan statistical area

quarterly house price indices. We measure the housing stock in each city at an annual

frequency by interpolating the U.S. Census’s decadal housing stock estimates with its annual

housing permit figures. Throughout, we focus on the 115 metropolitan areas for which the

population in 2000 exceeds 500,000. The boom consists of the period between 2000 and 2006,

matching the convention in the literature to use 2006 as the end point (Mian, Rao and Sufi,

2013).
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Figure 2.2: The U.S. Housing Boom and Bust Across Cities

Notes: Anomalous Cities include those in Arizona, Nevada, Florida, and inland California. Inelastic Cities are Boston,
Providence, New York, Philadelphia, and all cities on the west coast of the United States. We measure the housing stock
in each city at an annual frequency by interpolating the U.S. Census’s decadal housing stock estimates with its annual
housing permit figures. House price data come from the second quarter FHFA house price index deflated by the CPI-U. The
figure includes all metropolitan areas with populations over 500,000 in 2000 for which we have data. (a) The cumulative
price increase is the ratio of the house price in 2006 to the house price in 2000. The annual housing stock growth is the log
difference in the housing stock in 2006 and 2000 divided by six. (b), (c) Each series is an average over cities in a group
weighted by the city’s housing stock in 2000. Construction is annual permitting as a fraction of the housing stock. Prices
represent the cumulative returns from 1980 on the housing in each group.
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Figure 2.2(a) plots construction and house price increases across cities during the boom.

The house price increases vary enormously across cities, ranging from 0% to 125% over this

brief six-year period. The largest price increases occurred in two groups of cities. The first

group, which we call the Anomalous Cities, consists of Arizona, Nevada, Florida, and inland

California. The other large price booms happened in the Inelastic Cities, which comprise

Boston, Providence, New York, Philadelphia, and the west coast of the United States.

The history of construction and house prices in the Anomalous Cities before 2000

constitute the first puzzle. As shown in Figures 2.2(b) and 2.2(c), from 1980 to 2000 these

cities provided clear examples of elastic housing markets in which prices stay low through

rapid construction activity. Construction far outpaced the U.S. average while house prices

remained constant. The standard model of housing cycles would have predicted the surge

in U.S. housing demand between 2000 and 2006 to increase construction in these cities but

not to raise prices. Empirically, the shock did increase construction, as shown in Panel (b).

The puzzle is that house prices rapidly increased as well.

The second puzzle is that the price increases in the Anomalous Cities were as large as

those in the Inelastic Cities. The Inelastic Cities consist of markets where house prices rise

because regulation prohibits construction from absorbing higher demand. We document this

relationship in Panels (b) and (c) of Figure 2.2, which show that construction in these cities

was lower than the U.S. average before 2000 while house price growth greatly exceeded the

U.S. average. The standard housing cycle model would have predicted the Inelastic Cities

to lead the nation in house price growth in the boom after 2000. Although house prices

did sharply rise, the price increases in the Inelastic Cities were no larger than those in the

Anomalous Cities where the boom led to rapid construction.

The final puzzle is that some elastic cities built housing quickly during the boom but,

unlike the Anomalous Cities, experienced stable house prices. These cities appear in the

bottom-right corner of Figure 2.2(a), and are located in the southeastern United States (e.g.

Texas and North Carolina). Their construction during the boom quantitatively matches that

in the Anomalous Cities, but the price changes are significantly smaller. Why was rapid
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construction able to hold down house prices in some cities and not others?

One response to these three puzzles is that the Anomalous Cities simply experienced

much larger demand shocks than the rest of the nation during the boom. Although

differential demand shocks surely explain part of the cross-section, they cannot account for

all aspects of the Anomalous Cities just documented. These cities had been experiencing

abnormally large demand shocks for years before 2000. Figure 2.2(b) shows that they were

some of the fastest growing cities in the United States. Yet the surging demand to live in

these areas did not increase prices. The departure from this pattern after 2000 requires

a more nuanced theory than the hypothesis that housing demand increased particularly

strongly in the Anomalous cities during the boom.

2.2.2 The Central Importance of Land Prices

This paper argues that speculation in land markets explains the variation in the house

price boom across cities just documented. Our model demonstrates that land market

speculation amplifies house price increases by making prices look more optimistic, and that

this amplification is strongest in areas at the same level of development as the Anomalous

Cities. In our framework, all movements in house prices arise from changes in land prices

that reflect optimistic beliefs. Matching this premise, land price increases empirically account

for nearly all of the increase in house prices during the boom, as we now show.

Tracing house price increases to land prices distinguishes our argument from “time-to-

build” theories. According to the time-to-build hypothesis, house prices rise during a boom

because of a temporary failure of homebuilders to expand construction. This delivery lag

derives from obstacles erected by local regulators or from temporary shortages of inputs

such as drywall and skilled labor. Under this theory, the price of undeveloped land should

remain constant during the boom. Because land prices reflect the long-run, temporary

housing shortages have no effect on the price of undeveloped land. These shortages instead

raise construction costs and the shadow price of regulatory building permission.

To assess the importance of land prices, we gather data on land prices and construction
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costs at the city level. Data on land prices come from the indices developed by Nichols,

Oliner and Mulhall (2013) using land parcel transaction data. They run hedonic regressions

to control for parcel characteristics and then derive city-level indices from the coefficients

on city-specific time dummies. We measure construction costs using the R.S. Means

construction cost survey. This survey asks homebuilders in each city to report the marginal

cost of building a square foot of housing, including all labor and materials costs. Survey

responses reflect real differences across cities in construction costs. In 2000, the lowest cost is

$54 per square foot and the highest is $95; the mean is $67 per square foot and the standard

deviation is $9.

Competition among homebuilders implies that, when construction is positive, house

prices must equal land prices plus construction costs: ph
t = pl

t + Kt. Log-differencing this

equation between 2000 and 2006 yields

∆ log ph = α∆ log pl + (1− α)∆ log K,

where ∆ denotes the difference between 2000 and 2006 and α is land’s share of house prices

in 2000. The factor that matters more should vary more closely with house prices across

cities. Because α and 1− α are less than 1, the critical factor should also rise more than

house prices do.

Figure 2.3 plots for each city the real growth in construction costs and land prices

between 2000 and 2006 against the corresponding growth in house prices. Construction

costs rose relatively little during this period, and growth in these costs does not vary in

relation to the size of house price increases. Land prices display the opposite pattern, rising

substantially during the boom and exhibiting a high correlation with house prices. Each

city’s land price increase also exceeds its house price increase. This evidence underscores

the central importance of land prices for understanding the cross-section of house price

booms.
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Figure 2.3: Input Price and House Price Increases Across Cities, 2000-2006

Notes: We measure construction costs for each city using the R.S. Means survey figures for the marginal cost of a square
foot of an average quality home, deflated by the CPI-U. Gyourko and Saiz (2006) contains further information on the
survey. Land price changes come from the hedonic indices calculated in Nichols, Oliner and Mulhall (2013) using land
parcel transactions, and house prices come from the second quarter FHFA housing price index deflated by the CPI-U. The
figure includes all metropolitan areas with populations over 500,000 in 2000 for which we have data.
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2.2.3 Land Market Speculation by Homebuilders

The land price booms just documented were driven by speculation in land markets. The

term “speculation” refers to the process in which optimists buy up an asset that cannot

be shorted, biasing its price. Our model describes two implications of this behavior. First,

the owners of the land during the boom increase their positions as they crowd out less

optimistic landowners. Second, when their beliefs are revealed to be more optimistic than

reality, optimists suffer capital losses. We document both of these features among a class

of landowners for whom rich data are publicly available: public homebuilders. We focus

on the eight largest firms and hand-collect landholding data from their annual financial

statements between 2001 and 2010.

Consistent with speculative behavior, these firms nearly tripled their landholdings

between 2001 and 2005, as shown in Figure 2.4(a). These land acquisitions far exceed

additional land needed for new construction. Annual home sales increased by 120,000

between 2001 and 2005, while landholdings increased by 1,100,000 lots. One lot can produce

one house, so landholdings rose more than nine times relative to home sales. In 2005, Pulte

changed the description of its business in its 10-K to say, “We consider land acquisition one

of our core competencies.” This language appeared until 2008, when it was replaced by,

“Homebuilding operations represent our core business.”

Having amassed large land portfolios, these firms subsequently suffered large capital

losses. Figure 2.4(b) documents the dramatic rise and fall in the total market equity of these

homebuilders between 2001 and 2010. Homebuilder stocks rose 430% and then fell 74%

over this period. The majority of the losses borne by homebuilders arose from losses on the

land portfolios they accumulated from 2001 to 2005. In 2006, these firms began reporting

write-downs to their land portfolios. At $29 billion, the value of the land losses between

2006 and 2010 accounts for 73% of the market equity losses over this time period. The

homebuilders bore the entirety of their land portfolio losses. The absence of a hedge against

downside risk supports the theory that homebuilder land acquisitions represented their

optimistic beliefs.
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Figure 2.4: Supply-Side Speculation Among U.S. Public Homebuilders, 2001-2010

Notes: (a), (b) Data come from the 10-K filings of Centex, Pulte, Lennar, D.R. Horton, K.B. Homes, Toll Brothers,
Hovnanian, and Southern Pacific, the eight largest public U.S. homebuilders in 2001. “Lots Controlled” equals the sum of
lots directly owned and those controlled by option contracts. The cumulative writedowns to land holdings between 2006
and 2010 among these homebuilders totals $29 billion. (c) Short interest is computed as the ratio of shares currently sold
short to total shares outstanding. Monthly data series for shares short come from COMPUSTAT and for shares outstanding
come from CRSP. Builder stocks are classified as those with NAICS code 236117.
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Further evidence of homebuilder optimism comes from short-selling of their market

equity. If the homebuilders buying land are more optimistic than most investors, then other

investors should bet against them by shorting their stock. Figure 2.4(c) plots monthly short

interest ratios, defined as the ratio of shares currently sold short to total shares outstanding,

for homebuilder stocks and non-homebuilder stocks between 2001 and 2010. Throughout

the boom, short interest of homebuilder stock sharply increased, rising from 2% in 2001

to 12% in 2006. It further increased as homebuilders began to announce their land losses

in 2006. Rising short interest provides direct evidence of disagreement over the value of

homebuilder land portfolios and thus over future house prices.

2.3 A Housing Market with Homeowners and Developers

Housing Supply. The city we study has a fixed amount of space S. This space can either

be used for housing, or it remains as undeveloped land. The total housing stock in the city

at time t is Ht and the remaining undeveloped land is Lt, so S = Ht + Lt for all t.

A continuum of real estate developers invest in land and construct housing from the land

at a cost of K per unit of housing. The aggregate supply of new housing is ∆Ht. Construction

is instantaneous, and housing does not depreciate: Ht = ∆Ht + Ht−1. Construction is also

irreversible: ∆Ht ≥ 0. Both housing and land are continuous variables, and one unit of

housing requires one unit of land.

The developers rent out land on spot markets at a price of rl
t. Rental demand for

undeveloped land comes from firms, such as farms, that use the city’s land as an input.

These firms buy their inputs and sell their products on the global market. Therefore, their

aggregate demand for land depends only on rl
t and not on any other local market conditions.

This aggregate rental demand curve is Dl(rl
t), where Dl(·) is decreasing positive function

such that Dl(0) ≥ S.
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The profit flow of a developer j at time t is

πj,t = rl
tLj,t + pl

t(Lj,t−1 − Lj,t)︸ ︷︷ ︸
development profit

+ (ph
t − pl

t − K)∆Hj,t︸ ︷︷ ︸
homebuilding profit

, (2.1)

where ph
t is the price of housing and pl

t is the price of land. The real estate development

industry faces no entry costs, so the industry is perfectly competitive. Because homebuilding

is instantaneous and does not depend on prior land investments, profits from this line of

business must be zero due to perfect competition. We denote the aggregate homebuilding

profit by πhb
t = (ph

t − pl
t − K)∆Ht.

Each developer begins with a land endowment and issues equity to finance its land

investments. It maximizes its expected net present value of profits Ej ∑∞
t=0 βtπj,t. The

operator Ej reflects firm j’s expectation of future land prices. Firm-specific beliefs represent

the beliefs of the firm’s CEO, who owns equity, cannot be fired, and decides the firm’s

land investments. The number of each developer’s equity shares equals the amount of

land it holds, and each developer pays out its land rents as dividends. The market price of

developer equity therefore equals the market price pl
t of land.

Individual Housing Demand. A population of residents live in the city and hold its

housing. These residents receive direct utility from consuming housing. Lower-case

h denotes the flow consumption of housing, whereas upper-case H denotes the asset

holding. Flow utility from housing depends on whether housing is consumed through

owner-occupancy or under a rental contract. Residents also derive utility from non-local

consumption c. Each resident i maximizes the expected present value of utility, given by

Ei

∞

∑
t=0

βtui(ct, hown
t , hrent

t ),

where β is the common discount factor.

Flow utility ui(·, ·, ·) has three properties. First, it is separable and linear in non-real

estate consumption c. This quasi-linearity eliminates risk aversion and hedging motives.

Second, owner-occupied and rented housing are substitutes, and residents vary in which
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type of contract they prefer and to what degree. Substitutability of owner-occupied and

rented housing fully sorts residents between the two types of contracts; no resident consumes

both types of housing simultaneously. Finally, residents face diminishing marginal utility

of owner-occupied housing. This property leads homeownership to be dispersed among

residents in equilibrium.

The utility specification we adopt that features these three properties is

ui(c, hown, hrent) = c + v(aihown + hrent) (2.2)

where ai > 0 is resident i’s preference for owner-occupancy, and v(·) is an increasing,

concave function for which limh→0 v′(h) = ∞. The distribution of the owner-occupancy

preference parameter ai across residents is given by a continuously differentiable cumulative

distribution function Fa, which is stable over time. Owner-occupancy utility is unbounded:

dFa has full support on R+. The functional form of the owner-occupancy preference in (2.2)

results from a moral hazard problem we describe in the Appendix.

Resident Optimization. Residents hold three assets classes: bonds B, housing H, and

developer equity Q. Global capital markets external to the city determine the gross interest

rate on bonds, which is Rt = 1/β, where β is the common discount factor. Residents may

borrow or lend at this rate by buying or selling these bonds in unlimited quantities.

In contrast, housing and developer equity are traded within the city, and equilibrium

conditions determine their prices pl
t and ph

t . Homeowners earn income by renting out the

housing they own in excess of what they consume. The spot rental price for housing is rh
t ;

landlord revenue is therefore rh
t (Hi,t − hown

i,t − hrent
i,t ). Shorting housing is impossible, but

residents can short developer equity. Doing so is costly. Residents incur a convex cost ks(Q)

to short Q units of developer stock, where ks(0) = 0 and k′s, k′′s > 0. These costs reflect fees

paid to borrow stock, as well as time spent locating available stock (D’Avolio, 2002).

Short-sale constraints in the housing market result from a lack of asset interchangeability.

Although housing is homogeneous in the model, empirical housing markets involve large

variation in characteristics across houses. This variation in characteristics makes it essentially
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impossible to cover a short. Unlike in the housing market, asset interchangeability holds in

the equity market, where all of a firm’s shares are equivalent.

The Bellman equation representing the resident optimization problem is

V(Bi,t−1, Hi,t−1, Qi,t−1) = max
Bi,t,Hi,t,Qi,t

ci,t,hown
i,t ,hrent

i,t

ci,t + v(aihown
i,t + hrent

i,t )
︸ ︷︷ ︸

flow utility

+ βEi,tV(Bi,t, Hi,t, Qi,t)︸ ︷︷ ︸
continuation value

, (2.3)

where the maximization is subject to the short-sale constraint

0 ≤ Hi,t,

the ownership constraint

hown
i,t ≤ Hi,t,

and the budget constraint

RtBi,t−1 − Bi,t︸ ︷︷ ︸
borrowing costs

+ ci,t︸︷︷︸
consumption

≤ ph
t (Hi,t−1 − Hi,t)︸ ︷︷ ︸

housing returns

+ rh
t (Hi,t − hown

i,t − hrent
i,t )

︸ ︷︷ ︸
housing rental income

+ pl
t(Qi,t−1 −Qi,t)︸ ︷︷ ︸

equity returns

+ rl
tQi,t︸ ︷︷ ︸

dividends

− max(0, ks(−Qi,t))︸ ︷︷ ︸
shorting costs

.

Aggregate Demand and Beliefs. Aggregate demand to live in the city equals the number

of residents Nt. This aggregate demand consists of a shock and a trend:

log Nt︸ ︷︷ ︸
demand

= zt︸︷︷︸
shock

+ log Nt︸ ︷︷ ︸
trend

.

The trend component grows at a constant positive rate g: for all t > 0,

log Nt = g + log Nt−1.

The shocks zt have a common factor x. The dependence of the time-t shock on the common

factor x is µt, so that

zt = µtx.
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Without loss of generality, µ0 = 1: the time 0 shock z0 equals the common factor x. We

denote µ = {µt}t≥0.

At time 0, residents observe the following information: the current and future values of

trend demand Nt, the trend growth rate g, the current demand N0, the current shock z0,

and the common factor x of the future shocks. They do not observe µ, the data needed to

extrapolate the factor x to future shocks. Residents learn the true value of the entire vector

µ at time t = 1. The resolution of uncertainty at time t = 1 is common knowledge at t = 0.

Residents agree to disagree about the true value of µ. At time 0, resident i’s subjective

prior of µ is given by Fi, an integrable probability measure on the compact space M of all

possible values of µ. These priors vary across residents. The resulting subjective expected

value of each µt is µi,t =
∫

M µtdFi, and the vector of resident i’s subjective expected values

of each µt is µi = {µi,t}t≥0. The subjective expected value µi uniquely determines the prior

Fi. The distribution of µi itself across residents admits an integrable probability distribution

Fµ on M, which is independent from the distribution Fa of owner-occupancy preferences.

The CEOs of the development firms are city residents, so their beliefs are drawn from the

same distribution Fµ.

Resident disagreement reflects the unprecedented nature of the demand shock z. As

argued by Morris (1996), this heterogeneous prior assumption is most appropriate when

investors face an unprecedented situation in which they have not yet had a chance to collect

information and engage in rational updating. The events surrounding housing booms are

precisely these types of situations. Glaeser (2013) meticulously shows that in each of the

historical booms he analyzes, reasonable investors could agree to disagree about future real

estate prices. In the case of the U.S. housing boom between 2000 and 2006, we follow Mian

and Sufi (2009) in thinking of the shock as the arrival of new securitization technologies that

expanded credit to low-income borrowers. The initial shock to housing demand is x, and µ

represents the degree to which this expansion of credit in 2000-2006 persists after 2006.

Equilibrium. Equilibrium consists of time-series vectors of prices pL(µ), pH(µ), rl(µ),

rh(µ) and quantities L(µ), H(µ) that depend on the realized value of µ. These pricing and
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quantity functions constitute an equilibrium when housing, land, and equity markets clear

while residents and developers maximize utility and profits:

Consider pricing functions ph(µ), pl(µ), rh(µ), rl(µ) and quantity functions H(µ), L(µ).

Let H∗i,t, Q∗i,t, (h
own
i,t )∗, and (hrent

i,t )∗ be resident i’s solutions to the Bellman equation (2.3) given his

owner-occupancy preference ai, his beliefs µi, and these pricing functions. Let L∗j,t be developer j’s

land holdings that maximize expected net present value of profits in equation (2.1), given the pricing

functions; L∗t is the sum of these land holdings across developers. The pricing and quantity functions

constitute a recursive competitive equilibrium if at each time t:

1. The sum of undeveloped land and housing equals the city’s endowment of open space:

S = Lt(µ) + Ht(µ).

2. Flow demand for land equals investment demand from developers, which equals the resident

demand for their equity:

Lt(µ) = L∗t = Dl(rl
t(µ)) =

∫ ∞

0

∫

M
Q∗i,tdFµdFa.

3. Resident stock and flow demand for housing clear:

Ht(µ) = Nt(µ)
∫ ∞

0

∫

M
H∗i,tdFµdFa = Nt(µ)

∫ ∞

0

∫

M
((hown

i,t )∗ + (hrent
i,t )∗)dFµdFa.

4. Construction maximizes developer profits:

Ht(µ)− Ht−1(µ) ∈ arg max
∆Ht

πhb
t .

5. Developer profit from homebuilding is zero:

max
∆Ht

πhb
t = 0.

Elasticity of Housing Supply. The housing supply curve is the city’s open space S less

the rental demand for land Dl(rl
t). We denote the elasticity of this supply curve with respect

to housing rents rh
t by εS

t . The supply elasticity determines the construction response to the
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shocks {zt}. It will also serve as a sufficient statistic for the extent to which land speculation

affects house prices. This section describes the supply elasticity εS
t along the city’s trend

growth path, which obtains when x = 0.

The relationship between land rents rl
t and house rents rh

t allows us to calculate this

elasticity. Because trend growth g > 0, new residents perpetually arrive to the city, and

developers build new houses each period. Perpetual construction ties together land and

house prices. In particular, as developers must be indifferent between building today or

tomorrow, house rents equal land rents plus flow construction costs:

rh
t = rl

t + (1− β)K.

The supply of housing is open space net of flow land demand: S− Dl(rh
t − (1− β)K). The

elasticity of housing supply is thus εS
t ≡ −rh

t (Dl)′/(S− Dl). When the flow land demand

Dl features a constant elasticity εl , the elasticity of housing supply takes on the simple form

εS
t =

rh
t

rh
t − (1− β)K

(
S
Ht
− 1
)

εl , (2.4)

where Ht is the housing stock at time t. The arrival of new residents increases both rents rh
t

and the level of development Ht/S. The supply elasticity given in (2.4) unambiguously falls

(see Appendix for proof):

Lemma 1 Define housing supply to be the residual of the city’s open space S minus the flow

demand for land: S − Dl . The elasticity εS
t of housing supply with respect to housing rents rh

t

decreases with the level of city development Ht/S along the city’s trend growth path.

2.4 Supply-Side Speculation

At time 0, residents disagree about the future path of housing demand. Speculative trading

behavior results from this disagreement. This section describes how owner-occupancy

frictions crowd speculators out of owner-occupied housing and into rental housing and

land. Demand and supply elasticities determine how prices aggregate the beliefs of owner-
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occupants and of optimistic speculators holding rental housing and land.

2.4.1 Land Speculation and Dispersed Homeownership

We first consider the developer decision to hold land at time 0. Developer j’s first-order

condition on its land-holding Lj,0 is

1/β︸︷︷︸
risk-free rate

≥ Ej pl
1/(pl

0 − rl
0)︸ ︷︷ ︸

expected land return

,

with equality if and only if Lj,0 > 0. A developer invests in land if and only if it expects land

to return the risk-free rate. At time 0, developers disagree about this expected return on

land because they disagree about the future path of housing demand. The developers that

expect the highest returns invest in land, while all other developers sell to these optimistic

firms and exit the market. We denote the optimistic belief of the developers who invest in

land by Ẽpl
1 ≡ maxµj E(pl

1 | µj).

Optimistic residents finance developer investments in land through purchasing their

equity. Less optimistic residents choose to short-sell developer stock. Developer stock allows

residents to hold land indirectly: its price is pl
0 and it pays a dividend of rl

0. Resident i holds

this equity only if he agrees with the land valuation of the optimistic developers, in which

case Ei pl
1 = Ẽpl

1. Otherwise, he shorts the equity, and his first-order condition is

k′s(−Q∗i,0) = β(Ẽpl
1 − Ei pl

1).

Disagreement increases the short interest in the equity of the developers holding the land.

Without disagreement, Ẽpl
1 = Ei pl

1 for all residents, so no one shorts.

Only the most optimistic residents hold housing as landlords. A resident is a landlord

if he owns more housing than he consumes through owner-occupancy: Hi > hown
i . The

first-order condition of the Bellman equation (2.3) with respect to Hi,0 when it is in excess of

hown
i,0 is

1/β︸︷︷︸
risk-free rate

≥ Ei ph
1/(ph

0 − rh
0)︸ ︷︷ ︸

expected housing return

, (2.5)
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with equality if and only if Hi,0 > hown
i,0 . Only the most optimistic residents invest in

rental housing, just as only the most optimistic developers invest in land. Land and rental

housing share this fundamental property. During periods of uncertainty, the most optimistic

investors are the sole holders of these asset classes.

Owner-occupancy utility crowds these optimistic investors out of owner-occupied hous-

ing, which remains dispersed among residents of all beliefs. The decision to own or rent

emerges from the first-order conditions of the Bellman equation (2.3) with respect to hown
i,0

and hrent
i,0 . We express these equations jointly as

v′(ai(hown
i,0 )∗ + (hrent

i,0 )∗)
︸ ︷︷ ︸

marginal utility of housing

= min


a−1

i (ph
0 − βEi ph

1)︸ ︷︷ ︸
owning

, rh
0︸︷︷︸

renting


 . (2.6)

The left term in the parentheses denotes the expected flow price of marginal utility v′ from

owning a house; the right term denotes the flow price of renting. A resident owns when

the owner-occupancy price is less than the rental price. As long as the owner-occupancy

preference ai is large enough, resident i decides to own even if his belief Ei ph
1 is quite

pessimistic. Homeownership remains dispersed among residents of all beliefs.

We gain additional intuition about the own-rent margin by substituting (2.5) into (2.6).

We denote the most optimistic belief about future house prices, the one held by landlords

investing in rental housing, by Ẽph
1 ≡ maxµi E(ph

1 | µi). The decision to own rather than

rent reduces to

ai ≥ 1 +
β(Ẽph

1 − Ei ph
1)

rh
0

. (2.7)

Without disagreement, a resident owns exactly when he intrinsically prefers owning to

renting, so that ai ≥ 1. Disagreement sets the bar higher. Some pessimists for whom ai ≥ 1

choose to rent because they expect capital losses on owning a home. Other pessimists

continue to own because their owner-occupancy utility is high enough to offset the fear of

capital losses. Proposition 1 summarizes these results.

Proposition 1 Owner-occupancy utility crowds speculators out of the owner-occupied housing

market and into the land and rental markets. The most optimistic residents—those holding the highest

72



value of Ei ph
1—buy up all rental housing and finance optimistic developers who purchase all the land.

In contrast, owner-occupied housing remains dispersed among residents of all beliefs.

Proposition 1 yields two corollaries that match stylized facts presented in Section 2.2.

The most optimistic developers buy up all the land. Unless they start out owning all the

land, these optimistic developers increase their land positions following the demand shock.

They hold this land as an investment rather than for immediate construction.

Implication 1 The developers who hold land at time 0 increase their aggregate land holdings at

time 0. They buy land in excess of their immediate construction needs.

This implication explains the land-buying activities of large public U.S. homebuilders

documented in Figure 2.4(a).

The second corollary concerns short-selling. Residents who disagree with the optimistic

valuations of developers short their equity.

Implication 2 Disagreement increases the short interest of developer equity at time 0.

Figure 2.4(c) documents the rising short interest in the stocks of U.S. public homebuilders

who were taking on large land positions during the boom. This short interest provides

direct evidence of disagreement during the boom.

2.4.2 Belief Aggregation

Prices aggregate the heterogeneous beliefs of residents and developers holding housing

and land. The real estate market consists of three components: land, rental housing, and

owner-occupied housing. The most optimistic residents hold the first two, while the third

remains dispersed among owner-occupants. House prices reflect a weighted average of the

optimistic belief and the average belief of all owner-occupants. The weight on the optimistic

belief is the share of the real estate market consisting of land and rental housing; the weight

on the average owner-occupant belief is owner-occupied housing’s share of the market.

To derive these results, we take a comparative static of the form ∂ph
0/∂x. The shock

z = µx scales with the common factor x. We differentiate with respect to x at x = 0 to
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explore how prices change as the shocks, and hence the ensuing disagreement, increase.

Our partial derivative holds current demand N0 constant to isolate the aggregation of future

beliefs.

We first use (2.5) to write ph
0 = rh

0 + βẼph
1. The shock increases the optimistic belief βẼph

1,

directly increasing prices. It also changes the market rent rh
0 . This rent is determined by the

intersection of housing supply and housing demand:

S− Dl
(

rh
0 − (1− β)K

)

︸ ︷︷ ︸
housing supply

= Dh
0(r

h
0)︸ ︷︷ ︸

housing demand

, (2.8)

where

Dh
0(r

h
0) = N0

∫

M

∫ 1+β(Ẽph
1−Ei ph

1)/rh
0

0
(v′)−1(rh

0)dFadFµ

︸ ︷︷ ︸
rental housing

(2.9)

+ N0

∫

M

∫ ∞

1+β(Ẽph
1−Ei ph

1)/rh
0

a−1
i (v′)−1

(
a−1

i (rh
0 + β(Ẽph

1 − Ei ph
1))
)

dFadFµ

︸ ︷︷ ︸
owner-occupied housing

.

The housing demand equation follows from (2.6) and (2.7). We determine the shock’s

effect on rents by totally differentiating (2.8) with respect to x at x = 0, keeping current

demand N0 constant. When the elasticity of housing demand εD is constant, the resulting

comparative static ∂ph
0/∂x adopts the simple form given in the following proposition, which

we prove in the Appendix.

Proposition 2 Consider the partial effect of the shock in which current demand N0 stays constant

but future house price expectations Ei ph
1 change. The change in house prices averages the changes in

the optimistic resident belief and the average belief:

∂ph
0

∂x
=

εS
0 + (1− χ)εD

εS
0 + εD

∂βẼph
1

∂x
+

χεD

εS
0 + εD

∂βEph
1

∂x
, (2.10)

where Ẽph
1 = maxi Ei ph

1 is the most optimistic belief, Eph
1 =

∫
M Ei ph

1dFµ is the average belief,

εS
0 is the elasticity of housing supply at time 0, εD is the elasticity of housing demand, and χ =
∫ ∞

0 (hown
i,0 )∗dFa/H0 is the share of housing that is owner-occupied when x = 0.
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The weight on the optimistic belief in Proposition 2 represents the share, on the margin,

of the real estate market owned by speculators. The supply elasticity εS
0 represents land, and

(1− χ)εD represents rental housing. The remaining χεD represents owner-occupied housing

and is the weight on the average owner-occupant belief. The average owner-occupant belief

coincides with the unconditional average belief because at x = 0, beliefs and tenure choice

are independent.

Proposition 2 yields four corollaries on the difference in belief aggregation across cities

and neighborhoods. Prices look more optimistic when the weight (εS
0 +(1−χ)εD)/(εS

0 + εD)

is higher. This ratio is greater when the supply elasticity εS
0 is higher:

Implication 3 Prices look more optimistic when the housing supply elasticity is higher, i.e. in less

developed cities.

Disagreement reverses the common intuition relating housing supply elasticity and move-

ments in house prices. Elastic supply keeps prices low by allowing construction to respond

to demand shocks. But land constitutes a larger share of the real estate market when supply

is elastic. Speculators are drawn to the land markets, so elastic supply amplifies the role of

speculators in determining prices during periods of disagreement. When supply is perfectly

elastic, εS
0 = ∞ and prices reflect only the beliefs of these optimistic speculators:

Implication 4 When housing supply is perfectly elastic, house prices incorporate only the most

optimistic beliefs; they reflect the beliefs of developers and not of owner-occupants.

Recent research has measured owner-occupant beliefs about the future evolution of house

prices.8 In cities with elastic housing supply, such as the cities motivating this paper,

developer rather than owner-occupant beliefs determine prices. Data on the expectations of

homebuilders would supplement the research on owner-occupant beliefs to explain prices

in these elastic areas.

Prices aggregate beliefs much better when housing supply is perfectly inelastic (εS
0 = 0)

8See Landvoigt (2011), Case, Shiller and Thompson (2012), Burnside, Eichenbaum and Rebelo (2013), Soo
(2013), Suher (2013), and Cheng, Raina and Xiong (2014).
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and all housing is owner-occupied (χ = 1). In this case, the price change depends only on

the average belief Eph
1:

Implication 5 When the housing stock is fixed and all housing is owner-occupied, prices reflect the

average belief about long-run growth.

In many settings, such as when investor information equals a signal plus mean zero noise,

prices reflect all information when they incorporate the average private belief of all investors.

Owner-occupied housing markets with a fixed housing stock display this property, even

though short-selling is impossible and residents persistently disagree. These frictions fail to

bias prices because homeownership remains dispersed among residents of all beliefs, due to

the utility flows that residents derive from housing.

The weight (εS
0 + (1− χ)εD)/(εS

0 + εD) on optimistic beliefs is also higher when χ is

lower:

Implication 6 Prices look more optimistic when a greater share of housing is rented.

Speculators own a greater share of the real estate market when the rental share 1− χ is

higher. Prices bias towards optimistic beliefs in market segments where more of the housing

stock is rented.

2.5 The Cross-Section of City Experiences During the Boom

This section explains three puzzling aspects of the U.S. housing boom that occurred between

2000 and 2006. First, large house price booms occurred in elastic cities where new construc-

tion historically had kept prices low. Second, the price booms in these elastic areas were

as large as, if not larger than, those happening in inelastic cities at the same time. Finally,

house prices remained flat in other elastic cities that were also rapidly building housing.

To explain these cross-sectional facts, we derive a formula for the total effect of the

shock z on house prices. This formula expresses the house price boom as a function of

the city’s level of development when the shock occurs. Our analysis up to this point has
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explored the partial effect of how prices aggregate beliefs Ei ph
1, without specifying how

these beliefs are formed. To derive the total effect of the shock, we express the changes in

these beliefs in terms of city characteristics and the exogenous demand process. Specifically,

we calculate the partial derivative ∂ log ph
0/∂x holding all beliefs fixed at µi = µ, and then

use Proposition 2 to derive the total effect of the shock x on house prices. As before, we

evaluate derivatives at x = 0.9

At time 0, each resident expects the shock zt to raise log-demand at time t by µtx. The

resulting expected change in rents rh
t depends on the elasticities of supply and demand at

time t:
∂ log E0rh

t
∂x

=
µt

εS
t + εD

.

This equation follows from price theory. When a demand curve shifts up, a good’s price

increases by the inverse of the total elasticity of supply and demand. The total effects of

the shocks {zt} on the current house price ph
0 follows from aggregating the above equation

across all time periods, using the relation p0 = E0 ∑∞
t=0 βtrh

t :

∂ log ph
0

∂x
=

µ

ε̃S + εD . (2.11)

The mean persistence of the shock is µ = ∑∞
t=0 µtβ

trh
t (ε

S
t + εD)−1/ ∑∞

t=0 βtrh
t (ε

S
t + εD)−1, and

ε̃S is the long-run supply elasticity given by the weighted harmonic mean of future supply

elasticities in the city:

ε̃S ≡ −εD +
∑∞

t=0 βtrh
t

∑∞
t=0 βtrh

t (ε
S
t + εD)−1

.

The higher this long-run supply elasticity, the smaller the shock’s impact on current house

prices, holding µ fixed.

We now put together the two channels through which the shock changes prices. Equation

(2.11) expresses the price change that results when µ is known, and (2.10) describes how

prices aggregate residents’ heterogeneous beliefs about µ. Proposition 3 states the total

9Evaluating derivatives at x = 0 describes the model when construction occurs in each period. When x is
large enough and the shock z might mean-revert, a construction stop at t = 1 is possible and anticipated by
residents at t = 0. This feature of housing cycles distracts from our focus on housing booms and how they vary
across cities.

77



effect d log ph
0/dx, which we formally calculate in the Appendix.

Proposition 3 The total effect of the shock x on current house prices is

d log ph
0

dx
=

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃ +
χεD

εS
0 + εD

µ

)

︸ ︷︷ ︸
aggregate belief

1
ε̃S + εD︸ ︷︷ ︸

pass-through

, (2.12)

where εS
0 is the current elasticity of housing supply, ε̃S is the long-run supply elasticity, εD is

the elasticity of housing demand, χ is the share of housing that is owner-occupied, µ̃ is the mean

persistence of the most optimistic belief about µ, and µ is the mean persistence of the average belief.

The first puzzle (2.12) explains is how a city with perfectly elastic housing supply can

experience a house price boom. Housing supply is perfectly elastic when εS
0 = ∞. In this

case, the house price boom is µ̃x/(ε̃S + εD). This price increase is positive as long as the

long-run supply elasticity ε̃S is not also infinite.

Implication 7 A house price boom occurs in a city where current housing supply is completely

elastic, construction costs are constant, and construction is instantaneous. Supply must be inelastic

in the future for such a price boom to occur.

In the Appendix, we prove that a limiting case exists in which εS
0 = ∞ while ε̃S < ∞.

A house price boom results from a shock to current demand accompanied by news of

future shocks. When supply is inelastic in the long-run, these future shocks raise future

rents, and prices rise today to reflect this fact. This price change occurs even if supply is

perfectly elastic today, because residents anticipate the near future in which supply will not

be able to adjust as easily.

This supply condition—elastic short-run supply, inelastic long-run supply—occurs in

cities at an intermediate level of development. Figure 2.5(a) demonstrates the possible

combinations of short-run and long-run supply elasticities in a city. We plot the pass-

through 1/(εS + εD); a higher pass-through corresponds to a lower elasticity. Lightly

developed cities have highly elastic short-run and long-run supply, and heavily developed
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Figure 2.5: Model Simulations For Different Cities

Notes: The parameters we use are µ̃ = 1, µ = 1, x = 0.06, g = 0.013, εD = 1, β = 0.936, and εl = 1. We hold the
amount of space S fixed and vary the initial trend demand N0. The x-axis reports annualized trend demand given by
log N0/g. (a) Short-run pass-through is 1/(εS

0 + εD); long-run pass-through is 1/(ε̃S + εD). We calculate the rent and
housing stock at each level of development using (A1) in the Appendix, and then calculate the supply elasticities using
(2.4). (b) Each curve reports the derivative in (2.12) times x, which we calculate using the elasticities shown in panel (a).
The “without disagreement” counterfactual uses µ̃ = µ = 0.2 instead of µ̃ = 1 > µ = 0.2. (c) We plot the construction
equation (A2) using the elasticities shown in panel (a), as well as rents at each stage of development from (A1) and prices
at each development stage from p0 = ∑∞

t=0 βtrh
t , which we calculate at x = 0.
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cities have inelastic short-run and long-run supply. In the intermediate case, current supply

is elastic while long-run supply is inelastic, reflecting the near future of constrained supply.

As we discussed in the Introduction, this theoretical supply condition describes the

elastic markets that experienced large house price booms between 2000 and 2006. These

cities found themselves in a state of arrested development as the boom began in 2000.

Although ample land existed for current construction, long-run barriers constrain their

future growth.

The second puzzle (2.12) explains is why the price booms in these elastic cities were as

large as those happening in inelastic cities at the same time. Disagreement amplifies the

house price boom the most in exactly these nearly developed elastic cities. The amplification

effect of disagreement equals the extent to which optimists bias the price increase given

in (2.12). When owner-occupancy frictions are present (χ = 1), the difference between the

price boom under disagreement and under the counterfactual in which all residents hold

the average belief µ is
εS

0

εS
0 + εD

µ̃− µ

ε̃S + εD .

This amplification is largest in nearly developed elastic cities, where εS
0 is large and ε̃S is

small. Because this amplification increases in εS
0 and decreases in ε̃S, nearly developed

elastic cities provide the ideal condition for disagreement to amplify a house price boom.

Implication 8, which we prove in the Appendix, states this result formally.

Implication 8 Disagreement amplifies house price booms most in cities at an intermediate level of

development, as long as owner-occupancy frictions are large enough. Define ∆ to be the difference

between the price boom given in (2.12) and the counterfactual in which all residents hold the average

belief µ. Then there exists χ∗ < 1 such that for χ∗ ≤ χ ≤ 1, ∆ is strictly largest at an intermediate

level of initial development N∗0 < ∞.

Figure 2.5(b) plots the house price boom given by (2.12) across different levels of city

development, for both the case of disagreement and the case in which all residents hold

the average belief. The amplification effect of disagreement is the difference between the

two curves. Optimistic speculators amplify the price boom the most in the intermediate city.
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Highly elastic short-run supply facilitates speculation in land markets, biasing prices towards

their optimistic belief. This bias significantly increases house prices because housing supply

is constrained in the near future. The optimism bias is smaller in the highly developed city.

As a result, price increases in intermediate cities are as large as the price boom in the highly

developed areas.

In fact, the price boom in some intermediate cities can exceed that in the highly developed

cities. The parameters we use in Figure 2.5(b) generate an example of this phenomenon.

This surprising result reverses the conclusion of standard models of housing cycles, in

which the most constrained areas always experience the largest price increases. This reversal

occurs as long as owner-occupancy frictions are high and the extent of disagreement is

sufficiently large:

Implication 9 If disagreement and owner-occupancy frictions are large enough, then the largest

house price boom occurs in a city at an intermediate level of development. There exists χ∗ < 1 and

δ > 0 such that for χ∗ ≤ χ ≤ 1 and µ̃− µ ≥ δ, the price boom d log ph
0/dx is strictly largest at an

intermediate level of development N∗0 < ∞.

Our model has succeeded in explaining the large house price booms in the elastic cities

without arguing that these cities experienced abnormally large housing demand shocks.

These markets experienced some of the largest house price booms in the country because of

their supply conditions, not in spite of them.

The final puzzle explained by (2.12) is why large house price booms occurred in some

elastic cities but not in others. Elastic cities are those for which εS
0 ≈ ∞. As shown in Figure

2.5(a), these cities differ in their long-run supply elasticity ε̃S. When ε̃S = ∞, the house

price boom d log ph
0/dx = 0. Prices remain flat because construction can freely respond to

demand shocks now and for the foreseeable future. House prices increase in elastic cities

only when the development constraint will make construction difficult in the near future.

The elastic American cities which experienced stable house prices between 2000 and

2006 possess characteristics that lead long-run supply to be elastic. These cities, located in

Texas and other central American areas, are characterized by flat geography, a lack of future
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regulation, and homogeneous sprawl (Glaeser and Kahn, 2004; Glaeser and Kohlhase, 2004;

Burchfield et al., 2006; Glaeser, Gyourko and Saiz, 2008; Saiz, 2010). These conditions allow

the cities to expand indefinitely, leading S to be infinite or very high. Unlimited land leads

the elasticity of supply to remain infinite forever, according to (2.4).

The level of house prices before the shock identifies the difference between the elastic

cities that can expand indefinitely and elastic cities that face constraints in the near future.

House prices increase with development. Therefore, the elastic cities nearing their develop-

ment constraints should have higher house prices before the shock than the other elastic

cities. The following implication summarizes these results.

Implication 10 Consider two cities that experience the same demand shock and in which current

housing supply is perfectly elastic (εS
0 = ∞). House prices rise more in the city in which the long-run

supply elasticity ε̃S is lower. Before the shock occurs, a greater share of the land in this city is already

developed, and the level of house prices is higher.

In practice, calculating a metro-area house price level is difficult because characteristics

such as construction costs vary widely within and across metro areas, although valiant

attempts have been made (Glaeser and Gyourko, 2005; Davis and Heathcote, 2007; Nichols,

Oliner and Mulhall, 2013). With the appropriate data, we would be able to distinguish the

low-developed from the medium-developed cities.

We have used (2.12) to explain the large house price increases in certain elastic housing

markets in the U.S. between 2000 and 2006. An additional salient feature of these booms

is that they coincided with rapid construction. As we document in Section 2.2, these

cities experienced some of the most intense permitting activity in the nation during this

period. Our model captures this phenomenon. Figure 2.5(c) plots the construction response

to the shock in different cities. In cities where current housing supply is elastic , new

construction accommodates the shock. The elastic cities include both the lightly developed

and intermediate developed areas.
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2.6 Variation in House Price Booms Within Cities

The model also makes predictions on the variation in house price increases within a given

city. Optimistic speculators hold rental housing, just as they hold land. Prices appear more

optimistic, and hence house price booms are larger, in market segments where a greater

share of housing is rented.

This result emerges from (2.12). Recall that χ is the share of the housing stock that is

owner-occupied rather than rented when x = 0. It is a sufficient statistic for the distribution

Fa of owner-occupancy utility. When χ is larger, the price increase d log ph
0/dx is smaller:

∂

∂χ

d log ph
0

dx
= − εD

εS
0 + εD

µ̃− µ

ε̃S + εD < 0.

This derivative is negative because the optimistic belief µ̃ exceeds the average belief µ.

A city’s housing market consists of a number of market segments, which are subsets of

the housing market that attract distinct populations of residents. Because they attract distinct

populations, we can analyze them using (2.12), which was formulated at the city-level. All

else equal, housing submarkets in which χ is higher experience smaller house price booms:

Implication 11 Suppose market segments within a city differ only in χ, the relative share of renters

versus owner-occupants they attract: the shock x and the short-run and long-run supply elasticities

εS
0 and ε̃S are constant within a city. Then house price booms are smaller in market segments where

χ is larger.

2.6.1 Location

We first consider variation in χ across neighborhoods. Neighborhoods provide an example

of market segments because they differ in the amenities they offer. For instance, some

areas offer proximity to restaurants and nightlife; others are characterized by access to good

public schools. These amenities appeal differentially to different populations of residents.

Variation in amenities hence leads χ to vary across space. Neighborhoods whose amenities

appeal relatively more to owner-occupants (high a residents) than to renters (low a residents)
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are characterized by a higher value of χ.

Consistent with Implication 11, house prices increased more between 2000 and 2006 in

neighborhoods where χ was higher in 2000. We obtain ZIP-level data on χ from the U.S.

Census, which reports the share of occupied housing that is owner-occupied, as opposed

to rented, in each ZIP code in 2000. The fraction χ varies considerably within cities. Its

national mean is 0.71 and standard deviation is 0.17, while the R2 of regressing χ on city

fixed-effects is only 0.12. We calculate the real increase in house prices from 2000 to 2006

using Zillow.com’s ZIP-level house price indices. We regress this price increase on χ and city

fixed-effects, and find a negative and highly significant coefficient of −0.10 (0.026), where

the standard error is clustered at the city level.

However, this negative relationship between χ and price increases may not be causal.

Housing demand shocks in this boom were larger in neighborhoods with a lower value of χ.

The housing boom resulted from an expansion of credit to low-income households (Mian

and Sufi, 2009; Landvoigt, Piazzesi and Schneider, 2013), and ZIP-level income strongly

covaries with χ.10

The appeal of χ is that it predicts price increases in any housing boom in which there is

disagreement about future fundamentals. In general, χ predicts price increases because it

is negatively correlated with speculation, not because it is correlated with demand shocks.

Empirical work can test Implication 11 by examining housing booms in which the shocks

are independent from χ.

2.6.2 Structure Type

The second approach to measuring χ is to exploit variation across different types of housing

structures. According to the U.S. Census, 87% of occupied detached single-family houses in

2000 were owner-occupied rather than rented. In contrast, only 14% of occupied multifamily

housing was owner-occupied. According to Implication 11, the enormous difference in χ

10The IRS reports the median adjusted gross income at the ZIP level. We take out city-level means, and the
resulting correlation with χ is 0.40.

84



between these two types of housing causes a larger price boom in multifamily housing, all

else equal.

This result squares with accounts of heightened investment activity in multifamily

housing during the boom.11 For instance, a consortium of investors—including the Church

of England and California’s pension fund CalPERS—purchased Stuyvesant Town & Peter

Cooper Village, Manhattan’s largest apartment complex, for a record price of $5.4 billion in

2006. Their investment went into foreclosure in 2010 as the price of this complex sharply

fell (Segel et al., 2011). Multifamily housing attracts speculators because it is easier to rent

out than single-family housing. Optimistic speculators bid up multifamily house prices and

cause large price booms in this submarket during periods of uncertainty.

2.7 Conclusion

In this paper, we argue that speculation explains an important part of housing cycles.

Speculation amplifies house price booms by biasing prices toward optimistic valuations. We

document the central importance of land price increases for explaining the U.S. house price

boom between 2000 and 2006. These land price increases resulted from speculation directly

in the land market. Consistent with this theory, homebuilders significantly increased their

land investments during the boom and then suffered large capital losses during the bust.

Many investors disagreed with this optimistic behavior and short-sold homebuilder equity

as the homebuilders were purchasing land.

Our emphasis on speculation allows us to explain aspects of the boom that are at odds

with existing theories of house prices. Many of the largest price increases occurred in cities

that were able to build new houses quickly. This fact poses a problem for theories that stress

inelastic housing supply as the source of house price booms. But it sits well with our theory,

which instead emphasizes speculation. Undeveloped land facilitates speculation due to

rental frictions in the housing market. In our model, large price booms occur in elastic cities

11Bayer, Geissler and Roberts (2013) develop a method to identify speculators in the data. A relevant
extension of their work would be to look at the types of housing speculators invest in.
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facing a development barrier in the near future—cities in arrested development.

Our approach also makes some new predictions. Price booms are larger in submarkets

within a city where a greater share of housing is rented. Although we presented some

evidence for this prediction, further empirical work is needed to test it more carefully.

In all, we have presented a different but complementary story of the sources of housing

cycles than the literature has offered. Our theory explains several puzzles and suggests new

directions for empirical research.
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Chapter 3

Regulators vs. Zombies: Loss

Overhang and Lending in a Long

Slump

3.1 Introduction

Why are economies slow to recover from recessions that coincide with financial crises?

Reinhart and Rogoff (2009) document the recurrence of this pattern in macroeconomic data

going back to the thirteenth century. Its latest return followed the U.S. financial crisis of

2008, in what Hall (2011) refers to as the Great Slump. The fact has inspired much debate

among researchers and policymakers.

This paper presents micro-level evidence of one possible mechanism responsible for the

persistence of long slumps. The banking sector suffers from loss overhang, in which the need

to write down losses in the future against impaired loans on the balance sheet today reduces

the value of making new, positive NPV loans. The standard debt overhang mechanism of

Myers (1977) is part of this story, since a suffering bank with unmarked losses would be

severely undercapitalized were those losses recognized. But an additional constraint comes

from bank incentives to deter regulatory action. When a healthy loan matures and pays

87



off, a bank can improve its risk capital ratio by investing the proceeds in less risky assets,

such as deposits in other banks. This insight helps clarify the ambiguous predictions of the

debt overhang model about a bank’s incentive to take risks when near insolvency. I refer to

banks afflicted with loss overhang as zombie banks, or zombies.

I use a sample of several hundred FDIC-induced resolutions during the Great Slump to

show how loss overhang impairs and distorts lending prior to a zombie’s failure. The FDIC

and its companion regulators have the legal right to take banks into receivership in order to

protect the claims of depositors. Remaining creditors and shareholders take losses while

the FDIC arranges the assumption of insured deposits and the sale of underlying assets. In

the process, what remains of the bank’s balance sheet is refreshed, with future losses being

separated from rolled-over deposit funding.

Prior to failure, zombies operate with a significant portion of their loan book marked well

above market value. Subsequent to resolution, the FDIC sells these loans in the secondary

market at a discount between 40 and 70 percent of book value. This loss overhang restricts

lending in relatively healthy loan categories and leads zombies to hoard safe assets. Thus,

loss overhang may also offer a micro-level theory of excess savings in the liquidity trap that

is directly related to ongoing problems in the banking sector.

Because I cannot observe the zombies in isolation after resolution, my main empirical

strategy involves generating synthetic banks by merging the records for zombie and eventual

acquirer banks and assessing the treatment effect of resolution on lending activity in these

synthetic banks. The FDIC is most likely to close banks that are in the worst shape, so post

resolution growth is probably lower than if zombies were treated at random. This also

implies that any selection bias should work against finding a resumption in lending post

resolution.

I use zombie characteristics and losing bidder banks to address concerns about omitted

acquirer traits driving my results. When the zombie bank is large relative to the synthetic

bank, the reversal of pre-failure trends in lending is larger. Thus acquirer activity post

resolution depends on the new funding from the acquired bank. A second approach uses
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the post failure lending paths for losing bidder banks to generate counterfactual lending

paths for the acquiring bank. I combine this counterfactual path with the true acquirer’s

post failure path to infer the counterfactual lending path for the zombie bank alone. Again I

find that lending resumes for zombies following resolution.

As the crisis evolved, the FDIC may have run into resource constraints—in both liquidity

and manpower—that limited its ability to deal with the growing number of zombies. The

number of banks operating under regulatory notice soared relative to the number of banks

being closed. As a consequence, a substantial number of banks were left in a stultifying

zombie state for months and perhaps years. In the first quarter of 2010, one in eight

commercial banks were classified as problem banks by the FDIC.

Not only does loss overhang restrict lending in these surviving zombies, healthy banks in

the same area appear unable to pick up the slack. The result is slower growth. Most zombies

are small to medium-sized banks suffering from losses in residential and commercial

construction and land development loans. These losses appear to spill over into unrelated

sectors, such as services, mining, and manufacturing. Employment in zombie counties—

counties with a high fraction of local deposits in zombie banks—recovers more slowly in

these sectors.

The label zombies carries with it the suggestion that the only appropriate policy for

healing these banks is to kill them, the goal being to allow the zombies to shed their bad

assets. In 2008, policymakers dealt with struggling banks mainly by recapitalizing them,

rather than working to remove impaired loans from bank balance sheets. While both policies

might have the same direct effect on bank capital ratios, the latter may still leave banks with

an expected future capital loss. Thus, my evidence on loss overhang suggests a reason why

a good bank/bad bank resolution may be preferred to direct equity injections, if speeding

the resumption of lending is an objective.

Section 3.2 places this paper in the context of related work. Section 3.3 provides an

overview of the pertinent U.S. banking regulations and the bank resolution process. Section

3.4 introduces the data. Section 3.5 introduces the synthetic bank series, analyzes these
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series around the failure event, and documents substantial discounts on zombie loan pools.

Section 3.6 explores the effect of FDIC-induced failure on lending relative to the universe

of banks, to surviving zombies, and to counterfactual lending paths generated from losing

bidders. Section 3.7 explores how the county-level incidence of deposits in zombie banks

affects growth. Section 3.8 concludes.

3.2 Related Literature

This study has a conceptual analogue in Bernanke (1983), who argues that a credit crunch

induced by bank failures severely exacerbated the Great Depression. However, data availabil-

ity limits his ability to identify the mechanism through which bank balance sheets impede

growth.

The motivating macroeconomic facts follow from the macro empirical literature on

economic recoveries following financial crises, typified by Reinhart and Rogoff (2009). Using

cross-country and mainly informal historical analyses, these papers emphasize the persistent

weakness in asset and labor markets and dramatic increases in government indebtedness

following financial crises. Empirical study stays at the level of slow-moving, macroeconomic

aggregates. As a consequence the mechanism through which financial contraction frustrates

recovery and the appropriate policy response remain unclear,

This paper makes a complementary argument to those in Peek and Rosengren (2000)

and Ashcraft (2005), in which weakening or closing a healthy bank worsens local economic

outcomes. Here, closing a sick bank improves local economic outcomes.

This paper also contributes to the literature on the bank lending channel spawned by

Bernanke and Blinder (1992) and assessed empirically by Kashyap and Stein (2000). The

theoretical foundation for these papers relies on contractions in bank balance sheets caused

by monetary policy shocks. Unlike these papers, my focus is on balance sheets impaired by

unrecorded or anticipated losses rather than policy-induced reductions in bank reserves.

In a sense, I am applying the mechanism from Bernanke and Gertler (1989), which focuses

on borrower balance sheets, to understand how lender balance sheets can influence the
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economy through the bank lending channel.

My findings relate to those in Mian and Sufi (2009) and Mian and Sufi (2012), who show

how household indebtedness led to reduced demand in some parts of the country during

the Great Slump. By documenting an alternative source of reduced demand—constrained

supply of new loans by local banks—I show how demand may have impeded growth

in those regions that did not see dramatic expansions in subprime lending. Mian and

Sufi (2012) focus on non-tradable goods, while I show how this force may have restricted

employment growth in tradable goods industries.

Caballero, Hoshi and Kashyap (2008) show how struggling banks misdirected loans to

otherwise insolvent, zombie firms and how this “evergreening” distorted competition in

product markets. In the Great Slump, American bank regulators anticipated this kind of

activity and used regulatory agreements and bank examinations to try and prevent it. For

example, most agreements include a clause proscribing the extension of credit to borrowers

not current on existing loans. In addition, while the Japanese government encouraged banks

to keep lending through its crisis, the American government appears to have been more

concerned with preserving financial stability.1

3.3 Overview of U.S. Banking Regulation

The key institutional details relevant to this study concern how regulators monitor and

control struggling banks and how the FDIC administers resolution of failed banks.

3.3.1 Prompt Corrective Action

Standards for adequate bank capitalization were legislated in the Federal Deposit Insurance

Act (FDIA). When a bank is not adequately capitalized, the FDIA requires regulators to take

“prompt corrective action” to address the situation. The act established five capital tiers: “well

capitalized,” “adequately capitalized,” “undercapitalized,” “significantly undercapitalized,”

1See Hoshi and Kashyap (2010) for an elaboration of this difference.
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and “critically undercapitalized.” Banks are classified based on standards for the total

capital ratio, the Tier 1 capital ratio, and the leverage ratio. For example, a “well capitalized”

bank has a total risk-based capital ratio of at least 10 percent, a Tier 1 ratio of at least 6

percent and a leverage ratio of at least 5 percent. A “critically undercapitalized” bank has

tangible equity equal to or less than 2 percent of average quarterly tangible assets.

Undercapitalized institutions are subject to growth limitations and required to submit

a capital restoration plan. Additional requirements for “significantly” and more severely

undercapitalized banks include requirements to issue additional stock, to reduce total

assets, and to stop taking deposits from other banks. When a bank becomes “critically

undercapitalized,” the FDIA requires a receiver to be appointed within 90 days, unless

another documented path to recovery has been identified. Section 38 of the FDIA authorizes

the FDIC to delay mandatory resolution for an additional 180 days to prevent risk of loss to

the deposit insurance fund.

3.3.2 FDIC Resolutions

The FDIC2 has two roles in every bank failure: to protect the depositors in the amount of

their insured deposits and to administer the receivership for the failed institution following

resolution. The chartering authority for a bank typically closes it when it has become

insolvent, critically undercapitalized, or unable to meet requests for deposit withdrawals.

There are three basic resolution methods: purchase and assumption transactions, deposit

payoffs, and open bank assistance transactions.3 Activities begin with the receipt of a

Failing Bank Letter, after which the FDIC sends in a team of specialists to assemble an

information package (including a statistical sampling-based asset valuation review). The

FDIC determines all possible resolution methods and moves to market the failing bank by

2This section draws on the FDIC resolutions handbook, available at http://www.fdic.gov/bank/
historical/reshandbook/index.html. It describes each FDIC strategy for dealing with a failed bank
and outlines receivership operating protocols. The handbook was originally written to collect and preserve the
wisdom accumulated following the savings and loan crisis, so it is possible that some of these details are stale.

3Not used since 1992.
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inviting bidders and providing them with the information package.

Bids are submitted as (1) a premium for the franchise value of the failed bank’s deposits

and (2) a bid for all or part of the institution’s assets. Since 1991, the FDIC has been

required to choose the resolution alternative (including bid) that is least costly to the deposit

insurance fund. The FDIC transfers cash to an acquiring institution in an amount equal

to liabilities assumed less assets purchased less franchise premium. The entire resolution

process takes 90 to 100 days.

Purchase and assumption (P&A) transactions are the most common resolution method.

Within this category, there are variations as to how assets are transferred. These variations

include loan purchase, put option, asset pool, whole bank, loss sharing, and bridge bank

P&As. In a loss sharing transaction, the FDIC absorbs typically 80 percent of credit losses,

usually on business and commercial real estate loans.

In basic P&As, assets passing to acquirers are generally limited to cash and cash

equivalents. These were more common prior to the codification of bidder due diligence

practices in the early nineties. In loan purchase P&As, the winning bidder assumes a small

portion of the portfolio, usually only the installment loans, more generally between 10 and

25 percent of assets. A modified P&A is a loan purchase P&A plus some of the mortgage

loan portfolio, more generally between 25 and 50 percent of failed bank assets. Optional

asset pool P&As allow the FDIC to market homogeneous loan pools to other acquirers.

Whole bank P&As transfer all assets, but at a substantial discount. Loss sharing P&As

transfer assets, but not at a premium. Instead, cash moves to the acquirer as charges are

taken and from the acquirer as recoveries are realized. During the S&L period in the early

nineties, as the crisis became more acute, the FDIC moved towards resolutions that passed

more of the assets to the acquirer.

3.4 Data

I assemble data from several sources, briefly described here. Bank balance sheet data

for the years 2001 through 2011 come from the FFIEC quarterly Consolidated Reports of
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Condition and Income (Forms 031/041), informally referred to as the Call Reports. Data

on the deposits and geographical locations of bank branches come from the FDIC’s annual

Summary of Deposits. For measuring local employment, payrolls, and establishment counts

at the county level, I use the Census Bureau’s quarterly Census of Employment and Wages.

I draw a variety of items from the FDIC’s web site. These include the identity and dates

of bank failures, the names of acquiring banks, the names of losing bidder banks, estimated

losses from resolution, and transaction details for sales of loan pools out of receivership. In

addition, I draw details on the Deposit Insurance Fund from the Chief Financial Officer’s

quarterly reports to the FDIC’s board.

There is no official public record of problem, or zombie, banks. The FDIC’s Quarterly

Banking Profile only reports aggregate statistics on banks with CAMELS ratings of three,

four, or five. However, CalculatedRisk, an economics web log, assembles an unofficial

record of all banks operating under Prompt Corrective Actions and Cease and Desist orders.

Regulators are required to publish these agreements. I use the unofficial list to identify

zombie banks beginning in 2007 and running through 2011. The unofficial list matches the

official numbers closely.

3.5 Bank Failures in the Great Slump

Figure 3.1 documents the sample of bank deletions studied in this paper. I focus on FDIC-

assisted mergers because those are the bank failures for which we can observe post-failure

lending activity. Assisted mergers account for the majority of failures during this period.

The crisis episode begins in 2008 with 44 failures that year, half of which were assisted

mergers. In 2009, 133 banks failed with 114 of those being assisted mergers. In 2010, there

were 130 assisted mergers accounting for all of the assisted failures. During this time, a

number of unassisted mergers occurred as well, though at a slower rate than during the

expansion. In 2008, there were 260 unassisted mergers. In 2009 and 2010, there were 158

and 183 unassisted mergers, respectively.
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Figure 3.1: Bank Deletions since 2000

Notes: Data come from the FDIC CB tables.

For each zombie,4 I generate synthetic bank time series by combining the quarterly Call

Reports for the zombie prior to closure with the Call Reports for the acquiring bank. I then

match these synthetic series to the Call Reports for the acquiring bank after the closing

date. The result is a record of assets, liabilities, loans, and losses in a hypothetical bank

that can be treated with FDIC resolution and compared to the population using a standard

differences-in-differences (DD) approach.

Figure 3.2 displays these synthetic time series along with the pre closure, zombie time

series, shown in event time around the failure date. For visual convenience, I normalize each

series to equal one six quarters prior to failure. On average, 20 percent of synthetic bank

loans pass from the zombie’s balance sheet to the FDIC or to remarked loss-share assets.5

4I use the term zombie to refer to any bank operating with potential losses large enough to induce insolvency.
Here, these are banks deemed by regulators to be too weak to recover without an FDIC-assisted merger.

5Loss-share assets are recorded in a separate field in the Call Reports. Because the FDIC bears 80 percent of
the risk of these assets, the acquiring institution can carry them at a maximum of 20 percent of prior book value.
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Loans staying with the receivership are concentrated in the commercial and industrial (C&I),

construction, and commercial real estate (CRE) categories, indicated by the sharp drops in

Figure 3.2. This motivates my analysis of lending activity in these categories following an

FDIC-assisted resolution.

Total Loans Commercial and Industrial Loans

Construction Loans Commercial Real Estate Loans

Figure 3.2: Loan Paths for Zombie and Synthetic Banks

Notes: The x-axis tracks event time by quarter around the date a bank is absorbed into an acquiring bank, with time 0
being the first call report date after the event. Variables are normalized by their value 6 quarters prior to the event date.

Total lending in the average synthetic bank grows much more slowly in the pre period

and actually contracts in the case of C&I loans. Sharp contractions in these categories for

the zombie banks drive this pattern. The paths for construction and CRE loans are similar

in the pre and post periods.

Figure 3.3 provides evidence that loans passing from zombies into receivership are
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substantially impaired. The FDIC web site offers details about loan pools which it has sold

out of receivership. Using this data, I compute the typical discount to book value applied

to these pools upon sale. Non-performing loans take a 60 percent discount on average,

while even performing loans appear to take a 30 percent discount. Lost relationship capital

appears insufficient to explain these discounts, since non-performing loans presumably

carry less valuable relationship capital when on the originator’s balance sheet. Further

anecdotal evidence that zombies carry loans at generous book values comes directly from

the FDIC’s resolution handbook, which states in passing that “asset values are generally

overstated in a failing bank or thrift.”

Figure 3.3: Loan Sale Discounts by Loan Category

Notes: Data from the FDIC on loan pool sales since 2005. The discount is computed relative to book value reported by the
FDIC.

More direct evidence of bad loans passing out of the banking system comes from the

synthetic time series. Figure 3.4 plots the seriously delinquent and non-accrual loan shares

across loan categories around the failure date. As a fraction of bank assets, residential and

commercial construction loans are the most impaired with more than three percent of the
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synthetic bank’s loan book in this category pre failure. This share falls by 50 percent in the

quarter immediately following resolution. The CRE and C&I non-performing loan shares

also fall after resolution.

Figure 3.4: Problem Loan Shares for Synthetic Banks

Notes: The x-axis tracks event time by quarter around the date a bank is absorbed into an acquiring bank, with time 0
being the first call report date after the event. Shares are computed by adding the non-accrual and 90+ days delinquent
bins and dividing by total loans.

Figure 3.5 tracks bank capital, bank deposit holdings in other banks, charge-offs, and

the loan loss provision balance for the average zombie and synthetic banks. The average

bank is nearly insolvent at the time of failure, reporting an equity ratio of two percent in

its final Call Report. Leading to failure, zombie holdings of deposits in other depository

institutions triple. Taken with the evidence on lending in Figure 3.2, zombies appear not to

be engaged in risk-shifting behavior but rather to be stockpiling safe assets in an attempt

to deter regulatory action. Of course, this pattern may be a mechanical consequence of
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increased loan loss provisioning. Were this the case, we would expect the same pattern to

appear for the acquiring bank, as loan loss provisions do trend up following the acquisition.

However, acquiring bank holdings of other bank deposits only increase slightly post merger.

Capital Ratio Deposits Held in Other Banks

Log(Charge-Offs) Loan Loss Provision Balance

Figure 3.5: Capital and Loss Paths for Zombie and Synthetic Banks

Notes: The x-axis tracks event time by quarter around the date a bank is absorbed into an acquiring bank, with time 0
being the first call report date after the event. Variables are normalized by their value 6 quarters prior to the event date.

Table 3.1 compares the three groups of banks in this study: synthetic banks, zombie

banks, and the remaining commercial banks. I mark a bank as a zombie if it is operating

under a PCA or Cease and Desist agreement with its regulator. My sample of synthetic

banks includes 252 failed bank/acquirer pairs. In Table 3.1, we can see that zombie banks

are less capitalized, have assets allocated more toward loans, and their loans are more

concentrated in construction and CRE. These patterns come through in the synthetic column,
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though the median zombie is one fifth the size of its synthetic counterpart.

3.6 Resurrected Lending following Resolution

The ideal experiment for testing the loss overhang channel would randomly assign a group

of zombies to have their bad loans swapped for cash at face value. Comparing the lending

paths and asset allocations pre and post treatment to a group of control zombies would

allow me to measure the causal effect of this swap and to infer how losses restrict and

distort the financing of new projects. I map this ideal to the data by studying FDIC-assisted

mergers and the paths of synthetic zombie-acquirer pairs around the merger event.

FDIC-assisted mergers allow zombies to shed much of their current and future non-

performing loan portfolios by absorbing these assets into an FDIC-operated receivership.

Thus, they provide the closest empirical analog to a hypothetical bad loan swap. The 266

assisted mergers that occurred between 2007 and 2010 provide the largest sample of such

events in the U.S. since the savings and loan crisis.

These resolutions are not a perfect test because I can only observe the zombie’s activity

prior to resolution. As a result, I focus on the synthetic balance sheets created by combining

the zombies with their eventual acquirers. The design is a generalized difference-in-

differences (DD) approach, in which FDIC resolution is the treatment variable. The universe

of healthy banks and the set of surviving zombies act as alternative control groups.

3.6.1 Results from the Basic Regression

Tables 3.2 and 3.3 present panel regressions of quarterly growth rates on a treatment indicator

for FDIC-assisted merger and a series of controls, including the mean bank size, year-by-

quarter fixed effects, and state fixed effects. I exclude the quarter immediately following

resolution in order to avoid counting mechanical changes occurring during the merger

as real activity. Because the left hand variable is a first difference, I do not include bank

fixed effects, under the assumption that the error term in first differences is independent of

time-invariant factors. Bertrand, Duflo and Mullainathan (2004) warn that serial correlation
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Table 3.1: Bank Statistics during the Great Slump

(a) First Quarter 2008

Bank Type Synthetic Zombie Universe

Assets (Median, 000s) 1,043,870 190,434 128,816
Assets (000s) 7,421,626 441,919 1,513,299
Total Loans/Assets 0.724 0.737 0.652
Deposits in Other Banks/Assets 0.030 0.031 0.048
Book Equity/Assets 0.111 0.098 0.132
Construction Loans/Total Loans 0.219 0.304 0.122
CRE Loans/Total Loans 0.288 0.255 0.237

Count 252 165 7664

(b) First Quarter 2009

Bank Type Synthetic Zombie Universe

Assets (Median, 000s) 1,097,194 165,751 139,036
Assets (000s) 8,311,734 427,474 1,669,090
Total Loans/Assets 0.702 0.711 0.658
Deposits in Other Banks/Assets 0.051 0.068 0.067
Book Equity/Assets 0.099 0.076 0.115
Construction Loans/Total Loans 0.182 0.196 0.102
CRE Loans/Total Loans 0.306 0.276 0.247

Count 252 299 7448

(c) First Quarter 2010

Bank Type Synthetic Zombie Universe

Assets (Median, 000s) 1,091,840 193,036 148,149
Assets (000s) 8,865,004 451,767 1,738,028
Total Loans/Assets 0.662 0.691 0.637
Deposits in Other Banks/Assets 0.086 0.089 0.085
Book Equity/Assets 0.100 0.075 0.110
Construction Loans/Total Loans 0.127 0.139 0.079
CRE Loans/Total Loans 0.334 0.332 0.256

Count 246 674 7178

Notes: Data come from quarterly Consolidated Reports of Condition and Income (Call Reports). Synthetic banks are the
consolidated Call Reports for failed banks and their prospective acquirers. Zombie banks are banks operating under an
active Prompt Corrective Action or Cease & Desist notice. Construction loans combine residential and non-residential
construction and land development loans. CRE loans combine owner-occupied and non-owner-occupied commercial real
estate loans.
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in DD designs can severely bias inference toward finding an effect. As a result, I cluster

standard errors at the bank level.

The average zombie is 20 percent the size of the combined entity, so the actual treatment

effect will be significantly diluted by being pooled with a healthy bank’s outcome path.

Despite this bias against my experimental design, Tables 3.2 and 3.3 show that resolution

leads to a substantial recovery in lending in the synthetic bank. When compared to the full

universe of healthy banks in Table 3.2, the post period shows synthetic lending expanding in

the post period by between 1.4 and 3.9 log points on a quarterly basis. This is a substantial

recovery, considering the pre period growth rate for synthetics is 0.4 log points, while the

system-wide lending growth rate is 2.8 log points over this period. This recovery is most

evident and robust for C&I loans, where lending growth rates increase between 1.4 and 3.4

log points for synthetics. Construction and CRE loans show a lending recovery relative to

the universe only in some specifications.

When compared to the sample of surviving zombies in Table 3.3, the change in lending

growth is even more dramatic. The post period increase in total lending is between 3.9 and

7.0 log points and the increase in C&I is between 5.0 and 7.4 log points. This is equivalent to

a relative annual increase in total lending growth of between 15.6 and 28.0 log points. CRE

lending increases substantially, between 2.0 and 3.5 log points per quarter, and construction

lending contracts significantly less quickly with a relative increase of 4.9 to 5.8 log points.
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Synthetic banks reduce their rates of allocation to the safest, most liquid assets, with

other bank deposit growth contracting by between 3.4 and 6.5 log points post resolution.

This contraction coincides with an aggregate expansion for the universe of healthy banks in

deposits held in other banks. Loan loss provisioning continues to increase post resolution.

At first blush, this seems inconsistent with most bad loans passing into the receivership and

off of the synthetic bank’s balance sheet. However, we would expect this pattern if prior to

resolution, either zombies were underprovisioning in order to preserve capital or if a higher

rate of charge-offs due to defaulting loans counteracted provisioning growth.

3.6.2 Alternative Explanations and Secondary Tests

Without a natural experiment, endogeneity concerns cannot be assumed away and must

be addressed directly. I consider three important endogeneity risks. First is the claim that

lending would have recovered even without resolution. Second is the related claim that

because resolution reduces the size of the loan book, some amount of mechanical mean

reversion should be expected. Third is the claim that recovery is driven exclusively by

acquirer characteristics and plans.

What is the counterfactual lending path for zombies?

Prior to resolution, the problem loans in zombie bank balance sheets are concentrated in

residential and commercial land development and construction loans. These loans are

largely problematic because of diminished local opportunities. For this reason, we might

expect zombies to be geographically concentrated in areas with limited projects to finance

going forward. Relative to other banks, these banks should see the slowest resumption of

lending following the Great Slump. Resolution and the new bank’s balance sheet clearly

alter this course.

A second response pertains to the FDIC’s motives. The FDIC’s key objective is to

protect insured depositors through the lowest cost option from the point of view of the

Deposit Insurance Fund (DIF). If opportunities are expected to improve in a bank’s area,

105



the least costly alternative from the FDIC’s point of view is forbearance, not resolution and

assisted merger. Regulators should only shut down the worst performing banks in the worst

performing geographies. So, if there is a selection bias in the sample, it should bias these

results against an increase in lending post failure.

Furthermore, the timing of the regulator’s decision to close a bank is unlikely to coincide

with the exact nadir of lending for the failing bank. Regulators are constrained both by the

legislated timeline for dealing with struggling banks and by limited human resources. Once

a bank is marked as critically undercapitalized and enters into an action agreement with

its regulator, the FDI Act requires the FDIC to begin planning for closure and to close the

bank within 270 days, conditional on the agreement not being terminated. In addition, the

FDIC tries to group multiple failures in geographically close areas to avoid spreading its

human resources too thinly. More fundamentally, the FDIC is less concerned with lending

activity than it is with protecting insured deposits and the insurance fund. Thus, observing

a collapse in lending would not be sufficient to induce regulatory action.

Can we distinguish mechanical mean reversion from new lending?

Assume that both the zombie and acquirer are properly funding all postive NPV projects

prior to resolution. Now, the zombie runs into some bad luck unrelated to the quality of

lending opportunities, such as a particularly large individual default or a general deposit

run. Regulators might close the zombie and arrange a merger, which would reduce the size

of the synthetic loan book since some loans pass into the receivership. Then, the synthetic

bank resumes lending at exactly the same gross rate. Because the base loan book is now

temporarily smaller, the post resolution rate of growth will look larger even though the

bank’s set of new projects has not changed.

First, this criticism can not explain a pattern where there is a sign change in activity

around the closure date, such as for C&I lending. In this case, the mechanical contraction

biases the difference toward zero through increasing the pre failure rate. Second, a compari-

son of different categories of asset allocation holds constant the contraction in the loan book.
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Since some categories contract and some do not grow faster post resolution, my overall

findings cannot be a mechanical result of the smaller loan book.

What is the counterfactual lending path for acquirers?

I do not observe the separate activities of the zombie and acquirer banks post merger. More

aggressive lending by the acquirer might be sufficient to generate the observed pattern of

lending growth. Of course, if this more aggressive lending were due to the new funding to

the combined institution that results from resolution, this would be part of the mechanism

argued for in this paper. Still, a close reading of my ideal experiment and hypothesis requires

that zombie lending recover post treatment, holding acquirer characteristics constant.

Table 3.4 presents one attempt to study recovery while holding acquirer characteristics

constant. It implements the following thought experiment. If zombie characteristics matter

for recovery, then we should see a larger recovery when the zombie is larger relative to

the synthetic bank and when the zombie’s loan portfolio was worse prior to resolution. I

measure zombie size with the ratio of zombie deposits to synthetic bank deposits in the

quarter prior to failure. I measure the quality of the zombie’s loan portfolio with the ratio of

FDIC’s estimated losses from the receivership to the size of the zombie’s loan book in the

quarter prior to failure. The key coefficient of interest is the interaction of zombie size with

loss size for the post failure period.

The evidence is broadly consistent with zombie characteristics being important for

the post resolution results. A larger zombie bank relative to the synthetic bank coincides

with a larger recovery in lending and a larger reduction in lending to other banks. Going

from the 25th to the 75th percentile increases the post failure total lending rate by 1.0

(= 3.6× (0.33− 0.05)) log points, the C&I lending rate by 1.4 (= 4.9× (0.33− 0.05)) log

points, and reduces the post failure bank lending rate by 0.3 (= 1.0× (0.33− 0.05)) log

points. Conversely, the loss size coefficients go in the opposite direction, suggesting that
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worse performing zombies did significantly more lending prior to failure and show more

sluggish lending recovery post failure. However, the interaction coefficients imply that the

net effect of these zombie characteristics is to reinforce the recovery. Moving from the 25th

to the 75th percentile in the interaction term increase the post failure total lending rate by

1.0 (= 8.4× (0.14− 0.02)) log points, the C&I lending rate by 1.32 (= 11.0× (0.14− 0.02))

log points, and reduces the post failure bank lending rate by 2.6 (= 22.0× (0.14− 0.02)) log

points.

An alternative approach to partialing out the expected path for acquirer activity is to use

the bidding process to identify a comparable would-be acquirer. The FDIC invites multiple

bids during the resolution process in order to minimize the cost to the insurance fund.

Subsequent to the merger, the FDIC publishes the list of losing bidder banks and the list of

bids. In order to keep the exact bids confidential, the FDIC does not map the bids to the

bidders and only publishes the list of bidders when there are two or more alternatives. I

use these disclosures to match bidders to actual acquirers. Disclosure restrictions limit my

sample to 100 failed banks.

For each failed bank, I generate counterfactual growth rates post failure in the key

balance sheet variables by averaging the rates for the bidder banks. Assuming the synthetic

growth rates are weighted averages of the zombie and acquirer rates, I can solve for the post

failure zombie rate of growth using the formula,

rSynthetic = wZombie · rZombie + (1− wZombie) · rAcquirer, (3.1)

where the zombie weight is the zombie size variable described above and the acquirer

growth rate is proxied with the average bidder rates. This imputation procedure does not

impose restrictions on the sign of the zombie rate relative to the synthetic rate. If bidder

banks grow fast enough relative to the synthetic bank, the imputed lending rate for the post

failure zombie can be negative.

Table 3.5 presents a panel regression comparing these imputed zombie paths to the path

for problem banks. While my other specifications map to experiments in which the synthetic
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bank is treated with resolution, this specification measures treatment effects for the sample

of zombies. The smaller sample introduces more noise into the estimates, especially in the

case with state fixed effects where the number of treated zombies per cell becomes quite

small. I present these regressions to preserve consistency.

The results suggest that zombie lending recovers post resolution, even after partialing

out a plausible counterfactual lending path for the acquiring bank. Total lending increases

by between 5.2 and 15 log points. C&I lending increases between 5.6 and 7.3 log points.

The construction lending contraction slows by between 4.9 and 5.8 log points. Though not

statistically significant, lending to other banks decreases by between 8.1 and 22 log points.

3.7 Reduced Growth in Zombie-Afflicted Counties

Taken together, the evidence presented so far suggests that by clearing bad loans from

zombie balance sheets, the process of FDIC-assisted merger and receivership enables new

lending and asset reallocation by zombie banks. Prior to resolution, these banks suffer from

an overhang of anticipated losses on past loans and must forgo new lending opportunities

as a result. What remains to be shown is whether the phenomenon of loss overhang was

pervasive enough to impede economic outcomes during the Great Slump. This conclusion

rests on two premises. First, the banking system suffered enough losses to overwhelm the

regulatory apparatus for resolving troubled institutions. This allowed a number of banks to

continue operating in a stultifying zombie state for months and years. Second, the presence

of zombie banks in some counties was large enough to prevent healthy banks from picking

up the slack in positive NPV projects. To address the criticism that these were precisely the

geographies expected to grow most slowly, I focus on activity in tradable goods industries,

which should be responding to macro factors.
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3.7.1 FDIC Constraints

When the FDIC closes an institution and initiates a sale, it is obligated to cover the difference

between the deposits assumed and assets purchased by the acquirer. Therefore, whether

the FDIC has sufficient liquidity to resolve a large number of banks is a first order concern.

The FDIC has a Congressionally approved credit line with the US Treasury, which in theory

should protect it from a liquidity squeeze. However, FDIC actions during the crisis indicate

that they demurred from drawing on this resource.

Historical evidence of FDIC liquidity constraints comes directly from the FDIC’s resolu-

tion handbook, in its discussion of lessons learned from the savings and loan crisis:

To efficiently resolve a banking crisis, it is critical to have an adequate insurance
fund reserve. If such funds are not available, the problems may become worse
as a result of delay. As the Federal Savings and Loan Insurance Corporation
(FSLIC) began to experience a greater outflow of funds than it had coming in, it
took steps to conserve cash. Although many of its programs were designed to
give failing institutions time to work out their problems, some programs had the
unintended effect of postponing the problems and actually increasing resolution
costs. The FSLIC lacked the financial liquidity to promptly close insolvent institutions,
and many of them remained open to compete with healthy institutions.

During the banking crisis that began in 2007, it is unclear whether the FDIC heeded its own

earlier warning. Figure 3.6 shows that the Deposit Insurance Fund (DIF) quickly exhausted

its resources as the crisis escalated in 2008 and 2009. Prior to the crisis, the level of the fund

balance was approximately $50 billion or a little over one percent of insured deposits. The

deficit that emerged in the third quarter of 2009 owed to a significant accretion of contingent

liabilities set aside for future failures. Receivables from resolutions increased as well, but

not at a pace sufficient to match the rise in fund liabilities.

To address this deficit, the FDIC was required to outline a restoration plan in the third

quarter of 2008. In the fourth quarter of 2009, the FDIC attempted to address its liquidity

problem by drawing $42 billion of future assessments into its account. Arguably, this was

not an ideal time for the FDIC to be shoring up the DIF.

More evidence that the resolution pipeline backed up during the crisis is shown in Figure
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Figure 3.6: Zombie and Failed Banks against the DIF Balance

Notes: Data come from the FDIC quarterly CFO reports to the Board of Directors and from the Quarterly Banking Profile.

3.7. I use book equity and risk capital to plot the mean capitalization for zombies just prior to

receiving a Prompt Corrective Action notice and just prior to being resolved. The oversight

apparatus shows no signs of strain, as capital ratios at the time a bank receives notice

remain constant through the crisis. In contrast, it appears that troubled banks remained in

trouble for longer as the crisis evolved, possibly due to limited regulatory resources. Early

failures have mean capital ratios greater than two percent of assets, while later failures have

average capital ratios of just one percent and frequently fail with negative reported book

equity. Given the likelihood that many of the assets in these failing banks are optimistically

marked at the time of failure, these data suggest it was possible for a deeply insolvent bank

to continue operating for months and perhaps years without regulators stepping in.
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Quarter Before Prompt Corrective Action Quarter Before FDIC Resolution

Figure 3.7: Capital Ratios for Zombie Banks over Time

Notes: Dates for Prompt Corrective Action come from public disclosures of action notices.

3.7.2 Local Economic Effects of Zombie Banks

Evidence that many zombie banks were allowed to survive despite being unable to extend

new loans does not imply that good projects were being ignored. This is because the

supply of funds from healthy banks and other capital sources may have been robust

enough to absorb the unfunded projects of surviving zombie banks. The surviving zombie

phenomenon may have only led to a reallocation of the same projects, perhaps with some

destruction of relationship capital, but ultimately with limited real consequences.

How important were zombie banks in their local economies? I use the FDIC’s Summary

of Deposits to map out the quarterly branch-level incidence of banks operating under

regulatory actions. I aggregate these time series to the county level and ask what fraction of

local deposits are housed in a zombie bank at a given point in time. Figure 3.8 plots a heat

map of zombie deposits as of the fourth quarter of 2010. In the colored counties, at least

four percent of bank deposits are held by zombie banks.
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The map of zombie counties yields two insights. First, the geographic incidence of

problem banks is surprisingly spread around the country, with most regions outside the

Northeast being marked by zombie banks. Several regions not commonly associated with

the housing and subprime booms — the Pacific Northwest, Colorado, Illinois, and Georgia

— have many zombie counties. Second, there are many counties in which the concentration

of zombie deposits is above ten percent of total area deposits. In these counties, it may

be quite possible that the remaining banks are unable to pick up all of the slack left by

their zombie competitors. Thus, it is plausible that the persistence of zombie banks has real

consequences at the local economic level. The diffuse geographic incidence of these zombies

implies that these consequences may even appear in aggregate data.

Table 3.6 presents an attempt at measuring the relationship between the presence of

zombie banks and economic outcomes at the county level. I use the establishment survey in

the Quarterly Census of Employment and Wages to measure for each county the level of

employment disaggregated into sectors. I mark zombie counties using the concentration of

county deposits in zombie banks as of the fourth quarter of 2009, which is the first quarter

the FDIC’s deposit insurance fund turns net worth negative. At this point, with the FDIC’s

constraints potentially binding, the persistence of surviving zombies is likely to influence

subsequent economic activity.

To mitigate the risk of reverse causality, I focus on the mining, services, and manufac-

turing sectors, which were not directly responsible for the banking problems. In addition,

for the mining and manufacturing sectors, national and international demand are likely to

influence activity more than local conditions. This helps address concerns about omitted

differential demand factors driving the results.

The results in Table 3.6 provide mixed evidence of spillovers from suffering banks into

industries not responsible for the crash. In 2010, zombie counties have services employment

between 1.7 and 2.5 log points lower than non-zombie counties. Mining employment is
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between 3.5 and 5.9 log points lower, and manufacturing employment is between 1.2 and

1.9 log points lower. However, the results for manufacturing and mining are not statistically

distinguishable from non-zombie counties.

3.8 Conclusion

This paper addresses a prominent puzzle in macroeconomics and finance: why are

economies slow to recover from recessions that coincide with financial crises? It offers

evidence consistent with the idea that loss overhang in the banking sector is an important

explanation. Zombie banks impaired by unrecognized losses restrict new lending in healthy

categories, prop up lending in unhealthy categories, and overallocate to safe, liquid assets.

FDIC-induced failure reverses this pattern by carving out bad loans and trading them for

cash. This allows lending to recover.

The second part of the paper shows that regulatory constraints, in particular the FDIC’s

limited deposit insurance fund, slowed the recovery and prolonged the Great Slump. These

constraints led to slower employment and establishment growth in counties afflicted with

unhealed zombies. These results underscore the importance of ensuring that regulators

have sufficient capacity during a crisis to execute their duties.
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Appendix A

Appendix to Chapter 1

A.1 Investment with Adjustment Costs and a Borrowing Constraint

We develop an infinite horizon, non-stochastic investment model, deriving the testable

hypotheses in Section 1.2 and the empirical moments for calibration in Section 1.5.3. The

model nests the standard neoclassical investment model with adjustment costs (Hayashi,

1982), a model with credit constraints and a model with managerial myopia.

A.1.1 General Setup

We begin with a discrete time version of Hayashi (1982). Firm value, V0, is given by an

infinite series of discounted net receipts, Rt. The discount rate, rt, is risk-adjusted and

possibly time varying. The expression for firm value is

V0 =
∞

∑
t=0

1
Πt

s=0(1 + rs)
Rt. (A.1)

Net receipts in each period reflect net revenues after taxes, investment costs, adjustment

costs and depreciation deductions for current and past investments:

Rt = [1− τt]πt − [1− kt] pI,t It − ψt(It, Kt) + τt

∞

∑
x=0

Dt−x(x)pI,t−x It−x, (A.2)
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where τt is the corporate tax rate, πt is pretax profits, pI,t is the price of investment goods,

kt is the investment tax credit, It is investment, ψt is adjustment costs and Dt−x(x) is the

depreciation deduction for capital of age x, based on the schedule from time t− x. Pretax

profits are πt, which equals gross revenues, ptFt(Kt, Nt), with capital, Kt, and labor, Nt,

inputs, less the cost of labor inputs. Net revenues are thus given by

πt = ptFt(Kt, Nt)− wtNt. (A.3)

Firms are price takers so output prices, pt, and wages, wt, are exogenous. Ft is weakly

concave. The firm maximizes (A.1) subject to a capital accumulation law of motion:

Kt+1 = Kt − δKt + It, (A.4)

where δ is the rate of economic depreciation. The adjustment cost function is convex and

reflects after-tax resource losses due to production disruptions and installation.1

It is useful to have an expression for the stream of future depreciation deductions owed

for investment in time t:

z0
t (β) = τtD0 + β

∞

∑
x=1

1
Πx

s=1(1 + rt+s)
τt+xDt(x). (A.5)

z0
t (β) reflects the present discounted value of one dollar of investment deductions after tax.2

If the firm can immediately deduct the full dollar, then z0
t equals τt. In general, the stream

of future deductions will depend on future tax rates and interest rates. β is an additional

discount term between zero and one, which reflects the possibility of myopia. We use our

heterogeneity analysis to identify this term separately.

1Hayashi (1982) models adjustment costs through influencing the law of motion in (A.4), rather than as a
net receipts flow. Abel (1982) models adjustment costs through augmenting pretax profits in (A.3). There is no
strong a priori argument for one versus the other. We adopt this notation to simplify the borrowing constraint
in our calibration exercise. Intuitively, it means adjustment costs are not verifiable and thus the firm cannot
borrow to offset them. It makes sense to further assume that such costs would not be deductable as well. The
hypotheses we derive do not depend on the assumption.

2In the main text, we define z without incorporating the tax rates, in order to isolate the direct effect of
bonus. Here, we define z with tax rates because it matches Hayashi (1982)’s notation and highlights the general
dependence of the term on future tax rates.
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Bonus depreciation, the policy we study in our empirical analysis, allows the firm

to deduct a per dollar bonus, θt, at the time of the investment and then depreciate the

remaining 1− θt according to the normal schedule:

zt(β) = τtθt + (1− θt)z0
t (β) (A.6)

At different points in time, Congress set θt equal to 0.3, 0.5 or 1. We use these policy shocks

to identify the effect of bonus depreciation on investment.

We further generalize zt by incorporating a nontaxable state. When the next dollar

of investment does not affect this year’s tax bill, then the firm must carry forward the

deductions to future years. Our general zt reflects this case:

zt(β, γ) = γzt(β) + (1− γ)βφzt(1), (A.7)

where γ ∈ {0, 1} is an indicator for current tax state and φ is a discounter that reflects both

the expected arrival time and the discount rate, rT, applied to the future period when the

firm switches. Note that for the nontaxable firm, β will apply to all future deductions.3

Hayashi (1982) considers the case with β and γ equal to one. We consider this case first.

Define zt ≡ zt(1, 1). We can rewrite the objective in (A.1) as

V0 =
∞

∑
t=0

1
Πt

s=0(1 + rs)
[(1− τt)πt − ψt(It, Kt)− (1− kt − zt)pI,t It] + A0, (A.8)

where A0 is the present value of depreciation deductions on past investments.4 We assume r

is fixed over time and that k equals zero, since the investment tax credit is not active during

our sample frame. We isolate the terms where period t investment enters and rewrite the

3This formula is not exactly correct because additional periods will lead to additional accumulated losses
for subsequent deductions. The firm will deduct these at an accelerated rate relative to the schedule in zt(1).
This formulation simplifies the algebra and biases our empirical findings toward the neoclassical benchmark.

4The A0 term is important for Hayashi (1982) because it influences the average value of the firm and one
purpose of his study is to show when average Q and marginal q are equal. A0 does not affect the investment
decision problem.
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relevant part of the problem:

max
I

{
−ψ(I, K)− (1− z)pI I +

qt+1 I
1 + r

}
, (A.9)

where qt+1 is the multiplier on the law of motion for capital.

We write the first order condition for investment as

qt+1 = (1 + r) [ψI + (1− z)pI ] , (A.10)

which emphasizes that optimal investment equates the marginal product of capital, qt+1,

with the hurdle rate (1 + r) applied to the marginal costs of investment. These costs include

adjustment costs and the price of investment less the value of investment as a tax shield.

qt+1 is the marginal value of a unit of capital, which accumulates over many future periods.

We can apply the envelope condition and differentiate V0(Kt) = maxI V0(Kt, I) to show that

qt =
∞

∑
s=t

1
Πs

v=t(1 + rv + δ)
[(1− τs)πK,s − ψK,s] , (A.11)

which says that qt includes the present discounted value of future after-tax marginal products

for capital, accounting for the rate of economic depreciation.5 In a two period model without

adjustment costs, we could rewrite (A.10) as

r =
(

1− τ

1− z

)
πK,t+1

pI
− 1, (A.12)

which shows that the general condition is just a dynamic statement of the simple idea that

optimal investment should equate returns and the risk-adjusted discount rate.6

We augment the problem to introduce the possibility of imperfect capital markets, which

leads to a generalized version of (A.10). Firms face a credit limit on gross borrowing, Bt,

which accumulates according to

Bt+1 = Bt + (1− τt)πt − (1− zt)pI,t It. (A.13)

5Note that capital also has an effect on future adjustment costs.

6Also, note that with immediate expensing, z = τ and so taxes do not affect investment. This also holds in
certain versions of the more general model. See Abel (1982).
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Firms must borrow to cover tax obligations and investment outlays, to the extent these

exceed current cash flows. Note that zt and not just τθt enters here. This is because future

borrowing constraints also matter.

From Summers (1981) to Edgerton (2010), modern empirical studies of investment apply

a parameterized version of (A.10), typically under the conditions shown in Hayashi (1982)

to yield marginal q equal to average Q.7 The financial constraint augmented first order

condition is

qt+1 = (1 + r) [ψI + (1 + λ)(1− z)pI ] , (A.14)

where λ ≥ 0 is the shadow price associated with the borrowing constraint (A.13).8 The

shadow price on the borrowing constraint works in this model much like a discount rate.

To see this, note that without adjustment costs and in the one shot model we can rewrite

(A.12) as

r + λ =

(
1− τ

1− z

)
πK,t+1

pI
− 1, (A.15)

where we have assumed for illustration that rλ is small. The hurdle rate for an investment

project reflects both the discount rate and the borrowing spread. In our empirical analysis,

we assume that firms use the same r but may differ in λ, in order to back out an implied λ

spread between constrained and unconstrained firms.9

A.1.2 Testable Hypotheses

We can derive the three testable hypotheses outlined in Section 1.2. Each hypothesis results

from defining optimal investment in (A.14) as a function of an exogenous parameter, a, and

then implicitly differentiating. The general condition is

ψI I
∂I
∂a

+
∂q
∂a

= (1 + λ)pI
∂z
∂a

, (A.16)

7These assumptions include making firms price takers in all markets and linear homogeneity for production
(i.e., constant returns to scale) and adjustment costs.

8The general version of (A.9) is maxI

{
−ψ(I, K)− (1− z)pI I + qt+1 I

1+r − λ(1− z)pI I
}

.

9When thinking about the discount rates firms apply to depreciation tax shields, this assumption feels
appropriate. In general, our estimated λ spread will also include discount rate differences.
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where z includes nontaxable states and possibly myopia, as in (A.7) and q now satisfies the

general version of (A.11):

qt =
∞

∑
s=t

1
Πs

v=t(1 + rv + δ)
[(1 + λs)(1− τs)πK,s − ψK,s] . (A.17)

The only difference between (A.11) and (A.17) is that increasing capital leads to higher

future after-tax profits, which relax future financial constraints.

We consider comparative statics with respect to θ, z0
t , λ, and γ. Except for λ, none of

these terms directly affect q. They only affect q through investment’s effect on future capital.

We assume this latter effect is negligible. While nontrivial, this assumption is justified

for two reasons. First, while the policies we study have a substantial temporary effect on

investment, the change in investment is small relative to the existing capital stock. Thus, the

long run marginal product of capital, which q measures, is likely unaffected.10 The second

reason is that nearly all empirical studies of investment incentives assume that production

exhibits constant returns to scale and linear homogeneity in adjustment costs, which leads

to constant q as a function of capital.11

Given the assumption that ∂q/∂θ = 0, our testable hypotheses build on the comparative

static with respect to the bonus parameter θ:

∂I
∂θ

=
(1 + λ)pI

[
γ(τ − z0

t (β)) + (1− γ)βφ(τ − z0
t (1))

]

ψI I
> 0. (A.18)

Bonus depreciation increases the present value of deductions, reducing the price of invest-

ment. Thus bonus depreciation should increase investment. Alternatively, we could study

the effect of a general increase in z. The comparative static here is

∂I
∂z

=
(1 + λ)pI

ψI I
> 0, (A.19)

10This is the assumption House and Shapiro (2008) make to replace short run approximations to capital and
q with their steady state values. (See p. 740.)

11Bond and Van Reenen (2007) survey the investment literature and argue that “conclusive evidence that
linear homogeneity should be abandoned in the investment literature has not yet been presented.” This is
because the assumption has both theoretical appeal and fits with evidence that changes in firm size are hard to
predict (implying that firms do not have a sharp, optimal firm size).
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which yields a useful equivalence between the depreciation elasticity, the price elasticity and

the interest rate elasticity. In particular, ε I,1−z = ε I,pI ≤ ε I,1+λ, where ε I,x = (∂I/∂x)(x/I)

and the last inequality reflects the fact that ∂q/∂λ ≥ 0. We begin our empirical analysis by

estimating different versions of (A.19), enabling easier comparisons to past work.

Hypothesis one concerns the differential effect of bonus depreciation on long and short

duration industries. Long duration industries will have more delayed baseline deduction

schedules and hence lower z0
t . The hypothesis thus derives from the cross partial of (A.18)

with respect to z0
t :

∂2 I
∂θ∂z0

t
= − (1 + λ)pI [γ + (1− γ)βφ]

ψI I
< 0. (A.20)

Bonus results in relatively more acceleration for long lived items and so the investment

response should be greater for these items. Note this is not a statement about the relative

price elasticities for goods of different durations, which depend on the curvature of produc-

tion and adjustment cost functions. Rather, it is a statement that bonus mechanically leads

to larger price reductions for long duration items, even holding underlying technologies

constant.

Hypothesis two concerns the differential effect of bonus depreciation for constrained

and unconstrained firms. This depends on the cross partial of (A.18) with respect to λ:

∂2 I
∂θ∂λ

=
γ(τ − z0

t (β)) + (1− γ)βφ(τ − z0
t (1))

ψI I
pI > 0. (A.21)

For constrained firms (i.e., when λ > 0), bonus both reduces the price of investment goods

and relaxes the borrowing constraint.This is true even if the investment-cash flow sensitivity

is zero, that is, if cash flow does not affect the marginal external finance cost, λ. The logic is

similar to the foregoing logic about long versus short duration goods. The effective price cut

due to bonus is larger for constrained firms, even if the cost of borrowing does not change.

Under fairly general conditions therefore, financial constraints tend to amplify the effects of

bonus.

Hypothesis three concerns the differential effect of bonus by taxable status. We can
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compare the elasticities for γ equal to zero and γ equal to one:

∂I
∂θ

∣∣∣∣
γ=1
− ∂I

∂θ

∣∣∣∣
γ=0

= (1 + λ)pI
(τ − z0

t (β))− βφ(τ − z0
t (1))

ψI I
> 0 (A.22)

Because nontaxable firms must wait to take bonus deductions, bonus is less valuable to them.

This might be due to neoclassical reasons. Namely, taking into account a possibly long delay

and applying a reasonable discount rate might lead the response for nontaxable firms to be

quite low, even without myopia (i.e., with β = 1). We use the empirical distribution of loss

transition probabilities to calibrate φ in the model and ask whether the results still require

β < 1.

A.1.3 Empirical Moments for Calibration

We perform a calibration exercise to distinguish between models, based on their predictions

about the external finance wedge, λ, and the discount rate applied to future flows, β. This

exercise requires comparing estimates across subgroups. For this comparison to be useful,

we need to make certain homogeneity assumptions about technologies across these groups.

In particular, we want the curvature of adjustment costs to be equal across groups.

One way to satisfy this requirement is to make second derivatives effectively constant

across groups. We make a weaker assumption, based on the common quadratic form used

elsewhere in the literature. One feature of relying on this assumption is that nearly all other

empirical studies of investment do so as well. Specifically, we write the adjustment cost

function as

ψ(I, K) =
α

2
[log(I)− log(δK)]2 pI I, (A.23)

so that adjustment costs are increasing quadratically as investment deviates from the

replacement rate. As long as α is constant and average investment equals δK across groups,

then the following results will hold.12

The first empirical moment we use compares the estimated response with respect to

12With our functional form for adjustment costs, we have IψI I = αpI(1 + log(I/δK)), which is equal across
groups under these assumptions.
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bonus for constrained and unconstrained firms. Define the semi-elasticity of investment with

respect to θ as ε I,θ ≡ (∂I/∂θ)(1/I), where ∂I/∂θ is defined in (A.18). Assuming constrained

firms face shadow price λC and unconstrained firms face shadow price λU , we take the ratio

of semi-elasticities:
εC

I,θ

εU
I,θ
≡ m1 =

1 + λC

1 + λU
= 1 +

∆λ

1 + λU
. (A.24)

We estimate m1 and solve (A.24) for ∆λ/(1 + λU), which can be viewed as an implied credit

spread. Our empirical analysis estimates the semi-elasticity with respect to z, rather than

θ. Because z is linear in θ (see (A.6)), the ratio of z semi-elasticities equals the ratio of θ

semi-elasticities.

We define a second empirical moment analogously by comparing taxable and nontaxable

firms:
ε

γ=0
I,θ

ε
γ=1
I,θ

≡ m2 = βφ
τ − z0

t (1)
τ − z0

t (β)
(A.25)

Note the external finance wedge falls out of this expression. This is true as long as average

shadow costs are the same across taxable and nontaxable groups.13 Under a constant τ

assumption, we can drop tax rates from this formula, which we do in Section 1.5.3. We

estimate m2 and calibrate φ in order to estimate β.

A.2 Legislative Background

This appendix describes legislation affecting the bonus and Section 179 depreciation provi-

sions studied in this paper.

Economic Recovery Tax Act of 1981

The act set the Section 179 allowance at $5,000 and established a timetable for gradually

increasing the allowance to $10,000 by 1986. Few firms took advantage of the allowance

13We can relax this assumption, since we expect nontaxable firms to be more constrained on average.
Alternatively, we can narrow our taxable/nontaxable comparison to groups that differ only by how likely it is
for the next dollar of investment to affect this year’s taxes. We pursue this latter approach and use the stock of
alternative tax shields to sort firms.
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initially. Some attributed the low response to limitations on the use of the investment tax

credit. A business taxpayer could claim the credit only for the portion of an eligible asset’s

cost that was not expensed; so the full credit could be used only if the company claimed no

expensing allowance. For many firms, the tax savings from the credit alone outweighed the

tax savings from combining the credit with the allowance.14

Depreciation Policies Affected – Section 179

Date Signed – August 13, 1981

Bill Number – H.R. 4242

Deficit Reduction Act of 1984

The act postponed from 1986 to 1990 the scheduled increase in the Section 179 allowance

to $10,000. Use of the allowance rose markedly following the repeal of the investment tax

credit by the Tax Reform Act of 1986.

Depreciation Policies Affected – Section 179

Date Signed – July 18, 1984

Bill Number – H.R. 4170

Omnibus Budget Reconciliation Act of 1993

The act increased the Section 179 allowance from $10,000 to $17,500, as of January 1, 1993.

Depreciation Policies Affected – Section 179

Date Introduced – May 25, 1993

Date of First Passage Vote – May 27, 1993

Date Signed – August 10, 1993

Bill Number – H.R. 2264

14Source: http://www.section179.org/stimulus_acts.html
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Small Business Job Protection Act of 1996

The act increased the Section 179 allowance and established scheduled annual (with one

exception) increases over six years. Specifically, the act raised the maximum allowance to

$18,000 in 1997, $18,500 in 1998, $19,000 in 1999, $20,000 in 2000, $24,000 in 2001 and 2002,

and $25,000 in 2003 and thereafter.

Depreciation Policies Affected – Section 179

Date Introduced – May 14, 1996

Date of First Passage Vote – May 22, 1996

Date Signed – August 20, 1996

Bill Number – H.R. 3448

Job Creation and Worker Assistance Act of 2002

The act created the first bonus depreciation allowance, equal to 30 percent of the adjusted

basis of new qualified property acquired after September 11, 2001, and placed in service no

later than December 31, 2004. A one-year extension of the placed-in-service deadline was

available for certain property with a MACRS recovery period of 10 or more years and for

transportation equipment.

Depreciation Policies Affected – Bonus Depreciation

Date Introduced – October 11, 2001

Date of First Passage Vote – October 24, 2001

Date Signed – March 9, 2002

Bill Number – H.R. 3090
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Jobs and Growth Tax Relief Reconciliation Act of 2003

The act (JGTRRA) raised the bonus allowance to 50 percent for qualified property acquired

after May 5, 2003, and placed in service before January 1, 2005. The act raised the Section

179 allowance to $100,000 (as of May 6, 2003), set it to stay at that amount in 2004 and 2005,

and then reset in 2006 and beyond at its level before JGTRRA ($25,000). JGTRRA also raised

the phase out threshold to $400,000 from May 2003 to the end of 2005, indexed the regular

allowance and the threshold for inflation in 2004 and 2005, and added off-the-shelf software

for business use to the list of depreciable assets eligible for expensing in the same period.

The American Jobs Creation Act of 2004 extended the Section 179 changes made by

JGTRRA through the end of 2007. The Tax Increase Prevention and Reconciliation Act of

2005 extended the changes in the allowance under JGTRRA through 2009.

Depreciation Policies Affected – Bonus Depreciation and Section 179

Date Introduced – February 27, 2003

Date of First Passage Vote – May 9, 2003

Date Signed – May 28, 2003

Bill Number – H.R. 2

U.S. Troop Readiness, Veterans’ Care, Katrina Recovery, and Iraq Appropriations

Act of 2007

Congress extended the changes in the allowance made by JGTRRA through 2010, raised the

maximum allowance to $125,000 and the phaseout threshold to $500,000 for 2007 to 2010,

and indexed both amounts for inflation in that period.

Depreciation Policies Affected – Section 179

Date Introduced – May 8, 2007

Date of First Passage Vote – May 10, 2007
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Date Signed – May 25, 2007

Bill Number – H.R. 2206

Economic Stimulus Act of 2008

The act provided for 50 percent bonus depreciation. To claim the allowance, a taxpayer had

to acquire qualified property after December 31, 2007 and place it in service before January

1, 2009. The previous $125,000 limit on the Section 179 allowance was increased to $250,000,

and the $500,000 limit on the total amount of equipment purchased became $800,000.

Depreciation Policies Affected – Bonus Depreciation and Section 179

Date Introduced – January 28, 2008

Date of First Passage Vote – January 29, 2008

Date Signed – February 13, 2008

Bill Number – H.R. 5140

American Recovery and Reinvestment Act of 2009

The act extended the deadlines by one year, to the end of 2009, for the 50 percent bonus

depreciation allowance.

Depreciation Policies Affected – Bonus Depreciation

Date Introduced – January 26, 2009

Date of First Passage Vote – January 28, 2009

Date Signed – February 17, 2009

Bill Number – H.R. 1
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Small Business Jobs Act of 2010

The act extended the 50 percent bonus depreciation to qualifying property purchased and

placed in service during the 2010 tax year. The act increased the amount a business could

expense under Section 179 from $250,000 to $500,000 of qualified capital expenditures. These

deductions were subject to a phase-out for expenditures exceeding $2,000,000. The provision

covered tax years for 2010 and 2011.

Depreciation Policies Affected – Bonus Depreciation and Section 179

Date Introduced – May 13, 2010

Date of First Passage Vote – June 17, 2010

Date Signed – September 27, 2010

Bill Number – H.R. 5297

Tax Relief, Unemployment Compensation Reauthorization, and Job Creation Act

of 2010

The bonus depreciation allowance increased to 100 percent for qualified property acquired

after September 8, 2010, and placed in service before January 1, 2012. The act also established

a 50 percent allowance for property acquired and placed in service in 2012.

Depreciation Policies Affected – Bonus Depreciation

Date Introduced – March 16, 2010

Date Signed – September 27, 2010

Bill Number – H.R. 5297
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Table A.1.1: Section 179 and Bonus Depreciation Policy Changes

Year S179 Max Value S179 Phase-out Region Bonus

1993-96 $17,500 $200,000-$217,500
1997 $18,000 $200,000-$218,000
1998 $18,500 $200,000-$218,500
1999 $19,000 $200,000-$219,000
2000 $20,000 $200,000-$220,000

2001-02 $24,000 $200,000-$224,000 30% Tax years ending after 9/10/01
2003 $100,000 $400,000-$500,000 50% Tax years ending after 5/3/03
2004 $102,000 $410,000-$512,000 50%
2005 $105,000 $420,000-$525,000
2006 $108,000 $430,000-$538,000

2007 $125,000 $500,000-$625,000
2008-09 $250,000 $800,000-$1,050,000 50% Tax years ending after 12/31/07
2010-11 $500,000 $2,000,000-$2,500,000 100% Tax years ending after 9/8/10

a. 2008 was retroactive.
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(a) Bunching with Narrow Bandwidth

(b) Bonus with Narrow Bandwidth

Figure A.1.1: Investment Behavior and Tax Incentives: Narrow Bandwidth

Notes: These figures replicate the taxable position splits in the bunch and bonus settings, while restricting the sample to
within a narrow bandwidth of the tax status threshold. Panel (a) replicates the analysis in panel (a) of Figure 1.4, which
compares bunching behavior for taxable and nontaxable firms. Panel (b) replicates the regression in column (1) of table 1.5,
which estimates separate coefficients with respect to bonus incentives for taxable and nontaxable firms.
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Appendix B

Appendix to Chapter 2

Micro-foundation of owner-occupancy utility. We present a moral hazard framework in

which ownership utility matches the specification of (2.2). Our framework follows the spirit

of Henderson and Ioannides (1983)’s treatment of tenure choice, in which maintenance

frictions lead some residents to own instead of rent.

Residents derive utility from the particular way their house is “customized”: e.g. the

color of the walls, the way the lawn is maintained, et cetera. The set of possible customiza-

tions is K. Resident i’s utility from housing is v(∑k∈K ai,khk), where ai,k > 0 is his preference

for k and hk is the quantity of housing customized that way. Individual customization

choices are not contractible, but the right to customize one’s house is. If a landlord retains

the customization rights, then the tenant cannot customize the house, and the null cus-

tomization k = 0 occurs for which ai,0 = 1 for all residents i. If the tenant holds these rights,

he may choose any k ∈ K \ {0}.
Moral hazard arises due to a doomsday customization k = d. This customization incurs

a cost η(hd) to the owner of the house. All residents prefer this customization to all others:

d = arg maxk∈K ai,k. However, the costs of d outweigh the benefits: for all i and h,

v(ai,dh) < η(h).

The doomsday customization represents the proclivity of residents to damage a house when

146



they do not bear the costs of doing so.

This inequality prevents landlords from ever selling customization rights to tenants.

Suppose the landlord sells the rights. Then the tenant chooses his preferred customization,

without taking into account the resultant costs, which the landlord bears. The tenant there-

fore chooses k = d. Knowing this, the landlord demands at least η(h) for the customization

rights. But the most the tenant is willing to pay is v(ai,dh)− v(h), which is less than η(h).

Therefore they agree not to trade. The landlord keeps the rights, and k = 0. The utility from

renting is v(h) because ai,0 = 1.

An owner-occupant chooses the customization, but also bears the costs if he chooses k =

d. Let k(i) denote the solution to his optimization problem maxk∈K\{0} v(ai,kh)− η(h)1k=d.

Due to the costliness of the doomsday customization, the resident never chooses it: k(i) 6= d.

Indeed, if k′ is any other customization, then v(ai,k′h) > v(ai,dh)− η(h) due to the above

inequality. We define ai ≡ ai,k(i). The utility from owning is v(aih). This form corresponds

exactly to (2.2).

Proof of Lemma 1. First we prove that construction occurs in each period. Construction

occurs at time 0 because the housing stock starts at 0, and the housing demand equation

(2.9) is positive. For a contradiction, let t1 > 0 denote the first period in which construction

does not occur. Let t2 > t1 denote the next time construction occurs (t2 may be infinite).

We now claim that rh
t > rh

t1−1 for t1 ≤ t < t2. Along the trend growth path, x = 0, so

no uncertainty exists and by (2.7), a resident rents if and only if ai < 1. Because Fa has full

support on R+, some residents must rent. Landlords hence exist in equilibrium, and their

arbitrage equation ph
t = rh

t + βph
t+1 holds. Aggregate housing demand resulting from the

first-order condition (2.6) is

Dh
t (r

h
t ) = Nt

(∫ 1

0
(v′)−1(rh

t )dFa +
∫ ∞

1
(v′)−1(rh

t /ai)/aidFa

)
. (A1)

By assumption, the housing stock and hence housing demand is the same for t1− 1 ≤ t < t2.

Equation (A1) decreases in rh
t because v′′ < 0. Because x = 0 and g > 0, Nt increases with

t. The left side of (A1) stays constant for t1 − 1 ≤ t < t2 while Nt increases. Therefore, rt
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increases for t1 − 1 ≤ t < t2.

Because construction occurs at t1 − 1, we have ph
t1−1 = pl

t1−1 + K, which results from

zero homebuilder profits. Zero construction at t1 can only occur when ph
t1
≤ pl

t1
+ K, from

homebuilder profit maximization. The landlord and landowner arbitrage equations at

t1 − 1 deliver rh
t1−1 ≥ rl

t1−1 + (1− β)K. The quantity of undeveloped land stays constant for

t1 − 1 ≤ t < t2 and hence rl
t does as well, because firm land demand Dl does not change

over time. Therefore rh
t > rl

t + (1− β)K for t1 ≤ t < t2. Then

ph
t1
= ∑

t1≤t<t2

βt−t1rh
t + βt2−t1 ph

t2

> ∑
t1≤t<t2

βt−t1(rl
t + (1− β)K) + βt2−t1(pl

t2
+ K)

= pl
t + K,

which contradicts the zero construction inequality ph
t1
≤ pl

t + K. This contradiction proves

that construction occurs at all times t.

We now show that rents rh
t increase over time. Because construction occurs at all t,

ph
t = pl

t + K for all t. Undeveloped land must always exist because perpetual construction

occurs. Therefore, landowners are indifferent between holding land until tomorrow or

selling it, so pl
t = rl

t + βpl
t+1. Together with the landlord arbitrage equation, this equation

gives rh
t = ph

t − βph
t+1 = pl

t + K − β(pl
t+1 + K) = rl

t + (1 − β)K. Equilibrium rents are

determined by S− Dl(rh
t − (1− β)K) = Dh

t (r
h
t ), where housing demand comes from (A1).

The left side increases in rh
t , whereas the right side deceases. Nt increases over time, which

shifts up Dh
t . Therefore rh

t increases as well.

Finally, we can show directly that the supply elasticity decreases over time. The elasticity

by definition is

εS
t =

rh
t (Dl)′(rh

t − (1− β)K)
S− Dl(rh

t − (1− β)K)
=

rh
t

rh
t − (1− β)K

Dl(rh
t )

Dh
t (r

h
t )

rl
t(Dl)′(rl

t)

Dl(rl
t)

=
rh

t

rh
t − (1− β)K

(
S
Ht
− 1
)

εl ,

which coincides with (2.4). We have shown directly that Ht and rh
t increase over time.

Therefore, when εl is constant, εS
t decreases over time.
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Proof of Proposition 2. We use (2.5) to write ph
0 = rh

0 + βẼph
1. Let ∂/∂x denote the

partial derivative in which N0 stays constant. Then ∂ph
0/∂x = ∂rh

0/∂x + ∂βẼph
1/∂x. We

calculate ∂rh
0/∂x by differentiating (2.8) at x = 0. Let d(·) = (v′)−1(·), and let bi =

1 + β(Ẽph
1 − Ei ph

1)/rh
0 . Note that when x = 0, bi = 1 for all i. Then

− (Dl)′
∂rh

0
∂x

= N0

∫

M

∫ 1

0
d′(rh

0)
∂rh

0
∂x

dFadFµ + N0

∫

M
d(rh

0)
∂bi

∂x
dFµ

+ N0

∫

M

∫ ∞

1
a−2

i d′(rh
0/ai)

(
∂rh

0
∂x

+
∂βẼph

1
∂x

− ∂βEi ph
1

∂x

)
dFadFµ − N0

∫

M
d(rh

0)
∂bi

∂x
dFµ.

The extensive margins terms for the rental and owner-occupied populations cancel. We

simplify this equation to

∂rh
0

∂x
= −

N0
∫

M

∫ ∞
1 a−2

i d′(r0/ai)
(

∂βẼph
1/∂x− ∂βEi ph

1/∂x
)

dFadFµ

(Dl)′ + N0
∫

M

∫ 1
0 d′(rh

0)dFadFµ + N0
∫

M

∫ ∞
1 a−2

i d′(rh
0/ai)dFadFµ

.

The proposition assumes a constant elasticity of housing demand εD. This property

occurs when individual demand d(·) displays the same constant elasticity. Indeed, from

(A1), the elasticity of housing demand when x = 0 is

εD = −
∫ 1

0 rd′(r)dFa +
∫ ∞

1 ra−2
i d′(r/ai)dFa∫ 1

0 d(r)dFa +
∫ ∞

1 a−1
i d(r/ai)dFa

,

which holds when rd′(r)/d(r) = −εD for all r. We can therefore rewrite ∂rh
0/∂x as

∂rh
0

∂x
= −

εD N0
∫

M

∫ ∞
1 a−1

i d(rh
0/ai)

(
∂βẼph

1/∂x− ∂βEi ph
1/∂x

)
dFadFµ

rh
0(Dl)′ + εD N0

∫
M

∫ 1
0 d(rh

0)dFadFµ + εD N0
∫

M

∫ ∞
1 a−1

i d(rh
0/ai)dFadFµ

.

Because Fa and Fµ are independent, we can write

∫

M

∫ ∞

1
a−1

i d(rh
0/ai)Ei ph

1dFadFµ =
∫ ∞

1
a−1

i d(rh
0/ai)dFa

∫

M
Ei ph

1dFµ

=
∫ ∞

1
a−1

i d(rh
0/ai)dFaEph

1,

where Eph
1 ≡

∫
M Ei ph

1dFµ is the average belief about ph
1. Recall from (A1) that (hrent

i,0 )∗ =

d(rh
0) if ai < 1 (and 0 otherwise) and (hown

i,0 )∗ = d(rh
0/ai)/ai if ai ≥ 1 (and 0 otherwise).

The share of housing that is owner-occupied is χ =
∫ ∞

1 a−1
i d(rh

0/ai)dFa/(
∫ 1

0 d(rh
0)dFa +
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∫ ∞
1 a−1

i d(rh
0/ai)dFa). We can therefore divide through the equation for ∂rh

0/∂x by the total

housing stock to get

∂rh
0

∂x
= −

εDχ
(

∂βẼph
1/∂x− ∂βEph

1/∂x
)

εS
0 + εD

.

Substituting into ∂ph
0/∂x = ∂rh

0/∂x + ∂βẼph
1/∂x yields (2.10) of the proposition.

Proof of Proposition 3. We will calculate the effect of the shock zt on rh
t by differentiating

the equation S− Dl(rh
t − (1− β)K) = Dh

t (r
h
t ) with respect to x at x = 0, where Dh

t (r
h
t ) is

given by (A1). This derivative is valid if and only if this equilibrium condition holds for

x around 0. The condition holds as long as construction occurs at t. Our first task is thus

proving the existence of an open set I ∈ R such that 0 ∈ I and for x ∈ I, construction occurs

for all t.

As in the proof of Lemma 1, we can prove that construction must occur at t1 if, conditional

on the absence of construction at t1, rt > rh
t1−1 for t1 ≤ t < t2 where t2 is the next time

construction occurs. The key step in that proof was that Nt increases with t. We define

an open set I1 containing 0 such that Nt still increases in t for x ∈ I1. Because M is

uniformly bounded, there exist µmin and µmax such that µmin ≤ µ′ ≤ µmax for all µ′ that

are coordinates of vectors in M. Recall that Nt+1/Nt = eg+(µt+1−µt)x. Because g > 0, the set

I1 =
(
−g/(µmax − µmin), g/(µmax − µmin)

)
is open. For any x ∈ I1, Nt+1/Nt > 1. With this

result, the proof of this increasing rent condition matches verbatim the proof given in the

proof of Lemma 1 when t1 > 1. When t1 = 1, Dh
t1−1 is no longer given by (A1) but instead

by (2.9).

The only new fact we must show therefore is that if construction fails to occur at t = 1,

then rh
0 < rh

1 . To do this, we first show that Ẽph
1 − Ei ph

1 = O(x) as x → 0 for all i. We

have ph
1 = ∑∞

t=1 βt−1rh
t . All residents agree on H0 and N0 because they are observable

at t = 0. Let t2 be the next time construction occurs given H0. Once it occurs it will

occur afterward forever due to the arguments in the proof of Lemma 1. In principle

residents could disagree about t2, but we will now show that for x small enough they

do not. While construction does not occur, rents are determined by H0 = NtDh
t (r

h
t ) and

S − H0 = Dl(rl
t). Because Nt increases over time, rh

t must as well. When construction
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occurs next period but not today at t, ph
t < pl

t + K while ph
t+1 = pl

t+1 + K, so using the

landlord and landowner arbitrage equations defined in the proof of Lemma 1, we find

that (Dh
t )
−1(H0/Nt) < (Dl)−1(S− H0) + (1− β)K while construction fails to occur. The

first time construction does occur, t = t2, is defined as the lowest value of t for which this

inequality fails to hold. Because we are in discrete time, and because the relationships

Nt = N0egt+(µt−1)x and µmin ≤ µt ≤ µmax hold, there exists an open I2 3 0 such that when

x ∈ I2, t2 is the same for all realizations of µ ∈ M. For 1 ≤ t < t2, rh
t is the solution to

H0 = NtDh
t (r

h
t ), and for t ≥ t2, rh

t solves S− Dl(rh
t − (1− β)K) = NtDh

t (r
h
t ). In each case,

because Nt = N0egt+(µt−1)x, the resulting rh
t is a differentiable function of x for any value of

µt and is the same at x = 0 for any value of µt. Therefore, Ẽrh
t − Eirh

t = O(x) as x → 0 for

all i, and the same then holds for ph
1.

We now return to showing that if construction fails to occur at t = 1, then rh
0 < rh

1 .

Using (2.9), we write Dh
0(r

h
0) = N0 f0(rh

0), and using (A1), we write Dh
1(r

h
1) = N1 f1(rh

1).

Without construction at t = 1, we have N0 f0(rh
0) = N1 f1(rh

1). Note from (2.9) and (A1) that

f0 = f1 + O(x) as x → 0; this fact follows because Ẽph
1 − Ei ph

1 = O(x) as x → 0 for all i.

Using N1 = N0eg+(µ1−1)x, we can conclude that eg+(µ1−1)x f1(rh
1) = f1(rh

0) + O(x) as x → 0.

Because eg+(µ1−1)x > 1 as x → 0 and f1 is decreasing, there exists an open I3 3 0 such that

for x ∈ I3, rh
1 > r0

1. This inequality is what we needed to show to prove that construction

occurs at time 1, which is all that remained to prove that construction always occurs. We set

I = I1 ∩ I2 ∩ I3.

All of that proved that for t > 0, the effect of the shock zt on rh
t results from differentiating

the equation S− Dl(rh
t − (1− β)K) = Dh

t (r
h
t ) with respect to x at x = 0. Doing so yields

−(Dl)′drh
t /dx = µtDh

t + (Dh
t )
′drh

t /dx, from which it follows that drh
t /dx = −µtDh

t /((Dl)′ +

(Dh
t )
′) = µtrh

t /(εS
t + εD). Similarly, the partial effect of the shock on current rents rh

0 , holding

beliefs constant and letting N0 change, is ∂rh
0/∂x = rh

0/(εS
0 + εD). Putting together this

partial effect with the one in Proposition 2 yields

dph
0

dx
=

rh
0

εS
0 + εD

+
∞

∑
t=1

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃t +
χεS

εS
0 + εS

µt

)
βtrh

t

εS
t + εS

,
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where µ̃t is the most optimistic belief of µt and µt is the average belief of µt. Because all

residents agree that µ0 = 1, we may rewrite this expression as

dph
0

dx
=

∞

∑
t=0

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃t +
χεS

εS
0 + εS

µt

)
βtrh

t

εS
t + εS

.

The text defines the mean persistence of the shock µ to be µ = ∑∞
t=0 µtβ

trh
t (ε

S
t + εD)−1/

∑∞
t=0 βtrh

t (ε
S
t + εD)−1. We use this definition, and divide through by p0 = ∑∞

i=0 βtrh
t , which

holds at x = 0, to derive

d log ph
0

dx
=

(
∞

∑
t=0

βtrh
t

)−1 ∞

∑
t=0

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃ +
χεS

εS
0 + εS

µ

)
βtrh

t

εS
t + εS

=

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃ +
χεS

εS
0 + εS

µ

)
1

ε̃S + εD ,

where we have used the definition of the long-run supply elasticity ε̃S given in the text. This

equation for d log ph
0/dx matches (2.12) in Proposition 3.

Proof of Implication 7. We demonstrate a limiting case in which εS
0 = ∞ while ε̃S < ∞.

Let Dl(r) = br−εl
for some constant b > 0. Consider the limit as b → 0. We know that

rh
t ≥ (1− β)K because rh

t = rl
t + (1− β)K and rl

t ≥ 0. Define N∗ to be the value of Nt that

solves the equation S = Dh
t ((1− β)K), where Dh

t is given by (A1). For Nt < N∗, housing

demand fails to exceed available land at the minimum rent, and there is no demand for

land in the limit, so the market clearing rent must be rh
t = (1− β)K while Ht < S. By (2.4),

εS
t = ∞ in this case. But for Nt > N∗, demand exceeds supply at the minimum rent, so

rh
t > (1− β)K and Ht > 0, leading to a finite elasticity. Since Nt grows at a constant rate g,

for any Nt < N∗ we have εS
0 = ∞ but ε̃S < ∞.

Proof of Implication 8. Disagreement amplification ∆ equals

∆ =
εS

0 + (1− χ)εD

εS
0 + εD

µ̃− µ

ε̃S + εD .

We calculate this difference from subtracting from (2.12) the counterfactual in which we

substitute µ for µ̃. Define N∗0(χ) to be the value of development (which determines the

supply elasticities; see above) that maximizes ∆. When χ = 1, ∆ is 0 in the limits as N0 → 0
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and N0 → ∞, because ε̃S = 0 in the first case and εS
0 = 0 in the second. But ∆ > 0 for χ = 1,

so 0 < N∗0(1) < ∞ by continuity. But N∗0(χ) is continuous in χ as long as it exists and is

finite, so there must exist χ∗ < 1 such that for χ∗ ≤ χ ≤ 1, N∗0(χ) exists and is finite.

Proof of Implication 9. When χ = 1, the limit as N0 → ∞ of d log ph
0/dx is µ/εD. For

any 0 < N0 < ∞, we can choose µ̃ to be large enough so that the price change given by

(2.12) is larger than µ/εD, because this price change becomes arbitrarily large with µ̃. By

continuity, we can do the same for some χ < 1.

Construction equation. By the definition of supply elasticity, the change in the log

housing stock is εS
0 d log rh

0/dx. The total effect of the shock on rents combines the effect in

the end of the proof of Proposition 2 and the direct effect of the shock on N0 derived in the

proof of Proposition 3. It is drh
0/dx = rh

0/(εS
0 + εD)− χεD(∂βẼph

1∂x− ∂βEph
1/∂x)/(εS

0 + εD).

We substitute in for the beliefs from the Proof of Proposition 3 and divide through by rh
0 ,

and then multiply by εS
0 to get

d log H0

dx
=

εS
0

εS
0 + εD

(
1− χεD

ε̃S + εD ρ(µ̃− µ)

)
, (A2)

where ρ ≡ ph
0/rh

0 is the price-rent ratio of the city before the shock at x = 0.
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