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Abstract

This dissertation consists of three independent chapters, each of which use microeconomic

data and methods to inform an analysis of macroeconomic models and questions. The �rst two

chapters study the short-run dynamics of housing markets, while the last chapter studies

�uctuations in labor markets.

The �rst chapter examines house price momentum, the positive autocorrelation of price

changes which in housing markets lasts for two to three years. The chapter introduces, empirically

grounds, and quantitatively analyzes an ampli�cation mechanism that can generate substantial

momentum from small frictions: sellers with an incentive not to set a unilaterally high or low list

price for their house gradually adjust their price so it remains close to the market average. In

doing so, the chapter provides new evidence for explanations for price stickiness for which there is

little direct evidence. Furthermore, the chapter demonstrates that the resulting momentum helps

explain the short-run dynamics of price, volume, and inventory in housing markets.

The second chapter demonstrates how foreclosures can exacerbate a housing bust and delay

the housing market�s recovery and shows that such e¤ects played a signi�cant role in the recent

housing downturn. Foreclosures drive down prices and freeze up the retail (non-foreclosure)

market by raising the ratio of sellers to buyers and making buyers more selective. This can push

more homeowners underwater and cause more defaults, amplifying an initial shock. When

calibrated to the recent housing cycle, the model implies that foreclosures have much larger e¤ects

than previously estimated due to general equilibrium spillovers.

The third chapter analyzes why macroeconomic calibrations imply much larger labor supply

elasticities than microeconometric studies, paying particular attention to the extensive

(participation) margin which is frequently used to explain the divergence. The chapter uses a

calibrated macro model to simulate the impacts of tax policy changes on labor supply. It also

presents a meta-analysis of quasi-experimental estimates of extensive margin elasticities. Both
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approaches show that micro and macro are consistent for steady-state Hicksian elasticities, but

micro estimates of extensive-margin Frisch elasticities are an order of magnitude smaller than the

values needed to explain business cycle �uctuations in aggregate hours.
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Introduction

This dissertation consists of three independent chapters, each of which use microeconomic data

and methods to inform an analysis of macroeconomic models and questions. The �rst two chapters

study the short-run dynamics of housing markets, while the last chapter studies �uctuations in

labor markets.

The �rst chapter studies house price momentum, the positive autocorrelation of price changes

which in the housing market lasts for two to three years. The chapter introduces, empirically

grounds, and quantitatively analyzes an ampli�cation mechanism that can generate substantial

momentum from small frictions and demonstrates that the resulting momentum helps explain the

short-run dynamics of housing markets. The ampli�cation is due to a concave demand curve in

relative price, which implies that increasing the quality-adjusted list price of a house priced above

the market average rapidly reduces its probability of sale, but cutting the price of a below-average

priced home only slightly improves its chance of selling. This creates a strategic complementarity

that incentivizes sellers to set their list price close to others�. Consequently, frictions that cause

slight insensitivities to changes in fundamentals lead to prolonged adjustments because sellers grad-

ually adjust their price to stay near the average. I provide new micro empirical evidence for the

concavity of demand� which is often used in macro models with strategic complementarities� by

instrumenting a house�s relative list price with a proxy for the seller�s equity. I �nd signi�cant

concavity, which I embed in an equilibrium housing search model in which buyers avoid visiting

houses that appear overpriced. I demonstrate and quantitatively evaluate the model�s ability to

amplify two frictions: staggered pricing and a fraction of backwards-looking rule-of-thumb sellers.

Both frictions are ampli�ed substantially, and the model explains the momentum observed empiri-

cally with a small fraction of rule-of-thumb sellers. Strong house price momentum leads households

to re-time their purchase or sale, thereby explaining several features of the dynamic relationships

between price, volume, inventory, and buyer and seller entry.

The second chapter, which is joint work with Tim McQuade analyzes the role foreclosures play

in housing downturns. The recent housing bust precipitated a wave of mortgage defaults, with over

seven percent of the owner-occupied housing stock experiencing a foreclosure. This chapter presents

a model that shows how foreclosures can exacerbate a housing bust and delay the housing market�s

1



recovery. By raising the ratio of sellers to buyers, by making buyers more selective, and by changing

the composition of houses that sell, foreclosures freeze up the market for retail (non-foreclosure)

sales and reduce both price and volume. Because negative equity is necessary for default, these

general equilibrium e¤ects on prices can create price-default spirals that amplify an initial shock.

To assess the magnitude of these channels, the model is calibrated to simulate the downturn. The

ampli�cation channel is signi�cant. The model successfully explains aggregate and retail price

declines, the foreclosure share of volume, and the number of foreclosures both nationwide and

across MSAs. While the model can explain variation in sales across MSAs, it cannot account for

the aggregate level of the volume decline, suggesting that other forces have reduced sales nationwide.

The quantitative analysis implies that from 2007 to 2011 foreclosures exacerbated aggregate price

declines by approximately 50 percent and declines in the prices of retail homes by approximately

30 percent.

The third chapter, which is joint work with Raj Chetty, Day Manoli, and Andrea Weber, assesses

why macroeconomic calibrations imply much larger labor supply elasticities than microeconometric

studies. One prominent explanation for this divergence is that indivisible labor generates extensive

margin responses that are not captured in micro studies of hours choices. We evaluate whether ex-

isting calibrations of macro models are consistent with micro evidence on extensive margin responses

using two approaches. First, we use a standard calibrated macro model to simulate the impacts

of tax policy changes on labor supply. Second, we present a meta-analysis of quasi-experimental

estimates of extensive margin elasticities. We �nd that micro estimates are consistent with macro

evidence on the steady-state (Hicksian) elasticities relevant for cross-country comparisons. How-

ever, micro estimates of extensive-margin elasticities are an order of magnitude smaller than the

values needed to explain business cycle �uctuations in aggregate hours. Hence, indivisible labor

supply does not explain the large gap between micro and macro estimates of intertemporal sub-

stitution (Frisch) elasticities. Our synthesis of the micro evidence points to Hicksian elasticities of

0.3 on the intensive and 0.25 on the extensive margin and Frisch elasticities of 0.5 on the intensive

and 0.25 on the extensive margin.

2



Chapter 1:
The Causes and Consequences of House Price Momentum

1.1 Introduction

A puzzling and prominent feature of housing markets is that aggregate price changes are highly

positively autocorrelated, with a one percent annual price change correlated with a 0.30 to 0.75

percent change in the subsequent year (Case and Shiller, 1989).1 This price momentum lasts for two

to three years before prices mean revert, a time horizon far greater than most other asset markets.

Substantial momentum is surprising because predictable price changes should be arbitraged away by

investors and households that can re-time their purchase or sale and because most pricing frictions

dissipate quickly.

This chapter introduces, empirically grounds, and quantitatively analyzes an ampli�cation

mechanism that can generate substantial momentum from small frictions. The mechanism re-

lies on a strategic complementarity among list-price-setting sellers that makes the optimal list price

for a house depend positively on the prices set by others (Cooper and John, 1988). Strategic com-

plementarities of this sort are frequently used in macroeconomic models (e.g., Ball and Romer,

1990; Woodford, 2003; Angeletos and La�O, 2013) but there is limited empirical evidence of their

importance and strength. In analyzing momentum in the housing market, I provide micro empirical

evidence for a prevalent strategic complementarity in the macroeconomics literature and, using a

calibrated equilibrium search model, demonstrate that its ability to amplify underlying frictions is

quantitatively signi�cant.

I also show that momentum has important consequences that help explain several perplex-

ing features of the dynamics of housing markets relating to sales and inventory in addition to

price. These dynamics, which are analogous to several features of business cycles, matter for the

macroeconomy because housing markets a¤ect household balance sheets, the �nancial system, and

business cycles and are a potential channel for monetary policy. House price momentum may also

explain why recoveries from housing-triggered cycles are slow.

The propagation mechanism I introduce relies on two components: costly search and a demand

1See also Cutler et al. (1991), Abraham and Hendershott (1996), Cho (1996), Malpezzi (1999), Meen (2002),
Capozza et al. (2004), Head et al. (2014), and Glaeser et al. (2013).
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curve that is concave in relative price. Search is inherent to housing because no two houses are

alike and idiosyncratic taste can only be learned through costly inspection. Search and idiosyncratic

taste also limit arbitrage by creating endogenous transaction costs and by making the market price

for a house di¢ cult to ascertain. Concave demand in relative price implies that the probability a

house sells is more sensitive to list price for houses priced above the market average than below

the market average. While concave demand may arise in housing markets for several reasons, I

focus on the manner in which asking prices direct buyer search. The intuition is summarized by

an advice column for sellers: �Put yourself in the shoes of buyers who are scanning the real estate

ads...trying to decide which houses to visit in person. If your house is overpriced, that will be an

immediate turno¤. The buyer will probably clue in pretty quickly to the fact that other houses

look like better bargains and move on.�2 In other words, the probability that a house is visited by

buyers decreases rapidly as a home�s list price rises relative to the market average. This generates

a concave demand curve in relative price because at high relative prices buyers are on the margin

of looking and purchasing, while at low relative prices they are only on the margin of purchasing.

Concave demand incentivizes list-price-setting sellers� who have market power due to search

frictions� to set their list prices close to the mean. Intuitively, raising a house�s relative list price

reduces the probability of sale and pro�t dramatically, while lowering its relative price increases

the probability of sale slightly and leaves money on the table. Modest frictions that generate initial

insensitivities of prices to changes in fundamentals cause protracted price adjustments because

sellers �nd it optimal to gradually adjust their price so that they do not stray too far from the

market average.

To evaluate the concavity of the e¤ect of unilaterally changing a house�s relative quality-adjusted

price on its sales probability, I turn to micro data on listings for the San Francisco Bay, Los Angeles,

and San Diego metropolitan areas from 2008 to 2013. I address bias caused by unobserved quality

by instrumenting relative list price with the amount of aggregate price appreciation since the seller

purchased. The identi�cation strategy takes advantage of the fact that sellers with low appreciation

since purchase set higher list prices because the equity they extract from the sale of their current

home constrains their ability to make a down payment on their next home (Stein, 1995; Genesove

2�Settling On The Right List Price for Your House,�Ilona Bray, http://www.nolo.com/legal-encyclopedia/listing-
house-what-price-should-set-32336-2.html.
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and Mayer, 1997). Because I compare listings within a ZIP code and quarter, this supply-side

variation identi�es the curvature of demand if unobserved quality is independent of when a seller

purchased their home. The instrumental variable estimates reveal a concave relationship that is

statistically and economically signi�cant.3 My �ndings about the concavity of demand are robust

to other sources of relative price variation that are independent of appreciation since purchase.

To assess the strength of this propagation mechanism, I embed concave demand in a Diamond-

Mortensen-Pissarides equilibrium search model. I explore the e¤ects of two separate sources of price

insensitivity. First, I consider staggered pricing whereby overlapping groups of sellers set prices

that are �xed for multiple periods (Taylor, 1980). Concave demand induces sellers to only partially

adjust their prices when they have the opportunity to do so, and repeated partial adjustment

manifests itself as additional momentum. Second, I introduce a small fraction of backward-looking

rule-of-thumb sellers as in Campbell and Mankiw (1989) and Gali and Gertler (1999). Backward-

looking expectations are frequently discussed as a potential cause of momentum (e.g., Case and

Shiller, 1987; Case et al. 2012), but some observers have voiced skepticism about widespread

non-rationality in housing markets given the �nancial importance of housing transactions for most

households. With a strategic complementarity, far fewer backward-looking sellers are needed to

explain momentum because the majority of forward-looking sellers adjust their prices gradually so

they do not deviate too much from the backward-looking sellers (Haltiwanger and Waldman, 1989;

Fehr and Tyran, 2005). This, in turn, causes the backward-looking sellers to observe more gradual

price growth and change their price by less, creating a two-way feedback that ampli�es momentum.

I calibrate the parameters of the model that control the shape of the demand curve to match the

micro empirical estimates and the remainder of the model to match steady state and time series

moments. The calibrated model generates substantial ampli�cation of the underlying frictions.

With staggered pricing, the model can explain a ten month price adjustment� or about one quarter

of the momentum in the data� in response to a shock to fundamentals even though all sellers have

reset their price within two months of the shock. With rule-of-thumb sellers, the model generates

three years of positively autocorrelated price changes as observed empirically if 26.5 percent of

sellers are backward-looking. By contrast, without concave demand, 78 to 93 percent of sellers

3Although endogeneity is a worry, the ordinary least squares relationship is also concave. However, as one would
expect if unobservable quality is an issue, it has a smaller slope.
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would have to be backward-looking to generate a three-year response.

The ampli�cation mechanism adapts two ideas from the macro literature on goods price sticki-

ness to frictional asset search. First, the concave demand curve is similar to �kinked�demand curves

(Stiglitz, 1979; Woglom, 1982) which, since the pioneering work of Ball and Romer (1990) has been

frequently cited as a potential source of real rigidities. In particular, a �smoothed-out kink� ex-

tension of Dixit-Stiglitz preferences proposed by Kimball (1995) is frequently used to tractably

introduce real rigidities through strategic complementarity in price setting. Second, the repeated

partial price adjustment caused by the strategic complementarity is akin to Taylor�s (1980) �con-

tract multiplier.�A lively literature has debated the importance of strategic complementarities and

kinked demand in particular for propagating goods price stickiness by analyzing calibrated models

(e.g., Chari et al., 2000), by assessing whether the rami�cations of strategic complementarities are

borne out in micro data (Klenow and Willis, 2006; Bils et al., 2012), and by examining exchange-

rate pass through for imported goods (e.g., Gopinath and Itshoki, 2010; Nakamura and Zerom,

2010). My analysis of housing markets adds to this literature by directly estimating a concave

demand curve and assessing its ability to amplify frictions in a calibrated model.

Having established a propagation mechanism for house price momentum empirically and theo-

retically, I show that momentum a¤ects the dynamics of sales volume and the inventory of houses

for sale. Forward-looking buyers and sellers re-time their purchase decisions due to expectations

of predictable future price changes. Such re-timing causes sudden swings in inventory that drive

the reversal between a hot market, with a substantial excess of buyers, and a cold market, with

a relative dearth of buyers. For instance, at a trough, marginal buyers rush to purchase before

prices rise, while marginal sellers wait to obtain a better price for their home, leading inventory

to plummet.4 To formalize this story, I build on Novy-Marx (2009) by including buyer and seller

entry decisions in the model.

Forward-looking entry responses in the calibrated model help explain three puzzling features of

housing cycles. First, seller entry remains high as volume plummets at peaks and remains low as

4Buyer and seller quotes in newspapers provide suggestive evidence of such re-timing. In 2013, when prices were
rising, a buyer explained to the Wall Street Journal �if you don�t get in now, things are going to skyrocket over the
next year,�while a seller who delayed putting their house on the market told the Journal that �the extra money �
that was worth [waiting] for the year.�This e¤ect is part of the folk wisdom of housing markets, yet has not appeared
in the academic literature. For instance, Calculated Risk Blog describes a conversation with a real estate agent who
argues that �In a market with falling prices, sellers rush to list their homes, and inventory increases. But if sellers
think prices have bottomed, then they believe they can be patient, and inventory declines.�
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volume picks up at troughs, which is the exact pattern created by the re-timing of entry in light

of momentum. Second, volume and inventory are more volatile than price. This is di¢ cult to

reconcile with most calibrations of housing search models in a direct analogue to Shimer�s (2005)

unemployment volatility puzzle for labor search models. With momentum, volume and inventory

are more volatile not only because price responds gradually but also because the adjustment of

inventory is accelerated by the re-timing of entry. Third, in the data, price changes are strongly

negatively correlated with inventory levels (Peach, 1983). This �housing Phillips curve�is surprising

because in most asset pricing models, price changes are correlated with changes in fundamentals

such as inventory (Caplin and Leahy, 2011). In my model, the quick response of inventory and

gradual response of price create a strong correlation between price changes and inventory levels.

The remainder of the chapter proceeds as follows. Section 1.2 introduces facts about housing

dynamics. Section 1.3 analyzes micro data to assess whether housing demand curves are concave.

Section 1.4 presents the model. Section 1.5 calibrates the model to the micro estimates and assesses

the degree to which strategic complementarities amplify momentum. Section 1.6 discusses the

consequences of this momentum for housing cycles. Section 1.7 concludes.

1.2 Four Facts About Housing Dynamics

1.2.1 Momentum

Since the pioneering work of Case and Shiller (1989), price momentum has been considered one of

the most puzzling features of housing markets. While other �nancial markets exhibit momentum,

the housing market is unusual for the strength of the e¤ect and the horizon over which it persists.5

Fact 1: Price changes are serially correlated for 8 to 14 quarterly lags.

House price momentum has consistently been found across cities and countries, time periods, and

price index measurement methodologies (Cho, 1996). Figure 1 shows three measures of momentum

5Note that the �momentum� I analyze refers to autocorrelation in aggregate price time series, which is distinct
from the short-term over-performance of stocks that recently performed best that is also called �momentum.�Time-
series momentum holds for a number of other asset classes over shorter horizons. Cutler et al. (1991) look across a
large number of asset classes and �nd that for the vast majority of assets, positive autocorrelation in returns lasts
for less than a year. Moskowitz et al. (2012) �nd that time series momentum lasts for approximately 12 months for
58 di¤erent equity index, currency, commodity, and bond futures. This 12 month horizon is an upper bound for the
type of momentum studied here, which includes only capital gains, because the measured returns in Moskowitz et al.
include both dividends (which are known to be autocorrelated) and capital gains.
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Figure 1: Momentum in Housing Prices
Notes: Panel A and B show the autocorrelation function for quarterly real price changes and an impulse response of log real

price levels estimated from an AR(5) model, respectively. The IRF has 95% con�dence intervals shown in grey. An AR(5) was

chosen using a number of lag selection criteria, and the results are robust to altering the number of lags. Both are estimated

using the CoreLogic national repeat-sales house price index from 1976-2013 collapsed to a quarterly level, adjusted for in�ation

using the CPI, and seasonally adjusted. Panel C shows a histogram of annual AR(1) coe¢ cients of annual house price changes

as in regression (1) estimated separately on 103 CBSA division repeat-sales house price indices provided by CoreLogic. The

local HPIs are adjusted for in�ation using the CPI. The 103 CBSAs and their time coverage, which ranges from 1976-2013 to

1995-2013, are listed in Appendix A.1.

for the CoreLogic national repeat-sales house price index for 1976 to 2013.6 Panel A shows that

autocorrelations are positive for 11 quarterly lags of the quarterly change in the price index adjusted

for in�ation and seasonality. Panel B shows an impulse response in log levels to an initial one

percent price shock estimated from an AR(5). In response to the shock, prices gradually rise for

two to three years before mean reverting. Finally, panel C shows a histogram of AR(1) coe¢ cients

estimated separately for 103 metropolitan area repeat-sales house price indices from CoreLogic

using a regression of the annual change in log price on a one-year lag of itself as in Case and Shiller

6As discussed in Appendix A.2, price indices that measure the median price of transacted homes display momentum
over roughly two years as opposed to three years for repeat-sales indices.
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(1989):

�t;t�4 ln p = �0 + �1�t�4;t�8 ln p+ ". (1)

�1 is positive for all 103 cities, strongest for cities with inelastic housing supply, and the median

city has an annual AR1 coe¢ cient of 0.60. Appendix A.2 replicates these facts for a number of

countries, price series, and measures of autocorrelation and consistently �nds two to three years of

momentum.7

The existing evidence suggests that momentum cannot be explained by serially correlated

changes in fundamentals. Case and Shiller (1989) argue that momentum cannot be explained

by autocorrelation in interest rates, rents, or taxes. Glaeser et al. (2013) estimate a dynamic

spatial equilibrium model and �nd that �there is no reasonable parameter set� consistent with

short-run momentum. Capozza et al. (2004) �nd signi�cant momentum after accounting for six

comprehensive measures of fundamentals in a vector error correction model.

Four main explanations have been o¤ered for momentum in asset markets and for the housing

market more speci�cally. First, a behavioral �nance literature hypothesizes that investors initially

underreact to news due to behavioral biases (Barberis et al., 1998, Hong and Stein, 1999) or loss

aversion (Frazzini, 2006) and then �chase returns�due to extrapolative expectations about price

appreciation.8 Both extrapolative expectations and loss aversion are considered to be important

forces in the housing market (Case and Shiller, 1987; Berkovec and Goodman, 1996; Glaeser et

al., 2013; Genesove and Mayer, 2001). Second, Anenberg (2013) shows that gradual learning

about market conditions by sellers can create momentum. Third, Head et al. (2014) demonstrate

that strong search frictions and a gradual construction response can cause the liquidity of houses

to adjust slowly in response to a shock to local incomes, which creates momentum.9 Finally,

7 In the housing market, the price level appears to be sticky but the rate of change does not appear to react
sluggishly. In particular, neither the evidence presented here nor the structural panel VAR in Head et al. (2014)
shows evidence of autocorrelations of house price changes near one or delayed �hump shaped� impulse responses of
house price changes. This is unlike the CPI or GDP de�ator, which demonstrate considerable persistence in the rate
of change (Fuhrer, 2011).

8Frazzini argues that as prices rise, potential sellers who resist selling at a loss relative to their initial purchase
begin to experience gains. This causes them to sell, putting downward pressure on prices. A similar point could be
made with respect to underwater homeowners who regain positive equity as prices rise.

9Head et al. (2014) assume that searching buyers need housing, which must be built when a metropolitan area
grows due to an income shock. In their calibrated model, market tightness takes nearly six years to adjust to adjust
to a shock due to a slow construction response, search frictions, and a shock that exhibits persistent changes. The
gradual adjustment of market tightness creates momentum. By contrast, in the calibrated search model without
additional frictions presented here, market tightness adjusts in two years and creates a tiny amount of momentum.
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momentum could result from a gradual spread of optimism if sentiment drives house prices rather

than fundamentals (Burnside et al., 2013).

Learning and search have been calibrated quantitatively and cannot explain the full extent of

momentum in housing markets. Anenberg�s (2013) structural model of learning can explain an

annual AR(1) coe¢ cient of 0.124 relative to between 0.3 and 0.75 in the data. Head et al.�s (2014)

calibrated model can explain half of the autocorrelation in prices at one year, but almost none at

two years. In Section 1.5, I show that the vast majority of sellers would have to have a simple

form of extrapolative expectations to fully explain the amount of momentum in the data. The

role of sentiment has yet to be measured. The ampli�cation mechanism I propose complements

these existing explanations by strengthening them so they can better �t the momentum that is

empirically observed.

1.2.2 Housing Cycles

I relate three other facts and puzzles about the short-run dynamics of housing cycles to momentum.

Fact 2: Seller entry rises above sales volume at peaks and falls below sales volume at troughs,

corresponding to large and sudden �uctuations in inventory.

Although sales and seller entry track one another, Figure 2 shows that at the peak of the recent

boom and bust cycle, seller entry remained high for several quarters as volume began to plunge,

which corresponded to a sudden increase in inventory. Conversely, as volume and prices began

to rise in 2012 and 2013, seller entry remained low, coinciding with a sudden drop in inventory.

Appendix A.2 shows that this fact is not unique to 2003 to 2013. Although there is no data on

the stock of buyers, most models imply that if seller entry lags sales, buyer entry must lead sales.

Figure 2 illustrates this by using a simple matching function parameterized based on Genesove and

Han (2012) to infer the stock of buyers from sales volume and the stock of homes for sale.

Fact 3: At an annual frequency, the volatility of sales volume is twice that of real price and the

volatility of inventory as measured by months of supply is three times that of real price.

Despite the predictability of price changes, the housing market is volatile. Table 1 shows the

standard deviation of annual log changes for four series: real disposable personal income, real house

prices, sales volume, and �for sale� inventory measured as months of supply (a common metric

in the housing market). Price is four times more volatile than income, and volume and inventory
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Figure 2: Sales, Entry and Inventory, 2003-2013
Notes: Volume is raw data from the National Association of Realtors of sales of existing single-family homes at a seasonally-

adjusted annual rate. Homes listed for sale is from the Census Vacancy Survey. Seller entry is computed as Entrantst = Sellerst

- Sellerst�1 + Salest. Buyer entry is computed similarly, but since there is not a raw data series for the stock of buyers it is

imputed using a simple Cobb-Douglas matching function Sales
S = �

�
B
S

��:8
with the 0.8 elasticity from Genesove and Han

(2012). In this �gure, � = 1 so that in a steady state there is 3 months of supply. All four series are smoothed using a
three-quarter moving average.

are, in turn, more volatile than price. The volatility of inventory in particular is of note because

substantial �uctuations in inventory at peaks and troughs herald rapid changes between buyers�and

sellers�markets. Finally, price and volume are highly positively correlated and both are positively

correlated with income.10

Fact 4: (Housing Phillips Curve) Price changes are negatively correlated with inventory levels,

with a one log point increase in months of supply correlated with a 0.14 log point decrease in annual

price growth (Peach, 1983; Lazear, 2010; Caplin and Leahy, 2011).

Figure 3 shows the time series of the annual change in the log price index and of log inventory,

10There is a substantial literature on the positive correlation of price and sales volume. Stein (1995) and Ortalo-
Magne and Rady (2006) argue prices a¤ect the ability of homeowners to extract equity and make a down payment on
their next home, leading to a feedback from prices to volume. A literature initiated by Wheaton (1990) and Krainer
(2001) uses a steady state Diamond-Mortensen-Pissarides search model to argue that the relative number of buyers
and sellers in the market a¤ects the liquidity of homes, creating a feedback from volume to price. Leamer (2007)
and Case (2008), among others, suggest that volume is more volatile than price because nominal loss aversion and
backwards-looking expectations on the part of sellers make prices sticky downward.
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Table 1: Cyclical Summary Statistics for Income, House Price, Sales, and Inventory

�log xq�log xq�4 �x, Real HPI �x, Sales Volume �x; Months of Supply
Real Disposable Pers. Income 0.016 .819 .668 .497

Real House Price Index 0.065 .726 .305

Sales Volume 0.143 -.263
Inventory: Months of Supply 0.207

Notes: All series are for 1976-2013 at a quarterly frequency. The �rst column shows the standard deviation of annual log

changes, while the other columns show correlation coe¢ cients of log levels at a quarterly frequency. Real disposable personal

income is BEA series DPIC96. Real price is the CoreLogic national repeat-sales house price index adjusted for in�ation using

the CPI. Sales volume is from the National Association of Realtors single-family existing home series. Months of supply is

created by dividing homes listed for sale from the Census Vacancy Survey by the NAR sales series. The volume, income, and

months of supply series are all seasonally adjusted.

Figure 3: Price Changes Correlated With Inventory Levels
Notes: The �gure shows the time series of the annual change in the log CoreLogic national repeat-sales house price index

plotted against log months of supply. The latter is calculated by dividing homes vacant for sale from the Census Vacancy

Survey by sales of existing single-family homes from the National Association of Realtors (NAR), measured at the midpoint of

the yearlong period over which the change in price is computed.

measured as months of supply at the midpoint of the year over which the change in price is calcu-

lated. This relationship is reminiscent of the Phillips curve as it relates inventory� the equivalent

of unemployment in the housing market� to price appreciation. The visible inverse co-movement

in the series is con�rmed by a regression: a one percent increase in months of supply is associated

with a 0.14 percent decrease in the annual change in prices with an R-squared of 0.53.11 This

11Both the numerator of months of supply� homes for sale� and the denominator� volume� matter. Appendix
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Figure 4: Impulse Response to Inventory Shock in Panel VAR
Notes: The �gure shows orthogonalized impulse response functions to a months of supply shock computed from a two-lag

panel vector autoregression of log months of supply, log price, and log sales volume for a panel of 42 cities from 1990 to 2013

described in Appendix A.1. Price and sales are from CoreLogic, with price corresponding to the local CoreLogic house price

index adjusted for the CPI and sales corresponding to existing home sales. Months of supply at the MSA level comes from the

National Association of Realtors. All data is seasonally adjusted, and the panel VAR, which includes a �xed e¤ect for each

city as described in Appendix A.2, is estimated using system GMM and Helmert mean di¤erencing using a Stata package by

Inessa Love. The OIRFs are computed using a Cholesky decomposition with the variables ordered so that months of supply is

assumed not to depend contemporaneously on shocks to price or volume and price is assumed not to depend contemporaneously

on shocks to volume. The results are robust as long as months of supply is prior to volume in the Cholesky ordering. The blue

line is the OIRF, and the grey bands indicate 95 percent con�dence intervals computed using a Monte Carlo procedure that

generates 500 impulse responses from draws from the distribution of coe¢ cients implied by the estimated coe¢ cients and their

variance-covariance matrix.

relationship is puzzling because most asset pricing models imply price changes should be correlated

with changes in variables that re�ect fundamentals, such as inventory, rather than with their levels.

With mean reverting shocks, such models imply a positive correlation between price changes and

inventory levels because when inventory levels are high, inventories tend to fall and prices tend to

rise. Caplin and Leahy (2011) show that this e¤ect can be eliminated if prices are posted before

shocks are realized.

To bring together the facts, I estimate a panel vector autoregression with city �xed e¤ects on

log price, log volume, and log inventory using a panel of 42 cities from 1990 to 2013 described

in Appendix A.1. The panel vector autoregression (VAR) is estimated using system GMM as

A.2 shows the time series look similar if log homes listed for sale adjusted for a linear time trend replaces months of
supply and that a regression of the annual change in log price on log homes listed for sale has an R-squared of 0.40.
By contrast, regressing changes on changes gives a weak correlation.
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in Arellano and Bover (1995). Figure 4 shows the orthogonalized impulse response functions of

months of supply, price, and sales in response to a one standard deviation positive shock to months

of supply. This can be thought of as a negative demand shock because the positive co-movement

of price and volume implies that demand-side shocks are predominant. Volume immediately falls,

and months of supply monotonically and gradually decays back to its steady state value after the

initial shock. Prices gradually decline over a 10-quarter period, with the price decline tapering o¤

as inventory returns to steady state. Appendix A.2 shows similar results for a VAR and a vector

error correction model estimated on national data.

The model presented in this chapter implies that housing cycles with these four features arise

from the interaction of small underlying frictions, strategic complementarities, and forward-looking

decisions about when in the cycle to buy and sell. Several other papers have discussed how the

endogenous timing of purchasing decisions a¤ects housing cycles, although not in light of momen-

tum. Novy-Marx (2009) shows that entry responses can amplify the long-run response to shocks

and increase the amplitude of cycles. Anenberg and Bayer (2013) demonstrate that the cost of

simultaneously holding two homes in an illiquid market can make the number of households who

simultaneously buy and sell pro-cyclical, which increases volatility.

More directly related to this chapter are explanations for why seller entry may fall at troughs

and rise at peaks. One reason why seller entry may remain low as volume rises after a trough is

nominal loss aversion (Genesove and Mayer, 2001) and lock in due to negative equity (Stein, 1995).

Head et al. (2014) present another mechanism: when local incomes rise, new entrants to an MSA

need a place to live, which drives up rents until new homes are built and causes potential sellers to

rent their homes temporarily before selling then. More broadly, Head et al. (2014) is most closely

related to this research. Their analysis of the joint responses of construction, house prices, house

sales, and population to city-level income shocks in a model with momentum is complementary to

my focus on the timing of purchase and sale decisions of existing homeowners and residents.

1.3 Are Housing Demand Curves Concave?

I propose an ampli�cation channel for momentum based on search and a concave demand curve in

relative price. Search is a natural assumption for housing markets, but the relevance of concave

demand requires further explanation.
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A literature in macroeconomics shows how strategic complementarities among goods producers

can amplify small pricing frictions into substantial price sluggishness by incentivizing �rms to set

prices close to one another. Strategic complementarities operate either through a monopolistic

�rm�s marginal cost or its markup, which pushes a �rm to price close to the market average if

demand is concave in relative price. �Kinked demand� was introduced by Stiglitz (1979) and

Woglom (1982), who hypothesized that �rms that increase their price induce consumers to search

for a new �rm, but �rms that cut their price only gain a few active searchers. Ball and Romer

(1990) show that this can create real rigidities and possibly explain why prices are so sticky despite

small menu costs. This argument has been formalized in several papers, such as Benabou (1992)

and Levin and Yun (2009). Kimball (1995) generalizes Dixit-Stiglitz-style aggregator to allow for

concave demand, which is used as an important real rigidity in several popular New Keynesian

models (e.g., Smets and Wouters, 2007). Despite the frequency with which it is used, there is little

direct evidence for concave demand.12

Because momentum is similar to price stickiness in goods markets, I hypothesize that a similar

strategic complementarity may amplify house price momentum. There are several reasons why

concave demand may arise in housing markets. First, buyers may avoid visiting homes that appear

to be overpriced. Second, buyers may infer that underpriced homes are lemons. Third, a house�s

relative list price may be a signal of seller type, such as an unwillingness to negotiate (Albrecht et al.,

2013). Fourth, homes with high list prices may be less likely to sell quickly and may consequently

be more exposed to the tail risk of becoming a �stale�listing that sits on the market without selling

(Taylor, 1999). Fifth, buyers may infer that underpriced homes have a higher e¤ective price than

their list price because their price is likely to be increased in a bidding war (Han and Strange,

2012b).

Nonetheless, concrete evidence is needed for the existence of concave demand in housing markets

before it is adopted as an explanation for momentum. Consequently, this section assesses whether

demand is concave by analyzing micro data on listings matched to sales outcomes for the San

12Gopinath and Itshoki (2010) review both the price microdata and exchange rate pass-through literatures and
argue there is a collage of evidence supporting a role for strategic complementarity in wholesale prices, but not resale
prices. The most direct evidence to date comes from Nakamura and Zerom (2010), who directly estimate the �super
elasticity� (rate of change of the elasticity) of demand for co¤ee using a random coe¢ cients structural model and
�nd evidence for concave demand.
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Francisco Bay, Los Angeles, and San Diego metropolitan areas from April 2008 to February 2013.13

The relevant demand curve for list-price-setting sellers is the e¤ect of unilaterally changing a

house�s relative quality-adjusted list price relative on its probability of sale. Detecting a nonlinear

e¤ect is challenging because quality is poorly measured, list prices are endogenous, and market

conditions vary. The principal econometric challenge is that quality di¤erences unobserved to the

econometrician lead to an estimated demand curve that is far more inelastic than the true demand

curve. The analysis is also complicated by the high number of foreclosures and short sales during

the period that I analyze. Short sales, which occur when a home is sold for less than the outstanding

mortgage balance, are especially worrisome because they often involve lengthy negotiations between

the seller and their mortgage servicer which arti�cially decrease the probability of sale.

To surmount these challenges, I use a non-linear instrumental variable approach that traces out

the demand curve using plausibly exogenous supply-side variation in seller pricing behavior. Before

explaining the econometric strategy and presenting my main estimates, I �rst discuss the data.

1.3.1 Data

I combine data on listings with data on housing characteristics and transactions. The details of

data construction can be found in Appendix A.1. The listings data come from Altos Research,

which every Friday records a snapshot of homes listed for sale on multiple listing services (MLS)

from several publicly available web sites and records the address, MLS identi�er, and list price. The

housing characteristics and transactions data come from DataQuick, which collects and digitizes

public records from county register of deeds and assessor o¢ ces. This data provides a rich one-time

snapshot of housing characteristics from 2013 along with a detailed transaction history of each

property from 1988 to 2013 that includes transaction prices, loans, buyer and seller names and

characteristics, and seller distress. I limit my analysis to non-partial transactions of single-family

existing homes as categorized by DataQuick.

I match the listings data to a unique DataQuick property ID. To account for homes being de-

listed and re-listed, listings are counted as contiguous if the same house is re-listed within 90 days

and there is not an intervening foreclosure. If a matched home sells within 12 months of the �nal

13These metro areas were selected because both the listings and transactions data providers are based in California,
so the matched dataset for these areas is of high quality and spans a longer time period.
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listing date, it is counted as a sale, and otherwise it is a withdrawal. The matched data includes

83 percent of single-family transactions in the Los Angeles area and 73 percent in the San Diego

and San Francisco Bay areas. It does not account for all transactions due to three factors: a small

fraction of homes (under 10%) are not listed on the MLS, some homes that are listed in the MLS

contain typos or incomplete addresses that preclude matching to the transactions data, and Altos

Research�s coverage is incomplete in a few peripheral parts of each metropolitan area.

I limit the data to homes listed between April 2008 and February 2013.14 I drop cases in which

a home has been rebuilt or signi�cantly improved since the transaction, the transaction price is

below $10,000, or a previous sale occurred within 90 days. I exclude ZIP codes with fewer than

500 repeat sales between 1988 and 2013 because my empirical approach requires that I calculate a

local house price index. These restrictions eliminate approximately �ve percent of listings.

The �nal data set consists of 665,560 listings leading to 467,456 transactions. I focus on the

431,830 listings leading to 318,842 transactions with an observed prior transaction, and my IV

procedure is limited to a more restricted sample described below. Table 2 provides summary

statistics for several di¤erent subsamples.

1.3.2 Empirical Approach

Econometric Model Before presenting the empirical approach, I introduce an econometric

framework for how changes in list price around a quality-adjusted average price a¤ect probabil-

ity of sale. Each possible sequence of list prices is associated with a distribution of time to sale.

To simplify the analysis, the unit of observation is a listing associated with an initial log list price,

p. I work with a summary statistic of the time to sale distribution, d, which in the main text is an

indicator for whether the house sells within 13 weeks, with a withdrawal counting as a non-sale. I

vary the horizon and use time to sale for the subset of listings that sell in robustness checks. The

data consist of homes, denoted with a subscript h, from markets de�ned by a location ` (a ZIP

code in the data) and time period t (a quarter in the data).

14The Altos data begins in October 2007 and ends in May 2013. I allow a six month burn-in so I can properly
identify new listings, although the results are not substantially changed by including October 2007 to March 2008
listings. I drop listings that are still active on May 17, 2013, the last day for which I have data. I also drop listings
that begin less than 90 days before the listing data ends so I can properly identify whether a home is re-listed within
90 days and whether a home is sold within six months. The Altos data for San Diego is missing addresses until
August 2008, so listings that begin prior to that date are dropped. The match rate for the San Francisco Bay area
falls substantially beginning in June 2012, so I drop Bay area listings that begin subsequent to that point.
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Table 2: Summary Statistics For Listings Micro Data

Sample All Prior Trans IV All Prior Trans IV
All All All Transactions Transactions Transactions

Transaction 70.20% 73.80% 66.80% 100% 100% 100%
Prior Transaction 64.90% 100% 100% 68.20% 100% 100%

REO 20.50% 24.90% 0% 26.70% 31.90% 0%
Short Sales 20.60% 24.20% 0% 20.20% 23.70% 0%

Positive Appreciation 43.00% 100% 42.30% 100%
Since Purchase
Initial List Price $642,072 $586,010 $817,797 $581,059 $541,682 $789,897
Transaction Price $534,886 $ 497,901 $731,757
Weeks on Market 15.07 15.69 12.39
Sold Within 13 Wks 43.30% 44.10% 46.80% 61.70% 59.70% 70.10%

Beds 3.28 3.24 3.31 3.27 3.23 3.30
Baths 2.19 2.12 2.28 2.15 2.10 2.26

Square Feet 1,810.10 1,722.10 1,910.40 1,762.40 1,694.30 1,887.50
N 665,560 431,830 111,293 467,456 318,842 74,299

Notes: Data covers listings between April 2008 and February 2013 in the San Francisco Bay, Los Angeles, and San Diego areas

as described in Appendix A.1. REOs are sales of foreclosed homes and foreclosure auctions. Short sales include cases in which

the transaction price is less than the amount outstanding on the loan and withdrawals that are subsequently foreclosed on in

the next two years. Appreciation since purchase is based on the ZIP code repeat-sales price index described in Appendix A.1.

I am interested in the impact of quality-adjusted list price relative to the average quality-

adjusted list price in the market on probability of sale.15 The quality-adjusted average list price

~ph`t has two additive components: the average log list price in location ` at time t, represented by

a �xed e¤ect �`t, and quality qh`t that is only partially observable to the econometrician:

~ph`t = �`t + qh`t. (2)

In a Walrasian world, there would be no variation in ph`t� ~ph`t because sellers would all price homes

at ~ph`t understanding that homes priced above ~ph`t would not sell and that pricing below ~ph`t leaves

money on the table. In the housing market, however, there are search frictions and substantial

amounts of idiosyncratic preference that cause demand to be a downward-sloping function of ph`t�

~ph`t, which can be thought of as the seller�s relative markup. Variation in the relative markup

15While I focus on list prices, it is important to test the robustness of the results to using transaction prices to
ensure that bargaining or price wars that occur after a list price is chosen do not undo any concavity in list price.
Appendix A.3 shows all results are robust to using transaction prices.
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represents di¤erences in sellers�outside options due to factors like liquidity.

Formally, I model the probability of sale dh`t as:

dh`t = g (ph`t � ~ph`t) +  `t + "h`t. (3)

The demand curve in relative price g (�) is assumed to be invariant across markets de�ned by a

location and time net of an additive �xed e¤ect  `t that represents local market conditions. "h`t

is an error term that represents luck in �nding a buyer and is assumed to be independent of the

relative markup ph`t � ~ph`t.16

If ~ph`t were observable, one could directly estimate (3) by approximating g (�) with a �exible

function and using ordinary least squares or by using non-parametric regression. However, observ-

able measures of quality are imperfect, so quality qh`t likely has a component that is unobserved

to the econometrician. I consequently model quality as a linear function of observed measures of

quality Xh`t and quality unobserved by the econometrician uh`t:

qh`t = �Xh`t + uh`t: (4)

I include two measures of each house�s value at listing as quality measures in Xh`t: a repeat-

sales predicted price equal to the price the last time the house sold converted to today�s prices

using a repeat-sales house price index and a predicted price from a hedonic index that values the

house based on its characteristics.17 To construct the repeat-sales predicted price, I �rst estimate

interval-weighted geometric repeat-sales house price index for each ZIP code as in Case and Shiller

(1989). The log index for a given time period is a time dummy in a regression of log house price

on house and time �xed e¤ects. The log predicted price p̂repeath`t at time t for a house h in location `

that sold for Ph`� at time � is equal to log
�
Ph`�

�`t
�`�

�
, where �`t is the ZIP code repeat-sales index

at time t. To construct the hedonic predicted price, I estimate a hedonic house price index for each

16Demand shocks like "h`t traditionally cause an endogeneity problem because they are correlated with price.
However, here the variable of interest is relative price, so the e¤ect of demand shocks on average price levels is
absorbed into �`t. Similarly, the e¤ect of prices on aggregate demand is absorbed into  `t. It is thus natural to
assume that "h`t is independent of the relative markup in this framework.
17The inclusion of a predicted price to estimate the e¤ect of a �markup�on probability of sale builds on Yavas and

Yang (1995). More broadly, my empirical question and approach are similar to a real estate literature that seeks to
assess the impact of list price on time on the market (Kang and Gardner, 1989; Knight 2002; Anglin et al. 2003;
Haurin et al., 2010). This literature has not focused on nonlinearity, in part because of small sample sizes.
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ZIP code using a third order polynomial in age, log square feet, bedrooms, and bathrooms for the

hedonic factor. The predicted log price p̂hedonict is the sum of a house�s hedonic value as implied

by a regression and the �xed e¤ect in the regression for a given time period. The construction of

both indices follows practices common in the literature and is detailed in Appendix A.1. I include

both predicted prices in Xh`t because each approach has its virtues (Meese and Wallace, 1997).18

In Appendix A.3, I show the results are robust to modeling quality as a more �exible function of

the predicted prices and to including other observables in Xh`t.

Combining (2) and (4), the reference price ~ph`t can be written as:

~ph`t = �`t + �Xh`t + uh`t (5)

where again �`t is a �xed e¤ect that represents the average price in location ` at time t and uh`t is

unobserved quality.

Instrument To identify the demand curve g (�) in the presence of unobserved quality, I use

plausibly exogenous supply-side variation in the list price due to the liquidity needs of sellers.

Sellers face a trade-o¤ between selling at a higher price and selling faster. Sellers with less liquidity

and consequently a higher marginal utility of cash on hand choose a higher list price and longer time

on the market. A proxy for liquidity that is orthogonal to unobserved quality and seller patience

can is thus an instrument for list price.

The proxy for liquidity that I use is the equity a seller extracts from their sale. Housing is a

large component of household wealth, and many sellers use the equity they extract from sale for

the down payment on their next home (Stein, 1995). This increases the marginal utility of cash

on hand for sellers who extract very little equity from their house because each additional dollar

of equity they extract can be leveraged to buy a substantially better house. The marginal utility

of cash is lower for sellers extracting substantial equity because their purchasing power is limited

more by their creditworthiness and overall budget than the cash they have on hand. Consequently,

homeowners with lower equity positions set higher list prices and sell their houses at higher prices

18The hedonic approach uses a limited set of characteristics and assumes that their valuation over time is constant
because I have only a single snapshot of characteristics, but it uses all sales. Repeat sales controls for home �xed
e¤ects but only uses a subset of the data and assumes that house quality is constant and that the set of houses
trading at any given time is representative.
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(Genesove and Mayer, 1997; Genesove and Mayer, 2001).

Because �nancing and re�nancing decisions make the equity of sellers endogenous, I use as

my instrument the log of appreciation in the ZIP repeat-sales house price index since purchase

zh`t = log
�
�`t
�`�

�
, where � is the repeat-sales house price index, t is the period of listing, and �

is the period of previous sale.19 This would be isomorphic to equity if all homeowners took out

an identical mortgage and did not re�nance. The instrument thus compares sellers who purchase

identical homes with identical mortgages but who have di¤erent amounts of cash on hand to make

their next down payment because one seller�s home appreciated more in value than the other�s.

If variation in seller liquidity represented by zh`t is independent of unobserved quality and is

the only source of variation in price conditional on quality and average price, zh`t can be used as

an instrument to trace out the demand curve g (�). Because existing evidence shows that the e¤ect

of equity is non-linear and strongest for sellers with low equity (Genesove and Mayer, 1997), I let

zh`t a¤ect price through a �exible function f (�). Formally, g (�) is identi�ed if:

Condition 1

zh`t ?? (uh`t; "h`t)

and

ph`t = f (zh`t) + ~ph`t

= f (zh`t) + �`t + �Xh`t + uh`t. (6)

The �rst half of Condition 1 is an exclusion restriction that requires that appreciation since

purchase have no direct e¤ect on the outcome, either through fortune in �nding a buyer "h`t in

equation (3) or through unobserved quality uh`t. If this is the case, zh`t only a¤ects probability of

sale through the relative markup ph`t � ~ph`t. Because I use ZIP � quarter of listing �xed e¤ects,

the variation in zh`t comes from sellers who sell at the same time in the same market but purchased

at di¤erent points in the cycle. Condition 1 can thus be interpreted as requiring that unobserved

quality be independent of when the seller purchased.

This assumption is di¢ cult to test because I only have a few years of listings data, so �exibly
19Here zh`t is a measure of liquidity, whereas when multiplied by the previous price Ph`� in Xh`t it is used to

convert the previous price to present values and constrained to have the same coe¢ cient as the previous price Ph`t.
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controlling for when a seller bought weakens the e¤ect of the instrument on price in equation (6)

and widens the con�dence intervals to the point that any curvature is not statistically signi�cant.

Nonetheless, I evaluate the identi�cation assumption in four ways as documented in Appendix A.3.

First, I vary the observable measures of quality. Second, I include including a linear time trend in

date of purchase or time since purchase. Third, I limit the sample to sellers who purchased prior to

2004 and again include a linear time trend, eliminating variation from sellers who purchased near

the peak of the bubble or during the bust. In all three cases, the results remain robust. Finally,

I show that the shape of the estimated demand curve is similar for IV and OLS, although OLS

results in a more inelastic demand curve due to the bias created by unobserved quality. While these

tests assuage some concerns, if homes with very low appreciation since purchase are of substantially

lower unobserved quality despite their higher average list price, my identi�cation strategy would

overestimate the true amount of curvature in the data.20

I focus on sellers for whom the exogenous variation is cleanest and consequently exclude three

groups. First, many individuals who have had negative appreciation since purchase are not the

claimant on the residual equity in their homes� their mortgage lender is. For these individuals,

appreciation since purchase is directly related to how far underwater they are, which in turn a¤ects

the foreclosure and short sale processes of the mortgage lender or servicer. Because I am interested

in market processes, I exclude short sales, withdrawals that are subsequently foreclosed upon,

and individuals who have had negative appreciation since purchase from the analysis. Second,

mortgage servicers and government-sponsored enterprises selling foreclosed homes have no reason

to be sensitive to the amount of appreciation since the foreclosed-upon homeowner purchased

and are dropped. Finally, investors who purchase, improve, and �ip homes typically have a low

appreciation in their ZIP code since purchase but improve the quality of the house in unobservable

ways. To minimize the e¤ect of investors, I exclude sellers who previously purchased with all cash,

a hallmark of investors.

The second part of Condition 1 requires that liquidity embodied in zh`t is the only reason for

variation in ph`t � ~ph`t. This is a strong assumption because there may be components of liquidity

that are unobserved or other reasons that homeowners list their house at a price di¤erent from

20One concern is that sellers with higher appreciation since purchase improve their house in unobservable ways with
their home equity. However, this would create a positive relationship between price and appreciation since purchase
while I �nd a strong negative relationship.
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~ph`t, such as heterogeneity in discount rates. If the second part of the condition did not hold, then

the estimates would be biased because the true ph`t � ~ph`t would equal f (zh`t) + �h`t, and the

unobserved error �h`t enters g (�) nonlinearly.

However, if other sources of variation in the relative markup ph`t � ~ph`t are independent of the

variation induced by the instrument, the error in ph`t � ~ph`t would not cause spurious concavity.

Intuitively, noise in ph`t� ~ph`t would cause the observed probability of sale at each observed ph`t�

~ph`t to be an average of the probabilities of sale at true ph`t � ~ph`ts that are on average evenly

scrambled. Consequently, although the slope may be biased, the curvature of a monotonically-

decreasing demand curve is preserved. An analytical result can be obtained if the true g (�) is a

cubic regression function as in Hausman et al. (1991):

Lemma 2 Consider the econometric model described by (3) and (5) and suppose that:

zh`t ?? (uh`t; "h`t) , (7)

ph`t = f (zh`t) + �h`t + ~ph`t, (8)

�h`t ?? f (zh`t), and the true regression function g (�) is a third-order polynomial. Then estimating

g (�) assuming that ph`t = f (zh`t) + ~ph`t yields the true coe¢ cients of the second- and third-order

terms in g (�).

Proof. See Appendix A.3.

While a special case, Lemma 2 makes clear that the bias in the estimated concavity is minimal

if �h`t ?? f (zh`t). Appendix A.3.5 shows more generally using Monte Carlo simulation that if

�h`t ?? f (zh`t), the degree of concavity is if anything under-estimated.

However, spurious concavity is possible if other sources of variation in the relative markup are

correlated with the instrument. Speci�cally, Appendix A.3.5 presents Monte Carlo simulations that

show that if the instrument captures most of the variation in the relative markup ph`t� ~ph`t at low

levels of appreciation since purchase but very little of the variation at high levels of appreciation

since purchase, spurious concavity is generated because the slope is attenuated for low relative

markups but not high relative markups. However, quantitatively an extreme amount of unobserved

variation in the relative markup ph`t � ~ph`t is necessary to spuriously generate the amount of
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concavity in the data.

Estimation Under Condition 1, ph`t � ~ph`t = f (zh`t), and g (�) can be estimated by a two-step

procedure that �rst estimates equation (6) and then uses the predicted f (zh`t) as ph`t � ~ph`t to

estimate equation (3). Both equations are estimated by OLS, and in the main text I weight the

speci�cations by the inverse standard deviation of the error in the repeat-sales index to account for

the reduced precision of the predicted prices in areas with fewer transactions. I use a third-order

polynomial for f (�). Appendix A.3 shows that the results are robust to the order of the polynomial

used for f (�).

I approximate g (�) in three ways. First, I use a three-part spline in the relative markup ph`t�~ph`t,

with the knot points spaced so that each segment includes one-third of the data, which allows for a

statistical of nonlinearity. I calculate standard errors by block bootstrapping the entire procedure

and clustering on 35 units de�ned by the �rst three digits of the ZIP code (ZIP-3).21 Second,

to visualize the data, I construct a binned scatter plot, which bins the data into 25 equally-sized

groups of the log list price relative to the reference price, ph`t � ~ph`t, and, for each bin, plots the

mean of ph`t � ~ph`t against the mean of the probability of sale net of the average probability of

sale in the market, dh`t �  `t. This approximates g (�) using indicator variables for the 25 bins of

ph`t� ~ph`t; as detailed in Appendix A.3. Third, I use a third-order polynomial to approximate g (�)

and plot the estimated polynomial and 95 percent con�dence bands with the binned scatter plot.

There may be small-sample bias introduced into the estimation if g (�) is non-linear and the �xed

e¤ects �`t are imprecisely estimated with a small number of homes in a ZIP-quarter cell.
22 Appendix

A.3 shows that the results are not substantially changed by limiting the sample to �xed e¤ect cells

with at least 15 homes. Because the error in the estimated �xed e¤ects is likely minimal for these

cells, this suggests that imprecision in the estimated �xed e¤ects is not driving the results.23
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Figure 5: Instrumental Variable Estimates of the E¤ect of List Price on Probability of Sale
Notes: Panel B shows a binned scatter plot of the probability of sale within 13 weeks net of �xed e¤ects (with the average

probability of sale within 13 weeks added in) against the estimated log relative markup p� ~p. It also shows an overlaid cubic
�t of the relationship, as in equation (3). To create the �gure, a �rst stage regression of the log list price on a third-order

polynomial in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing level, and repeat sales and hedonic log predicted

prices, as in (6), is estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup.

The �gure splits the data into 25 equally-sized bins of this estimated relative markup and plots the mean of the estimated

relative markup against the mean of the probability of sale within 13 weeks net of �xed e¤ects for each bin, as detailed in

Appendix A.3. Before binning, the 1st and 99th percentiles of the log sale price residual and any observations fully absorbed

by �xed e¤ects are dropped. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction

error in the repeat-sales house price index in the observation�s ZIP code from 1988 to 2013. The sample is limited to the

IV subsample of homes that are not sales of foreclosures or short sales, sales of homes with negative appreciation since the

seller purchased, or sales by investors who previously purchased with all cash. The grey bands indicate a pointwise 95-percent

con�dence interval for the cubic �t created by block bootstrapping the entire procedure on 35 ZIP-3 clusters. Panel A shows

the �rst stage relationship between the instrument and log initial list price in equation (6) by residualizing the instrument and

the log initial list price against the two predicted prices and �xed e¤ects, binning the data into 25 equally-sized bins of the

instrument residual, and plotting the mean of the instrument residual against the mean of the log initial list price residual for

each bin. N = 111,293 observations prior to dropping the 1st and 99th percentiles and unique zip-quarter cells.

1.3.3 Results

Figure 5 shows the resulting �rst and second stage binned scatter plots. As shown in panel A, the

instrument induces a small amount of variation in the list price set by sellers.24 This is the variation

21 I do not bootstrap the estimation of the house price indices and the predicted prices. This may add noise through
a generated regressor problem (Murphy and Topel, 1985).
22There are 9,200 �xed e¤ects. Less than half a percent of the data is unused because there is only a single house

sold in a ZIP-quarter cell.
23An alternative approach is to use a random e¤ects estimator, which I am implementing in ongoing work.
24Genesove and Mayer (1997) �nd that a house with 100 percent loan-to-value ratio is on average listed at a price

four percent higher than a home with an 80 percent loan-to-value ratio. Subsequent work (Genesove and Mayer,
2001) �nds slightly smaller numbers conditioning on whether a seller has experienced a nominal loss. Nonetheless,
the similarity between their four percent �gure and the amount of variation induced by the instrument in my �rst
stage is reassuring.
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Table 3: The E¤ect of List Price on Probability of Sale: Regression Results

Panel A: Ordinary Least Squares
Dependent Var: Sell Within 13 Weeks

Sample: All Listings With Prior Observation
(431,830 obs, 420,820 After Dropping 1st and 99th % and Cells With One Obs)

Controls: ZIP � Quarter � Distress FE, Repeat and Hedonic Predicted Price
Lowest Tercile Middle Tercile Highest Tercile High - Low

Coe¢ cient on List Price 0.161*** -0.500*** -0.483*** -0.643***
Residual Spline (0.031) (0.091) (0.039) (0.056)

Bootstrapped 95% CI [-0.767,-0.555]

Panel B: Instrumental Variable
Dependent Var: Sell Within 13 Weeks

Sample: Listings With Prior Obs, excluding REO, Short Sales, Investors, Neg Appreciation

(111,293 obs,108,696 After Dropping 1st and 99th % and Cells With One Obs)
Controls: ZIP � Quarter FE, Repeat and Hedonic Predicted Price
Instrument: Appreciation Since Purchase

Lowest Tercile Middle Tercile Highest Tercile High - Low
Coe¢ cient on List Price -0.320 0.261 -2.327*** -2.007***

Residual Spline (0.334) (1.651) (0.616) (0.588)
Bootstrapped 95% CI [-3.577,-1.293]

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each row shows regression coe¢ cients when g(.) in equation (3) is approximated

using a three-segment linear spline with an equal fraction of the data in each segment. This relationship represents the e¤ect of

the log relative markup on the probability of sale within 13 weeks. In the IV panel, a �rst stage regression of log list price on

a third-order polynomial in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing level, and log predicted price using

both a repeat-sales and a hedonic methodology, as in (6) is estimated by OLS. The predicted value of the polynomial of the

instrument is used as the relative markup in equation (3), which is estimated by OLS. The sample is restricted to non-REOs,

non-short sales, properties with positive appreciation since purchase, and properties not previously purchased with all cash

(investors). In the OLS panel, quality is assumed to be perfectly measured by the hedonic and repeat-sales predicted prices

and have no unobserved component. OLS thus regresses log list price on �xed e¤ects and the predicted prices and uses the

residual as the estimated relative markup into equation (3), as described in Appendix A.3. OLS uses the full set of listings with

a previous observed transaction, so to prevent distressed sales from biasing the results, the �xed e¤ects are at the quarter of

initial listing x ZIP x distress status level. Distress status corresponds to three groups: normal sales, REOs (sales of foreclosed

homes and foreclosure auctions), and short sales (cases where the transaction price is less than the amount outstanding on the

loan and withdrawals that are subsequently foreclosed on in the next two years). Both procedures are weighted by the reciprocal

of the standard deviation of the prediction error in the repeat-sales house price index in the observation�s ZIP code from 1988

to 2013. Before creating the spline, the 99th and 1st percentiles of the relative markup are dropped, as are any observations

fully absorbed by �xed e¤ects. In addition to the regression coe¢ cients, the di¤erence between the highest and lowest tercile

of the spline is reported. Standard errors and the 95 percent con�dence interval for the di¤erence between the �rst and third

terciles are computed by block bootstrapping the entire procedure on 35 ZIP-3 clusters.

I use to identify the shape of demand. The �rst stage is strong with a joint F statistic for the third

order polynomial of the instrument in (6) of 128. Panel B shows that a clear concave relationship
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is visible in the second stage, with very inelastic demand for relatively low priced homes and elastic

demand for relatively high priced homes. This curvature is also visible in the cubic polynomial

�t.25 Table 3 shows regression results when g (�) is approximated by a three-part spline. Panel B

shows the IV results. The concavity visible in Figure 5 is apparent, with the highest tercile having

a slope that is seven times the lowest tercile. The di¤erence between the highest and lowest tercile

slopes is statistically signi�cant.

As a point of comparison, Panel A shows OLS results for the full sample of homes with a prior

observed transaction. The �xed e¤ects are at the ZIP � quarter � REO seller � short seller level to

prevent distressed sales from biasing the results. OLS assumes away unobserved quality and should

be positively biased if ~ph`t is positively correlated with ph`t due to omitted unobserved quality. This

is the case: the estimated demand curve is more elastic for IV than OLS. In fact, the OLS bias is

strong enough that the demand curve slopes signi�cantly upward in the lowest tercile. Nonetheless,

a clear pattern of concavity is apparent in the OLS results. Appendix A.3 shows that OLS looks

similar on the limited IV sample.

The highest tercile IV estimates imply that raising one�s price by one percent reduces the

probability of sale within 13 weeks by approximately 2.3 percentage points on a base of 46.8

percentage points, a reduction of 5 percent. This corresponds to a one percent price hike increasing

the time to sale by six to eleven days. This �gure is of comparable magnitude to Carrillo (2012),

who estimates a structural search model of the steady state of the housing market with multiple

dimensions of heterogeneity using data from Charlottesville, Virginia from 2000 to 2002. Although

we use very di¤erent empirical approaches, in a counterfactual simulation, he �nds that a one

percent list price increase increases time on the market by a week, while a �ve percent list price

increase increases time on the market by a year. Carrillo also �nds small reductions in time on the

market from underpricing, consistent with the nonlinear relationship found here.

Appendix A.3 shows that the results are robust across geographies, time periods, and speci�-

cations, although in some cases restricting to a smaller sample leads to insigni�cant results. It also

shows that concavity is clearly visible in the reduced-form relationship between the instrument and

probability of sale. Finally, the Appendix shows the results are robust to other measures of quality

25Most of the curvature comes from the top quarter of the sample because the instrument has the largest e¤ect on
the small number of sellers with low appreciation since purchase and a smaller e¤ect on sellers who have experience
moderate to high appreciation.
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and to using transaction prices rather than using list prices. The instrumental variable results thus

provide evidence of demand concave in relative price for these three MSAs from 2008 to 2013.26

1.4 A Model of House Price Momentum

This section introduces an equilibrium search model with concave demand. The model includes two

additional ingredients new to the housing search literature. First, because concave demand only

ampli�es existing price insensitivity, I introduce variants of the model with two separate sources

of insensitivity: staggered pricing as in Taylor (1980) and a small number of backward-looking

rule-of-thumb sellers as in Haltiwanger and Waldman (1989) and Gali and Gertler (1999).

Second, I include an endogenous entry decision for buyers and sellers so that the same model

can be used to assess how the re-timing of purchases and sales in light of momentum a¤ects housing

dynamics. Entry is a form of intertemporal arbitrage that reduces the amount of momentum in the

model, and with a completely elastic entry margin momentum would be eliminated (Barsky et al.,

2007). Consequently, the model features some households who have to move immediately so that

the entry margin is important but not strong enough to eliminate momentum.

The model builds on search models of the housing market, such as Wheaton (1990), Krainer

(2001), Novy-Marx (2009), Piazzesi and Schneider (2009), Caplin and Leahy (2011), Genesove and

Han (2012), Head et al. (2014), Ngai and Tenreyro (2013), Burnside et al. (2013), and Diaz and

Jerez (2013). I also incorporate ideas from models with price posting with undirected search (e.g.,

Kudoh, 2013).

I �rst introduce a framework that models a metropolitan area with a �xed population and

housing stock. I then describe the housing market component and show how sellers set list prices.

I then introduce staggered pricing and rule-of-thumb consumers. The notation used in the model

is summarized in Tables 4 and 5.

1.4.1 Setting

Time is discrete and all agents are risk neutral. Agents have a discount factor of � and time t is

denoted with a subscript. There is a �xed housing stock of mass one, no construction, and a �xed

26Aside from the tail end of my sample, this period was a depressed market. The similarity between my results
and Carrillo�s provide some reassurance that the results I �nd are not speci�c to the time period, but I cannot rule
out that the nonlinearity would look di¤erent in a booming market.
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Table 4: Notation in the Model

Variable Description Note
Masses

Pop Total Population (Housing Stock Mass One)
B Endogenous Mass of Buyers Value Fn V b

S Endogenous Mass of Sellers Value Fn V s

R Endogenous Mass of Renters Value Fn V r

H Endogenous Mass of Homeowners Value Fn V h

Flow Utilities
b Flow Utility of Buyer (Includes search cost)
s Flow Utility of Seller (includes search cost)
u Flow Utility of Renter Shocked Variable
h Flow Utility of Homeowner

Moving Shock Probabilities

�h Prob Homeowner Gets Shock
�r Prob Renter Gets Shock

Costs
c Stochastic Cost for Homeowner to Stay in Home � C (c) ; U (c; �c)
k Stochastic Cost for Renter to Stay Renter (Negative) � K (k) ; U

�
k; �k
�

c� Threshold c Above Which Homeowners Enter Endogenous
k� Threshold k Above Which Renters Enter Endogenous

Other Parameters
� Discount Factor
L Probability Seller Leaves Metro Area
V 0 Value Realized Upon Exiting Metro Area

population of size Pop.27 Each period occurs in three stages: �rst search and transactions occur,

then �ow utilities are realized, and �nally mismatch shocks occur.

There are four types of homogenous agents: a mass Bt of buyers, St of sellers, Ht of homeowners,

and Rt of renters. These agents have �ow utilities (inclusive of search costs) b, s, h, and r, and

value functions V bt , V
s
t , V

h
t , and V

r
t , respectively. Buyers and sellers are active in the housing

market, which is described in the next section. The rental market, which serves as a reservoir of

potential buyers, is unmodeled aside from the �ow utility net of rents. I assume that each agent

can own only one home, which precludes short sales and investor-owners, although I allow for the

re-timing of buyer and seller entry decisions described below.

Each period with probability �h and �r, respectively, homeowners and renters receive shocks

27Construction is omitted for parsimony. The model best applies to areas with inelastic housing supply in which
momentum is stronger, although it is also relevant to the short run in elastically supplied metro areas, in which
momentum is weaker but still important. See Head et al. (2014) for a model with a construction margin.

27



that cause them to separate from their current house or apartment, as in Wheaton (1990). However,

rather than automatically entering the housing market, the shocks cause homeowners and renters

to draw a one-time cost, c � C (�) for homeowners and k � K (�) (likely negative) for renters,

that can be paid to stay in their current house or apartment and receive the same �ow utility as

before instead of moving. Because the seller entry elasticity appears to be constant over the cycle

as shown in Appendix A.5, the cost distributions are parameterized as uniform: c � U (c; �c) and

k � U
�
k; �k
�
. This setup captures that potential movers have heterogeneous reasons to buy or sell

and consequently di¤er in the ease with which they can re-time their transaction.

A renter who decides not to pay the cost k enters the market as a homogenous buyer. A

homeowner who decides not to pay the cost c learns after making their entry decision whether they

leave the MSA with probability L, in which case they become a seller and receive termination payo¤

V 0 for leaving, or whether they remain in the city with probability 1�L. If they remain in the city,

they simultaneously become a buyer and a homogenous seller. These two roles are assumed to be

quasi-independent so that the value functions do not interact and no structure is put on whether

agents buy or sell �rst, as in Ngai and Tenreyro (2013) and Guren and McQuade (2013).

A homeowner who draws a cost c enters the market if:

c � V ht � V st � LV 0 � (1� L)V ht � c�t . (9)

Similarly a renter enters if

k � V rt � V bt � k�t . (10)

The cuto¤s c�t and k�t determine the marginal buyer and seller and control their �ow into the

market.28

Because the population is constant, every time a seller leaves the city they are replaced by

a new entrant. Entrants draw a cost of being a renter and decide whether to rent or buy in

the same manner as a renter who just experienced a shock. The full closed system is illustrated

diagrammatically in Figure 6. The laws of motion and value functions of a homeowner and renter

are deferred to Appendix A.4.

28This setup makes two implicit assumptions for tractability. First, although individuals are heterogeneous in their
motivation to move, once they enter the market they are homogenous. Second, if an individual decides not to move
today, they do not make another decision about moving until they get another shock.
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Figure 6: Schematic Representation of Closed GE System

1.4.2 The Housing Market

The search process occurs at the beginning of each period and unfolds in three stages. First, sellers

post list prices p̂t.29 Second, buyers search and stochastically �nd a single house to inspect. Third,

matched buyers inspect the house. When they do so, they observe their idiosyncratic valuation for

the house "m, which is match-speci�c, drawn from F ("m) at inspection, and realized as utility at

purchase. They also observe the house�s permanent quality �h, which is mean-zero, gained by a

buyer at purchase, and lost by a seller at sale. The buyer then decides whether to purchase the

house or to continue searching.

I assume all sales occur at list price, or equivalently that risk neutral buyers and sellers expect

that the average sale price will be an a¢ ne function of the list price.30 This assumption is made

for tractability and is not essential to the propagation mechanism. It is also less strong than it may

29Lester et al. (2013) show that list prices are an optimal mechanism when inspection is costly. Intuitively, a list
price acts as a commitment by sellers not to waste buyers�time.
30This assumption restricts what can occur in bargaining or a price war. Several papers have considered the role of

various types of bargaining in a framework with a list price in a steady state search model, including cases in which
the list price is a price ceiling (Chen and Rosenthal, 1996; Haurin et al., 2010), price wars are possible (Han and
Strange, 2013), and list price can signal seller type (Albrecht et al., 2013).
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Table 5: Notation in Housing Market

Variable Description Note
Utilities

"m Match-Speci�c One-Time Utility Bene�t � F (")
�h Permanent House Quality Mean Zero

Stochastic Draws
�h;t Noise in Observed �h, IID Common in Period t � G (�)

Parameters / Values
� Market Tightness = B=S Endogenous
~� E¤ective Market Tightness = B=Svisited Endogenous

q
�
~�
�

Prob. Seller Meets Buyer (Matching Function) Endogenous

� Constant in Matching Function
 Matching Function Elasticity

 Distribution of Prices Endogenous
"� Threshold "m for Purchase Endogenous
� Threshold for Binary Signal

Distribution Parameters
� Exponential Dist Param for F (")
� Logistic Variance Param for G (�)

�rst appear: although many houses do sell above or below list price, Appendix A.1.3 shows that

in the merged Altos-DataQuick micro data, the modal transaction price is the list price, and the

average and median di¤erences between the list and transaction price are less than 0.01 log points

and do not vary much across years.31

Buyer search for homes is partially directed in that buyers search only for homes that do not

appear overpriced for their quality, but whether a house is overpriced for its quality is noisily

observed. This directs search away from overpriced homes but preserves much of the structure of

random search in which frictions prevent buyers from seeking out the lowest price house relative to

quality or the house with which they have the best match. Formally, after prices are posted, buyers

receive a binary signal from their real estate agent or from advertisements. The signal reveals

whether a house�s quality-adjusted price relative to the average quality-adjusted price is above a

threshold. However, quality �h is subject to mean zero noise �h;t � G (�), where G (�) is assumed

to be constant over time. This noise, which represents how well a house is marketed in a given

31An important feature of the housing market is that most price changes are decreases. Consequently, the di¤erence
between the initial list price and the sale price �uctuates substantially over the cycle as homes that do not sell cut
their list price. I abstract from such duration dependence to maintain a tractable state space.
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period, is common to all buyers but independent and identically distributed across periods.

Buyers can inspect at most one home per period, and although they can limit their search set, it

is assumed that once they do so they search randomly among homes in their search set and cannot

direct their search to a particular type of home. Buyers who only observe this signal before choosing

their search optimally limit their search to homes that the signal indicates are not overpriced.32

These are homes for which the quality-adjusted price pt � p̂t � �h satis�es,

pt � �h;t � E
 [pt] � �, (11)

where 
 is the distribution of prices. Because the signal reveals nothing else about the home, buyers

cannot do better than searching randomly within homes satisfying (11). I assume that search

occurs according a constant returns to scale matching function so that the number of matches

can be written as a function of the number of buyers and visited sellers m
�
Bt; S

visited
t

�
. Because

m is constant returns to scale, I rewrite m as a function q
�
~�t

�
of the ratio of buyers to visited

sellers ~�t = Bt
Svisitedt

= Bt
StE
[1�G(pt�E
[pt]��)] . The matching function captures frictions in the search

process that prevent all reasonably-priced homes and all buyers from having an inspection each

period. For instance, buyers randomly allocating themselves across houses may miss a few houses,

or there may not be a mutually-agreeable time for a buyer to visit a house in a given period.

After inspecting a house, buyers purchase if their surplus from doing so V ht + "m � p� b� �V bt
is positive. This leads to a threshold rule to buy if "m > pt+ b+�V

b
t+1�V ht � "�t and a probability

of purchase given inspection of 1� F ("�t ).33

Sellers have rational expectations but set their list price before �h;t is realized and without

knowing the valuation of the particular buyer who visits their house. The demand curve they

face when they set their price, d
�
pt;
t; ~�t

�
, is the ex-ante probability of sale for a house with a

list price pt given a distribution of list prices 
t and functional market tightness ~�t. d (pt;
t; �t)

can be written as the product of the probability the house satis�es (11) and is searched, 1 �

G (pt � E
 [pt]� �), the probability a house that is searched matches with a buyer, q
�
~�t

�
, and the

32This behavior is optimal if only the signal is observed. If both the signal and price are observed, one can always
�nd a prior distribution for quality such that following the signal is optimal.
33Because the signal reveals no information about the house�s quality �h, posted price p̂t, or match quality "m, the

search and inspection stages are independent.

31



probability of purchase given inspection, 1� F ("�t ):

d
�
pt;
t; ~�t

�
= q

�
~�t

�
(1�G (pt � E
 [pt]� �)) (1� F ("�t )) . (12)

I parameterize the model by assuming distributions for F (�) and G (�). Speci�cally, I assume

that F ("m) is an exponential distribution with parameter � and G
�
�h;t
�
is logistic with mean

zero and variance �2 �
2

3 .
34 I also assume that the matching function is Cobb-Douglas q (�) = ��� ,

as is standard in the search literature. While these assumptions matter for precise quantitative

predictions of the model, they are not necessary for the intuitions it illustrates.

This setup leads to a concave demand curve with considerable curvature in the neighborhood

of the average price. At above average prices, the demand curve is dominated by whether buyers

include the house in their search set, creating an elastic demand curve. At below average prices,

buyers include the house in their search set with high probability and the demand curve is dominated

by purchase decisions based on a trade-o¤ between idiosyncratic match quality "m and price, so

demand is less elastic. To illustrate this, Figure 7 shows the shapes of the probability of inspection

q (�t) (1�G (pt � E
 [pt]� �)), the probability of purchase conditional on inspection 1 � F ("�t ),

and the overall demand curve d (pt;
t; �t), equal to the product of the �rst two panels. (Note that

the axes are swapped from the traditional Marshallian supply and demand diagram in order to be

consistent with the empirical analysis in Section 1.3.)

1.4.3 Flexible Price Setting

If sellers can update their list price each period, the buyer and seller value functions are equal

to the value of not transacting and remaining in the market next period plus the probability of

purchase or sale times the party�s surplus from the transaction relative to remaining in the market.

34 It is useful to work with distributions for which the hazard rate f
1�F and mean excess function E [x� x�jx > x�]

have closed-form analytic solutions. The exponential distribution is particularly convenient because it has a single
parameter, changes in the tail density do not drive the results, and the hazard and mean excess functions are constant,
although using a Weibull or Gamma yields similar results.
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Figure 7: The Concave Demand Curve in the Model
Notes: The �gures are generated using calibration described in Section 1.5. All probabilities and the additive markup are

calculated assuming all other sellers are setting the steady state price and considering the e¤ect of a unilateral deviation.

Mathematically,

V bt = b+ �V bt+1 +
d
�
pt;
t; ~�

�
�t

h
V ht + "

�
t + E ["m � "�t j"m > "�t ]� p� b� �V bt+1

i
= b+ �V bt+1 +

d
�
pt;
t; ~�t

�
��t

(13)

V st = s+ �V st+1 +maxpt

n
d
�
pt;
t; ~�t

� �
pt � s� �V st+1

�o
; (14)

where (13) follows from the memoryless property of the exponential distribution for "m. Seller

optimization implies:
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Lemma 3 The seller�s optimal list price when prices can be set �exibly each period is:

p = s+ �V st+1 +
1

f("�t )
1�F ("�t )

+ g(pt�E
[pt]��)
1�G(pt�E
[pt]��)

(15)

= s+ �V st+1
1

1
�

1

1+exp
�
� pt�E
[pt]��

�

� + �; (16)

where the second line imposes the distributional assumptions. In a rational expectations equilibrium

pt = E
 [pt]. The optimal list price is unique on an interval bounded away from p =1.

Proof. See Appendix A.4.2.

Sellers have monopoly power due to costly search. The optimal pricing problem they solve

is the same as that of a monopolist facing the demand curve d except that the marginal cost is

replaced by the seller�s outside option of searching again next period. The optimal pricing strategy

is a markup over the outside option s+�V st+1. In equation (15) it is written as an additive markup

equal to the reciprocal of the semi-elasticity of demand, �d(pt;
t;�t)@d(pt;
t;�t)
@pt

. The semi-elasticity, in turn,

is equal to the sum of the hazard rates of the idiosyncratic preference distribution F (�) and the

distribution of signal noise G (�).

This creates a strategic complementarity in price setting because the optimal price depends

on relative price pt �E [pt] through the hazard rate of the signal G (�). In particular, the elasticity

of demand rises as relative price increases, causing the optimal markup to fall from 1
� to

1
1
�
+�
,

as illustrated in Figure 7. The markup thus pushes sellers to set prices close to those of others.

However, in a rational expectations equilibrium without additional sources of price insensitivity, all

sellers choose the same list price and pt = E [pt], so there is no relative price to a¤ect the markup.

A shock to home values thus causes list price to jump proportionally to the seller�s outside option.

Consequently, I introduce variants of the model with two di¤erent sources of insensitivity of prices

to generate some initial momentum.
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1.4.4 Source of Insensitivity 1: Staggered Price Setting

The �rst source of price insensitivity I consider is staggered price setting as in Taylor (1980).35

Prices in housing markets are not constantly updated because it takes time to market a house and

collect o¤ers, and lowering the price frequently can signal that a house is of poor quality (De Wit

and Van Der Klaauw, 2013).36 While likely not the most important pricing friction in housing

markets, staggered pricing has the virtue of being familiar, tractable, and quanti�able in micro

data.

With N groups of sellers, denote the quality-adjusted prices p, value functions V s, masses S,

and purchase thresholds " of a speci�c vintage of sellers using superscripts for the time since they

last reset their price � = f0; :::; N � 1g. The buyer�s surplus from purchasing from various sellers

is constant due to the memoryless property of the exponential, but the value function must be

adjusted to integrate over the sellers in the market:

V bt = b+ �EtV
b
t+1 +

1

��t

N�1X
�=0

�
S�t
St
d
�
p�t ;
t;

~�t

��
. (17)

The value function of a seller is similar to the frictionless case except sellers only optimize occa-

sionally so � superscripts are necessary:

V s;�t = s+ �EtV
s;�+1
t+1 + d

�
p�t ;
t;

~�t

��
p�t � s� �EtV

s;�+1
t+1

�
; (18)

where V Nt = V 0t and d
�
p�t ;
t;

~�t

�
is as in equation (12) except "�t is replaced by a separate threshold

match quality "�;�t for each vintage of sellers.

Seller optimization implies the optimal list price is reminiscent of a Taylor (1980) or Calvo

(1983) model except there is only one good to sell, so demand is replaced by that the probability

the house sells in a given period:

35 I adopt Taylor (1980) staggered pricing rather than Calvo (1983) pricing because the model includes an integral
that cannot be updated iteratively in the denominator of ~�t: Staggered pricing allows for a closed form for the integral
because the price distribution has �nite support.
36Golosov and Lucas (2008), among others, argue that models with �xed adjustment dates generate more persistence

than menu cost models with state-dependent adjustment rules. As described in Section 1.5, I assume prices are �xed
for two months based on data from 2008-2013, a depressed market in which sellers would have the strongest incentives
to adjust their price quickly. My calibrated model thus serves as a lower bound of the frequency of price resetting
one would observe in a calibrated state-dependent model.
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Lemma 4 If posted prices last N periods, the seller�s optimal reset price p0t , where the superscript

is for periods since price is set, is:

p0t =

PN�1
�=0 �

�D�
t

�
p0t
�
	�t'

�
tPN�1

�=0 �
�D�

t

�
p0t
�
	�t

, (19)

where Dj
t (p) = Et

"
j�1Y
�=0

�
1� d�

�
p;
t+� ; ~�t+�

��#
d
�
p;
t+j ; ~�t+j

�
is the expected probability the

house is sold � periods after the price is set, 	�t = Et

"
� @d(pt;
t+� ;~�t+� )

@pt

d(pt;
t+� ;~�t+�)

#
is the semi-elasticity of

demand with respect to price, '�t = s+EtV
s;�+1
t+�+1 +

1
	�t
is the expected optimal �exible reset price �

periods after the price is set given the expected price distribution in that period, and V s;Nt+N = V s;0t+N .

The optimal list price is unique on an interval bounded away from p = 1 given a condition in

Appendix A.4.2, which holds for all simulations considered.

Proof. See Appendix A.4.2.

As is standard in staggered price models, the optimal price is a weighted average of the optimal

�exible prices that are expected to prevail on the equilibrium path until the seller can reset his or

her price. The weight put on the optimal �exible price in period t + � is equal to the discounted

probability of sale in period i times the semi-elasticity of demand in period i. Intuitively, the seller

cares more about periods in which probability of sale is higher but also about periods in which

demand is more elastic because perturbing price has a larger e¤ect on pro�t.

In equilibrium, all agents behave optimally given the search technology, the noisy signal of

relative price, and buyers�draw of their idiosyncratic taste when they visit a home. Laws of motion

apply due to the law of large numbers. I restrict attention to symmetric equilibria. A staggered

pricing equilibrium is consequently de�ned by:

De�nition 5 Equilibrium with N staggered groups of list-price-setting sellers is a set of prices p�t ,

demands d (p�t ;
; �), purchase cuto¤s "
�;�
t , and seller value functions V s;�t for each group of sellers

� = f0; :::; N � 1g, buyer, homeowner, and renter value functions V bt , V ht , and V rt , entry cuto¤s c�t
and k�t , and stocks of each type of agent Bt, S

�
t � = f0; :::; N � 1g, Ht, and Rt satisfying:

1. Optimal reset pricing (19) and �xed pricing for non-resetters p�t = p��1t�1 8 � > 0
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2. Optimal purchasing decisions by buyers: "�;�t = p�t + b+ �V
b
t+1 � V ht

3. The demand curve for each type of seller arising from optimal buyer search given the binary

signal (12)

4. Optimal entry decisions by homeowners and renters who receive shocks (9) and (10)

5. The value functions for buyers (17) and each vintage of sellers (18) as well as for renters and

homeowners de�ned in Appendix A.4

6. The laws of motion for all agents de�ned in Appendix A.4.

Appendix A.4 shows that the model has a unique steady state that is equivalent to the friction-

less case without staggered pricing (N = 1). A frictionless equilibrium is formally de�ned in the

Appendix A.4.

I add a stochastic shock process to both this model and the analogous rule-of-thumb variant

de�ned subsequently to examine their dynamic implications. The propagation mechanism for mo-

mentum does not qualitatively depend on any particular shock. However, the positive correlation

between price and volume in the data implies that demand-side shocks dominate.37 Although the

particular type of demand shock introduced to the model is not important for the results, I use a

shock to the �ow utility of being a renter u that changes the relative value of homeownership for

potential entrants. This takes a cue from Wheaton and Lee (2009), who show that changes in the

frequency of transitions between renting and owning due to credit conditions are a precipitating

shock for housing cycles. An example of such a shock would be a change in credit standards for

new homeowners. I implement the shock by assuming that u = �u+x, where x is an AR(1) process

understood by the forward-looking agents:

xt = �xt�1 + � and � � N
�
0; �2�

�
. (20)

The model cannot be solved analytically, so I simulate it numerically using a log-cubic approx-

imation pruning higher order terms as in Kim et al. (2008) implemented in Dynare (Adjemian et

37A positive supply-side shock to the �ow value h of being a homeowner, for instance, would increase the value of
homes but also induce homeowners to endogenously enter less, driving down sales volume.
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al., 2013). Appendix A.6 shows that the impulse responses are similar in an exactly-solved model

with a permanent and unexpected shock.

1.4.5 Source of Insensitivity 2: A Small Fraction of Rule-of-Thumb Sellers

The second source of price insensitivity I consider is a small fraction of rule-of-thumb sellers. Since

Case and Shiller (1987), sellers with backward-looking expectations have been thought to play

an important role in housing markets. Previous models assume that all agents have backward-

looking beliefs (e.g., Berkovec and Goodman, 1996), but some observers have found the notion

that the majority of sellers are non-rational unpalatable given the �nancial importance of housing

transactions for many households. Some fraction of sellers, however, may not �nd it worthwhile to

scrutinize current market conditions due to information costs, and my model only requires a handful

of backward-looking sellers because of the strategic complementarity. Consequently, I introduce a

small number of rule-of-thumb sellers, as in Campbell and Mankiw (1989), and assess quantitatively

what fraction of sellers is needed to be non-rational to explain the momentum in data, similar to

Gali and Gertler (1999).

I assume that at all times a fraction 1� � of sellers set their list price pRt rationally according

to Lemma 3 and (15) but a fraction � of sellers uses a backward-looking rule of thumb to set their

list price pNt .

The backward-looking sellers are near-rational sellers whose optimizing behavior produces a

price-setting rule of thumb based on the recent price path. They are not fully rational in two ways.

First, backward-looking sellers understand that a seller solves,

max
pt

d
�
pt;
t; ~�t

�
pt +

�
1� d

�
pt;
t; ~�t

�� �
s+ �V st+1

�
,

with �rst order condition,

pt = s+ �EtV
s
t+1 + Et

24�d
�
pt;
t;~�t

�
@d(pt;
t;~�t)

@pt

35 . (21)

However, they do not fully understand the laws of motion and how prices and the value of being

a seller evolve. Instead, they think the world is a function of a single state variable, the average
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price E [pt], and can only make �simple� univariate forecasts that take the form of a �rst order

approximation of (21) in average price and relative price:

pt = s+ �
�
�V st+1 + �1E [pt]

�
+ �M + �2E [pt � E [pt]] , (22)

where �V s, �M , �1, and �2 are constants.

Second, backward-looking sellers only see the average prices �p of houses that transact be-

tween two to four months ago and between �ve to seven months ago, corresponding to the lag

with which reliable house price indices are released.38 They assume that price follows a ran-

dom walk with drift with both the innovations ' and the drift � drawn independently from

mean zero normal distributions with variances �2' and �2� . Through a standard signal extrac-

tion problem, they expect that today�s price will be normally distributed with mean E [pt] =

�pt�3 +E [�], where E [�] =
�2�

�2�+�
2
'
(�pt�3 � �pt�6). Given this normal posterior, equation (22) implies

pt = s+ �
�
�V st+1 + �1E [pt]

�
+ �M = E [pt],39 so the backward-looking sellers follow an AR(1) rule:

pNt =
pt�2 + pt�3 + pt�4

3
+ �

�
pt�2 + pt�3 + pt�4

3
� pt�5 + pt�6 + pt�7

3

�
(23)

where � =
�2�

�2�+�
2
'
. Such an AR(1) rule is a common assumption in models with backward-looking

expectations and is frequently motivated by limited knowledge, information costs, and extrapolative

biases (e.g., Hong and Stein, 1999; Fuster et al. 2010).40

I assume that the backward-looking price setters think that the variance of the innovation �2�

is a substantial share of the overall variance in price changes and consequently use a � that is

attenuated relative to what one would �nd if one ran a quarterly AR(1) in the model environment.

This is consistent with Case et al. (2012), who survey home buyers for four metropolitan areas

from 2003 to 2011 and show that the average predicted amount of price appreciation at a one-year

horizon is approximately 43 percent of the actual amount of appreciation. An attenuated AR(1)

38 I use three-month averages to correspond to how price indices like the closely watched Case-Shiller index are
constructed and to smooth out saw-tooth patterns that emerge with non-averaged multi-period lags. A shorter
AR(1) lag would require more backward-looking sellers to match the data.
39Speci�cally, E [pt] = s + � �Vs + �1E [pt] + �M and so pt = E [pt] + �2E [pt � E [pt]], which with a symmetric

posterior for pt implies pt = E [pt].
40Coibion and Gorodnichenko also (2011) show rule-of-thumb price setters perform similarly to sticky information

price setters in an estimated DSGE model.
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coe¢ cient is also consistent with psychological theories in which agents overweight and �anchor�

on recent observable prices (see Barberis et al., 1998).

I make two additional assumptions for tractability and parsimony that are not crucial for the

results. First, I assume that regardless of whether rational or backward-looking sellers sell faster,

in�ows adjust so that � of the active listings are houses owned by backward-looking sellers at all

times. Second, I assume that entry occurs according to the threshold rules (9) and (10) using

rational value functions. The value function of a rational seller, V s;Rt , is the same as equation (14)

for the frictionless case, while the buyer value function needs to be altered to integrate over the

distribution of sellers:

V bt = b+ �EtV
b
t+1 +

1

��t

h
�d
�
pNt ;
t;

~�t

�
+ (1� �) d

�
pRt ;
t;

~�t

�i
. (24)

Given these assumptions, one can de�ne an equilibrium with backward-looking sellers by:

De�nition 6 Equilibrium with a fraction � of backward-looking sellers is a set of prices pit , de-

mands d
�
pit;
; �

�
, and purchase cuto¤s "�;it for each type of seller i 2 fN;Rg, rational seller, buyer,

homeowner, and renter value functions V s;Rt , V bt , V
h
t , and V

r
t , entry cuto¤s c

�
t and k

�
t , and stocks

of each type of agent Bt, St, Ht, and Rt satisfying:

1. Optimal pricing for rational sellers (15) and the pricing rule (23) for backward-looking sellers

2. Optimal purchasing decisions by buyers: "�;it = pit + b+ �V
b
t+1 � V ht

3. The demand curve for each type of seller arising from optimal buyer search given the binary

signal (12)

4. Optimal entry decisions by homeowners and renters who receive shocks (9) and (10)

5. The value functions for buyers (24) and rational sellers (14) as well as for renters and home-

owners de�ned in Appendix A.4

6. The laws of motion for all agents de�ned in Appendix A.4.

The steady state of this model is the same as the staggered and frictionless models. Consequently,

the staggered pricing and backward-looking models can be calibrated using the same procedure.

40



1.5 How Much Can Concave Demand Amplify Momentum?

To quantitatively assess the degree to which concave demand curves amplify house price momentum,

this section calibrates the model to the empirical �ndings presented in Section 1.3 and a number

of aggregate moments. Before doing so, I brie�y analyze the frequency of price adjustment in the

micro data to motivate the calibration of the staggered pricing variant of the model.

1.5.1 Frequency of Price Adjustment

Figure 8 shows the Kaplan-Meier survival curve for list prices of homes with an observed prior

transaction in the San Francisco Bay, Los Angeles, and San Diego areas between April 2008 and

February 2013. Each observation is a list price, with a sale counted as a censored observation and

a price change counted as a failure. The curve thus shows the fraction of list prices that have

survived a given number of weeks conditional on the house remaining on the market. The curve

crosses the 50 percent threshold corresponding to the median time until a price is changed at eight

weeks. Consequently, I calibrate the staggered variant of the model so that one period lasts one

month, and there are two groups of sellers that alternate setting list prices that last two months.

1.5.2 Calibration and Estimation

In order to simulate the model, 21 parameters listed in Table 7 must be set. For the backward-

looking variant of the model, the AR(1) coe¢ cient in the rule of thumb � and the fraction of sellers

who follow it � also require numerical values. This section describes the calibration procedure and

targets, with details deferred to Appendix A.5.

Three parameters control the shape of the demand curve and thus have a �rst-order impact

on momentum: �, the exponential parameter of the idiosyncratic quality distribution, controls the

elasticity of demand for low-priced homes that are certain to be visited; �, the logistic variance

parameter of the signal, controls the elasticity of demand for high-priced homes; and �, the threshold

for being overpriced, controls where on the curve the average price lies. The other parameters

a¤ect momentum mainly through equilibrium feedbacks and largely have a second order e¤ect on

momentum. Consequently, I �rst estimate these three parameters from the instrumental variable

micro estimates presented in Section 1.3 and then calibrate the rest of the model to match steady
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Figure 8: Kaplan-Meier Survival Curve for List Prices
Notes: The �gure shows the Kaplan-Meier survival curve for list prices, where sales are treated a censored observation and a

price change is treated as a failure. The curve thus corresponds to the probability of a list price surviving for a given number

of weeks conditional on the property not having sold. The sample is made up of 854,547 list prices for 420,351 listings of homes

with observed prior transactions in the San Francisco Bay, Los Angeles, and San Diego areas listed between April 2008 to

February 2013.

state and time series aggregate moments. The calibration proceeds in two steps.

First, I estimate �, �, and � to match the micro estimates. There is heterogeneity in list price

in the micro estimates not in the model, and the low average probability of sale in the 2008-13

period poses a challenge because the data are not generated in a plausible steady state. To account

for these features of the data, I express the probability of sale for an arbitrary distribution of prices

and an arbitrary average probability of sale as functions of observable variables and the three

parameters �, �, and �. This allows me to approximate the model with the heterogeneity in the

data out of steady state for the purposes of calibration and then conduct dynamic simulations with

the heterogeneity suppressed to maintain a tractable state space.

Speci�cally, with my assumed functional forms, the probability of sale at the time the list price

is posted can be written as:

d
�
pt;
t; ~�t

�
= q

�
~�t

�
(1�G (pt � E
 [pt]� �)) (1� F ("�t ))

= �t (1�G (pt � E
 [pt]� �)) exp (��pt) (25)
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The aggregate state variables factor out into a multiplicative constant, �t, which can be given a

structural interpretation as a shift in the matching function e¢ ciency �. �t multiplies two terms:

the e¤ect of perturbing price on the probability the house is visited 1 � G (pt � E
 [pt]� �) and

a term representing the buyer�s trade-o¤ between idiosyncratic quality and price exp (��pt). To

simulate the probability of sale, all that is needed are �, �, and �, observed prices p, the observed

average price E
 [p], and the observed average probability of sale.

Using equation (25), I calibrate �, �, and � to the IV binned scatter plot. The data is 25 ordered

pairs (pb; db) corresponding to the log relative markup plus the mean log price in the market and

probability of sale within 13 weeks for each of 25 bins b of the distribution of the relative markup.

I solve for �t to match the average probability of sale, and use (25) to simulate d (pb) in the model

for each pb. Because the zero point corresponding to the average price is not precisely estimated

and depends on the deadline used for a listing to count as a sale, I choose the average price so that

the elasticity of demand implies a monthly seller search cost of approximately $10,000 based on

evidence from Genesove and Mayer (1997) and Levitt and Syverson (2008) described in Appendix

A.5.41 In Appendix A.6.4, I evaluate the robustness of the results to this parameter by using a

far smaller seller search cost. Conditional on the average price, the best �t (�; �; �) is chosen to

minimize the sum of squared errors �bwb
�
db � d3 month (pb)

�2
where wb is a Normal kernel weight

to reduce the in�uence of outliers and d3 month (�) is a simulated 3-month sale probability based on

(25). Figure 9 shows the IV binned scatter plot in blue Xs and the model�s predicted d (pb) for the

(�; �; �) that minimize the distance between the model and the data in red circles. The �t suggests

that the demand curve in the calibrated model captures the curvature in the data well.

The second step in the calibration is to match a number of aggregate steady state and stochastic

moments given the �, �, and � from the �rst step. I set 14 parameters to match 14 steady state

moments listed in the �rst three panels of Table 6. These targets are either from other papers or are

long-run averages for the U.S. housing market, such as the homeownership rate, the average amount

of time between moves for buyers and renters, and the average time on the market for buyers and

sellers. A few parameters for which data is not easily available are assumed, and the results are

not sensitive to the assumed values. I also match three time series moments as indicated by the

41The seller search cost is likely large because of the nuisances and uncertainties involved and the need to move
quickly. Another factor, highlighted by Anenberg and Bayer (2013), is the high cost of simultaneously holding two
homes, which pushes households to sell quickly before buying.
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Figure 9: Model Fit Relative to Instrumental Variable Estimates
Notes: The blue Xs are the binned scatter plot from the IV speci�cation with 2.5% of the data from each end excluded to reduce

the e¤ects of outliers. The red dots are the simulated probabilities of sale at each price level in the calibrated model.

bottom panel of Table 6. The monthly persistence of the shock is set to match the persistence of

local income shocks as in Glaeser et al. (2013). The �nal parameters are set to match the standard

deviation of annual log price changes and the elasticity of seller entry with respect to price in

stochastic simulations.42

For the backward-looking variant of the model, I set the AR(1) coe¢ cient � to 0.4 following

evidence from Case et al. (2012). Using surveys of home buyers they show that regressing realized

annual house price appreciation on households�ex-ante beliefs yields a regression coe¢ cient of 2.34.

I use this survey evidence to calibrate the beliefs of the backward-looking sellers by dividing the

approximate regression coe¢ cient one would obtain in quarterly simulated data (approximately

0.94) by their coe¢ cient. I adjust � and recalibrate the model until the impulse response to the

renter �ow utility shock matches the matches the 36 months of positively autocorrelated price

changes in the AR(5) impulse response estimated on the CoreLogic national house price index in

42Because the stock of buyers is not observed, I cannot similarly calibrate for the buyer entry elasticity. Conse-
quently, I assume the density of buyer entry costs is the same as the density of seller entry costs. Seller entry tends
to track volume, so buyer entry cannot have a substantially di¤erent density.
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Table 6: Calibration Targets

Steady State Parameter or Moment Value Source / Justi�cation

Parameters

 (Matching Function Elasticity) .8 Genesove and Han (2012)

L (Prob. Stay in MSA) .7 Anenberg and Bayer (2013)

Aggregate Targets

Annual Discount Rate 7% Carrillo (2012) housing market discount rate

Time on Market for Sellers 4 Months Approx average parameter value in literature

Time on Market for Buyers 4 Months � Time to sell in surveys (Genesove and Han, 2012)

Homeownership Rate 65% Long run average, 1970s-1990s

Time in House For Owner Occupants 9 Years American Housing Survey, 1997-2005

Time Between Moves for Renters 29 Months American Housing Survey, 1997-2005

c� (Cost Marginal H Pays to Avoid Move) $37.5k Moving cost 5% of price (Haurin & Gill,2002)

k� (Cost Marginal R Pays to Avoid Buying) -$20k Tax bene�ts of owning 29 months (Poterba & Sinai, 2008)

Assumed Values

Time Between Shocks for Homeowners 29 Months Same as renter

Steady State Price $750k Average log price in IV sample adjusted for down market

h (Flow Utility of Homeowner) $7.5k 2/3 of house value from expected �ow util

Prob Purchase j Inspect 0.5 So q (�)2 [0; 1]
Time Series Moments

SD of Annual Log Price Changes .065 CoreLogic national HPI adjusted for CPI, 1976-2013

� (Monthly Persistence of AR1 Shock) .990 Persistence of income shocks (Glaeser et al., 2013)

Price Elasticity of Seller Entry .878 CoreLogic, Census, and NAR, 1976-2013

Section 1.2.43

The staggered and backward-looking variants di¤er minutely in their calibrated values so that

each matches the volatility of price and entry elasticity in stochastic simulations, as discussed

in Appendix A.5. Table 7 summarizes the calibrated parameter values for the backward-looking

variant of the model.44

43An alternative approach would be to simulate data, collapse it to the quarterly level, and then estimate the same
AR(5) as for the CoreLogic data. Doing so requires a fraction of rule-of-thumb price setters that is approximately
ten percent higher than matching the impulse response to the model shock. A comparably higher fraction is also
required to match the AR(5) without concavity. As shown in Appendix A.2, using a median price index generates an
impulse response in the data that reaches its peak in two years rather than three years. My approach of calibrating
the peak of the impulse response to the renter �ow utility shock to the peak of the AR(5) IRF for a repeat-sales index
is comparable to simulating data, estimating the AR(5) IRF, and calibrating to match the average of the repeat-sales
and median price IRF peak quarters.
44One may argue that the �ow cost of being a buyer is too large. This could be reduced without meaningfully

changing the main results by relaxing several assumptions made to keep the model tractable. The buyer search
cost is calibrated to a high level because the �at slope for homes priced below average implies that the exponential
distribution for idiosyncratic quality has a long tail. This implies a high value of subsequent search for buyers, which
is o¤set with a high search cost to maintain a reasonable value of being a buyer. Both using an idiosyncratic match
quality distribution that is bounded above and allowing the signal to reveal more information so that buyers search
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Table 7: Calibrated Parameter Values for Rule of Thumb Model

Parameter Interpretation Value Parameter Interpretation Value

� Monthly Discount Factor 0.994 V 0 Value of Leaving MSA $2,631k

 Matching Fn Elasticity 0.800 h Flow Util of H $7.5k

� Matching Fn E¢ ciency 0.506 u Flow Util of R $3.6k

�h Monthly Prob H Moving Shock 0.035 b Flow Util of B (search cost) -$92.2k

�r Monthly Prob R Moving Shock 0.035 s Flow Util of S (search cost) -$9.8k

�c Upper Bound, H Entry Cost Dist $463k � Exponential Param for .0023

c Lower Bound, H Entry Cost Dist -$1,121k Idiosyncratic Quality Dist
�k Upper Bound, R Entry Cost Dist $412k � Variance Param of Signal Noise 3.80

k Lower Bound, R Entry Cost Dist -$1,172k � Threshold for Signal 10.47

Pop Population 1.484 �� SD of Innovations to AR(1) shock 0.360

L Prob Leave MSA 0.700 � Persistence of AR(1) shock 0.990

� AR(1) Param in Rule of Thumb 0.40

Notes: The calibration is monthly. The parameters under the line are only used in the backward-looking variant of the model.

The parameters for the staggered variant of the model are only minutely di¤erent and can be found in Appendix A.5.

1.5.3 Ampli�cation of Momentum in the Calibrated Model

To assess the degree of ampli�cation of momentum in the calibrated model, I compare the friction-

less, staggered price, and backward-looking variants of the model to one another and to versions

without concave demand. To do so, I examine the impulse response to the model shock to the

�ow utility of renters. The impulse response is computed as the average di¤erence between two

sets of simulations that use the same sequence of random shocks except for one period in which

an additional standard deviation shock is added. I contrast the model impulse responses with the

impulse response to a one standard deviation price shock to the quarterly CoreLogic national house

price index estimated from an AR(5), as in Section 1.2.

Figure 10 shows the resulting simulations alongside the AR(5) impulse response. The �gure

shows that the strategic complementarity created by concave demand substantially ampli�es both

sources of price insensitivity.

Panel A compares a frictionless model with concave demand to staggered price models with and

without concave demand, in dotted red, solid blue, and dashed green, respectively.45 Without both

houses they expect to like would reduce the calibrated buyer search cost substantially. Ongoing work to adjust for
bias in the slope of the micro estimates due to measurement error in the true relative markup, as discussed in Section
1.3, may also result in a smaller calibrated buyer search cost.
45The non-concave impulse response depends on the semi-elasticity of the non-concave demand function. For the

main text, I assume a semi-elasticity that equal to the steady-state semi-elasticity at the average price in the concave
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Figure 10: Price Impulse Response Functions: Model and Data
Notes: Panel A shows the impulse responses to a one standard deviation negative shock to the �ow utility of renting in the

frictionless model with concave demand, the staggered model with concave demand, and the staggered model without concave

demand. For the model without concave demand, the threshold for being overpriced � is raised to a level that is never reached,
the slope of the demand curve is adjusted to the steady-state slope at the average price in the concave model, the model

is recalibrated, and the standard deviation of the stochastic shock is adjusted so that the impulse response is even with the

frictionless and concave impulse response after a year. Panel B shows the impulse responses to a one standard deviation shock to

the �ow utility of renting in the backward-looking model with and without concavity. For the model without concave demand,

the threshold for being overpriced � is raised to a level that is never reached, the slope of the demand curve is adjusted to the

steady-state slope at the average price in the concave model, and the model is recalibrated. Also shown in panel B in the dotted

black line and with grey 95% con�dence intervals and on the right axis is the impulse response to a one standard deviation

price shock estimated from a quarterly AR(5) for the seasonally and CPI adjusted CoreLogic national house price index for

1976-2013, as in Figure 1. Simulated impulse responses are calculated by di¤erencing two simulations of the model from periods

100 to 150, both of which use identical random shocks except in period 101 in which a one standard deviation negative draw is

added to the random sequence, and then computing the average di¤erence over 100 simulations.

concave demand and staggering, reset prices jump on impact and reach a convergent path to the

stochastic steady state as soon as all sellers have reset their prices, as indicated by the dotted red

line and the dashed green line. In combination, however, the two-month staggered pricing friction

is ampli�ed into 10 months of autocorrelated price changes, as shown in the solid blue line.

The gradual impulse response results from sellers only partially adjusting their list prices when

they have the opportunity to do so in order to not ruin their chances of attracting a buyer by being

substantially overpriced. Repeated partial adjustment results in serially correlated price changes

that last far beyond the point that all sellers have reset their price.46 Note that the impulse response

case and discuss alternative assumptions in Appendix A.6.
46With staggered pricing there are further dynamic incentives because price resetters leapfrog sellers with �xed
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includes endogenous entry, which weakens house price momentum as buyers and sellers re-time their

entry into the market to take advantage of the gradual price change. This e¤ect, which is discussed

in Section 1.6, is not strong enough to eliminate momentum. Appendix A.6 shows that concave

demand also generates signi�cant momentum for a downward shock. Intuitively, if other sellers do

not lower their prices immediately, cutting a house�s price substantially has a small e¤ect on its

probability of sale and leaves money on the table.

Despite the �ve-fold ampli�cation, the staggered-pricing variant of the model only explains

one quarter of the three-year impulse response in the data. This is unsurprising: there are many

potential frictions that cause momentum, so it would be unrealistic to expect staggered pricing

alone to be ampli�ed by a factor of 20 in order to fully explain the data.47

To fully explain the impulse response in the data, I use the backward-looking variant of the

model and raise the fraction of backward-looking sellers � until the impulse response function to

the renter �ow utility shock peaks after 36 months. This occurs when 26.5 percent of sellers are

backward-looking. By contrast, without concave demand, between 78 and 93 percent of sellers

would have to be backward-looking in order to explain a 36-month impulse response to the renter

�ow utility shock, with the precise number depending on how the non-concave demand curve is

calibrated, as described in Appendix A.6.

Far fewer backward-looking sellers are needed to match the data with concave demand because

the strategic complementarity creates a two-way feedback. When a shock occurs, the backward-

looking sellers are not aware of it for several months, and the rational sellers only slightly increase

their prices so that they do not dramatically reduce their chances of attracting a buyer. When the

backward-looking sellers do observe increasing prices, they observe a much small increase than in

the non-concave case and gradually adjust their price according to their AR(1) rule, reinforcing the

incentives of the rational sellers not to raise their prices too quickly.

Panel B of Figure 10 compares the model with 26.5 percent backward-looking sellers in solid

orange to the AR(5) impulse response in dotted black and a model with an identical fraction of

prices and are subsequently leapfrogged themselves. The interested reader is referred to Appendix A.4.8 for a detailed
discussion of the dynamic intuition with staggered pricing.
47The momentum created by staggered pricing cannot be dramatically enhanced by increasing the length of stag-

gering without increasing the average time to sale. For instance, if prices were �xed for four months instead of two
months, the longer friction would be o¤set because there would be fewer sellers who remain stuck at an old price
when a group of sellers sets their prices.
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backward-looking sellers without concave demand in dashed turquoise. The impulse response with

concave demand and the AR(5) impulse response are similar, although the model impulse response

grows less at the beginning and is slightly more S-shaped than the AR(5) impulse response. This

is the case because backward-looking sellers are insensitive to the shock for several months and so

the growth rate of prices takes a few months to accelerate. Without concave demand, there is an

immediate jump in prices as rational sellers raise their prices as soon as the shock to fundamentals

occurs. This is followed by nine months of rapid price growth as the backward-looking sellers catch

up. The strategic complementarity thus provides considerable ampli�cation.48

With additional initial sources of price insensitivity it is likely that the 26.5 percent �gure

could be reduced even further.49 Intuitively, concave demand creates an incentive to price close

to others that interacts with any source of heterogenous price insensitivity to create additional

momentum.50 One particular friction that the literature has identi�ed as causing momentum�

incomplete information and learning by sellers and possibly buyers� merits additional discussion

because the ampli�cation from concave demand is likely to be particularly potent. In a model with

dispersed information without strategic complementarities, such as Lucas�(1972) �islands�model,

Bayesian learning about a change in fundamentals occurs fairly rapidly. Indeed, Anenberg (2013)

shows that lagged market conditions do not have a signi�cant impact on seller pricing after a four

months. However, with a strategic complementarity and dispersed information, the motive to price

close to others makes higher order beliefs� that is beliefs about the beliefs of others� matter, a

point �rst made by Phelps (1983) and modeled by Woodford (2003) and Lorenzoni (2009). Learning

about higher order beliefs is more gradual because agents must learn not only about fundamentals

but also about what everyone else has learned. Strategic complementarities in such a framework

can cause very gradual price adjustment even if �rst-order learning occurs rapidly.

48A direct empirical test of the degree to which concave demand ampli�es momentum is beyond the scope of this
paper. I do, however, have one intriguing data point that may point the way for such a test in the future: a smaller
data set of merged Altos-DataQuick listings for Phoenix. Phoenix has a higher housing supply elasticity and by some
measures exhibits less momentum than coastal California, and a preliminary analysis of its micro data suggests that
the degree of curvature in Phoenix may be weaker. With many MSAs of data, one could evaluate whether the degree
of concavity in a cross section of cities can explain di¤erences in momentum across cities.
49For instance, adding staggered pricing to the rule-of-thumb model reduces the fraction of rule-of-thumb sellers

needed to explain the data to 23.5 percent.
50Heterogeneity in sensitivity is key, as insensitivity that is uniform across identical sellers would imply that all

sellers price at the average price, neutralizing the strategic complementarity.
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1.6 Can Momentum Help Explain Housing Cycles?

This section argues that momentum helps explain the three striking features of the dynamics of

housing cycles presented in Section 1.2: volume and inventory are more volatile than price, price

changes and inventory levels are highly correlated, and inventory swings correspond to periods

where seller entry and sales move in opposite directions. Momentum plays a role in causing these

features because some buyers and sellers re-time their sales and purchases in light of predictable

price changes. Before showing how this explains the three facts, I analyze the impulse response for

non-price variables to provide intuition. The precise cause of momentum does not matter greatly for

the re-timing of entry, so I focus on the backward-looking model with 26.5 percent backward-looking

sellers because it fully captures the momentum in the data.

1.6.1 Impulse Responses of Non-Price Variables

Figure 11 shows the impulse responses of price, sales volume, months of supply, and buyer and

seller entry in a frictionless model without backward-looking sellers (dotted red) and in a model

with 26.5 percent backward-looking sellers (solid blue). Recall that the shock reduces the value of

being a renter and increases the incentives to enter the market to buy.

Without staggered pricing, price jumps immediately and gradually returns towards the stochas-

tic steady state, so there is not a strong incentive to buy or sell today relative to tomorrow. Buyer

entry and seller entry, shown in panel D in dotted red and dash-dotted green, both jump on impact

due to the change in the relative value of homeownership and the elevated house price. Buyer entry

is slightly higher for 18 months as the ratio of buyers to sellers slowly rises until it settles on a

stable transition path to the stochastic steady state. The slow adjustment of market tightness, in

turn, causes a gradual increase in volume and decrease in months of supply.

By contrast, the momentum generated with a small fraction of backward-looking sellers makes

price changes predictable. This creates a strong incentive for potential buyers on the margin of

entering to enter today and for sellers on the margin of entering to wait to do so until prices rise.51

51 In the model, this operates through the entry cuto¤s c�t and k
�
t , which are de�ned by di¤erences of value functions

in equations (9) and (10). For instance, the cuto¤ cost for a renter to enter k�t = V r
t �V b

t . Because the value function
of being a renter V r

t accounts for the likelihood of getting a shock and entering as a buyer in the future, when
prices are expected to rise V r

t falls relative to V
b
t , k

�
t falls, and the mass of buyer entrants, which is proportional to

1�K (k�t ), rises.
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Figure 11: Impulse Response Functions in the Rule-ofThumb Model
Notes: Each panel plots the indicated impulse response to a one standard deviation shock for the frictionless and backward-

looking variants of the model. The frictionless model uses the same calibration and shock as the 26.5 percent backward-looking

model with no backward-looking sellers. Simulated impulse responses are calculated by di¤erencing two simulations of the model

from periods 100 to 150, both of which use identical random shocks except in period 101 in which a one standard deviation

negative draw is added to the random sequence, and then computing the average di¤erence over 100 simulations.

The entry responses are visible in panel D as a gap opens up between the solid blue line,

which represents buyer entry with 26.5 percent backward-looking sellers, and the dotted red line,

which corresponds to buyer entry in a frictionless model. A similar gap opens up for sellers,

as shown by the dashed black line (26.5 percent backward-looking) and the dash-dotted green

line (frictionless). Volume picks up and the growth in sales, overshooting of buyer entry, and

undershooting of seller entry relative to the frictionless case together cause inventory to adjust

more rapidly and substantially than it does in the frictionless model, as shown in panel C. The

stock of renters becomes depleted and the stock of homeowners becomes enlarged to the extent

that 15 months after the shock, they reverse roles and overshoot the frictionless price path again.
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Figure 12: Sample Simulation of Entry, Volume, and Homes For Sale
Notes: This �gure shows buyer entry, seller entry, sales, and the stock of homes listed for sale from a simulation of the

backward-looking variant of the model with 26.5 percent backward-looking sellers.

This causes inventory and sales volume to mean revert more quickly. In fact, inventory and sales

overshoot the frictionless impulse response once again as prices begin to stabilize due to the glut of

sellers and lack of buyers. These responses look similar to the panel VAR presented in Section 1.2.

1.6.2 Explaining the Housing Cycle Facts

Buyer and Seller Entry Forward looking entry responses imply that seller entry and buyer entry

move in opposite directions at peaks and troughs, corresponding to periods of sudden inventory

adjustment, as shown for the recent boom and bust in Figure 2. While the impulse responses

illustrate a similar pattern in the model, Figure 1.6.2 provides further con�rmation of the model�s

ability to replicate the data by showing a sample simulation that looks strikingly similar to Figure

2. Initially there is a sellers�market in which inventory is low, and buyer and seller entry track one

another. When the market peaks, buyer entry dries up but seller entry remains high as sellers seek

to sell to buyers who need to buy now and are willing to pay high prices. As a result, inventory

quickly spikes. When buyers �nally re-enter the market, seller entry lags and the inventory glut

dissipates.
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Table 8: Quantitative Performance of Calibrated Models

Data Frictionless Staggered 26.5% Backward Looking
SD Annual � log (Real Price) 0.065 0.67 0.065} 0.065}

SD Annual � log (Sales) 0.143 0.060 0.057 0.090
SD Annual � log (Inventory) 0.207 0.040 0.055 0.306
Regression Coe¢ cient of -.140 0.124 0.010 -0.196

log (Inventory) on �yr log (Real Price) (.015) (.023) (0.006) (.007)
Regression R2 .543 0.034 0.000 0.797

Notes: } indicates the model is calibrated to match the data. All are statistics calculated as means of 200 random simulations

of 500 years. The standard deviations of annual log changes in the model are calculated by collapsing simulated data to the

quarterly level, taking logs, and reporting the quarterly standard deviations of annual di¤erences. Inventory is measured as

months of supply. The regression of log price changes on log inventory levels is as in equation (26), with inventory measured as

months of supply at the midpoint of the year di¤erenced to calculate the log change in price. The frictionless model, which is

not recalibrated to match the data, uses the staggered price calibration but would look nearly identical if the backward-looking

calibration were used.

The Relative Volatility of Price, Volume and Inventory In housing search models without

momentum, inventory and volume are too smooth relative to the data. The top half of Table 8

shows the standard deviation of annual changes of log price, log volume, and log months of supply

in the data and three versions of the model. In the frictionless price model, months of supply is

about a �fth as volatile and volume less than half as volatile as the data.

This is not unique to my particular frictionless model. In a broad class of housing search models,

combining the steady-state value of being a seller with the steady-state price and di¤erentiating

yields:
dp

dPr [Sell]
=
Seller Surplus

1� � .

This steady state response illustrates that if the seller surplus is not miniscule, price is very sensitive

to the probability of sale, which is mechanically related to inventory and volume.52 The relative

volatility of volume and inventory are also low due to the gradual dynamic adjustment of market

tightness as shown in the impulse responses.

The low volatility of inventory is directly analogous to labor search models. Shimer (2005)

52Diaz and Jerez (2013) explain the relative volatilities in a model without momentum by using a calibration in
which the seller surplus is 0.5% of the purchase price. Consequently, they argue that price is too insensitive and
volume and time on the market are too sensitive to shocks and introduce a model with ampli�ed price volatility. My
calibration, which uses a seller surplus that is approximately 7.5% of the steady state price, implies that price is too
volatile in a frictionless setting. Head et al. (2014) make a similar point that momentum reduces price volatility.
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shows that unless the employer surplus is tiny, labor search models have di¢ culty accounting for

the volatility of unemployment because most of the response to a shock is absorbed by the wage.

Here, the unemployment rate is analogous to inventory and the wage rate is analogous to price.

Like sticky wages in labor search models, momentum makes house prices adjust more slowly and

slightly reduces price volatility. Quantities adjust slightly more and inventory adjusts substantially

more, as shown in the impulse responses and Table 8, which shows the standard deviation of annual

changes for log price, log sales, and log inventory averaged over 200 500-year simulations. Inventory

is somewhat too volatile in the calibrated model, although it is of the same order of magnitude as

the data in contrast to the frictionless model. Volume, on the other hand, falls slightly short of

the data, which suggests that other factors, such as lock in due to equity (Stein, 1995), may play

a role in amplifying volume volatility. Appendix A.2 shows that the model�s strongest prediction

about relative volatilities� that momentum and inventory volatility are positively correlated� is

borne out in the cross-section of cities used for the panel VAR in Section 1.2.

Housing Phillips Curve In the data, price changes are strongly negatively correlated with

inventory levels, creating a �housing Phillips curve.�In the frictionless case depicted in Figure 11,

price changes are negatively correlated with inventory changes, albeit weakly because the inventory

response is delayed due to gradual entry and search frictions. With persistent but mean reverting

shocks, this generates a positive correlation between price changes and inventory levels because

when inventory is high, prices are low and tend to rise towards the stochastic steady state. This

can be seen in the bottom half of Table 8, which shows a regression coe¢ cient �1 in:

�t;t�4 log (p) = �0 + �1 log (MSt�2) + ", (26)

estimated on simulated quarterly data. For a frictionless model, the regression coe¢ cient is signif-

icantly positive, although with a small R-squared.

With momentum, inventory rapidly adjusts and then mean reverts while price appreciation

grows and then gradually weakens, as shown in Figure 11. This creates a strong negative correlation

between price changes and inventory levels. Table 8 shows that with 26.5 percent backward-looking

sellers, a robust negative relationship emerges. In fact, the relationship is slightly stronger than in
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the data with an R-squared of nearly 0.8. Appendix A.2 shows that the housing Phillips curve is

stronger, both in terms of the magnitude of �1 and in terms of explanatory power, in cities with

more momentum. This is consistent with the model.

1.7 Conclusion

The degree and persistence of autocorrelation in house price changes is one of the housing market�s

most distinctive features and greatest puzzles. This chapter introduces a mechanism that ampli�es

small frictions that have been discussed in the literature into substantial momentum. Search

frictions and concave demand in relative price together imply that increasing one�s list price above

the market average is costly, while lowering one�s list price below the market average has little

bene�t. This strategic complementarity induces sellers to set their list prices close to the market

average. Consequently, modest initial price insensitivity to changes in fundamentals can lead to

prolonged periods of autocorrelated price changes as sellers slowly adjust their list price to remain

close to the mean.

This ampli�cation mechanism depends critically on a concave e¤ect of unilaterally changing a

house�s list price relative to the average on the probability of sale. I identify this e¤ect in micro data

by instrumenting for list price with a proxy for the equity position of sellers and �nd statistically

and economically signi�cant concavity.

To demonstrate the strategic complementarity�s ability to prolong an initial source of price

insensitivity, I introduce an equilibrium search model in which buyers avoid looking at homes they

perceive to be overpriced. I calibrate the model to the micro data and consider the quantitative

impact of two di¤erent sources of insensitivity. A two-month staggered pricing friction is ampli�ed

into ten months of autocorrelated price changes. If just 26.5 percent of sellers use a backward-

looking rule of thumb, the impulse response to a shock lasts for three years, as in the data. Without

concave demand, 78 to 93 percent of sellers would have to be backward-looking. The ampli�cation

channel also interacts with other frictions that have been discussed by the literature. In particular,

concave demand in relative price would substantially amplify momentum created by learning in

an �islands�model because learning about higher order beliefs is particularly sluggish. Assessing

whether such a model can explain the momentum in the data without a small number of non-

rational sellers is a promising path for future research.
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Momentum has a substantial impact on housing dynamics because it causes forward-looking

buyers and sellers to re-time their entry into the housing market in order to sell high and buy low.

These buyer and seller entry patterns can help explain the relative volatilities of price, volume, and

inventory, the �housing Phillips curve�relationship between price changes and inventory levels, and

the sudden reversals between buyers�and sellers�markets that occurs at peaks and troughs.

Beyond the housing market, this chapter shows how a central idea in macroeconomics� that

strategic complementarities can greatly amplify modest frictions� can be applied in new contexts.

These contexts can, in turn, serve as empirical laboratories to study macroeconomic phenomena

for which micro evidence has proven elusive. In particular, many models with real rigidities (Ball

and Romer, 1990) use a concave demand curve. This chapter provides new evidence that a concave

demand curve in relative price is not merely a theoretical construct and can have a signi�cant e¤ect

on market dynamics.
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Chapter 2:
How Do Foreclosures Exacerbate Housing Downturns?

2.1 Introduction

Foreclosures have been one of the dominant features of the recent housing market downturn. From

2006 through 2011, approximately 7.4 percent of the owner-occupied housing stock experienced

a foreclosure.53 Although the wave of foreclosures has subsided, foreclosures remain at elevated

levels, and understanding the role of foreclosures in housing downturns remains an important part

of reformulating housing policy going forward.

The behavior of the housing market concurrent with the wave of foreclosures is shown in Figure

2.1. Real Estate Owned (REO) sales � that is sales of foreclosed homes owned by banks and

the GSEs �have made up between 20 and 30 percent of existing home sales nationally. Sales of

existing homes fell 54.9 percent peak-to-trough; retail (non-foreclosure) volume fell 65.7 percent.

Prices dropped considerably, with aggregate price indices plunging by a third and prices falling

by a quarter for indices that exclude distressed sales. Time to sale and vacancy rates have also

climbed, particularly in the retail market. Even with a slowdown in foreclosures due to lawsuits

over fraudulent foreclosure practices, foreclosures have continued at a ferocious pace.

This chapter presents a model in which foreclosures have important general equilibrium e¤ects

that can explain much of the recent behavior of housing markets, particularly in the hardest-hit

areas. By raising the number of sellers and reducing the number of buyers, by making buyers

more choosey, and by changing the composition of houses that sell, foreclosures sales freeze up the

market for retail sales and reduce both price and sales. Furthermore, the e¤ects of foreclosures can

be ampli�ed considerably because price declines induce more default which creates further price

declines, generating a feedback loop. A quantitative calibration suggests that these e¤ects can be

large: foreclosures exacerbate aggregate price declines by approximately 50 percent and retail price

declines by 30 percent.

Despite the importance of foreclosures in the housing downturn, economists have not closely

examined how the housing market equilibrates when there are a substantial number of distressed

sales. A supply and demand framework, as employed by much of the �nancial literature on �re sales

53Data from CoreLogic. The data is described in Section 2.5 and Appendix B.4.
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Figure 13: The Role of Foreclosures in the Housing Downturn
Notes: All data is seasonally adjusted national-level data from CoreLogic as described in the data appendix. The

grey bars in panels B and C show the periods in which the new homebuyer tax credit applied. The black line in panel

B shows when foreclosures were stalled due to the exposure of fraudulent foreclosure practices by mortgage servicers.

In panel C, all sales counts are unsmoothed and normalized by the total number of existing home sales at peak while

each price index is normalized by its separate peak value.
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and illiquidity, can potentially explain declining prices and volumes with demand falling relative

to supply but cannot speak to the freezing up of the retail market. Such models also assume that

investors can adjust their positions continuously by transacting in a liquid market, yet housing

is lumpy, illiquid, and expensive. A substantial literature has sought to adapt models to �t the

peculiarities of the housing market and explain the positive correlation between volume and price.

For instance, search frictions as in Wheaton (1990), Williams (1995), Krainer (2001), and Novy-

Marx (2009), borrowing constraints as in Stein (1995), and nominal loss aversion as in Genesove

and Mayer (2001) have been shown to play important roles in housing markets. Yet no paper has

explicitly examined the role of distressed sales in a model tailored to housing.

To illustrate the mechanisms through which foreclosures a¤ect the housing market, a simple

model of the housing market with exogenous foreclosures is introduced. It adds two key ingredients

to an otherwise-standard search-and-matching framework with stochastic moving shocks, random

search, idiosyncratic house valuations, and Nash bargaining over price: REO sellers have higher

holding costs and individuals who are foreclosed upon cannot immediately buy a new house. These

two additions together dry up the market for normal sales, reduce volume and price, and imply

that the market only gradually recovers from a wave of foreclosures. This occurs through three

main e¤ects. First, the presence of distressed sellers increases the outside option to transacting

for buyers, who have an elevated probability of being matched with a distressed seller next period

and consequently become more selective. This �choosey buyer e¤ect� endogenizes the degree of

substitutability between bank and retail sales. Second, because foreclosed individuals are locked

out of the market, foreclosures reduce the likelihood that a seller will meet a buyer in the market

through a �market tightness e¤ect.� This e¤ect emphasizes that foreclosures do not simply add

supply to the market: a key feature of foreclosures is that they also reduce demand. Third, there

is a mechanical �compositional e¤ect�as the average sale looks more like a distressed sale.

The choosey buyer e¤ect in particular is novel and formalizes folk wisdom in housing markets

that foreclosures empower buyers and cause them to wait for a particularly favorable transaction.

For instance, The New York Times reported that �before the recession, people simply looked for a

house to buy ... now they are on a quest for perfection at the perfect price,�with one real estate

agent adding that �this is the fallout from all the foreclosures: buyers think that anyone who is

selling must be desperate. They walk in with the bravado of, �The world�s coming to an end, and I
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want a perfect place.��54 The Wall Street Journal provides similar anecdotal evidence, writing that

price declines �have left many sellers unable or unwilling to lower their prices. Meanwhile, buyers

remain gun shy about agreeing to any purchase without getting a deep discount. That dynamic has

fueled buyers�appetites for bank-owned foreclosures.�55 Although other papers such as Albrecht

et al. (2007, 2013) and Du¢ e et al. (2007) have included seller heterogeneity in an asset market

model, no paper that does so has generated a choosey buyer e¤ect, which turns out to be important

in explaining the disproportionate freezing up of the retail market.

To provide a more realistic treatment of the downturn, the basic model of the housing market

is embedded in a richer model of mortgage default in which borrowers with negative equity may

default on their mortgage or be locked into their current house despite a desire to move. This

generates a new ampli�cation channel: an initial shock that reduces prices puts some homeowners

under water and triggers foreclosures, which cause more price declines and in turn further default.

While reminiscent of the literature initiated by Kiyotaki and Moore (1997), the price declines here

are caused by the general equilibrium e¤ects of foreclosures. Lock-in of underwater homeowners

also impacts market equilibrium by keeping potential buyers and sellers out of the market.

The richer model is used to quantitatively evaluate the extent to which foreclosures have ex-

acerbated the ongoing housing bust. This quantitative analysis takes a two-pronged approach.

First, we assess the strength of the ampli�cation channel and its sensitivity to various parameters

in the model. Second, we �t the model to data from the 100 largest MSAs to assess the empirical

size of the ampli�cation channel and test its implications across metropolitan areas. The model

matches the data on the size of the price decline, the number of foreclosures, price declines in

the retail market, and the REO share of sales. It also matches the heterogeneity in foreclosure

discounts over the cycle found by Campbell et al. (2011). However, it falls short of explaining the

full sales decline, suggesting that other forces have depressed transaction volume in the downturn.

The quantitative analysis reveals that foreclosures exacerbate the aggregate price decline in the

downturn by approximately 50 percent in the average MSA (or in other words account for a third

of the decline) and exacerbate the price declines for retail sellers by over 30 percent.

Finally, we analyze the impact of the foreclosure crisis on welfare in our model and simulate

54�Housing Market Slows as Buyers Get Picky�June 16, 2010.
55�Buyer�s Market? Stressed Sellers Say Not So Fast�April 25, 2011.
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three foreclosure-mitigating policies: slowing down foreclosures, re�nancing mortgages at lower

interest rates, and reducing principal. While we do not conduct a full normative analysis, the

simulations of these policies highlight the trade-o¤s faced by policy makers.

The remainder of the chapter is structured as follows. Before presenting the model, section

2.2 presents facts about the bust across metropolitan areas. To explain the data, the remainder

of the chapter develops a model of how foreclosures a¤ect the housing market, �rst focusing on

mechanisms and then on magnitudes. Section 2.3 introduces a model of exogenous defaults, and

section 2.4 explores the intuitions and qualitative implications of the model. In section 2.5, the

basic model is embedded in a more complete model in which negative equity is a necessary condition

for default, which creates a new ampli�cation mechanism in the form of a price-default spiral. The

chapter then turns to the magnitudes of the e¤ects identi�ed in sections 2.3-2.5. Section 2.6

calibrates the model and quantitatively analyzes the model�s comparative statics and the strength

of the price-default ampli�cation channel. Section 2.7 takes the model to the national and cross-

MSA data from the ongoing downturn. Section 2.8 considers welfare and foreclosure policy, and

section 2.9 concludes.

2.2 Empirical Facts

The national aggregate time series of price, volume, foreclosure, and REO share presented in Figure

2.1 mask substantial heterogeneity across metropolitan areas in the severity of the housing bust

and wave of foreclosures. To illustrate this, Figure 14 shows price and volume time series for four

of the hardest-hit metropolitan areas. In Las Vegas, for instance, prices fell 61.5 percent, retail

sales fell 84.0 percent, and the REO share was as high as 76.4 percent. Figure 14 also illustrates

how foreclosure sales substitute for retail sales: retail sales rise as REO sales recede and fall as

REO sales surge.

To provide more systematic facts about the heterogeneity of the bust across MSAs, we use a

proprietary data set provided to us by CoreLogic supplemented by data from the United States

Census. CoreLogic provides monthly data for 2000-2011 for the nation as a whole and the 100

largest MSAs, from which we drop 3 MSAs because the full data are not available for these locations

at the start of the crisis. The data set includes a house price index,56 a house price index for retail

56The CoreLogic price index is a widely-used repeat sales index that has behaved similarly to other cited indices
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Figure 14: Price and Transaction Volume in Selected MSAs With High Levels of Foreclosures
Notes: All data is seasonally adjusted CBSA-level data from CoreLogic as described in the Appendix B.4. The sales

lines are smoothed using a moving average. In panel C, all sales counts are normalized by the total number of

existing home sales at peak while each price index is normalized by its separate peak value.

sales only,57 the number of completed foreclosure auctions, sales counts for REOs, new houses,

existing houses (including short sales), and the estimates of quantiles of the LTV distribution

described previously. These statistics are compiled by CoreLogic using public records. CoreLogic�s

data covers over 85 percent of transactions nationally. We seasonally adjust the CoreLogic data

and smooth the sales count series using a moving average. A complete description of the data is

in appendix B.4.

By far the best predictor of the size of the bust was the size of the preceding boom. Figure 15

in that it fell by a third during the downturn. The S&P Case-Shiller index shows similar declines to the CoreLogic
index. The FHFA expanded-data index, which includes FHFA data proprietary deeds data from other sources, fell
26.7 percent.
57Given the small number of distressed properties prior to the downturn, price indices for distressed properties

are typically not estimated. The CoreLogic non-distressed price index drops REO sales and short sales from the
database and re-estimates the price index using the same methodology.
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plots the change in log price from 2003 to 2006 against the change in log price from each market�s

peak to its trough through 2011. There is a clear downward pattern, with the notable exception of

a few outliers in the lower-left of the diagrams which correspond to metropoitan areas in southern

Michigan which experienced a substantial bust without a large boom.

Figure 15 also reveals a more subtle fact in the data: places that had a larger boom had a

more-than-proportionally larger bust. While a linear relationship between log boom size and log

bust size has an r-squared of .44, adding a quadratic term that allows for larger busts in places

with larger booms as illustrated in Figure 15 increases the r-squared to .57.

This chapter argues that by exacerbating the downturn in the hardest-hit places, foreclosures

can explain much of why the why the relationship between log boom size and log bust size is not

linear. This explanation implies an additional reduced-form cross-sectional test: because default is

closely connected to negative equity, a larger bust should occur in locations with the combination

of a large bubble and a large fraction of houses with high loan balances �and thus close to default

�prior to the bust. To provide suggestive evidence that this prediction is borne out in the data,

the points in Figure 15 are color-coded by quartiles of share of houses in the MSA with over 80

percent LTV in 2006. While the highest measured LTVs came in places that did not have a bust �

home values were not in�ated in 2006, so the denominator was lowest in these locations �one can

see that the majority of MSAs substantially below the quadratic trend line were in the upper end

of the LTV distribution.

To investigate whether the interaction of high LTV and a big bust combined is correlated with

a deep downturn more formally, we estimate regressions of the form:

Y = �0 + �1max�03�06 log (P ) + �2 [�03�06 log (P )]
2 (27)

+�3 (Z max Share LTV > 80%) + �4 (�03�06 log (P)� Z LTV > 80%)

+�5 (Z % Second Mortgage, 2006) + �6 (�03�06 log (P)� Z % Second)

+�7 (Z Saiz Land Unavailability) + �8 (Z Wharton Land Use Regulation) + "

where Z represents a z-score and the outcome variable Y is either the maximum change in log

price, the maximum change in log retail prices, the maximum change in log existing home sales,

the maximum change in log retail sales, the maximum REO share, or the fraction of houses that
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Figure 15: Boom vs. Bust Across MSAs
Note: Scatter plot of seasonally adjusted data from CoreLogic along with quadratic regression line. The data is fully

described in Appendix B.4. Each data point is an MSA and is color coded to indicate in which quartile the MSA falls

when MSAs are sorted by the share of homes with over 80% LTV in 2006. There are two main take-aways. First,

there is a non-log-linear relationship between the size of the boom and the size of the bust, as the regression r-squared

is .44 for a linear model and .57 for a quadratic model. Second, the color-coding of the points provides suggestive

evidence that it is the combination of high LTV and a large bubble that is associated with a disproportionately large

bust.

experience a foreclosure. The key coe¢ cient is �4. This regression is similar in spirit to Lamont

and Stein (1999), who show that prices are more sensitive to income shocks in cities with a larger

share of high LTV households, except rather than using income shocks to measure volatility, we use

the size of the preceding bubble as measured by 2003-2006 price growth. We add the fraction of

individuals with a second mortgage or home equity loan to the regression because these loans have

received attention in analyses of the downturn (Mian and Su�, 2011). Finally, to proxy for the

housing supply elasticity we use a land unavailability index and the Wharton land use regulation

index both from Saiz (2010). Table 9 shows summary statistics for our left hand side variables in

the top panel and our right hand side variables in the bottom panel

The regression results are shown in Table 10. The �rst two columns show the impacts on price
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Table 9: MSA Summary Statistics

Unweighted Mean SD Min Max N
Max � log (P) -.3398355 .2292549 -.9895244 -.0286884 97

Max � log (PRetail ) -.2784659 .1929688 -.9229212 -.0388126 97
Max � log (SalesExisting) -.9354168 .2684873 -2.53161 -.4671416 97
Max � log (SalesRetail) -1.174493 .3181327 -2.736871 -.5613699 97

SalesREO
SalesExisting

.3147958 .1648681 .0834633 .795764 97

% Foreclosed .0870826 .0719943 .0104154 .4205121 97
� log (Price)03�06 .2974835 .179294 .0389295 .7288995 97
Share LTV > 80% .1452959 .0756078 .025514 .3282766 97
Frac Second Mort, 06 .2026752 .0527425 .0259415 .2896224 97
Saiz Land Unav .2779021 .2112399 .009317 .7964462 97

Wharton Land Reg .2215807 .7050566 -1.239207 1.89206 97

Notes: Summary statistics for variables used in regression analysis. All data is from CoreLogic and fully described

in Appendix B.4. Data is for 100 largest MSAs excluding three for which complete data are unavailable as described

in the appendix.

and retail price. While the additional variables do not explain all of the non-log-linearity, they

have substantial predictive power. The key coe¢ cient shows that the interaction between a large

bubble and the share of homes with high LTV is correlated with large price declines, as suggested

by Figure 15. These interactions also have a large e¤ect on the REO share of sales and fraction

foreclosed, suggesting that foreclosures have something to do with these trends. The coe¢ cient on

land regulation is also negative yet small, re�ecting the ampli�cation provided by a high housing

supply elasticity. Having many houses with a second mortgage also reduces prices.

For sales, the regression has noticeably less predictive power and the dominant term is the con-

stant. As discussed in the analysis of the national calibration above, this suggests that foreclosures

combined with the size of the bubble will do a much worse job explaining the volume decline than

the price decline, something that will be borne out in our cross-MSA simulations. The interaction

between LTV and the bubble is insigni�cant for existing sales but signi�cant and negative for re-

tail sales. The pattern of REO volume largely replacing retail volume is consistent with the four

markets with high levels of foreclosure in Figure 14.
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2.3 Housing Market Model

To theoretically examine the e¤ect of forelcosures, we develop a model of the housing market in

which foreclosures are exogenous. We subsequently embed this model in a framework in which

default is modeled more realistically. Consequently, in this section, we focus on the mechanisms

and qualitative predictions and defer a quantitative analysis of the model to section 2.7.

2.3.1 Setup

We consider a Diamond-Mortensen-Pissarides-style general equilibrium search model of the housing

market. Search frictions play an important role in housing markets: houses are illiquid, most

households own one house and move infrequently, buyers and sellers are largely atomistic, and search

is costly, time consuming, and random. Additionally, the outside options of market participants

are crucial in search models, so a search framework is well-suited to formalizing the choosey buyer

e¤ect described in the introduction.

Time is discrete and the discount factor is �. There are a unit mass of individuals and a unit

mass of houses, both �xed. This is a good approximation of the the downturn, in which there has

been a very low level of new construction and decreased migration.58

The setup of the model�s steady state is illustrated schematically in Figure 16. Table 11

de�nes the model�s key variables. To simplify the analysis, we assume no default in steady state,

which is approximately the case when prices are stable or rising.59 In steady state, mass l0 of

individuals are homeowners. Homeowners randomly experience shocks with probability  that

induce them to leave their house as in Krainer (2001) and Ngai and Tenreyro (2013).60 We assume

that these shocks occur at a constant rate and that only individuals who receive a moving shock

search for houses. This assumption turns o¤ the ampli�cation channel identi�ed by Novy-Marx

(2009) through which endogenous entry and exit decisions by market participants in a search model

create a feedback loop which magni�es the e¤ects of fundamental shocks.

An individual who receives a moving shock enters the housing market as both a buyer with

58We do not consider the impact of long-run changes in the homeownership rate and retirement rate on the long-run
equilibrium of the market, nor do we consider the long-run impact of new construction, both of which may be a¤ected
by the downturn and are important subjects for future research.
59Allowing default in steady state complicates the analysis but does not substantially change the results.
60Moving shocks are a reduced form for a number of di¤erent di¤erent life events that trigger a change in housing

preference, such as the birth of children, death, job changes, and liquidity shocks.
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Figure 16: Schematic Diagram of No Foreclosure Steady State of Model

�ow utility ub and a normal seller with holding cost mn. Because shocks create both a buyer and

a seller, the model is a closed system with a �xed population.61 In Section 2.7 we compare our

model�s predictions to data from both national and local markets, although the model as literally

interpreted applies best to an metropolitan area.

As in Ngai and Tenreyro (2013), we assume that the buyer and seller act as independent

agents. This means that there is no interaction between the buyer�s problem or bargaining game

and the seller�s, and there is no structure placed on whether an individual buys or sells �rst. This

assumption is not innocuous, as whether homeowners have su¢ cient liquidity to buy �rst may be

important for market equilibrium and may a¤ect bargaining as individuals who buy before selling

holding two homes (Anenberg and Bayer, 2013). However, these e¤ects are likely to be small

relative to REOs. For instance, Springer (1996) examines several measures of seller motivation

and �nds that only REO sellers are distinguishable from normal sellers, and Anenberg and Bayer

�nd that individuals who buy �rst sell their homes at a two percent discount, a �gure that is

swamped by the average REO discount.

Buyers and sellers in the housing market are matched each period. Matching is entirely random

61We use a closed system so that housing prices are not determined principally by the �ow rates of buyers into
and sellers out of the market but rather by the incentives of buyers and sellers in the market. Most moves are
within-MSA (Sainai and Souleles, 2009) or to MSAs with highly correlated housing prices, so the assumption of a
closed system is reasonable.
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Table 11: Variables in Housing Market Model
Variable Description

Endogenous Variables
h Stochastic Match Quality � F (h)

hn, hd Cuto¤ h for normal, REO sellers
SBm;h, S

S
m;h Surplus of type m seller with match quality h for buyer, seller

pm;h Price for type m seller with match quality h
� Market tightness (buyers/sellers)

qs (�), qb (�) Prob seller meets buyer, buyer meets seller
rm, rd Ratio of normal, REO sellers to total sellers
l0, l1 Masses of homeowners, homeowners that could foreclose

vb, vn, vd, vr Masses of buyers, normal sellers, REO sellers, renters
Value Functions

Vh Value of owning home with match quality h
Vn; Vd Value of seller for normal, REO sellers
B Value of buyer
R Value of renter

Parameters
� Discount factor
 Probability of moving shock
� Probability moving shock causes foreclosure
� Probability of leaving renting
� Seller�s Nash bargaining weight
� Probability of match in period (C-D matching function)
� Exponent in C-D matching function
� Parameter of exponential distribution for F (h)
a Shifter on exponential distribution for F (h)

ub, ur Flow utility of being a buyer, renter
mn, md Flow utility of being a seller for normal, REO

and search intensity is �xed, allowing us to focus on the e¤ects of distressed sales rather than the

search mechanism. When matched, the buyer draws a �ow utility h from a distribution F (h).

Utility is linear and house valuations are purely idiosyncratic so that the transaction decision leads

to a cuto¤ rule. These valuations are completely public, and prices are determined by generalized

Nash bargaining. Because buyers know whether the seller is an individual or a bank in practice,

symmetric information is reasonable. If the buyer and seller decide to transact, the seller leaves the

market and the buyer becomes a homeowner in l0 deriving �ow utility h from the home until they

receive a moving shock. If not, the buyer and seller each return to the market to be matched next

period. Note that for simplicity we do not allow speculators or ��ippers,�who would presumably

sell quickly.

69



We introduce foreclosures into this basic steady state setup by adding two key ingredients. First,

REO sellers have a higher holding costs, which is the case for several reasons. Mortgage servicers,

who execute the foreclosure and REO sale, have substantial balance sheet concerns. In most cases,

they must make payments to security holders until a foreclosure liquidates, and they must also

assume the costs of pursuing the foreclosure, securing, renovating, and maintaining the house, and

selling the property (Theologides, 2010). Furthermore, even though they are paid additional fees

to compensate for the costs of foreclosure and are repaid when the foreclosed property sells, the

servicer�s e¤ective return is likely far lower than its opportunity cost of capital. Additionally,

owner-occupants have much lower costs of maintenance and security. Finally, REO sellers usually

leave a property vacant and thus forgo rental income or �ow utility from the property.

An implicit assumption is that no deep-pocketed and patient market maker buys from distressed

sellers and holds the property until a suitable buyer is found. While investors or ��ippers�have

bought some foreclosures, most have been sold by realtors to homeowners. This is likely due to

agency problems and high transactions costs.

Second, individuals who experience a foreclosure are locked out of the market. This re�ects

the fact that a foreclosure dramatically reduces a borrower�s credit score. Indeed, many banks,

the GSEs, and the FHA will not lend to someone who recently defaulted. Instead, foreclosed

individuals become renters. This is supported by the data: Molloy and Shan (Forthcoming) use

credit report data to show that households that experience a foreclosure start are 55-65 percentage

points less likely to have a mortgage two years after a foreclosure start. For simplicity, we assume

that the rental market is segmented, and renters �ow back into buying at an exogenous and �xed

rate. While segmentation is a somewhat extreme assumption in the long run, it is a more reasonable

approximation for the short-run e¤ects in which we are primarily interested as conversions from

owner occupied to rental units are costly and slow. Introducing an endogenous rental price and

making the out�ow rate covary with the price would create a force that mitigates some of the e¤ects

in the model.

Because �ow utilities for foreclosures are drawn from the same distribution as for non-foreclosures,

we are implicitly assuming that foreclosures are of roughly equal quality, which is likely not the

case in practice (Gerardi et al., 2013). In our calibration, we are careful to use moments from

studies that caerfully control for quality.
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Figure 17: Schematic Diagram of Housing Market Model With Foreclosure

While these are the only two new assumptions we make, foreclosures may have other e¤ects.

They may cause negative externalities on neighboring properties due to physical damage, the pres-

ence of a vacant home, or crime. Campbell et al. (2011) show that such e¤ects are small and

highly localized, although contagion is certainly possible in neighborhoods with high densities of

foreclosures. There may also be buyer heterogeneity with respect to their willingness to purchase

a foreclosure, generating an additional channel through which the REO discount widens as non-

natural buyers purchase foreclosures. Finally, foreclosures may cause banks to limit credit supply,

as shown theoretically by Chatterjee and Eyigungor (2011).

The two critical assumptions are introduced into the model in Figure 17. To simplify the

analysis, we assume away re-default.62 Instead, we consider a mass of potential defaulters and

analyze how these potential defaulters �ow through the system. One can think of these potential

defaulters as homeowners with high mortgage balances as will be the case in section 2.5. These

individuals have mass l1, and at time t = 0, when we introduce the exogenous foreclosure shock,

62We assume away re-default to keep the model consistent with the extended model in section 2.5. While this
assumption does slightly increase the speed of convergence back to steady state over the course of the crisis, it does
not substantively alter the quantiatative or qualitative results.
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we move everyone in l0 to l1. Potential defaulters in l1 also receive moving shocks with probability

, but if they receive a moving shock it triggers a foreclosure with probability � (t) and is a normal

moving shock with probability 1� � (t). If it is a normal moving shock, the homeowners becomes

a buyer and a seller as in steady state. A foreclosure shock, however, causes a bank or GSE with

holding cost md to take possession of the house and enter the housing market and the homeowner

to become a renter with �ow utility ur.63 Renters become buyers each period with exogenous

probability �. Because there is no re-default, all buyers, including those who were formerly

renters, are added to l0 when they buy a house, so the model gradually returns to steady state.

Buyers and sellers of both types are matched in the housing market. Let vb (t), vr (t), vn (t),

and vd (t) be the masses of buyers, renters, normal sellers, and REO sellers in the market at time

t. Market tightness � (t) is equal to the ratio of buyers to sellers:

� (t) =
vb (t)

vn (t) + vd (t)
: (28)

Unlike general equilibrium search models of the labor market in which market tightness is deter-

mined principally by a free entry condition for �rms posting vacancies, here market tightness is

determined by �ows into renting due to default and out of renting at rate �.

For the matching technology, we use a standard Cobb-Douglas matching function so that the

number of matches when there are b buyers and s sellers is �b�s1��. The probability a seller meets

a buyer in a period with market tightness � is given by qs (�) =
�b�s1��

s = ���; and the probability

a buyer meets a seller is qb (�) =
�b�s1��

b = ����1.

Let Vh (t) be the value of being in a house with match quality h at time t, Vm (t) be the value of

being a seller of type m (either n or d) at time t, B (t) be the value of being a buyer at time t, and

R (t) be the value of being a renter at time t. Vh (t) is equal to the �ow payo¤ plus the discounted

expected continuation value:

Vh (t) = h+ � f [Vn (t+ 1) +B (t+ 1)] + (1� )Vh (t+ 1)g . (29)

63The bank must hold a foreclosure auction, but in the vast majority of cases the auction reserve is not met and
the bank takes the house as an REO. For instance, Campbell et al. (2011) report that 82 percent of foreclosures in
Boston are sold as REOs rather than at auction. For simplicity we assume all houses become REO.
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The match surplus created when a buyer meets a seller of type m = fn, dg and draws an

idiosyncratic match quality of h at time t is a key value in the model. Denote this surplus by

Sm;h (t), the buyer�s portion of the surplus by SBm;h (t), and the seller�s portion by S
S
m;h (t). Let

the price of the house sold if a transaction occurs be pm;h (t). The buyer�s share of the surplus is

equal to the value of being in the house minus the price and their outside option of staying in the

market:

SBm;h (t) = Vh (t)� pm;h (t)� ub � �B (t+ 1) : (30)

The seller�s share of the surplus is equal to the price minus their outside option of staying in the

market:

SSm;h (t) = pm;h (t)�m� �Vm (t+ 1) : (31)

Prices are set by generalized Nash bargaining with weight � for the seller, so:

SSm;h(t)

SBm;h(t)
=

�

1� � 8 m. (32)

Buyers and type m sellers will transact if the idiosyncratic match quality h is above a threshold

value, corresponding to zero total surplus and denoted by hm (t). Because total surplus is:

Sm;h (t) = Vh (t)� (m+ ub)� (�B (t+ 1) + �Vm (t+ 1)) (33)

the cuto¤ is implicitly de�ned by:

Vhm(t) = m+ ub + � (B (t+ 1) + Vm (t+ 1)) . (34)

We can then de�ne the remaining value functions. The value of being a type m seller is equal

to the �ow payo¤ plus the discounted continuation value plus the expected surplus of a transaction

times the probability a transaction occurs. Because sellers meet buyers with probability qs (� (t))

and transactions occur with probability 1� F (hm(t)), Vm is de�ned by:

Vm (t) = m+ �Vm (t+ 1) + qs (� (t)) (1� F (hm(t)))E
�
SSm;h (t) jh � hm (t)

�
: (35)
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The most important aspect of Vm is that in a downturn qs (�) falls below its steady state value

because foreclosures create renters rather than buyers (� < 1). The chance that a seller does not

meet a buyer thus reduces the value of being a seller.

The value of being a buyer is de�ned similarly, although we must account for the fact that the

buyer can be matched with two types of sellers. Let the probability of matching with a type m

seller conditional on a match be rm (t) =
vm(t)

vn(t)+vd(t)
. B is de�ned by:

B (t) = ub + �B (t+ 1) + qb (� (t))
X
m

rm (t) (1� F (hm(t)))E
�
SBm;h (t) jh � hm (t)

�
. (36)

Because of random matching, as more REO sellers enter the market the weight on REO sellers in

the buyer�s value function rd rises. REO sellers are be more likely to sell, so foreclosures raise the

value of being a buyer. The decline in � caused by foreclosures also raises qb (�), further increasing

the value of being a buyer.

It is worth discussing what the implications of allowing buyers to direct their search towards

foreclosures would be. A model with completely segmented REO and retail markets produces

unreasonable parameter values. Intuitively, the REO and retail markets are linked by a buyer

indi¤erence condition that the probability of a match times the surplus must be the same in the

REO market and the retail market. With a reasonable foreclosure discount, buyer indi¤erence can

only hold if the opportunity cost of waiting slightly longer for a distressed sale �the �ow utility

from being in that house �is implausibly high.

Furthermore, it is unlikely that any buyers look exclusively at one type of property. Instead,

partially-directed search, in which buyers are able to direct their search to particular sub-markets

in which the REO share of vacancies is higher than other sub-markets but is still not close to

one, is most plausible. Examples of sub-markets include neighborhoods within a MSA or lower

priced homes where there are likely to be more foreclosures. In this case, the e¤ects we identify

would be most pronounced in those sub-markets which had the highest REO share of vacancies,

although there would be some spillovers because marginal individuals would switch to the REO-

laden market. This is consistent with the �ndings of Landvoigt et al. (2012) that price declines

in San Diego were stronger at the lower end of the market. We leave understanding the role of

foreclosures for within-housing-market dynamics to future research.
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The value of being a renter is de�ned as:

R(t) = ur + � f�B(t+ 1) + (1� �)R(t+ 1)g : (37)

We will assume ur = ub, so that a renter is simply a buyer without the option to buy.

The conditional expectation of the surplus given that a transaction occurs appears repeatedly

in the value functions. This quantity can be simpli�ed as in Ngai and Tenreyro (2013) by using

(29) together with (33):

Sm;h (t) = Vh (t)� Vhm (t) =
h� hm (t)
1� � (1� ) :

The conditional expectation is

E [Sm;h (t) jh � hm (t)] =
E [h� hm (t) jh � hm (t)]

1� � (1� ) : (38)

We parameterize F (�) � exp (�) + a, an exponential distribution with parameter � shifted

over by a constant a. The memoryless property of the exponential distribution implies that

E [Sm;h (t) jh � h�m (t)] =
1
� . This is a fairly strong assumption. By using the exponential dis-

tribution in our simulations, we eliminate changes in the expected surplus due to changes in tail

conditional expectations of the F distribution, which cannot be observed.

The model is completed with the laws of motion for the mass of sellers of type m, buyers,

renters, and homeowners of type li. These laws of motion, which formalize Figure 17, are in

appendix B.1.2.

Prices can be backed out by using Nash bargaining along with the de�nitions of the surpluses

and (38) to get:

pm;h (t) =
� (h� hm (t))
1� � (1� ) +m+ �Vm (t+ 1) (39)

This pricing equation is intuitive. The �rst term contains h� hm (t), which is a su¢ cient statistic

for the surplus generated by the match as shown by Shimer and Werning (2007). As � increases,

more of the total surplus is appropriated to the seller in the form of a higher price. This must

be normalized by 1 � � (1� ), the e¤ective discount rate of a homeowner. The �nal two terms
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represent the value of being a seller next period, which is the seller�s outside option. These

terms form the minimum price at which a sale can occur, so that all heterogeneity in prices comes

from the distribution of h above the cuto¤ hm (t). Because with the exponential distribution

E [h� hm (t)] = 1
� , all movements in average prices work through Vm (t+ 1).

2.3.2 Numerical Methods

For reasonable parameter values, the model has a unique steady state that can be solved block

recursively and studied analytically. The full derivation and existence and uniqueness proofs for

the steady state can be found in appendix B.1.1. Although there are no foreclosures in steady state,

the price and probability of sale for a REO seller are well de�ned and represent what would occur if

a measure zero mass of normal sellers were instead REO sellers. For a �xed idiosyncratic valuation

h, REO properties sell faster and at a discount due to the higher holding costs of distressed sellers.

The dynamics of the model, however, have no analytic solution, so we turn to numerical simu-

lations. We solve the model using Newton�s method as described in appendix B.1.2.

Simulating the model requires choosing parameters. We defer a more rigorous quantitative

analysis to section 2.7, which features a richer model, and focus on the mechanisms at work in

this section. Consequently, for now we present simulation results using an illustrative calibration

similar to the one described in section 2.5. We simulate a wave of foreclosures by moving everyone

in l0 to l1 at time t = 0 and raising � for a period of �ve years. After the wave of foreclosures, the

model returns to the original steady state.

2.4 Basic Model Results and Mechanisms

2.4.1 Market Tightness, Choosey Buyer, and Compositional E¤ects

The qualitative results in our model are caused by the interaction of three di¤erent e¤ects: the

�market tightness e¤ect,� the �choosey buyer e¤ect,� and the �compositional e¤ect.� Each is

crucial to understand the e¤ect of foreclosures on the housing market.

First, because foreclosed individuals are locked out of the housing market as renters and only

gradually �ow back into being buyers, foreclosures reduce market tightness � (t). This mechanically

decreases the probability a seller meets a buyer in a given period and triggers endogenous responses
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as each party�s outside options to the transaction changes, altering the bargaining and the hs for

which a sale occurs. For sellers, the reduction in market tightness reduces the value of being a seller

for both types of seller, reducing prices and causing sellers to sell more frequently. The endogenous

response is stronger for REO sellers who have a higher opportunity cost of not meeting a buyer.

For buyers, the elevated probability of meeting a seller raises their expected value, leading to lower

prices and a shift in the cuto¤s that makes buyers more choosey.64 The market tightness e¤ect

elucidates that an important element of foreclosures is a reduction in demand relative to supply,

as in a typical market a move creates a buyer and a seller while foreclosures create an immeiate

bank seller but a buyer only when the foreclosed upon individual�s credit improve. This contrasts

with some market analysts who treat foreclosures as a shift out in supply rather than a reduction

in today�s demand.

Second, the value of being a buyer rises because the buyer�s outside option to transacting,

which is walking away and resampling from the distribution of sellers next period, is improved by

the prospect of �nding an REO seller who will give a particularly good deal. Mathematically, as

REOs make up a larger fraction of total vacancies, rd rises and the term in the sum in (36) relating

to REO sales gets a larger weight. This term is larger because REO sellers are more likely to

transact both in and out of steady state. The resulting increase in buyers�outside options leads

buyers to become more aggressive and demand a lower price from sellers in order to be willing to

transact. In equilibrium, this leads to buyers walking away from more sales. Importantly, this

e¤ect will be most prevalent in the retail market where sellers are less desperate and therefore less

willing to accommodate buyers�demand for lower prices, resulting in a freezing up of the retail

market.

The choosey buyer e¤ect is new to the literature. Albrecht et al. (2007, 2013) introduce

motivated sellers into a search model, but focus on steady-state matching patterns (eg whether a

high type buyer can match with a low type seller) and asymmetric information regarding seller type.

Du¢ e et al. (2007) consider a liquidity shock similar to our foreclosure shock, but a transaction

occurs whenever an illiquid owner meets a liquid buyer, and so while there are market tightness

e¤ects their model does not have a choosey buyer e¤ect.

64 In the calibration utilized here and in later sections, we set � = :84. Thus the e¤ect on qs (�) signi�cantly
outweighs the e¤ect of market tightness on qb (�).
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The market tightness e¤ect and choosey buyer e¤ect are mutually reinforcing. As discussed

above, the market tightness e¤ect is more pronounced for REO sellers. Because the value of being

an REO seller falls by more, REO sellers become even more likely to sell relative to non-REO

sellers during the downturn. This sweetens the prospect of being matched with an REO seller next

period, amplifying the choosey buyer e¤ect.

Finally, a greater share of REO sales makes the average sale look more like REO properties,

which sell faster and at lower prices both in and out of steady state. Foreclosures thus cause

a mechanical compositional e¤ect that a¤ects sales-weighted averages such as total sales and the

aggregate price index.

The market tightness e¤ect is the aspect of the model that comes closest to a standard Walrasian

analysis with a single market for housing. By reducing the number of buyers relative to sellers,

it is similar to an inward shift in the demand curve relative to the supply curve that reduces both

prices and transaction volume. The market tightness e¤ect does, however, asymmetrically impact

REO and retail sellers due to their di¤erential holding costs, leading to a greater freezing up of the

retail market as buyers walk away from retail sellers in hopes of contacting increasingly-desperate

REO sellers. These types of di¤erential e¤ects and further feedback loops �which stem from the

choosey buyer e¤ect and its interaction with the market tightness e¤ect �are novel to the literature

and di¤erentiate our model from a simpler Walrasian model.

Furthermore, all three e¤ects dissipate more slowly than in traditional asset pricing models

because they depend on �ows as well as stocks and lead to a sluggish return of the housing market

to steady state. The choosey buyer and compositional e¤ects last as long as foreclosures remain in

the market, which is only a few months after the shock ends as these houses sell quickly. However,

the market tightness e¤ect persists for much longer as it takes several years for the renters to return

to being homeowners.

2.4.2 Qualitative Results

Figure 18 shows the e¤ect of a the �ve-year wave of foreclosures. Because the model is entirely

forward looking, prices and probability of sale conditional on a match fall discretely on the impact of

the shock at t = 0. This is typical in completely forward-looking models. The sluggish adjustment

of house prices to shocks remains a puzzle for much of the literature, and a solution to this problem
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Figure 18: Housing Market Model: Qualitative Results
Notes: This �gure shows the results of the housing market model with exogenous foreclosures using an illustrative

calibration similar to the one developed in Section 2.5 and a �ve-year foreclosure shock. Panels A and B show the

average price and sales by type, with pre-downturn price and volume normalized to 1. Prices drop discretely at time

zero as is standard in forward-looking models with no uncertainty. The REO discount widens, the aggregate price

index is pulled towards the REO index as REOs make up a greater share of the market, and prices rise in anticipation

of the end of the downturn. Retail volume plunges dramatically, but the decline is partially made up for by surging

REO volume. Panel C shows the probability of sale conditional on a match and the unconditional probability of

sale for each type with the pre-downturn probability normalized to one. This panel illustrates the mechanisms at

work in the model, as described in the main text. The key take-away is that the probability of sale conditional on a

match, which is the clearest indicator of how the behavioral responses of buyers and sellers play out in equilibrium,

falls dramatically for retail and is roughly �at for REO.

is outside the scope of this chapter.

As shown in panel A, at t = 0 prices fall considerably for both REO and retail and gradually

return to steady state over the next several years. The overall sales-weighted price index dips more

than retail sales as foreclosures are averaged in. The price movements lead to a substantial rise in

the average REO discount that falls o¤ over time.

Prices fall due to all three e¤ects. Recall that from (39), movements in the average price of

properties sold by a type m seller are controlled by movements in Vm (t+ 1). The market tightness

e¤ect has a direct e¤ect on the value of being a seller and thus brings down prices. Because this

e¤ect is stronger for REO sellers, this contributes to the larger REO discount. The choosey buyer

e¤ect has an indirect e¤ect on Vm (t+ 1), as in general equilibrium increased buyer choosiness

reduces the value of being a type m seller, which causes prices to fall. The e¤ect of market

tightness on the value of being a buyer operates in a similar manner. Finally, there is a pure

compositional e¤ect as REO sales become a greater share of total sales, which is shown graphically
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by the departure of the aggregate price index from the price index for retail sales.

As for sales, the wave of foreclosures sales causes the retail market to freeze up, with retail

volume falling substantially as shown in panel B and REOs constituting a larger fraction of total

sales than of total vacancies. Total volume, however, does not fall as much because much of the

decline in retail sales is o¤set by REO sales. After the foreclosures end, sales return back to normal

in a matter of months as REOs are eliminated from the market. Most of the sluggish adjustment

comes from the dissipation of the accumulated renters and retail sellers, which takes several years.

The intuition behind the e¤ects on transaction volume is more nuanced as the market tightness,

choosey buyer, and composition e¤ects have cross-cutting impacts. Panel C, which shows percent

changes from steady state in the probability of sale both raw and conditional on a match, elucidates

the role of each e¤ect.65

Consider �rst the probability of sale conditional on a match, controlled by hm (t).66 The market

tightness e¤ect on the probability a seller meets a buyer raises the probability of sale conditional

on a match because sellers meet buyers less frequently and thus have a greater incentive to sell

when they are matched, an e¤ect which is stronger for REO sellers. The choosey buyer e¤ect and

the e¤ect of market tightness on the probability a buyer meets a seller both reduce the probability

of sale conditional on a match as buyers become more choosy. Panel C shows that the two e¤ects

o¤set for REO sales as the probability of sale conditional on a match �uctuates around its steady

state value, while the choosey buyer e¤ect and the market tightness e¤ect on buyers dominate

for retail sales as the probability of sale conditional on a match falls substantially. The relative

strength of these two e¤ects for the two types of sellers thus plays an important role in freezing up

the retail market.

The market tightness e¤ect, however, plays an additional role: it mechanically reduces volume

because there are fewer buyers. This causes the unconditional probability of sale and thus trans-

action volume to fall for both types, although it falls more for REO sellers. Note, however, that

decline for retail sales is quicker and the trough lasts longer.

The compositional e¤ect also plays an important role in determining transaction volume. Be-

cause REOs sell faster both in and out of steady state, as the average sale looks more like an REO,

65The probability of sale conditional on a match is exp (�� (hm (t)� a)) and the total probability of sale is
qs (� (t)) exp (�� (hm (t)� a))
66Time to sale is inversely related to the unconditional probability of sale.
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volume rises. This is the main reason why total volume does not fall so dramatically. It is possible

for volume to rise, although for reasonable calibrations we �nd that the market tightness e¤ect is

strong enough relative to the compositional e¤ect that REO sales do not make up the full shortfall

in retail sales and overall volume falls.

Qualitatively, the model explains many salient features of the housing downturn. The substan-

tial decline in both retail and REO prices is consistent with the data in Figure 2.1, and the widened

distressed sale discount in a downturn is corroborated by Campbell et al. (2011). The freezing up

of the retail market and the large share of REO sales in total sales relative to listings is borne out

in the data, as are a rise in times to sale and increasing vacancy rates. The fact that REO sales

replace a good deal of the lost volume in the retail market is consistent with the evidence from the

hardest hit markets as shown in Figure 14.

2.4.3 Isolating the Role of Each E¤ect

To further illustrate how each e¤ect contributes to our results, Figure 19 depicts simulations iden-

tical to our main results for a wave of foreclosures except with the market tightness e¤ect, choosey

buyer e¤ect, and both the choosey buyer and market tightness e¤ects shut down. Although the

market tightness e¤ect plays an outsized role, all three e¤ects are necessary for our results.

The market tightness e¤ect generates a signi�cant fraction of the price and volume declines.

Row two also illustrates that the market tightness e¤ect increases the conditional probability of sale

for REO sellers during the downturn. Market tightness e¤ects also cause total volume to decline

because of the mechanical decrease in matching probabilities.

However, the choosey buyer e¤ect plays an essential role in freezing up the retail market. As

can be seen from row two, with no choosey buyer e¤ect the conditional probability of sale for retail

sellers essentially remains �at. On the other hand, from row one we can see that when only the

choosey buyer e¤ect is present there is a non-trivial decrease in this conditional probability. This

freezing up is even more pronounced when both market tightness and choosey buyer e¤ects are

present due to their interaction.

The compositional e¤ect mainly reduces the aggregate price index, as shown in row 3 of Figure

19. It also increases total volume slightly because REO sales sell faster.
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Figure 19: Isolating the Role of Each E¤ect
Notes: The top row shows price, sales, and conditional and unconditional probability of sale, all normalized to 1 for

their pre-downturn values, for the case of no market tightness e¤ect. The second row shows the same results for

no choosey buyer e¤ect. The third row shuts down both, leaving only the compositional e¤ect. The �gure shows

that both the market tightness and outside option e¤ects are critical for the qualitative results; in particular panel

C2 shows that without the choosey buyer e¤ect the probability of sale conditional on a match does not fall much for

retail sellers. To shut down the market tightness e¤ect, instead of creating renters we instead assume that distressed

sale shocks create REO sellers and home-buyers. To shut down the choosey buyer e¤ect, we modify the buyer�s value

function so that agents behave as if the probability they will hit a distressed seller is zero regardless of the presence

of distressed sellers in the market. Because we calibrate to a steady state with no distressed sales, the steady state

of these modi�ed models replicates the steady state of our full model. See appendix B.2.1 for full details on these

models.
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2.5 An Extended Model of Default

Foreclosures are not random events. With few exceptions, negative equity is a necessary but not

su¢ cient condition for foreclosure (Foote et al., 2008). This is because a homeowner with positive

equity can sell his or her house, pay o¤ the mortgage balance, and have cash left over without

having to default. Homeowners with negative equity, however, are not able to pay the bank and

thus default if they experience with a liquidity shock.

The previous section showed that foreclosures have general equilibrium e¤ects that cause prices

�and thus homeowner equity �to fall. In a world in which negative equity leads to foreclosure,

this will cause more foreclosures and price declines, generating a feedback loop that ampli�es the

e¤ects of an initial decline in house prices.67

In this section we embed the housing market component of the exogenous default model de-

veloped in the section 2.3 into a model in which negative equity is a necessary but not su¢ cient

condition for default. Subsequent sections provide a rigorous quantitative analysis of the extended

model and analyze welfare and foreclosure policy using the model.

2.5.1 Default in the Extended Model

We model default as resulting primarily from shocks that cause homeowners with negative equity

to be unable to a¤ord their mortgage payments, the so-called �double trigger�model of mortgage

default. While �ruthless�or �strategic default�by borrowers has occurred, much of the literature

on default argues that strategic default has contributed surprisingly little to foreclosures, partic-

ularly at low levels of negative equity.68 Bhutta et al. (2010) use a method of controlling for

income shocks to estimate that the median non-prime borrower does not strategically default until

their equity falls to negative 67 percent. Even among non-prime borrowers in Arizona, California,

Florida, and Nevada who purchased homes with 100 percent �nancing at the height of the bubble

�80 percent of whom defaulted within 3 years �over 80 percent of the defaults were caused by

income shocks. Similarly, Foote et al. (2008) show that in the Massachusetts housing downturn

67 In all cases we have considered, each additional round of feedback is smaller than the previous one generating a
convergent series and a unique dynamic equilibrium, although in principle the feedback could be strong enough to
generate a divergent series.
68Relevant papers than analyze the default decision and conclude that a �ruthless exercise�option model of default

is insu¢ cient include Deng et al. (2000), Bajari et al. (2009), Elul et al. (2010), and Campbell and Cocco (2014).
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of the early 1990s, the vast majority of individuals who default have negative equity but most

individuals with negative equity do not default. Consequently, the largest estimate of the share

of defaults that are strategic is 15 to 20 percent.69 To keep the model tractable, we thus do not

model strategic default, nor do we model the strategic decision of the bank to foreclose or short

sales.70

Modeling negative equity requires that homeowners have loan balances. We assume that

homeowners in l1 have a distribution of loan balances L de�ned by a CDF G (L).71 So that no

foreclosures occur without an additional shock, in general we assume that G (L) has continuous

support on [0; V �n ], where the steady state value of being a normal seller which is equal to the

expected price net of the costs of sale. We assume away re-default so that we do not need to worry

how new home purchases a¤ect G (L).

To incorporate liquidity shocks into our model, we assume that they occur to individuals with

negative equity at Poisson rate I . All other shocks are taste shocks that occur at Poisson rate ,

so that liquidity shocks are in addition to normal shocks.

Liquidity and taste shocks have di¤erent e¤ects depending on the equity position of the home-

owner. Homeowners with any shock with L � Vn (t) have positive equity enter the housing market

as a buyer and seller. To keep the model tractable, we assume that buyers and sellers are identical

once they pay o¤ their loan balance. Homeowners with L > Vn (t) have negative equity net of mov-

ing costs and default if they experience an income shock because they cannot pay their mortgage or

sell their house. Defaulters enter the foreclosure process.72 Although foreclosure is not immediate

and some loans in the foreclosure process do �cure�before they are foreclosed upon, for simplicity

we assume that foreclosure occurs immediately. We alter this and introduce foreclosure backlogs

in Section 2.8. We also assume that income shocks are a surprise, so an underwater homeowner

69This estimate comes from Experian-Oliver Wyman. Guiso et al. (2013) analyze a survey that asks people
whether they strategically defaulted and �nd that 25 to 35 percent of defaults are strategic.
70�Fishing��that is listing a home for a high price and hoping that someone who overpays for it will come along

as in Stein (1995) �and short sales are unusual because they require sellers to �nd a buyer who will pay a minimum
price, which a¤ects bargaining. Modeling short sales and their e¤ect on market equilibrium is an important topic
for future research.
71We are agnostic as to the source of the loan balance distribution and leave this unmodeled. G (L) is �xed over

time because principal is paid down slowly, particularly by those in the upper tail of the loan balance distribution
who are relevant for the size of the feedback loop.
72 It is also possible for banks to possess the house and rent it to the homeowner or to o¤er a short sale, in which

the bank accepts a sale at a price below the oustanding loan balance. While these options have become more popular
in recent years due in large part to political pressure, for most of the crisis the banks simply foreclosed on borrowers.
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Figure 20: Extended Model Schematic Diagram

expecting an income shock cannot list their house with the hope of getting a high-enough price

that they can pay o¤ their loan before the bank forecloses. While this may happen infrequenlty,

it is unlikely very unlikely that a desperate seller would receive such a high price.

Finally, homeowners with negative equity who receive a taste shock would like to move but

owe more than their house is worth. Consequently, they are �locked in� their current house

until prices to rise to the point that they have positive equity.73 We assume that once they do

not move when they get a taste shock, these homeowners make accommodations and thus do not

immediately move when they reach positive equity. Instead, once they have positive equity they

become indistinguishable from households in l0 who are waiting for a moving shock. In our context,

lock-in further reduces sales in markets with many foreclosures.

Figure 20 shows our formalization of default in the extended model in a schematic diagram.

The extended model only alters the mechanisms through which homeowners default and enter the

housing market, and consequently the housing market component of the model is exactly as in

73Formally, de�ne w (t) as the mass of individuals who are locked in at time t. The distribution of loan balances
in w (t) will be the same as G (L) truncated below at Vn (t).
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Table 12: Variables Used In Extended Model
Variable Description

Endogenous Variables
L Loan Balance � G (L)
w Mass of locked in homeowners
f Mass of homeowners in foreclosure process

Parameters
I Probability of a liquidity shock
� Probability above-water homeowner becomes renter

ba, bb Parameters of Beta distribution for G (L)

section 2.3 and is thus not depicted in Figure 20. This structure preserves all of the key intuitions

developed in section 2.4. Because there is still no default in steady state, the steady state remains

the same. Because the modi�ed model has an identical housing market to the model in section

2.3, the Bellman equations and cuto¤ conditions are unchanged. The new laws of motion are in

Appendix B.1.4, and the additional parameters introduced in the extended model are listed in

Table 12.

2.5.2 Starting the Downturn

An exogenous shock is required to generate an initial price drop. We introduce the exogenous

shock in two di¤erent ways.

First, we assume that due to both tighter lending practices and income shocks a fraction � (t) of

individuals who sell their house as a normal seller after receiving a taste shock cannot buy a house

and instead transition from owning to renting. This generates an initial market tightness e¤ect

that reduces prices, putting some individuals underwater and triggering a price-default spiral. Such

a shock �ts most naturally in the model. We use a 5-year increase in � (t) to perform a sensitivity

analysis in section 2.6.

However, when we take the model to the data in section 2.7, it is clear that the main shock in

the recent episode is a bursting housing bubble. Our primary interest is understanding the amount

of overshooting of prices caused by the presence of foreclosures and not realistically modeling the

bursting of the bubble absent foreclosures. Consequently, we introduce a bursting bubble into the

model with a permanent decline in a, the minimum �ow utility of housing. While the �ow utility

of housing clearly did not fall overnight, the source of the initial drop in prices is immaterial to
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our results and reducing a is the simplest way to generate such a price drop. The reduction in a

should thus be seen as a stand-in for a number of factors that have depressed home prices, from

changes in credit availability to belief disagreements to irrational exuberance.74

With a permanent decline in a and a constant hazard of an income shock, all individuals whose

loan balance is above the new steady-state price level will eventually default. This does not seem

realistic �many homeowners will eventually pay down their mortgage and avoid default. Rather

than modeling the dynamic deformation of the G (�) distribution over time, we instead assume that

after 5 years the hazard of income shocks I gradually subsides over the course of a year.
75

With both exogenous shocks, defaults due to negative equity and the resulting foreclosures

amplify the e¤ects of shocks in the housing market due to a price-foreclosure feedback loop. Due

to the forward-looking nature of agents in the model, this spiral is capitalized into the prices of

retail sales and REO sales when the shock occurs, with further gradual declines as the REO share

of volume in the market increases.

2.6 Quantitative Analysis: Calibration and Ampli�cation

Having analyzed the mechanisms at work in our extended model, we now turn to the model�s

implied magnitudes by conducting a quantitative analysis. In this section, we calibrate the model

and examine the strength of the ampli�cation channel. In section 2.7, we take the model to the

data on the ongoing downturn.

2.6.1 Calibration

In order to simulate the model numerically, we must choose parameters. As mentioned previously,

we parameterize the distribution of idiosyncratic valuations F (�) as an exponential distribution

with parameter � shifted by a. We parameterize the loan balance distribution G (L) as a beta

distribution with parameters ba and bb scaled to have support on [0; V �n ]. This �exible distribution

allows us to approximate the loan balance distribution in various locations on the eve of the crisis

as described below. This gives 12 exogenous parameters to calibrate for the basic housing market

74While a bursting bubble is the most likely source of a large price change that would put many homeowners
underwater, the type of foreclosure crisis we describe could be created by any type of large negative price shock.
75Formally, after 5 years I falls by 5% of its previous value every month, taking roughly a year to settle at zero.
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model �a, , md, mn, ur, ub, �, �, �, �, �, and � �and three parameters to calibrate unique to

the extended model �I , and ba and bb. We also must choose the initial shock.

Our calibration procedure proceeds in three steps. We take care to calibrate to pre-downturn

moments whenever possible in order to make our tests out-of sample, although in some cases we

have no choice but to choose a parameter using data from the housing bust. First, we set , ur,

ub, �, �, �, and I independently to match several moments. Second, we choose a, mn, md, � and

� so that the steady state of the model matches additional targets. Third, we calibrate ba and bb

to the appropriate geographic unit that we are considering.

This leaves two variables that we do not choose through calibration: �, the probability of leaving

the rental market, and the initial shock. Although there are several guidelines regarding how long

banks deny mortgages to individuals who default,76 there is no good data on this parameter in

practice. Consequently, we pursue a two-pronged approach. First, to understand the impact

of � and the exogenous shock, we examine the response of the model to di¤erent values of each.

Second, we use data on the size of the bust across housing markets to select a preferred calibration

of these two parameters, as described in Section 2.7. In the remainder of this section, we describe

the moments to which we calibrate the model in our three steps.

Step 1: Exogenous Parameter Choices

We choose ur, ub, �, and  so that one period is equivalent to one week, although the results are

insensitive to the time interval chosen. We set the annual discount rate equal to 5%, so that the

discount factor is � = 1� :05
52 . We assume ur = ub = 0 so that buyers and renters are identical in

their �ow utility. Buyers, however, have the option to buy which has considerable value so B > R.

This assumption is equivalent to assuming that buyers and renters pay their �ow utility in rent in

a perfectly competitive rental market.

We set the probability of moving houses in a given week to �t a median tenure for owner

occupants of approximately 9 years from the American Housing Survey from 1997 to 2005, so

 = :08
52 .

We set � = :84 using estimates from Genesove and Han (2012), who use National Association

of Realtors surveys to estimate the contact elasticity for sellers with respect to the buyer-to-seller

76Three years of good credit are needed to get a Federal Housing Administration loan, and according to Fannie
Mae guidelines issued in 2010, individuals are excluded from getting a mortgage for two to seven years if they are
foreclosed upon, depending on the circumstances. However, these guidelines are not ubiquitous.

88



ratio. � is then a constant chosen to make sure the probability of matching never goes above

1 for either side of the market. We choose � = :5, which in our simulations leads to matching

probabilities on [0; 1]. The results are robust to alternate choices of �.

The one parameter that we need data from the downturn to choose is I . We set I = 8:6%

annually using national data from CoreLogic on the incidence of foreclosure starts for houses with

negative equity as described in appendix B.4.

Step 2: Matching the Pre-Downturn Steady State

We then �t the following �ve aggregate moments from the housing market prior to the housing

bust to the model�s steady state to set �, a, �, mn, and md:

1. The mean house price for a retail sale, which we set equal $300,000 as an approximation to

Adelino et al.�s (2012) mean house price of $298,000 for 10 MSAs. In reporting results, we

normalize this initial house price to 1. Our results are approximately invariant to the mean

house price as long as the residual variance is rescaled proportionally.

2. The residual variance of house prices due to the idiosyncratic preferences of buyers. We set

this equal to $10,000.

3. The REO discount in terms of mean prices, which we set equal to a quality-adjusted 20%

based on the average discount in good times from Campbell et al. (2011), whose results are

consistent with a literature surveyed by Clauretie and Daneshvary (2009). In Section 2.6

we also consider a 10% discount, closer to the estimates of Zillow (2010) and Clauretie and

Daneshvary (2009).

4. Time on the market for retail houses, which we set to 26 weeks as in Piazzesi and Schneider

(2009). This number is a bit higher than some papers that use Multiple Listing Service

Data such as Anenberg (2013) and Springer (1996), likely because of imperfect adjustment

for withdrawn listings and re-listings. Our results are not sensitive to this number.

5. Time on market for REO houses, which we set to 15 weeks. Springer (1996) analyzes various

forms of �seller motivation� such as relocation and �nancial distress using data form Texas

from 1991-3. He �nds that a foreclosure sales are the only motivated sellers that have

signi�cantly reduced time on the market. His estimate is that time on the market is reduced
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Table 13: Calibrated Parameter Values
a  md mn ur ub �

3:399 0:08
52 �0:403 �0:091 0 0 0:087

� � � � I ba bb
1� 0:05

52 3:490 0:5 0:84 :086
52 0:898 1:223

by .2135 log points or 23.7%. However, REO sales are almost never withdrawn from the

market, whereas retail sales are frequently withdrawn (Anenberg, 2013). We also attempt

to adjust so our number excludes extremely rundown properties that sit on the market for

several years.

These moments provide a unique mapping to �, a, �, mn, and md, as described in appendix

B.1.3.

The calibration procedure results in the parameter values listed in Table 13, with all prices and

dollar amounts in thousands of dollars. Two main things are of note about the calibration. First,

md < mn, so the �ow cost of being a REO seller is higher than the �ow cost of being a regular

seller. This is due to the fact that distressed sales take less time to sell and trade at a discount in

steady state. Second, � is quite low in order to rationalize the 20 percent discount for REO sales

in steady state. This means the buyer will get a majority of the surplus and the value of being a

buyer in the buyer�s market of the downturn will be high.77

Step 3: Geographically-Speci�c Parameters

To calibrate the two parameters of the loan balance distribution ba and bb at the national and

MSA level we use proprietary data from CoreLogic on seven quantiles of the combined loan-to-

value distribution for active mortgages in 2006. These LTV estimates are compiled by CoreLogic

using public records, with the LTV estimates supplemented using CoreLogic�s valuation models.78

77A low � is consistent with the logic of directed search and Genesove and Han�s (2012) estimate of � = :84. In
directed search models � is determined endogenously through price posting behavior. The buyer�s bargaining power
is the elasticity of contacts with respect to market tightness � and so � should be below 1� � = :16. Intuitively the
seller has very low bargaining power because the seller�s contact rate is more sensitive to a change in market tightness
than the buyer�s.
78Although the CoreLogic estimates of negative equity and the loan-to-value distribution are most cited, some

have argued that they do not fully capture the extent of negative eqiuity. Recent estimates by Zillow use credit
report data instead of public records and get a higher �gure for negative equity than CoreLogic (methodologi-
cal di¤erences are described here http://blogs.wsj.com/developments/2012/05/24/negative-equity-more-widespread-
than-previously-thought-report-says/). Beyond issues of data sourcing, Korteweg and Sorensen (2013) argue that
traditional methods of estimating house price indices under-estimate the variance of the house price distribution and
thus under-estimate the number of loans with high LTV.
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Table 14: Sensitivity Analysis: Time Out of Market For Renters
Price Index Decline Total Sales Decline

� = 1=52 (1 year out) 4:0% 4:4%
� = 1=65 (1.25 years out) 4:9% 4:8%
� = 1=78 (1.5 years out) 5:8% 5:2%
� = 1=91 (1.75 years out) 6:6% 5:5%

Because our model concerns the entire owner-occupied housing stock and not just houses with an

active mortgage, we supplement the CoreLogic data with the Census�estimates of the fraction of

owner-occupied houses with a mortgage from the 2005-2007 American Community Surveys. We

construct the empirical CDF of the loan balance distribution and then �t a beta distribution with

parameters ba and bb to the empirical distribution using a minimum distance method described in

Appendix B.4. The �t is quite good across the 50th to 100th percentiles of the LTV distribution.]

Table 13 shows the resulting ba and bb for the nationwide loan balance distribution.

2.6.2 Strength of Ampli�cation Channel and Comparative Statics

Having calibrated the model, we now gauge the potential magnitude of the ampli�cation channel

and elucidate key comparative statics in the extended model. Our initial shock will be one in which

a fraction � (t) of individuals who receive a taste shock transition from owning a home to renting,

as described previously. This causes an initial price decline since it reduces the number of buyers

but not the number of sellers. In particular, we use a shock of � (t) = :10 for �ve years.79 Holding

the initial shock constant, we then vary the average weeks out of the market for a renter, the steady

state discount on REO sales, and the loan balance distribution. Speci�cally, we consider average

times out of the market of 1, 1.25, 1.5, and 1.75 years and REO discounts of 10% and 20%. For

the loan balance distribution, we consider beta distributions �tted to match the national data as

well as data from New York, which had a low share of high LTV homes, and Las Vegas, which had

a high share.

Since our initial shock is a market tightness e¤ect, the strength of this e¤ect will be governed

by �. Table 14 reports the price index decline and total volume decline generated by the initial

shock in the absence of any defaults.

79Raising the size of the initial shock within reasonable parameter ranges magni�es the strength of the ampli�cation
channel, but the increase is mild.
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Table 15: Sensitivity Analysis: Loan Balance Distribution and REO Discount
� = 1=52 REO Disc. 10% REO Disc. 20% � = 1=65 REO Disc. 10% REO Disc. 20%
New York (4:8%; 2:8%) (6:2%; 3:4%) New York (6:6%; 4:0%) (8:4%; 4:9%)
National (22:3%; 11:9%) (29:4%; 14:6%) National (30:0%; 17:3%) (38:5%; 20:5%)
Las Vegas (46:0%; 23:7%) (60:2%; 28:7%) Las Vegas (62:0%; 34:6%) (79:3%; 40:6%)

� = 1=78 REO Disc. 10% REO Disc. 20% � = 1=91 REO Disc. 10% REO Disc. 20%
New York (8:6%; 5:5%) (10:8%; 6:5%) New York (10:9%; 7:2%) (13:6%; 8:4%)
National (39:3%; 23:9%) (49:7%; 27:8%) National (51:0%; 32:2%) (63:9%; 36:9%)
Las Vegas (83:6%; 49:0%) (105:6%; 56:4%) Las Vegas (115:4%; 69:5%) (145:5%; 79:1%)

Note: This table shows comparative statics with respect to three important variables: �, the Poisson probability of a
renter becoming a buyer, the REO discount, and the loan balance distribution. The table shows how these variables

a¤ect the degree of ampli�cation of the initial shock to prices created by adding foreclosures. The �rst entry in

each pair is the percentage increase in the price index decline generated by defaults over and above that created by

the initial shock. The second entry in each pair is the percentage increase in the total sales decline. For instance,

when � = 1/52 and the REO discount is 20%, the table has an entry of (60.2%,28.7%) for the 2006 Las Vegas loan

balance distribution. Given a price index decline of 4.0% and volume decline of 4.4% from the initial shock alone,

this indicates that the full price index and volume declines are respectively 6.4% and 5.7%.

Increasing the average length of time for which individuals who transition to renting stay out of

the housing market leads to greater percentage decreases in both the price index and total volume.

The e¤ects of such a shock as small as the one we consider are relatively modest, but our key question

remains the potential strength of the ampli�cation channel when we allow for defaults. Table 15

reports the results from varying the REO discount and loan balance distribution in addition to

�. Rather than reporting levels, each entry reports the percentage ampli�cation of the aggregate

price index decline and sales decline generated by defaults over and above the decline created by

the initial shock in a price-volume pair.

Table 15 shows that foreclosure spirals can signi�cantly amplify an initial shock. The strength

of this spiral grows as we increase the amount of time individuals who default spend out of the

housing market due to a more persistent market tightness e¤ect. The shape of the loan balance

distribution also plays a critical role in determining the strength of the ampli�cation. A greater

proportion of individuals with high LTV ratios implies than a given initial shock will put a greater

fraction of the market underwater. This leads to greater numbers of foreclosures, more powerful

general equilibrium e¤ects, and in turn even more foreclosures. This illustrates the fragility created

by the combination of a housing bubble and reduced down payment requirements.

Table 15 also shows that a lower steady state REO discount dampens the spiral. This is in
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part due to a compositional e¤ect which ameliorates the e¤ect of a given number of REOs on the

price index. Additionally, though, the choosey buyer e¤ect is weaker since waiting for an REO

sale is no longer as attractive, and so the retail market does not freeze up as much. Finally, the

ampli�cation channel can generate signi�cant total volume declines, greater than we saw in section

2.3 with exogenous defaults for a given shock size. The reason is that in the extended model,

relative to section 2.3, the number of individuals who become locked-in during the downturn can

be substantial. Note that this implies a greater REO share of vacancies which strengthens both

the compositional e¤ect and the choosey buyer e¤ects and thus feeds back into further declines in

both the overall and non-distressed price indexes.

2.7 Cross-MSA Quantitative Analysis

In order to assess quantitatively the role of foreclosures in the crisis and to test the model�s perfor-

mance, we calibrate the model to national and cross-MSA data described in section 2.2.

Because the size of the preceding bubble is the single best predictor of the size of the ensuing

bust, we use a permanent shock to prices that operates through reducing �ow utilities a to start the

downturn. We assume income shocks last for 5 years, after which they gradually taper o¤. Recall

that there are two parameters that are left to calibrate: �, which controls how long the average

renter takes to return to owner-occupancy, and the size of the permanent shock to prices. To

calibrate these parameters, we use the aggregate national data and the cross-MSA data together.

We �rst set a grid of �s. For each �, we choose the nationwide permanent shock to prices so

that with the nationwide loan balance distribution the model exactly matches the maximum log

change in the national house price index. We then simulate the model for each MSA and for

each value of � by assuming that the permanent shock to prices in the MSA is equal to the

nationwide permanent shock to prices multiplied by the relative size of the bubble in the MSA

as measured by
� log(PMSA

03�06)
� log(PNational03�06 )

. In other words, we assume that the relative amount of housing

price appreciation from the bubble that is permanently lost is the same in each MSA.80 We then

calculate the unweighted sum of squared distances between the maximum change in the log price

index in the data and the model for each value of � and choose the � with the minimum sum of
80For instance, the maximum �log (P ) in Las Vegas is was 1.52 times as big as the nation-wide price index. Below

we �nd the permanent price decline for the nation is 21.5%. Thus the permanent decline in Las Vegas is 32.8%.
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squared distances.

This methodology yields a sum of squared distances function that is a smooth and convex

function of �. Intuitively too high of a � will cause the model to over-predict the size of price

declines in high-LTV but low-bubble MSAs, while too low of a � will cause the model to under-

predict the size of price declines in high-bubble MSAs. The optimal � is the one that does best

across distribution of bubble size.

The sum of squared distances has a unique minimum, which corresponds to 1
� = 1:05 years out

of the market for the average renter and �maxPNational = 21:5% (a log point decrease of :242).81

A 21.5% price drop from the peak implies that about 2/3 of the price gains between 2003 and 2006

were permanently lost when the bubble burst.

Figure 21 shows the time series price, sales, the characteristics of distressed sales, probability

of sale, foreclosures, and the mass of each type in the market for the resulting national simulation.

The qualitative patterns closely match those described in the simpler model in Section 2.4. Recall

that there is a one-to-one mapping between the unconditional probability of sale and time to sale,

which move in opposite directions.

Figure 22 shows the results of the cross-MSA simulations by plotting the simulated results

against the data in six panels that show the maximum change in log price, log retail price, log

sales, log retail sales, REO share, and fraction foreclosed. In each �gure, the 45-degree line is

drawn in to represent a perfect match between the model and the data. The small dots represent

MSAs while the large X represents the national calibration.

The calibration procedure does well in matching declines in the aggregate price index across

the bubble-size spectrum, as indicated by the fact that the data points are clustered around the

45-degree line. As with the regressions, the extreme outliers are in greater Detroit (the two points

in the lower right), which has had a large bust without a preceding boom, and Stockton (the point

in the lower middle), which had a much larger bust than boom. Despite these outliers, we cannot

reject a coe¢ cient of one when regressing the simulated results on the data, and relative to a case

with no default where the entire national price decline is permanent, adding default to the model

increases the r-squared of the simulation by 20 percent.82 These results suggest that default can

811.05 years out of the market for the average renter may be a bit on the short side, but because we have a constant
Poisson probability of leaving renting, the distribution of times out of the market has a very thick tail.
82This r-squared is calculated as 1 minus the the squared distance between the simulated maximum log price decline
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Figure 21: National Calibration With Permanent Price Drop
Note: This �gure shows the results of the extended model calibrated to match the national and MSA data as in section

2.7. It uses a permanent shock to housing values and an LTV distribution corresponding to the national housing

market. Panels A and B show the average price and sales by type, with pre-downturn price and volume normalized

to 1. Panel C shows the REO discount, share of vacancies, and share of volume. Panel D shows the probability of

sale conditional on a match and the unconditional probability of sale for each type with the pre-downturn probability

normalized to 1. Panel E shows the annualized fraction of the owner occupied housing stock that is foreclosed upon

at each point in time. Panel F shows the mass of each type of agent in the market. The overall results are similar

to the qualitative results outlined previously.
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Figure 22: Cross-MSA Simulations vs. Data
Note: Scatter plots of data vs. simulation results for 97 MSAs in regression analysis. The red X represents the

national simulation and each black dot is an MSA. The 45-degree line illustrates a perfect match between the model

and the data. The variable being plotted shown in each plot�s title. Data is fully described in appendix B.4. The

calibration methodology described in text and appendix B.4. The �gure shows the model performs well for prices

and the number of foreclosures but is o¤ by a constant for volume.
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explain some of the nonlinearity in Figure 15.

More importantly, the model cannot be rejected for additional outcomes beyond the aggregate

price index that was used for calibration. For the change in log retail price, the national data closely

matches the model: for the most part, the points lie around the 45-degree line, with a few more

exceptions where the model under-estimates the change in log retail price such as Stockton and Las

Vegas. Nonetheless, a statistical test con�rms that we cannot reject that the model matches the

data. The model also comes close to matching the data for total foreclosures over 5 years and the

model cannot be statistically rejected, although there are some extreme outliers where there were

many more foreclosures than the model predicted. Again, some of these are in Greater Detroit

and Stockton, but there are a few other hard-hit markets like Las Vegas and the Central Valley in

California where the model under-predicts the number of foreclosures. Finally, although it is not

in Figure 22, the national calibration predicts a maximum REO discount of 36.7%. This is slightly

above the maximum foreclosure discount for Boston of 35.4% reported by Campbell et al. (2011),

so the model can explain time variation in REO discounts.

However, as foreshadowed by the regressions, the model consistently under-predicts the decline

in sales. In Figure 22, the data cluster roughly parallel to the 45-degree line for both retail and

total sales, although this is only statistically signi�cant for retail sales. This means that the model

does a good job of capturing di¤erences in the size of the maximum sales decline across locations

but that volume has fallen nationwide for reasons beyond the model. Potential unmodeled forces

reducing volume include the tightening of credit markets, credit constraints and losses on levered

properties reducing the purchasing power of buyers (Stein, 1995; Ortalo-Magne and Rady, 2006),

a decline in household formation and immigration, a reluctance on the part of retirees to sell their

house in a down market, nominal loss aversion (Genesove and Mayer, 2001), increasing returns to

scale in matching (Ngai and Tenreyro, 2013), and a reduction in the number of transactions by

speculators who �ip houses quickly. The cause of the massive decline in volume in the housing

downturn is an important subject for future research.

Because it under-estimates the sales decline, the model also under-estimates the REO share in

locations that had extremely high amounts of foreclosures, although when we include a constant in

and its counterpart in the data divided by the squared distance between the data and its mean. This is the r-squared
of a regression of the model on the data without a constant.
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a regression of the simulated results on the data we cannot reject a coe¢ cient of one. Because the

vast majority of sellers also become buyers, a decline in sales would strengthen the choosey buyer

e¤ect, as REO sellers would take up a greater fraction of the market. It would, however, have a

much smaller impact on market tightness, because a reduction in the number of buyers and sellers

would reduce both the numerator and the denominator. We expect the overall magnitude of the

combined general equilibrium e¤ect of foreclosures to be similar.

What do these �gures imply about the quantitative extent to which foreclosures exacerbate

housing downturns? In the national data, the permanent price decrease that would occur without

default is 21.5% (.24 log points) and with default is 33.5% (.41 log points). This implies that

the general equilibrium e¤ects of foreclosures together with the compositional e¤ects on the price

index induced by a high REO share made the downturn 56% worse than it would have been in the

absence of foreclosure. Equivalently, foreclosures account for 36% of the price decline. This �gure

is larger in MSAs with larger busts, more default, and a bigger price-default spiral.

The 56% �gure, however, includes compositional e¤ects and is thus not the best measure of how

much the general equilibrium e¤ects of foreclosure reduce the price a retail seller would get if they

wanted to sell at the bottom of the market. This is the relevant price for determining negative equity

and thus defaults. An alternate metric of the extent to which foreclosures exacerbate downturns,

then, is the decline in the retail-only price index, which is 28.7% (.34 in log points) with default

and 21.5% without default. The price decline in the retail market is thus 34% worse than it would

have been in the absence of foreclosures.

Perhaps surprisingly, these quantitative results are not dramatically changed with an REO

discount of 10% in steady state as suggested by Clauretie and Daneshvary (2009) and Zillow (2010).

In this case, the same calibration procedure implies a permanent price decline of 22.4% and an

average time out of the owner-occupied market for foreclosures of 1.3 years. Intuitively, with the

compositional e¤ect weakened by a smaller foreclosure discount, the calibration implies a slightly

larger permanent price decline and a stronger market tightness e¤ect. With a 10% steady state

discount, the model implies that foreclosures exacerbate the aggregate price decline by 50%. See

Appendix B.2.2 for details.

These magnitudes are larger than those implied by other papers. Mian et al.�s (2014) empirical

study comes closest to our results. By comparing neighborhoods in states that require judicial
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approval of foreclosure with neighborhoods just over a border in states that do not, they �nd that

foreclosures were responsible for 20 to 30% of the decline in prices. Our analogous �gure of 36% is

only slightly higher, likely because we consider market-wide e¤ects that comparing neighborhoods

only partially picks up. Calomiris et al. (2008) use a panel VAR to analyze the e¤ect of foreclosures

on housing market equilibrium and �nd that foreclosures would reduce prices by 5.5 percentage

points in a foreclosure wave, about half what we �nd. However, they simulate the impulse response

to a wave of foreclosures without a bursting bubble that puts a substantial fraction of homeowners

under water, which dramatically increases the size and length of the foreclosure wave. Using a

calibrated macro model that focuses on how foreclosures can constrict credit supply, Chatterjee

and Eyigungor (2011) �nd that foreclosures account for 16% of the overall price decline.83

2.8 Welfare and Policy Implications

2.8.1 Welfare

To evaluate welfare we adopt a utilitarian social welfare function that equally weights all agents.

We can construct social welfare as the discounted sum of individual �ow utilities:

W =
1X
t=0

�t
�
vn (t)mn + vd (t)md + (l1 (t) + f (t)) (h

�
n + 1=�) +

f (t)

�f (t) + 1
c+ q (t)

�

where q (t) follows the law of motion:

q (t+ 1) = (1� ) q (t) + vb (t) qb (� (t))
X
m

rm (t) (1� F (hm(t))) (hm (t) + 1=�) ; q (0) = 0:

were q (t) denotes the expected �ow housing services generated to homeowners in l0 at time t.

We also assume that a foreclosure completion entails certain costs to the bank, such as legal fees

and lost revenue from interest payments. A 2008 report by Standard & Poors estimates these

costs of foreclosure in excess of the loss on the sale to be approximately $10,000, so that we set

83Our results also relate to an empirical literature that examines the e¤ects of REO sales on the sale prices of
extremely nearby houses. These papers typically �nd that a single REO listing reduce the prices of neighboring
properties by 1%, with a nonlinear e¤ect (Campbell et al, 2011). The literature is divided as to the mechanism.
Anenberg and Kung (Forthcoming) arguing that REOs increase supply at an extremely-local level consistent with our
market tightness e¤ect, although at a very local level. By contrast, Gerardi et al. (2013(Gerardi, Willen, Rosenblatt,
and Yao 2013)) argue that the owners of distressed property reduce investment in their home, e¤ects for which we
attempt to control. These papers typically include �ne geographic �xed e¤ects and consequently do not pick up the
search-market-level e¤ects that are substantial in our model.
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c = �10. Finally, we suppose that individuals who receive a taste shock but are unable to move

due to negative equity receive no �ow utility from their mismatched house.

There are competing e¤ects of foreclosures on social welfare. First, total welfare is decreased

relative to the steady state since securing a foreclosure completion is costly, foreclosed homes are

sold by REO sellers with higher holding costs, and all homes take longer to sell. More signi�cantly,

welfare is decreased by the fact that a number of homeowners receive no �ow utility from housing

because they are excluded from the housing market for a period of time due to default or locked

into a house that does not suit their needs. Second, buyers who do participate in the market are on

average purchasing homes which they value more than homes purchased in steady state. Because

these buyers stay in these houses for a median of 9 years, this generates a substantial positive e¤ect

on welfare that is consistent with anecdotal evidence of the downturn being a �buyer�s market.�

Note that the decline in prices which accompanies the downturn has no direct impact on welfare

since it operates simply as a transfer from sellers to buyers that has no e¤ect on social welfare.

Ultimately, when all of the various e¤ects net out, social welfare falls, but the decline is modest.

This likely understates policy makers� perception of the social impact of foreclosures. The

welfare calculation uses a utilitarian framework and a high discount rate. Given that the downturn

is temporary and a number of individuals actually bene�t from the housing downturn in the form

of increased housing services relative to steady state, it is not surprising we �nd a modest decline in

welfare. However, it is still the case that a substantial mass of individuals are substantially worse

o¤ for several years. To the extent that policy makers adopt a Rawlsian short-term perspective,

the social impact of foreclosures could be large.

Most importantly, by focusing only on the housing market, the model misses a number of other

potential normative implications of foreclosures. As discussed by Iacoviello (2005), house price

declines can have pecuniary externalities because a collapse in home prices destroys wealth in the

form of home equity and can impede borrowing by households and �rms, creating a �nancial ac-

celerator e¤ect similar to Kiyotaki and Moore (1997). Moreover, lock-in due to negative equity

can impede labor mobility (Ferriera, Gyourko and Tracy, 2010) and exacerbate structural unem-

ployment and can increase the e¤ective risk faced by households since housing consumption is not

adjustable (Chetty and Szeidl, 2007). Additionally, banks may be forced to realize substantial

losses on foreclosed properties, which impacts their balance sheets through the well-documented
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Table 16: E¤ects of Foreclosure Policies

Policy Baseline � = 4000 � = 6000 7%! 4% L # $2K L # $5K
max� log (P) -.414 -.400 -.387 -.382 -.407 -.396
max� log (PRetail ) -.343 -.344 -.347 -.327 -.339 -.334
max� log (SalesExisting) -.226 -.205 -.189 -.210 -.223 -.217
max� log (SalesRetail) -.352 -.322 -.295 -.314 -.339 -.321
max SalesREO

SalesExisting
21.44 17.49 12.61 17.47 20.63 19.41

% Ever Foreclosed 7.55 7.54 7.48 6.10 7.27 6.86

Note: This table shows the impact of various policies on market equilibrium. The �rst and second rows show the

maximum change in log aggregate and retail price, the third and fourth rows show the maximum change in log

existing sales and retail sales, the fourth row shows the maximum REO share, and the sixth row shows the fraction

of homes foreclosed upon. The �rst column shows the baseline, which is as in Section 2.7. The second and third

columns show the e¤ects of slowing down foreclosures, as 1� foreclosures can be processed each week. � = 4000
and � = 6000 correspond to a maximum of 1.3 and .9 percent of the housing stock being foreclosed upon per year,

respectively. The fourth column shows the e¤ect of reducing interest rates for all homeowners from 7 to 4 percent, a

generous estimate of the potential e¤ects of re�nancing mortgages. The sixth and seventh columns show the e¤ects

of reducing principal by $2,000 and $5,000 for all homeowners, corresponding to a $100 billion principal reduction

that is either untargeted or only targeted at under water homeowners.

net-worth channel in �nancial intermediation, potentially leading to problems in the interbank repo

market, cash hoarding by banks, and a freezing up of credit. Finally, the presence of substan-

tial numbers of foreclosed homes can have negative externalities on communities (Campbell et al.,

2011) and can reduce residential investment, construction employment, and consumption (Mian et

al, 2014).

While we leave detailed analyses of these important issues to future research, we believe the

discussion in this section illustrates there is value in understanding the e¤ectiveness of various

policies in ameliorating the foreclosure crisis. We thus conduct a basic positive analysis of three

policies that have been proposed that �t into our model: delaying foreclosure, re�nancing mortgages

at lower interest rates, and reducing principal. To assess the maximum potential impact of each

policy, we introduce the policy at time 0. The results of our policy simulations, discussed in the

following subsections, are shown in Table 16. We use the national loan balance distribution and

compare the housing market under each policy to a baseline of no policy that is shown in column

1.
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2.8.2 Delaying Foreclosure

A simple and low-cost policy that has been proposed is slowing down the pace of foreclosures. To

incorporate sluggish foreclosure into our model, we assume that when a homeowner defaults the

bank begins foreclosure proceedings but that only 1
� foreclosures can be processed by the system

each week.84 While in the foreclosure process, it is possible for prices to rise and the house to

no longer be in negative equity. If this happens, the foreclosure �cures�and the homeowner lists

their house as a normal seller but subsequently become a renter because of the liquidity shock they

experienced. In table Table 16, we compare the baseline of � = 0 to cases when � = 4,000 and

� = 6,000 so that the maximum annual pace of foreclosure is given by 1.3 percent per year and .9

percent per year, respectively. To further elucidate the e¤ects of foreclosure backlogs, Figure 23

shows the aggregate and retail price indices and foreclosure starts and completions for the three

values of �.

A tighter foreclosure pipeline has di¤erent implications for the prices of retail homes versus the

overall price index. In particular, the maximum decline in the overall price index falls because the

compositional e¤ects of foreclosure are weakened. However, the maximum retail price decline is

greater and the price declines last for longer because the foreclosure crisis is extended: as panel B

shows, even though foreclosure starts fall o¤ after 5 years, with � = 4; 000 the wave of foreclosures

lasts over 6 years and with � = 6; 000 it lasts nearly 9 years. This increases the duration of both

the market tightness and choosey buyer e¤ects which gets capitalized into lower retail prices.

The e¤ect of foreclosure backlogs in our model is consistent with the argument that delaying

foreclosures does not substantially prevent foreclosures in the long run and only draws out the pain.

However, there may be bene�ts to delaying foreclosure that are not captured by the pure backlog

story. For instance, if one expects household formation to pick up and boost demand in the near

future, delaying foreclosures from a period of low demand to a period of higher demand could limit

price declines. Similarly, slowing down foreclosures could cause banks to o¤er more mortgage

modi�cations or short sales, reducing the number of delinquencies that result in a foreclosure.

In fact, the empirical evidence on states with judicial approval of foreclosure �in which backlogs

84Formally, we assume that if f (t) homes are in the foreclosure process pending approval only f(t)
�f(t)+1

can be

processed in a given period. We choose this function as a smooth approximation to min
n
f; 1

�

o
, which processes up

to 1
�
foreclosures each period. Such an approximation is necessary for the numerical implementation.
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Figure 23: Policy: Various Sized Backlogs
Note: The �gure shows the e¤ect of prices and foreclosure start and completion rates for three di¤erent backlogs. The

model is calibrated to the national calibration developed in section 2.7. The pre-downturn price level is normalized

to one. One in � houses can be foreclosed upon each week, so � = 4,000 corresponds to 1.3 percent of the housing

stock being foreclosed upon per year and � = 6,000 corresponds to .9 percent. The �gure shows that slowing down

foreclosures extends the downturn and makes prices remain low for longer. Although the overall price index rises,

this is because of a compositional e¤ect and the retail price index falls.

are much larger (Mian et al., 2014) � suggests that slowing down foreclosures might reduce the

incidence of foreclosure. Adding a judicial state dummy to regression (27) leads to a judicial

dummy coe¢ cient +.08 log points for the aggregate price index and +.05 for the non-distressed

index even with a full set of controls, as shown in appendix B.3. Our model cannot generate such

a dramatic price increase by adding a narrow foreclosure pipeline �the only way to get an e¤ect

of this order of magnitude is to reduce the incidence of foreclosures. The welfare e¤ects of policies

that limit the ability of lenders to foreclose by slowing down foreclosures are, however, unclear, as

lenders may respond to a diminished ability to foreclose by increasing interest rates on mortgages

or denying mortgages to credit-worthy borrowers.

2.8.3 Interest Rate or Payment Reductions

Another much-discussed policy that is being implemented with the Home A¤ordable Re�nance Pro-

gram is to re�nance the mortgages of underwater borrowers, many of whom are stuck at extremely

high interest rates due to an inability to re�nance, at today�s low interest rates. This could reduce
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defaults because some individuals who are currently unable to meet their monthly payment may

be able to pay a reduced monthly payment.

To simulate this intervention, we reduce I , the hazard of default for individuals who are

underwater, from 8.6 percent to 7.1 percent. Appendix B.4 uses an estimate of the e¤ect of

reducing monthly payments on defaults from Bajari et al. (2010) to show that this reduction in I

is equivalent to reducing interest rates from 7 to 4 percent �a generous estimate of what is possible

purely through re�nancing. The results are shown in column 4 of Table 16.

Although foreclosures still play an important role in exacerbating the downturn, re�nancing has

a substantial e¤ect both because mechanically fewer foreclosures occur at a given level of negative

equity and because the ampli�cation mechanism is weaker. The size of these e¤ects, however,

depends critically on the e¤ect of reducing interest rates on default. While we calibrate to the

existing evidence from Bajari et al. (2010), their estimates are not causal. Understanding the

impact of interest rate reductions on default is an important subject for future research.

2.8.4 Principal Reduction

The �nal policy we simulate is a $100 billion principal reduction.85 The results are shown in

Columns 5 and 6 of Table 16. Column 5 assumes that the government cannot target underwater

homeowners gives every mortgage holder a $2,000 principal reduction. Column 6 assumes that

the government can target the approximately 20 million individuals who have had negative equity

during the crisis so that principal is reduced by $5,000 for each underwater homeowner.

Principal reduction provides a direct way to reduce negative equity and the price-default am-

pli�cation. The targeted principal reduction has a signi�cant ameliorating e¤ect on the crisis,

although it is not as e¤ective as the interest rate reduction. The smaller principal reduction,

however, has an e¤ect that is much smaller. The government�s ability to target homeowners in

need is thus crucial to the e¤ectiveness of principal reduction.

Beyond the government�s ability to target under water homeowners, costs that we do not model

may limit the e¤ectiveness of principal reduction. Chief among these is moral hazard: if people

expect that underwater mortgages will be bailed out with principal reductions, they may be more

85We assume that raising the funds for the intervention does not a¤ect housing demand, housing prices, or the rate
at which liquidity shocks occur.
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likely to become delinquent on their mortgage. Similarly, strategic default may be elevated. The

empirical relevance and size of such moral hazard e¤ects is an important subject for future research.

2.8.5 Other Policies

Our policy simulations reveal the trade-o¤s faced by policy makers and the parameters that future

research on anti-foreclosure policy should consider. In addition to the policies simulated here,

there are a number of other policies that require a richer model to be given full justice and that we

hope will be analyzed by future research.

First, a policy maker might try to stimulate additional buyer demand. To have a substantial

e¤ect on market tightness, one would have to stimulate entry by new homeowners. Such a policy is

outside the scope of our model as it would require endogenous household formation or an endogenous

buy-rent decision. Nonetheless, our model does suggest that any increase in new home ownership

would have to be permanent; an intervention that boosts new home ownership for a few months

at the expense of demand in subsequent months would not have a lasting e¤ect. The short-lived

e¤ects of the 2009 new homeowner tax credit suggests that it is di¢ cult to generate a long-lasting

e¤ect.

Second, our model cannot consider the conversion of owner-occupied housing to rental housing

without an endogenous rent-buy margin. In particular, the conversion of REOs to rental properties

has been discussed. While such a policy would reduce rental prices and REO inventories, with

endogenous tenure choice it is possible that renting becomes much more appealing, drawing away

buyers and further freezing up the owner-occupied market. There is also the potential for rent-

seeking behavior by investors who seek to buy REO properties in bulk and convert them to rental

homes.

2.9 Conclusion

This chapter argues that foreclosures play an important role in exacerbating housing downturns

due to their general equilibrium e¤ects. We add foreclosure to a simple search model of the housing

market with two types of sellers by making two additional assumptions: banks selling foreclosed

homes have higher holding costs than retail sellers and homeowners who are foreclosed upon cannot

immediately purchase another home.
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With these assumptions, foreclosures alter market behavior by reducing the number of buyers

in markets, which makes sellers and particularly REO sellers desperate to sell, and by raising

the probability that a buyer meets a REO seller who sells at a discount, which makes buyers more

selective. Foreclosures also alter the composition of transactions, making the average sale look more

like a foreclosure sale. These e¤ects all create downward pressure on price but have opposing e¤ects

on volume as sellers want to sell faster but buyers are more choosey. Sales fall disproportionately

in the retail market, helping to explain how foreclosures freeze up the market for non-distressed

homes.

We then embed our basic model of the housing market in a richer model which allows for endoge-

nous defaults and homeowner lock-in. We elucidate the potential for spirals in which foreclosures

lower prices, putting more homeowners underwater, leading to more defaults and therefore even

more foreclosures. A sensitivity analysis demonstrates that such a spiral can operate as a power-

ful ampli�cation channel of shocks, especially when the proportion of homeowners in the market

with high LTV ratios is high. A calibration of the full model to cross-market data is successful in

matching both the average level of the price decline of the housing bust and a signi�cant proportion

of the cross-sectional variation in prices. The model matches the cross-sectional pattern of volume

declines but is unable to fully account for the level. A quantitative exercise shows that foreclosures

exacerbate the price declines in downturns on the order of 50 percent overall and 33 percent in the

retail market.

An alternative explanation for the freezing up of the retail market during the housing bust is

nominal loss aversion as documented by Genesove and Mayer (2001). The housing bubble may have

created a reference point for homeowners such that when the bubble burst, they were not willing

to sell for less than what they perceived the true value of their homes to be. If this were not the

case for banks, the retail market would disproportionately freeze up. However, loss aversion would

have to be extreme to explain a freezing up of the retail market for several years. Consequently,

while it may not be able to fully account for the freezing up of the retail market, loss aversion may

have played a role in the housing downturn and may be able to explain the volume declines that

our model cannot capture. Note also that in a model in which nominal loss aversion is an operative

channel, foreclosures may actually aid in price discovery.86

86Thanks to Ed Glaeser for this insight.
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Credit constraints and capital losses on levered houses could also explain some of the freezing

up of the retail market and the decline in volume that our model cannot explain. Ortalo-Magne

and Rady (2006) present a model in which homeowners use equity extracted from their previous

house to purchase their next house. With down payment requirements as in Stein (1995), moderate

swings in housing prices can generate large swings the purchasing power of potential homeowners.

This may cause some homeowners not to move at all, creating e¤ective lock-in of non-under-

water borrowers and helping to freeze up the retail market. The substantial decline in household

formation is another factor that could explain the decline in volume that our model cannot explain.

Our analysis suggests several directions for future research. First, it would be interesting to

endogenize the decision to enter the housing market. Chetty and Szeidl (2007) present an (S,s)

model of consumption commitments based on the decision to move homes which could be embedded

into a general equilibrium model of the housing market. This would allow an analysis of how market

forces a¤ect the decision to move and elucidate why sales remain depressed and more people are

not taking advantage of the buyer�s market by trading up. Second, an endogenous rent-buy margin

would allow the rental market to be less segmented and would allow for analyses of several additional

policies, as we describe in Section 2.8. Finally, the addition of supply considerations would allow

an analysis of how the dynamics of new construction and conversion of owner-occupied housing to

renter-occupied are a¤ected by foreclosures.
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Chapter 3:
Does Indivisible Labor Explain the

Di¤erence Between Micro and Macro Elasticities?
A Meta-Analysis of Extensive Margin Elasticities

3.1 Introduction

Macroeconomic models of �uctuations in hours of work over the business cycle or across countries

imply much larger labor supply elasticities than microeconometric estimates of hours elasticities.

Understanding this divergence is critical for questions ranging from the sources of business cycles

to the impacts of tax policy on growth and inequality. Starting with the seminal work of Roger-

son (1988) and Hansen (1985), one leading explanation of the divergence is the extensive margin

response created by indivisible labor supply. If labor supply is indivisible, changes in tax or wage

rates can generate large changes in aggregate hours by inducing extensive margin (participation)

responses even if they have little e¤ect on hours conditional on employment. In view of this ar-

gument, modern macro models are calibrated to match low micro estimates of intensive margin

elasticities. However, the extensive margin elasticity is usually treated as a free parameter that

can be calibrated purely to match macroeconomic moments.

We argue that the extensive margin elasticity should not be treated as a free parameter. Macro

models should be calibrated to match micro estimates of extensive margin elasticities in the same

way that they are calibrated to match micro estimates of intensive margin elasticities. The

size of the extensive margin responses depends on the density of the distribution of reservation

wages around the economy�s equilibrium. The same marginal density that determines the im-

pacts of macroeconomic variation on aggregate employment also determines the impacts of quasi-

experiments such as tax policy changes on employment rates. Micro estimates of extensive margin

elasticities can therefore be used to calibrate macro models.87

In this chapter, we assess whether existing calibrations of macro models are consistent with micro

evidence on extensive margin responses. In doing so, we �nd that it is crucial to distinguish between

two types of elasticities: Hicksian and Frisch. The Frisch (marginal utility constant) elasticity

87The distribution of reservation wages at the margin could vary across subgroups, potentially generating di¤erences
between micro and macro estimates of extensive-margin responses. As we explain below, observable heterogeneity
in elasticities across subgroups reinforces our conclusions.
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controls intertemporal substitution responses to temporary wage �uctuations and is therefore the

relevant parameter for understanding labor supply �uctuations over the business cycle.88 The

Hicksian (wealth constant) elasticity controls steady-state responses to permanent wage changes

and is therefore the relevant parameter for understanding di¤erences in labor supply across countries

with di¤erent tax systems. We use two approaches to comparing macro calibrations with micro

evidence: simulations of quasi-experiments and a meta-analysis of micro elasticity estimates. Both

approaches show that micro and macro evidence agree about Hicksian (steady state) elasticities

but disagree about Frisch (intertemporal substitution) elasticities.

We begin by simulating the impacts of policy changes that generate exogenous changes in

incentives to work in a standard macro model and comparing the predicted responses with the

�ndings of microeconometric studies. We use Rogerson and Wallenius� (2009) [RW] calibrated

model of life cycle labor supply as a benchmark model for this exercise. The RW model matches

macro evidence by generating an intertemporal substitution elasticity of aggregate hours above 2

even when calibrated to generate a Frisch intensive-margin elasticity below 0.5. We simulate labor

supply responses to three policies using this model: (1) a tax-free year in Iceland in 1987 studied

by Bianchi et al. (2001), (2) a randomized experiment providing temporary subsidies for work to

welfare recipients in Canada (Card and Hyslop 2005), and (3) the 1994 expansion of the Earned

Income Tax Credit (EITC) for low-income individuals in the United States (Meyer and Rosenbaum

2001). The �rst two examples are ideal for identifying Frisch elasticities because they induce

temporary variation in wage rates. Bianchi et al. (2001) �nd that employment rates in Iceland

do indeed rise in 1987, but the increase is only one �fth as large as that predicted by the RW

model. Similarly, the calibrated RW model predicts intertemporal substitution responses to the

work subsidies in Canada that are nearly four times larger than what Card and Hyslop observe in

their data. The third example �the EITC expansion �generates permanent variation in tax rates

and thus is well-suited for identifying steady-state elasticities. The RW model performs better in

matching the impacts of the EITC expansion on employment rates because it generates a Hicksian

aggregate hours elasticity of approximately 0.7, resulting in steady-state impacts of taxes on labor

88The extensive margin Frisch elasticity is technically ill-de�ned because each agent is not at an interior optimum.
We therefore de�ne the Frisch extensive elasticity empirically as the impact of an in�nitismal, temporary wage
change on employment rates. This is the relevant elasticity for evaluating employment responses to business cycle
�uctuations.
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supply that are closer to micro estimates.

While our quantitative results rest on the particular assumptions of the RW model, our quali-

tative conclusions apply more generally. Any macro model that relies primarily on changes in labor

supply to generate business cycle �uctuations must feature a large extensive margin Frisch elastic-

ity. As a result, any such model will over-predict the response to temporary wage changes such as

the tax holiday in Iceland and work subsidies in Canada. Intuitively, �uctuations in employment

over the business cycle and the employment e¤ects of quasi-experimental wage changes are both

fundamentally determined by the same density of the reservation wage distribution at the margin

irrespective of model speci�cation. Thus, any labor supply model that �ts the quasi-experimental

evidence cannot generate large �uctuations in employment over the business cycle.

To explore whether the results of the three studies we consider in the simulations are representa-

tive of the broader empirical literature, we conduct a meta-analysis of quasi-experimental estimates

of extensive margin elasticities. We summarize results from �fteen studies that span a broad range

of countries, demographic groups, time periods, and sources of variation. These studies generally

analyze changes in incentives for small subgroups of the population, permitting identi�cation of

labor supply elasticities that are not confounded by changes in equilibrium wage rates. Despite

the great variation in methodologies, there is consensus about extensive margin elasticities. The

mean extensive margin elasticity among the studies we consider is 0.28 and every estimate is below

0.43. The intertemporal substitution (Frisch) elasticity estimates for temporary policy changes

turn out be quite similar to the steady-state elasticity estimates obtained from permanent policy

changes. The small elasticities imply that most individuals are at a corner in their employment

choices; that is, the density of individuals at the margin of employment is thin in practice.

We conclude our analysis by evaluating whether extensive margin elasticities of around 0.25 as

suggested by micro evidence are adequate to reconcile the gap between micro and macro estimates

of aggregate hours elasticities. To do so, we summarize micro and macro estimates of Hicksian

and Frisch elasticities on both the extensive and intensive margins. We �nd that micro and

macro studies agree about the steady-state impacts of taxes on labor supply. Both micro and

macro studies imply Hicksian extensive margin elasticities around 0.2. And both micro and macro

evidence are consistent with intensive margin elasticities around 0.3 once one accounts for frictions

that may attenuate observed micro estimates (Chetty et al. 2011a, Chetty 2012). Prescott�s (2004)
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widely-cited cross-country dataset implies an aggregate hours (extensive plus intensive) Hicksian

elasticity of 0.7, only slightly larger than micro estimates.89 These �ndings indicate that labor

supply responses to taxation could indeed explain much of the variation in hours of work across

countries with di¤erent tax systems.90

On the intertemporal substitution margin, the limited existing evidence on intensive margin

elasticities suggests that values around 0.5 are consistent with both micro and macro data. How-

ever, micro and macro estimates of extensive margin intertemporal substitution elasticities di¤er by

an order of magnitude. Quasi-experimental estimates of extensive margin intertemporal substitu-

tion elasticities are around 0.25. In contrast, pure equilibrium macro models, in which employment

�uctuations are driven purely by preferences, imply intertemporal substitution extensive margin

elasticities in excess of 2. Hence, the puzzle to be resolved is why employment rates �uctuate

so much over the business cycle relative to what one would predict based on the impacts of tax

changes on employment rates � that is, why micro and macro estimates of the Frisch extensive

margin elasticity are so di¤erent.91 Even accounting for indivisible labor, micro studies do not

support representative-agent macro models that generate Frisch elasticities above 1.

There are two potential concerns that one may have with using microeconomic estimates to

calibrate macroeconomic models. The �rst is that heterogeneity in extensive margin responses

complicates the mapping from micro estimates to macro elasticities that re�ect economy-wide

behavior.92 This problem is compounded by the concern that micro studies sometimes exclude

important subgroups that could matter for economy-wide extensive margin responses (Dyrda et

al. 2012). In practice, however, heterogeneity across subgroups appears to strengthens our main

conclusion about agreement on the Hicksian elasticity but disagreement on the Frisch elasticity. The

89Prescott reports an elasticity of approximately 3 in his paper. Importantly, this is a Frisch rather than Hicksian
elasticity. Prescott implicitly maps the Hicksian elasticity of 0.7 implied by the data to a Frisch elasticity of 3 based
on speci�c parametric assumptions. See Section 3.2 below for further details.
90Other factors, such as institutions or regulations, could also play a signi�cant role in explaining cross-country

hours di¤erences (Alesina, Glaeser, and Sacerdote 2005). Our analysis does not rule out the importance of such
factors. We simply show that micro estimates of labor supply elasticities are consistent with observed di¤erences in
aggregate hours across countries with di¤erent tax systems.
91Some progress has been made in recent years on this front: for instance, search and matching models with rigid

wages (e.g. Hall 2009) can potentially match business cycle �uctuations with smaller extensive margin labor supply
elasticities.
92Note that the same problem could in principle arise with intensive margin elasticities as well. Although macro

models are often parametrized so that the intensive margin elasticity is constant by assumption, there is no economic
reason for intensive margin elasticities to remain constant as wage rates change. Hence, if one is willing to use micro
estimates to calibrate intensive margin elasticities, one should be equally willing to do so on the extensive margin as
well.
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heterogeneity in micro estimates of extensive-margin Hicksian elasticities mirrors the heterogeneity

observed in macro studies of steady-state responses. For instance, both micro and macro studies

indicate that extensive-margin elasticities are higher for subgroups that are less attached to the labor

force, such as single mothers and individuals near retirement. However, heterogeneity magni�es the

discrepancy between micro and macro estimates of intertemporal substitution elasticities. Most

notably, employment rates �uctuate substantially over the business cycle even for prime-age males,

which stands in sharp contrast with the near-zero micro extensive margin Frisch elasticity estimates

for this group.

A second potential concern in mapping micro estimates to macro labor supply elasticities is that

reduced-form micro studies may not directly identify the structural primitives of the reservation

wage distribution that control extensive margin labor supply choices. This is particularly a concern

if frictions prevent the labor market from clearing, as our analysis suggests. In a model with

frictions, reduced-form micro elasticity estimates represent a convolution of the density of the

reservation wage distribution at the margin and other structural parameters, such as the distribution

of adjustment costs or search frictions or the degree of liquidity constraints. Importantly, the same

reduced-form elasticities would also determine the impact of wage changes on labor supply over the

business cycle in such an environment. Hence, micro estimates should continue to provide useful

targets for calibrating macro models even though they do not identify the structure of preferences

or other primitives necessary for normative analysis.93 However, especially when reduced-form

elasticities combine several structural parameters, they may not be stable across settings. Because

of this instability, one should not seek to calibrate macro models to match any single estimate

of a micro elasticity. Nevertheless, one can gauge the range of plausible magnitudes by pooling

evidence from many di¤erent studies and settings as we do here. The fact that every quasi-

experimental study we review �nds elasticities signi�cantly less than 0.5 casts doubt upon macro

models calibrated with extensive margin elasticities above 1.

The chapter is organized as follows. Section 3.2 brie�y reviews the existing literature on indi-

visible labor. In Section 3.3, we establish a terminology for the various elasticity concepts, as these

93Some micro studies attempt to strip out frictions by studying subgroups such as bike messengers or taxi drivers
who can choose their daily labor supply more freely. However, it is not clear that these pure labor supply elasticity
estimates are more relevant for macro calibrations. If the same frictions that constrain salaried workers from
responding to tax changes also contrain their responses to �uctuations over the business cycle, then it is the observed
reduced-form elasticity for the average worker that matters.
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terms are often used in di¤erent ways in the existing literature. Section 3.4 reports simulations of

the three quasi-experiments in the Rogerson and Wallenius (2009) model. Section 3.5 presents the

meta-analysis of micro estimates. In Section 3.6, we compare micro and macro evidence on the

intensive and extensive margins. Section 3.7 concludes. Details of the simulation methods and

meta-analysis are given in the appendix.

3.2 Indivisible Labor: Background

Equilibrium macroeconomic models � in which di¤erences in hours of work are driven by prefer-

ences � require large labor supply elasticities to explain the variation in hours of work over the

business cycle and across countries with di¤erent tax regimes. In contrast, quasi-experimental

microeconometric studies of the impacts of tax reforms on hours of work and earnings typically

obtain elasticities close to zero for most groups except very high income earners.94

A large literature has posited that the discrepancy between micro and macro elasticities can

be explained by indivisibilities in labor (e.g. Hansen 1985, Rogerson 1988, Cho and Rogerson

1988, Christiano and Eichenbaum 1992, Cho and Cooley 1994, King and Rebelo 1999, Chang

and Kim 2006, Ljungqvist and Sargent 2006, Prescott, Rogerson, and Wallenius 2009, Rogerson

and Wallenius 2009).95 If individuals cannot freely choose hours of work or face �xed costs of

entry, aggregate employment depends upon the distribution of reservation wages in the economy.

If this distribution has substantial density at the margin � i.e., many individuals are indi¤erent

between working and not working at prevailing wage rates �then a small reduction in wage rates

could reduce aggregate hours of work signi�cantly because many individuals will stop working.

Yet the same change in wage rates may not a¤ect hours of work conditional on employment very

much, implying a small intensive margin labor supply elasticity. As a result, a model with large

extensive margin elasticities and small intensive margin elasticities could match both the micro

and macro evidence. Motivated by these results, modern macro models are calibrated to match

micro estimates of intensive margin elasticities but typically calibrate the extensive margin elasticity

94Early estimates of intensive-margin elasticities include MaCurdy (1981), Altonji (1986), and Angrist (1991).
Blundell and MaCurdy (1999) review this literature. Chetty (2012) and Saez, Slemrod, and Giertz (2012) summarize
more recent quasi-experimental intensive margin elasticity estimates.
95The literature has taken two approaches to aggregation with indivisible labor supply: aggregation over states

via employment lotteries (e.g. Hansen 1985, Rogerson 1988) or aggregation over time periods in a lifecycle model
(e.g. Mulligan 2001, Ljungqvist and Sargent 2006, Prescott, Rogerson, and Wallenius 2009). The micro evidence on
extensive margin responses we review here is most easily interpreted through the modern life cycle models.
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purely to match macroeconomic moments (King and Rebelo 1999, Rogerson and Wallenius 2009,

Ljungqvist and Sargent 2011).

In parallel with the development of macro models of indivisible labor supply, a large micro-

econometric literature has recognized the importance of the extensive margin in the analysis of

labor supply. Ashenfelter (1984) and Heckman (1984) discuss the importance of extensive mar-

gin labor supply choices in the analysis of aggregate �uctuations. Heckman and Killingsworth

(1986) and Heckman (1993) review the literature on labor supply models that explicitly model

participation decisions. More recent research has estimated extensive margin elasticities using

quasi-experimental methods.

However, macro models have not been calibrated to match micro evidence on extensive margin

elasticities. One complication in performing such a calibration is that extensive margin elasticities

vary with the wage rate unless the density of the reservation wage distribution happens to be

uniform. Hence, any micro estimate of an extensive margin elasticity is necessarily local to the wage

variation used for identi�cation. However, this argument does not justify treating the extensive

margin elasticity as a free parameter for two reasons. First, if the micro estimates are identi�ed

using variation similar to that used in macroeconomic comparisons, one will obtain the appropriate

local elasticity relevant for macro calibrations. Second, the same problem arises when calibrating

macro models with micro estimates of intensive margin elasticities, insofar as elasticities will only

be constant on the intensive margin if utility happens to produce a constant-elasticity labor supply

function. We revisit this issue in Section 3.6 and show that, if anything, observable heterogeneity

in elasticities reinforces the conclusions drawn below.

3.3 Terminology

It is helpful to establish some conventions about terminology given the various elasticity concepts

discussed in this chapter. We distinguish between elasticities based on the margin of response

(extensive vs. intensive) and the timing of response (intertemporal substitution vs. steady state).

There are four elasticities of interest: steady-state extensive, steady-state intensive, intertemporal

extensive, and intertemporal intensive. Each of these four elasticities can be estimated using

both micro (quasi-experimental) and macroeconomic variation. We use the terms �micro� and

�macro� elasticities exclusively to refer to the source of variation used to estimate the elasticity.
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The elasticity of aggregate hours � the relevant parameter for calibrating a representative agent

model �is the sum of the extensive and intensive margin elasticities, weighted by hours of work if

individuals have heterogeneous preferences (Blundell, Bozio, and Laroque 2013).

The macro literature uses the term �macro elasticity�to refer to the Frisch elasticity of aggregate

hours and �micro elasticity� to refer to the intensive-margin elasticity of hours conditional on

employment (e.g. Prescott 2004, Rogerson and Wallenius 2009). We use di¤erent terminology

here for two reasons. First, the intensive-margin is no more �micro� than the extensive margin;

both are determined by household-level choices and both have been estimated using micro data.

Second, and more importantly, the Frisch elasticity is critical for understanding business cycle

�uctuations in models where aggregate hours �uctuations are purely driven by labor supply, but it

is not the relevant parameter for evaluating the steady-state impacts of di¤erences in taxes across

countries. The Frisch (marginal utility constant) elasticity controls intertemporal substitution

responses to temporary wage �uctuations, while the Hicksian (wealth constant) elasticity controls

steady-state responses and the welfare consequences of taxation (MaCurdy 1981, Auerbach 1985).96

The distinction between Hicksian and Frisch elasticities is quite important in practice. Prescott

(2004) reports that cross-country di¤erences in aggregate hours imply an elasticity of 3 in a

representative-agent model, whereas Davis and Henrekson (2005) estimate an elasticity of 0.33

using similar data. The di¤erence arises primarily because Prescott reports a Frisch elasticity

whereas Davis and Henrekson report a Hicksian elasticity. Regressing log hours on log tax rates in

Prescott�s data yields a Hicksian elasticity of 0.7, as shown in 25a below. Prescott maps this esti-

mate of the Hicksian elasticity into a value for a Frisch elasticity based on parametric assumptions

about utility and the wealth-earnings ratio. When utility is time-separable, the Frisch ("F ) and

Hicksian ("H) elasticities are related by the following identity (Ziliak and Kniesner 1999, Browning

2005):

"F = "H + �(
d[wl]

dA
)2
A

wl
,

where � is the elasticity of intertemporal substitution (EIS), d[wl]dA is the marginal propensity to earn

out of unearned income, and A
wl is the ratio of assets to earnings. The reason that Prescott obtains

96The Hicksian elasticity determines the impact of taxes in steady-state if government revenues are returned to the
consumer as a lump sum, as commonly assumed in representative-agent macro models. If revenues are not returned
to consumers, tax changes have income e¤ects and the Marshallian elasticity becomes the relevant parameter.
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a much larger value of "F than "H is that the parametric utility speci�cation he uses produces

large values of A
wl and

d[wl]
dA . However, microeconometric evidence shows that income e¤ects on

labor supply are much smaller than those produced by the Prescott utility speci�cation (Holtz-

Eakin, Joulfaian, and Rosen 1993, Imbens et al. 2001). Under a utility speci�cation that matches

empirical estimates of the mean values of d[wl]dA and A
wl , the Frisch elasticity is only slightly larger

than the Hicksian elasticity because the di¤erence between the two elasticities is proportional to

the income e¤ect squared (d[wl]dA )
2 (Chetty 2012, Table III).97

3.4 Simulations of Quasi-Experiments in the RW Model

We evaluate whether macro models with indivisible labor are consistent with micro evidence on

extensive margin responses by focusing on the Rogerson and Wallenius (2009) model. The RW

model is a leading example of recent models of indivisible labor that aggregate over individuals by

time-averaging over the life cycle, as in Ljungqvist and Sargent (2006). The model is well-suited

for our purposes because it features both an extensive and intensive margin of labor supply. RW

calibrate their model to show that small intensive-margin micro elasticities are consistent with a

large Frisch elasticity of aggregate hours. We adopt the parameters chosen by RW and simulate

the impacts of policy changes analyzed in three prominent microeconometric studies.98

Setup. RW analyze an overlapping-generations model in which a unit mass of agents is born at

each instant and lives for one unit of time. An individual who supplies h (a) 2 [0; 1] hours at age

a produces e (a) �max
�
h (a)� �h; 0

	
e¢ ciency units of labor, where e (a) = 1 � 2 (1� e1)

��1
2 � a

��
is a tent-shaped life-cycle productivity pro�le and �h > 0. Complete asset markets lead to perfect

consumption smoothing. With log utility over consumption, each generation solves

max
c;h(a)

log (c)� �
Z 1

0

h (a)1+

1 + 
da s.t. c = (1� �)

Z 1

0
e (a)max(h (a)� �h; 0)da+ T

where � is the tax rate and T is a lump-sum tax rebate that balances the government�s budget.

97Subsequent studies calibrate models to match Prescott�s Frisch elasticity of 3, but choose a di¤erent functional
form for utility and wealth-earnings ratios (e.g. Trabandt and Uhlig 2011). The conclusions drawn by these studies
�e.g. that reductions in tax rates would increase tax revenue �might di¤er had they directly matched the steady
state elasticity of 0.7 implied by Prescott�s data.
98On the intertemporal substitution margin, we sought to maximize the model�s chance of �tting the data by

analyzing the two studies that obtain the largest intertemporal elasticity estimates among those considered in our
meta analysis (Table 17). On the steady-state response, we chose a representative study of a well-known policy (the
Earned Income Tax Credit) to show that the model is consistent with typical micro estimates.
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The model can be solved analytically as described in RW and in Appendix C.4. Because wages

are paid per e¢ ciency unit, individuals have low hourly wage rates at the beginning and end of

their lives and �nd it optimal not to work at those points. This generates an extensive margin of

participation over the life cycle. The convex disutility over hours of work generates an intensive

margin hours response to changes in wage rates as well. RW normalize the price of output to 1 and

assume a constant-returns-to-scale production technology, so changes in tax rates have no impact

on pre-tax wages and prices. Accordingly, the quasi-experiments we simulate also hold pre-tax

wages and prices constant, as the studies on which they are based typically analyze the impacts of

di¤erential changes in incentives for relatively small subgroups of the population.

RW calibrate the parameters �, e1, and �h to match empirically observed values for the fraction

of life worked (f), the maximum hours worked per week over the life cycle (hmax), and the wage rate

at retirement relative to the maximum wage rate over the life cycle (wR=wmax). Following RW,

we set hmax = 45% (45 hours per week) and wR=wmax = 1=2. We set f to match the aggregate

employment rate in the period prior to each policy experiment we consider. The parameter 

controls the Frisch elasticity of labor supply, as in standard life cycle models (Card 1990). We

set  = 2 to obtain an intensive margin Frisch elasticity of "INT = 1
 = 0:5, consistent with the

microeconometric evidence summarized below; we show in Appendix C.1 that setting "INT = 0:25

yields similar results.99 For each of the three tax policy changes simulated below, we choose

the model�s remaining parameters f�; e1; �hg to match the moments fhmax; wR=wmax; fg under the

tax system prior to the tax change.100 In all three cases, the calibrated model generates an

intertemporal substitution elasticity for aggregate hours above 2 despite having an intensive margin

intertemporal substitution elasticity of only 0.5, consistent with RW�s main result.101 As in RW,

we assume that each agent lives for 60 years (corresponding to average adult working lives) and

simulate each quasi-experiment by changing the tax rate for the number of periods in the model

99RW show that the intertemporal elasticity of aggregate hours in their model is not sensitive to the intensive-
margin intertemporal elasticity. They therefore calibrate �, e1, and h to match the three moments conditional on
various values of .
100 In one of the simulations, the welfare demonstration in Canada, a small enough fraction of the population is
employed prior to the intervention that �tting wR=wmax = 1=2 would require negative productivity at certain points
in the life cycle. Consequently, for that simulation, we set e1 = 0, generating

wR
wmax

= :615.
101We calculate this and all other Frisch elasticities by simulating the impact of a small, temporary tax change
in the RW model. This direct calculation of the Frisch elasticity di¤ers from the values reported by RW. RW
report aggregate hours Frisch elasticities for a stand-in household whose behavior matches the aggregate steady-state
properties of their economy. However, this stand-in household�s behavior does not necessarily match the aggregate
intertemporal substitution properties of the RW model.
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that correspond to the duration of the tax policy change in the data.102

To simulate the impacts of unanticipated tax changes, we must specify how the lump sum rebate

T changes for each agent. To simplify aggregation, we assume that each generation receives a lump-

sum rebate equal to the taxes they pay at each instant in time.103 We ignore heterogeneity in the

tax system across individuals and set � equal to the average tax rate for the subgroup analyzed

(which is relevant for extensive margin decisions).

Experiment 1: Tax Holiday in Iceland. In 1987, Iceland suspended its income tax for one year

as it transitioned from a system under which taxes were paid on the previous year�s income to a

system where taxes were paid on current earnings. In 1987, individuals paid tax on income earned

in 1986; in 1988, individuals were taxed on income earned in 1988, and thus income in 1987 was

untaxed. The average tax rate was 14.5% in 1986, 0 in 1987, and 8.0% in 1988 (Bianchi et al.

2001). Although this tax change could also produce a change in labor demand due to a general

equilibrium impact on wage rates, the tax holiday had no impact on labor supply for individuals

with low initial tax rates (Bianchi et al. 2001, Figure 9). This implies that the general equilibrium

feedback on wage rates was negligible, so the aggregate employment response can be interpreted

as a labor supply elasticity.104 We simulate the tax reform in Iceland in the RW model under

the assumption that the tax system remains stable prior to 1986 and after 1988. The reform was

announced in late 1986, so we model the tax change as an unanticipated change at the start of

1987. The average employment rate in the three year period prior to the reform is f = 79:2%,

which implies that individuals work for 47.5 years in the model. The single-year tax reduction

thus comes close to the ideal experiment for identifying a Frisch elasticity of reducing tax rates for

an in�nitesimal fraction of the working life.

Figure 24a plots annual changes in employment rates (the employment rate in year t minus the

employment rate in year t� 1) around the reform, demarcated by the vertical line. The Icelandic

administrative records analyzed by Bianchi et al. (blue squares) show a modest but signi�cant

increase in employment rates in 1987 followed by a sharp dip in 1988, consistent with intertemporal

102To characterize high frequency dynamics precisely, we simulate the model with at least 100 periods per year in
all cases; see Appendix C.4 for details.
103Tax policy changes a¤ect each generation di¤erently because they are at di¤erent points in the lifecycle when the
change occurs.
104Stated di¤erently, the di¤erential response for workers who experienced larger changes in tax rates can be inter-
preted as a pure labor supply elasticity that nets out changes in wage rates. Bianchi et al.�s analysis reveals that
this di¤erential impact is similar to the aggregate impact we simulate here.
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Figure 24: Impacts of Tax Changes on Employment Rates: Simulations vs. Data
Notes: Each panel shows the impact of an unanticipated change in incentives to work on employment rates. The red dashed

series shows the impact predicted by the calibrated Rogerson and Wallenius (2009) model, while the blue solid series shows

the impact observed in the data. Panel (a): Iceland suspended its income tax for one year in 1987. Average tax rates in

Iceland changed from 14.5% in 1986 to 0% in 1987 and then 8.0% in 1988. Following Bianchi et al. (2001), we de�ne the

employment rate as the fraction of weeks worked in a given year in the adult population. This panel plots annual changes in

employment rates. Panel (b): The Canadian SSP demonstration randomly assigned a group of welfare recipients a wage subsidy

for 36 months in the early 1990s. Individuals in the control group faced an e¤ective average tax rate of 74.3% for working full

time at the minimum wage, while individuals in the treatment group faced an e¤ective average tax rate of 16.7%. Following

Card and Hyslop (2005), we plot the di¤erence in monthly employment rates between the treatment and control groups. We

add the observed control group mean at the start of the experiment (23.5%) to the di¤erence for scaling purposes. Simulated

employment rates are the fraction of individuals aged 16 to 46 working in a given month, re�ecting the age distribution of the

SSP treatment group (see Appendix A). Panel (c): The EITC expansion in the US in 1994-5 lowered average tax rates net of

taxes and transfers for single mothers from 50.8% in 1992 to 43.6% in 1996. Meyer (2010, Figure 2) reports annual employment

rates for single women using CPS data. We plot the employment rates of single mothers adjusted for observables and time

trends as in Meyer (2010); simulated employment rates are reported for individuals aged 16 to 46.
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substitution. The impact predicted by the RW model (red circles) is an order of magnitude larger

than the observed impact. In the data, employment is 3 percentage points higher in 1987 relative

to 1988, but the RW model predicts that it would be 13.5 percentage points higher. The model

generates a much larger spike in employment because the fraction of cohorts that are close to being

indi¤erent between working and staying out of the labor force is large. The temporary increase

in the wage rates therefore induces a large group of agents to work. Note that it is precisely this

mechanism �having a large fraction of individual near the margin � that allows the RW model

to generate a large Frisch elasticity for aggregate hours and thus explain �uctuations in aggregate

hours over the business cycle.

Experiment 2: SSP Welfare Demonstration in Canada. The Iceland analysis focuses on em-

ployment changes in the aggregate economy, which are relevant for understanding business cycle

�uctuations but may mask substantial heterogeneity across groups. Ljungqvist and Sargent (2006),

Rogerson and Wallenius (2007), and others emphasize that certain groups of the population �such

an individuals near retirement or those with low wage rates � are likely to exhibit particularly

large extensive margin responses and drive the change in aggregate hours. To evaluate whether

the model�s predictions are more accurate for these more elastic subgroups, we consider a policy

experiment targeted at welfare recipients who frequently transition in and out of the labor force.

In the early 1990s, the Canadian government conducted the Self Su¢ ciency Project (SSP) to

test whether a temporary earnings subsidy could induce welfare recipients to start working. The

project was a randomized experiment involving over 5,000 single parents who had been on welfare

for at least one year. Half the individuals (the treatment group) were given a large subsidy if they

worked more than 30 hours per week. The subsidy lasted for 36 months.105 Under the prevailing

welfare system in Canada, welfare payments were reduced dollar-for-dollar with earnings above a

low baseline level. As a result, a single parent with one child in the control group faced an e¤ective

average tax rate of 74.3% when moving from no work to full-time work (see Appendix C.1). In

contrast, an individual in the treatment group faced an e¤ective average tax rate of 16.7% for the

same change. The employment rate during the month the experiment began was f = 23:5%.

105 Individuals were given up to one year to start working and the 36 month period began after they started to work.
This feature of the program generated an incentive to establish eligibility for the subsidy by working within the �rst
year, accentuating the intertemporal substitution incentive. We ignore this feature of the program in our simulation
by assuming that the subsidy starts immediately after random assignment. This simpli�cation biases the size of the
employment increase predicted by our simulation downward.
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Card and Hyslop (2005) use survey data to calculate employment rates at a monthly frequency

for 53 months starting from the month of random assignment. Figure 24b plots monthly em-

ployment rates after the experimental intervention began. The series in blue squares shows the

di¤erence in employment rates for the treatment group relative to the control group (Card and

Hyslop, Figure 3a), with the model the SSP experiment as a tax reform that lowers the tax rate

from � = 74:3% to � = 16:7% for a three year period, after which the tax rate reverts to � = 74:3%.

The pre-experiment employment rate of 23.5% is added to the di¤erence to facilitate interpretation

of the scale. The data show that the subsidy had a substantial impact: employment rates rise

by approximately 14 percentage points in the treatment group relative to the control group a year

after the subsidy was introduced. These employment gains fade away after the subsidy expires,

consistent with intertemporal substitution.

The series in red circles in Figure 24b shows the corresponding impacts predicted by the RW

model. Because the sample analyzed by Card and Hyslop consists primarily of younger individuals

(less than 2.5% of the sample is over age 50), we report simulated employment rates for individuals

in the �rst half of the life cycle (ages 16-46). The impacts predicted by the calibrated model �an

employment increase of 52.8 percentage points one year after the subsidy is introduced �are again

substantially larger than what is observed in the data. Hence, even for subgroups that are closer

to the margin of entering or exiting the labor force and are therefore more elastic, the RW model

signi�cantly over-predicts extensive margin responses.

One may be concerned that liquidity constraints attenuate the degree of intertemporal substi-

tution in the low-income population treated by the SSP. The estimated elasticity therefore may

not directly identify preference parameters in the RW model. However, as noted above, the same

liquidity constraints should also a¤ect employment responses to business cycle �uctuations in wage

rates. Hence, the reduced-form response estimated by Card and Hyslop is still informative about

the magnitude of labor supply �uctuations over the cycle for this subgroup.

Experiment 3: Earned Income Tax Credit in the U.S. The last policy change we consider �the

expansion of the EITC in 1994 analyzed by Meyer and Rosenbaum (2000, 2001) and Meyer (2010)

� is a permanent tax change whose impact is determined by the Hicksian rather than the Frisch

elasticity.106 The EITC expansion lowered average tax rates (including implicit taxes generated

106 If the tax change is not rebated to the consumer as a lump sum, its impact depends on the uncompensated
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by the phase-out of transfers) from 50.8% in 1992 to 43.6% in 1996 for single mothers (Meyer and

Rosenbaum 2000, Table 2).107 Roughly half of the expansion occurred in 1994. For simplicity,

we model the tax change under the assumption that the change occurs immediately at the start of

1994, ignoring the phase-in of the reform. We also assume as above that the tax system remains

stable prior to 1994. The average employment rate for the single mothers is f = 79:1% in the

three years preceding the reform.

Figure 24c shows the employment rates of single mothers around the 1994 reform using data

from Meyer (2010, Figure 2). The series in blue circles shows employment rates for single mothers

with 1 or 2 children, adjusted for time trends and changes in observables as in Meyer (2010) (see

Appendix C.1 for details). The labor force participation rate of single mothers rose from 79.6% in

1993 to 85.8% in 1997 after the EITC expansion was fully phased in. The RW model predicts a 6.0

percentage point increase in employment rates on impact and an additional 0.3 percentage point

rise over the subsequent 5 years. The impact predicted by the model is thus very similar to the

observed impact.

The RW model performs much better in predicting the impacts of the EITC expansion than the

preceding experiments because it predicts much smaller steady-state responses than intertemporal

substitution responses. Intuitively, a permanent change generates a much lower elasticity because

all generations increase their labor supply at the point in their life cycle when they are most

productive, smoothing the aggregate response across time. With a temporary change, every

generation has an incentive to work when net-of-tax wage rates are high, resulting in a large Frisch

elasticity.108 In the RW model, a large mass of cohorts is at the margin with respect to a temporary

tax change or wage �uctuation because individuals do not have strong preferences over when they

work during their lives. However, in any given period, a much smaller fraction of individuals within

each cohort are at the margin with respect to a permanent change in incentives.

Together, the simulations highlight two results that we develop further below. First, the

(Marshallian) elasticity rather than the Hicksian elasticity. In practice, microeconometric estimates of income e¤ects
are quite small (Holtz-Eakin, Joulfaian, and Rosen 1993, Imbens, Rubin, and Sacerdote 2001), suggesting that the
impact of the EITC change is well approximated by the Hicksian elasticity.
107The changes in average tax rates in Meyer and Rosenbaum (2000) take into account conurrent changes in bene�ts
from welfare and Medicaid. See Appendix A for details.
108Although the SSP welfare demonstration was temporary, a three-year subsidy actually covers a sizable fraction of
the working life. The responses to the experiment are therefore determined by a combination of Hicksian and Frisch
elasticities. Together, the Iceland and SSP simulations demonstrate that the RW model over-predicts responses both
at very short and medium-term frequencies.
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extensive margin elasticities required to explain the sharp �uctuations in aggregate hours over the

business cycle are far larger than micro estimates. Second, micro and macro evidence are in much

closer alignment about the steady-state impacts of taxes on labor supply.

Although the quantitative results of our simulations depend to some extent upon the parametric

choices made by RW, we expect these lessons to apply more broadly. Generating a large macro

Frisch elasticity by having a large fraction of individuals who are nearly indi¤erent between working

and not working is precisely what delivers predictions about how temporary tax changes a¤ect

employment rates that contradict the data. A macro model calibrated to match micro estimates

of extensive margin intertemporal substitution elasticities would no longer generate large Frisch

elasticities for aggregate hours.

3.5 Meta-Analysis

In this section, we evaluate whether the three quasi-experiments considered above are representative

of the broader literature by conducting a meta-analysis of extensive margin elasticity estimates.

Although several papers have reviewed intensive margin elasticities (e.g. Pencavel 1986, Blundell

and MaCurdy 1999, Chetty 2012), we are not aware of a meta-analysis of quasi-experimental

estimates of extensive margin elasticities.

We focus on reduced-form studies that use changes in tax policies or long-term wage trends for

identi�cation rather than structural studies that exploit variation in wage rates at the individual

level to fully identify a structural model. Keane and Rogerson (2010) argue that obtaining con-

sistent structural estimates from wage variation over the life cycle requires accounting for a broad

range of factors such as human capital accumulation (Imai and Keane 2004), credit constraints

(Domeij and Floden 2006), and uninsurable risks (Low 2005). Moreover, structural models typi-

cally rely on strong exclusion restrictions for identi�cation.109 The quasi-experimental studies we

consider here exploit variation that is orthogonal to wage rates and thus are more robust to the

biases emphasized by Keane and Rogerson. The exclusion restriction underlying these studies is

109Common instruments for wage rates include nonlinear age and time trends (Kimmel and Kniesner 1998) or
interactions of education and experience (Gourio and Noual 2009) conditional on individual �xed e¤ects. Keane
(2010) uses years of schooling as an instrument for the wage to identify an elasticity in Eckstein and Wolpin�s (1989)
classic structural model. The exclusion restrictions for these instruments are that employment rates do not vary with
age conditional on wage rates or that individuals with di¤erent levels of education do not have di¤erent employment
trajectories over their lifecycle. If factors that predict high wage rates also predict high latent tastes for work, the
elasticity estimates would be biased upward.
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that the di¤erential changes in tax rates across groups is not correlated with unobserved determi-

nants of employment rates, typically a weaker assumption than those required forfull identi�cation

of a structural model.110

Table 17 summarizes extensive margin elasticity estimates from �fteen quasi-experimental stud-

ies. The calculations underlying the estimates and standard errors are described in Appendix C.2.

We calculate the extensive margin labor supply elasticity as the change in log employment rates

divided by the change in log net-of-tax wage rates. Employment rates are typically de�ned as

working at any point during the year, though there are some di¤erences across studies as described

in the appendix. We use the authors�preferred estimate whenever possible. For studies that

do not report such an estimate, we construct elasticities from reported estimates of changes in

participation and calculations of the change in net-of-average-tax wage rates. We use the delta

method to calculate standard errors in such cases.

The studies summarized in Table 17 report labor supply elasticities for various countries and

subgroups using many di¤erent sources of variation. Yet the elasticity estimates exhibit substantial

consensus. The elasticity estimates range from 0.13 to 0.43, with an overall unweighted mean across

the �fteen studies of 0.28. To obtain further insight into the key patterns, we divide the studies

into two groups �steady-state and intertemporal substitution �based on the type of variation they

use for identi�cation.

The �rst panel in Table 17 shows steady-state (Hicksian) elasticities identi�ed from perma-

nent wage changes resulting from tax reforms or long term trends in wage rates across regions or

skill-groups.111 The simplest empirical designs (e.g. Eissa and Liebman 1996) use di¤erence-in-

di¤erences approaches, while more recent studies (e.g. Meghir and Philips 2010) combine multiple

reforms over time that a¤ect individuals di¤erently. The mean elasticity across the nine studies

that estimate steady-state elasticities is 0.25.

The second panel in Table 17 summarizes results from studies that exploit temporary wage

changes to identify intertemporal substitution (Frisch) elasticities. Some of these studies exploit

110Keane (2010(Keane 2010)) and Keane and Rogerson (2010) review structural estimates and �nd larger values
than the quasi-experimental estimates summarized below. It would be useful to simulate the impacts of tax policy
changes in these structural models to understand why their predictions di¤er from the reduced-form evidence.
111Some of the studies in Panel A of Table 17 do not fully account for income e¤ects and thus obtain estimates
that are closer to Marshallian elasticities than Hicksian elasticities. However, we can still conclude from the mean
estimates in Panels A and B of Table 17 that the Hicksian elasticity is between 0.25 and 0.32 because the Hicksian
is bounded by the Marshallian and Frisch elasticities (MaCurdy 1981).
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temporary tax changes such as the Iceland tax holiday discussed above or temporary increases

in labor demand, such as Carrington�s (1996) analysis of the e¤ect of the Trans-Alaska Pipeline

on Alaska�s labor market. Other studies analyze the impact of anticipated variation in wages

generated by pension schemes on retirement behavior. For instance, Gruber and Wise (1999)

correlate employment rates of adults near retirement with the implicit tax generated by social

security systems across OECD countries. Their analysis implies an elasticity of 0.23. Brown

(2009) and Manoli and Weber (2011) estimate elasticities using the bunching of retirements around

the kinks in the budget set created by discontinuities in pension systems. The small elasticities

found by these studies implies that the fraction of individuals who are �at a corner with respect to

the decision to retire�(Ljungqvist and Sargent 2011) is quite large in practice.

The mean estimate of the intertemporal substitution elasticity across the six studies in Panel

B is 0.32, only slightly larger than the estimates of steady-state elasticities in Panel A. The

similarity between Hicksian and Frisch elasticities is consistent with evidence that income e¤ects

are not large enough to produce a substantial di¤erence between intertemporal substitution and

steady-state responses.112

The elasticity estimates vary across subgroups in correspondence with their mean employment

rates, as is well known from prior work (Heckman 1993, Keane and Rogerson 2010). Groups

that have the weakest attachment to the labor force, such as single mothers or older workers near

retirement, are the most elastic on the extensive margin (e.g. Meyer and Rosenbaum 2001, Gruber

and Wise 1999). Among prime-age males, high rates of labor force participation and low aggregate

hours elasticities (which combine the intensive and extensive margins) have led researchers to

conclude that the extensive margin response is likely to be quite small (see e.g., Hausman 1985 and

Juhn, Murphy, and Topel 1991). This is why most of the studies in Table 17 focus on groups with

relatively low participation rates. Hence, the mean extensive margin elasticity in the population

as a whole is likely to be below the unweighted mean across the studies in Table 17 of 0.28.

The heterogeneity in elasticities across subgroups implies that there is no single value of the

extensive margin elasticity that can be used across applications. For instance, a recession or

tax policy change that a¤ects prime-age males may generate smaller employment responses in the

112This does not imply that income e¤ects are small in magnitude. Because the gap between the Frisch and the
Hicksian is proportional to the square of the income e¤ect, even sizable income e¤ects d[wl]

dA
produce a small gap

between the Frisch and Hicksian elasticities; see Chetty (2012(Chetty 2012)) for details.

126



Table 18: Extensive Margin Elasticity Estimates From Quasi-Experimental Studies

Intensive Margin Extensive Margin Aggregate Hours
Steady State (Hicksian) micro 0.33 0.25 0.58

macro 0.33 0.17 0.50
Intertemporal Substitution micro 0.54 0.32 0.86
(Frisch) macro [0.54] [2.77] 3.31

Notes: Each cell shows a point estimate of the relevant elasticity based on meta analyses of existing micro and macro evidence.

Micro estimates are identi�ed from quasi-experimental studies; macro estimates are identi�ed from cross-country variation

in tax rates (steady state elasticities) and business cycle �uctuations (intertemporal substitution elasticities). The aggregate

hours elasticity is de�ned as the sum of the extensive and intensive elasticities. Macro studies report intertemporal aggregate

hours elasticities but do not always decompose these values into extensive and intensive elasticities. Therefore, the estimates

in brackets show the values implied by the macro aggregate hours elasticity if the intensive Frisch elasticity is chosen to match

the micro estimate of 0.54. See Appendix C for sources of these estimates.

macroeconomy than a change in incentives that a¤ects other groups. The estimates in Table 17

should therefore be interpreted as a rough guide to plausible targets for calibration: they suggest

that extensive margin elasticities around 0.25 are reasonable, while values above 1 are not.

3.6 Comparing Micro and Macro Estimates

The micro evidence points to Frisch and Hicksian extensive margin elasticities around 0.25. Does

this estimate generate aggregate hours elasticities consistent with macro evidence? The answer to

this question depends on the size of intensive margin elasticities because aggregate hours elasticities

combine extensive and intensive elasticities. We therefore begin by summarizing the micro and

macro evidence on both extensive and intensive margins in Table 18. The sources and calculations

underlying these estimates are described in Appendix C.3. The rows of Table 18 consider steady-

state (Hicksian) vs. intertemporal substitution (Frisch) elasticities, while the columns compare

intensive margin (hours conditional on employment) and extensive margin (participation) elastic-

ities. Within each of the four cells, we report micro and macro estimates of the elasticity based

on (unweighted) means of existing studies. We also calculate aggregate hours elasticities � the

parameter relevant for calibrating representative agent models � by summing the extensive and

intensive elasticities.113

113For micro studies, this calculation requires that preferences are homogenous across the population. If groups
that work few hours have higher extensive elasticities, as suggested by existing evidence, this calculation yields an
upper bound on the aggregate hours elasticity (Blundell, Bozio, and Laroque 2011).
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It is important to note that there are wide con�dence intervals associated with each of the point

estimates in Table 18, as well as ongoing methodological disputes about the validity of some of the

underlying studies (see e.g., Saez, Slemrod, and Giertz 2012). Therefore, the estimates should be

treated as rough values used to gauge orders of magnitude: di¤erences of 0.1 between elasticity

estimates could well be due to noise or choice of speci�cation, while di¤erences of 1 likely re�ect

fundamental discrepancies. We consider the evidence on steady-state and intertemporal elasticities

in turn.

Steady-State. On the extensive margin, our rough estimate of the steady state elasticity from

the micro literature is the mean of the estimates in Panel A of Table 17, which is 0.25. On the

intensive margin, Chetty (2012) presents a meta-analysis of micro estimates of Hicksian elasticities

and reports a mean value of 0.15 (Chetty 2012, Table 1). However, Chetty argues that these

elasticities are attenuated by optimization frictions: the small tax changes used to identify micro

elasticities do not generate substantial changes in hours because the adjustment costs agents have

to pay to change hours outweigh the second-order bene�ts of reoptimization. Chetty develops

a bounding method of recovering the underlying structural elasticity relevant for evaluating the

steady-state impacts of taxes. Pooling the 15 studies he analyzes (Table 1, Panels A and B), he

obtains a preferred estimate of the structural intensive margin Hicksian elasticity of 0.33.114

Macro steady-state estimates are obtained from comparisons across countries with di¤erent tax

regimes. Nickell (2003) and Davis and Henrekson (2005) �nd extensive steady-state elasticities of

0.13 and 0.14, respectively, by regressing log employment-population ratios on log mean net-of-tax

rates across countries. Prescott�s (2004) tax data coupled with measures of labor force participation

rates implies an extensive steady-state elasticity of 0.25 (see Appendix C.3). Our rough estimate of

the steady state extensive margin elasticity from the macro literature is the mean of the estimates

from these three studies, which is 0.17. Davis and Henrekson (2005) estimate a steady-state

intensive elasticity of 0.20 by regressing log hours conditional on employment on log net-of-tax

rates. As noted above, Prescott�s (2004) data produces a steady-state aggregate hours elasticity

114Our proposed elasticities of 0.33 on the intensive margin and 0.26 on the extensive margin may appear to
contradict the common view that tax changes have smaller short-run e¤ects on the intensive margin than extensive
margin. Chetty (2012) argues that the structural intensive margin elasticity relevant for long-run comparisons is
larger than the structural extensive margin elasticity once one accounts for frictions. In particular, he shows that
frictions attenuate observed extensive margin elasticities much less than intensive margin elasticities because the
utility gains from reoptimizing are �rst-order on the extensive margin and second-order on the intensive margin.
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of 0.7; subtracting the extensive margin macro elasticity of 0.25 produced from Prescott�s data

therefore implies an intensive steady-state elasticity of 0.46. The mean intensive margin elasticity

implied by Prescott and Davis and Henrekson�s analysis is 0.33, which we use as our estimate of

the macro intensive margin elasticity.

We conclude that micro and macro estimates of steady state aggregate hours elasticities match

once one accounts for extensive margin responses and optimization frictions.115 Figure 25a illus-

trates the agreement by plotting log of hours per adult vs. log net-of-tax rates using the same

cross-country data as Prescott (2004). The solid green line shows the best �t to Prescott�s data,

which generates a Hicksian elasticity of 0.7 as noted in Section 3.2. The dashed red line shows the

relationship predicted by our preferred estimate of the micro aggregate hours elasticity of 0.58 from

Table 18 (with the intercept chosen to match the mean values in the data). The similarity of the

two lines illustrates the concordance between micro and macro estimates of steady-state elasticities.

Intertemporal Substitution. On the extensive margin, our preferred micro estimate of the

intertemporal elasticity is the mean of the estimates in Panel B of Table 17, which is 0.32. On the

intensive margin, there is less quasi-experimental evidence on intertemporal substitution elasticities.

Bianchi et al. (2001) �nd an intensive-margin elasticity from the Iceland reform of 0.37 (see Chetty

(2012) for the elasticity calculation using Bianchi et al.�s estimates). Pistaferri (2003) reports a

Frisch intensive elasticity of 0.7 using microdata on expectations about wages. The mean of these

two estimates is 0.54. It is not surprising that these estimates of the intensive Frisch elasticity are

only slightly larger than our preferred estimate of the intensive Hicksian elasticity of 0.33. Chetty

(2012) shows that the Frisch elasticity must be less than 0.47 given a Hicksian elasticity of 0.33 in

an intensive-margin model with balanced growth and an intertemporal elasticity of substitution of

consumption below 1. Utility speci�cations that generate a Frisch elasticity that is much larger

than the Hicksian elasticity are inconsistent with micro estimates of income e¤ects and elasticities

of intertemporal substitution of consumption.

Equilibrium macro models identify intertemporal substitution labor supply elasticities from

�uctuations in hours over the business cycle. Most macro studies calibrate representative agent

models and therefore report only intertemporal elasticities of aggregate hours. The intertemporal

115The similarity between micro and macro estimates may be surprising given the institutional and regulatory
di¤erences across countries (Alesina, Glaeser, and Sacerdote 2005). However, institutions and regulations can partly
be interpreted as sources of optimization frictions, which we account for using Chetty�s (2009) bounding procedure.
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Figure 25: Micro Predictions Versus Macro Data
Notes: Panel A plots log hours worked per adult vs. log of 1 �average tax rate using data from Prescott (2004) across countries

and time periods described in Appendix C. The data imply an aggregate hours Hicksian elasticity of .7, as shown by the solid

green best �t line. The dashed red line is drawn through the mean of the x and y values with a slope of 0.58, in accordance with

the aggregate hours micro elasticity from Table 18. Panel B plots the log deviation of employment from a Hodrick-Prescott

�ltered trend for the United States from 1948 to 2008. The data is taken from the Bureau of Labor Statistics and available at

http://www.bls.gov. The solid blue line is generated using seasonally adjusted quarterly data on employment tabulated from

the Current Population Survey, series LNS12000000Q. The raw data was Hodrick-Prescott �ltered using a smoothing parameter

of 1600. The dotted black line is taken from the same source for men ages 25-54, series LNS12000061Q. The dashed red line

is a projected employment series based on �uctuations in real wages. Real wages are measured as real hourly compensation

for the nonfarm business sector, Bureau of Labor Statistics series PRS85006153. To generate the projection, real wages are

Hodrick-Prescott �ltered using a smoothing parameter of 1600 and multiplied by the micro extensive margin Frisch elasticity

of 0.32 from Table 17.
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aggregate hours elasticity required to match business cycle data ranges from 2.6 to 4 in real business

cycle models (Cho and Cooley 1994, Table 1; King and Rebelo 1999, p975). Table 18 reports the

mean intertemporal aggregate hours elasticities implied by these numbers, 3.31.116 Micro estimates

imply a Frisch elasticity of aggregate hours of 0.86, well below the values implied by RBC models.

The few available decompositions of macro aggregate hours elasticities into extensive and in-

tensive margins suggest that macro estimates are roughly in alignment with micro estimates on

the intensive margin. Business cycle �uctuations in hours conditional on employment account

for only 1/6 of the �uctuations in aggregate hours at an annual level (Heckman 1984). Given

that elasticities of 2.6 to 4 �t the �uctuations in aggregate hours, we infer that intensive Frisch

elasticities around 0.43 to 0.66 would match macro evidence in RBC models. These values are

modestly larger than the intensive intertemporal elasticity of 0.5 implied by micro evidence.

In contrast, macro evidence sharply contradicts micro estimates of the extensive intertemporal

elasticity. The fact that employment �uctuations account for 5/6 of the �uctuation in aggregate

hours suggests that extensive elasticities of 2.18 to 3.33 would be needed to match the data in

standard RBC models.117 If the RBC models considered in Table 18 were calibrated to match

an intensive intertemporal elasticity of 0.54, they would require extensive intertemporal elasticities

of 3.31-0.54 = 2.77 on average to match aggregate hours �uctuations. This value is an order of

magnitude larger than all of the micro estimates in Table 17.

We conclude that extensive labor supply responses are not large enough to explain observed

�uctuations in employment rates at business cycle frequencies. This result is illustrated in Figure

25b. The solid blue line in the �gure shows �uctuations in employment rates over the business

cycle in the U.S. It plots the log deviation of employment (measured using household surveys) from

a Hodrick-Prescott �ltered trend. The dashed red line shows predicted employment �uctuations

due to labor supply using our preferred micro estimate of the extensive margin Frisch elasticity of

0.32. The prediction is constructed by multiplying the Frisch elasticity of 0.32 by log deviations

116An earlier version of this table (Chetty et al. 2011b) included an estimate 1.92 from Smets and Wouters (2007)
when computing the macro estimate of the intertemporal substitution elasticity. While Smets and Wouters report
an estimate of 1.92, in personal correspondence they noted that the correct elasticity implied by their model is the
reciprocal of the reported estimate, 1

1:92
= 0:52. This elasticity is much lower than traditional models because of a

large number of frictions including wage and price rigidities, which make the Smets and Wouters paper signi�cantly
di¤erent from the pure equilibrium macro models discussed here. We thank Susan Yang for pointing out this
correction.
117Cho and Cooley (1994) decompose the aggregate hours elasticity in their RBC model into intensive and extensive
margins using a di¤erent methodology. Their analysis generates an extensive Frisch elasticity of 1.61.
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in real wages from a Hodrick-Prescott �ltered trend. The �uctuations in the data are much larger

than the prediction based on micro evidence, illustrating that �uctuations in labor supply account

for only a small share of observed employment �uctuations over the business cycle.

The size of the �uctuations in the micro prediction may be attenuated because of composition

bias in the BLS wage series. Barsky, Solon and Parker (1994) argue that actual wages are ap-

proximately twice as volatile as observed wages because of changes in the composition of employed

workers. With this adjustment, one would need an aggregate hours elasticity of 3:31=2 = 1:66

to �t the macro data. While accounting for composition bias helps reduce the gap substantially,

it does not fully reconcile the discrepancy between the macro business cycle data and predictions

based on micro evidence.

Heterogeneity. As emphasized by Dyrda et al. (2012), macro models may not exactly match

micro evidence on the extensive margin because of heterogeneity in elasticities across subgroups.

However, observable heterogeneity in elasticities if anything reinforces the main conclusions drawn

above. The heterogeneity in extensive margin responses across groups documented in Table 17

mirrors the heterogeneity observed in extensive margin responses when comparing steady-state

behavior across countries with di¤erent tax regimes. In particular, individuals near retirement and

secondary earners exhibit the largest di¤erences in employment rates across countries with di¤erent

tax systems (Rogerson and Wallenius 2007, Blundell, Bozio, and Laroque 2013).

In contrast, heterogeneity ampli�es the discrepancy between micro and macro estimates of

intertemporal substitution elasticities. Employment rates �uctuate substantially over the business

cycle even for this subgroup (Clark and Summers 1981, Jaimovich and Siu 2009). This is illustrated

by the dashed black series in Figure 25b, which plots detrended employment for males aged 25-55.

Fluctuations in employment for prime age males are very similar to those for the population as a

whole. However, microeconomic studies clearly show that extensive margin elasticities are near

zero for prime-age males. The sharp divergence between micro and macro Frisch elasticities within

this subgroup reinforces our conclusion that indivisible labor supply cannot fully account for the

�uctuations in aggregate hours over the business cycle.118

118Fluctuations in wage rates for prime age males are very similar to those for the population as a whole at business
cycle frequencies. To illustrate this, we use CPS data on median usual weekly earnings for full time employed
wage and salary workers from the Bureau of Labor Statistics (series LEU0252881500) and men aged 25-54 (series
LEU0252888100), available from 2000 to 2011. We adjust for in�ation using the CPI provided by the BLS aggregated
to a quarterly frequency and HP �lter the logs of the CPI-adjusted wage series with a smoothing parameter of 1600.
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3.7 Conclusion

Indivisible labor is a central feature of many modern macroeconomic models that seek to explain

aggregate �uctuations in labor utilization using labor supply. From a qualitative perspective,

microeconometric evidence strongly supports the importance of indivisible labor: changes in wage

rates clearly induce extensive-margin responses. From a quantitative perspective, observed ex-

tensive margin responses are adequate to explain the gap between micro and macro estimates of

steady-state elasticities when combined with factors such as frictions. However, extensive margin

labor supply responses are not large enough to explain the gap between micro and macro estimates

of intertemporal substitution elasticities. Consequently, explanations of the business cycle based

on changes in labor supply can only partly explain �uctuations in hours over the business cycle.

One interpretation of our analysis is that it points in favor of recent macro models that feature

a cyclical �labor wedge�between the marginal rate of substitution of consumption for leisure and

the marginal product of labor. The micro evidence reviewed here is consistent with macro evidence

that labor wedges are substantial (Chari et al 2007(Chari, Kehoe, and McGrattan 2007); Shimer,

2009). Our conclusion that labor supply is important but cannot entirely account for �uctuations

over the business cycle supports models that combine a labor supply margin with other sources of

�uctuations. For instance, Hall (2009) shows that a search-and-matching-generated unemployment

margin combined with a labor supply margin can match observed �uctuations in employment rates

over the business cycle without requiring large extensive margin labor supply responses.119 Models

that generate unemployment by taking individuals o¤ their labor supply curve in the short run, e.g.

due to wage rigidities, are also consistent with our results. While our analysis does not distinguish

between alternative explanations of the labor wedge, our estimates could be used to calibrate the

labor supply component of models that seek to explain aggregate �uctuations with labor wedges.

Based on our reading of the micro evidence, we recommend calibrating macro models to match

Hicksian elasticities of 0.3 on the intensive and 0.25 on the extensive margin and Frisch elasticities

The resulting standard deviation of log real wages around the HP �ltered trend is .0122 for the full population and
.0123 for prime aged men.
119 In Hall�s model, workers choose both hours and employment based on both standard labor supply factors and
the time and e¤ort needed to �nd a job as in a Diamond-Mortensen-Pissarides model with rigid wages. These forces
generate an aggregate hours elasticity of 1.9 even with an intensive Frisch elasticity of 0.7.

133



of 0.5 on the intensive and 0.25 on the extensive margin.120 ;121 These elasticities are consistent

with the observed di¤erences in aggregate hours across countries with di¤erent tax systems. They

also match the relatively small �uctuations in hours conditional on employment over the business

cycle. The remaining challenge is to formulate models that �t the large �uctuations in employment

rates over the business cycle when calibrated to match an extensive margin labor supply elasticity

of 0.25. Even with indivisible labor, models that require a Frisch elasticity of aggregate hours

above 1 are inconsistent with micro evidence.
120That is, one should choose a reservation wage distribution such that a 10% increase in the net-of-tax wage leads
to a 2.5% increase in employment rates. More generally, simulating quasi-experiments such as the tax policy changes
analyzed here would be a simple way to evaluate which macro models are consistent with micro data.
121We suspect that this estimate is, if anything, biased upward for two reasons: (1) the mean extensive margin
elasticity for the population as a whole is less than 0.25 as noted above and (2) publication bias drives micro studies
toward reporting higher elasticity estimates (Card and Krueger 1995).
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A Chapter 1 Appendix

A.1 Data

A.1.1 Time Series Data

National and Regional Data In the main text, three data series are used for price, volume

and inventory:

� The CoreLogic national repeat-sales house price index. This is an arithmetic interval-weighted

house price index from January 1976 to August 2013. The monthly index is averaged at a

quarterly frequency and adjusted for in�ation using the Consumer Price Index, BLS series

CUUR0000SA0.

� The National Association of Realtors� series of sales of existing single-family homes at a

seasonally-adjusted annual rate. The data is monthly for the whole nation from January

1968 to January 2013 and available on request from the NAR. The monthly data is averaged

at a quarterly frequency.

� Homes listed for sale comes from vacant homes listed for sale from the Census Housing

Vacancy Survey, quarterly from Q1 1968 to Q4 2012. This is divided by the NAR sales

volume series to create months of supply.

Other price and inventory measures are used in Appendix A.2. The price measures include:

� A median sales price index for existing single-family homes. The data is monthly for the

whole nation from January 1968 to January 2013 and available on request from the National

Association of Realtors.

� The quarterly national �expanded purchase-only� HPIs that only includes purchases and

supplements the FHFA�s database from the GSEs with deeds data from DataQuick from Q1

1991 to Q4 2012. This is an interval-weighted geometric repeat-sales index.

� The monthly Case-Shiller Composite Ten from January 1987 to January 2013. This is an

interval-weighted arithmetic repeat-sales index.
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� Amedian sales price index for all sales (existing and new homes) from CoreLogic from January

1976 to August 2013.

The additional inventory measure is the National Association of Realtors�series on inventory

and months of supply of existing single-family homes. The data is monthly for the whole nation

from June 1982 to February 2013 and is available on request.

For annual AR(1) regressions, I use non-seasonally-adjusted data. Because the volume series

comes seasonally adjusted, for any analysis that includes sales volume, I use the data provider�s

seasonal adjustment if available and otherwise seasonally adjust the data using the Census Bureau�s

X-12 ARIMA software using a multiplicative seasonal factor.

City-Level Data I create two city-level data sets. The �rst consists of local repeat-sales price

indices for 103 CBSA divisions from CoreLogic. These CBSAs divisions include all CBSAs divisions

that are part of the 100 largest CBSAs which have data from at least 1995 onwards. Most of these

CBSAs have data starting in 1976. See Table 19 for the full list of CBSAs and years. This data is

used for the annual AR(1) regression coe¢ cient histogram in Figure 1 and is adjusted for in�ation

using the CPI.

The second city-level data set is used for the panel VAR and several cross-city comparisons

in Appendix A.2. It combines the same CoreLogic city-level repeat-sales house price indices with

transaction volume data for existing home sales from CoreLogic and months of supply at the MSA

level provided by the National Association of Realtors. The CoreLogic and NAR data sets are

merged using the principal city of the MSA and CBSA division. The volume series sometimes have

discontinuities corresponding to the introduction of an additional county to a CBSA, so I examine

each time series and select a starting date for the volume series for each CBSA division equal to the

month after the last discontinuity. Similarly, the NAR months of supply measure is occasionally not

reported for a given MSA. I drop all prior quarters if there are four continuous quarters of missing

data. There are, however, a few interspersed quarters with missing data. The similarity between

the panel VAR and a VAR on national data shows that the missing quarters are not driving the

results. Each MSA�s start quarter and end quarter are the �rst and last quarters, respectively,

for which both volume and inventory data are available, with the inventory data typically being

the binding constraint. Finally, I limit the sample to 42 MSAs with at least 50 quarters of both
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Table 19: CBSAs in CoreLogic City-Level Price Data Set

CBSA Code Main City Name Start End 32820 Memphis, TN 1984 2013

10420 Akron, OH 1978 2013 33124 Miami, FL 1976 2013

10580 Albany, NY 1992 2013 33340 Milwaukee, WI 1976 2013

10740 Albuquerque, NM 1992 2013 33460 Minneapolis, MN 1976 2013

10900 Allentown, PA 1976 2013 34980 Nashville, TN 1976 2013

12060 Atlanta, GA 1976 2013 35004 Nassau, NY 1976 2013

12420 Austin, TX 1976 2013 35084 Newark, NJ-PA 1976 2013

12540 Bakers�eld, CA 1976 2013 35300 New Haven, CT 1985 2013

12580 Baltimore, MD 1976 2013 35380 New Orleans, LA 1976 2013

12940 Baton Rouge, LA 1992 2013 35644 New York, NY 1976 2013

13140 Beaumont, TX 1993 2013 36084 Oakland, CA 1976 2013

13644 Bethesda, MD 1976 2013 36420 Oklahoma City, OK 1976 2013

13820 Birmingham, AL 1976 2013 36540 Omaha, NE 1990 2013

14484 Boston, MA 1976 2013 36740 Orlando, FL 1976 2013

14860 Bridgeport, CT 1976 2013 37100 Ventura, CA 1976 2013

15380 Bu¤alo, NY 1991 2013 37764 Peabody, MA 1976 2013

15764 Cambridge, MA 1976 2013 37964 Philadelphia, PA 1976 2013

15804 Camden, NJ 1976 2013 38060 Phoenix, AZ 1976 2013

16700 Charleston, SC 1976 2013 38300 Pittsburgh, PA 1976 2013

16740 Charlotte, NC 1976 2013 38900 Portland, OR 1976 2013

16974 Chicago, IL 1976 2013 39100 Poughkeepsie, NY 1976 2013

17140 Cincinnati, OH 1976 2013 39300 Providence, RI 1976 2013

17460 Cleveland, OH 1976 2013 39580 Raleigh, NC 1976 2013

17820 Colorado Springs, CO 1976 2013 40060 Richmond, VA 1976 2013

17900 Columbia, SC 1977 2013 40140 Riverside, CA 1976 2013

18140 Columbus, OH 1976 2013 40380 Rochester, NY 1991 2013

19124 Dallas, TX 1977 2013 40484 Rockingham County, NH 1990 2013

19380 Dayton, OH 1976 2013 40900 Sacramento, CA 1976 2013

19740 Denver, CO 1976 2013 41180 St. Louis, MO 1978 2013

19804 Detroit, MI 1989 2013 41620 Salt Lake City, UT 1992 2013

20764 Edison, NJ 1976 2013 41700 San Antonio, TX 1991 2013

21340 El Paso, TX 1977 2013 41740 San Diego, CA 1976 2013

22744 Fort Lauderdale, FL 1976 2013 41884 San Francisco, CA 1976 2013

23104 Fort Worth, TX 1984 2013 41940 San Jose, CA 1976 2013

23420 Fresno, CA 1976 2013 42044 Santa Ana, CA 1976 2013

23844 Gary, IN 1992 2013 42644 Seattle, WA 1976 2013

24340 Grand Rapids, MI 1992 2013 44140 Spring�eld, MA 1976 2013

24660 Greensboro, NC 1976 2013 44700 Stockton, CA 1976 2013

24860 Greenville, SC 1976 2013 45060 Syracuse, NY 1992 2013

25540 Hartford, CT 1976 2013 45104 Tacoma, WA 1977 2013

26180 Honolulu, HI 1976 2013 45300 Tampa, FL 1976 2013

26420 Houston, TX 1982 2013 45780 Toledo, OH 1976 2013

26900 Indianapolis, IN 1991 2013 45820 Topeka, KS 1985 2013

27260 Jacksonville, FL 1976 2013 46060 Tucson, AZ 1976 2013

28140 Kansas City, MO 1985 2013 46140 Tulsa, OK 1981 2013

28940 Knoxville, TN 1977 2013 47260 Virginia Beach, VA 1976 2013

29404 Lake County, IL 1982 2013 47644 Warren, MI 1976 2013

29820 Las Vegas, NV 1983 2013 47894 Washington, DC 1976 2013

30780 Little Rock, AR 1985 2013 48424 West Palm Beach, FL 1976 2013

31084 Los Angeles, CA 1976 2013 48620 Wichita, KS 1986 2013

31140 Louisville, KY 1987 2013 48864 Wilmington, DE 1976 2013

32580 McAllen, TX 1992 2013 49340 Worcester, MA 1976 2013
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Table 20: MSAs in Merged Price-Inventory-Volume Panel

Principal City First Date Last Date Obs Principal City First Date Last Date Obs

Akron, OH 1990, Q1 2013, Q1 87 Miami, FL 1993, Q1 2013, Q1 69

Allentown, PA 1999, Q1 2013, Q1 50 Milwaukee, WI 1998, Q1 2013, Q1 61

Atlanta, GA 1999, Q1 2012, Q3 55 Nashville, TN 1999, Q3 2013, Q1 55

Austin, TX 1994, Q1 2013, Q1 66 New Brunswick, NJ 1999, Q1 2013, Q1 57

Baltimore, MD 1999, Q1 2013, Q1 57 New York, NY 1999, Q1 2013, Q1 57

Charleston, SC 1997, Q1 2013, Q1 65 Newark, NJ 1998, Q1 2013, Q1 61

Chicago, IL 1999, Q1 2013, Q1 57 Oklahoma City, OK 1990, Q1 2013, Q1 79

Cincinnati, OH 1990, Q1 2006, Q4 51 Omaha, NE-IA 2000, Q3 2013, Q1 51

Columbia, SC 1995, Q1 2013, Q1 61 Phoenix, AZ 1993, Q2 2012, Q2 74

Columbus, OH 1995, Q2 2013, Q1 69 Portland, OR 1994, Q1 2011, Q3 66

Dallas, TX 2000, Q1 2013, Q1 53 Providence, RI 1994, Q1 2013, Q1 71

Denver, CO 1999, Q1 2013, Q1 57 Raleigh, NC 1991, Q2 2008, Q2 55

Greenville, SC 1994, Q1 2013, Q1 60 Richmond, VA 1990, Q1 2009, Q2 57

Honolulu, HI 1999, Q1 2013, Q1 57 San Antonio, TX 1998, Q2 2013, Q1 60

Houston, TX 1999, Q3 2013, Q1 55 San Diego CA 1997, Q1 2013, Q1 65

Kansas City, MO 1998, Q3 2012, Q3 57 San Francisco, CA 1992, Q2 2009, Q4 58

Knoxville, TN 1998, Q1 2013, Q1 57 Santa Ana, CA 1999, Q1 2013, Q1 57

Las Vegas, NV 1992, Q2 2013, Q1 63 St. Louis, MO 1996, Q2 2013, Q1 64

Little Rock, AR 1998, Q3 2013, Q1 59 Tampa, FL 1999, Q1 2013, Q1 57

Los Angeles, CA 1993, Q3 2013, Q1 79 Tulsa, OK 1999, Q1 2013, Q1 57

Memphis, TN 1994, Q2 2013, Q1 76 Washington, DC 1993, Q2 2013, Q1 72

inventory and volume data. Table 20 summarizes the full list of MSAs and years in the data set.

A.1.2 Micro Data

The matched listings-transactions micro data covers the San Francisco Bay, San Diego, and Los

Angeles metropolitan areas. The San Francisco Bay sample includes Alameda, Contra Costa,

Marin, San Benito, San Francisco, San Mateo, and Santa Clara counties. The Los Angeles sample

includes Los Angeles and Orange counties. The San Diego sample only includes San Diego County.

The data from DataQuick run from January 1988 to August 2013. The Altos data run from October

2007 to May 2013. I limit my analysis to April 2008 to February 2013, as described in footnote 14.

DataQuick Characteristic and History Data Construction The DataQuick data is pro-

vided in separate assessor and history �les. The assessor �le contains house characteristics from

the property assessment and a unique property ID for every parcel in a county. The history �le

contains records of all deed transfers, with each transfer matched to a property ID. Several steps

are used to clean the data.
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First, both data �les are formatted and sorted into county level data �les. For a very small

number of properties, data with a typo is replaced as missing.

Second, some transactions appear to be duplicates. Duplicate values are categorized and com-

bined into one observation if possible. I drop cases where there are more than ten duplicates, as this

is usually a developer selling o¤ many lots individually after splitting them. Otherwise, I pick the

sale with the highest price, or, if as a tiebreaker, the highest loan value at origination. In practice,

this a¤ects very few observations.

Third, problematic observations are identi�ed. In particular, transfers between family mem-

bers are identi�ed and dropped based on a DataQuick transfer �ag and a comparison buyer and

seller names. Sales with prices that are less than or equal to one dollar are also counted as trans-

fers. Partial consideration sales, partial sales, group sales, and splits are also dropped, as are

deed transfers that are part of the foreclosure process but not actually transactions. Transactions

that appear to be corrections or with implausible origination loan to value ratios are also �agged

and dropped. Properties with implausible characteristics (<10 square feet, < 1 bedroom, < 1/2

bathroom, implausible year built) have the implausible characteristic replaced as a missing value.

From the �nal data set, I only use resale transactions (as opposed to new construction or

subdivisions) of single-family homes, both of which are categorized by DataQuick.

Altos Research Listings Data Construction and Match to DataQuick The Altos research

data contains address, MLS identi�er, house characteristics, list price, and date for every week-

listing. Altos generously provided me access to an address hash that was used to parse the address

�elds in the DataQuick assessor data and Altos data and to create a matching hash for each. Hashes

were only used that appeared in both data �les, and hashes that matched to multiple DataQuick

properties were dropped.

After formatting the Altos data, I match the Altos data to the DataQuick property IDs. I

�rst use the address hash, applying the matched property ID to every listing with the same MLS

identi�er (all listings with the same MLS ID are the same property, and if they do not all match

it is because some weeks the property has the address listed di¤erently, for instance �street� is

included in some weeks but not others). Second, I match listings not matched by the address hash

by repeatedly matching on various combinations of address �elds and discarding possible matches
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when there is not a unique property in the DataQuick data for a particular combination of �elds,

which prevents cases where there are two properties that would match from being counted as a

match. I determined the combinations of address �elds on which to match based on an inspection

of the unmatched observations, most of which occur when the listing in the MLS data does not

include the exact wording of the DataQuick record (e.g., missing �street�). The �elds typically

include ZIP, street name, and street number and di¤erent combinations of unit number, street

direction, and street su¢ x. In some cases I match to the �rst few digits of street number or the

�rst word of a street name. I �nally assign any unmatched observations with the same MLS ID as

a matched observation or the same address hash, square feet, year built, ZIP code, and city as a

matched observation the property ID of the matched observation. I subsequently work only with

matched properties so that I do not inadvertently count a bad match as a withdrawal.

The observations that are not matched to a DataQuick property ID are usually multi-family

homes (which I subsequently drop), townhouses with multiple single-family homes at the same

address, or listings with typos in the address �eld.

I use the subset of listings matched to a property ID and combine cases where the same property

has multiple MLS identi�ers into a contiguous listing to account for de-listings and re-listings of

properties, which is a common tactic among real estate agents. In particular, I count a listing as

contiguous if the property is re-listed within 13 weeks and there is not a foreclosure between the

de-listing and re-listing. I assign each contiguous listing a single identi�er, which I use to match to

transactions.

In a few cases, a listing matches to several property IDs. I choose the property ID that matches

to a transaction or that corresponds to the longest listing period. All results are robust to dropping

the small number of properties that match to multiple property IDs.

I �nally match all consolidated listings to a transaction. I drop transactions and corresponding

listings where there was a previous transaction in the last 90 days, as these tend to be a true

transaction followed by several subsequent transfers for legal reasons (e.g., one spouse buys the

house and then sells half of it to the other). I �rst match to a transaction where the date of last

listing is in the month of the deed transfer request or in the prior three months. I then match

unmatched listings to a transaction where the date of last listing is in the three months after

the deed transfer request (if the property was left on the MLS after the request, presumably by
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Figure 26: Match Rates by Month of Transaction

accident). I then repeat the process for unmatched listings for four to 12 months prior and four to

12 months subsequent. Most matches have listings within three months of the last listing.

For matched transactions, I generate two measures of whether a house sold within a given time

frame. The �rst, used in the main text, is the time between the date of �rst listing and the date of

�ling of the deed transfer request. The second, used in robustness checks in Appendix A.3, is the

time between date of �rst listing and the �rst of the last listing date or the transfer request.

Figure 26 shows the fraction of all single-family transactions of existing homes for which my

data accounts in each of the three metropolitan areas over time. Because the match rates start low

in October 2007, I do not start my analysis until April 2008, except in San Diego where almost all

listings have no listed address until August 2008. Besides that, the match rates are fairly stable,

except for a small dip in San Diego in mid-2009 and early 2012 and a large fall o¤ in the San

Francisco Bay area after June 2012. I consequently end the analysis for the San Francisco Bay area

at June 2012. Figures 27, 28, and 29 show match rates by ZIP code. One can see that the match

rate is consistently high in the core of each metropolitan area and falls o¤ in the outlying areas,

such as western San Diego county and Escondido in San Diego, Santa Clarita in Los Angeles, and

Brentwood and Pleasanton in the San Francisco Bay area.
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Figure 27: Match Rates by ZIP Code: Bay Area

Figure 28: Match Rates by ZIP Code: Los Angeles
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Figure 29: Match Rates by ZIP Code: San Diego

Construction of House Price Indices I construct house price indices largely following Case

and Shiller (1989) and follow sample restrictions imposed in the construction of the Case-Shiller

and Federal Housing Finance Administration (FHFA) house price indices.

For the repeat sale indices, I drop all non-repeat sales, all sales pairs with less than six months

between sales, and all sales pairs where a �rst stage regression on year dummies shows a property

has appreciated by 100 percent more or 100 percent less than the average house in the MSA. I

estimate an interval-corrected geometric repeat-sales index at the ZIP code level. This involves

estimating a �rst stage regression:

ph`t = �h` + �t + "h`t, (40)

where p is the log price of a house h in location ` at time t, �h` is a sales pair �xed e¤ect, �t is a

time �xed e¤ect, and "h`t is an error term.

I follow Case and Shiller (1989) by using a GLS interval-weighted estimator to account for the

fact that longer time intervals tend to have a larger variance in the error of (40). This is typically

implemented by regressing the square of the error term "2h`t on a linear (Case-Shiller index) or

quadratic (FHFA) function of the time interval between the two sales. The regression coe¢ cients
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are then used to construct weights corresponding to 1p
"̂2h`t

where "̂2h`t is a predicted value from the

interval regression. I �nd that the variance of the error of (40) is non-monotonic: it is very high for

sales that occur quickly, falls to its lowest level for sales that occur approximately three years after

the �rst sale, and then rises slowly over time. This is likely due to �ippers who upgrade a house

and sell it without the upgrade showing up in the data. Consequently, I follow a non-parametric

approach by binning the data into deciles of the time interval between the two sales, calculate the

average "2h`t for the decile �"
2
h`t, and weight by

1p
�"2h`t
. The results are nearly identical using a linear

interval weighting.

exp (�t) is then a geometric house price index. The resulting indices can be quite noisy. Conse-

quently, I smooth the index using a 3-month moving average, which produced the lowest prediction

error of several di¤erent window widths. The resulting indices at the MSA level are very comparable

to published indices by Case-Shiller, the FHFA, and CoreLogic.

The log predicted value of a house at time t, p̂t, that sold originally at time � for P� is:

p̂t = log

0@ exp
�
�̂t

�
exp

�
�̂�

�P�
1A .

For the hedonic house price indices, I use all sales and estimate:

pi`t = �t + �Xi + "i`t; (41)

where Xi is a vector of third-order polynomials in four housing characteristics: age, bathrooms,

bedrooms, and log (square feet), all of which are winsorized at the one percent level by county

for all properties in a county, not just those that trade. Recall that these characteristics are all

recorded as a single snapshot in 2013, so Xi is not time dependent. I do not include a characteristic

if over 25 percent of the houses in a given geography are missing data for a particular characteristic.

Again exp (�t) is a house price index, which I smooth using a 3-month moving average. The log

predicted price of a house is

p̂it = �̂Xi + �̂i:

For homes that are missing characteristics included in an area�s house price index calculation, I
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replace the characteristic with its average value in a given ZIP code.

For robustness I calculate both indices for the full sample and a non-distressed sample, where

a repeat-sales pair counts as distressed if either sale is an REO sale, a foreclosure auction sale, or a

short sale. For my analysis, I use a ZIP code level index, but all results are robust to alternatively

using a house price index for all homes within one mile of the centroid of a home�s seven-digit ZIP

code (roughly a few square blocks). I do not calculate a house price index if the area has fewer than

500 sales since 1988. This rules out about 5% of transactions, typically in low-density areas far

from the core of the MSA. For each ZIP code, I calculate the standard deviation of the prediction

error of the house price index from 1988 to 2013 and weight most speci�cations by the reciprocal

of the standard deviation.

Construction of the Final Analysis Samples I drop listings that satisfy one of several criteria:

1. If the list price is less than $10,000;

2. If the assessed structure value is less than �ve percent of the assessed overall value;

3. If the data shows the property was built after the sale date or there has been �signi�cant

improvement�since the sale date;

4. If there is a previous sale within 90 days.

Each observation is a listing, regardless of whether it is withdrawn or ends in a transaction. The

outcome variable is sold within 13 weeks, where withdrawn listings are counted as not transacting.

The price variable is the initial list price. The predicted prices are calculated for the week of �rst

listing by interpolation. The sample is summarized in Table 2 in the main text, and the fraction

of the sample accounted for by each MSA and year are summarized in Table 21.

A.1.3 List Prices Relative to Transaction Prices

As mentioned in the main text, the modal house sells at its list price at the time of sale and the

average and median house sell within 0.01 log points of their list price. To illustrate this, Figure 30

shows a histogram of the di¤erence between the log list price at sale and the log transaction price
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Table 21: Share of Sample Accounted For By Each MSA and Year

Sample All Prior Trans All Prior Trans
All All Transactions Transactions

SF Bay 26.98% 26.68% 28.03% 27.44%
Los Angeles 58.81% 59.47% 57.37% 58.22%
San Diego 14.22% 13.85% 14.59% 14.33%
2008 18.18% 19.87% 16.42% 17.91%
2009 20.70% 21.26% 21.19% 21.81%
2010 23.88% 23.59% 23.48% 23.15%
2011 21.07% 20.36% 21.64% 20.97%
2012 14.86% 13.75% 15.93% 14.93%
2013 1.30% 1.17% 1.34% 1.24%

Notes: Each cell indicates the percentage of each sample accounted for by each MSA (above the line) or by each year of �rst

listing (below the line).
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Figure 30: Histogram of the Di¤erence Between Log Transaction Price and Log List Price
Notes: The �gure shows a histogram of the di¤erence between log transaction price at the time of sale and log list price for

all homes in the San Francisco Bay, Los Angeles, and San Diego areas that were listed between April 2008 and February 2013

that are matched to a transaction and have a previous observed listing. The 1st and 99th percentiles are dropped from the

histogram. N = 303,731.

in the Altos-DataQuick merged data. One can see that nearly 18 percent of transactions sell at list

price, and the mean of the list price distribution is 0.01 log points below the transaction price.

Table 22 reinforces these �ndings by showing mean log di¤erence for each of the three MSAs in

each year. The mean does not �uctuate by more than 0.03 log points across years and MSAs.
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Table 22: Mean Di¤erence Between Log Transaction Price and Log List Price

SF Bay Los Angeles San Diego
2008 -0.007 -0.014 0.003
2009 0.000 -0.008 -0.006
2010 0.001 -0.011 -0.015
2011 -0.014 -0.022 -0.028
2012-3 0.001 -0.015 -0.019

Notes: Each cell shows the mean di¤erence between the log transaction price and log list price in the indicated MSA-year cell.

N = 303,731

A.2 Housing Market Facts

A.2.1 Momentum

To assess the robustness of the facts about house price momentum presented in Section 1.2, Table

23 shows several measures of momentum for �ve di¤erent national price indices. The indices are

the CoreLogic National repeat-sales house price index discussed in the main text, the Case-Shiller

Composite Ten, the FHFA expanded repeat-sales house price index, the National Association of

Realtors�national median price for single-family homes, and CoreLogic�s national median price for

all transactions. The �rst column shows the coe¢ cient on an AR(1) in log annual price change

run at quarterly -frequency as in equation (1).122 The next two columns show the one- and two-

year lagged autocorrelations of the quarterly change in log price. The fourth column shows the

quarterly lag in which the autocorrelation of the quarterly change in log price is �rst negative.

The �fth column shows the quarter subsequent to a shock in which the impulse response from an

estimated AR(5) estimated in log levels, as in Section 1.2, reaches its peak value. Finally, the sixth

column shows the quarterly lag in which the Lo-MacKinlay variance ratio statistic reaches its peak

value. This statistic is equal to,

V (k) =
var

�Pt�k+1
t=1 rt�k+1

�
=k

var (rt)
=
var (log (pt)� log (pt�k)) =k
var (log (pt)� log (pt�1))

, (42)

122Case and Shiller (1989) worry that the same house selling twice may induce correlated errors that generate
arti�cial momentum in regression (1) and use �pt;t�4 from one half of their sample and �pt�4;t�8 from the other. I
have found that this concern is minor with 25 years of administrative data by replicating their split sample approach
with my own house price indices estimated from the micro data.
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Table 23: The Robustness of Momentum Across Price Measures and Metrics

Price Measure Annual 1 Year 2 Year Lag in Which Quarter Quarter of
AR(1) Lagged Lagged Quarterly �p of Peak Peak Value of

Coe¢ cient Autocorr of Autocorr of Autocorr is of AR(5) Lo-MacKinlay
Quarterly �p Quarterly �p First < 0 IRF Variance Ratio

CoreLogic Repeat 0.665 0.516 0.199 12 12 19
Sales HPI, 1976-2013 (0.081)

Case-Shiller 0.67 0.578 0.251 14 11 20
Comp 10, 1987-2013 (0.088)
FHFA Expanded 0.699 0.585 0.344 14 11 18
HPI, 1991-2013 (0.089)
NAR Median 0.458 0.147 0.062 12 6 16
Price, 1968-2013 (0.103)
CoreLogic Median 0.473 0.215 0.046 11 7 16
Price, 1976-2013 (0.082)

Notes: Each row shows six measures of momentum for each of the �ve house price indices, which are detailed in Appendix A.1.

The �rst row shows the AR(1) coe¢ cient for a regression of the annual change in log price on a on-year lag of itself estimated

on quarterly data, as in equation (1), with robust standard errors in parenthesis. The second and third columns show the one

and two year lagged autocorrelations of the quarterly change in log price. The fourth column shows the quarterly lag in which

the autocorrelation of the quarterly change in log price is �rst negative. The �fth column indicates the quarter in which the

impulse response function estimated from an AR(5), as in Section 1.2, reaches its peak. Finally, the last column shows the

quarterly lag for which the Lo-MacKinlay variance ratio computed as in equation (42) reaches its peak.

Table 24: Testing For Asmmetry in Momentum

Dependent Variable: Annual Change in Log Price Index at CBSA Level
Speci�cation With Interaction Without Interaction

Coe¢ cient on Year-Lagged 0.614*** 0.591***
Annual Change in Log Price (0.011) (0.020)
Coe¢ cient on Interaction With 0.045

Positive Lagged Change (0.031)
CBSA Fixed E¤ects Yes Yes

CBSAs 103 103
N 13,188 13,188

Notes: *** p<0.001. Each column shows a regression of the annual change in log price on a one-year lag of itself and CBSA

�xed e¤ects. In column two, the interaction between the lag of annual change in log price with an indicator for whether the lag

of the annual change in log price is also included as in equation (43). The regressions are estimated on the panel of 103 CBSAs

repeat-sales price indices described in Appendix A.1. Robust standard errors are in parentheses.
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where rt = log (pt)� log (pt�1) is the one-period return. If this statistic is equal to one, then there

is no momentum, and several papers have used the maximized period of the statistic as a measure

of the duration of momentum.

Table 23 shows evidence of signi�cant momentum for all price measures and all measures of

momentum. The two median price series exhibit less momentum as the IRFs peak at just under

two years and the two-year-lagged autocorrelation is much closer to zero.

Table 24 tests for asymmetry in momentum. Many papers describe prices as being primarily

sticky on the downside (e.g., Leamer, 2007; Case, 2008). To assess whether this is the case, I turn

to the panel of 103 CBSA repeat-sales price indices described in Appendix A.1, which allows for a

more powerful test of asymmetry than using a single national data series. I estimate a quarterly

AR(1) regression of the form:

�t;t�4 ln pc = �0 + �1�t�4;t�8 ln pc + �2�t�4;t�8 ln pc � 1 [�t�4;t�8 ln pc > 0] + �c + ", (43)

where c is a city. If momentum is stronger on the downside, the interaction coe¢ cient �2 should

be negative. However, Table 24 shows that the coe¢ cient is insigni�cant and positive. Thus

momentum appears equally strong on the upside and downside when measured using a repeat-sales

index.

Across Countries Table 25 shows annual AR(1) regressions as in equation (1) run on quar-

terly non-in�ation-adjusted data for ten countries. The data come from the Bank for International

Settlements, which compiles house price indices from central banks and national statistical agen-

cies. The data and details can be found online at http://www.bis.org/statistics/pp.htm. I select

ten countries from the BIS database that include at least 15 years of data and have a series for

single-family detached homes or all homes. Countries with per-square-foot indices are excluded.

With the exception of Norway, which shows no momentum, and the Netherlands, which shows

anomalously high momentum, all of the AR(1) coe¢ cients are signi�cant and between 0.2 and 0.6.

Price momentum thus appears to show up across countries as well as within the United States and

across U.S. metropolitan areas.
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Table 25: Momentum Across Countries

Country AR(1) Coe¢ cient N Country AR(1) Coe¢ cient N
Australia, 1986-2013 0.217* 100 Netherlands, 1995-2013 0.951*** 67

(0.108) (0.079)
Belgium, 1973-2013 0.231** 154 Norway, 1992-2013 -0.042 79

(0.074) (0.091)
Denmark, 1992-2013 0.412*** 78 New Zealand, 1979-2013 0.507*** 127

(0.110) (0.075)
France, 1996-2013 0.597*** 62 Sweden, 1986-2013 0.520*** 103

(0.121) (0.100)
Great Britain, 1968-2013 0.467*** 173 Switzerland, 1970-2013 0.619*** 167

(0.079) (0.082)

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each row shows the AR(1) coe¢ cient for a regression of the annual change in log

price on an annual lag of itself, as in equation (1), estimated on quarterly, non-in�ation-adjusted data from the indicated country

for the indicated time period. Robust standard errors are in parentheses, and N indicates the number of quarters in the sample.

The BIS identi�ers and series descriptions are listed for each country. Australia: Q:AU:4:3:0:1:0:0, residential property for all

detached houses, eight cities. Belgium Q:BE:0:3:0:0:0:0, residential property all detached houses. Denmark: Q:DK:0:2:0:1:0:0,

residential all single-family houses. France: Q:FR:0:1:1:6:0, residential property prices of existing dwellings. Great Britain:

Q:GB:0:1:0:1:0:0, residential property prices all dwellings from the O¢ ce of National Statistics. Netherlands: Q:NL:0:2:1:1:6:0,

residential existing houses. Norway: Q:NO:0:3:0:1:0:0, Residential detached houses. New Zealand: Q:NZ:0:1:0:3:0:0, residential

all dwellings. Sweden: Q:SE:0:2:0:1:0:0, owner-occupied detached houses. Switzerland: Q:CH:0:2:0:2:0:0, owner-occupied single-

family houses.

A.2.2 Housing Cycle Facts

Relative Volatilities To assess the robustness the relative volatilities of price, volume, and

inventory summarized by Fact 2, Table 26 shows the standard deviation of annual log changes for

four additional measures of price and two additional measures of inventory discussed in Appendix

A.1. The series all have di¤erent time coverages, and the standard deviation is calculated for the

period over which data is available. The �rst three rows show various house price indices. With the

exception of the Case-Shiller Composite Ten, which is known to be volatile given that it follows ten

cities with relatively inelastic housing supplies, the standard deviation of annual log changes are

close to the 0.065 �gure for the national CoreLogic house price index presented in the main text,

although the two median price series are slightly less volatile. The last two rows show two measures

of inventory. The �rst is houses listed for sale rather than months of supply. This is about half as

volatile as months of supply because it is not divided by volume. The second is a separate months

of supply measure from the NAR, which is only slightly less volatile than the measure in the main
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Table 26: Robustness of Relative Volatilities

Measure �log xq�log xq�4
Case-Shiller Composite 10, 1986-2013 0.087

FHFA Expanded, 1991-2013 0.052
NAR Median Price, 1968-2013 0.046

CoreLogic Median Price, 1976-2013 0.061
Census For Sale Inventory, 1968-2013 0.106
NAR Months of Supply, 1982-2013 0.170

Notes: All series are 1976-2013 at a quarterly frequency. The �rst column shows the standard deviation of annual changes.

Data is described in Appendix A.1.

text that combines Census and NAR data. I was not able to �nd another national volume series

with long enough coverage to reliably calculate volatility. Overall, Table 26 supports the conclusion

that price is less volatile than inventory and volume, regardless of how each is measured.

Housing Phillips Curve To assess the robustness of the �housing Phillips curve�relationship

between price changes and inventory levels (Fact 3), Table 27 shows regression coe¢ cients and

R-squareds for regressions of the annual change in log price on log inventory levels, as in equation

(26), for �ve di¤erent house price indices and three di¤erent measures of inventory. The strong

negative relationship is present across all 15 combinations of price and inventory measures.

Two things in particular are of note. First, the relationship is stronger for repeat-sales house

price indices, which display more momentum, than it is for median price indices. Second, the middle

row shows that the result is robust to measuring inventory as homes listed for sale (adjusted for

a linear time trend) instead of as months of supply. The importance of homes listed for sale,

the numerator of months of supply, suggests that the price-volume relationship, which a¤ects the

denominator of months of supply, is not driving the negative relationship between price changes

and inventory levels in the data.

Price, Volume, and Inventory VAR and VEC In the main text, I estimate a panel vector

autoregression model on log price, log volume, and log inventory on a panel of 42 cities. The model

for the panel VAR is:

xct = �0 + �1xc;t�1 + �2xc;t�2 + 'c + "t
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Table 27: Robustness of Housing Phillips Curve Relationship

CoreLogic Case-Shiller FHFA NAR CoreLogic
National Composite Expanded Median Median
HPI Ten Natl HPI Price HPI Price HPI

Inventory Measure 1976-2013 1987-2013 1991-2013 1968-2013 1976-2013
Months of Supply, � -0.140*** -0.232*** -0.147*** -0.089*** -0.095***

1968-2013 (0.015) (0.022) (0.010) (0.011) (0.014)
From Census & NAR R2 0.530 0.630 0.804 0.406 0.283
Homes For Sale � -0.283*** -0.385*** -0.273*** -0.148*** -0.235***
1968-2013 (0.035) (0.054) (0.029) (0.021) (0.030)
From Census R2 0.404 0.407 0.619 0.310 0.319

Months of Supply � -0.130*** -0.237*** -0.170*** -0.088*** -0.083***
1982-2013 (0.016) (0.023) (0.013) (0.013) (0.017)
From NAR R2 0.367 0.597 0.792 0.283 0.191

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each cell shows a regression of the annual change in log price on log inventory

levels measured at the midpoint of the year over which changes are calculated, as in equation (26). Each column uses a di¤erent

measure of price, and each row uses a di¤erent measure of inventory. For prices, the measures used are the CoreLogic national

repeat-sales HPI from 1976-2013 as in the main text, the Case-Shiller Composite 10 repeat-sales HPI from 1987 to 2013, the

FHFA expanded repeat-sales HPI from 1991 to 2013, the NAR median price index for single-family existing homes from 1968

to 2013, and the CoreLogic national median price index for all sales from 1976 to 2013. For inventory, the �rst row uses months

of supply created by dividing homes vacant for sale from the Census Vacancy Survey by volume for single-family existing homes

from the NAR. The second row just uses only the numerator, homes listed for sale from the Census Vacancy Survey, and adjusts

the data for a linear time trend. The third row uses months of supply from 1982 to 2013 from the NAR. Robust standard errors

are in parenthesis.

where c represents an MSA, xc;t is the vector of log months of supply, log price, and log sales volume

in city c at time t, and 'c is a city �xed e¤ect. I use a Cholesky decomposition with the variables

ordered so that months of supply is assumed to not depend contemporaneously on shocks to price

or volume and price is assumed not to depend contemporaneously on shocks to volume. The results

are robust as long as months of supply does not depend contemporaneously on volume.

To show the robustness of these result, Figure 31 estimates a two-lag vector autoregression

model and a two-lag vector error correction (VEC) model on the national data sets used in the

main text. The Cholesky ordering and VAR are the same as for the panel VAR except there is

a single time series. The results look similar, although months of supply does not mean revert as

quickly. Furthermore, the VEC model looks similar to the VAR model, which is reassuring if one

is worried about the variables being cointegrated.
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Figure 31: Impulse Response to Inventory Shock in VAR and VEC on National Data
Notes: The �gures show orthogonalized impulse response functions to a months of supply shock from a two-lag vector autore-

gression model and vector error correction model of log months of supply, log price, and log sales volume. Price is the CoreLogic

national HPI, sales is from the NAR single-family existing home sales series, and months of supply is from the Census Vacancy

Survey and NAR, all from 1976-2013. All data are seasonally adjusted. The OIRFs are computed using a Cholesky decompo-

sition with the variables ordered so that months of supply is assumed to not depend contemporaneously on shocks to price or

volume and price is assumed to not depend contemporaneously on shocks to volume. The results are robust as long as months

of supply is prior to volume in the Cholesky ordering. The blue line is the OIRF, and for the VAR the grey bands indicate 95%

con�dence intervals.

A.2.3 Buyer and Seller Entry

To show the robustness of Fact 4, which shows that entrants and sales move in opposite directions

at peaks and troughs, Figure 32 shows the full data series calculated using the Census�homes for

sale measure from 1968-2013 as well as the 2003 to 2013 period for months of supply from the

National Association of Realtors. Although the patterns in previous cycles are not as dramatic,
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Figure 32: Sales, Entry: Full Series and NAR Data
Notes: Volume is raw data from the National Association of Realtors of sales of existing single-family homes at a seasonally-

adjusted annual rate. The top panel shows seller entry using the stock of sellers measured by the Census Vacancy Survey, while

the bottom panel shows the stock of sellers measured by the National Association of Realtors. Seller entry is computed as

Entrantst = Sellerst - Sellerst�1 + Salest. Buyer entry is computed similarly, but since there is not a raw data series for the

stock of buyers it is imputed using a simple Cobb-Douglas matching function SalesS = �
�
B
S

��:8
with the 0.8 elasticity from

Genesove and Han (2012). In this �gure, � = 1 in the top panel so that in a steady state there is 3 months of supply. Because
the NAR series reports more homes listed for sale, � = :5 in the bottom panel to �t the same average market tightness as the

Census series. All three series are smoothed using a three-quarter moving average in both �gures.
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Table 28: Cross-City Facts on Momentum, Inventory Volatility, and the Housing Phillips Curve

Dependent Var SD of Annual Log Log Price Changes on Log Price Changes on
Change in Log Inventory Levels Log Inventory Levels

Months of Supply Regression Coe¢ cient Regression R-Squared
Annual � log (p) 0.201* -0.159** 0.920***
AR(1) Coe¢ cient (0.099) (0.055) (0.258)

N 42 42 42

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each column shows a regression of the indicated dependent variable calculated

at the MSA level on the AR(1) coe¢ cient from a regression of the annual change in log price on a one-year lag of itself, as in

equation (1). These regressions thus show how the dependent variable varies across cities based on the degree of momentum the

cities exhibit. The data used is the merged National Association of Realtors and CoreLogic data for 42 cities used in the panel

VAR and described in Appendix A.1. Months of supply is directly from the NAR. The regression of the annual log change in

price on log inventory levels is as in Equation (26). Robust standard errors are in parenthesis.

one can still see the same pattern. Furthermore, the pattern is clearly visible for the 2000s boom

and bust in the NAR data.

Cross-City Facts Table 28 tests two of the model�s predictions about the housing cycle facts in

the cross-section of 42 cities used in the panel VAR analysis and described in Appendix A.1. Each

column shows a regression in which the independent variable is a city-level measure of momentum:

the AR(1) coe¢ cient of the annual change in log price regressed on an annual lag of itself in quarterly

CoreLogic data, as in equation (1). The �rst column shows that momentum co-varies positively

with the standard deviation of the annual change in log months of supply, which comes from a

separate data set from the National Association of Realtors. In the model, more momentum causes

more re-timing of purchases and more inventory volatility. The second and third columns show the

relationship between momentum and the regression coe¢ cient and R-squared, respectively, from a

regression of the annual change in log price on log months of supply at the midpoint of the year

as in equation (26). Recall that in the data the coe¢ cient is negative. Table 28 shows that the

correlation between price changes and inventory levels is more negative and stronger the greater the

degree of momentum in the city. This is consistent with the model, in which the housing Phillips

curve arises due to the rapid adjustment of inventory and gradual adjustment of price in light of

momentum.
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A.3 Micro Evidence For Concave Demand

A.3.1 Binned Scatter Plots

Throughout the analysis I use binned scatter plots to visualize the structural relationship between

list price relative to the reference list price and probability of sale. This section brie�y describes

how they are produced.

Recall that my econometric model is:

dh`t = g (ph`t � ~ph`t) +  `t + "h`t (44)

where ph`t � ~ph`t is equal to f (zh`t) in:

ph`t = f (zh`t) + �Xh`t + �`t + uh`t. (45)

To create the IV binned scatter plots. I �rst estimate f (zh`t) by (45) and let ph`t�~ph`t = f (zh`t).

I drop the 1st and 99th percentiles of ph`t � ~ph`t and ZIP-quarter cells with a single observation

and create 25 indicator variables �b corresponding to 25 bins q of ph`t � ~ph`t. I project sale within

13 weeks dh`t on �xed e¤ects and the indicator variables:

dh`t =  `t + �b + �h`tq (46)

I visualize g (�) by plotting the average ph`t � ~ph`t for each bin against the average dh`t �  `t for

each bin, which is equivalent to �b.

A.3.2 Proof of Lemma 2

Recall that the Lemma assumes that:

zh`t ?? (uh`t; "h`t) ,

ph`t = f (zh`t) + �h`t + ~ph`t,
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�h`t ?? f (zh`t), and that the true regression function g (�) is a third-order polynomial. Because

of the �xed e¤ect �h`t in ~ph`t, �h`t can be normalized to be mean zero. Using the third-order

polynomial assumption, the true regression function is:

g (ph`t � ~ph`t) = E [dh`tqjf (zh`t) + �h`t;  `t] = �1 (f (zh`t) + �h`t)

+�2 (f (zh`t) + �h`t)
2 + �3 (f (zh`t) + �h`t)

3 .

However, �h`t is unobserved, so I instead estimate:

E [dh`tqjf (zh`t) ;  `t] = �1f (zh`t) + �2f (zh`t)
2 + �3f (zh`t)

3

+�1E [�h`tjf (zh`t)] + 2�2E [f (zh`t) �h`t] + �2E
�
�2h`tjf

�
+3�3f (zh`t)E

�
�2h`tjf

�
+ 3�23f (zh`t)E [�h`tjf ] + �3E

�
�3h`tjf

�
.

However, because �h`t ?? f (zh`t), E [�h`tjf (zh`t)] = 0, E [f (zh`t) �h`t] = 0, and E
�
�2h`tjf

�
and

E
�
�3h`tjf

�
are constants. The �2E

�
�2h`tjf

�
and �3E

�
�3h`tjf

�
terms will be absorbed by the �xed

e¤ects  `t, leaving:

E [dh`tqjf (zh`t) ;  `t] = �1f (zh`t) + �2f (zh`t)
2 + �3f (zh`t)

3 + 3�3f (zh`t)E
�
�2h`tjf

�
Thus when one estimates g (�) by a cubic polynomial of f (zh`t),

dh`tq = 1f (zh`t) + 2f (zh`t)
2 + 3f (zh`t)

3 +  `t + "h`t,

one recovers 1 = �1 + 3�3E
�
�2h`tjf

�
, 2 = �2, and 3 = �3, so the true second- and third-order

terms are recovered.

A.3.3 Instrumental Variable Robustness and Speci�cation Tests

This section provides robustness and speci�cation tests for the IV estimates described in Section

1.3.

Figure 33 shows the reduced-form relationship between the instrument and outcome variable
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Figure 33: Reduced-Form Relationship Between the Instrument and the Outcome Variable
Notes: This �gure shows the reduced-form relationship between the instrument on the x-axis and the probability of sale within

13 weeks on the y axis. Both are residualized against quarter x ZIP �xed e¤ects and the repeat-sales and hedonic predicted

prices and the means are added back in. This is the basic concave relationship that the IV approach uses, although the

downward-sloping �rst stage �ips the x-axis.

when both are residualized against �xed e¤ects and the repeat-sales and hedonic predicted price.

The estimates presented in the main text rescale the instrument axis into price (and in the process

�ip the x axis), but the basic concave relationship between probability of sale and appreciation

since purchase is visible in the reduced form.

Figure 34 shows IV binned scatter plots when the y-axis is rescaled to a logarithmic scale so

that the slope represents the elasticity of demand, which does not alter the �nding of concavity.

Figure 35 shows third-order polynomial �ts varying the number of weeks that a listing needs

to sell within to count as a sale from six weeks to 26 weeks. Concavity is evident regardless of the

deadline used.

Figure 36 shows the IV binned scatter plot and a third-order polynomial �t when the sample

is limited to transactions and the prices are measured in list prices rather than transaction prices.

Substantial concavity is still present, assuaging concerns that the concavity in list prices may not

translate into a strategic complementarity in transaction prices. The upward slope in the middle

of the �gure is not statistically signi�cant.

Tables 29, 30, 31, and 32 present various robustness and speci�cation tests of the main IV

speci�cation in Panel B of Table 3. Each row in the tables represents a separate regression, with the

speci�cations described in the main text. Coe¢ cients for a three-segment spline in the log relative
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Figure 34: Instrumental Variable Estimates With Probability of Sale Axis in Logs
Notes: The �gure shows a binned scatter plot of the log of probability of sale within 13 weeks net of �xed e¤ects (with the

average probability of sale within 13 weeks added in) against the estimated log relative markup. It also shows an overlaid cubic

�t of the relationship, as in equation (3). To create the �gure, a �rst stage regression of the log list price on a third-order

polynomial in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing level, and repeat sales and hedonic log predicted

prices, as in (6), is estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup.

The �gure splits the data into 25 equally-sized bins of this estimated relative markup and plots the mean of the estimated

relative markup against the mean of the probability of sale within 13 weeks net of �xed e¤ects for each bin. The y-axis is

rescaled into logs after means are calculated and the cubic �t is estimated because the outcome variable is binary. Before

binning, the 1st and 99th percentiles of the log sale price residual and any observations fully absorbed by �xed e¤ects are

dropped. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales

house price index in the observation�s ZIP code from 1988 to 2013. The sample is limited to the IV subsample of homes that are

not sales of foreclosures or short sales, sales of homes with negative appreciation since the seller purchased, or sales by investors

who previously purchased with all cash. N = 111,293 observations prior to dropping the 1st and 99th percentiles and unique

zip-quarter cells.

markup, the di¤erence between the highest and lowest tercile coe¢ cients, and a bootstrapped 95

percent con�dence interval for the di¤erence are reported. In some speci�cations the bootstrapped

con�dence intervals widen when the sample size is reduced to the point that the results are no

longer signi�cant, and the middle tercile slope can be sensitive because the middle third of the data

tends to correspond to a very small range of log relative markups and is thus noisily estimated.

Nonetheless, the robustness and speci�cation checks show evidence of signi�cant concavity.

Table 29 evaluates the exclusion restriction that unobserved quality is independent of when

a seller purchased. The �rst two speci�cations add a linear trend in date of purchase or time

since purchase in Xh`t along with the two predicted prices, thus accounting for any variation in

unobserved quality that varies linearly in date of purchase or time since purchase. The next three

rows limit the sample to homes purchased before the bust (before 2005), after 1994, and in a window
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Figure 35: Instrumental Variable Estimates: Varying The Sell-By Date
Notes: The �gure shows third-order polynomial �ts of equation (3) for the probability of sale by eleven di¤erent deadlines (6,

8, 10, 12, 14, 16, 18, 20, 22, 24, and 26 weeks) net of �xed e¤ects (with the average probability of sale added in) against the

estimated log relative markup. To create the �gure, a �rst stage regression of the log list price on a third-order polynomial

in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing level, and repeat sales and hedonic log predicted prices, as

in (6), is estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup before

equation (3) is run. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the

repeat-sales house price index in the observation�s ZIP code from 1988 to 2013. The sample is limited to the IV subsample

of homes that are not sales of foreclosures or short sales, sales of homes with negative appreciation since the seller purchased,

or sales by investors who previously purchased with all cash. N = 111,293 observations prior to dropping the 1st and 99th

percentiles and unique zip-quarter cells.

from 1995 to 2004. Finally, the last two rows add linear time trends to the purchased before 2005

sample. In all cases, the bootstrapped 95 percent con�dence intervals continue to show signi�cant

concavity.

Table 30 shows various speci�cation checks. The �rst set of regressions limit the analysis to

ZIP-quarter cells with at least 15 and 20 observations to evaluate whether small sample bias in the

estimated �xed e¤ect �h`t could be a¤ecting the results. In both cases, the results appear similar

to the full sample and the bootstrapped con�dence interval shows a signi�cant di¤erence between

the highest and lowest terciles, which suggests that bias in the estimation of the �xed e¤ects is

not driving the results. The second set introduces Xh`t, the vector of house characteristics that

includes the repeat-sales and hedonic predicted prices, as a quadratic and cubic function instead

of linearly. It does not appear that assumed linearity of these characteristics is driving the results.

Finally, the third set considers di¤erent speci�cations for the �exible function of the instrument

f (zh`t) in the �rst stage. Again, changing the order of f (�) does not appear to have a signi�cant
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Figure 36: Instrumental Variable Estimates: Transaction Prices
Notes: The �gure shows a binned scatter plot of the probability of sale within 13 weeks net of �xed e¤ects (with the average

probability of sale within 13 weeks added in) against the estimated log relative markup measured using transaction prices rather

than list prices. It also shows an overlaid cubic �t of the relationship, as in equation (3). To create the �gure, a �rst stage

regression of the log list price on a third-order polynomial in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing

level, and repeat sales and hedonic log predicted prices, as in (6), is estimated by OLS. The predicted value of the polynomial

of the instrument is used as the relative markup. The �gure splits the data into 25 equally-sized bins of this estimated relative

markup and plots the mean of the estimated relative markup against the mean of the probability of sale within 13 weeks net

of �xed e¤ects for each bin. Before binning, the 1st and 99th percentiles of the log sale price residual and any observations

fully absorbed by �xed e¤ects are dropped. The entire procedure is weighted by the reciprocal of the standard deviation of the

prediction error in the repeat-sales house price index in the observation�s ZIP code from 1988 to 2013. The sample is limited

to the IV subsample of homes that are not sales of foreclosures or short sales, sales of homes with negative appreciation since

the seller purchased, or sales by investors who previously purchased with all cash. To obtain transaction prices, the sample is

also limited to homes that transact. The grey bands indicate a pointwise 95-percent con�dence interval for the cubic �t created

by block bootstrapping the entire procedure on 35 ZIP-3 clusters. N = 74,299 observations prior to dropping the 1st and 99th

percentiles and unique zip-quarter cells.

e¤ect on concavity.

Table 31 shows various robustness checks. These include:

� House Characteristic Controls: Includes a third-order polynomial in age, log square feet,

bedrooms, and bathrooms in Xh`t.

� Alternate Time To Sale De�nition: Instead of measuring time to sale as �rst listing to the

�ling of the deed transfer request, this speci�cation measures time to sale as �rst listing to

the �rst of the deed transfer request or the last listing.

� 18 and 10 Weeks to Sale: Tests the robustness to the horizon for having sold.
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Table 29: IV Robustness 1: Controls for Time Since Purchase

Dependent Var: Sell Within 13 Weeks
Speci�cation Tercile Spline Coe¢ cients Di¤erence

(Details In Text) Lowest Middle Highest High - Low Bootstrapped 95% CI Obs
Linear Trend in -0.391 1.009 -2.826*** -2.435** [-5.014, -1.994] 111,293
Date of Purchase (0.403) (4.134) (0.810) (0.836)
Linear Trend in -0.396 1.109 -2.849*** -2.453** [-5.065, -1.999] 111,293

Time Since Purchase (0.407) (4.240) (0.824) (0.848)
Purchased Pre 2005 -0.038 -0.357 -4.11 -4.072 [-13.155, -2.282] 102,642

(0.374) (1.907) (4.115) (4.116)
Purchased Post 1994 -0.702 -0.095 -2.503*** -1.800 [-4.375, -1.790] 93,080

(0.769) (0.952) (0.676) (1.025)
Purchased 1995-2004 -0.407 -0.816 -4.252 -3.845 [-15.221, -2.432] 84,429

(0.782) (2.193) (5.149) (5.443)
Pre 2005 With Trend -0.042 -0.152 -3.183 -3.140 [-7.326, -1.871] 102,642
in Date of Purchase (0.306) (0.999) (2.157) (2.124)
Pre 2005 With Trend -0.042 -0.156 -3.21 -3.168 [-7.624, -1.893] 102,642
in Time Since Purchase (0.307) (1.016) (2.238) (2.204)

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each row shows regression coe¢ cients when g(.) in equation (3) is approximated

using a three-segment linear spline with an equal fraction of the data in each segment. A �rst stage regression of log list price

on a third-order polynomial in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing level, and log predicted price

using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS. The predicted value of the polynomial of

the instrument is computed is used as the relative markup in equation (3), which is estimated by OLS. The sample is restricted

to non-REOs, non-short sales, properties with positive appreciation since purchase, and properties not previously purchased

with all cash (investors). The entire procedure weighted by the reciprocal of the standard deviation of the prediction error in

the repeat-sales house price index in the observation�s ZIP code from 1988 to 2013. Before creating the spline, the 99th and

1st percentiles of the relative markup are dropped, as are any observations fully absorbed by �xed e¤ects. In addition to the

regression coe¢ cients, the di¤erence between the highest and lowest tercile of the spline is reported. Standard errors and the

95 percent con�dence interval for the di¤erence between the �rst and third terciles are computed by block bootstrapping the

entire procedure on 35 ZIP-3 clusters. The number of observations listed is prior to dropping observations that are unique to a

ZIP-quarter cell and the 1st and 99th percentiles. The appendix text details each speci�cation.

� Non-REO House Price Index for Predicted Price: Uses house price indices for the predicted

price that does not include REOs.

� Nearby REOs: Controls for third order polynomial in number of REOs within 1/4 mile from

2006 to 2013 to account for quality correlated with distressed sales at the sup ZIP code level.

The results are similar if one varies the radius considered from .1 to 1 mile or counts REOs

within a year of the listing rather than from 2006 to 2013.

� NoWeights: Does not weight observations by the inverse standard deviation of the repeat-sales

house price index prediction error at the ZIP level.
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Table 30: IV Robustness 2: Speci�cation Checks

Dependent Var: Sell Within 13 Weeks
Speci�cation Tercile Spline Coe¢ cients Di¤erence

(Details In Text) Lowest Middle Highest High - Low Bootstrapped 95% CI Obs
Only FE Cells With -0.068 -0.295 -2.575*** -2.507*** [-4.31, -1.844] 64,236
At Least 15 Obs (0.455) (2.731) (0.705) (0.667)

Only FE Cells With -0.285 -2.024 -3.163** -2.878 [-6.835, -1.265] 44,795
At Least 20 Obs (1.052) (4.378) (1.192) (1.480)
Predicted Prices -0.225 -0.425 -2.248*** -2.023*** [-3.324, -1.307] 111,293

Introduced as Quadratic (0.353) (2.154) (0.503) (0.534)
Predicted Prices -0.228 -0.361 -2.314*** -2.086*** [-3.313, -1.344] 111,293

Introduced as Cubic (0.355) (2.014) (0.500) (0.532)
Linear Fn -0.440 0.260 -4.511*** -4.071*** [-6.632, -2.926] 111,293
of Instrument (0.503) (0.603) (0.982) (0.900)
Quadratic Fn -0.466 0.262 -4.301** -3.835** [-7.602, -1.998] 111,293
of Instrument (0.594) (0.601) (1.438) (1.466)
Quartic Fn -0.279 0.069 -2.171*** -1.892*** [-3.237, -1.235] 111,293
of Instrument (0.302) (3.092) (0.533) (0.536)
Quintic Fn -0.235 -0.560 -2.120*** -1.885*** [-3.340, -1.150] 111,293
of Instrument (0.404) (2.248) (0.518) (0.573)

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each row shows regression coe¢ cients when g(.) in equation (3) is approximated

using a three-segment linear spline with an equal fraction of the data in each segment. A �rst stage regression of log list price

on a third-order polynomial in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing level, and log predicted price

using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS. The predicted value of the polynomial of

the instrument is computed is used as the relative markup in equation (3), which is estimated by OLS. The sample is restricted

to non-REOs, non-short sales, properties with positive appreciation since purchase, and properties not previously purchased

with all cash (investors). The entire procedure weighted by the reciprocal of the standard deviation of the prediction error in

the repeat-sales house price index in the observation�s ZIP code from 1988 to 2013. Before creating the spline, the 99th and

1st percentiles of the relative markup are dropped, as are any observations fully absorbed by �xed e¤ects. In addition to the

regression coe¢ cients, the di¤erence between the highest and lowest tercile of the spline is reported. Standard errors and the

95 percent con�dence interval for the di¤erence between the �rst and third terciles are computed by block bootstrapping the

entire procedure on 35 ZIP-3 clusters. The number of observations listed is prior to dropping observations that are unique to a

ZIP-quarter cell and the 1st and 99th percentiles. The Appendix text details each speci�cation.

� No Possibly Problematic Observations: A small number of listings are matched to multiple

property IDs and I use an algorithm described in Appendix A.1 to guess of which is the

relevant property ID. Additionally, there are spikes in the number of listings in the Altos

data for a few dates, which I have largely eliminated by dropping listings that do not match

to a DataQuick property ID. Despite the fact that these two issues a¤ect a very small number

of observations, this speci�cation drops both types of potentially problematic observations to

179



Table 31: IV Robustness 3: Other Robustness Tests

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated
Speci�cation Tercile Spline Coe¢ cients Di¤erence

(Details In Text) Lowest Middle Highest High - Low Bootstrapped 95% CI Obs
House Characteristic -0.366 0.350 -2.804*** -2.438*** [-3.938, -1.567] 107,176

Controls (0.359) (1.953) (0.589) (0.593)
Alternate Time -0.587 0.186 -2.104*** -1.516** [-2.772, -0.660] 111,293
to Sale Defn (0.357) (1.772) (0.506) (0.561)

Dep Var: 18 Weeks -0.240 -0.974 -2.140*** -1.900*** [-3.124, -1.159] 111,293
(0.339) (1.685) (0.524) (0.537)

Dep Var: 10 Weeks -0.049 0.611 -2.302*** -2.252*** [-3.742, -1.359] 111,293
(0.413) (1.842) (0.549) (0.588)

No REO HPI -0.139 0.391 -1.248*** -1.110* [-2.231, -0.210] 108,081
For Predicted Price (0.505) (2.549) (0.253) (0.541)
Nearby REOs -0.393 1.012 -2.827*** -2.434*** [-4.381,-1.332] 111,293

(0.402) (4.136) (0.810) (0.836)
No Weights -0.153 1.109 -2.046*** -1.892*** [-3.015, -1.062] 111,293

(0.399) (1.394) (0.511) (0.505)
No Poss Problematic Obs -0.280 0.246 -2.355*** -2.075*** [-3.526, -1.47] 107,865

(0.325) (1.768) (0.588) (0.551)
First Listed 2008-6/2010 0.273 -0.871 -2.967*** -3.240*** [-5.684, -2.174] 57,384

(0.507) (4.533) (0.766) (0.902)
First Listed 7/2010-2013 -1.034 1.265 -2.039* -1.005 [-3.030, 1.199] 53,909

(0.907) (1.429) (0.894) (1.150)
Bay Area -0.324 1.292 -4.430 -4.105 [-10.067, -1.505] 29,108

(1.348) (2.284) (2.786) (2.892)
Los Angeles 0.152 0.251 -2.172** -2.325** [-4.203, -1.144] 68,749

(0.656) (2.542) (0.688) (0.813)
San Diego -3.344 1.068 -2.683 0.661 [-54.876, 2.189] 13,436

(11.060) (2.741) (9.616) (20.092)

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each row shows regression coe¢ cients when g(.) in equation (3) is approximated

using a three-segment linear spline with an equal fraction of the data in each segment. A �rst stage regression of log list price

on a third-order polynomial in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing level, and log predicted price

using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS. The predicted value of the polynomial of

the instrument is computed is used as the relative markup in equation (3), which is estimated by OLS. The sample is restricted

to non-REOs, non-short sales, properties with positive appreciation since purchase, and properties not previously purchased

with all cash (investors). The entire procedure weighted by the reciprocal of the standard deviation of the prediction error in

the repeat-sales house price index in the observation�s ZIP code from 1988 to 2013. Before creating the spline, the 99th and

1st percentiles of the relative markup are dropped, as are any observations fully absorbed by �xed e¤ects. In addition to the

regression coe¢ cients, the di¤erence between the highest and lowest tercile of the spline is reported. Standard errors and the

95 percent con�dence interval for the di¤erence between the �rst and third terciles are computed by block bootstrapping the

entire procedure on 35 ZIP-3 clusters. The number of observations listed is prior to dropping observations that are unique to a

ZIP-quarter cell and the 1st and 99th percentiles. The Appendix text details each speci�cation.
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Table 32: IV Robustness 4: Transactions Only

Dependent Variable Tercile Spline Coe¢ cients Di¤erence
(Details In Text) Lowest Middle Highest High - Low Bootstrapped 95% CI Obs

Sell Within 13 Weeks 0.254 4.376 -2.169*** -2.423** [-4.243, -0.825] 74,299
-0.778 -2.500 -0.486 -0.923

Weeks on Market (25.263) -102.910* 62.734*** 87.996*** [58.917, 143.191] 74,299
-20.157 -50.969 -11.02 -19.655

Weeks on Market (18.203) -126.848* 56.316*** 74.519*** [51.993, 110.053] 74,299
Alternate Defn -16.871 -58.846 -10.094 -15.106

Notes: * p < 0.05, ** p<0.01, *** p<0.001 .Each row shows regression coe¢ cients when g(.) in equation (3) is approximated

using a three-segment linear spline with an equal fraction of the data in each segment. A �rst stage regression of log list price

on a third-order polynomial in the instrument, �xed e¤ects at the ZIP x �rst quarter of listing level, and log predicted price

using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS. The predicted value of the polynomial of

the instrument is computed is used as the relative markup in equation (3), which is estimated by OLS. The sample is restricted

to non-REOs, non-short sales, properties with positive appreciation since purchase, and properties not previously purchased

with all cash (investors). The entire procedure weighted by the reciprocal of the standard deviation of the prediction error in

the repeat-sales house price index in the observation�s ZIP code from 1988 to 2013. Before creating the spline, the 99th and

1st percentiles of the relative markup are dropped, as are any observations fully absorbed by �xed e¤ects. In addition to the

regression coe¢ cients, the di¤erence between the highest and lowest tercile of the spline is reported. Standard errors and the

95 percent con�dence interval for the di¤erence between the �rst and third terciles are computed by block bootstrapping the

entire procedure on 35 ZIP-3 clusters. The number of observations listed is prior to dropping observations that are unique to a

ZIP-quarter cell and the 1st and 99th percentiles. The Appendix text details each speci�cation.

show that they do not a¤ect results.

� By Time Period: I split the data into two time periods, February 2008 to June 2010 and July

2010 to February 2013.

� By MSA: Separate regressions for the San Francisco Bay, Los Angeles, and San Diego areas.

The results continue to show concavity, although in some speci�cations it is weakened by the smaller

sample size and no longer signi�cant. In particular, in San Diego the con�dence intervals are so

wide that nothing can be inferred. Additionally, both when predicted prices are computed using

non-REO house price indices (which are much noisier) and in the second half of the sample, the

result is slightly weakened and no longer signi�cant.

Finally, Table 32 shows results for the subset of homes that transact for three di¤erent outcome

variables. First, it shows the main sale within 13 weeks outcome, for which the concavity is still

signi�cant. The second two speci�cations show results using weeks on the market as the outcome

variable, and so concavity is indicated by a positive di¤erence between the highest and lowest
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terciles. For both the baseline and alternate weeks on the market de�nitions, there is signi�cant

concavity in the IV speci�cations that indicates that increasing the list price by one percent increases

time on the market by 1.1 to 1.5 weeks.

A.3.4 Ordinary Least Squares

An alternative to IV is to assume that there is no unobserved quality and thus no need for an

instrument. This ordinary least squares approach implies that:

~ph`t = �`t + �Xh`t

and so ph`t � ~ph`t is equal to the regression residual �h`t in:

ph`t = �`t + �Xh`t + �h`t, (47)

which can be estimated in a �rst stage and plugged into the second stage equation:

dh`t = g (�h`t) +  `t + "h`t.

Given the importance of unobserved quality, this is likely to provide signi�cantly biased results,

but it is worth considering as a benchmark as discussed in the main text. This section provides

additional OLS results to show that the �ndings in Panel A of Table 3 are robust.

Because the OLS sample may include distressed sales, I take a conservative approach and include

�xed e¤ects at the ZIP � quarter � distress status level. Distressed status is de�ned as either non-

distressed, REO, or a short sale (or withdrawn listing subsequently foreclosed upon). The results

would look similar if ZIP � quarter �xed e¤ects were used and an additive categorical control for

distressed status were included in Xh`t.

First, Figure 37 shows binned scatter plots for OLS for all listings, transactions only, and the

IV subsample. In each, a clear pattern of concavity is visible, but as discussed in the main text,

the upward slope on the left indicates the presence of substantial unobserved quality� particularly

among homes that do not sell� and thus the need for an instrument.123

123An alternative explanation is that in the later years of my sample I do not have follow-up data on foreclosures, so
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Table 33: Ordinary Least Squares Robustness

Dependent Var: Weeks on Market
Speci�cation Tercile Spline Coe¢ cients Di¤erence

(Details In Text) Lowest Middle Highest High - Low Bootstrapped 95% CI Obs
House Characteristic 0.155*** -0.293*** -0.553*** -0.708*** [-0.835, -0.616] 414,525

Controls (0.034) (0.047) (0.034) (0.058)
Alternate Time 0.143*** -0.529*** -0.496*** -0.639*** [-0.762, -0.533] 431,830
to Sale Defn (0.030) (0.093) (0.042) (0.060)

Dep Var: 18 Weeks 0.195*** -0.419*** -0.496*** -0.692*** [-0.802, -0.59] 431,830
(0.031) (0.090) (0.034) (0.056)

Dep Var: 10 Weeks 0.122*** -0.536*** -0.453*** -0.575*** [-0.692, -0.473] 431,830
(0.030) (0.088) (0.039) (0.056)

Hedonic Predicted 0.128*** -0.255*** -0.458*** -0.587*** [-0.724, -0.427] 665,560
Price Only (0.038) (0.049) (0.043) (0.076)

Low REO ZIPs 0.152** -0.943*** -0.465*** -0.618*** [-0.847, -0.513] 180,517
(0.052) (0.086) (0.050) (0.095)

Low Short Sale ZIPs 0.060 -1.063*** -0.405*** -0.465** [-0.773, -0.272] 113,196
(0.073) (0.124) (0.084) (0.147)

No REO or Short Sale 0.322*** -0.738*** -0.525*** -0.846*** [-1.052, -0.684] 221,013
(0.043) (0.175) (0.068) (0.096)

Transactions Only 0.012 -0.419*** -0.510*** -0.522*** [-0.607, -0.46] 318,842
(0.029) (0.045) (0.021) (0.038)

IV Subsample 0.322*** -1.110*** -0.533*** -0.854*** [-1.141, -0.65] 111,293
(0.073) (0.154) (0.073) (0.137)

Only FE Cells With 0.156*** -0.610*** -0.496*** -0.652*** [-0.819, -0.563] 273,100
At Least 20 Obs (0.034) (0.117) (0.057) (0.072)
Predicted Prices 0.144*** -0.405*** -0.534*** -0.679*** [-0.777, -0.588] 431,830

Introduced as Cubic (0.033) (0.039) (0.026) (0.050)
First Listed 2008-7/2010 0.046 -0.616*** -0.522*** -0.567*** [-0.685, -0.467] 233,115

(0.032) (0.086) (0.041) (0.057)
First Listed 7/2010-2013 0.317*** -0.375*** -0.415*** -0.731*** [-0.873, -0.642] 198,715

(0.041) (0.099) (0.034) (0.060)
Bay Area 0.170** -0.421*** -0.565*** -0.735*** [-0.879, -0.571] 115,223

(0.065) (0.097) (0.058) (0.081)
Los Angeles 0.186*** -0.555*** -0.440*** -0.626*** [-0.79, -0.479] 256,816

(0.048) (0.109) (0.044) (0.081)
San Diego 0.133*** -0.275* -0.578*** -0.710*** [-0.748, -0.65] 59,791

(0.013) (0.134) (0.039) (0.027)

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each row shows regression coe¢ cients when g(.) in equation (3) is approximated

using a three-segment linear spline with an equal fraction of the data in each segment. OLS estimates the relative markup based

on a �rst stage, equation (47), and plugs in the estimate relative markup into equation (3). The �xed e¤ects at the quarter of

initial listing x ZIP x distress status level. Distress status corresponds to three groups: normal sales, REOs (sales of foreclosed

homes and foreclosure auctions), and short sales (cases where the transaction was less than the amount outstanding on the loan

and withdrawals that are subsequently foreclosed on in the next two years). Both procedures are weighted by the reciprocal of

the standard deviation of the prediction error in the repeat-sales house price index in the observation�s ZIP code from 1988 to

2013. Before creating the spline, the 99th and 1st percentiles of the relative markup are dropped, as are any observations fully

absorbed by �xed e¤ects. In addition to the regression coe¢ cients, the di¤erence between the highest and lowest tercile of the

spline is reported. Standard errors and the 95 percent con�dence interval for the di¤erence between the �rst and third terciles

are computed by block bootstrapping the entire procedure on 35 ZIP-3 clusters. The number of observations listed is prior to

dropping observations that are unique to a ZIP-quarter cell and the 1st and 99th percentiles. The Appendix text details each

speci�cation.
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C. IV Subsample

Figure 37: The E¤ect of List Price on Probability of Sale: Ordinary Least Squares
Notes: Each panel shows a binned scatter plot of the probability of sale within 13 weeks against the log relative markup. OLS

assumes no unobserved quality. To create the �gure, a �rst stage regression of log list price on �xed e¤ects at the ZIP x �rst

quarter of listing level x seller distress status level and repeat sales and hedonic log predicted prices, as in (47), is estimated by

OLS. The residual is used as the relative markup in equation (3), which is estimated by OLS. The �gure splits the data into 25

equally-sized bins of the estimated relative markup and plots the mean of the estimated relative markup against the log of the

mean of the probability of sale within 13 weeks net of �xed e¤ects for each bin. Before binning, the 1st and 99th percentiles of

the log sale price residual and any observations fully absorbed by �xed e¤ects are dropped. The entire procedure is weighted

by the reciprocal of the standard deviation of the prediction error in the repeat-sales house price index in the observation�s ZIP

code from 1988 to 2013. Observation counts prior to dropping the 1st and 99th percentiles are 431,830 for panel A (all listings

with a prior observed sale), 318,832 for panel B (listings with a prior observed sale that lead to transactions), and 111,293 for

panel C (IV sample).

Table 33 shows a number of robustness and speci�cation checks. Those di¤erent from the IV

speci�cation checks described previously are:

� House Characteristic Controls: As with IV, this includes a third-order polynomial in age, log

square feet, bedrooms, and bathrooms, but it also includes additive �xed e¤ects for quintiles

of the time since purchase distribution in Xh`t.

� Hedonic predicted price only: Drops the repeat-sales house price index from Xh`t. This

expands the sample to all listings in the data rather than only those with a prior observed

sale.

� Low REO ZIPs: Only includes ZIP codes with less than 20 percent REO sale shares from

2008 to 2013. (REO is a sale of a foreclosed property.)

some withdrawn short sales are counted as non-distressed. This may explain some of the upward slope, as the upward
slope is concentrated in non-withdrawn properties, high short sale ZIP codes, and the later years of my sample.

184



� Low Short ZIPs: Only includes ZIP codes with less than 20 percent short sale shares from

2008 to 2013. (A short sale occurs when a homeowner sells their house for less than their

outstanding mortgage balance and must negotiate the sale with their lender.)

� No REO or Short Sale: Drops REOs, short sales, and withdrawn sales subsequently foreclosed

upon homes, thus only leaving non-distressed sales.

� Transactions only: Drops houses withdrawn from the market.

� IV Subsample: Drops homes with negative appreciation since purchase, REOs, and homes

previously purchased with all cash.

All speci�cations show signi�cant concavity.

A.3.5 Monte Carlo Assessment of Bias From Other Sources of Markup Variation

This appendix presents Monte Carlo simulations to assess the degree of bias from other sources of

variation in the relative markup entering g (�) nonlinearly.

To do so, for each house in the IV sample I simulate dh`t using an assumed g (�) and an estimated

 h`t:

dh`t = g (ph`t � ~ph`t) +  `t + "h`t.

However, rather than assuming ph`t � ~ph`t = f (zh`t), I let ph`t � ~ph`t = f (zh`t) + �h`t and report

results for di¤erent parameterizations for the other sources of relative markup variation �h`t.

Speci�cally, I follow a �ve step procedure 1,000 times and report the average values:

1. Based on �rst stage, calculate ph`t � ~ph`t = f (zh`t).

2. Estimate  `t given g (�)

3. Draw �h`t. Using the known g (�), calculate g (f (zh`t) + �h`t) +  `t

4. dh`t is Bernoulli: a house sells with probability g (f (zh`t) + �h`t) +  `t

5. Run the estimator of interest on the simulated data.
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Table 34: Monte Carlo Simulations: Other Sources of Markup Variation Independent of Instrument

3-Part Spline SD of �h`t
Coef Estimates 0.000 0.01 0.02 0.04
Lowest Tercile -0.215 -0.851 -1.110 -2.486

(0.371) (0.571) (0.422) (0.379)
Middle Tercile 0.201 -0.768 -1.145 -3.002

(1.037) (1.249) (1.090) (1.008)
Highest Terclie -2.219 -1.861 -2.077 -3.386

(0.264) (0.605) (0.816) (0.267)
High - Low -2.006 -1.010 -0.968 -0.900

(0.429) (1.068) (1.032) (0.443)

Notes: Each column shows the mean and standard deviation over 1,000 Monte Carlo simulations of the point estimates of

a three-part spline in g(.) as in the main text. The simulated data is the actual data for all parameters except for

whether the house sold within 13 months, which is created as simulated data using an assumed value for g(.), here the

baseline estimate, and then adding noise to the �rst stage relative markup that is independent of the instrument and

normally distributed with mean zero and the indicated standard deviation. The simulation procedure is described in

detail in the Appendix text.

Table 34 shows results with a normally distributed �h`t that is independent of f (zh`t). The

assumed g (�) is the third-order polynomial estimate of g (�) shown in Figure 5. Increasing the

standard deviation of �h`t leads to a g (�) that is steeper and more linear than the baseline estimates.

Other sources of variation in the relative markup that are independent of the instrument would

thus likely lead to an under-estimate of the true degree of concavity.

Spurious concavity is, however, a possibility if the variance of �h`t is correlated with zh`t. Specif-

ically, consider the case where the instrument captures most of the variation in the relative markup

for sellers with low appreciation since purchase but little of the variation with high appreciation

since purchase. Then the observed probability of sale at low ph`t � ~ph`t would be an average of

the probabilities of sale at true ph`t � ~ph`ts that are scrambled, yielding an attenuated slope for

low ph`t � ~ph`t. However, at high ph`t � ~ph`t, the observed ph`t � ~ph`t would be close to the true

ph`t � ~ph`t, yielding the true slope.

Table 35 illustrates that this type of bias could cause spurious concavity, but that generating the

amount of concavity I observe in the data would require an extreme amount of unobserved variation

in the relative markup at low levels of appreciation since purchase. To show this, I assume the

true g (�) is linear and let the standard deviation of �h`t depend on f (zh`t) as indicated in the �rst

two rows of the table. The �rst column shows estimates with no noise, which are approximately
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Table 35: Monte Carlo Simulations: Other Sources of Markup Variation Corr With Instrument

SD f (z) < :01 0 0.05 0.5 1.0 0.5
SD f (z) � :01 0 0 0 0 0.2
Lowest Tercile -1.267 -1.256 -0.557 -.194 -0.566

(0.382) (0.381) (0.414) (.405) (0.404)
Middle Tercile -1.556 -1.629 -0.768 -.399 -0.786

(1.008) (1.000) (1.084) (1.070) (1.044)
Highest Terclie -1.321 -1.315 -1.454 -1.503 -1.234

(0.263) (0.257) (0.281) (0.275) (0.271)
High - Low -0.054 -0.060 -0.897 -1.310 -.668

(0.450) (0.436) (.479) (0.466) (0.454)

Notes: Each column shows the mean and standard deviation over 1,000 Monte Carlo simulations of the point estimates of a

three-part spline in g(.) as in the main text. The simulated data is the actual data for all parameters except for whether the

house sold within 13 months, which is created as simulated data using an assumed value for g(.), here the baseline estimate,

and then adding noise to the �rst stage relative markup. Here the variance of the noise depends on f (zh`t) (the estimated
log relative markup) and thus the instrument. Speci�cally, the noise is normally distributed with a standard deviation equal

to the �rst row if f (zh`t) < :01 and the second row if f (zh`t) � :01. This makes the noise larger for homes with
more appreciation since purchase, creating the potential spurious concavity from heterskedasticity described in the text. The

simulation procedure is described in detail in the Appendix text.

linear. To generate substantial spurious concavity, the instrument must be near perfect for low

appreciation since sale and that the other sources of variation must have a standard deviation of

over half a log point for low appreciation since purchase. In other words, the amount of other

sources of variation in the relative markup must be near zero for low appreciation since purchase

and over 25 times as great as the variation induced by the instrument for high appreciation since

purchase.

A.4 Model

A.4.1 Laws of Motion and Value Functions

This Appendix derives the probabilities of sale and value functions for a model with a general price

distribution. It then provides the laws of motion and value functions not provided in the main text.

The ex-ante probability of sale for a seller posting price pt with a price distribution of 
t and

a functional market tightness of ~�t is:

d
�
pt;
t; ~�t

�
= q

�
~�t

�
(1�G (pt � E
 [pt]� �)) (1� F ("�t )) .
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The functional market tightness is ~�t � Bt
Svisitedt

= �t
E
[1�G(pt�E
[pt]��)] , where �t =

Bt
St
is the buyer-

to-seller ratio. The probability of purchase for a buyer is the probability of a match times an

integral over all sellers with the integrand equal to the probability of meeting any given seller times

the probability of purchase from that seller:

Pr
h
Buyj
t; ~�t

i
=
q
�
~�t

�
~�t

Z
1�G (pt � E
 [pt]� �)

E
 [1�G (pt � E
 [pt]� �)]
(1� F ("�t (pt))) d
 (pt)

Note the probability distribution the buyer integrates over is the distribution of homes that satisfy

pt��h;t�E [pt] � � but 
 (pt) applies to all posted prices. Multiplying by
1�G(pt�E
[pt]��)

E
[1�G(pt�E
[pt]��)] con-

verts the density ! (pt) from the distribution of posted prices to the distribution of non-overpriced

posted prices. This probability can be simpli�ed by noting that the E
 [1�G (pt � E
 [pt]� �)]

in the denominator of ~�t cancels with the same term in the integral:

Pr [Buy] =
q
�
~�t

�
�t

Z
(1�G (pt � E
 [pt]� �)) (1� F ("�t (pt))) d
 (pt)

=
1

�t

Z
d
�
pt;
t; ~�t

�
d
 (pt)

=
1

�t
E


h
d
�
pt;
t; ~�t

�i
.

With Cobb-Douglas matching, things simplify because,

q
�
~�t

�
= �~�


t = �

�t
E
 [(1�G (pt � E
 [pt]� �))]

.

The seller�s value function is:

V st = s+ �EtV
s
t+1 +maxpt

�
d (pt;
t; �t)

�
pt � s� �EtV st+1

�	
,

where pt is own price. For a staggered model, in period � = 0 when the seller is choosing price, the

value function is:

V s;0t = s+ �EtV
s;1
t+1 +max

p0t

n
d
�
p0t ;
t; �t

� �
p0t � s� �EtV

s;1
t+1

�o
,
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and in period � 6= 0 when price is �xed, the value function is:

V s;�t = s+ �EtV
s;�+1
t+1 + d (p�t ;
t; �t)

�
p�t � s� �EtV

s;�+1
t+1

�
.

p�t = p��1t�1 and V
s;N
t = V s;0t , so that V s;�+1t+1 corresponds to V s;0t+1 when � = N � 1.

The buyer�s value function integrates out over each type of seller, multiplying the probability of

purchase from that type of seller by the surplus obtained from purchasing from that type of seller:

V bt = b+ �EtV
b
t+1 +

1
~�t

Z
d
�
pt;
t; ~�t

�0B@ V ht � p�t � b� �V bt+1 + "
�;�
t (p�t )

+E
�
"� "�;�t (p�t ) j" > "�;�t (p�t )

�
1CA d
 (pt) .

The purchase decisions from each type of seller are optimal, so

"�;�t (p�t ) = p�t + b+ �V
b
t+1 � V ht .

Plugging this into V bt gives:

V bt = b+ �EtV
b
t+1 +

1

�t

Z
d
�
pt;
t; ~�t

�
E
�
"� "�;�t (p�t ) j" > "�;�t (p�t )

�
d
 (pt)

= b+ �EtV
b
t+1 +

1

��t

Z
d
�
pt;
t; ~�t

�
d
 (pt) .

Given the setup presented in the main text and summarized in Figure 6, the laws of motion for

an arbitrary list price distribution 
t are:

Bt =

�
1� 1

�t�1
E
t�1

h
d
�
pt�1;
t�1; ~�t�1

�i�
Bt�1 (48)

+�r
�
1�K

�
k�t�1

��
Rt�1 +

�
1� LK

�
k�t�1

��
�h
�
1� C

�
c�t�1

��
Ht�1 (49)

S =
�
1� E
t�1

h
d
�
pt�1;
t�1; ~�t�1

�i�
St�1 + �

h
�
1� C

�
c�t�1

��
Ht�1 (50)

Ht = E
t�1

h
d
�
p�t�1;
t�1; ~�t�1

�i
St�1 +

�
1� �h

�
1� C

�
c�t�1

���
Ht�1 (51)

Rt =
�
1� �r

�
1�K

�
k�t�1

���
Rt�1 + LK

�
k�t�1

�
�h
�
1� C

�
c�t�1

��
Ht�1. (52)
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For staggered pricing there are laws of motion for each S� :

S�t =
�
1� d

�
p��1t�1 ;
t�1;

~�t�1
��

S��1t�1 8 � 6= 0 (53)

S0t =
�
1� d

�
p��1t�1 ;
t�1;

~�t�1
��

SN�1t�1 + �h
�
1� C

�
c�t�1

��
Ht�1. (54)

The value functions for homeowners and renters are,

V ht = h+ �

264 �h
�
1� C

�
c�t+1

��
Et
�
V st+1 + LV

0 + (1� L)V bt+1
�

��hC
�
c�t+1

�
E [cjc < c�t ] +

�
1� �h

�
1� C

�
c�t+1

���
EtV

h
t+1

375 (55)

V rt = u+ xt + �

264 �r
�
1�K

�
k�t+1

��
EtV

b
t+1 � �rK

�
k�t+1

�
E [kjk < k�t ]

+
�
1� �r

�
1�K

�
k�t+1

���
EtV

r
t+1

375 , (56)

where xt is the stochastic AR(1) shock to the �ow utility of renting. In the staggered model V st+1

is replaced by V s;0t+1. The value functions are standard with the exception of terms for the expected

cost paid by a homeowner and renter if they decide not to enter the housing market, E [cjc < c�t ]

and E [kjk < k�t ], respectively.

A.4.2 Proofs

Lemma 3: Optimal Flexible Price Setting The seller�s value function is:

V st = s+ �V st+1 +maxp

n
d
�
pt;
t; ~�t

� �
pt � s� �V st+1

�o
.

The seller�s optimal price is de�ned by the �rst order condition:

pt = s+ �V st+1 �
d
�
pt;
t; ~�t

�
@d(pt;
t;~�t)

@pt

,

where d
�
pt;
t;~�t

�
is de�ned in equation (12) and "�t = b + �V bt+1 + pt � V ht . The impact of an

individual�s price on E
 [1�G (pt � E
 [pt]� �)] is in�nitesimal so,

@d
�
pt;
t; ~�t

�
@pt

= �d
�
pt;
t; ~�t

�� f ("�t )

1� F ("�t )
+

g ((pt � E
 [pt]� �))
1�G (pt � E
 [pt]� �)

�
,
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which gives:

p = s+ �V st+1 +
1

f("�t )
1�F ("�t )

+ g((pt�E
[pt]��))
1�G(pt�E
[pt]��)

= s+ �V st+1 +
1

1
�

1

1+exp
�
� pt�E
[pt]��

�

� + � .

For uniqueness, the second order condition is:

@2d
�
pt;
t; ~�t

�
@p2t

�
pt � s� �V st+1

�
+ 2

@d
�
pt;
t; ~�t

�
@pt

< 0,

or equivalently,

@2d
�
pt;
t; ~�t

�
@p2t

<
2

d
�
pt;
t; ~�t

�
24@d

�
pt;
t; ~�t

�
@pt

352 .
This condition holds locally, as

@2d(pt;
t;~�t)
@p2t

< 0 around the equilibrium price. However, d
�
pt;
t; ~�t

�
is not globally concave as illustrated by Figure 7. Because it is convex as pt � E
 [pt] ! 1, the

Lemma speci�es that the optimal price is unique on an interval bounded away from pt = 1.

Intuitively, there may be an equilibrium with close to no trade due to the non-concavity, but this

equilibrium is assumed away. Numerical simulations show that the local optimum is the global

optimum for all parameter values considered.

Lemma 4: Optimal Staggered Price Setting The price-setting seller�s value function is:

V s;0t = max
p

n
s+ �V s;1t+1 (p) + d

�
p;
t; ~�t

��
p� s� �V s;1t+1 (p)

�o
,

where

V s;�t (p) = s+ �V s;�+1t+1 (p) + d
�
p;
t; ~�t

��
p� s� �V s;�+1t+1 (p)

�
,

and V Nt = V 0t . The �rst order condition is:

�
�
1� d

�
p;
t; ~�t

��
Et
@V s;1t+1
@p

+ d
�
p;
t; ~�t

�
Et

241 + @d(p;
t;~�t)
@p

d
�
p;
t; ~�t

� �p� s� �V s;1t+1 (p)�
35 = 0,
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where for � < N � 1,

Et
@V s;�t (p)

@p
= �

�
1� d

�
p;
t; ~�t

��
Et
@V s;�+1t+1 (p)

@p

+d
�
p;
t; ~�t

�
Et

241 + @d(p;
t;~�t)
@p

d
�
p;
t; ~�t

� �p� s� �V s;�+1t+1 (p)
�35 ,

and,

Et
@V s;N�1t (p)

@p
= d

�
p;
t; ~�t

�
Et

241 + @d(p;
t;~�t)
@p

d
�
p;
t; ~�t

� �p� s� �s;0t+1�
35 .

De�ning Dj
t (p) = Et

"
j�1Y
�=0

�
1� d�

�
p;
t+� ; ~�t+�

��#
d
�
p;
t+j ; ~�t+j

�
and substituting

@V s;1t+1

@p ; :::;
@V s;N�1t+N�1

@p into the �rst order condition gives:

N�1X
�=0

��D�
t (p)Et

241 + @d(p;
t+� ;~�t+�)
@p

d
�
p;
t+� ; ~�t+�

� �p� s� �V s;�+1t+�+1

�35 = 0.
Rearranging gives:

p =

PN�1
�=0 �

�D�
t (p)Et

"
1 +

� @d(p;
t+� ;~�t+� )
@p

d(p;
t+� ;~�t+�)

�
s+ �V s;�+1t+�+1

�#
PN�1
�=0 �

�D�
t (p)Et

"
� @d(p;
t+� ;~�t+� )

@p

d(p;
t+� ;~�t+�)

# ,

which, de�ning 	�t = Et

"
� @d(pt;
t+� ;~�t+� )

@pt

d(pt;
t+� ;~�t+�)

#
and '�t = s+ EtV

s;�+1
t+�+1 +

1
	�t
, simpli�es to,

p =

PN�1
�=0 �

�D�
t (p)	

�
t'

�
tPN�1

�=0 �
�D�

t (p)	
�
t

.

For uniqueness, that the second order condition is:

Et

8><>: �
�
1� d

�
p;
t; ~�t

��
@2V s;1t+1

@p2
� 2� @d(p;
t;

~�t)
@p

@V s;1t+1

@p

+2
@d(p;
t;~�t)

@p +
@2d(p;
t;~�t)

@p2

�
p� s� �V s;1t+1 (p)

�
9>=>; < 0;
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where

Et
@V s;�t (p)

@p
= Et

8><>: �
�
1� d

�
p;
t; ~�t

��
@V s;�+1t+1 (p)

@p

+d
�
p;
t; ~�t

�
+

@d(p;
t;~�t)
@p

�
p� s� �V s;�+1t+1 (p)

�
9>=>; ;

Et
@2V s;�t (p)

@p2
= Et

8><>: �
�
1� d

�
p;
t; ~�t

��
@2V s;�+1t+1 (p)

@p2
� 2� @d(p;
t;

~�t)
@p

@V s;�+1t+1 (p)

@p

+2
@d(p;
t;~�t)

@p +
@2d(p;
t;~�t)

@p2

�
p� s� �V s;�+1t+1 (p)

�
9>=>; ;

and

Et
@V s;N�1t (p)

@p
= Et

24d�p;
t; ~�t�+ @d
�
p;
t; ~�t

�
@p

�
p� s� �s;0t+1

�35
Et
@2V s;N�1t (p)

@p2
= Et

242@d
�
p;
t; ~�t

�
@p

+
@2d

�
p;
t; ~�t

�
@p2

�
p� s� �s;0t+1

�35 .
The second order condition can be rewritten as:

N�1X
�=0

��
�Y
j=0

�
1� d

�
p;
t+j ; ~�t+j

��8><>: 2
@d(p;
t+� ;~�t+�)

@p +
@2d(p;
t+� ;~�t+�)

@p2

�
p� s� �V s;�+1t+�+1 (p)

�
�2� @d(p;
t+� ;

~�t+�)
@p

@V s;�+1t+�+1

@p

9>=>; < 0,

where,

Et
@V s;t+�t+�

@p
= Et

t+N�1X
k=t+�

8>>>><>>>>:
�k�t��

24 kY
j=t+�

�
1� d

�
p;
j ; ~�j

��35 d�p;
t+�+k; ~�t+�+k�
�
�
d
�
p;
t+�+k; ~�t+�+k

�
+

@d(p;
t+�+k;~�t+�+k)
@p

�
p� s� �V s;t+�+k+1t+�+k+1 (p)

��
9>>>>=>>>>; .
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Combining gives

Et

N�1X
�=0

��
�Y
j=0

�
1� d

�
p;
t+j ; ~�t+j

��8><>: 2
@d(p;
t+� ;~�t+�)

@p +

@2d(p;
t+� ;~�t+�)
@p2

�
p� s� �V s;�+1t+�+1 (p)

�
9>=>;

�Et
N�1X
�=0

��

8>>><>>>:
2�

@d(p;
t+� ;~�t+�)
@p

Pt+N�1
k=t+� �

k�t��

24 kY
j=�

�
1� d

�
p;
j ; ~�j

��35
�@d(p;
t+�+k;~�t+�+k)

@p

�
p� s� �V s;t+�+k+1t+�+k+1 (p)

�
9>>>=>>>;

< Et

N�1X
�=0

��

8<:2�@d
�
p;
t+� ; ~�t+�

�
@p

t+N�1X
k=t+�

�k�t��

24 kY
j=�

�
1� d

�
p;
j ; ~�j

��35 d�p;
t+�+k; ~�t+�+k�
9=; .

This condition must hold for uniquness. As with the �exible case, d
�
pt;
t; ~�t

�
is concave locally

but not globally, as illustrated by Figure 7. Because it is convex as pt � E
 [pt]!1, the Lemma

speci�es the optimal price is unique on an interval bounded away from pt = 1. Locally, the

left hand side of the �nal condition is negative, while the right hand side is indeterminate. In

all simulations considered, this condition holds, and numerical simulations show that the local

optimum is the global optimum for all parameter values considered.

A.4.3 Frictionless Model

In the frictionless case (N = 1 for the staggered model, � = 1 for the backward-looking model),

the de�nition of an equilibrium simpli�es to:

De�nition 7 Equilibrium with �exible pricing is de�ned by a price pt, purchase cuto¤s "�t , and

seller, buyer, homeowner, and renter value functions V st , V
b
t , V

h
t , and V

r
t , entry cuto¤s c

�
t and k

�
t ,

and stocks of each type of agent Bt, St, Ht, and Rt satisfying:

1. Optimal pricing (15). All sellers set the same price so pt = E
 [pt]

2. Optimal purchasing decisions by buyers: "�t = pt + b+ �V
b
t+1 � V ht

3. Demand curve (12) simpli�es to q (�t) (1� F ("�t ))

4. Optimal entry decisions by homeowners and renters who receive shocks (9) and (10)
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5. The value functions for buyers (13), sellers (14), renters (56), and homeowners (55)

6. The laws of motion for all agents (48), (51), (52), and (50).

For the reader�s convenience, the simpli�ed general equilibrium system without a shock is repro-

duced below. Note that d
�
pt;
t; ~�t

�
= �� [1�G (��)]1� (1� F ("�t )) is plugged in everywhere:

Bt =

�
1� 1

�t�1
��t�1 [1�G (��)]

1�
(1� F ("�t ))

�
Bt�1

+�r
�
1�K

�
k�t�1

��
Rt�1 + (1� LK (k�))�h

�
1� C

�
c�t�1

��
Ht�1

St =
�
1� ��t�1 [1�G (��)]

1�
(1� F ("�t ))

�
St�1 + �

h
�
1� C

�
c�t�1

��
Ht�1

Ht = ��t�1 [1�G (��)]
1�

(1� F ("�t ))St�1 +
�
1� �h

�
1� C

�
c�t�1

���
Ht�1

Rt =
�
1� �r

�
1�K

�
k�t�1

���
Rt�1 + LK (k

�)�h
�
1� C

�
c�t�1

��
Ht�1

V ht = h+ �

24 �h
�
1� C

�
c�t+1

�� �
V st+1 + LV

0 + (1� L)V bt+1
�

��hC
�
c�t+1

�
E
�
cjc < c�t+1

�
+
�
1� �h

�
1� C

�
c�t+1

���
V ht+1

35
V rt = u+ xt + �

�
�r
�
1�K

�
k�t+1

��
V bt+1 � �rK

�
k�t+1

�
E
�
kjk < k�t+1

�
+
�
1� �r

�
1�K

�
k�t+1

���
V rt+1

�
V bt = b+ �EtV

b
t+1 +

��t [1�G (��)]
1�

(1� F ("�t ))
��t

V st = s+ �EtV
s
t+1 + ��


t [1�G (��)]

1�
(1� F ("�t ))

1
1
�

1

1+exp(�� )
+ �

"�t = b+ �EtV
b
t+1 + p

i
t � V ht

pt = s+ �EtV
s
t+1 +

1
1
�

1

1+exp(�� )
+ �

c�t = V ht �
�
V st + (1� L)V bt + LV 0t

�
k�t = V rt � V bt

xt = �xt+1 + �, � � N
�
0; �2�

�
A.4.4 Backward-Looking Model

The equilibrium of the staggered pricing model is de�ned by De�nition 6. For the reader�s conve-

nience, the general equilibrium system is reproduced below.
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Full Backward-Looking Model

Bt =

�
1� 1

�t�1

h
�d
�
pNt�1;
t�1;

~�t�1

�
+ (1� �) d

�
pRt�1;
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~�t�1

�i�
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+�r
�
1�K

�
k�t�1

��
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��
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A.4.5 Staggered Pricing Model

The equilibrium of the staggered pricing model is de�ned by De�nition 5. For the reader�s convenience, the

general equilibrium system for two alternating groups of sellers used for most of the simulations without a

shock is reproduced below.
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A.4.6 Steady State

All three variants of the model share a unique steady state that can be found by equating the value of the

endogenous variables across time periods. Steady state values are denoted without t subscripts. Using the

fact that a �xed housing stock of mass one and a �xed population in steady state of mass Pop imply:

H + S = 1

B +H +R = N .

The laws of motion and H + S = 1 give:
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Finally optimal pricing, optimal purchase decisions, and optimal entry decisions imply:

"� = b+ �V b + p� V h

p = s+ �V s +
1

1
�

1

1+exp(�� )
+ �

c� = V h �
�
V s + (1� L)V b + LV 0

�
k� = V r � V b.

One can plug these equations into those for "�, c�, and k� to get a three equation system with three

unknowns that has a unique solution.

For staggered price variant of the model with N staggered groups of list-price-setting sellers, there are

a few more variables that require steady state values. Although each group has a di¤erent price, in steady

state p� = p, "� = ", and V s;� = V s 8 � , where variables � are the frictionless steady-state values. The only

di¤erence between the two models�steady states, then, is the S� . One can show that:

S� =

h
1� q (�) [1�G (��)]1� (1� F ("�))

i�
PN�1

j=0

h
1� q (�) [1�G (��)]1� (1� F ("�))

ij S,
where S is the steady state mass of sellers for the frictionless model. Since all vintages of sellers post the

same price in steady state, this does not a¤ect the three equation system for the frictionless model, which

continues to de�ne the steady state for the staggered-pricing model.

For the backward-looking variant of the model, the steady state of the model is identical to the frictionless

case if pi = p and "i = ", where i = fN;Rg.

A.4.7 Simulation Details

I present two main types of results: impulse response functions and stochastic simulations. For both, I

report price, sales volume, months of supply, and buyer and seller entry. This section describes how these

are computed.

Price is the average transaction price in the market. This is a weighted average of prices, where the

weights are equal to the share of transactions accounted for by sellers with each price:

pt =

R
pid
�
pit;
t;

~�t

�
d
tR

d
�
pit;
t;

~�t

�
d
t

.

For a frictionless model, this is just the common price. For the backward-looking model, this is equal to
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Sales volume is the total amount of sales. This is equal to:
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t

h
d
�
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~�t
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St,

and months of supply is equal to the mass ratio of the mass of sellers to sales volume:
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volt
St
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h
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�
p�t ;
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.

Buyer and seller entry come from the laws of motion (48) and (50) and are equal to:

BEntert = �r (1�K (k�t ))Rt + (1� LK (k�t ))�h (1� C (c�t ))Ht

SEntert = �h (1� C (c�t ))Ht.

Buyer entry has two terms re�ecting the entry decisions of renters who receive shocks and new entrants to

the metropolitan area.

For the impulse response functions, I use Dynare to compute the impulse response as the average di¤er-

ence between two sets of 100 simulations that use the same sequence of random shocks except for one period

in which an additional standard deviation shock is added. For the entry simulation in Figure 1.6.2, I plot the

above values at monthly frequencies form a selected simulation. For Table 8, I run 200 simulations of 500

years, collapse the data to quarterly frequency, then calculate the annual change in log price, log volume,

and log inventory or estimate the price change on inventory levels regression for each of the 200 simulated

series. I report the average values in the table.

A.4.8 Understanding Momentum Arising From Staggered Prices

The full dynamic intuition with staggered pricing is more nuanced than the static intuition presented in

the main text because the seller has to weigh the costs and bene�ts of perturbing price across multiple

periods. The intuition is clearest when one considers why a seller does not �nd it optimal to deviate from

a slowly-adjusting price path by listing his or her house at a level closer to the new long-run price after a

one-time permanent shock to fundamentals.

After a positive shock to prices, if prices are rising slowly why do sellers not list at a high price, sell at

that high price in the o¤ chance that a buyer really likes their house, and otherwise wait until prices are
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higher? Search is costly, so sellers do not want to set a very high price and sit on the market for a very long

time. Over a shorter time horizon, the probability of sale and pro�t are very sensitive to perturbing price

when a house�s price is relatively high but relatively insensitive to perturbing price when a house�s price is

relatively low. This is the case for two reasons. First, despite the fact that the probability of sale is lower

when a house�s price is relatively high, demand is much more elastic and so a seller weights that period�s low

optimal price more heavily. Second, on the equilibrium path, prices converge to steady state at a decreasing

rate, so the sellers lose more buyers today by setting a high price than they gain when they have a relatively

low price tomorrow. Consequently, in a rising market sellers care about not having too high of a price when

their price is high and do not deviate by raising prices when others are stuck at lower prices.

After a negative shock to prices, if prices are falling slowly and search is costly, why do sellers not deviate

and cut their price today to raise their probability of sale and avoid search costs if selling tomorrow means

selling at a lower price? Although the fact that the elasticity of demand is higher when relative price is

higher makes the seller care more about not having too high of a relative price when their price is higher,

there is a stronger countervailing e¤ect. Because prices converge to steady state at a decreasing rate on the

equilibrium path, sellers setting their price today will undercut sellers with �xed prices more than the sellers

are undercut in the future. They thus gain relatively fewer buyers by having a low price when their price

is relatively high and leave a considerable amount of money on the table by having a low price when their

price is relatively low. On net, sellers care about not having too low of a price when they have the lower

price and do not deviate from a path with slowly falling prices.

These intuitions in Figure 38, which shows simulation results for the N = 2 case that depict the weights

placed the optimal �exible price in each period, the optimal �exible price in each period, and the reset price,

equal to the weighted average of the optimal �exible prices. The solid blue line corresponds to the period in

which the price is reset, in which the seller is in the higher priced group, and the dashed red line corresponds

to the period after the price is reset, in which the seller is in the lower priced group. Panels A, B, and C are

for an upward shock, while panels D, E, and F are for a downward shock. In Panel A, the weight is much

larger on the reset period� and a lower optimal reset price� because the elasticity of demand is higher. The

opposite is true in panel D, as the weighting e¤ect works against momentum, which is why momentum in

reset prices appears stronger on the upside in the staggered variant of the model. However, the weighting

e¤ect is more made up for by the speed of convergence to steady state, which can most clearly be seen in

the asymmetry of the optimal reset price responses in panel E.

Another way of putting these intuitions is that the model features a trade-o¤ between leaving money on

the table when a seller has the relatively low price and gaining more buyers when a seller has the relatively

high price. On the upside, since price resetters raise prices more than future price setters and since they care
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Figure 38: Understanding Momentum Arising From Staggered Pricing
Notes: Panels A, B and C show the impulse response to an upward shock and panels D, E, and F show the impulse response to

a downward shock in response to a one-time surprise shock at time zero in a deterministic model solved in Dynare by Newton�s

method. Panels C and F show the optimal reset prices. Because the optimal reset price is a weighted average of the optimal

�exible prices that would prevail in the period the price is reset (period 0) and the period after (period 1), panels A and D

show the weights and panels B and E show the optimal �exible prices for each period. Panels C and F are thus equal to the

sum of the products of the blue lines and dotted red lines in the preceding two panels.

more about states with more elastic demand, the loss from losing buyers when a resetters have the relatively

high price is stronger. On the downside, since price resetters cut prices more than future price resetters, the

money left on the table by having a lower price when their prices are relatively low is stronger.

A.5 Calibration

A.5.1 Calibration Targets

The aggregate moments and parameters chosen from other papers are:

� A long-run homeownership rate of 65 percent. The homeownership hovered between 64 percent and

66 percent from the 1970s until the late 1990s before rising in the boom of the 2000s and falling
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afterwards.

�  = 0:8 from the median speci�cation of Genesove and Han (2012). Anenberg and Bayer (2013) �nd

a similar number.

� L = 0:7 from the approximate average internal mover share for Los Angeles of 0.3 from Anenberg

and Bayer (2013), which is also roughly consistent with Wheaton and Lee�s (2009) analysis of the

American Housing Survey and Table 3-10 of the American Housing survey, which shows that under

half of owners rented their previous housing unit.

� A median tenure for owner occupants of approximately nine years from American Housing Survey

1997 to 2005 (Table 3-9).

� The approximately equal time for buyers and sellers is from National Association of Realtors surveys

(Head et al., 2014; Genesove and Han, 2012). This implies that a normal market is de�ned by a

buyer to seller ratio of � = 1. I assume a time to sale in a normal market of four months for both

buyers and sellers. There is no de�nitive number for the time to sale, and in the literature it is

calibrated between 2.5 and six months. The lower numbers are usually based on real estate agent

surveys (e.g., Genesove and Han, 2012), which have low response rates and are e¤ectively marketing

tools for real estate agents. The higher numbers are calibrated to match aggregate moments (Piazzesi

and Schneider, 2006). I choose four months, which is slightly higher than the realtor surveys but

approximately average for the literature.

� Price is equal to $750,000. The average log price in the IV sample corresponds to a price of $632,000,

so the $750,000 number implies that on average from 2008 to 2013 prices were 16 percent below their

steady-state level. This is on the conservative side for coastal California where the bust was severe

and appears to have overshot the long-run equilibrium. The results are not sensitive to using a slightly

larger number.

� �h and �r are set so renters and homeowners experience a shock every 29 months. According to the

American Housing Survey 1997 to 2005 (Table 4-9), approximately 41 percent of renters moved within

the last year. That translates to a 29 month interval between moves, which I assume are the shocks

that induce renters to consider owning. For homeowners, there is not similar data on considered moves,

so I assume the same shock probability as renters. This means that homeowners stay in their homes

when they receive a shock with higher probability than renters.

� c�, the amount that the marginal homeowner in steady state would pay to avoid moving and stay

in their current house, is set equal to the average transaction cost of selling a home from Haurin

and Gill (2002). Haurin and Gill use variation in the length of time that one will stay in a location
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among members of the military for whom assignments to a base are known in advance to estimate

moving costs of owner-occupancy in a user cost framework. Haurin and Gill�s preferred number is

three percent of the home�s value and four percent of household earnings. However, I do not have

household earnings so I use their alternate estimate of �ve percent of the home�s value. I apply this

to the steady state price, c� = 0:05� 750; 000 = $37; 500.

� k�, the amount the marginal renter in steady state would pay to avoid moving and stay a renter,

is set equal to -$20,000 from the imputed tax savings of owner occupancy from Poterba and Sinai

(2008). They �nd that the average household with $125,000 to $250,000 in annual income (I choose

this group because their houses are closest in value to average home in my sample) had an annual 2003

tax savings of $7,689 from homeownership ($2,703 from the mortgage interest deduction, $1,125 from

property tax deduction, and $3,861 from exclusion of imputed rental income). The average renter in

my sample rents for 29 months until the next time they decide to buy or rent, so the total capitalized

value of tax savings is just over $18,500 in 2003 dollars, which I adjust to approximately $20,000 in

2008-2013.

� A seven percent annual discount rate corresponding to the mean estimated value for housing searchers

in Carrillo (2012). The results are not substantially changed by using values between four and 10

percent.

There are several parameters I set to reasonable values that do not have an important e¤ect on the

dynamics:

� The probability a homeowner purchases a home they inspect in steady state is 0.5. This pins down �.

This parameter does not a¤ect the results unimportant and is set so that the probability of a match

is on [0; 1] in the stochastic simulations (with the exception of a few extremely rare circumstances).

� h is set so that the present discounted value of the �ow utility of living in a home is approximately 2/3

of its value in steady state, which implies h = $7,500 per month for a $750,000 house. This parameter

is a normalization.

Three time series moments are used:

� The persistence of the shock � = 0:99 is chosen to match the persistence of local income shocks from

Glaeser et al. (2013). They estimate an ARMA(1,1) process at the city level net of a city �xed

e¤ect and linear drift term to back out the shocks that drive housing cycles. Using BEA income data

and Home Mortgage Disclosure Act data on the income of actual home buyers, they �nd an annual

persistence of 0.89, which implies a monthly persistence of 0.99. Their estimated moving average

coe¢ cient is small.
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Figure 39: Seller Entry Elasticity
Notes: Seller entry is computed as Entrantst = Sellerst - Sellerst�1 + Salest, with the stock sellers from the Census Vacancy

Survey and sales from the National Association of Realtors. Price is the CoreLogic national house price index adjusted for

in�ation using the CPI and adjusted for seasonality. All data is quarterly from 1976-2013. The regression coe¢ cient of 0.878

is from a regression of log real price on log seller entry.

� A standard deviation of annual log price changes of 0.065 for the real CoreLogic national house price

index from 1976 to 2013. This is set to match the standard deviation of aggregate prices for homes

that transact collapsed to the quarterly level in stochastic simulations.

� A price elasticity of seller entry of 0.878 based on the CoreLogic, Census, and National Association of

Realtors data from 1976 to 2013. As shown in Figure 39, this relationship is very strong in the data.

As mentioned in footnote 42 in the main text, I use this moment as a target for both �c�c and �k�k

because the stock of buyers is not observed.

Finally, in the calibration to the micro estimates, I use a target of $10,000 for per-period seller �ow cost

to determine the zero point, which is not precisely estimated in the data and depends on the deadline for a

sale used. Together with the target value for the price and the discount rate, the target value for the seller

�ow cost determines the seller�s markup in steady state, which in turn pins down the location of the average

price on the demand curve.

The $10,000 target is based on two pieces of evidence from Genesove and Mayer (1997) and Levitt and

Syverson (2008):

� Genesove and Mayer show that in their data for Boston condominiums, homes with low equity are

listed four percent higher (on a base of $200,000) and are on the market for 15 percent longer at a
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100 percent seller loan-to-value ratio relative to an 80 percent seller loan-to-value ratio. They do not

report average time on the market, so I assume my average steady-state time on the market of four

months. This implies a one month delay nets the seller $13,333.

� Levitt and Syverson show that realtors in Chicago sell their house for on average $7,600 more and

remain on the market for 9.5 days longer. This implies that a one month delay nets the seller $23,000,

although some of this may be due to harder work on the part of the realtor.124

I average these two data points and account for discounting to �nd that the average seller gives up approxi-

mately $18,000 to sell one month sooner. Given that the �ow utility of being a homeowner is set to $7,500,

I set the �ow utility of being a seller to an even -$10,000. This translates in my calibration into a seller

markup of $56,500, or roughly 7.5% of the steady-state sales price.

The assumed seller search cost may have an important e¤ect on the degree of momentum in the model

because it controls the seller�s degree of impatience. To assess the robustness of the results to this parameter,

in Appendix A.6.4 I present results from a calibration that uses a much smaller assumed seller search cost

of $1,450. Although there is somewhat less momentum because sellers are more patient and willing to forgo

matching with a buyer today to obtain a higher price in the future, the model still generates signi�cant

momentum.

The 0.4 �gure for the AR(1) coe¢ cient in the backward-looking model is described in the main text.

A.5.2 Estimation and Calibration Procedure

As described in the text, the estimation and calibration procedure proceeds in two steps. First, I calibrate

to the micro estimates. Then I match the aggregate and time series moments.

Calibration To Micro Estimates

The procedure to calibrate to the micro estimates is largely described in the main text. I start with the

IV binned scatter plot (pb; db), which can be thought of as an approximation of the demand curve by 25

indicator functions after the top and bottom 2.5 percent of the price distribution is dropped. In Figure 5,

the log relative markup pb is in log deviations from the average, and I convert it to a dollar amount using

the average log price in the IV sample. For each combination of �, �, and �, I use equation (25) to calculate

the sum of squared errors:

�bwb
�
db � d3 month (pb)

�2
.

124My estimates imply similar numbers� a one percent price increase on a base of $750,000 increases time on the
market by about six to eleven days. My model, however, implies that a one month delay should require a slightly
smaller price change than three times a 10 day delay.
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Because the data is in terms of probability of sale within 13 weeks, d3 month (pb) = d (pb)+(1� d (pb)) d (pb)+

(1� d (pb))2 d (pb) is the simulated probability a house sells within three months. For the weights wq, I use

a normal kernel centered at the average pb with standard deviation equal to the standard deviation of pb to

ensure I do not over-�t the outliers and consequently over-�t the curvature in the data. I also need to set �t,

the multiplicative constant. I do so by minimizing the same sum of squared errors for a given vector of the

parameters (�; �; �). I then search over the parameter vector to �nd the (�; �; �) that minimizes the sum of

squared errors, using 100 di¤erent random starting values.

As mentioned in the main text, I also choose the price that corresponds to the average price in the

market E [p] to match a seller search cost of $10,000 per month. I do so because the zero point in the binned

scatter plot is not precisely estimated. The seller surplus pins down the steady-state markup because in

steady state:

p =
s

1� � +Markup

�
�

1� � Pr [Sell] + 1
�
,

so given the assumed steady-state values for p and Pr [sell] a given s pins down the markup. I then �nd the

relative price corresponding to E [p] so that the above calibration procedure matches the implied steady-state

markup of $56,500.

Matching the Aggregate Targets

To match the aggregate targets in Table 6, I invert the steady state so that 16 parameters can be solved

for in terms of 16 targets conditional on (�; �; �). I solve this system, de�ned below, conditional on the

14 steady-state targets and values for the �nal two target, �c�c and �k�k, which are set equal as described

above. I then select a value for the standard deviation of innovations to the AR(1) shock ��, run 25 random

simulations on 500 years of data, and calculate the standard deviation of annual log price changes and the

entry elasticity in the simulated data. I adjust the target values for �c�c and �� and recalibrate the remainder

of the moments until I match the two time series moments. For the backward-looking model, I repeat this

procedure altering � until the impulse response to the renter �ow utility shock peaks after 36 months.

The calibration procedure is repeated separately for the staggered price and backward-looking variants

of the model. Although the results are similar, the �� needed to match the data is slightly larger in the

backward-looking model due to the additional momentum. While the calibrated values are not the same,

although the di¤erences are minor.

The 16 Equation System

Many variables can be found from just a few target values, and I reduce the 16 unknowns to a four

equation and four unknown system. I assume there are Per periods per month for the calibration. The

207



system is de�ned by:

� �, L, , �r , �h, and V 0 to their assumed values. Note that �, �r, and �r are adjusted accordingly

based on the number of periods in a month.

� � = 1 from the equality of buyer and seller time on the market.

� The buyer purchases 1/2 of the time, which implies 1�F ("�) = 1
2 . Then using the de�nition of d and

� = 1,

� =
1

4Per (1�G (��))1� (1� F ("�))
:

where [1�G (��)]1� can be found using the calibrated value of  and (�; �).

� Given �, one can solve for "� from Pr [Sell] = � exp (��"�) [1�G (��)]1� .

� The homeownership rate in the model, H
H+B+R , is matched to the target moment. Plugging in steady-

state values gives:

Homeownership Rate =
�r (1�K (k�)) q (�) [1�G (��)]1� (1� F ("�))

�r (1�K (k�)) q (�) [1�G (��)]1� (1� F ("�))

+��h (1� C (c�))�r (1�K (k�))

+LK (k�)�h (1� C (c�)) q (�) [1�G (��)]1� (1� F ("�))

.

The exogenous target value for the probability a homeowner moves in steady state �h (1� C (c�))

(which depends on Per), the known value for q (�) [1�G (��)]1� (1� F ("�)) from time to sale in

steady state (which depends on Per), and the target value for �r can be used to solve for the value of

K� (k) that matches the target homeownership rate Rate:

K (k�) =
1

1 + 1
�r

L�Rate�h(1�C(c�))q(�)[1�G(��)]1�(1�F ("�))
(1�Rate)q(�)[1�G(��)]1�(1�F ("�))�Rate���h(1�C(c�))

.

� The population Pop can then be solved for from Pop = H +B +R:

Pop =
q (�) [1�G (��)]1� (1� F ("�))

q (�) [1�G (��)]1� (1� F ("�)) + �h (1� C (c�))

�
 
1 +

LK (k�)�h (1� C (c�))
�r (1�K (k�)) +

�h (1� C (c�))
q(�)
� [1�G (��)]1� (1� F ("�))

!
.

Again many of the steady-state probabilities depend on Per.
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� (1� C (c�)) can be solved for from the assumed value for �h and the probability a homeowner moves

in steady state �h (1� C (c�)).

� Given targets for K (k�) and C (c�) and target values for c� and k� as well as �c�c and �k�k , the

properties of the uniform distribution can be used to back out �c, c, �k, and k

c = c� � C (c�) (�c� c)

k = k� �K (k�)
�
�k � k

�
.

This leaves h, u, b, and s, which are solved for jointly to match the target price and satisfy three equilibrium

conditions for steady state:

"� = b+ �V b + p� V h

p = s+ �V s +
1

1
�

1

1+exp(�� )
+ �

c� = V h �
�
V s + (1� L)V b + LV 0

�
k� = V r � V b.

A.5.3 Additional Calibrated Values

The calibrated values for the backward-looking model are in Table 7 in the main text. The values for the

staggered model are listed in Table 36.

Table 36: Calibrated Parameter Values for Staggered Price Model

Parameter Value Parameter Value Parameter Value
� 0.994 �k $407k b -$92.4k

 0.800 k -$1,160k s -$9.8k

� 0.506 Pop 1.484 � .0023

�h 0.035 L 0.700 � 3.80

�r 0.035 V 0 $2,606k � 10.47

�c $458k h $7.5k �� 0.311

c -$1,109k u $3.6k � 0.990
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A.6 Additional Simulation Results

A.6.1 Non-Concave Benchmarks

In the main text, I report that without concavity, it would take between 78 and 93 percent backward-looking

sellers to generate a three year impulse response to the renter �ow utility shock. To generate these numbers,

I set � = 300 (in thousands of dollars) so that the concavity kicks in so far from any equilibrium that the

demand curve is linear.

I consider two polar cases. In Figure 10 in the main text, I assume that �� which is now the constant

semi-elasticity of demand since there is no concavity� is equal to its value at the average steady-state price

with concavity, 1
56:5 . Under this calibration, 78 percent backward-looking sellers are needed for a 36-month

impulse response to the renter �ow utility shock. This calibration assumes that the variance of idiosyncratic

preference is much smaller than I estimate it to be in my model based on the semi-elasticity of demand for

relatively low-priced homes. I use this calibration for the non-concave 26.5 percent backward-looking lines

in Figures 10 and 40.

The opposite case I consider is to assume that � is the same as I estimate in the data. This calibration

implies seller markups are much higher but the distribution of buyer idiosyncratic preference is unchanged.

Under this calibration, 93 percent backward-looking sellers are needed for a 36-month impulse response to

the renter �ow utility shock.

Both of these numbers are under 100 percent because with all backward-looking sellers, the impulse

response increases without bound. As the fraction of backward-looking sellers is reduced from 100 percent,

mean reversion is introduced into the IRF. Consequently, any amount of momentum can be obtained by

reducing the fraction of backward-looking sellers from 100 percent.

A.6.2 Downward Shock

Figure 40 shows the impulse response to a downward shock directly analogous to Figure 10. For the 26.5-

percent backward-looking model in panel B of Figure 10, and the variants of the staggered model without

momentum in panel A, the results look very similar to the upward shock. There is, however, a larger price

drop on impact and less momentum for the staggered and concave model. This asymmetry between and

upward shock and a downward shock occurs because in the staggered pricing model, groups of sellers leapfrog

one another each period, as discussed in Appendix A.4.8. The optimal price is a weighted average of the

optimal prices in each period, with the weights corresponding to the discounted probability of sale times the

semi-elasticity of demand. The semi-elasticity of demand� and hence the weight on price� is higher in the

period with a lower price, which helps momentum for an upward shock but works against momentum and
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Figure 40: Price Impulse Response Functions: Downward Shock
Notes: Panel A shows the impulse responses to a one standard deviation shock to the �ow utility of renting in the frictionless

model with concave demand, the staggered model with concave demand, and the staggered model without concave demand. For

the model without concave demand, the threshold for being overpriced � is raised to a level that is never reached, the slope of

the demand curve is adjusted to the steady-state slope at the average price in the concave model, the model is recalibrated, and

the standard deviation of the stochastic shock is adjusted so that the impulse response is even with the frictionless and concave

impulse response after a year. Panel B shows the impulse responses to a one standard deviation shock to the �ow utility of

renting in the backward-looking model with and without concavity. Simulated impulse responses are calculated by di¤erencing

two simulations of the model from periods 100 to 150, both of which use identical random shocks except in period 101 in which

a one standard deviation negative draw is added to the random sequence and then computing the average di¤erence over 100

simulations.

causes the larger drop on impact in for a downward shock.

A.6.3 Impulse Responses For All Variables

In the main text, I only show impulse-responses for non-price variables for an upward shock in the 26.5

percent backward-looking model in Figure 11. Figures 42, 43, and 44 show the same impulse responses for

a downward shock in the 26.5 percent backward-looking model and for an upward and downward shock in

the staggered models.

The downward shock for the backward-looking model looks close to the mirror image of the upward shock.

The staggered model, however, looks somewhat di¤erent. While there is still a gradual price response and

a shorter-lived but analogous buyer and seller entry response, volume and inventory both spike on impact.

This is because prices change more rapidly, so buyers in the market when the shock occurs have a strong

incentive to transact today for an upward shock or to wait to buy for a downward shock. While months of

supply still overshoots, this e¤ect is less substantial and the spike is more prominent.
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Figure 41: Impulse Responses For Calibration With Low Seller Search Cost
Notes: This Figure is the analogue of Figure 10 in the main text using a lower seller search cost for the calibration. Panel A

shows the impulse responses to a one standard deviation negative shock to the �ow utility of renting in the frictionless model

with concave demand, the staggered model with concave demand, and the staggered model without concave demand. For the

model without concave demand, the threshold for being overpriced � is raised to a level that is never reached, the slope of the

demand curve is adjusted to the steady-state slope at the average price in the concave model, the model is recalibrated, and

the standard deviation of the stochastic shock is adjusted so that the impulse response is even with the frictionless and concave

impulse response after a year. Panel B shows the impulse responses to a one standard deviation shock to the �ow utility of

renting in the backward-looking model with and without concavity. For the model without concave demand, the threshold for

being overpriced � is raised to a level that is never reached, the slope of the demand curve is adjusted to the steady-state

slope at the average price in the concave model, and the model is recalibrated. Also shown in panel B in the dotted black line

and with grey 95% con�dence intervals and on the right axis is the impulse response to a one standard deviation price shock

estimated from a quarterly AR(5) for the seasonally and CPI adjusted CoreLogic national house price index for 1976-2013, as

in Figure 1. Simulated impulse responses are calculated by di¤erencing two simulations of the model from periods 100 to 150,

both of which use identical random shocks except in period 101 in which a one standard deviation negative draw is added to

the random sequence, and then computing the average di¤erence over 100 simulations.

A.6.4 Calibration Robustness: Lower Seller Search Cost

The calibration procedure assumes a seller search cost of $10,000 per month based on �gures from two papers.

This assumed parameter is important for the degree of ampli�cation of momentum in the model because it

controls the degree to which sellers are willing to forgo a higher price in the future in order to attract buyers

today. To assess the robustness of the results to this important assumed parameter, this section presents a

calibration with a far smaller seller search cost of $1,450.

To do so, I use the calibration procedure detailed in Appendix A.5 but change the assumed seller search

cost to $1,450. This results in similar parameter values for most variables except �, which is smaller as the

calibration procedure shifts the average price further into the elastic region of the demand curve.
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The results are shown in Figure 41. Two months of staggered pricing leads to an impulse response with

seven to eight months of momentum instead of 10 months in the baseline calibration. The variant of the

model with backward-looking sellers generates a three-year impulse response with 37.5 percent of backward-

looking sellers, rather than 26.5 percent in the baseline calibration. Thus while using a smaller assumed

seller search cost does reduce the degree of momentum generated by the model, the calibrated model still

generates substantial ampli�cation of the underlying shock with a much smaller seller search cost.

A.6.5 Deterministic Impulse Responses For Staggered Model

To show that my results are not due to error in the log-cubic approximation pruning higher order terms used

in the stochastic simulations, Figure 45 shows the impulse response to an upward and downward unexpected

one-time deterministic shock solved exactly by Newton�s method for the staggered model. These impulse

responses look similar to their stochastic counterparts.

213



0 6 12 18 24 30 36
0.025

0.02

0.015

0.01

0.005

0

Lo
g 

Im
pu

ls
e 

R
es

po
ns

e 
to

 1
 S

D
 S

ho
ck

Months

B. 26.5%  Backward Looking Model

26.5% Bac kward Look ing, Concave
26.5% Bac kward Look ing, NonConcave

0 6 12
0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

Lo
g 

Im
pu

ls
e 

R
es

po
ns

e 
to

 1
 S

D
 S

ho
ck

Months

A. Frictionless and Staggered Models

Staggered and Concav e
Staggered and NonConcave
Fric tionles s  and Conc ave

Figure 42: Impulse Responses to Downward Shock in the Rule-of-Thumb Model
Notes: Each panel plots the indicated impulse response to a one standard deviation downward shock for the frictionless and

backward-looking variants of the model. The frictionless model uses the same calibration and shock as the 26.5 percent

backward-looking model with no backward-looking sellers. Simulated impulse responses are calculated by di¤erencing two

simulations of the model from periods 100 to 150, both of which use identical random shocks except in period 101 in which

a one standard deviation negative draw is added to the random sequence and then computing the average di¤erence over 100

simulations.
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Figure 43: Impulse Responses to Downward Shock in the Rule-of-Thumb Model
Notes: Each panel plots the indicated impulse response to a one standard deviation upward shock for the frictionless and

staggered variants of the model. The frictionless model uses the same calibration and shock but all sellers set their price

simultaneously. Simulated impulse responses are calculated by di¤erencing two simulations of the model from periods 100 to

150, both of which use identical random shocks except in period 101 in which a one standard deviation negative draw is added

to the random sequence and then computing the average di¤erence over 100 simulations.
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Figure 44: Impulse Responses to Downward Shock in the Rule-of-Thumb Model
Notes: Each panel plots the indicated impulse response to a one standard deviation downward shock for the frictionless and

staggered variants of the model. The frictionless model uses the same calibration and shock but all sellers set their price

simultaneously. Simulated impulse responses are calculated by di¤erencing two simulations of the model from periods 100 to

150, both of which use identical random shocks except in period 101 in which a one standard deviation negative draw is added

to the random sequence and then computing the average di¤erence over 100 simulations.
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Figure 45: Response to One-Time Deterministic Shock (Non-Approximated)
Notes: Each panel plots the value of the indicated variable divided by its initial steady-state value in response to a -.3

deterministic permanent shock to u (roughly consistent with one standard deviation stochastic shock) in the upward panel and
a .3 deterministic shock in the downward panel. The frictionless model uses the same calibration and shock but all sellers set

their price simultaneously. Both are solved exactly by Newton�s method assuming that the model returns to steady state in

500 years and use the same calibration as the stochastic staggered model, and the frictionless model includes no staggering.
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B Chapter 2 Appendix

B.1 Derivations and Proofs

B.1.1 Steady Sate

Denoting steady state values with a star superscript, the no default assumption means that l�1 = 0, v
�
d = 0,

v�r = 0. v
�
n = v�b and l

�
0 = 1� v�n. This implies �

� = 1, qs (��) = qb (�
�) = �, r�n = 1, and r

�
d = 0. Because

in�ows into being a seller and out�ows from being a seller are equal in steady state,

(1� v�n)  = v�n� (1� F (h�n))

v�n =


 + � (1� F (h�n))
l0 =

� (1� F (h�n))
 + � (1� F (h�n))

:

Replacing the conditional expectations of surpluses with di¤erences of cuto¤s as in (38) and setting r�n = 1,

r�d = 0, and q
�
s = q�b = � yields simpli�ed steady state value functions:

V �h =
h+ � f (V �n +B�)g

1� � (1� )

B� =
ub
1� � +

(1� �)� (1� F (h�n))E [h� h�njh � h�n]

(1� �) (1� � (1� ))

V �m =
m

1� � +
�� (1� F (h�m))E [h� h�mjh � h�m]

(1� �) (1� � (1� )) ;m 2 fn; dg

R� =
ur + ��B

�

1� �(1� �) :

With everything in terms of the cuto¤s, a two-equation system that pins down h�n and h
�
d. Subtracting the

cuto¤ condition (34) at the distressed and non-distressed cuto¤s gives:

V �hn � V
�
hd
= (mn �md) + � [V

�
n � V �d ] :

Plugging in the steady state values and manipulating yields an equation that implicitly de�nes the di¤erence

of the cuto¤s:

h�n � h�d = (mn �md)
1� � (1� )
(1� �) (57)

+�
�

1� �� f(1� F (h
�
n))E [h� h�njh � h�n]� (1� F (h�d))E [h� h�djh � h�d]g :

The second equation comes from evaluating the cuto¤ condition (34) at h�n:

Vh�n = mn + ub + � [B
� + V �n ] : (58)
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Equations (57) and (58) de�ne a system that can be solved for h�d and h
�
n. All of the other steady-state

variables are written in terms of these cuto¤s.

Proposition 8 If a < mn + ub +
�(1�)�E[h�a]
1��(1�) , there exists a unique steady state of the model.

Proof. Because there are no REO sellers in steady state,

V �n +B
� =

mn + ub
1� � +

� (1� F (h�m))E [h� h�mjh � h�m]

(1� �) (1� � (1� ))

The cuto¤ condition for h�n is:

h�n + � [V
�
n +B

�]

1� � (1� ) = mn + ub + � [V
�
n +B

�]

h�n
1� � (1� ) = mn + ub + �

�
1� � (1� )� 
1� � (1� )

�
[V �n +B

�]

h�n = (1� � (1� )) (mn + ub) + � (1� �) (1� ) [V �n +B�]

Plugging in for V �n +B
� and re-arranging yields:

h�n = (1� � (1� )) (mn + ub) + � (1� �) (1� )
�
mn + b

1� � +
� (1� F (h�n))E [h� h�njh � h�n]

(1� �) (1� � (1� ))

�
h�n = mn + ub +

� (1� )� (1� F (h�n))E [h� h�njh � h�n]

1� � (1� ) (59)

We want to �nd a unique solution to this equation on h�n 2 [a;1). As h�n !1, the RHS of equation (59)

approaches mn � ub. As h�n ! a, the RHS of equation (59) approaches mn + ub +
�(1�)�E[h�a]
1��(1�) . Thus as

long as a < mn + ub +
�(1�)�E[h�a]
1��(1�) , since both the RHS and LHS of equation (59) are continuous in h�n,

by the intermediate value theorem we know there exists a solution on [a;1) to equation (59). Furthermore,

we know that the LHS is strictly increasing in h�n, while the RHS is strictly decreasing in h
�
n since:

d

dx
(1� F (x))E [h� xjh � x] = � (1� F (x)) < 0:

This implies that the solution to equation (59) is unique.

Finally note that

h�d � �
�

1� �� (1� F (h
�
d))E [h� h�djh � h�d]

is a monotonically increasing function of h�d and thus, given the solution h�n to equation (59), there exists a

unique solution to equation (57).

Note that given our assumptions it is generally the case that a < mn+ub+
�(1�)�E[h�a]
1��(1�) and thus that

there is a unique equilibrium. This is because � is close to 1 and  is close to 0, so the denominator of the
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fraction is very small. Uniqueness would only be a concern with a very low discount factor or high moving

probability.

Due to higher holding costs and balance sheet concerns, an REO seller should be more willing to sell the

property conditional on being matched with a buyer than a normal seller. We show this is always the case

in steady state:

Lemma 9 For a given h, the probability of sale for a distressed seller is higher than the probability of

sale for a non-distressed seller.

Proof. Note again that:

d

dx
(1� F (x))E [h� xjh � x] = � (1� F (x)) < 0:

Suppose that h�n � h�d. Then:

(h�n � h�d) �� �

1� �� f(1� F (h
�
n))E [h� h�njh � h�n]� (1� F (h�d))E [h� h�djh � h�d]g

< 0

< (mn �md)
1� � (1� )
(1� �) :

which contradicts equation (57). It must therefore be that h�n > h�d, which indicates that distressed sellers

are more likely to sell than non-distressed sellers.

We use the Nash bargaining condition to back out steady state prices. We have for m 2 fn; dg and a

given h:
�

1� � =
SSm
SBm

=
p�m (h)�m� �V �m
V �h � p�m (h)� �B�

And so

� [V �h � p�m (h)� �B�] = (1� �) [p�m (h)�m� �V �m]

p�m (h) = �V �h � ��B� + (1� �)m+ (1� �)�V �m

= �V �h +m+ �V
�
m � � [m+ �V �m + �B�]

= �
�
V �h � Vh�m

�
+m+ �V �m

=
� (h� h�m)
1� � (1� ) +m+

�m

1� � +
��� (1� F (h�m))E [h� h�mjh � h�m]

(1� �) (1� � (1� ))

=
� (h� h�m)
1� � (1� ) +

m

1� � +
��� (1� F (h�m))E [h� h�mjh � h�m]

(1� �) (1� � (1� )) (60)
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It is also always the case that distressed properties sell for less than non-distressed properties:

Proposition 10 Distressed sales trade at a constant discount, in the sense that p�n(h)� p�d(h) = � for

all h � h�n > h�d for some constant � > 0:

Proof. Taking the di¤erence of prices we get:

p�n (h)� p�d (h) =
� (h�d � h�n)
1� � (1� ) +

mn �md

1� �

+
��� f(1� F (h�n))E [h� h�njh � h�n]� (1� F (h�d))E [h� h�djh � h�d]g

(1� �) (1� � (1� ))

Using equation (57) this simpli�es to:

pn (h)� pd (h) =
� (h�d � h�n)
1� � (1� ) +

mn �md

1� � � mn �md

1� � +
h�n � h�d

1� � (1� )

=
1� �

1� � (1� ) (h
�
n � h�d) � � > 0

B.1.2 Dynamics

This appendix describes how we solve the dynamic model with exogenous defaults presented in section 2.3.

First, the laws of motion simply add in�ows and subtract out�ows according to �gure17:

l0 (t+ 1) = (1� ) l0 (t) + vb (t) qb (� (t))
X
m

rm (t) e
��(hm(t)�a)

l1 (t+ 1) = (1� ) l1 (t)

vn (t+ 1) = l0 (t) +  (1� �) l1 (t) + vn
h
1� qs (� (t)) e��(hn(t)�a)

i
vd (t+ 1) = �l1 (t) + vd

h
1� qs (� (t)) e��(hd(t)�a)

i
vb(t+ 1) = l0 (t) +  (1� �) l1 (t) + vr(t)� + vb(t)

h
1� qb (� (t))

X
rm (t) e

��(hm(t)�a)
i

vr(t+ 1) = �l1 (t) + (1� �)vr(t)

To generate the dynamic path of Vh, we expand the sum in equation (??) and collecting terms:

Vh (t) =
h

1� � (1� ) + �
1X
j=1

h
(� (1� ))j�1 f [Vn (t+ j) +B (t+ j)]g

i
.

The sum in the second term can be written recursively as:

� (t) =  [Vn (t) +B (t)] + � (1� ) � (t+ 1) (61)
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so that

Vh (t) =
h

1� � (1� ) + �� (t+ 1) .

The entire dynamic system can thus be written recursively. The cuto¤ rule then simpli�es to:

hm (t)

1� � (1� ) + �� (t+ 1) = ub + �B (t+ 1) +m+ �Vm (t+ 1) . (62)

The full general equilibrium model is made up of 13 endogenous variables and 13 equations. The

endogenous variables are the cuto¤s hn and hd, the masses vn, vd, vb, vr, l0, and l1, and value functions

�, Vmd
, Vmr

, B, and R. From these values, all of the other endogenous parameters of the model can be

determined. Substituting out the conditional expectation of the surplus using (38), using the exponential

distribution, and using the de�nitions of qb and qs from the matching function gives the dynamic system:

Vn (t) = �Vn (t+ 1) +mn + �� (t)
�

� [1� � (1� )]e
��(hn(t)�a)

Vd (t) = �Vd (t+ 1) +md + �� (t)
�

� [1� � (1� )]e
��(hd(t)�a)

B (t) = �B (t+ 1) + ub + �� (t)
1� �

� [1� � (1� )]
X
m

rm (t) e
��(hm(t)�a)

R(t) = ur + � f�B(t+ 1) + (1� �)R(t+ 1)g

� (t) =  [Vn (t) +B (t)] + � (1� ) � (t+ 1)

l0 (t+ 1) = (1� ) l0 (t) + vb (t)�� (t)
X
m

rm (t) e
��(hm(t)�a)

l1 (t+ 1) = (1� ) l1 (t)

vn (t+ 1) = l0 (t) +  (1� �) l1 (t) + vn
h
1� �� (t) e��(hn(t)�a)

i
vd (t+ 1) = �l1 (t) + vd

h
1� �� (t) e��(hd(t)�a)

i
vb(t+ 1) = l0 (t) +  (1� �) l1 (t) + vr(t)� + vb(t)

h
1� �� (t)

X
rm (t) e

��(hm(t)�a)
i

vr(t+ 1) = �l1 (t) + (1� �)vr(t)
hn (t)

1� � (1� ) + �� (t+ 1) = ub + �B (t+ 1) +mn + �Vn (t+ 1)

hd (t)

1� � (1� ) + �� (t+ 1) = ub + �B (t+ 1) +md + �Vd (t+ 1)

where � (t) = vb(t)
vn(t)+vd(t)

and rm(t) =
vm(t)

vn(t)+vd(t)
. We solve this system using Newton�s Method as imple-

mented in DYNARE, which guesses that the model returns to steady state at time T , solves a system of 13T

equations, and checks that the model is in fact within " of the steady state at time T . Solving the model

with endogenous defaults of section 2.5 is performed similarly although the laws of motion are modi�ed as

described in appendix B.1.4.
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We then back out prices as in the steady state. Prices are de�ned by (39). The mean price for a type

m seller is then:

�pm = Eh [pm;h (t) jhm � hm] =
�

�

1

1� � (1� ) +m+ �Vm (t+ 1) (63)

and the overall mean price in a price index is:

�p = FV olN

�
�

�

1

1� � (1� ) +mn + �Vn (t+ 1)

�
(64)

+FV olD

�
�

�

1

1� � (1� ) +md + �Vd (t+ 1)

�

where FV olm is the fraction of total volume accounted for by type m sellers.

B.1.3 Calibration

As described in the main text, we use �ve aggregate moments from the housing market prior to the crash

to set a, �, mn, and md. These moments are the average price of a normal home in steady state �p�n, the

variance of the residual price distribution �2p�n , the discount for a distressed sale in terms of mean prices

�pn��pd
�pn

, and the time on the market for a normal sale T �n and a distressed sale T
�
d

Using the expressions for the price and the probability of sale in the main text along with properties of

the exponential distribution, these moments are:

�p�n =
�

� [1� � (1� )] +
mn

1� � +
���e��(h

�
n�a)

� (1� �) (1� � (1� ))

�2p�n =
�2

�2 [1� � (1� )]2

�pn � �pd
�pn

=
mn �md

�pn (1� �)
+
���

�
e��(h

�
m�a) � e��(h�m�a)

	
��pn (1� �) (1� � (1� ))

=
h�n � h�d

�pn [1� � (1� )]

T �n =
1� � exp (�� (h�n � a))
� exp (�� (h�n � a))

=
1

�
exp (� (h�n � a))� 1

T �d =
1� � exp (�� (h�d � a))
� exp (�� (h�d � a))

=
1

�
exp (� (h�d � a))� 1

Plugging the second and fourth equations into the �rst gives:

�p�n = �p�n +
mn

1� � +
�

1� �
�p�n

T �n + 1

which implicitly de�nes mn as a function of known parameters and observable moments.

We then de�ne a six equation system with six variables � a, �, �, md, h�n, and h
�
d � that we use to

calibrate the remainder of the model. Taking the square root of the second equation and rearranging gives
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� as a function of � and observable moments:

� =
�

�p�n [1� � (1� )]
:

An expression for a is obtained by inverting the fourth equation h�n = a+ 1
� ln (� (T

�
n + 1)) and then plugging

into the cuto¤ condition for n:

Vh�n = mn + ub + �
�
B� + V �md

�
h�n = (1� � (1� ))mn + � (1� )

�
mn +

�e��(h
�
n�a)

� (1� � (1� ))

�

Plugging in for h�n and solving gives:

a = (1� � (1� ))mn + � (1� )
�
mn +

1

(T �n + 1)� (1� � (1� ))

�
� 1

�
ln (� (T �n + 1))

The equations for � and a, the moments for T �n , T
�
d , and the discount,

�pn � �pd
�pn

=
h�n � h�d

�pn [1� � (1� )]
T �n =

1

�
exp (� (h�n � a))� 1 T �d =

1

�
exp (� (h�d � a))� 1;

along with (57),

h�n � h�d = (mn �md)
1� � (1� )
(1� �) +

�

�

�

1� ��
n
e��(h

�
n�a) � e��(h

�
d�a)

o
;

form the six equation system, which we solve numerically.

Although all of the variables are jointly determined, we have found that � and the gap between md and

mn are principally determined by the gap in time on the market and the REO discount while a and � are

principally determined by the moments of the price distribution.

B.1.4 Extended Model

For the extended model, the housing market is unchanged and so the value functions are unchanged. Only

the laws of motion di¤er, as described by Figure 20. As described in the text, we have two di¤erent

exogenous shocks. First, we assume that a fraction � (t) of individuals who sell due to taste shocks become
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renters instead of buyers and shock � (t). This leads to the following laws of motion:

l0 (t+ 1) = (1� ) l0 (t) + vb (t) qb (� (t))
X

rm (t) (1� F (hm (t))) + w (t)
G (Vn (t))�G (Vn (t� 1))

1�G (Vn (t� 1))
l1 (t+ 1) = (1� ) l1 (t)

w (t+ 1) = (1� I)w (t) + ( � I) l1 (t) (1�G (Vn (t)))� w (t)
G (Vn (t))�G (Vn (t� 1))

1�G (Vn (t� 1))
f (t+ 1) = I l1 (t) (1�G (Vn (t))) + Iw (t)

+f (t)

�
1� 1

�f (t) + 1

�
� f (t) G (Vn (t))�G (Vn (t� 1))

1�G (Vn (t� 1))

vn (t+ 1) = l0 (t) + l1 (t)G (Vn (t)) + (w (t) + f (t))
G (Vn (t))�G (Vn (t� 1))

1�G (Vn (t� 1))
+vn [1� qs (� (t)) (1� F (hn (t)))]

vd (t+ 1) =
f (t)

�f (t) + 1
+ vd [1� qs (� (t)) (1� F (hd (t)))]

vb(t+ 1) = (1� �) [l0 (t) + l1 (t)G (Vn (t))] +

+vr(t)� + vb(t)
h
1� qb (� (t))

X
rm (t) (1� F (hm(t)))

i
vr(t+ 1) = �

�
I l0 (t) + I l1G (Vn (t)) + w (t)

G (Vn (t))�G (Vn (t� 1))
1�G (Vn (t� 1))

�
+f (t)

G (Vn (t))�G (Vn (t� 1))
1�G (Vn (t� 1))

+
f (t)

�f (t) + 1
+ (1� �)vr(t)

Second, we assume that a falls permanently and that I declines gradually after 10 years. This is the same

as setting � = 0 above, shocking a, and using the following auto-regressive process for a:

I = � t�I where � t = �� t�1 and �1 = 1

We assume � = 1 for �ve years when it falls to � = :95.

These laws of motion simply add in�ows and subtract out�ows. A fraction (1�G (Vn (t))) of individuals

who receive taste shocks default and the same fraction of individuals with taste shocks become locked in.

A fraction � of individuals who would become buyers and sellers become a buyer and a renter instead. A

mass f(t)
�f(t)+1 experiences a foreclosure completion. The �nal added complexity is accounting for the mass of

individuals who were locked in in period t�1 but are no longer locked in in period t or who were in foreclosure

in period t � 1 but are no longer in foreclosure in period t due to rising prices. Because only individuals

with a loan balance above Vn (t� 1) are locked in at time t� 1, this mass is a fraction G(Vn(t))�G(Vn(t�1))
1�G(Vn(t�1)) of

the mass w (t) and f (t), respectively.

These laws of motion replace the laws of motion in appendix B.1.2 above. The rest of the equations are

the same, yielding a 15 equation and 15 unknown dynamic system.
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B.2 Details Omitted From Main Text

B.2.1 Details of Isolating Each E¤ect

As described in the main text we perform three experiments to isolate the role of each driving force in our

model. We provide the details of these experiments here:

1. To shut down the market tightness e¤ect, we assume that a homeowner who defaults is not forced

to become a renter for a certain random amount of time, but can instead immediately re-enter the

housing market as a buyer. The law of motion for the stock of buyers in the market then becomes

vb(t+ 1) =  (l0 (t) + l1 (t)) + vb(t)
h
1� qb (�)

X
rm (t) e

��(hm(t)�a)
i
;

while all other equations remain unchanged. Note that the stock of renters will always be zero in this

experiment and � (t) = 1 for all t.

2. To shut down the choosey buyer e¤ect, we assume that the buyer believes every seller he meets will

be a retail seller. That is, even though there may well be distressed sellers in the market, the buyer

fails to take their presence into account when determining his optimal market behavior. Along these

lines, for this experiment we modify the Bellman equation of the buyer�s value function to read:

B (t) = �B (t+ 1) + b+ qb (� (t))
1� �

� [1� � (1� )]e
��(hn(t)�a):

Again, we leave all other equations unchanged.

3. Finally, we run an experiment in which we include only compositional e¤ects. For this experiment,

we shut down both the market tightness and choosey buyer e¤ects by modifying the law of motion for

the stock of buyers and the Bellman equation for the buyer�s value function in the manner described

above.

B.2.2 Cross-Markets Analysis With 10% REO Discount

Figure 46 shows the results of the same calibration procedure in 2.7 for a 10% REO discount instead of

a 20% REO discount. The lower REO discount weakens the compositional e¤ect whereby a large REO

share reduces the aggregate price index by mechanically placing more weight on properties that sell at a

discount. The lower discount also weakens the choosey buyer e¤ect, since the bene�t of waiting for a

foreclosure is reduced somewhat (though it still grows substantially in the downturn). Consequently, to

match the non-linearity in price declines relative to the size of the preceding boom, the non-compositional
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Figure 46: Cross-MSA Simulations vs. Data: 10% REO Discount

Note: Scatter plots of data vs. simulation results for 97 MSAs in regression analysis for a 10 percent discount. The

red X represents the national simulation and each black dot is an MSA. The 45-degree line illustrates a perfect match

between the model and the data. The variable being plotted shown in each plot�s title. Data is fully described in

appendix B.4. The calibration methodology described in text and appendix B.4.
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Table 37: Judicial vs. Non-Judicial States

Dependent Variable � log (P) � log (PRetail )
Data 0.084 0.053

(0.035)** (0.025)**
Model With Backlogs 0.014 0.002

(0.005)*** (0.002)
Model No Backlogs 0.008 0.004

(0.004)* (0.002)*
N 45 45

Notes: * = 10% Signi�cance, ** = 5% Signi�cance *** = 1% signi�cance. All standard errors are robust to

heteroskedasticity. Every reported coe¢ cient is for the judicial state dummy in a regression that includes a linear

and quadratic term for change in log price 2003-2006, z score for share with LTV over 80 percent and its interaction

with change in log price 2003-2006, and z score for share with second mortgage and its interaction with change in log

price 2003-2006. These regressions do not include the Saiz (2010) variables, which are not available at the state level.

The columns di¤er by dependent variables. The rows di¤er by data source: the �rst row shows the actual CoreLogic

data, the second row uses simulated dependent variable data from a model in which judicial states have a backlog,

and the third row uses simulated dependent variable data from a model in which judicial states have no backlog.

Every regression has 45 states as described in Appendix B.4. We use data from Mian et al. (2014), which they

obtained from RealtyTrac.com, to categorize states as judicial foreclosure or non-judicial foreclosure states. Using

this methodology, Connecticut, Delaware, Florida, Illinois, Indiana, Kansas, Kentucky, Louisiana, Maine, Maryland,

Massachusetts, Nebraska, New Jersey, New York, North Dakota, Ohio, Pennsylvania, South Carolina, and Vermont

are judicial states.

e¤ects of foreclosure �the market tightness e¤ect �must be larger. This results in a longer average time

out of the market of 1.3 years relative to 1.05 years for a 20% steady state discount. Additionally, the

permanent price decline is 22.4%, which is slightly bigger than the 21.5% for a 20% discount. Foreclosures

thus exacerbate the downturn by 50%. The permanent price decline in the model remains high in order to

�t the non-linearity shown in Figure 15.

Interestingly, because the compositional e¤ect is reduced, the extent to which foreclosures exacerbate the

retail price decline is increased from 28.7% to 37.5%. Intuitively, with the compositional e¤ect weakened

the retail price declines must be stronger. Unfortunately, this results in a worse average �t for retail price

declines, as shown in panel B of Figure 46. Thus while the model �t for overall price declines is roughly

comparable to the 20% steady state price decline case, we prefer the 20% case shown in the main text.

B.3 Judicial vs. Non-Judicial States

Table 37 shows the coe¢ cient on judicial state of running a regression similar to equation (27) with a judicial

state dummy as described in the table note.125 The �rst row shows the actual data, while the second row

125As with the main text, the results are largely unchanged if we used weighted least squares and weight by the
owner-occupied housing stock.
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shows the results of a model with a backlog of � = 3; 400 for judicial states and no backlog for non-judicial

states and the third row shows the results of a model with no backlog for judicial or non-judicial states.

Adding backlogs to the model is a step in the right direction, but the model is still an order of magnitude

short of the data.

As a result, we speculate that this implies that backlogs cannot be the whole story in judicial states

� there must be some reduction in the incidence of foreclosures as banks respond to the long foreclosure

timelines. While it is possible that � > 3; 400 in judicial states �something we cannot simulate because of

numerical issues �the results of higher backlogs for a national calibration shown in Figure 23 suggests that

even with a much narrower foreclosure pipeline it is not possible to get that judicial states have a log price

decline that is .084 smaller from foreclosure backlogs alone.

B.4 Data Sources and Calculations

Data

The main data source is proprietary data from CoreLogic, which we supplement with data from the U.S.

Census, Saiz (2010), and Mian et al. (2014).

CoreLogic provides us with a monthly data set for the nation, 50 states, and the 100 largest MSAs126

126By CBSA code and name, they are: 10420 Akron, OH; 10580 Albany-Schenectady-Troy, NY; 10740 Albu-
querque, NM; 10900 Allentown-Bethlehem-Easton, PA-NJ; 12060 Atlanta-Sandy Springs-Marietta, GA; 12420
Austin-Round Rock-San Marcos, TX; 12540 Bakers�eld-Delano, CA; 12580 Baltimore-Towson, MD; 12940 Baton
Rouge, LA; 13644 Bethesda-Rockville-Frederick, MD; 13820 Birmingham-Hoover, AL; 14484 Boston-Quincy, MA;
14860 Bridgeport-Stamford-Norwalk, CT; 15380 Bu¤alo-Niagara Falls, NY; 15764 Cambridge-Newton-Framingham,
MA; 15804 Camden, NJ; 16700 Charleston-North Charleston-Summerville, SC; 16740 Charlotte-Gastonia-Rock Hill,
NC-SC; 16974 Chicago-Joliet-Naperville, IL; 17140 Cincinnati-Middletown, OH-KY-IN; 17460 Cleveland-Elyria-
Mentor, OH; 17820 Colorado Springs, CO; 17900 Columbia, SC; 18140 Columbus, OH; 19124 Dallas-Plano-Irving,
TX; 19380 Dayton, OH; 19740 Denver-Aurora-Broom�eld, CO; 19804 Detroit-Livonia-Dearborn, MI; 20764 Edison-
New Brunswick, NJ; 21340 El Paso, TX; 22744 Fort Lauderdale-Pompano; Beach-Deer�eld Beach, FL; 23104 Fort
Worth-Arlington, TX; 23420 Fresno, CA; 23844 Gary, IN; 24340 Grand Rapids-Wyoming, MI; 24660 Greensboro-High
Point, NC; 24860 Greenville-Mauldin-Easley, SC; 25540 Hartford-West Hartford-East Hartford, CT; 26180 Honolulu,
HI; 26420 Houston-Sugar Land-Baytown, TX; 26900 Indianapolis-Carmel, IN; 27260 Jacksonville, FL; 28140 Kansas
City, MO-KS; 28940 Knoxville, TN; 29404 Lake County-Kenosha County, IL-WI; 29820 Las Vegas-Paradise, NV;
30780 Little Rock-North Little Rock-Conway, AR; 31084 Los Angeles-Long Beach-Glendale, CA; 31140 Louisville-
Je¤erson County, KY-IN; 32580 McAllen-Edinburg-Mission, TX; 32820 Memphis, TN-MS-AR; 33124 Miami-Miami
Beach-Kendall, FL; 33340 Milwaukee-Waukesha-West Allis, WI; 33460 Minneapolis-St. Paul-Bloomington, MN-
WI; 34980 Nashville-Davidson�Murfreesboro�Franklin, TN; 35004 Nassau-Su¤olk, NY; 35084 Newark-Union, NJ-
PA; 35300 New Haven-Milford, CT; 35380 New Orleans-Metairie-Kenner, LA; 35644 New York-White Plains-Wayne,
NY-NJ; 35840 North Port-Bradenton-Sarasota, FL; 36084 Oakland-Fremont-Hayward, CA; 36420 Oklahoma City,
OK; 36540 Omaha-Council Blu¤s, NE-IA; 36740 Orlando-Kissimmee-Sanford, FL; 37100 Oxnard-Thousand Oaks-
Ventura, CA; 37764 Peabody, MA; 37964 Philadelphia, PA; 38060 Phoenix-Mesa-Glendale, AZ; 38300 Pittsburgh, PA;
38900 Portland-Vancouver-Hillsboro, OR-WA; 39100 Poughkeepsie-Newburgh-Middletown, NY; 39300 Providence-
New Bedford-Fall River, RI-MA; 39580 Raleigh-Cary, NC; 40060 Richmond, VA; 40140 Riverside-San Bernardino-
Ontario, CA; 40380 Rochester, NY; 40900 Sacramento�Arden-Arcade�Roseville, CA; 41180 St. Louis, MO-IL; 41620
Salt Lake City, UT; 41700 San Antonio-New Braunfels, TX; 41740 San Diego-Carlsbad-San Marcos, CA; 41884 San
Francisco-San Mateo-Redwood City, CA; 41940 San Jose-Sunnyvale-Santa Clara, CA; 42044 Santa Ana-Anaheim-
Irvine, CA; 42644 Seattle-Bellevue-Everett, WA; 44140 Spring�eld, MA; 44700 Stockton, CA; 45060 Syracuse, NY;
45104 Tacoma, WA; 45300 Tampa-St. Petersburg-Clearwater, FL; 45780 Toledo, OH; 46060 Tucson, AZ; 46140
Tulsa, OK; 47260 Virginia Beach-Norfolk-Newport News, VA-NC; 47644 Warren-Troy-Farmington Hills, MI; 47894
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that for 2000-2011 includes:

� The CoreLogic home price index and non-distressed home price index estimated from public records.

We refer to these as the aggregate and retail price indices. The CoreLogic non-distressed price index

di¤ers slightly from the retail price index in the model because it excludes short sales, which we count

as non-REO sales.

� The number of pre-foreclosure �lings and completed foreclosure auctions estimated from public records.

� Sales counts for REOs, new houses, non-REO and non-short sale resales, and short sales estimated

from public records. Because short sales are not reported separately for much of the time frame

represented by the data, we combine short sales and resales into a non-REO existing home sales

measure which we call retail sales. We calculate existing home sales by adding REO and retail sales.

We also use this data to construct the REO share of existing home volume, which we seasonally adjust.

� Estimates of 7 quantiles of the combined loan-to-value distribution for active mortgages: under 50%,

50%-60%, 60%-70%, 70%-80%, 80%-90%, 90%-100%, 100%-110%, and over 110%. These statistics

are compiled by CoreLogic using public records and CoreLogic�s valuation models.

� First lien originations and �rst lien re�nancings estimated using public records.

� Over-90-day-delinquent loans, loans in foreclosure, and active loans estimated using a mortgage-level

database. We use the raw counts to construct the share of active loans that are over 90 days delinquent

and in foreclosure.

� The mean number of days on the market for listed homes and closed sales estimated using Multiple

Listing Service data.

We seasonally adjust the raw CoreLogic house price indices, foreclosure counts, sales counts, and delin-

quent and in-foreclosure loan shares using the Census Bureau�s X-12 ARIMA software with an additive

seasonal factor. For the state and county-level sales counts, auctions counts, days on the market, and REO

share, we smooth the data using a 5 month moving average (2 months prior, the current month, and 2

months post) to remove any blips in the data caused by irregular reporting at the county level.

For the calibration of the loan balance distribution and initial number of mortgages with high LTV ratios,

we adjust the CoreLogic data using data from the American Community Survey as tabulated by the Census.

The CoreLogic data only covers all active loans, while our model corresponds to the entire owner-occupied

housing stock. Consequently, we use the ACS 3-year 2005-2007 estimates of the owner-occupied housing

Washington-Arlington-Alexandria, DC-VA-MD-WV; 48424 West Palm Beach-Boca Raton-Boynton Beach, FL; 48864
Wilmington, DE-MD-NJ; 49340 Worcester, MA.
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stock and fraction of houses with a mortgage at the national, state, and county level, which we aggregate

to the MSA level using MSA de�nitions.127 From this data, we construct the fraction of owner-occupied

housing units with a mortgage and the fraction of owner-occupied housing units with a second lien or home

equity loan. We use these estimates to adjust the loan balance distribution so it represents the entire

owner-occupied housing stock and in our regressions to construct the fraction of owner-occupied houses with

over 80% LTV.

The LTV data is �rst available for March 2006, which roughly corresponds to the eve of the housing bust

as the seasonally-adjusted national house price index reached is peak in March 2006. To approximate the

size of the bubble, we average the seasonally-adjusted price index for March-May 2001, March-May 2003,

March-May 2006, and March-May 2011 to calculate the change in log prices for 2001 to 2006, 2003 to 2006,

and 2006 to 2011. We use these variables in our regressions and to estimate the relative size of the shock

for each geographical area.

We also estimate the maximum log change in seasonally-adjusted prices, smoothed and seasonally-

adjusted volume, and seasonally-adjusted time to sale as well as the maximum REO share for each geo-

graphical area. We estimate the minimum value between March 2006 and December 2011 and the maximum

value between January 2002 and December 2007. We implement these restrictions so that the addition of

counties to the CoreLogic data set prior to 2002 does not distort our results. We calculate the fraction of the

owner-occupied housing stock that was foreclosed upon by adding up completed foreclosure auctions between

March 2006 and December 2012 and dividing by the owner-occupied housing stock in 2006 as calculated

from the ACS adjusted for CoreLogic�s approximately 85% coverage, which is assumed to be constant across

locations. Again, our results are not sensitive to the choice of dates.

From the 100 MSAs and 50 states, we drop two MSAs and �ve states. The Birmingham, Alabama MSA

is dropped because a major county stopped reporting to CoreLogic in the middle of the downturn, and the

Syracuse New York MSA is dropped because loan balance distribution data is not available for this MSA

in 2006. Maine, Vermont, and South Dakota are dropped because loan balance distribution data is not

available for these states in 2006. For the cross-state analysis, we focus on the continental U.S. and omit

Alaska and Hawaii.

We �nally merge data from Saiz (2010) into the MSA data. The Saiz data includes his estimate of

unusable land due to terrain, the housing supply elasticity, and the Wharton Land-Use Regulation Survey

score for each MSA. We are able to match every MSA we have data on except for Sacramento and Honolulu.

Loan Balance Distribution Calibration
127The 3-year ACS estimates include estimates of the housing stock and houses with a mortgage for all counties
with over 20,000 residents. For a few MSAs, one or more small counties are not included in the ACS data. The
bias on our constructed estimates of the fraction of owner-occupied homes with a mortgage and with a second lien
or home equity loan due to these small missing counties is minimal.
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We use a minimum-distance methodology to calibrate the loan balance distribution for each geography.

From the 7 quantiles given to us by CoreLogic and the Census Data on the number of owner-occupied homes

without a mortgage, we construct a CDF of 6 points: the fraction of loans with under 50% LTV, under 60%

LTV, under 70% LTV, under 80% LTV, and under 100% LTV. We then construct a norm for the distance

between the Beta distribution and the empirical CDF. Because the upper tail of the distribution is most

critical for our ampli�cation channel, we weight the under 50%, under 60%, and under 70% parts of the

distribution by .1 and the under 80%, under 90%, and under 100% by .2. We then choose ba and bb, the

parameters of the Beta distribution, to minimize this norm. The resulting �t is close enough that our results

are robust to alternate weightings of the norm.

Sources of Calculations in the Text

All �gures in the introduction are tabulated from the CoreLogic data as described above.

For the calibration of the housing market model, the median tenure for owner occupants of approximately

9 years comes from table 3-9 of the American Housing Survey reports for 1997-2005. The 20% REO discount

comes form Campbell et al.�s (2011) online appendix. They report an average discount over 1987-2009 of

26%. In table A6, they estimate this by year and show that in current housing cycle it was as low as 22.6%

in 2005 and as high as 35.4% in 2009. 20 percent is thus a reasonable discount.

To determine I , the incidence of income shocks for houses in negative equity, we divide the seasonally

adjusted number of foreclosures by the maximum seasonally adjusted number of homes in negative equity

in the CoreLogic data. The mean annual incidence is I = 8:6%.

To get that interest rates decrease the hazard of default for under-water borrowers from 8.6 percent to

7.1 percent, we use data from Bajari et al. (2010) combined with standard mortgage amortization schedules.

We begin by assuming that all mortgages are at 7 percent interest rates and will be re�nanced to 4 percent.

The average mortgage is somewhat below 7 percent, but we choose 7 percent to re�ect that some ARMs reset

at quite high rates and because we want to simulate the largest possible impact of a re�nancing. Assuming

houses are bought with 20 percent down in steady state, a 7 percent mortgage has a monthly payment of

$1,217.50 while a 4 percent mortgage has a monthly payment of $873.67 according to standard amortization

schedules and formulas. Bajari et al. report that the mean loan in their data set has a payment-to-income

ratio of .312. Assuming the $1,217.50 monthly payment matches this ratio, monthly income is $3,902.24.

A reduction of the monthly payment to $873.67 reduces the payment-to-income ratio by .088. Bajari et al.

estimate that a one standard deviation change in the payment-to-income ratio �equivalent to a .124 change

� reduces the hazard of default by 17.5 percent. Assuming linearity a reduction of .088 will reduce the

hazard of default by 12.435 percent. Given the initial hazard of 8.6 percent, this implies a default hazard

with a reduced interest rate of 7.1 percent.

230



For the principal reductions, we assume a $100 billion dollar principal reduction. 21.5 million households

potentially under water implies an approximately $5,000 principal reduction for each house. If all 50 million

households with a mortgage received the reduction, this would be only a $2,000 principal reduction for each

house.
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C Chapter 3 Appendix

C.1 Simulations of Quasi-Experiments (Figure 24)

This appendix describes the simulations of three quasi-experiments in the Rogerson and Wallenius (2009)

model and the robustness of the simulations to alternative assumptions about the intensive margin labor

supply elasticity. Appendix C.4 describes the analytic solution method in detail.

Calibration. The target values used to calibrate the model�s parameters f�; e1; �h; g are described in

the main text. In choosing the fraction of life worked (f) for the calibration, we use the frequency at

which employment is measured in the data. For instance, in the EITC simulation we calculate labor force

participation in a given year as whether an individual worked at all in the past year to match the annual

employment observation CPS. Because of this, the fraction of life worked at any given instant (f) di¤ers

slightly from the stated target value. To calibrate f�; e1; �h; g, we set  = 1
"IN T

to match the target for

the intensive Frisch elasticity. We then calibrate the remaining parameters using the model�s equilibrium

conditions. Finally, we manually adjust e1 to match wR=wmax, following RW.

Experiment 1: Tax Holiday in Iceland. Bianchi et al.�s data is the ratio of the total number of weeks

worked to the potential supply of weeks that could have been worked by all working-age individuals in a

given calendar year. We de�ne labor force participation by whether a generation works in a given week.

We then average across weeks for each calendar year to get an annual measure comparable to Bianchi et

al.�s data. With "INT = :5, f = 79:2%, hmax = :45, and wR=wmax = 1=2, the calibrated values are

 = 2; �h = :384, � = 10:106, and e1 = :593. These parameter values generate a Frisch aggregate hours

elasticity of 2.085 and a Frisch labor force participation elasticity of 1.773. These and all subsequent reported

Frisch elasticities are calculated by simulating a temporary, small tax change using the same methodology

as the Iceland and Canada SSP simulations; see Appendix C.4 for details. The parameter values generate a

compensated aggregate hours elasticity of .663, a compensated labor force participation elasticity of .577, and

a compensated intensive margin hours elasticity of .144. These and all subsequent reported compensated

elasticities are calculated by comparing the steady state change in response to a small tax change; see

Appendix C.4 for details. After the tax change, the maximum hours worked over the life cycle are .737 and

the minimum hours worked are .570.

Experiment 2: SSP Welfare Demonstration in Canada. We generate the e¤ective tax rates for the

treatment and control groups of the SSP welfare demonstration in Canada using information on the hypo-

thetical income of the average individual in the treatment group from Lin et al. (1998). Lin et al. use a

wage regression to estimate that the predicted wage of the average individual in the treatment group is $6:24

per hour for individuals in British Columbia and $5:53 per hour for individuals in New Brunswick. Lin et
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al. then present in Table G.2 an itemized calculation of the average treatment group individual�s income

accounting for taxes and other transfers under the SSP subsidy and for an individual on the standard Income

Assistance (IA) welfare program. This is called hypothetical income because they use the hourly wage rate

and assume the individual works 30 hours per week for 52 weeks per year in both cases.

Using this calculation, in New Brunswick an individual receiving the SSP subsidy would make $20; 184

per year net of taxes and transfers, while an individual working and receiving IA would make $14; 847 per

year. If the individual did not work at all and took IA, they would not realize their earnings of $8; 627

but would have an IA payment that is $6; 117 higher. This re�ects the almost dollar-for-dollar reduction of

welfare payments of earnings above $2; 400. The individual�s income would have been $12; 337 if they had

not worked. The additional income from working 1; 560 hours per year is thus $2; 510 for an individual on

IA and $7; 847 for an individual receiving the SSP subsidy. This implies an hourly wage rate of $1:61 on

IA and an e¤ective tax rate of 70:9% under IA. Under SSP, however, the hourly wage rate is $5:03 and the

e¤ective tax rate is 9:04%.

Similarly, for an individual in British Columbia, an individual receiving the SSP subsidy would make

$28; 267 per year net of taxes and transfers, while an individual working and receiving IA would make $23; 078

per year. If the individual did not work at all and took IA, they would not realize their earnings of $9; 734

but would have an IA payment that is $7; 557 higher. The individual�s income would have been $20; 901

if they had not worked. The additional income from working 1; 560 hours per year is thus $2; 177 for an

individual on IA and $7; 366 for an individual receiving the SSP subsidy. This implies an hourly wage rate

of $1:40 on IA and an e¤ective tax rate of 77:6% under IA. Under SSP, however, the hourly wage rate is

$4:72 and the e¤ective tax rate is 24:3%.

Averaging the British Columbia and New Brunswick results together (as roughly half the sample resides

in each area), an average single parent with one child in the control group faced e¤ective average tax rates

of 74:3% when moving from no work to full-time work at the minimum wage. An average individual in the

treatment group faced e¤ective average tax rates of 16:7% for the same change.

Card and Hyslop observe employment rates at a monthly frequency for 53 months starting from the month

of random assignment. To replicate this data as closely as possible, we de�ne labor force participation by

whether a generation works in a given month. Generating wR=wmax = 1=2 would require e1 < 0. We

therefore set e1 = 0, generating wR=wmax = :615. With "INT = :5, f = 23:25%, and hmax = :45, the

calibrated values are  = 2, �h = :263, and � = 38:378. These parameter values generate a Frisch aggregate

hours elasticity of 3.294 and a participation Frisch elasticity of 3.016. The compensated aggregate hours

elasticity is .765, the compensated participation elasticity is .705, and the compensated intensive margin

hours elasticity is .109. After the tax change, the maximum hours worked are .746 and the minimum hours
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worked are .394.

Finally, the vast majority of individuals in the SSP sample were between the ages of 16 and 46, corre-

sponding to the �rst half of life in our model. Consequently, in our simulation we only consider individuals

in the �rst half of their life, corresponding to ages 16 to 46 out of a 60-year working life from 16 to 76.

Experiment 3: Earned Income Tax Credit in the U.S. The e¤ective tax rates for the 1994 EITC expansion

come from Meyer and Rosenbaum (2000), Table 2: the gain from working for a single mother, which includes

changes in wages, welfare, Medicaid, and taxes as a result of the labor supply decision, was $8; 943 in 1992

and $10; 245 in 1996. This is relative to wages of $18; 165, generating e¤ective tax rates of 50:8% in 1992 to

43:6% in 1996.

Meyer (2010) observes employment rates at an annual level using CPS data. To adjust for observables

and secular time trends, Meyer regresses employment rates on observables, year dummies, and year � number

of children dummies and plots the coe¢ cients on the year � number of children dummies in Figure 2. We

plot the di¤erence between the no children dummies and a weighted average of the one child and two child

dummies, using the weights reported in Table 6 of Meyer (2010). We then add the di¤erence between the

dummies and raw labor force participation rates for one- and two-child mothers to arrive at the series plotted

in Figure 24c.

To replicate the data as closely as possible, in the simulations we de�ne labor force participation by

whether a generation works in a given month. Because of this, we use a target value of f = :758 rather

than f = :791 as in the data. With f = :758 at each instant, the fraction of individuals working in each

year before the quasi-experiment is approximately 79:1%. Because most single mothers are under 45, in our

simulation we only consider individuals in the �rst half of their life, corresponding to simulated ages of 16

to 46 out of a 60-year simulated working life from 16 to 76.

With "INT = :5, f = 68:7%, hmax = :45, and wR=wmax = 1=2, the calibrated values are  = 2; �h = :247,

� = 22:871, and e1 = :574. These parameter values generate a Frisch aggregate hours elasticity of 2.125

and a Frisch participation elasticity of 1.814. The compensated aggregate hours elasticity is .691, the

compensated participation elasticity is .608, and the compensated intensive margin hours elasticity is .144.

Maximum hours worked after the tax change are .460 and minimum hours worked are .370.

Robustness. We now evaluate the robustness of the results to calibrating to an intensive margin Frisch

elasticity of "INT = :25.

For the Iceland simulation, the calibrated values are  = 4, �h = :509, and � = 32:861. These parameter

values generate a Frisch aggregate hours elasticity of 1.897 and a Frisch participation elasticity of 1.738.

With these parameters, labor force participation jumps 13.3%, rather than 13.5% as presented in the main

text. Maximum hours worked after the tax change are .719 and minimum hours worked are .636.
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For the Canada SSP simulation, the calibrated values are  = 4, �h = :337, and � = 306:149. As above

we set e1 = 0, which generates wR=wmax = :611. These parameter values generate a Frisch aggregate

hours elasticity of 3.089 and a participation Frisch elasticity of 2.949. With these parameters, labor force

participation jumps from 23.5% to 76.3% one year after the subsidy is introduced. After the tax change,

maximum hours worked are .585 and minimum hours worked are .421.

For the U.S. EITC simulation, the calibrated values are  = 4; �h = :327, � = 179:957, and e1 = :581.

These parameter values generate a Frisch aggregate hours elasticity of 1.647 and a participation Frisch

elasticity of 1.475. With these parameters, labor force participation jumps from 79.1% to 85.5% on impact

and then rises to 85.7% over the next 4 years. Maximum hours after the tax change are .455 and minimum

hours are .409.

Calibrating to a smaller intensive Frisch elasticity of "INT = :25 thus does not change our conclusions:

the RW model over-predicts the impacts of the temporary changes in Iceland and Canada by an order of

magnitude, but is closer to matching the steady-state impact of the EITC permanent tax change.

C.2 Meta-Analysis of Quasi-Experimental Estimates (Table 17)

This appendix describes how the participation elasticities and standard errors in columns 2 and 3 of Table

17 are calculated. We report standard errors based directly on the authors�estimates if available; if not,

we use the delta method to calculate a standard error for the numerator of the elasticity (log employment

changes) based on reported standard errors for employment e¤ects. If information necessary for the delta

method is missing, we approximate the standard error by assuming the T-statistic on the elasticity would

be the same as the T-statistic on the author�s estimate.

1. Juhn, Murphy, and Topel (1991): The partial elasticity is computed by taking a weighted average

of the estimates in column (3) of Table 9; the weights are computed as the fraction of the population

represented by each estimate using the wage percentiles listed in column (1) of Table 9. We normalize this

partial elasticity by the mean of the employment rate from 1970-89 using one minus the non-employment

values reported in column (3) of Table 1. Participation is de�ned at the weekly level (by the fraction of

weeks worked in the year). For the standard error, the variance of the partial elasticity is computed as a

weighted average of the variances of the estimates in column (3) of Table 9 using the T-statistics reported

in the same column. We normalize this standard error using the mean of one minus the non-employment

values reported in column (3) of Table 1, assuming that non-employment is measured without error.

2. Eissa and Liebman (1996): The percentage change in participation is reported in Table III, column

(4) as 2.8% with a standard error of 0.9%. The participation rate of single mothers is reported in Table II,

column (1) as 73% with a standard error of 0.4%. The percentage change in net earnings for the same data
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source is reported by Meyer and Rosenbaum (2000), Table 2, as the �nancial gain from working for single

mothers in 1990 ($8,458) relative to the gain from working in 1984 ($7,469). The elasticity is thus calculated

as (log(0.73+0.028)-log(0.73))/(log(8458)-log(7469)). Participation is de�ned as positive work hours in the

past calendar year. For the standard error, the delta method is used with the additional assumption that

the �nancial gain in the denominator, for which there is no reported standard error, is measured without

error.

3. Graversen (1998): Table 5, elasticity of participation rate with respect to after tax wage, average of

the four reported estimates for married women and single women, bottom panel, columns (1) and (4). The

author only reports standard errors on the di¤erences-in-di¤erences estimates in Table 4 used to calculate

the elasticities in Table 5. Because complete estimates are unavailable, we approximate the standard error of

each of the four reported estimates by assuming that the T-statistics on the di¤erences-in-di¤erence estimates

are the same as the T-statistic on the elasticities. We then average the four estimates as above to get the

�nal reported standard error.

4. Meyer and Rosenbaum (2001): On page 1092, an elasticity of 1.07 for any employment (positive

work hours) during the year is reported using gross earnings of single mothers as the base level of earnings.

However, the correct denominator to calculate the percentage wage increase is net earnings prior to the

reform after accounting for taxes and transfers. Making the correction requires multiplying the reported

elasticity by the ratio of net earnings to gross earnings prior to the reform. Meyer and Rosenbaum (2000,

page 1043) report that this ratio is 7270/18165, and thus the percentage increase in the wage is actually

45% rather than the 18% assumed to calculate the elasticity reported in Meyer and Rosenbaum (2000). The

corrected elasticity estimate is given by 1.07�7270/18165=0.43. For the standard error, we recreate the

numerator used in the calculation of the 1.07 elasticity as described by the authors on page 1091. The

change in participation rate comes from the estimate in row (1), column (5) of Table 4. Base participation

in 1984 and its standard error are calculated using weighted average of columns 6 and 7 of the �rst row of

Table 2 with the weights calculated from number of observations reported in the last row of column 1 and

2 in Appendix 2. An estimate of the elasticity numerator�s standard error is then calculated using the delta

method. Assuming that the denominator of the elasticity and the ratio of net earnings to gross earnings

are measured without error, then the numerator has the same T-statistic as the calculated elasticity. The

reported standard error for the elasticity is calculated by dividing the elasticity (0.43) by the calculated

numerator�s T-statistic.

5. Devereux (2004): Table 4, panel 2, column (1), own-wage elasticity. Participation is de�ned as positive

work hours in the past calendar year. Standard error from same table.

6. Eissa and Hoynes (2004): Table 6, elasticity of participation with respect wages, average estimate of
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married women and married men, 2nd row from bottom. Participation is de�ned as positive work hours in

the last year. Standard errors are calculated by recreating the authors�elasticity calculation as described on

page 1951 using estimates from Table 6 and using the delta method. Base participation and wage rates are

calculated from Table 2, using weighted averages of the 3rd and 4th columns based on number of observations

reported in the bottom row. The reported standard error is created by combining the married women and

married men standard errors as above.

7. Liebman and Saez (2006): The numerator for the elasticity is computed as log(.483-.012)-log(.483)

using the Change in Wife Labor Force Participation reported in row (1) and column (2) of Table 6 and the

Percent of Wives with Positive Earnings (1990-1992) reported in column (3) of Table 5. The denominator

for the elasticity is computed as log(1-.419)-log(1-.31) based on the change in tax rates reported on pages

10-11 for OBRA93. Participation is de�ned as an indicator for positive annual earnings in the past year.

Standard error is constructed using the delta method assuming that the change in tax rates is measured

without error. This calculation uses the standard error on Change in Wife Labor Force Participation in

Table 6 and the Percent of Wives with Positive Earnings as well as the sample size from Table 5.

8. Meghir and Phillips (2010): Page 247, last paragraph, average of single and married men in-work-

income elasticities, 0.27 and 0.53 respectively. For the standard errors, the authors�calculations are replicated

as described on page 247 using standard errors from Table 3.1, rows (1) and (4), column (4). The standard

errors are then calculated using the delta method for each of the estimates, which are then combined to

create the reported standard error.

9. Blundell, Bozio and Laroque (2013): Page 38, median overall extensive elasticity. Participation is

de�ned as positive work hours in the past calendar year. Standard error was not reported.

10. Carrington (1996): OLS estimates from Table 2. We approximate the population-constant em-

ployment elasticity as the di¤erence between the employment elasticity in column (1) and the population

elasticity in column (5). The standard error is calculated from corresponding standard errors on elasticities

under the assumption that the population and employment elasticity estimates are uncorrelated.

11. Gruber and Wise (1999): Using data reported in Table 1, the elasticity estimate is based on a

regression of log(labor force participation at age 59) on log(e¤ective net-of-tax rate) across countries. Labor

force participation is de�ned as 1 minus fraction of Men Out of Labor Force at age 59; e¤ective net-of-tax

rate is de�ned as 1-implicit tax on earnings. The Netherlands is omitted from the regression because it has

an implicit tax above 1. Reported standard error is from the same regression.

12. Bianchi, Gudmundsson, and Zoega (2001): Estimate and standard error from average of the elastici-

ties for men and women reported in the text, paragraph 4, page 1570. Participation is de�ned at the weekly

level (fraction of weeks worked in the past year).
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13. Card and Hyslop (2005): From Figure 3, labor force participation before the SSP experiment is

23.6%, and the di¤erence between the treatment and control groups during the SSP eligibility period is

13.5%. Estimated average tax rates are computed from �gures in Lin et al. (1998) as described in Appendix

C.1. Participation is de�ned as any employment in the past month. To compute standard errors, sample

sizes in Table 2 adjusted for sample attrition as described in footnote 18 were combined with the data on

participation rates from Figure 3. The delta method was then used assuming the change in net-of-tax wage

rates was measured without error.

14. Brown (2009): We obtain an estimate of 0.08 for the elasticity of retirement age with respect to the

wage using the average of the three estimates reported in column 4 of Table 2. Footnote 33 and Section

6.1 suggest that this is the author�s preferred estimate. To convert this retirement age elasticity into an

elasticity of years of work with respect to the wage rate, we follow footnote 30 and multiply the elasticity

by the ratio of the mean age at retirement to the mean years of service reported in Table 1. The resulting

elasticity is 0.08�(60.73/26.75). Participation is de�ned as years of work, with variation on the retirement

margin. The standard error is constructed from the same table and assumes that the ratio of mean age at

retirement to mean years of service, for which a standard error is not reported, is measured without error.

15. Manoli and Weber (2011): Table 5, re-weighted elasticities. We �rst obtain separate elasticities for

men and women by taking a weighted averages of the re-weighted elasticities; the weights are computed

based on the fraction of individuals at each tenure threshold. The elasticity for men is 0.12 and the elasticity

for women is 0.38. We then take an unweighted average of these numbers to obtain the overall elasticity of

0.25. The standard error is constructed from the same table using the same weighted average methodology.

C.3 Micro vs. Macro Elasticities (Table 18)

This appendix describes how each of the values in Table 18 are calculated. With the exception of the Frisch

aggregate hours macro elasticity, the aggregate hours elasticities are de�ned as the sums of the intensive and

extensive margin elasticities.

Hicksian, extensive margin: The micro estimate is the mean of the estimates in Panel A of Table 17. The

macro estimate is computed by taking the mean of 0.13 from Davis and Henrekson (2005), 0.14 from Nickell

(2003), and 0.25 from Prescott (2004). The elasticity from Davis and Henrekson is computed using the log

di¤erence in employment based on the slope coe¢ cient in Table 3 (bottom panel, Sample C) and the sample

means of labor force participation and tax rates in Table 1 for the corresponding sample. The elasticity

from Nickell is computed using the average point estimate of 2 percent (reported on page 8) and the sample

means of employment rates and tax rates from Tables 1 and 2, respectively. The elasticity from Prescott is

calculated by regressing log labor force participation rates from OECD Stat Extracts on log net-of-tax rates

238



using the same sample of countries and years as Prescott.128 The data on tax rates is taken from Table 2

of Prescott (2004). The data on labor force participation rates are missing for Canada and the U.K. in the

1970s and these observations are therefore excluded.

Hicksian, intensive margin: The micro estimate is the preferred minimum-� estimate using Panels A

and B in Table 1 of Chetty (2012). The macro estimate is the mean of the values reported by Davis and

Henrekson (2005) and Prescott (2004). The value from Davis and Henrekson (2005) is computed using log

di¤erences in annual hours per employed adult based on the slope coe¢ cient in Table 2.3 (middle panel,

Sample C) and the sample means of annual hours per employed person and tax rates in Table 2.1 for the

corresponding sample. The elasticity estimate can be interpreted as a compensated labor supply elasticity if

government expenditure is viewed as unearned income in the aggregate. The value from Prescott (2004) is

calculated by regressing log hours per worker on log net-of-tax rates using OECD data reported by Prescott

in Table 2 on hours per adult, which are converted to hours per worker using labor force participation rates

from the OECD Stat Extracts described above. The data on labor force participation rates are missing for

Canada and the U.K. in the 1970s and these observations are therefore excluded. The elasticity estimate

can be interpreted as a compensated labor supply elasticity if government expenditure is viewed as unearned

income in the aggregate.

Frisch, intensive margin elasticities: the micro estimate is the unweighted mean of 0.70 in Table 2 from

Pistaferri (2003) and 0.37 from Bianchi et al. (2001), as reported in Chetty (2012). The macro value in

brackets is set equal to the micro estimate.

Frisch, extensive margin: The micro estimate is the mean of the estimates in Panel B of Table 1. The

macro value in brackets is computed by subtracting the Frisch micro intensive margin elasticity from the

Frisch aggregate hours macro elasticity.

Frisch, aggregate hours macro: the estimate is computed by taking the mean of the aggregate (total

hours) elasticities implied by two models of business cycles: (1) Cho and Cooley (1994): 2.61 from the sum

of the intensive and extensive margin elasticities implied by the parameters in Table 2 and (2) King and

Rebelo (1999): 4 for representative agent RBC models, from page 975.

C.4 Technical Appendix

This technical appendix describes how we simulate the Rogerson and Wallenius model. We solve the model

analytically as in RW (2007), the working paper version of RW (2009). All of our extensions follow RW�s

solution method (with slightly modi�ed notation). Our results have been veri�ed with iterative methods.

128The data are for men and women aged 15-64 for 1970-1974 and 1993-1996 in order to
match Prescott�s data. Data are available from OECD Stat Extracts at the following URL:
http://stats.oecd.org/Index.aspx?DataSetCode=LFS_SEXAGE_I_R
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The code for our simulations is available at http://obs.rc.fas.harvard.edu/chetty/index.html

Standard Rogerson and Wallenius Model. As described in the main text, each generation solves

max
c;h(a)

log (c)� �
Z 1

0

h (a)
1+

1 + 
da s.t. c = (1� �)

Z 1

0

e (a)max
�
h (a)� �h; 0

	
da+ T

where e (a) = 1 � 2 (1� e1)
�� 1
2 � a

�� is a tent-shaped life-cycle productivity pro�le as shown in Figure 47.
Similar to RW, we assume that the one unit of time corresponds to 60 years. We assume that time t = 0

corresponds to age 16, while time t = 1 corresponds to age 76. The model can be solved iteratively by

backwards induction, but given RW�s choice of functional forms it can be solved analytically as well. For

consistency with RW (2007), we work with generic functions for the utility of consumption (u (c)), the

disutility of labor supply (v (h)), and e¢ ciency units of labor per hour worked (so g (h) = max
�
h� �h; 0

	
above) and plug in speci�c functional forms at the end. Each generation solves

max
c(a);h(a)

Z 1

0

u (c)� v (h (a)) da s.t. c = (1� �)
Z 1

0

e (a) g (h (a)) da+ T

RW show that the optimal solution has two properties. First, there exists a cuto¤ e� such that h� (a) > 0

if e (a) > e� and h� (a) = 0 if e (a) � e�. Consequently, if e (a) is tent shaped, there will be a date at

which the individual enters the labor force and a date at which they exit, and if e (a) is symmetric these

dates will be symmetric around a = :5. Second, if h� (a) is optimal and h� (a1) > 0 and h� (a2) > 0 then

e (a1) > e (a2) ) h� (a1) � h� (a2) so that the individual works weakly more hours when they have higher

productivity. Finally, note that hourly wages are wh (a) = e (a) g (h (a)) =h (a).

Because individuals have a discrete labor market entry and retirement date, an individual works at all

times on some interval
�
AE ; AR

�
where AE is the labor market entry date and AR is the retirement date.

The problem can thus be rewritten:

max
c;h(a);AE ;AR

u (c)�
Z AR

AE

v (h (a)) da s.t. c = (1� �)
Z AR

AE

e (a) g (h (a)) da+ T

In order to solve the model, RW re-order time, so that the most productive moment is at time 0 and the

least productive moment is at time 1. Formally, de�ne ~e (�) for � 2 [0; 1] so that for each �, ~e (�) solves

� =

Z 1

0

I fe (a) � ~e (�)g da

Then ~e (�) is the productivity level such that the individual has a productivity greater than ~e (�) for � of

240



their life and is strictly decreasing by construction. The maximization problem can then be written as

max
c;h(�);��

u (c)�
Z ��

0

v (h (a)) d� s.t. c = (1� �)
Z ��

0

~e (�) g (h (�)) d�+ T

because it will be assumed that e (a) is symmetric around :5, if �� < 1, AE = :5� ��

2 and AR = :5 + ��

2 .

Under the parameters chosen by RW and that we use in our simulations, the constraint h(a) < 1 is

always slack and can therefore be ignored. This permits an analytical solution to the problem. Plugging

in the budget constraint and di¤erentiating with respect to �� and h (�) leads to two �rst order conditions:

v (h (��))

u0
�
(1� �)

R ��
0
~e (�) g (h (�)) d�+ T

� = (1� �) ~e (��) g (h (��)) (65)

v0 (h (�))

u0
�
(1� �)

R ��
0
~e (�) g (h (�)) d�+ T

� = (1� �) ~e (�) g0 (h (�)) (66)

A balanced budget for the government implies that:

�

Z ��

0

~e (�) g (h (�)) d� = T

so the two FOCs can be rewritten as:

v (h (��))

u0
�R ��

0
~e (�) g (h (�)) d�

� = (1� �) ~e (��) g (h (��)) (67)

v0 (h (�))

u0
�R ��

0
~e (�) g (h (�)) d�

� = (1� �) ~e (�) g0 (h (�)) (68)

Note that if the individual works their whole life, �� = 1 and only the second FOC will hold. Additionally,

the second (h (�)) FOC implies that

v0 (h (�))

(1� �) ~e (�) g0 (h (�)) = u0

 Z ��

0

~e (�) g (h (�)) d�

!
= constant 8 � 2 [0; ��]

This di¤erential equation pins down the entire hours pro�le once h (0) = hmax is known. Since �� fully

pins down AE and AR, the optimum is de�ned by two free variables, hmax and ��, pinned down by the two

FOCs. If �� = 1 due to a corner solution, the second FOC will pin down hmax, the only free variable.

The two FOCs can be manipulated to simplify the equilibrium conditions for hmax and ��. First, divide

the two FOCs to eliminate the integral and evaluate at � = 0 to get:

v (h (��))

~e (��) g (h (��))
=

v0 (hmax)

emaxg0 (hmax)
(69)
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Figure 47: Productivity and Hours Pro�les in the RW Model

RW show that this de�nes an increasing relationship between hmax and ��. Second, evaluate the second

FOC at � = 0 to get:
(1� �) emaxg0 (hmax)

v0 (hmax)
=

1

u0
�R ��

0
~e (�) g (h (�)) d�

� (70)

RW show that this de�nes a decreasing relationship between hmax and �. (69) and (70) thus together de�ne

a unique equilibrium that can be solved numerically given e0, e1, �, �h, and . Figure 47 illustrates the

hours pro�le (solid green line) generated by the numerical solution using parameter values from the EITC

simulation presented in the main text alongside the productivity pro�le (dashed blue line).

We now plug in the functional forms u (c) = ln (c), v (h) = �h
1+

1+ , g (h) = h � �h, and to choose a

functional form for ~e (�). RW assume a linear formulation for the productivity pro�le in � time:

~e (�) = ~e (�) = e0 � (e0 � e1)� = (1� �) e0 + �e1

Normalizing e0 = 1, this implies the an age-productivity pro�le of e (a) = 1� 2 (1� e1)
�� 1
2 � a

��. With these
functional forms, (69) and (70) simplify to:

� (hmax)


e0
=

�h (��)
1+

(1 + ) ((1� ��) e0 + ��e1)
�
h (��)� �h

� (71)

(1� �) e0
� (hmax)

 =

Z ��

0

((1� �) e0 + �e1)
�
h (�)� �h

�
d� (72)
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The di¤erential equation for hours can be manipulated to obtain

h (�) = hmax
�
(1� �) e0 + �e1

e0

� 1


Plugging this into the two FOCs and simplifying gives

�h =


1 + 
hmax

�
(1� ��) e0 + ��e1

e0

� 1


(73)

� =
e0 (1� �)

(hmax)


(
hmax

[(1���)e0+��e1]
1

+2�e

1

+2

0

e
1

0 ( 1+2)(e1�e0)

� �h
h
((1���)e0+��e1)2�e20

2(e1�e0)

i) (74)

The intensive margin Frisch elasticity, which is one of the moments we use for calibration, can be calculated

analytically. Rearranging equation (70) and plugging in the functional forms and normalizing e0 = 1 gives:

(1� �)u0 (c) = � (hmax)


Taking logs and di¤erentiating with respect to 1� � holding u0 (c) constant gives:

"Frischhmax, 1�� =
1



Because the hours pro�le shifts vertically by hmax when taxes change, this is also the intensive margin Frisch

elasticity in the model. Consequently, we can calibrate the model to a particular intensive margin Frisch

elasticity "INT by choosing  = 1
"IN T

.

The model is calibrated as described in Appendix C.1. With f�; e1; �h; g chosen, the model can be

solved numerically by inverting equations (73) and (74) to solve for hmax and ��.

Asset Pro�le in the RW Model. In order to characterize the impact of unanticipated tax changes on

labor supply, we need to know assets at the time of the tax change. Because assets and age are the only

state variables, assets holdings are the time of the tax change are adequate to solve the model.

We assume that each generation receives a lump-sum rebate equal to the taxes they pay at each instant

in time. Under this assumption, it is straightforward to back out an agent�s asset position at any time.

Note that the labor market entry and retirement dates are AE = :5 � ��

2 and AR = :5 + ��

2 , respectively.

Between AE and AR, hours are

h (a) = hmax
�
e (a)

e0

� 1


= hmax
�
e0 � 2 (e0 � e1) j:5� aj

e0

� 1
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and so earnings when working are

w (a) = g (h (a)) e (a)

=

"
hmax

�
e0 � 2 (e0 � e1) j:5� aj

e0

� 1


� �h
#
(e0 � 2 (e0 � e1) j:5� aj)

while consumption is always

c = hmax
[e0 � �� (e0 � e1)]

1
+2 � e

1
+2

0

e
1


0

�
1
 + 2

�
(e1 � e0)

� �he0�� + �h (e0 � e1)
(��)

2

2
.

Thus assets at time t are:

St =

8>>>><>>>>:
�ca, a < AE

�ca+
R a
AE

�
hmax

�
e0�2(e0�e1)j:5�aj

e0

� 1
 � �h

�
(e0 � 2 (e0 � e1) j:5� aj) da, a 2

�
AE ; AR

�
�ca+ c, a > AR

The middle term can be simpli�ed analytically to:

St = �ca+ hmax
(e1 + 2a (e0 � e1))

1
+2 �

�
e1 + 2A

E (e0 � e1)
� 1
+2

2e
1


0

�
1
 + 2

�
(e0 � e1)

��he1 (a�A1)� �h
�
a2 �

�
AE
�2�

(e0 � e1)

if a � :5 and

St = �ca+ S:5 + hmax
(2e0 � e1 � 2a (e0 � e1))

1
+2 � (e0)

1
+2

2
�
2 + 1



�
(e1 � e0)

��h (2e0 � e1) (a� :5) + �h
�
a2 � :5

�
(e0 � e1)

if a � :5, where

S:5 = hmax
(e1 + (e0 � e1))

1
+2 �

�
e1 + 2A

E (e0 � e1)
� 1
+2

2e
1


0

�
1
 + 2

�
(e0 � e1)

��he1
�
:5�AE

�
� �h

�
:52 �

�
AE
�2�

(e0 � e1)

We solve each generation�s problem separately and then add across generations, which are weighted equally,

to simulate the overall response to our quasi-experiments.
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Figure 48: Productivity Pro�le ~e (�) For Various Values of Time of Tax Change �t

Permanent Tax Changes. We �rst consider the EITC simulation of a one time permanent tax change.

Consider the problem of an age t individual with assets St as calculated in the previous section who faces a

new tax schedule � . The individual smooths consumption across periods and solves

max
c;h(a)

(1� t)u (c)�
Z 1

t

v (h (a)) da s.t. (1� t) c = (1� �)
Z 1

t

e (a) g (h (a)) da+ T + St

This equation can be solved by analytically re-ordering time as described above in the solution to the RW

model. All the solution requires is changing the ~e (�) pro�le, with � 2 [0; 1� t], to re�ect the fact that some

time has already elapsed.

The new ~e (�) function will be piecewise linear, as illustrated in Figure 48 using the parameter values

used for the EITC simulation in the main text. When t = 0, e (�) = e0 � � (e0 � e1) as above, illustrated

by the solid blue line in Figure 48 below. As t rises, e(�) will be piecewise linear, as the low productivity

time periods up to t will occur once, not twice. Thus e (�) will look the same for low �, but after 2t it will

have twice the slope, as shown by the green dotted line in Figure 48. When t hits :5, no productivity level

occurs twice and so the function will have twice the slope and be linear again. However emax will fall to

e0 � 2 (e0 � e1) (t� :5). This case is illustrated by the red dash-dot line in Figure 48.

Consequently, if t < :5, ~e (�) is

~e (�) =

8<: e0 � � (e0 � e1) if � � 1� 2t

2e0 � e1 � 2 (t+ �) (e0 � e1) if � > 1� 2t
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If t > :5, ~e (�) is

~e (�) = 2e0 � e1 � 2 (t+ �) (e0 � e1)

With this new ~e (�) pro�le, the problem becomes

max
��2[0;1�t];h(�)

(1� t)u
 
(1� �)

R ��
0
~e (�) g (h (�)) d�+ T + St

1� t

!
�
Z ��

0

v (h (�)) da

The model will have an interior solution if the tax change is not large enough to induce h > 1. We show this

is not the case in our three applications by reporting maximum and minimum hours after the tax change for

each simulation in Appendix C.1. With this constraint slack, the model can be solved analytically. Taking

the �rst order conditions, plugging in the government�s balanced budget constraint, T =
R ��
0
~e (�) g (h (�)) d�,

and simplifying gives:

v (h (��))

u0 (c)
= (1� �) ~e (��) g (h (��)) (75)

v0 (h (�))

u0 (c)
= (1� �) ~e (�) g0 (h (�)) (76)

As in the basic RW model, the second FOC implies

v0 (h (�))

(1� �) ~e (�) g0 (h (�)) = u0 (c) = constant 8 � 2 [0; ��]

which pins down the hours pro�le.

The two FOCs can be simpli�ed by dividing the two FOCs to eliminate the integral and evaluating at

� = 0 and by evaluating the second FOC at � = 0. With our functional forms, this yields:

�h (��)
1+

(1 + )
�
h (��)� �h

�
~e (��)

=
� (hmax)



emax

(1� �) emax (1� t)
� (hmax)

 =

Z ��

0

~e (�)
�
h (�)� �h

�
d�+ St

Finally, we know that h (�) = hmax
�
~e(�)
emax

� 1


from the di¤erential equation for the hours pro�le. The two

FOC simplify to:

�� = ~e�1
�
emax

� �h

hmax
1 + 



��
(77)

(1� �) emax (1� t)
� (hmax)

 =
hmax

(emax)
1


Z ��

0

~e (�)
1+ 1

 d�� �h
Z ��

0

~e (�) d�+ St (78)

which we solve numerically.
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With the optimal hmax and �� in hand, it is easy to build the hours pro�le in calendar time. If �� < 1�2t,

the working life will be entirely after t. The individual will enter the labor force at date AE = :5� ��

2 and

exit at date AR = :5 + ��

2 . If �� > 1 � 2t, the agent will have already started working so AE = t. They

will thus exit at date AR = t+ ��. To build the hours pro�le, we build a function � (a): if t > :5,

� (a) = a� t

and if t < :5,

� (a) =

8<: 2 ja� :5j if ja� :5j < t

a� t otherwise

The hours pro�le is then generated by noting that:

h (a) =

8><>: hmax
�
~e(�(a))
emax

� 1


, a 2
�
AE , AR

�
0 otherwise

Temporary Tax Changes. The solution method for Iceland and the Canada simulations � both of which

feature a temporary tax reduction � is similar to the EITC solution. However, now there are two di¤erent

periods in which the above problem is solved � one with tax �0 and one with tax �1 � and thus the solution

consists of a system of four equations and four unknowns � hmax and �� in each tax regime.

Consider the problem of an age t individual with assets St. From t to �t they face a tax rate �0, and then

the tax rate changes to �1. In this section, we assume that �t < 1, as if �t � 1 the individual only faces �0 the

rest of their life and the problem reduces to the EITC problem described above. With perfect consumption

smoothing, the individual�s problem is:

max
c;h(a)

(1� t)u (c)�
Z 1

t

v (h (a)) da

s.t. (1� t) c = (1� �0)
Z �t

t

e (a) g (h (a)) da+ (1� �1)
Z 1

�t

e (a) g (h (a)) da+ T + St

Again re-order time as in RW. There will now be two ~e (�) functions: ~e0 (�0) with �0 2 [0; �t� t] in the

period with taxes �0 and ~e1 (�1) with �1 2 [0; 1� �t] in the period with taxes �1. ~e1 (�1) will look exactly as

in the EITC simulation, with �t replacing t: if �t < :5,

~e1 (�1) =

8<: e0 � �1 (e0 � e1) if �1 � 1� 2�t

2e0 � e1 � 2 (�t+ �1) (e0 � e1) if �1 > 1� 2�t
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and if �t � :5,

~e1 (�1) = 2e0 � e1 � 2 (�t+ �1) (e0 � e1)

As for ~e0 (�0), if �t � :5, then the area between t and �t will only have the increasing side of the absolute value

function:

~e0 (�0) = e0 � (1� 2�t+ 2�0) (e0 � e1)

Similarly, if t � :5, the the area between t and �t will only have the decreasing side of the absolute value

function:

~e0 (�0) = 2e0 � e1 � 2 (e0 � e1) (t+ �0)

If t < :5 and �t > :5, then we will have part of the absolute value function in the ~e0. Let t = min f�t� :5; :5� tg.

Then

~e0 (�0) =

8<: e0 � �0 (e0 � e1) if �0 � 2t

e0 + 2t (e0 � e1)� 2�0 (e0 � e1) if �0 > 2t

With these pro�les in hand, we note that under each tax regime an individual will always work if their

productivity is above a cuto¤ level, as in RW. The problem can then be written as:

max
��0 2[0;�t�t];��12[0;1��t];h0(�);h1(�)

(1� t)u (c)�
Z ��0

0

v (h0 (�0)) d�0 �
Z ��1

0

v (h1 (�1)) d�1

In this case, the model may not have an interior solution as an agent may �nd it optimal to work all of the

time for which the tax is �0. We describe how we handle these corner solutions below.

Calculating the FOC�s and plugging in the government balanced budget constraint in each period gives:

v (h0 (�
�
0))

u0 (c)
= (1� �0) ~e0 (��0) g (h0 (��0))

v0 (h0 (�0))

u0 (c)
= (1� �0) ~e0 (�0) g0 (h0 (�0))

v (h1 (�
�
1))

u0 (c)
= (1� �1) ~e1 (��1) g (h1 (��1))

v0 (h1 (�1))

u0 (c)
= (1� �1) ~e1 (�1) g0 (h1 (�1))

The second FOC implies that:

v0 (h0 (�0))

(1� �) ~e (�0) g0 (h0 (�0))
= u0 (c)

= constant 8 � 2 [0; ��0]
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As before once we know h0 (0) = hmax0 all of h0 (�0) is pinned down. Similarly, the fourth FOC implies that:

v0 (h1 (�1))

(1� �) ~e (�1) g0 (h1 (�1))
= u0 (c) = constant 8 � 2 [0; ��1]

We can then follow the same steps as above, dividing the two FOCs and evaluating at �0 = 0 and �1 = 0

and evaluating the second and fourth FOCs at �0 = 0 and �1 = 0, respectively. Plugging in the functional

forms one gets four equilibrium conditions:

hmax0 = �h
1 + 



�
emax0

~e0 (�
�
0)

� 1


(79)

hmax1 = �h
1 + 



�
emax1

~e1 (�
�
1)

� 1


(80)

(1� �0) emax0 (1� t)
� (hmax0 )

 =
hmax0

(emax0 )
1


Z ��0

0

~e0 (�0)
1+ 1

 d�0 � �h
Z ��0

0

~e (�0) d�0 + (81)

hmax1

(emax1 )
1


Z ��1

0

~e1 (�1)
1+ 1

 d�1 � �h
Z ��1

0

~e (�1) d�1 + St

(1� �1) emax1 (1� t)
� (hmax1 )

 =
hmax0

(emax0 )
1


Z ��0

0

~e0 (�0)
1+ 1

 d�0 � �h
Z ��0

0

~e (�0) d�0 + (82)

hmax1

(emax1 )
1


Z ��1

0

~e1 (�1)
1+ 1

 d�1 � �h
Z ��1

0

~e (�1) d�1 + St

These four equations hold for interior solutions: ��0 2 (0; �t� t) and ��1 2 (0; 1� �t). They also work at the

��0 = 0 and ��1 = 0 corner solutions because then the hours problem is trivial. At the ��0 = �t � t corner

solution, ��1, h
max
0 , and hmax1 are pinned down by the second, third, and fourth FOCs. At the ��1 = 1 � �t

corner solution, ��0, h
max
0 , and hmax1 are pinned down by the �rst, third and fourth FOCs. If both ��1 and

��0 are at corner solutions, only the third and fourth FOCs apply. In each case, we solve the general four

equation system and then proceed to the corner solution cases if ��0 or �
�
1 are not in the correct intervals.

There may also be a corner solution for hours if h0 (�0) > 1 for some �0; this case is considered separately

in a subsequent section.

Having solved for ��0, �
�
1, h

max
0 , and hmax1 , we can then calculate retirement dates and build the hours

pro�le. Let AEi be the labor market entry date and A
R
i be the labor market exit date under tax system i.

If ��1 < 1 � 2�t, the working life will be entirely after �t. The individual will enter the labor force at date

AE1 = :5� ��

2 and exit at date AR1 = :5 + ��

2 . If �
�
1 > 1� 2�t, the agent will have already started working so

AE1 = �t. They will thus exit at date A
R
1 = �t+ ��. As for ��0, if �

�
0 = 0 the worker does not work between

t and �t. If �t < :5, then AE0 = �t � ��0 and A
R
0 = �t. If t > :5, then AE0 = t and AR0 = t + ��0. If t < :5 and

�t > :5, there are three cases. If :5 � t < �t � :5, there are two cases: if 2�0 < :5� t then AE0 = :5 � ��0
2 and

AR0 = :5 +
��0
2 and otherwise AE0 = t and AR0 = t+ �0. If :5� t � �t� :5, there are two cases: if 2�0 < �t� :5
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then AE0 = :� ��0
2 and A

R
0 = :5 +

��0
2 otherwise AE0 = �t� �0 and AR0 = �t.

In order to build the hours pro�le, we proceed as in the EITC section and build a � (a) function. �1 (a)

looks the same as � (a) in the EITC simulation with t replacing �t. For �0 (a), if �t < :5,

�0 (a) = �t� a

if t > :5,

�0 (a) = a� t

If t < :5 and �t > :5, there are two cases: if :5� t < �t� :5,

�0 (a) =

8<: 2 ja� :5j if a < 1� t

a� t otherwise

and if :5� t > �t� :5

�0 (a) =

8<: 2 ja� :5j if a > 1� �t
�t� a otherwise

The hours pro�le can then be generated from the �0 (a) and �1 (a) functions as with a permanent tax change.

Calculating Elasticities. The elasticities reported in the text and Appendix C.1 are constructed by

simulation. For all of the simulations, we compare labor supply under the pre-quasi-experimental tax

regime � to labor supply under a tax regime of �� :01 to approximate an in�nitesimal tax change. Denoting

hours under the two tax regimes by h1 and h2, respectively, the elasticity is calculated as:

" =
ln
�
h2
h1

�
ln
�
1��+:01
1��

�
To calculate the Frisch elasticities, we treat the tax change from � to � � :01 as a temporary tax change

lasting 1
6;000 units of time using 6,000 generations to approximate a tax change for an in�nitesimal moment.

Our reported elasticities are thus an approximation to an experiment in which net-of-tax wages are raised

by dw for a time period dt. We report three intertemporal substitution elasticities: the intensive margin

Frisch elasticity, which we know will be 1
 from the derivation above, a participation Frisch elasticity, and an

aggregate hours Frisch elasticity. For the aggregate hours elasticity, h1 and h2 are aggregate hours. For the

participation elasticity, h1 and h2 are labor force participation rates. For the intensive margin elasticity h1

and h2 are aggregate hours for generations that would have supplied labor in the period of the tax change

if the tax change had not occurred.
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To calculate compensated elasticities, we compare the model�s steady state under a tax regime of � and a

tax regime of ��:01. Our reported elasticities are thus an approximation to an experiment in which net-of-tax

wages are raised permanently by dw and agents�unearned income is reduced by a commensurate amount.

We report three elasticities: the intensive margin compensated elasticity, the participation compensated

elasticity, and the aggregate hours compensated elasticity, which are computed in the same manner as

described in the previous paragraph.

Aggregation Over Generations. The analytical methods above are used to solve for the labor supply of a

given generation. We aggregate over generations to calculate the impacts of a tax change on aggregate labor

supply. To approximate a continuous time environment in which a new generation is born every instant,

we use numerical simulations with a large number of generations. In particular, we project the analytical

solution onto a discrete-time grid for each generation, with one generation born every time period. For

the Iceland simulation, we use 9,360 generations, so three generations are born or die each week. For the

Canada SSP simulation, we use 7,200 generations, so 10 generations are born or die each month. For the

EITC simulation, we use 6,000 generations, so 100 generations are born or die each year. We then bin the

data to report the fraction of the population that worked at any point in the last week (for Iceland), month

(for Canada), or year (for EITC), so that we are consistent with the quasi-experimental data. For the EITC

simulation, we then aggregate up to years to re�ect Bianchi et al.�s data.
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