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Abstract

As deleterious variants continually arise in a population, they tend to be purged

via purifying selection, leading to distortions in the shapes of genealogies relative

to neutral expectations. In recent years, a mounting body of evidence has arisen

suggesting that this can have significant implications for the patterns of diversity

seen in natural populations. However, existing theory has not yet fully characterized

the effects of these distortions on the structure of genealogies. The focus of this thesis

is on exploring this gap, and developing an analytical description of the distortions

that arise in genealogies due to purifying selection.

In the first half of this thesis, we develop a framework for calculating a variety

of statistics that describe sequence variation in the strong selection regime. We will

derive these results using two complementary frameworks: First, using a Poisson

Random Field model to describe lineage frequencies within fitness classes, and second,

using a direct extension of the structured coalescent model. In addition to enabling us

to develop an analytical understanding of a number of important statistics, this will

provide an intuitive picture of the nature of the distortions that arise. In particular, we

show how the concept of a time-dependent effective population size emerges naturally

from the structured coalescent framework.

In the latter half of this thesis, we return to our discussion of a time-dependent

effective population size. We develop a method for explicitly calculating the form of

this function, Ne(t), as well as the analogous time-dependent effective mutation rate,

Ue(t). In addition, we show how this result can be extended to incorporate a variety

of additional scenarios, such as recombination and a distribution of fitness effects.

Within the strong purifying selection regime, this result allows us to completely de-

scribe the shapes of genealogies using a neutral framework with the appropriate Ne(t)

and Ue(t), completely bypassing the need to model the effects of selection directly.
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Abstract

This implies that all of the findings of the standard neutral coalescent will still apply,

and provides a simple way to incorporate purifying selection into neutral methods of

inference and estimation.
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Chapter 1

Introduction

Over thirty years ago now, the first analysis of genetic variation at the nucleotide

level was performed (Kreitman 1983). Not long after came the first data-driven

analyses of genealogies and gene trees (for example, Stephens and Nei (1985),

Aquadro et al. (1986)). With the advent of PCR and the improvement of se-

quencing technologies, studies with more and more individuals, covering longer and

longer sequence lengths came about. The cost of DNA sequencing decreased faster

than exponentially, and today, with the development of next-generation sequencing

technologies and concerted efforts to sequence large samples from populations across

their genomes, there is simply a staggering amount of DNA sequence data available,

and it continues to grow at a rapid rate (see Powell (1994) and Charlesworth

(2010) for reviews of the early history of molecular genetic techniques).

With this data comes the fundamental question, which is central to population

genetics: What exactly can we discern about the history of a population from this

data? As our ability to generate massive amounts of experimental data has grown

tremendously over the years, so too has our understanding of population genetics from

a theoretical perspective. Today, there exists a deep and insightful literature on the

study of gene genealogies and the retrospective analysis of samples from a population.

This understanding has provided a wealth of bioinformatic methods and tools that

allow us to analyze the patterns of DNA sequence data, and to reach conclusions

about the history of populations. However, our abilities are still limited in many

1
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ways. A significant number of open questions remain, and the effects and patterns

expected under a wide variety of complicated scenarios are still poorly understood.

Furthermore, even in cases where we have a solid conceptual understanding of the

patterns we expect to see, there are often no practical methods for detecting or

analyzing these patterns in practice.

The focus of this thesis is on one particular area of theoretical population genetics:

the effects of purifying selection, that is, the continuous creation and removal of dele-

terious variants from a population. We will explore the effects of purifying selection

on genealogies, and analyze the patterns and distortions we expect to see as a result.

Finally, we will investigate methods for predicting and detecting these patterns in

practice. However, before we can delve into the inner workings of purifying selection

and genealogies, we have to start from the beginning, by introducing one of the first,

foundational models in population genetics, the Wright-Fisher model.

1.1 The Wright-Fisher Model

The foundations of modern theoretical population genetics were laid out in the

1920s and early 1930s in pioneering works by Wright, Fisher, and Haldane (Wright

1931; Fisher 1930; Haldane 1927). During this time, the widely-used stochastic

framework known as the Wright-Fisher model was developed. In the simplest version

of this model, we can imagine a population of constant size N . Each generation,

all of the individuals in the population will die and be replaced by their offspring.

The offspring are chosen from the previous generation via random sampling with

replacement. In other words, each descendant will have an ancestor (parent) randomly

chosen from the previous generation. This is shown schematically in Figure 1.1.

2
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Time

Present

Figure 1.1: Schematic of the Wright-Fisher Model: Each generation is chosen
from the previous generation via random sampling with replacement.

We are interested in examining the consequences for this model on the expected

diversity in the population. Suppose, for example, that individuals in this population

may have one of two allelic types at a single locus, denoted either A or a. In the

current generation, we label the total number of individuals of type A as i, such that

the fraction of individuals is p = i/N . We are interested in the distribution of the

number of individuals of type A in the next generation, which is given by the binomial

formula:

P (j) =

(
N

j

)
pj(1− p)N−j. (1.1)

From this, we immediately see that:

E[j] = Np

Var[j] = Np(1− p).

We note that this equation depends only upon the current fraction of the population

in a given allelic state, and thus is independent of all previous generations. Therefore,

we can describe the forward-time dynamics of the population as a Markov process

3
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with transition probabilities given by P (j|i). From this starting point, a vast number

of major results in theoretical population genetics can be derived (Ewens 2004).

The Wright-Fisher process is an inherently stochastic process, such that the fre-

quencies of alleles in the population are subject to extensive random fluctuations.

These random fluctuations are collectively referred to as genetic drift, which operates

on a time-scale of 1/N . To get a sense for this time-scale, we can consider a simple

concrete example (from Wakeley (2009)). Suppose we sample two individuals from

a population at random: What is the probability that they are of the same allelic

type, i.e., what is the heterozygosity? In the present generation, this is simply:

H = 2p(1− p). (1.2)

However, in order to calculate the average heterozygosity in the next generation, we

have that:

H ′ = E[2p′(1− p′)] = 2E[p′]− 2E[p′]2 − 2Var[p′]

H ′ = 2p− 2p2 − 2p(1− p)/N = 2p(1− p)(1− 1/N)

H ′ = H

(
1− 1

N

)
.

Therefore, in subsequent generations, we have that the average heterozygosity is:

H(t) = H(0)

(
1− 1

N

)t
≈ H(0)e−t/N . (1.3)

Thus, we see that the average heterozygosity is decreasing with time, on a time-scale

of order 1/N . Eventually, all individuals in the population will be of the same allelic

class, and the heterozygosity in the population will fall to zero. This will occur when

one of the two alleles fixes in the population, and thus the other allele will have died

out (i.e. when one of the two absorbing states of the Markov process are reached).

Related to this, we may also be interested in the probability that the allele to fix

is that of type A, given that there are initially i individuals of type A. Using the

transition probabilities from above, and denoting f(i) as the probability of fixation

starting with i individuals, we have that:

f(i) =
N∑
j=0

f(j)P (j|i), (1.4)
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Recall that E[j|i] =
∑N

j=0 jP (j|i) = i, such that we can immediately see that the

solution to the above system of equations is simply a constant times the initial fre-

quency. Using the boundary condition f(N) = 1, we see that f(i) = i
N

.

An even simpler way to derive this result is to note that, eventually, all individuals

in the population will be descended from one particular ancestor in the present. Since

all individuals in the present generation are equivalent in their distribution of offspring

number, the probability that any particular individual is the ancestor is simply 1/N ,

and thus the probability that the ancestor is one of the i individuals is i/N . This

concept of equivalent reproductive potential is intimately connected with another key

concept: that of exchangeability.

1.1.1 Approximations and Exchangeability

We have seen that the Wright-Fisher model is a very powerful tool for describing the

dynamics of a population. However, the model makes a number of key simplifications.

First, we assume that the size of the population is constant over time and that there

is no recombination. We also assume that there is no geographic structure, nor is

there any selection. These last two points are part of a more general statement about

the Wright-Fisher process: all lineages within the population are entirely exchange-

able. This implies that the distribution of offspring number for all individuals in the

population is identical, and there can be no ‘labeling’ of individuals, nor can there be

any transmission of labels over generations (Wakeley 2009).

This last point will be of key importance in this thesis. When purifying selec-

tion operates, individuals that contain deleterious mutations are less-fit, and thus

less likely to produce offspring. This violates the assumption of exchangeability, and

prevents us from using these simple results to describe the effects of purifying selec-

tion directly. Instead, we will need to rely on an expanded model that allows us to

incorporate this non-exchangeability into our framework.
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1.1.2 A Retrospective vs. Prospective Approach

Thus far, we have been analyzing the dynamics of populations prospectively, that is,

forwards-in-time. This requires us to describe the complete dynamics of the entire

population throughout its history. However, in practice, we are often interested only

in the history of a subset of individuals from a population, sampled in the present.

One of the key insights of theoretical population genetics in the 20th century was to

recognize that we can instead analyze samples retrospectively, that is, backwards-in-

time, using a novel approach known as the coalescent.

1.2 The Coalescent

A common scenario in experimental population genetics is for a sample of individuals

from a larger population to be sequenced, with the goal of using the observed patterns

of molecular diversity to make statistical inferences about the history of that popu-

lation. Although the prospective, forward-time, approach from the previous section

allows us to draw a number of conclusions about this diversity, it is often far simpler

to understand these patterns by taking a retrospective, backwards-in-time approach.

To do this, we will start by considering the genealogy, or gene tree, of a sample.

To describe a genealogy, we trace the ancestral lineages of our sample backwards-in-

time. At some point in the past, two of the ancestors of our sample will descend from

the same parent. At this point, the two lineages fuse together into one lineage, which

is termed coalescence.

The genealogy is then depicted as a bifurcating tree, with time running vertically

from the top to the bottom (present). At the base of the tree, there are n distinct

individuals, representing the sample taken in the present. At each coalescent event,

the number of distinct lineages decreases by 1, to n− 1, then n− 2, etc. until there

is only one remaining lineage in the ancestry. As an example, consider again the

population depicted in Fig. 1.1. If we sample five individuals from this population,

which we have marked red, we can trace the ancestral relationships between these

individuals, also in red, to reconstruct the tree shown in Fig. 1.2.
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Time

Present

Figure 1.2: Schematic of a Genealogy: A sample of five individuals is chosen
from the population, highlighted in red. Their ancestral histories are then traced
backwards-in-time, also highlighted in red. The resulting genealogy is then recon-
structed in Figure 1.2b.
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The idea of considering the ancestry of a sample retrospectively appeared in a

number of early works pre-dating the first formal analysis of coalescent theory. A

few examples of this include early analyses on the concept of identity by descent

(Malécot 1941), the development of early estimators such as Watterson’s estimator

(Watterson 1975), and a retrospective derivation of the Ewens sampling formula

(Karlin and McGregor 1972). However, the first formal descriptions of the coa-

lescent were developed in the early 1980s by Kingman (1982), as well as Hudson

(1983) and Tajima (1983) (see Hudson et al. (1990) for an excellent review of early

coalescent theory, and Nordborg (2001) and Wakeley (2009) for more recent

overviews).

Coalescent theory provides a mathematical framework for completely describing

the probabilities of particular gene trees. A gene tree consists of a set of ancestral

relationships between each lineage, as well as a set of times at which coalescent events

occurred. These times are denoted Ti, where i = 2, 3, 4, ..., n represents the number

of distinct lineages present in that time interval. The complete distribution of these

times can be derived from a variety of forward-time models, including the Wright-

Fisher model.

Consider a sample of i lineages taken from the present generation. In order for two

individuals to coalesce in the previous generation, they must share the same parent.

Thus, the probability that there are no coalescent events among any of the i lineages

is simply the probability that all i descendants have distinct parents:

P (no coal.|i) =

(
N − 1

N

)(
N − 2

N

)
. . .

(
N − i+ 1

N

)
= 1−

(
i
2

)
N

+O
(

1

N2

)
.

Similarly, the probability that exactly one coalescent event occurs is:

P (one coal.|i) =

((
i
2

)
N

)(
N − 1

N

)
. . .

(
N − i+ 2

N

)
=

(
i
2

)
N

+O
(

1

N2

)
.

In the limit N → ∞, the probability that two or more pairs of lineages coalesce in

the same generation can be neglected, and the probability of coalescence is simply

P (coal|i) =
(i2)
N

. From here, the distribution of times until the first coalescent event
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is given by the geometric distribution:

P (ti = t) =

(
1−

(
i
2

)
N

)t (i
2

)
N
.

Typically, we will re-scale time in units of N generations, such that Ti = ti/N . Thus,

in the limit N →∞, this becomes:

P (Ti = T ) ≈
(
i

2

)
e−(i2)T . (1.5)

Therefore, we see that the time to coalescence is exponentially-distributed with rate(
i
2

)
. Furthermore, we know that in the Wright-Fisher model, all individuals are

completely exchangeable. As a consequence of this, each pair of lineages is equally

likely to coalesce at each step and the time to coalescence at each step is independent

of the time to coalescence at every other step. Together, these points allow us to

calculate the complete probability of any particular gene tree.

However, an important fundamental point is that the gene trees themselves are

inherently unobservable. Rather, in practice, we will observe polymorphism data,

that is, the set of mutations that occur along the genealogy. However, the patterns

that we see in this data are direct consequences of the shapes of the genealogies,

such that the polymorphism data itself will provide us insight into the underlying

genealogy, and therefore, the evolutionary process behind the genealogy.

1.2.1 Incorporating Mutations

Under the Wright-Fisher model, all individuals are unlabeled and entirely exchange-

able. Thus, when a neutral mutation occurs, it has no effect on the underlying

coalescent process or the shapes of genealogies. As a consequence, the mutation pro-

cess can be completely separated from the coalescence process. We will typically

assume that neutral mutations occur at a constant, per-generation rate of U , and

that the distribution of the number of mutations that occur along a branch of length

t is Poisson-distributed with mean Ut. Since time is typically scaled in units of N

generations, we will typically use the scaled mutation rate, Θ = 2NU , such that the

number of mutations along a branch of length T is Poisson-distributed with mean
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ΘT/2. For example, suppose that we are interested in the distribution of the total

number of mutations that occur in a sample of size n = 2. We have that:

P (S2 = k) =

∫ ∞
0

P (k|T )P (T2 = T )dT

P (S2 = k) =

∫ ∞
0

(ΘT )k

k!
e−ΘT e−TdT

P (S2 = k) =

(
Θ

1 + Θ

)k (
1

1 + Θ

)
.

An alternate, intuitive way to derive this quantity is to recognize that both the

coalescence and mutation processes are approximately Poisson processes with rates(
i
2

)
and iΘ

2
, respectively. Thus, in general, for a sample of i individuals, the probability

that the next event is a mutation is simply Θ
i−1+Θ

. In order for a sample of size n = 2

to have k mutations, there must be k mutation events, followed by a coalescent event.

This will occur with probability:

P (S2 = k) =

(
Θ

1 + Θ

)k (
1

1 + Θ

)
.

Using this framework, we can now calculate the probability of any particular geneal-

ogy, incorporating mutations. However, as noted previously, the genealogy itself is

inherently unobservable. The only information we will typically have about a pop-

ulation is in the form of polymorphism data. Our goal is to use this polymorphism

data to try and draw inferences about the history of a population. Throughout our

analysis, we will typically make use of an infinite-sites model. The infinite-sites model

assumes that all new mutations occur at sites that had not previously held a muta-

tion. When this is the case, there is a one-to-one correspondence between mutations

along the genealogy and corresponding polymorphisms in the sequence data (Wake-

ley 2009). Thus, for example, if a sample were to have evolved according to the

genealogy shown in Figure 1.3a, then the resulting observed sequence data would be

analogous to that of Figure 1.3b.
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Figure 1.3: Correspondence between Genealogies and Sequence Data: Figure
1.3a depicts a genealogy for a sample of size 5, with mutations highlighted in red.
Under the infinite-sites model, each of these mutations corresponds to a new, unique
polymorphism in the population, such that the resulting sequence data will appear
similar to Figure 1.3b.

1.2.2 Summary Statistics

The simplest method for inference is the use of summary statistics. The goal is to use

the coalescent framework to calculate the distribution of an observable statistic. By

comparing the observed value with its likelihood under our model, we can attempt

to estimate the value of any unknown parameter(s). For example, we showed in the

previous section that the distribution of the number of segregating sites in a sample
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of size two was simply:

P (S2 = k) =

(
Θ

1 + Θ

)k (
1

1 + Θ

)
.

We can extend this analysis to arbitrary sample size. For example, the expected

number of segregating sites in a sample of size n is:

E[Sn] =
n∑
i=2

iΘ

2
E[Ti] =

n∑
i=2

iΘ

2

1(
i
2

)
E[Sn] =

n−1∑
i=1

Θ

i
= ΘHn−1,

where Hn−1 is the (n − 1)th Harmonic number. One of the earliest estimators in

population genetics, Watterson’s estimator, makes use of this relationship to calculate

a simple estimator for Θ (Watterson 1975):

Θ̂w =
Sn
Hn−1

. (1.6)

Another commonly used summary statistic is the average number of pairwise differ-

ences, i.e. the mean number of differences between each pair in the sample. Since all

pairs of lineages are exchangeable, the expected value of this statistic is simply:

E[π] = Θ. (1.7)

In our example in Figure 1.3, the sample has n = 5, S5 = 8, and π = 3.8. Although

summary statistics can be very useful, the full power of the coalescent is in our

ability to use this framework for more detailed inference methods. We have seen

how we can use the coalescent framework to calculate the probability of a particular

tree, given a set of parameters, P (tree|Θ). In practice, however, there are a large

number of possible genealogies that can lead to an observed data set, and explicitly

calculating P (data|Θ) requires summing over all such possible trees. In order to make

this process feasible, more efficient means of sampling must be employed. Developing

full-scale inference methods is a major ongoing effort in population genetics, and

has led to a number of widely-used bioinformatic tools and techniques (see Tavaré

(2004) and Stephens (2008) for reviews of inference in general, and Kuhner (2009)
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for a review of specific technologies). Despite several major advances in recent years,

these full-scale inference methods still have a number of limitations: in particular, it

is exceedingly difficult to incorporate more complicated scenarios into these methods,

such as the effects of purifying selection. One of the primary focuses of this thesis is

on the development of a simplified description of purifying selection that allows for

the effects of purifying selection to be incorporated into these pre-existing methods.

1.2.3 Tests of Neutrality

Thus far, we have focused on a simple model assuming, among other things, that there

is no selection, no population structure, and a constant population size. However, in

practice, these assumptions are frequently violated. In order to investigate deviations

from these assumptions, we will typically use the standard neutral coalescent as a

null model, and look for deviations from our predictions.

One of the earliest examples of a ‘test for neutrality’ is Tajima’s D (Tajima 1989).

In the previous section, we saw that both the expected number of segregating sites,

S, and the average number of pairwise differences, π, are proportional to the scaled

mutation rate, Θ. Therefore, both S and π may be used to estimate a value for Θ. If a

population is evolving according to the neutral dynamics we have modeled, then over

a large number of trials, we expect for the difference between these two estimates to

average to zero. This forms the basis for the test statistic Tajima’s D, which divides

the difference in the two estimates by the standard deviation of their difference:

D =
π − Sn

Hn−1√
Var[π − Sn

Hn−1
]
. (1.8)

Tajima (1989) showed how this variance could be estimated from the data and pro-

vided a set of p-values for rejecting the null hypothesis, assuming that the distribution

of the statistic could be modeled as a beta distribution.

In order to understand how violations of the assumptions of the neutral model can

lead to a deviation in this test statistic, it is informative to examine two hypothetical

trees. Figure 1.4 depicts two different trees, each with the same sample size, n = 5,

and the same number of segregating sites, S5 = 8. However they differ significantly
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in their underlying shape. In particular, the second tree has substantially elongated

branch lengths in the recent past relative to those in the distant past. This leads

to an excess of rare mutations, which implies a lower average number of pairwise

differences. As a consequence, the relative estimates of Θ using the two summary

statistics appears to be inconsistent with the neutral model, and we observe a negative

value of Tajima’s D.

There are several potential demographic scenarios that can lead to such a tree.

Here, we will focus on two common scenarios that may arise: first, a growing pop-

ulation size, and second, purifying selection. First, consider a population that is

experiencing rapid growth forward-in-time. When we analyze a sample backwards-

in-time, the population size starts off large, such that the typical branch lengths in

the recent past are very long. However, as time recedes into the past, the population

size falls off, and thus the branch lengths in the distant past are shorter. Thus, this

can potentially lead to a tree such as that in Figure 1.4b.

Figure 1.4: Example of a Distorted Genealogy: Two genealogies are shown, each
with the same number of segregating sites. However, they differ significantly in their
relative branch lengths. In particular, the second tree has elongated branch lengths
in the recent past relative to those in the distant past, leading to a distortion in the
shape of the genealogy.
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However, consider instead a population that is experiencing purifying selection.

Under purifying selection, individuals that acquire deleterious mutations tend to die

out from the population quickly. In contrast, the more fit individuals tend to persist.

Thus, as we analyze a sample backwards-in-time, ancestors become biased towards

coming from the more fit individuals, and the effective population size (defined here

as the inverse of the rate of coalescence) decreases with time. Note that, in addition

to causing distortions in the branch lengths in the genealogy, this also causes the

distribution of mutations along the genealogy to be non-neutral. In particular, since

individuals with deleterious mutations tend to die out quickly, deleterious mutations

will be more common in the recent past than in the distant past.

This leads to a fundamental problem – each of the causes we described above leads

to very similar signals in the data. In fact, one of the primary results in this thesis,

which we will later see, is that within the strong selection regime, purifying selection

can be explicitly described by using a time-varying effective population size, and we

will calculate the form of this function. Thus, within this regime, the two scenar-

ios will be indistinguishable. Although we have focused here on only two potential

causes, there are several other potential causes for a negative value of Tajima’s D.

For example, this can be caused by positive selection (e.g. a selective sweep), or even

by sequencing error (which may lead to an excess of spurious singleton mutations,

Pool et al. (2010)).

1.3 Purifying Selection

As deleterious mutations continually arise in a population, they tend to be purged by

purifying selection. When selection is very strong relative to genetic drift, deleterious

variants will be removed extremely rapidly, and this process is roughly instantaneous

on the time-scale of coalescence. As a result, all individuals in the population are

very recently descended from individuals without deleterious mutations, and thus

molecular variation is equivalent to that of a neutral population with a reduced ef-

fective population size, Ne, where Ne is the average number of individuals without

deleterious mutations.
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This intuitive approximation (often referred to as the ‘background selection’ ap-

proximation, though we will use this phrase to include all effects of purifying se-

lection on linked variation, and the more specific phrase ‘fixed effective popula-

tion size’ approximation to refer to this particular limit) was originally developed

in Charlesworth et al. (1993), as well as Charlesworth (1994) and Hudson

and Kaplan (1994, 1995a). It has had an enormous influence on the study of purify-

ing selection, and has been widely used to interpret patterns of molecular variation in

sequence data (Hudson and Kaplan 1995b). It successfully captures the dominant

effect of strong purifying selection on genealogies: an overall decrease in coalescent

times.

However, even when purifying selection is strong, it does not act instantaneously.

Typically, deleterious variants will segregate in the population for a time of order 1/s.

Thus, since purifying selection has not yet had time to act against recent mutations,

the effective population size in the recent past is larger than in the distant past. This

leads to an overall distortion in the branch lengths of the genealogy (McVean and

Charlesworth (2000); Comeron and Kreitman (2002); see Charlesworth

(2013) for a review). In order to understand the nature of these distortions, we will

need to develop a framework to analyze the effects of purifying selection.

1.3.1 Mutation-Selection Balance

Consider a population of constant size N , where deleterious mutations can occur at

a genome-wide rate of Ud, and confer some fitness advantage s. We will assume an

infinite-sites model with no epistasis, such that the fitness of an individual that carries

k deleterious mutations is ωk = (1− s)k ≈ 1−sk, where we have assumed that s� 1.

If we label the fraction of the population that has k deleterious mutations as hk, then

we have that:

hk(t+ 1) = hk(t)
ωk(1− Ud)

ω
+ hk−1(t)

ωk−1Ud
ω

.

Note that ω0 = 1, therefore in steady-state we know that:

h0 = h0

(
1− Ud
ω

)
→ ω = 1− Ud.
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Therefore, in steady state, keeping only first-order terms in s, we have that:

hk = hk−1
Ud
sk
.

This implies that the fraction of the population in ‘fitness class’ k is Poisson dis-

tributed with mean Ud/s:

hk =
e−Ud/s

k!

(
Ud
s

)k
. (1.9)

This result is known as the mutation-selection balance (Kimura and Maruyama

1966; Haigh 1978). In general, this reflects the balance between two competing

forces: mutation, which introduces new deleterious mutations into the population,

and selection, which purges these mutations. The population will exist in a steady-

state balance between these forces when the effects of selection are strong relative to

the effects of genetic drift, e.g. when Ns � 1. A schematic of this distribution is

shown in Fig. 1.5.
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Figure 1.5: : Schematic of Mutation-Selection Balance (from Nicolaisen and
Desai (2012)): Deleterious mutations decrease the mean fitness of the population,
while selection favors more-fit individuals. At steady state, a balance between these
two effects is reached.
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It is informative to reconsider the ‘fixed effective population size’ approximation

in light of this distribution. When purifying selection is very strong, all individuals

are very recently descended from individuals without deleterious mutations. In other

words, they are descended from individuals in the zero-class, which has size Nh0 =

Ne−Ud/s. If we assume that the time-scale on which individuals are descended from

the zero-class is effectively instantaneous on the time-scale of coalescence, then we

can treat the molecular variation in the population as equivalent to that of an entirely

neutral population, of size Ne−Ud/s.

However, it is important to note that, even when selection is moderately strong

and the mutation-selection balance holds, the time-scale on which individuals are

descended from the zero-class is not instantaneous. Thus, in order to analyze the

effects of purifying selection, we need to understand the effects that this movement

through the distribution of fitness classes has on genealogies.

1.3.2 The Structured Coalescent

Consider two individuals sampled from a population, both of whom are in the same

fitness class k. We will trace the ancestral lineage of these individuals backwards-

in-time, as we did in the standard neutral coalescent. However, in this case, we will

now also keep track of their location in the fitness distribution. There are two types

of events that may occur in the ancestry of this sample. First, the two individuals

may coalesce while still in fitness class k, or second, one of the two individuals may

undergo a deleterious mutation (backwards-in-time) from fitness class k − 1.

Within each fitness class, since all individuals have the same fitness, we may model

the coalescent process using the neutral coalescent. Thus, we know that the rate of

coalescence within fitness class k is 1
Nhk

. Furthermore, we know that the rate of

mutation is approximately Nhk−1Ud
Nhk

≈ sk. Therefore, we have that:

P (1st Event is Coal.|k,k) = 1/(Nhk)

sk+sk+1/(Nhk)
= 1

1+2Nhksk
(1.10)

P (1st Event is Del. Mut.|k,k) = 2sk
sk+sk+1/(Nhk)

=
2Nhksk

1+2Nhksk
. (1.11)
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In contrast, if the two individuals are in different fitness classes, k and k′, the only

event that may occur is a mutation. However, it may occur in either lineage. Thus,

we have that:

P (1st Event is Del. Mut. in k|k,k′) = sk
sk+sk′ (1.12)

P (1st Event is Del. Mut. in k′|k,k′) = sk′
sk+sk′ . (1.13)

In this manner, we can trace the ancestral lineages through the fitness class dis-

tribution. In general, this is equivalent to treating the population as though it is

subdivided into the different fitness classes, but assuming that the neutral coalescent

holds within each fitness class. This requires assuming that the size of each fit-

ness class is sufficiently large to neglect fluctuations, which is roughly true provided

Nse−Ud/s � 1.

This framework, known as the structured coalescent, was first developed for de-

scribing selection in Hudson and Kaplan (1994, 1995a) (see Wakeley (2010) for

a review of this and other frameworks for describing selection). It has formed the ba-

sis for several numerical and simulation-based studies (Zeng and Charlesworth

2011; Gordo et al. 2002), as well as provided a solution for the effects of selection

on a single site (Barton and Etheridge 2004). A schematic of this framework is

shown in Fig. 1.6. In this thesis, we will expand upon this framework to develop

new methods for describing the effects of purifying selection that allow us to directly

calculate the analytical effects of selection at many linked sites.
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Figure 1.6: Schematic of the Structured Coalescent (from Desai et al.
(2012)): Each fitness class in the population is composed of many lineages, each
of which was created by a single mutation from the previous class. The arrows de-
note an example of the coalescence process for two individuals sampled from the
population.
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1.4 Outline of Thesis and Summary of Major Results

In recent years, mounting experimental evidence has arisen suggesting that selective

forces are of fundamental importance for our understanding of natural populations

(Hahn 2008; Comeron et al. 2008; Seger et al. 2010). However, existing theory

has not yet fully characterized the effects of purifying selection on the structure of

genealogies. The focus of this thesis is on filling this gap, and developing an analytical

description of the distortions that arise in genealogies due to purifying selection.

We begin in Chapter 2 by developing a framework for calculating a variety of

statistics that describe sequence variation, most notably, the distribution of the times

to coalescence between two individuals, and the distribution of the number of neutral

and deleterious mutations between those individuals. These results are found using

two complementary frameworks: first, by using a Poisson Random Field description

of the allele frequencies within fitness classes, and second, using a direct extension of

the structured coalescent framework presented above.

Although the analytical findings presented in Chapter 2 are potentially of major

practical significance, perhaps the most important aspect of the results shown therein

is in the intuitive picture that arises. In particular, we find that the effect of negative

selection is similar to that of an effective population size that declines as time recedes

into the past. Although this analogy has been presented in earlier work (Williamson

and Orive 2002; Seger et al. 2010), we show how this phenomenon can be extracted

naturally from the framework. However, a key point of Chapter 2 is that this is not

the only effect that arises from the framework: in addition to the distortions that

arise due to a time-dependent effective population size, there are also topological

distortions in the genealogies. This stems from the fact that lineages are no longer

exchangeable: the probability of coalescence at later times depends upon the history

of coalescence at earlier times. Thus, the time-dependent effective population size

that is derived for a sample of size 2 will not necessarily extend to larger sample sizes,

and thus does not provide a complete description of the shape of genealogies.

In Chapter 3, we continue our analysis in the vein of Chapter 2 to describe the

structure of allelic diversity for a population undergoing purifying selection. In par-
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ticular, we derive an analog to the Ewens sampling formula (Ewens 1972) in the

case of purifying selection. As with our findings from Chapter 2, we again conclude

that there is a distortion due to purifying selection, and we are able to analytically

describe the shape of these distortions.

In Chapter 4, we return to our discussion of a time-dependent effective population

size, Ne(t). We saw previously that purifying selection has two main effects on the

shapes of genealogies: first, it leads to a distortion in the relative branch lengths

within the genealogy, and second, it leads to topological distortions due to the fact

that lineages are no longer exchangeable. However, in the strong purifying selection

regime, when Nes � 1, the latter effects may be sufficiently small that they can

be neglected. In this regime, we can describe the effects of purifying selection using

a time-dependent effective population size, Ne(t), which we are able to calculate

explicitly in Chapter 4. Furthermore, we are able to calculate an analogous time-

dependent effective mutation rate, Ue(t).

There are significant implications to this finding: this allows us to completely

describe the shapes of genealogies using only an Ne(t) and Ue(t), completely bypassing

the need to model the effects of selection directly. This implies that all of the findings

of the standard neutral coalescent, including the assumption of exchangeability, still

holds, and thus enables us to calculate any statistic of interest using the neutral

framework. Furthermore, this provides a simple way to incorporate purifying selection

into neutral methods of inference and estimation.

In Chapter 5, we show how this result can be extended to incorporate additional

scenarios, including the effects of recombination, a (real) time-varying population

size, and a distribution of fitness effects. Thus, our findings allow us to understand

the effects of strong purifying selection in a variety of situations, and provide a sim-

ple and intuitive way to incorporate selection into neutral methods of inference and

estimation.
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The Structure of Genealogies in the

Presence of Purifying Selection: A

Fitness-Class Coalescent

Compared to a neutral model, purifying selection distorts the structure

of genealogies and hence alters the patterns of sampled genetic variation.

Although these distortions may be common in nature, our understand-

ing of how we expect purifying selection to affect patterns of molecular

variation remains incomplete. Genealogical approaches such as coalescent

theory have proven difficult to generalize to situations involving selection

at many linked sites, unless selection pressures are extremely strong. Here,

we introduce an effective coalescent theory (a “fitness-class coalescent”)

to describe the structure of genealogies in the presence of purifying selec-

tion at many linked sites. We use this effective theory to calculate several

simple statistics describing the expected patterns of variation in sequence

data, both at the sites under selection and at linked neutral sites. Our

analysis combines a description of the allele frequency spectrum in the

presence of purifying selection with the structured coalescent approach

of Kaplan et al. (1988), to trace the ancestry of individuals through the

distribution of fitnesses within the population. We also derive our results
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using a more direct extension of the structured coalescent approach of

Hudson and Kaplan (1994). We find that purifying selection leads to pat-

terns of genetic variation that are related but not identical to a neutrally

evolving population in which population size has varied in a specific way

in the past.

2.1 Introduction

Purifying selection acting simultaneously at many linked sites (“background selec-

tion”) can substantially alter the patterns of molecular variation at these sites, and

at linked neutral sites (Hill and Robertson 1966; Kaplan et al. 1988; Hud-

son and Kaplan 1994, 1995b; McVean and Charlesworth 2000; Gordo et al.

2002; Seger et al. 2010; O’Fallon et al. 2010). In recent years, evidence from se-

quence data points to the general importance of these selective forces among many

linked variants in microbial and viral populations, and on short distance scales in

the genomes of sexual organisms (Hahn 2008; Comeron et al. 2008; Seger et al.

2010). In these situations, existing theory does not fully explain patterns of molecular

evolution (Hahn 2008).

It is difficult to incorporate negative selection at many linked sites into genealogi-

cal frameworks such as coalescent theory, because these frameworks typically rely on

characterizing the space of possible genealogical trees before considering the possi-

bility of mutations at various locations on these trees. When selection operates, the

probabilities of particular trees cannot be defined independently of the mutations,

and the approach breaks down (Wakeley 2009; Tavaré 2004).

Despite this difficulty, a number of productive approaches have been developed

to predict how negative selection influences patterns of molecular variation and to

infer selection pressures from data. Charlesworth et al. (1993) introduced the

background selection model and showed that strong purifying selection reduces the

effective population size relevant for linked neutral sites (Charlesworth 1994;

Charlesworth et al. 1995). However, weaker selection also distorts patterns of

variation, in a way that cannot be completely described by a neutral model with any
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effective population size (McVean and Charlesworth 2000; Comeron and Kre-

itman 2002), a phenomenon often referred to as Hill-Robertson interference (Hill

and Robertson 1966). Several theoretical frameworks have been developed to ana-

lyze this situation. The ancestral selection graph of Neuhauser and Krone (1997)

and Krone and Neuhauser (1997) provides an elegant formal solution to the prob-

lem, but unfortunately it requires extensive numerical calculations (Przeworski

et al. 1999). These limit the intuition we can draw from this method, and make it

impractical as the basis for inference from most modern sequence data. An alter-

native approach is based on the structured coalescent, and views the population as

subdivided into different fitness classes, tracing the genealogies of individuals as they

move between classes. This approach was first introduced by Kaplan et al. (1988)

and further developed by Hudson and Kaplan (1994, 1995b) in the case where fluc-

tuations in the size of each fitness class can be neglected. This structured coalescent

approach has been been the basis for computational methods developed by Gordo

et al. (2002), Seger et al. (2010), and Zeng and Charlesworth (2011), and an-

alytical approaches such as those of Barton and Etheridge (2004), Hermisson

et al. (2002) and O’Fallon et al. (2010).

In this paper, we build on the structured coalescent framework by introducing the

idea of a “fitness-class coalescent.” Rather than considering the coalescence process

in real time, we treat each fitness class as a “generation” and trace how individuals

have descended by mutations through fitness classes, moving from one “generation”

to the next by subsequent mutations. We show that the coalescent probabilities in

this fitness-class coalescent can be computed using an approach based on the Poisson

Random Field method of Sawyer and Hartl (1992), or equivalently can be derived

as an extension of the structured coalescent approach of Hudson and Kaplan (1994).

Our fitness-class coalescent theory can be precisely mapped to a coalescence theory

in which certain quantities (e.g. coalescence times) have different meanings than in

the traditional theory. We can then invert this mapping to determine the structure of

genealogies and calculate statistics describing expected patterns of genetic variation.

This approach requires certain approximations, but it also has several advantages.

Most importantly, we are able to derive relatively simple analytic expressions for
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coalescent probabilities and distributions of simple statistics such as heterozygosity.

Consistent with earlier work, we find that the effects of purifying selection are broadly

similar to an effective population size that changes as time recedes into the past. Our

analysis makes this intuition precise and quantitative: we can compute the exact

form of this time-varying effective population size, as defined by the rate of pairwise

coalescence. We also show that this intuition has important limitations: for exam-

ple, different pairs of individuals have different time-varying effective population size

histories, meaning that in principle it is possible to distinguish selection from chang-

ing population size. Our approach also makes it possible to calculate the diversity

of selected alleles themselves, which may be important when selection is common

(Williamson and Orive 2002).

We begin in the next section by describing the fitness-class coalescent idea which

underlies our approach. We then describe the details of our model and analyze two

ways to implement the fitness-class coalescent. The first relies on the Poisson Random

Field method of Sawyer and Hartl (1992) to describe the frequency distribution

of distinct lineages within each fitness class. We show how this lineage structure

can be used to compute coalescence probabilities in each fitness class. The second

approach is based on tracing the ancestry of individuals in the order that events

occur as described by Hudson and Kaplan (1994), and implemented numerically

by Gordo et al. (2002). We show how we can sum over all possible ancestral paths to

compute equivalent coalescence probabilities in each fitness class. The two approaches

provide different and complementary intuitive pictures of the process, and depend on

various approximations in somewhat different ways.

After computing coalescence probabilities with both approaches, we show how

these probabilities can be used to analyze the structures of genealogies, and we cal-

culate various statistics describing genetic variation in these populations, which we

compare to numerical simulations. We then discuss the relationship between our

results, neutral theory, and earlier work on selection, and we explore how various

approximations limit our approach. The most important of these approximations is

that we neglect fluctuations in the size of each fitness class, analogous to earlier work

(Hudson and Kaplan 1994), which restricts our analysis to the case of strong se-
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lection (relative to inverse population size). This approximation also means that we

neglect Muller’s ratchet. We describe this and related approximations and describe

their regime of validity in the Discussion. Finally, in the Appendices we explore these

approximations in more detail and describe how they inform the relationship between

our work and earlier approaches.

2.2 The Fitness-Class Coalescent

In this section, we outline the main ideas underlying our fitness-class coalescent ap-

proach. We begin our analysis by considering the balance between mutations at many

linked sites and negative selection against the mutants, which leads to an equilibrium

distribution of fitnesses within a population (Haigh 1978). We illustrate this in Fig.

2.1, for the case in which all deleterious mutations have the same fitness cost. Each

individual is characterized by the number k of deleterious mutations it contains. Each

fitness class k contains many distinct lineages, each of which arose from deleterious

mutations in more-fit individuals, as illustrated in Fig. 2.2. Neutral mutations also

occur, but we consider these later.

Hudson and Kaplan (1994) observed that individuals move between fitnesses

by deleterious mutations, and that when two individuals are in the same fitness class

they could be from the same lineage and hence coalesce. Our fitness-class coalescent

exploits this observation to define an effective genealogical process that completely

bypasses the ancestral process in real time. Instead, we treat each fitness class as a

“generation,” and we count time in deleterious mutations: each deleterious mutation

moves us from one “generation” to the next. In this way, we can trace the ancestry of

individuals through the fitness distribution. For example, there is some probability

that two individuals chosen from fitness class k are genetically identical (i.e. come

from the same lineage). If not, they each arose from mutations within fitness class

k − 1. If both those mutations occurred in individuals in the same lineage in fitness

class k − 1, we say the two individuals “coalesced” in class k − 1. If not, they came

from different mutations from class k− 2, and could have coalesced there, and so on.

In this way, we can construct a fitness-class coalescent tree describing the relatedness
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of two individuals, as illustrated in Fig. 2.2.

In this paper we show that the probability that two randomly chosen individuals

who are currently in fitness classes k and k′ coalesce in class k − `, P k,k′→k−`
c , is

approximately

P k,k′→k−`
c =

1

2nk−`sk−`
Ak,k

′

` , (2.1)

where nk is the population size of fitness class k, sk is an effective selection pressure

against these individuals, and

Ak,k
′

` =

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) . (2.2)

This coalescent probability is inversely proportional to the population size of the

fitness class, nk−`, and the effective selection coefficient within that class, sk−`, mod-

ified by the combinatoric coefficient Ak,k
′

` . As we will see, this has a clear intuitive
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Figure 2.1: The Distribution of the Fraction of the Population in each Fit-
ness Class: (a) The distribution of the number of individuals as a function of
fitness, where the most beneficial class is arbitrarily defined to have fitness 1, and
each deleterious mutation introduces a fitness disadvantage of s. Mutations move
individuals to less-fit classes, and selection balances this by favoring the classes more
fit than average. The shape of the depicted steady state distribution is a result of
this mutation–selection balance. The inset (b) shows the processes which lead to this
balance within a given fitness class.
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Figure 2.2: Schematic: Each fitness class in the population is composed of many
lineages, each of which was created by a single mutation and is (in our infinite-sites
model) genetically unique. Shown is a schematic cartoon in which each lineage is
depicted in a different color. The arrows denote an example of the fitness-class coa-
lescence process for two individuals sampled from classes 8 and 9. These individuals
came from different lineages, and these lineages were created by mutations from dif-
ferent lineages within the next most-fit class (as shown by the arrows). The arrows
trace the ancestry of the two individuals back through the different lineages that suc-
cessively founded each other, until they finally coalesce in the class third from right.

interpretation. Fitness class k − ` has size nk−`, so the coalescence probability per

real generation is 1
nk−`

. We will see that each lineage spends of order sk−` generations

in that class, so the total coalescence probability in this class has the form 1
nk−`

1
sk−`

.

This is multiplied by Ak,k
′

` /2, which we will show describes the probability that the

two individuals are in class k − ` at the same time. In other words, the probability

coalescence occurs in a class equals the inverse population size of the class times
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the number of generations lineages spend together in that class. In the following

sections of this paper we derive Eq. 2.1 in the two alternative ways mentioned in

the Introduction: by explicitly considering the lineage frequency distribution and by

following the path summation method of Hudson and Kaplan (1994) and Gordo

et al. (2002).

2.2.1 Calculating Statistics Describing Sequence Variation

Our approach of treating mutation events as timesteps, and computing coalescence

probabilities at each timestep, allows us to make a precise mapping to coalescence

theory in which certain quantities have a different meaning than in the traditional

theory. In this framework, we can calculate a simple analytic expression for the

probability two lineages sampled from particular fitness classes will coalesce in any

other fitness class. These fitness-class coalescence probabilities allow us to explicitly

calculate the structure of genealogies in this “mutation time.” We can then compute

the distribution of any statistic describing expected sequence variation by averaging

over the fitness classes our original individuals come from. For a statistic x that

depends on genealogies between two individuals, for example, we write expressions of

the form

P (x) =
∑

H(k, k′)Prob[k, k′ coalesce in k − `]P (x|k, k′, `), (2.3)

where H(k, k′) describes the probability two individuals sampled at random from the

population come from classes k and k′ respectively.

From the form of these expressions and our simple result for the coalescence prob-

abilities, we can immediately see the main effect of selection on the structure of

genealogies. The discussion following Eq. (2.1) implies that the effect of negative

selection is similar to that of an effective population size that changes as time recedes

into the distant past — i.e. some Ne(t). This intuition has been suggested by earlier

work (see e.g. Seger et al. (2010)). As we will see, our analysis describes the pre-

cise form of Ne(t): it follows the distribution nk−` as ` increases further to the past,

modified by the coefficient Ak,k
′

` . We will also see that this picture of time-varying

population size has limits: different pairs of individuals have a different Ne(t). As
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is clear from Eq. (2.3), these different histories are averaged according to the dis-

tribution H(k, k′). While it is the average Ne(t) between pairs that determines the

distribution of pairwise statistics, this suggests that statistical power may exist in

larger samples to distinguish negative selection from neutral population expansion.

We explore these general conclusions of our analysis in detail in the Discussion.

Note that in the standard neutral coalescent, one first calculates the distribution

of coalescence times and then imagines mutations occurring as a Poisson process

throughout the coalescent tree, with rates proportional to branch lengths. In our

fitness-class coalescent, by contrast, the coalescence times are the mutations. To

avoid confusion, from here on we will refer to the effective “generations” in our model

as “steps,” and refer to the fitness-class coalescent “times” as the “steptimes.” We

will reserve the word “time” to refer to the actual coalescent time, measured in actual

generations.

After determining a fitness-class coalescent tree, we can invert our mapping to

determine the structure of genealogies in real time. We will do this by calculating

how the steptime in our fitness-class coalescent model translates into an actual time in

generations. This will allow us to relate the distribution of branch lengths in steptimes

to an actual coalescent tree in generations. We can then treat neutral mutations as

is usually done in the standard coalescent: as a Poisson process with probabilities

proportional to branch lengths.

Our fitness-time coalescent requires a number of approximations which limit its

applicability. Most importantly, we neglect Muller’s ratchet, and more generally ig-

nore the effects of fluctuations in the size of each fitness class. We discuss these

approximations in more detail below. We find that within a broad and biologically

relevant parameter regime they lead to systematic but small corrections to our re-

sults. Despite these limitations, our approach also has several advantages relative to

previous work. The fitness-time coalescent approach makes many otherwise difficult

analytic calculations tractable, allows us to compute the diversity at the selected sites

in addition to linked neutral sites, and may offer a useful basis for practical methods

of coalescent simulation and inference.
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2.3 Model

We imagine a finite haploid population of constant size N . Each haploid genome

has a large number of sites, which begin in some ancestral state and mutate at a

constant rate. Each mutation is either neutral or confers some fitness disadvantage

s (where by convention s > 0). We assume an infinite-sites framework, so there is

negligible probability that two mutations segregate simultaneously at the same site.

We assume that there is no epistasis for fitness, and that each deleterious mutation

carries fitness cost s, so that the fitness of an individual with k deleterious mutations

is wk = (1−s)k. Since we assume that s� 1, we will often approximate wk by 1−sk.

The population dynamics are assumed to follow the diffusion limit of the stan-

dard Wright-Fisher model. That is, we assume that deleterious mutations occur at

a genome-wide rate Ud per individual per generation (with deleterious mutations as-

sumed to be decoupled from selection). We define θd/2 ≡ NUd, the per-genome

scaled deleterious mutation rate. Similarly, neutral mutations occur at a rate Un per

individual per generation, and we analogously define θn/2 ≡ NUn. We assume that

each newly arising mutation occurs at a site at which there are no other segregating

polymorphisms in the population (the infinite-sites assumption).

We focus exclusively on the case of perfect linkage, where we imagine that all the

sites we are considering are in an asexual genome or within a short enough distance in

a sexual genome that recombination can be entirely neglected. Although our model is

defined for haploids, this assumption means that our analysis also applies to diploid

populations provided that there is no dominance (i.e. being homozygous for the

deleterious mutation carries twice the fitness cost as being heterozygous). In this

case, our model is equivalent to that considered by Hudson and Kaplan (1994).

We believe that this is the simplest possible model based on a concrete picture of

mutations at individual sites that can describe the effects of a large number of linked

negatively selected sites on patterns of genetic variation. It is essentially equivalent

to the model described by Charlesworth et al. (1993) and Hudson and Kaplan

(1994), which has formed the basis for much of the analysis of background selection

(Charlesworth et al. 1993; Gordo et al. 2002; Seger et al. 2010).
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Our analysis will develop a fitness-class coalescent theory that involves tracing the

ancestry of individuals as they change in fitness by acquiring deleterious mutations.

In order to do this, we need to first understand the distribution of fitnesses within the

population. Since in our model all deleterious mutations have the same fitness cost s,

we can classify individuals based on their Hamming class, k, relative to the wildtype

(which by definition has k = 0). That is, individuals in class k have k deleterious

mutations more than the most-fit individuals in the population. Note that not all

individuals in class k have the same set of k deleterious mutations. Furthermore, k

refers only to the number of deleterious mutations an individual has; individuals with

the same k can have different numbers of neutral mutations. We normalize fitness

such that by definition all individuals in class k = 0 have fitness 1. Individuals in

class k then have fitness 1− ks (Fig. 2.1).

Haigh (1978) showed that the balance between mutation and selection leads to

a steady state in which the fraction of the population in fitness class k, which we call

hk, is given by a Poisson distribution with mean Ud/s,

hk =
e−Ud/s

k!

(
Ud
s

)k
. (2.4)

This means that the average fitness in the population is 1− Ud, and that k̄ = Ud
s

.

Throughout our analysis, we will assume that the population exists in this steady

state mutation-selection balance. In particular, we neglect the fact that in a finite

population there will be fluctuations around this hk. This approximation is central to

our approach, and we make it in subtly different ways in both our lineage-structure

and our sum of ancestral paths calculations of the fitness-class coalescence probabili-

ties. It will typically be valid in the bulk of the fitness distribution when selection is

strong (Ns� 1); our analysis is limited to this strong selection case and breaks down

when Ns . 1. We discuss this approximation in more detail in the Discussion and

in Appendix B. We note that this approximation also implies that we assume that

Muller’s ratchet can be neglected. We will return to the question of the importance

of Muller’s ratchet in more detail in the Discussion.

We will later need to understand the distributions of timings, Qk−1
k (t), at which

an individual mutates from class k−1 to class k. We can calculate this by noting that
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the probability that an individual in class k arose from a mutation in an individual

in class k − 1 rather than a reproduction event from an individual in class k is

NUdhk−1

Nhk[1− Ud − s(k − k̄)] +NUdhk−1

. (2.5)

Substituting in the steady state values for the hk, and noting that these mutation

events are a Poisson process, we find

Qk−1
k (t) = ske−skt. (2.6)

Note that this calculation is identical to the equivalent distribution of mutation tim-

ings computed by Gordo et al. (2002) following the approach of Hudson and Ka-

plan (1994).

2.4 Lineage Structure and the Fitness-Class Coalescence Proba-

bilities

In general, the individuals in a particular fitness class k will not be genetically identi-

cal. Rather, there will be a number of different lineages within this class, each lineage

created by a deleterious mutation from class k − 1. We now consider the structure

of lineage diversity amongst individuals within a given fitness class in the mutation-

selection balance. Note that for our purposes here, we only consider deleterious

mutations in defining lineages; we consider the diversity at neutral sites separately

below.

Consider a fitness class k, which has an overall frequency hk (Fig. 2.1b). The

frequency hk is maintained by a stochastic process in which the class is constantly

receiving new individuals from class k − 1 due to deleterious mutations. In our

infinite-alleles model, each such mutation creates a lineage which is an allele that

is unique within the population. Each lineage fluctuates in frequency for a while

before eventually dying out, perhaps after acquiring additional mutations that found

new lineages in fitness class k + 1. At any given moment, there is some frequency

distribution of lineages in each class k (see Fig. 2.2). While the identity of these

lineages changes over time, there is a probability distribution that at any moment
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there is a given frequency distribution of lineages. In steady state, this probability

distribution does not change with time.

New lineages are founded in class k at a rate θk/2, where

θk = 2Nhk−1Ud. (2.7)

These individuals are then removed from class k at a per capita rate

sk ≡ −Ud − s(k − k̄). (2.8)

We refer to sk as the effective selection coefficient against an allele in class k, because

it is the rate at which any particular lineage in class k loses individuals, and we define

γk = Nsk. (2.9)

Using these definitions, we can compute the steady state probability distribution

of lineages using the Poisson Random Field model of Sawyer and Hartl (1992).

The essential result is that the number of distinct lineages in class k with a frequency

between a and b (in the total population) is Poisson distributed with mean
∫ b
a
fk(x)dx,

where

fk(x) =
θk

x(1− x)

1− e−2γk(1−x)

1− e−2γk
. (2.10)

Note that our Poisson Random Field result implies that on average the sum of all the

frequencies of all the alleles in fitness class k is simply hk =
∫ 1

0
xfk(x)dx, and that

the probability that two individuals chosen at the same time at random from fitness

class k both come from the same lineage is
∫ 1

0
dxx2fk(x)/h2

k.

We note that the PRF result involves various implicit approximations, and is

valid within a specific parameter regime. Most importantly, we neglect fluctuations

in the sizes of each fitness class. This has two main effects. First, it means that we

neglect the corresponding fluctuations in the distribution of lineage frequencies fk(x).

Second, it means we are implicitly neglecting the fact that, given a lineage of size x

exists in class k, the actual hk is on average not at its steady state value (e.g. if a high-

frequency lineage exists, hk will tend to be larger). We explain these approximations

in detail in Appendix B, and describe an alternative branching process formulation

for the lineage structure that corrects for the second effect described above.
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2.4.1 The Fitness-class Coalescent Probabilities

We can now calculate the degree of relatedness between two individuals sampled from

the population. Our goal is to understand the probability distribution of the fitness-

class coalescence steptimes for two individuals chosen at random from the population.

We begin by calculating the coalescence probability in each step.

First, imagine that by chance we pick two individuals from the same fitness class

k. If the two individuals are from the same lineage, they coalesce within this class. In

this case, they are genetically identical and the coalescence steptime is 0. If not, we

want to calculate the probability they coalesce in class k− 1, P k,k→k−1
c . If the lineage

of individual A in class k was founded by a mutation from class k − 1 a time t1 ago,

and the lineage of individual B in class k was founded by a mutation a time t2 ago,

the probability the two individuals came from a common lineage in class k − 1 is

P k,k→k−1
c =

∫
dt1dt2Q

k−1
k,k (t1, t2)

xfk−1(x)

hk−1

y

hk−1

Gk−1(y → x, |t2 − t1|). (2.11)

Here Qk−1
k,k (t1, t2) is the joint distribution of t1 and t2, x/hk is the probability one of

the individuals came from a lineage of size x given that the lineage exists, fk(x) is

the probability that the lineage exists, and Gk−1(y → x, |t2 − t1|) is the probability

a lineage in class k − 1 changes in frequency from x to y in time |t2 − t1| (where y

could be 0, corresponding to a lineage that has already mutated back to class k − 2

by the time the second individual mutates to class k− 1). The forms of Q and G are

described in Appendix A.

If the two individuals coalesced in this first step, the coalescent steptime is 1. If

not (which occurs with probability 1−P k,k→k−1
c ), we have to consider the probability

they coalesce at the next step (i.e. in the mutations that took them from class k − 2

to k − 1), P k,k→k−2
c , and so on.

So far we have imagined that both individuals that we originally selected from

the population came from the same class k. This will not generally be true. Rather,

when we pick two individuals at random, they will come from classes k and k′ with
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probability

H(k, k′) =

{
2hkhk′ if k 6= k′

h2
k if k = k′

(2.12)

For convenience we choose k ≤ k′. We define P k,k′→k−`
c to be the probability that two

individuals from classes k and k′ coalesce in class k − `. Note that P k,k′→k−`
c = 0 for

` < 0. For ` ≥ 0 we have

P k,k′→k−`
c =

∫
dxdydt1dt2Q

k−`
k,k′ (t1, t2)

xfk−`(x)

hk−`

yGk−`(y → x, |t2 − t1|)
hk−`

. (2.13)

From the set of coalescence probabilities Eq. (2.13), we can calculate the probabil-

ity distribution of coalescence steptimes between two individuals. We describe these

steptimes by the distribution of classes in which coalescence occurs; given that we

pick two individuals from classes k and k′ (with k < k′ by convention) the probability

that they coalesce in class k − ` is simply

φk
′

k (`) = P k,k′→k−`
c

`−1∏
j=0

[
1− P k,k′→k−j

c

]
. (2.14)

We note that this expression contains an implicit approximation, as described in

Appendix A.

2.4.2 Computing the Coalescence Probabilities

We now have a formal structure describing the structure of coalescent genealogies in

the presence of negative selection. It remains, however, to evaluate the coalescent

probabilities in each step by evaluating the integrals in Eq. (2.13). We explain the

details of this calculation in Appendix A. We find

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (2.15)

where Ak,k
′

` is a numerical coefficient which depends on k, k′, and ` but not on the

population parameters,

Ak,k
′

` =

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) . (2.16)
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In Fig. 2.3 we show examples of these coalescence probabilities for different population

parameters. We see that the probability of coalescence decreases with increasing

selection coefficients and population size.
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Figure 2.3: Examples of the Coalescence Probabilities P k,k′→k−`
c , for two indi-

viduals sampled from fitness classes k and k′ to coalesce in class k − `, shown as a
function of `. Here Ud/s = 8, s = 10−3, and results are shown for Ns = 10 (dotted
lines), Ns = 50 (dashed lines), and Ns = 100 (solid lines).

Eq. (2.15) is the complete solution for coalescent probabilities in the non-conditional

approximation. This general form for the coalescence probabilities makes intuitive

sense. Nhk−` is the population size of class k− `, and 1
s(k−`) is the average number of
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generations that an individual spends in class k − ` before mutating away. Since the

per-generation coalescent probability in a population of size n is proportional to 1
n
,

it makes sense that the coalescent probability in class k− ` is approximately propor-

tional to one over the population size of this class times the number of generations

individuals spend in this class. The additional 1 in the denominator captures the

fact that the individuals might mutate away from the class before coalescing there

(which reduces the average time they spend in the class together). The numerical

factor multiplying this basic scaling, Ak,k
′

` comes from the integrals over the proba-

bility distribution of mutant timings (i.e. the dt1 and dt2 integrals). It reflects the

probability that the ancestors of the two individuals we are considering were both in

class k − ` at the same time, since they could not otherwise coalesce there.

From this result, we can also form an intuitive picture of the shape of genealogies in

the presence of negative selection. We have just seen that the coalescence probability

per actual generation depends on the parameters as 1
Nhk−`

, where the relevant value

of ` increases as we go back in time. Thus the structure of genealogies in the presence

of negative selection is similar to having a variable population size as we go back in

time. The precise nature of this variable population size is encoded in the fitness

distribution hk−`. For example, if we imagine sampling two individuals from the

same below-average fitness class, the probability distribution of their genealogies is

like having a population size that initially increases and then decreases as we look

backwards in time. Of course, this analogy only goes so far. Most importantly,

the coalescent steptimes are related to the statistics describing genetic diversity in a

different way from how normal coalescent times are usually related to these statistics.

We return to this point in the section on the structure of genealogies below.

2.5 A Sum of Ancestral Paths Approach

We have just computed the fitness-class coalescence probabilities by considering the

lineage structure within each fitness class. Kaplan et al. (1988) proposed a somewhat

different way to look at the same problem: they considered a sample of individuals

and, without explicitly describing lineage structure, computed the relative probabil-
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ities that the next event to occur backwards in time would involve a mutation or

coalescent event. For example, if two individuals are in the same fitness class, the

next event could be either coalescence within that class or a mutation event. The

rates at which these events occur determines their relative probabilities.

In its original form, this approach used diffusion equations to account for fluctu-

ations in the frequencies of each fitness class hk. Barton and Etheridge (2004)

used this framework to provide a complete solution for the effect of selection at a

single site on the structure of genealogies. However, it has not yet proven possible

to solve these equations in the more general case of selection at many linked sites.

Instead, Hudson and Kaplan (1994) made progress by neglecting fluctuations in

the frequencies hk, the same approximation that is central to our approach. Using

this approximation, they derived a recursion relation for the mean time to a common

ancestor, their Eq. (12). Gordo et al. (2002) used this equation as the basis for a

coalescent simulation.

Recursion relations of the Hudson and Kaplan (1994) form can be solved nu-

merically, and have been used to generate data describing coalescent statistics, but

have not yet led to an analytic description of the structure of genealogies. We now

demonstrate that these numerical methods are equivalent to our lineage-based formal-

ism above, by showing that the Hudson and Kaplan (1994) approach can be used

to derive identical analytical formulas for the fitness-class coalescent probabilities.

We refer to this as a “sum of ancestral paths” approach, because it relies on summing

over all possible paths of individual ancestry through the fitness distribution. The

equivalence of this approach to our lineage-structure calculations means that our an-

alytical results in this paper match earlier numerical and simulation results based on

the Hudson and Kaplan (1994) formulation.

In order to calculate the coalescence probabilities for a sample of two individuals,

we consider the set of all possible ancestral paths these individuals may have followed.

Each path is represented by an ordered set of events, backwards in time. These events

may either be deleterious mutation events, which move one of the ancestral lineages

to the previous fitness class, or coalescence events, which merge the two ancestral

lineages. In order for two individuals to coalesce in class k− `, each ancestral lineage
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must undergo a series of deleterious mutation events, bringing them from their initial

classes to class k−`. The lineages must then coalesce before any additional deleterious

mutations occur. For example, in order for two individuals sampled from class k to

coalesce in class k − 1, the first event, backwards in time, must be a deleterious

mutation. This mutation can occur in either individual. After this event, one of the

ancestral lineages is still in class k, while the other is in class k−1. The second event,

backwards in time, must be a deleterious mutation event in the ancestral lineage that

remains in class k. Both ancestral lineages are now in class k − 1. Finally, the third

event must be a coalescent event. Note that there are a total of two paths, since

either individual may have been the first to mutate.

The probability of any particular ancestral path is the product of the probability

of each event in the path. We saw above that deleterious mutations occur in an

individual in class k at rate sk. If the two individuals are in different classes, they are

not able to coalesce as the next event. Thus the probability of each possible event is

simply:

P (1st Event is Del. Mut. in k|k, k′) =
sk

sk + sk′
(2.17)

P (1st Event is Del. Mut. in k′|k, k′) =
sk′

sk + sk′
. (2.18)

If the two individuals are in the same class, the next event may either be a coalescent

event or a deleterious mutation. Within each class, coalescence is a neutral process

that occurs with rate 1/Nhk. Therefore, we have

P (1st Event is Coal.|k, k) =
1/(Nhk)

sk + sk + 1/(Nhk)
=

1

1 + 2Nhksk
(2.19)

P (1st Event is Del. Mut.|k, k) =
2sk

sk + sk + 1/(Nhk)
=

2Nhksk

1 + 2Nhksk
. (2.20)

These probabilities are analogous to those used by Gordo et al. (2002), derived from

the framework of Hudson and Kaplan (1994).

Using these probabilities, we can easily calculate the probability of any particular

path. In general, in order for two individuals sampled from classes k′ and k to coalesce

in class k−`, the ancestral paths must consist of some order of k′−k+2` events which

include k′ − k + ` deleterious mutation events in the ancestral lineage that began in
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k′, and ` deleterious mutation events in the ancestral lineage that began in k. The

path must then conclude with a final coalescent event. Note that there are a total of(
k′−k+2`

l

)
possible paths, reflecting the number of ways to order the mutation events

in one lineage with those in the other. To calculate the coalescence probability, we

sum the probabilities of each path that results in this particular coalescence event.

We can carry out this sum in the general case by dividing up the
(
k′−k+2`

l

)
possible

paths according to whether or not the ancestral lineages ever coexisted in each class

before class k − `. Each case leads to a different path probability, and these proba-

bilities can be exactly summed. We carry out this calculation in detail in Appendix

A. We find that to leading order in 1
1+2Nhk−`s(k−`)

, we have

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (2.21)

which exactly matches our expression for the coalescence probabilities in our PRF

approach, Eq. (2.15).

We note that in deriving this result, we have made the same approximations we

used in our lineage structure based approach. Thus the results from the PRF method

and the sum of ancestral paths are exactly equivalent in the regime where they are

valid. However, there are subtle differences in the results to higher orders of the

approximations, which provide useful intuition about the process. For example, in

the sum of ancestral paths approach it is more natural to calculate φk
′

k (`) directly,

without first calculating P k,k′→k−`
c , and doing so allows us to compute certain higher-

order corrections to the coalescence probabilities. We discuss these details of the

correspondence between the approximations used in the two methods in Supplemental

Information A.5.

2.6 The Structure of Genealogies and Statistics of Genetic Di-

versity

We can now use the coalescence probabilities described above to calculate the struc-

ture of genealogies in the presence of negative selection. We can then use these

genealogies to calculate various statistics describing the genetic diversity within the

42



Chapter 2

population. We know the coalescent probabilities in each step of our fitness-class

coalescent process, so in principle we can calculate the probability of any genealogy

relating an arbitrary number of individuals using methods analogous to those used in

standard neutral coalescent theory. This would then allow us to calculate the distri-

bution of any statistic describing the genetic diversity among these individuals, again

using methods analogous to neutral coalescent theory.

Here we will focus on the simplest genealogical relationship: the distribution of

the time to the most recent common ancestor of two individuals, which demonstrates

the main ideas in the simplest context. This allows us to calculate the distribution

of the per-site heterozygosity π. This is the only statistic relevant to a sample of

two individuals. In larger samples, the coalescent probabilities between any pair

of sampled individuals are independent of those between any other pair that does

not share the same most recent common ancestor, so the distribution of per-site

heterozygosity we expect within such a sample is closely related to the ensemble

distribution of π we calculate here.

In our fitness-class coalescent framework, it is natural to consider diversity at the

negatively selected sites separately from diversity at linked neutral sites. We focus

first on the distribution of coalescent steptimes and πd, the per-site heterozygosity at

negatively selected sites alone, ignoring neutral mutations. We will then turn to the

connection between steptimes and actual times in generations, which will enable us

to calculate the distribution of neutral diversity, including the per-site heterozygosity

at neutral sites πn. In analyzing data, we will of course typically not know a priori

which sites are neutral and which are negatively selected. In such a situation, we

merely add up the expected diversity at neutral sites and negatively selected sites, so

that the total expected per-site heterozygosity is π = πd + πn.

2.6.1 Distribution of steptimes and πd

We begin by imagining that we sample two individuals at random from the same

fitness class k. If they coalesce in class k−`, they each acquired ` different deleterious

mutations to reach class k. Thus the number of negatively selected sites at which
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they will be polymorphic is twice their coalescent steptime, πd = 2`. We therefore

have

ρ(πd = 2`) = φkk(`), (2.22)

where ρ(πd = 2`) is the probability πd = 2`.

More generally, if two individuals sampled from classes k and k′ coalesce in class

k − `, we have πd = 2`+ k′ − k. This means we have

ρ(πd = 2`+ k′ − k|k, k′) = φk
′

k (`). (2.23)

We can average this over the distributions of k and k′ to find the distribution of πd

amongst individuals sampled at random from the population. We find

ρ(πd) =
∑
`

∞∑
k=0

H(k, k′ = k + πd − 2`)φk
′=k+πd−2`
k (`), (2.24)

where the first sum runs from ` = 0 to the largest integer less than or equal to the

smaller of k or πd/2. Note that in practice we only have to evaluate the sum over k

from 0 to a multiple of Ud/s, since H(k, k′) will be negligible for larger k.

These results for the distributions of genealogy lengths and of πd involve several

sums. However, all the terms in these sums are straightforward and the numerical

evaluations of their values are simple and fast. In Fig. 2.4 we show a representative

example of the predicted distribution of the per-site heterozygosity at negatively

selected sites, ρ(πd), compared to simulation results. We explore the significance of

the shape of the distribution ρ(πd), how this distribution depends on the parameter

values, and the source of the small but systematic deviations between the theoretical

predictions and the simulation results in the Discussion.

2.6.2 The Relationship between Steptimes and Time in Generations

So far we have focused on the genealogies measured in steptimes, which allowed us

to calculate the distribution of heterozygosity among negatively selected sites. We

would now like to relate the steptimes to actual times in generations. To do this,

we consider the probability that a coalescence event occurred at time t, given two

individuals sampled from classes k and k′ that coalesced in class k − `, ψ(t|k, k′, `).
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Figure 2.4: Characteristic Examples of the Distribution of πd: Here N =
5×104, s = 10−3 and in (a) Ud/s = 2, while in (b) Ud/s = 4. Theoretical predictions
are shown as a solid line, simulation results as a dashed line. Simulation results are
averaged across at least 300 independent simulations for each parameter set; shaded
regions show one standard error in the simulation results. The fit to simulations is
good, but we tend to slightly underestimate πd, and this tendency is worse for larger
Ud/s. This is consistent with the effects of Muller’s ratchet, which becomes more
problematic as we increase Ud/s. This systematic underestimate becomes less severe
(for all values of Ud/s) as N increases, as expected, but comprehensive simulations
for much larger N are computationally prohibitive.
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We compute this distribution in Supplemental Information A.5, and find

ψ(t|k′, k, `) =
∑πd−1

i=0 sπd(−1)πd−i−1
(
πd−1
i

)(
k′+k
πd

)
B

A−B

(
e−sBt − e−sAt

)
, (2.25)

where we have defined A ≡ k′ + k − i and B ≡ 2 (k − `) + 1
Nshk−`

.

Note that when Nhk−`s(k − `)� 1 (the same condition required to neglect fluc-

tuations in hk, see Appendix B), this expression can be simplified; we find

ψ(t|k′, k, `) = s(πd + 1)e−s(k
′+k)t(est − 1)πd

(
k′ + k

πd + 1

)
. (2.26)

However, it is important to note that while this approximation may be valid in the

bulk of the distribution, it will always fail when coalescence occurs in the zero-class,

where s(k− `) = 0. In this case, we must use the more complex expression Eq. (2.25)

(or in the case when the coalescence time within the 0-class can be neglected compared

to the time taken to descend from the 0-class, the simpler expression described in Eq.

(2.39) below).

Averaging over the possible values of k, k′, and `, we find the overall distribution

of actual coalescent time between two randomly chosen individuals,

ψ(t) =
∑
k′≥k

∞∑
k=0

k∑
`=0

ψ(t|k, k′, `)φk′k (`)H(k, k′), (2.27)

where the distributions H(k, k′), φk
′

k (`), and ψ(t|k, k′, `) are as given above. However,

as we will see below, in calculating neutral diversity we will typically find it easier to

work directly with ψ(t|k, k′, `) rather than this unconditional distribution for ψ(t).

2.6.3 The Neutral Heterozygosity πn

From the distributions of real times to a common ancestor described above, we can

calculate the distribution of πn, the neutral heterozygosity. Since the neutral muta-

tions occur as a Poisson process with rate Un, and there are a total of 2t generations

in which these mutations can occur, πn follows a Poisson distribution with mean Unt,

where t is drawn from the distribution of coalescence times, Eq. (2.27). We have

ρ(πn) =

∫ ∞
0

[2Unt]
πn

πn!
e−2Untψ(t)dt. (2.28)
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In Fig. 2.5, we compare this distribution of neutral heterozygosity to simulations. We

find good general agreement to the shape of the distribution, though there are slight

systematic errors (consistent with the effects of Muller’s ratchet, which we explore

further in the Discussion). Note that, like our results for the diversity at negatively

selected sites, these results differ dramatically from the exponential distribution a

neutral model or effective population size approximation would predict; we describe

these comparisons further in the Discussion.

We note that an alternative way to compute neutral heterozygosity is to further

extend the sum of ancestral paths approach which we used above to provide an

alternative derivation of the coalescence probabilities. In this formulation, we do not

make any connection to real times. However, this approach provides an alternative

way to compute the distribution of neutral heterozygosity, ρ(πn). We carry out this

computation in Supplemental Information A.6, and show that it leads to results

identical to our analysis above.

2.6.4 The Total Heterozygosity π

To calculate the distribution of total heterozygosity π = πn + πd, we must account

for the fact that πd and πn are not independent: large πd means a large coalescent

steptime and hence makes a large πn more likely. The distribution of πd is given by

ρ(πd) above. Above we found ψ(t|k, k′, `), which implies that

ρ(πn|k, k′, `) =

∫ ∞
0

[2Unt]
πn

πn!
e−2Untψ(t|k, k′`)dt. (2.29)

We can compute this integral; we find

ρ(πn|k′, k, `) =
∑πd−1

i=0 πd(−1)πd−i−1
(
πd−1
i

)(
k′+k
πd

)
B

A−B

(
( 2Un
s

)πn

( 2Un
s

+B)πn+1
− ( 2Un

s
)πn

( 2Un
s

+A)πn+1

)
.

(2.30)

Since πd = 2`+ k − k′, this implies

ρ(πn|πd) =
∑

πd=k′−k+2`

ρ(πn|k, k′, `). (2.31)

This describes the joint distribution of selected and neutral variation, which is of

interest in situations where we know in advance which sites are likely to be neutral
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Figure 2.5: Characteristic Examples of the Distributions of πn and the Real
Coalescent Times: (a) Theoretical predictions for the distribution of πn for Ud/s =
2, compared to simulation results. (b) Theoretical predictions for the distribution
of πn for Ud/s = 4, compared to simulation results. Simulation results are averaged
across at least 300 independent simulations for each parameter set; shaded regions
show one standard error in the simulation results. (c) Theoretical predictions for
the distribution of real coalescence times for Ud/s = 2; note these simply mirror the
distribution of πn, as expected. (d) Theoretical predictions for the distribution of
real coalescence times for Ud/s = 4. In all panels we have N = 5× 104 and s = 10−3.
Our theory agrees well with the simulations, but note that, as with πd, we tend to
systematically underestimate πn, and this tendency is worse for larger Ud/s. This is
consistent with Muller’s ratchet, and as expected becomes more problematic for larger
Ud/s. This systematic underestimate becomes less severe (for all values of Ud/s) as
we increase N , as expected, but comprehensive simulations for much larger N are
computationally prohibitive.
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and which are selected (e.g. when analyzing the joint distribution of synonymous and

non-synonymous variation). It implies a particular relationship between the observed

diversity at selected sites and the reduction in linked neutral variation.

In many situations, however, we will not know which alleles are selected and

which are neutral. In this case, we want to understand the distribution of total

heterozygosity π, which is given by

ρ(π) =
∑

πn+πd=π

ρ(πd)ρ(πn|πd). (2.32)

This is no more difficult to calculate than ρ(πn), since it involves analogous sums. In

Fig. 2.6, we compare this predicted distribution of total heterozygosity to simulations.

As with the other aspects of heterozygosity, we find good general agreement to the

simulations, with the slight systematic errors that are consistent with the effects of

Muller’s ratchet.

2.6.5 The Mean Pairwise Heterozygosity

Above we have calculated the distribution of heterozygosity for both neutral and

deleterious mutations, as well as total heterozygosity. It is straightforward to average

these results to calculate the mean pairwise heterozygosity for both neutral and dele-

terious mutations; the mean total pairwise heterozygosity is simply the sum of these.

In Fig. 2.7 and Fig. 2.8 we show how this mean heterozygosity depends on popula-

tion size, mutation rate, and selection strength, for neutral and deleterious mutations

respectively. We see that the dependence of 〈πd〉 on the population size is fairly weak.

While it increases roughly linearly with N in the weak selection regime, this quickly

saturates and for Ns substantially greater than 1 the mean heterozygosity becomes

almost independent of population size. The dependence on Ud/s, by contrast, is much

stronger. The dependence of 〈πn〉 on the parameters is also interesting: this depends

weakly on the parameters for small N or Ud/s, but for larger N becomes roughly lin-

ear. These results make intuitive sense, particularly in light of the “mutation-time”

approximation that we introduce in the Discussion, where we discuss these figures in

more detail.
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Figure 2.6: Characteristic Examples of the Distribution of Total Heterozy-
gosity π: Here N = 5× 104, s = 10−3 and in (a) Ud/s = 2, while in (b) Ud/s = 4.
Theoretical predictions are shown as a solid line, simulation results as a dashed line.
Simulation results are averaged across at least 300 independent simulations for each
parameter set; shaded regions show one standard error in the simulation results. The
fit to simulations is good, but we tend to slightly underestimate π, and this tendency
is worse for larger Ud/s. This is for the same reasons as in the distributions of πn and
πd.
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Figure 2.7: Theoretical Predictions for the Mean Pairwise Heterozygosity
at Negatively Selected Sites, 〈πd〉, as a function of the parameters. (a) 〈πd〉 as a
function of Ud/s for several values of Ns. In the “mutation-time” approximation we
expect this to be linear with a slope of 2, since on average individuals are sampled from
the mean class at k = Ud/s and coalesce in the 0-class, and hence have πd = 2Ud/s.
We see that as expected this approximation becomes more and more accurate as Ns
increases. For smaller N , there is substantial probability of coalescence in the bulk
of the fitness distribution, which is greater for larger Ud/s. Thus the slope of 〈πd〉 as
a function of Ud/s decreases as Ns decreases, and has a downwards curvature. (b)
〈πd〉 as a function of Ns for several values of Ud/s. We see that as Ns becomes large,
〈πd〉 approaches 2Ud/s, again consistent with the mutation-time approximation. As
Ns decreases, coalescence within the bulk of the fitness distribution becomes more
likely, and hence 〈πd〉 decreases.

51



Chapter 2

3

3.5

4

4.5

5

5.5

6

6.5

7

4 4.5 5 5.5 6 6.5 7

Series1

Series2

Series3

Series4

𝑈𝑑
𝑠 = 2 

𝑈𝑑
𝑠 = 4 

𝑈𝑑
𝑠 = 6 

𝑈𝑑
𝑠 = 8 

 

log10 𝑁 

lo
g
1
0

 
[M

ea
n

 C
o

al
es

ce
n

ce
 T

im
e]

 

3

4

5

6

7

2 3 4 5 6 7 8

Series1
Series2
Series3
Series4

𝑁 = 104 
𝑁 = 105 
𝑁 = 106 
𝑁 = 107 

𝑈𝑑
𝑠

 

lo
g
1
0

 
[M

ea
n

 C
o

al
es

ce
n

ce
 T

im
e]

 

Figure 2.8: Theoretical Predictions for the Mean Real Coalescence Time
〈t〉: In this figure we fix s = 10−3 and show the dependence of the mean pairwise
heterozygosity on N and on Ud/s. The mean pairwise heterozygosity at neutral sites,
〈πn〉 is simply 〈πn〉 = 2Un〈t〉. (a) Mean coalescence time as a function of N for
various values of Ud/s. We see that 〈t〉 increases slowly with N until for large enough
N the EPS approximation applies and 〈t〉 becomes linear in N . (b) Mean coalescence
time as a function of Ud/s for several values of N . For large N , the dependence is
roughly linear, consistent with the EPS approximation. For smaller N , coalescence
can occur in the bulk of the fitness distribution, reducing the mean coalescence time.
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2.6.6 Statistics in Larger Samples

The distributions of πn and πd described above are very different from the distributions

of heterozygosity expected in the absence of selection. We could certainly measure

the distribution of pairwise heterozygosity from a sample of many individuals from

a population, and use this to infer the action of selection. However, it may also

be useful to understand the expected distribution of other statistics describing the

variation in larger samples. One statistic often used to describe variation in larger

samples is the total number of segregating sites among a sample of n individuals, Sn.

Here we describe how our framework allows us to calculate the distribution of S3;

similar methods can be used to calculate the distribution of Sn for larger n. As we

will see, it is unwieldy to calculate closed form expressions for these quantities in our

framework, so here we merely lay out a prescription for calculating S3.

We first consider the distribution of Sd3 , the number of segregating negatively

selected sites among three randomly sampled individuals. In order to calculate the

probability a sample has a particular Sd3 , we imagine picking three individuals at

random from the population and calculate the probability of the coalescence events

that lead to that Sd3 . We illustrate such a situation where three individuals are

sampled from classes k, k′, and k′′ in Fig. 2.9. Two of these three lineages coalesced

in class k1. We call the steptime at which two of the three lineages coalesced τ3 (see

Fig. 2.9). We next need to calculate the distribution of τ2, the total steptime to

common ancestry of the three individuals. This time of course cannot be smaller

than τ3. Given values of τ3 and τ2, it is clear from Fig. 2.9 that the total number of

segregating negatively selected sites is Sd3 = 2τ2 + τ3 − (k′′ − k)− (k′′ − k′)..
Calculating the joint distribution of τ2 and τ3 is tedious, because we must sum

over all possible orderings of the coalescence events, but it can be computed using

either our lineage structure method or the sum of ancestral paths approach. The

basic result is analogous to our results for the coalescence steptime between a pair

of individuals: coalescence probabilities within a given class are proportional to the

inverse size of that class times the number of real generations the ancestors of given

individuals typically spend in that class, times a factor that reflects the time that the
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ancestors of sampled individuals are present in each class at the same time.

12 11 10 9 8 7 6 5 4 3 2 1 0

# 
o

f 
In

d
iv

id
u

al
s 

Fitness Class k 

𝜏3 

𝜏2 

Figure 2.9: The Fitness-Class Coalescence Process for Three Individuals, A,
B and C, where A and B coalesced τ3 steptimes ago and C coalesced with the other
two τ2 steptimes ago.

Given a particular value of Sd3 , there is a relationship between the steptimes and

actual times (analogous to Eq. (2.25)), which we could use to find the distribution of

the total number of segregating neutral sites Sn3 . More complex statistics involving

even larger samples can be computed using similar methods.

However, while this analysis provides a prescription for calculating the distribution

of Sd3 and Sn3 , it is clear that the full distributions are opaque. In the Discussion we

provide a simple approximation for Sn in a specific parameter regime we refer to

as the “mutation-time” regime, but the complexities of the general calculation are

tangential to the ideas behind our framework, so we do not pursue them further here.
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However, these issues will be important to explore in future work aiming to use this

framework for data analysis, and our approach here can be used as the basis for

genealogical simulations. Further, since our methods allow us to quickly compute the

probability of a given genealogical history and to draw a particular genealogy from

the appropriate distribution, they may provide a useful basis for importance sampling

or MCMC methods to infer selection pressures from data.

2.7 Numerical Simulations of the Genetic Diversity

We compare the predictions of our fitness-class coalescence analysis to Monte Carlo

simulations of the Wright-Fisher model. In our simulations, we consider a population

of constant size N and we keep track of the frequencies of all genotypes over successive,

discrete generations. In each generation, N individuals are sampled with replacement

from the preceding generation, according to the standard Wright-Fisher multinomial

sampling procedure (Ewens 2004) in which the chance of sampling an individual is

determined by its fitness relative to the population mean fitness.

In our simulations, each genotype is characterized by the set of sites at which it

harbors deleterious mutations and the set of sites at which it harbors neutral muta-

tions. In each generation, a Poisson number of deleterious mutations are introduced,

with mean NUd, and a Poisson number of neutral mutations are introduced, with

mean NUn; each new mutation is ascribed to a novel site, indexed by a random

number. The mutations are distributed randomly and independently among the indi-

viduals in the population (so that a single individual might receive multiple mutations

in a given generation). The simulations record the time (in generations) at which each

distinct genotype was first introduced.

Starting from a monomorphic population, all simulations were run for at least

1
s

ln(Ud/s) or N generations (whichever was larger), to ensure relaxation both to

the steady-state mutation-selection equilibrium and to the PRF equilibrium of allelic

frequencies within each fitness class. The final state of the population — i.e. the

frequencies of all surviving genotypes — was recorded at the last generation. In order

to produce the empirical distributions of πd, and πn shown in Fig. 2.4 and Fig. 2.5,
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we averaged across at least 300 independent populations for each parameter set.

Our simulations allow for random fluctuations in the frequencies of each fitness

class, and for Muller’s ratchet. In most of the parameter regimes we explored, the

ratchet proceeded during the simulation, so that the least loaded class at the end of

each simulation typically contained anywhere from no deleterious mutations (typical

for Ud/s = 2) to of order ten (typical for Ud/s = 4). We see that despite these effects,

our theory agrees well with the simulations, although there are small systematic

errors that are consistent with effects of the ratchet. Generally speaking these errors

increase as we increase Ud/s, but become less severe for larger N or s. We consider

these effects of Muller’s ratchet in more detail in the Discussion.

2.8 Discussion

In recent years, both experimental studies and sequence data have pointed to the

general importance of selective forces among many linked variants in microbial and

viral populations, and on short distance scales in the genomes of sexual organisms

(Hahn 2008). Our analysis provides a framework for understanding how one particu-

lar type of selection — pervasive purifying (i.e. negative) selection against deleterious

mutations — affects the structure of genetic variation at the negatively selected sites

themselves and at linked neutral loci. This type of selection is presumably widespread

in many populations, in which there is a selective pressure to maintain existing geno-

types and mutations away from these genotypes at a variety of loci are deleterious.

A variety of earlier work has addressed aspects of this problem, as described in

the Introduction. The key insight of our approach is that instead of following the true

ancestral process, we develop a fitness-class genealogical approach which focuses on

how individuals “move” through the fitness distribution. Here each mutation plays the

role of a reproductive event that moves individuals through the fitness distribution,

and each fitness class is a “generation” in which coalescence can occur with some

probability. We calculate this probability using a simple approximation based on

the PRF model of Sawyer and Hartl (1992), rather than by considering the actual

reproductive process within that class. By extending formulas originally computed by
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Hudson and Kaplan (1994), we showed that these coalescent probabilities can also

be computed using a summation of ancestral paths based on the structured coalescent

described by Kaplan et al. (1988). Hence the conclusions from our analysis also

describe the simulations of Gordo et al. (2002) and are consistent with all other

results based on this structured coalescent approach. Our work is also closely related

to recent work in a continuous-fitness model by O’Fallon et al. (2010), which uses a

similar framework to analyze the weak-selection regime but not the Ns� 1 situation

we study here. We explore the relationship between our analysis and earlier work in

more detail in Appendix C.

Our approach leads to simple expressions for the coalescent probability at each step

in our fitness-class genealogical process. This makes it a complete effective coalescent

theory: using these probabilities, we can calculate the probability that a sample of

individuals has any particular ancestral relationship. Our coalescent probabilities are

different from those in the standard Kingman coalescent (Kingman 1982), so the

structure of genealogies has a different form.

Of course, since our process is an effective rather than an actual coalescent, the

relationship between a fitness-class genealogy and the expected statistics of genetic

variation given that genealogy is different than in the standard neutral coalescent.

Given a particular genealogy measured in steptimes, the numbers of deleterious mu-

tations are the coalescent times, and to calculate the statistics of neutral variation we

have to make use of the relationship between steptimes and actual coalescence times.

This contrasts with the Kingman coalescent, where numbers of neutral mutations are

typically Poisson-distributed variables with means proportional to coalescence times

(Wakeley 2009). However, we can account for these differences by starting with

the distribution of fitness-class genealogies and then converting these genealogies into

actual coalescence times.

In this paper, we have used this fitness-class approach to calculate simple statistics

describing genetic variation, in particular the distribution of pairwise heterozygosity.

This leads to analytic expressions for the quantities of interest, although these expres-

sions involve sums which are most easily calculated numerically. These are easy to

compute, and do not become harder to evaluate in larger populations, and hence are
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more efficient to evaluate than either simulations or calculations within the ancestral

selection graph.

2.8.1 An Intuitive Picture of the Structure of Genealogies

The most important aspect of our analysis is not the specific results for heterozy-

gosity, which match the conclusions of earlier simulations. Rather, the fitness-class

coalescent approach allows us to draw several important general conclusions about

how negative selection distorts the structure of genealogies. For two individuals drawn

from particular fitness classes, the effect of negative selection is similar to that of an

effective population size that changes as time recedes into the past. This is consis-

tent with suggestions from earlier work (e.g. the simulation study of Williamson

and Orive (2002) and the work of Seger et al. (2010)). However, this is not a

population size that decreases in a simple way into the past. Our analysis shows

the exact form of this time dependent population size. Further, it is clear from our

analysis that this is not the only effect of negative selection on genealogies. There

are two key complications. First, the statistics of genetic variation (particularly at

the deleterious sites themselves) depend on the structure of genealogies differently

in our fitness-class coalescent than in the standard neutral coalescent. Second, the

time-varying rate of coalescence between a pair of individuals depends on the fitness

classes they were sampled from. In other words, different pairs of individuals have a

different time-varying effective population size. This suggests that genetic diversity

cannot be represented by a single time-varying effective Ne(t) for the whole popula-

tion, which means that it may be possible to develop statistical tests to distinguish

negative selection from population size. All of these general intuitive conclusions

about the structure of genealogies in our fitness-class coalescent are illustrated in Fig.

2.10.

We now pause to make this intuitive picture of the shape of typical genealogies

more precise. In general the probability that two individuals will coalesce within class

k has the form Pc ≈ A
2

1
nksk

, where nk is the population size of that class, sk is the

effective selection pressure against individuals within that class, and A is a constant
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Figure 2.10: Relationship Between our Results and an Effective Popula-
tion Size Approximation: (a) A typical coalescent tree in a neutral population of
constant size. The coalescent probability per generation between a random pair of
individuals is the inverse population size. Time runs from the past at the top to the
present at the bottom. (b) An example of a neutral coalescent tree in a population
which was smaller in the past than the present. The population size is shown as
the width in green. Coalescence events are more likely to occur when the population
size is smaller. (c) The effective population size history for an individual experienc-
ing purifying selection according to our model. The individual spends on average 1

sk

generations in class k, which has a total size Nhk. Note that pairs of individuals
are sampled from different classes k (i.e. they are not all sampled from the bottom
of this picture). Further, the coalescence probabilities also include a factor of A/2,
which reflects the probability that two lineages are in the same class at the same time.
(d) The historically varying effective population size Ne(t) for a pair of individuals
sampled from classes k and k′, as defined in the text, for several values of k and k′.
The Ne(t) for two individuals sampled at random from the whole population is also
shown. Here N = 5× 104, Ud/s = 6, and s = 10−3.
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that depends on which classes the lineages began in, but not on any of the population

parameters. We have seen that each lineage spends on average 1
sk

generations in class

k. Thus we can think of each individual as seeing a historical effective population

size as shown in Fig. 2.10c: it starts in some class k with size nk and spends 1
sk

generations in that class before moving to class k − 1, and so on.

If we sample two individuals, however, they will not always be in the same class at

the same time. This effect reduces the coalescence probabilities in each class, as cap-

tured by the factor A/2. This factor is the average fraction of the 1
sk

generations each

lineage spends in class k that the two lineages spend there together. Alternatively, we

can think of this factor as consisting of two parts: A is the probability that the two

lineages are ever in the same class at the same time, and 1
2sk

is the average amount of

time that they coexist in the class if they coexist at all (they each spend on average

1
sk

generations there, but on average overlap for only half this time if they overlap

at all). While the two lineages are in the class at the same time, the per-generation

coalescent probability is 1
nk

.

This logic implies that genealogies in the presence of purifying selection look

like neutral genealogies with a specific type of historical population size dependence.

Imagine for example we picked two individuals from the same fitness class k. They

each spend on average 1
sk

generations in class k, and during that time they have a

probability A
2

1
nk

per (real) generation of coalescing (this probability includes the fact

that on average they are both in the class simultaneously for only a fraction of the

mean time each spends there). So roughly speaking, they have an effective population

size of Ne ∼ 2nk/A
k,k
`=0 for the first 1

sk
generations. If they fail to coalesce, they then

move to class k−1, where they spend 1
s(k−1)

generations and have a probability A
2

1
nk−1

per generation of coalescing, and hence an effective population size Ne ∼ 2nk−1/A
k,k
`=1

for this time. If they again fail to coalesce, they move to class k − 2, and so on.

So far, this picture of a time-dependent population size is rather crude, but we can

make it more precise. Specifically, we can write the coalescence probability between
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two individuals sampled from class k and k′ as a function of time in generations as

ψ(t|k, k′) =
k∑
`=0

φk
′

k (`)ψ(t|k, k′, `). (2.33)

We can then define the time-dependent effective population size between these indi-

viduals, Ne(t), as the inverse probability of coalescence at time t given that coalescence

has not yet occurred,
1

Ne(t)
=

ψ(t|k, k′)
1−

∫ t
0
ψ(t′|k, k′)dt′

. (2.34)

In other words, the Ne(t) is defined as usual as the inverse of the probability that the

two individuals will coalesce at time t given that they have not yet done so.

We illustrate this precise time-dependent population size Ne(t) in Fig. 2.10d.

We see that for two individuals sampled from the same fitness class, Ne(t) typically

increases into the recent past and then decreases into the more distant past. This

reflects the fact that the two individuals are becoming less likely to be in the same

fitness class in the recent past, but that as time recedes into the distant past they

are likely to be in the highly fit classes which have smaller nk. For two individuals

sampled from classes near but not identical to each other, Ne(t) starts high and then

drops before exhibiting a pattern similar to that among individuals sampled from the

same class. This reflects the fact that it takes at least a short time before the two

individuals have any chance of being in the same class. Finally, for two individuals

sampled from more distant classes, Ne(t) simply declines into the past, both because

longer ago they were more likely to be in the same class and more likely to be in the

small classes near the high-fitness tail.

Averaging over the whole population, Fig. 2.10d shows the precise time-dependent

population size Ne(t) for two randomly sampled individuals. This average Ne(t) ini-

tially stays roughly constant as time recedes into the past before decreasing thereafter.

For these two randomly sampled individuals, selection is indistinguishable from this

particular historically varying population size. The distribution of coalescence times

between this pair of individuals looks the same as neutral coalescent histories with

this specific population size history. The deleterious mutation rates and selection

pressures only matter in that they determine the form of this population size history.
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We note that the average Ne(t) shown in Fig. 2.10d implies that recent branches of

genealogies will typically be longer relative to ancient branches than we would expect

under neutrality. Thus background selection will lead to an excess of low-frequency

variants, and hence lead to negative values of Tajima’s D, consistent with expec-

tations from previous work (Charlesworth et al. 1995; Fu 1997; Gordo et al.

2002).

However, a key difference from a neutral population of time-varying size is that, as

is clear in Fig. 2.10d, pairs of individuals do not typically come from the same fitness

class. Rather, they come at random from different parts of the fitness distribution,

and those that come from different places have ancestries characterized by different

historically varying population sizes. The total distribution of ancestry is the sum of

all of these. In other words, the genetic variation within the population is like that in

a population where some individuals had one type of historical population size history,

while others had another. If we restrict ourselves to pairwise statistics such as π, the

average Ne(t) across pairs of individuals will accurately describe the genetic diversity.

However, when we consider appropriately defined statistics in larger samples, the

fact that there is no single Ne(t) for the whole population could be important. It

remains an interesting question for future work to explore how to exploit this fact to

develop statistical tests to distinguish the effects of purifying selection from that of a

historically varying effective population size.

2.8.2 Approximations Underlying our Approach

Our analysis relies on several key approximations. First, both our lineage-structure

and our sum of ancestral paths methods assume that we can neglect fluctuations

in the total frequency hk of each class. Related to this approximation, we have

also implicitly assumed that the probability a lineage in class k reaches a frequency

close to hk can be neglected. In Appendix B, we analyze these approximations in

detail and show that they will hold in class k whenever Nhksk � 1. In practice,

this condition will often break down in the high and low-fitness tails of the fitness

distribution. Fortunately, provided it holds in the bulk of the distribution in which
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most individuals will be sampled (which will typically be true provided Ns� 1), our

approach will still be a good approximation. We have also made several other more

technical approximations in computing the fitness-class coalescent probabilities. We

discuss these in detail in Supplemental Information A.1 and A.4.

Our final and most important approximation is that we assume that Muller’s

ratchet can be neglected. The ratchet occurs when h0 fluctuates to 0, so we can think

of this approximation as an extreme aspect of neglecting fluctuations in the sizes of

each fitness class. This approximation can sometimes be problematic; we discuss it

in detail below.

Although we have focused primarily on situations when selection is weak compared

to total deleterious mutation rates, our approach is also valid regardless of whether

s is strong or weak compared to Ud. However, when selection is sufficiently strong

(Ns � 1 and Ud/s < 1), then an effective population size approximation accurately

describes the patterns of genetic variation, as we describe below. Thus our methods

are primarily useful for situations where selection is weak compared to mutation rates.

2.8.3 Relationship with an Effective Population Size Approximation

Charlesworth et al. (1993) considered how selection against many linked delete-

rious mutations affects linked neutral diversity in a model identical to ours. These

authors found that when selection is sufficiently strong, the shape of genealogies and

hence the statistics of variation at linked neutral sites is identical to the neutral case,

with a reduced effective population size. We refer to this as the effective population

size (EPS) approximation.

The idea behind the EPS approximation is that when selection is strong, delete-

rious mutations are quickly eliminated from the population by selection. Thus if we

sample individuals from the population, they must have very recently descended from

individuals within the class of individuals which had no deleterious mutations (the

0-class). The EPS approximation assumes that the time for this to happen can be

neglected, and that individuals never coalesce before it does. These individuals then

coalesce within the 0-class as a neutral process with effective population size equal
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to the size of that 0-class, which is Ne−Ud/s. Thus the genetic diversity within the

population is identical to that in a neutral population of reduced size Ne = Ne−Ud/s.

The EPS approximation is valid provided that the neutral coalescence time within

the 0-class, tneut, is large compared to the time it takes for a typical individual to have

descended from the 0-class, tdesc. We know tneut ∼ Ne−Ud/s, and since a typical indi-

vidual comes from fitness class k ∼ Ud/s, we have that tdesc ∼
∑Ud/s

j=1
1
js
∼ 1

s
ln
(
Ud
s

)
.

This means that the EPS approximation will be valid provided

Nse−Ud/s � ln

(
Ud
s

)
. (2.35)

Because of the exponential term on the left hand side of this expression, it is clear

that the EPS approximation is a strong-selection, weak-mutation limit. It will tend

to be valid provided that Ns > 1 and Ud < s. However, whenever Ud becomes much

larger than s, it will typically break down even in enormous populations, as has been

suggested by Nordborg et al. (1996) and Kaiser and Charlesworth (2009).

Our analysis describes the effects of background selection beyond the EPS approx-

imation. We do not assume that the coalescence time through the fitness distribution

is small compared to the coalescence times within the 0-class, or that coalescence

cannot occur among individuals carrying deleterious mutations. It is precisely these

two effects that lead to distortions away from the neutral expectations, making it

impossible to describe genealogies using neutral theory with a revised effective popu-

lation size. Although our analysis is a generalization of the EPS approximation, it is

not inconsistent with it. However, we have focused primarily on situations where the

EPS approximation breaks down, and coalescence times through the fitness distribu-

tion are large compared to those in the 0-class, because this is the situation where

our approach is most useful.

Note also that in many situations it may be the case that there are many linked

weakly selected mutations and many linked strongly selected mutations. In such

circumstances, the process we consider and the EPS approximation can act simulta-

neously, each for different classes of mutations. Imagine we had one class of mutations

with fitness cost s1 which occur with mutation rate U1, where U1 < s1 and Ns1 � 1

so that the EPS approximation applies. At the same time, imagine another class of
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mutations with fitness cost s2 which occur with mutation rate U2, where U2 � s2

so that the EPS approximation breaks down for these mutations. In this case, the

genetic diversity we expect to see will be characteristic of our fitness-class coales-

cent theory (with Ud = U2 and s = s2), but with a reduced effective population size

Ne = Ne−U1/s1 . In other words, the strongly selected mutations reduce the effective

population size because all individuals are very recently descended from an individual

that had no large-effect mutations, but the coalescence time through the distribution

of weakly selected mutations cannot be neglected.

2.8.4 A “Mutation-time” Approximation

We have seen that our analysis accounts for two effects missing from the EPS approx-

imation: coalescence events outside the 0-class, and the time it takes for individuals

to have descended from the 0-class. Whenever Ud/s and N are both sufficiently large,

the former effect can be neglected while the latter is still important, because the num-

ber of lineages in each fitness class becomes large and hence coalescence events are

very unlikely to occur outside of the 0-class. This leads to an approximation which we

can think of as a generalization of the EPS approximation. Rather than considering

primarily the diversity generated within the most-fit background, we focus instead

on the diversity that accumulates while lineages move between different less-fit back-

grounds. Hence we term this approach a “mutation-time approximation” (MTA)

for short. In this approximation, we assume that all individuals coalesce within the

0-class, as with the EPS approximation. However, unlike the EPS approximation,

we consider the time it took for individuals to descend from the 0-class in addition

to the coalescence time within the 0-class. This approximation is valid for large N

(when even Nh1 is enormous compared to 1
s
) so that coalescence always occurs in the

0-class.

In this mutation-time approximation our results become much simpler and pro-

vide a useful intuitive picture of the structure of genealogies and genetic variation.

Consider the deleterious heterozygosity πd of two individuals sampled from fitness

classes k and k′. In this approximation, these two individuals always coalesce in the
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0-class so we always have πd = k+ k′. Since two individuals are sampled from classes

k and k′ with probability H(k, k′), the distribution of πd in the population as a whole

is extremely simple: we have

ρ(πd) =
∑

k=πd−k′
H(k, k′) = e−2Ud/s

1

πd!

(
2Ud
s

)πd
. (2.36)

This simple approximation makes it clear why the distribution of πd looks the way

it does, and explains how it varies with Ud/s and with N , both in this mutation-time

approximation and more generally. For large N , when coalescence outside the 0-class

can be neglected, two individuals from class k and k′ have πd = k + k′. Thus the

distribution of πd has roughly the same shape as the distribution of fitness within

the population. The mean πd is 2Ud/s, since the average individual comes from class

k = Ud/s. Smaller and larger πd are less likely; the distribution of fitness in the

population has variance equal to the mean, so the variance of the distribution of πd

is also roughly equal to its mean. As N gets smaller, there is sometimes coalescence

outside of the 0-class. This reduces πd given k and k′. Hence as we reduce N , the

distribution of πd shifts somewhat leftwards, with a peak somewhat below 2Ud/s,

and has slightly more variance relative to the mean since there is a less definite

correspondence between k, k′, and πd. Since πn is determined by πd, this also explains

why the distribution of πn has the peaked form we observe, and how it depends

on Ud/s and N (note that for πn the coalescence time within the 0-class, which

increases linearly with N , must also be included). All of these intuitive expectations

are reflected in our results, as shown in Fig. 2.4, Fig. 2.5, Fig. 2.7, and Fig. 2.8.

Note for example that in Fig. 2.4, the peak of πd is slightly below 2Ud/s (reflecting

the finite population size) and has variance about equal to its mean; we have verified

that as N increases the shape of the distribution remains roughly the same, but the

mean increases towards 2Ud/s and the variance decreases slightly.

More complex statistics of sequence variation are similarly straightforward to cal-

culate in the mutation-time approximation. When considering larger samples, the

genetic diversity is determined by the fitness classes these individuals come from,

which is always simple since the probability a given individual is sampled from fit-

ness class k is just the Poisson-distributed hk. This approximation may therefore
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prove useful in developing simple and intuitive expressions for various statistics. For

example, we can use this approximation to calculate a simple expression for the dis-

tribution of the total number of segregating negatively selected sites in a sample of

size n, Sdn, which as we have seen above is otherwise rather involved. We have

ρ(Sdn = x) =
∑

k1,k2,...kn

hk1hk2 . . . hkn , (2.37)

where the sum is over sets of the ki that sum to x. We find

ρ(Sdn = x) = e−nUd/s
1

x!

(
nUd
s

)x
. (2.38)

This is a distribution which is peaked around a mean value of nUd
s

, for the same reasons

the distribution of πd looks as it does. We note however that as we increase the sample

size n the population size N must be even larger for this MTA approximation to hold.

We can also calculate the distributions of actual coalescence times and hence the

distributions of statistics describing neutral diversity in the mutation-time approxi-

mation. Consider the distribution of the real coalescence time between two individ-

uals chosen from classes k and k′. In the mutation-time approximation where the

coalescence time within the 0-class can be neglected, the actual coalescence time is

ψ(t|k, k′) = s(k + k′)e−s(k+k′)t
(
est − 1

)k+k′−1
. (2.39)

Averaging over the values of k and k′, we have

ψ(t) = 2Ude
−st−2(Ud/s)e

−st
. (2.40)

The distribution of coalescence times once within the 0-class is ψ0(t) = 1
Nh0

e−t/(Nh0).

From this distribution of real coalescence times, we can find the distribution of neutral

heterozygosity πn in the usual way,

ρ(πn) =

∫ ∞
0

[2Unt]
πn

πn!
e−2Untψ(t)dt. (2.41)

We can immediately see that the average coalescence time in this MTA approxi-

mation is t ≈
∑2Ud/s

0
1
si

+ Nh0 ≈ 1
s

ln (2Ud/s) + Nh0. We therefore expect that the

neutral heterozygosity will on average be

〈πn〉 ∼
2Un
s

ln

(
2Ud
s

)
+ 2Nh0Un. (2.42)
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The first term in this expression comes from the time to descend through the fitness

distribution, while the second term comes from the time to coalesce within the 0-class.

If this latter term is large compared to the former, the EPS approximation applies. In

the opposite case where the time to descend through the distribution dominates, we

can see from the MTA approximation that, as with πd, the shape of this distribution

of πn is primarily determined by the shape of H(k, k′). In this case, the peak in hk

at k = Ud/s leads to a peak in the distribution of real times and hence a peak in the

distribution of πn. The width of the distribution of πn is somewhat wider, however,

since even given individuals coming from fitness classes near the mean, there is a

broad distribution of possible real times, and a broad distribution of πn even given a

particular real time.

This average heterozygosity would correspond to an effective population size of

Ne ∼
1

s
ln

(
2Ud
s

)
+Nh0, (2.43)

but as we have seen this effective population size cannot correctly describe the full

distribution of πn nor its relationship to other statistics describing the genetic diver-

sity. For smaller values of N where the mutation-time approximation breaks down,

the average πn would be somewhat lower than the MTA predicts, and its distribution

somewhat broader.

2.8.5 Muller’s Ratchet

We have neglected Muller’s ratchet throughout our analysis, and assumed that the

fitness distribution hk is fixed. Yet Muller’s ratchet will certainly occur, and in some

circumstances could have a significant impact on genetic diversity (Charlesworth

and Charlesworth 1997; Gordo et al. 2002; Seger et al. 2010). Thus this is a

potentially important omission from our theory. In this section we discuss some of

the complications associated with Muller’s ratchet that are important to keep in mind

when considering our approach. We discuss the parameter regimes where neglecting

Muller’s ratchet should be reasonable, and those where it is likely to cause more

serious problems. We provide rough estimates of how large we expect these problems
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to be, and suggest a few possible ways in which future work might incorporate Muller’s

ratchet into our general framework.

Muller’s ratchet causes several related problems within our theoretical framework.

First, it causes the values of hk to change with time, and means they may not always

follow a Poisson distribution. This changes the distribution of lineage frequencies

within each class, and hence changes the coalescence probabilities. After a “click” of

the ratchet, the whole distribution hk shifts in a complicated way, eventually reaching

a new state where it is shifted left (so the class that was originally at frequency hk is

now at frequency hk−1, and so on). In a similarly complex way, the PRF distribution

of lineage frequencies in class k shifts from fk to fk−1, and so on. This naturally

changes the coalescence probabilities in each class. Fortunately, since the coalescence

probabilities in class k are generally very similar to those in classes k + 1 or k − 1,

this effect is unlikely to lead to major inaccuracies provided the ratchet does not click

many times within a coalescent time. This is true except when we start considering

coalescence in classes close to the 0-class, where the k-dependence becomes significant.

This can be thought of as an additional problem associated with Muller’s ratchet, and

is associated with the fact that the ratchet shifts the whole fitness distribution. This

effect is easiest to see with an example: imagine we sample two individuals within

the k-class, and that these individuals did not coalesce before their ancestors were

both in the 0-class. At the time (in the past) when these individuals’ ancestors were

in the 0-class, this current 0-class might have been the 1-class or 2-class (or higher).

Thus these two individuals within the 0-class might not coalesce until, for example,

their ancestors were in what is currently the “−2”-class. This clearly means that we

might in fact have πd > 2k, which our analysis assumes is impossible. In fact, we

observe precisely this effect in simulations, and it is the reason why we commonly

observe systematic deviations where the simulated values of πd are larger than our

theory predicts.

From this discussion it is clear that the key factor in determining whether Muller’s

ratchet can reasonably be neglected is how many times the ratchet “clicks” in a

coalescence time. We have seen above that an average individual coalesces through
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the fitness distribution in a time at most of order 1
s

ln (Ud/s) generations. Once

within the 0-class, coalescence times are of order Ne−Ud/s. We must compare these

times to the time it takes for the ratchet to “click.” The rate of the ratchet is

a complex issue that has been analyzed by Gordo and Charlesworth (2000a),

Gordo and Charlesworth (2000b), and Kim and Stephan (2002) in the regime

where Ne−Ud/s > 1 and by Gessler (1995) in the regime where Ne−Ud/s < 1.

No general analytic expressions exist which are valid across all parameter regimes.

However, provided the ratchet does not typically move a substantial fraction of the

width of the fitness distribution in the coalescence time of two random individuals, it

will be a small correction to πd, and neglecting it is a reasonable first approximation.

In practice we find in our simulations that for the parameter regimes we consider, πd

is at most of order 2 larger than our theoretical predictions, which would correspond

roughly to the effect of a single click of the ratchet during a typical coalescence time.

The discussion above suggests a way to incorporate Muller’s ratchet within our

theoretical framework, albeit in an ad-hoc way. The ratchet shifts the distribution

hk underneath the fitness-class coalescent process. The details of this shift are com-

plicated, but on average every click of the ratchet shifts the distribution one step

to the left. We can define kmin to be the number of deleterious mutations (relative

to the optimal genotype) in the most-fit individual at any given time. For the case

where Ne−Ud/s > 1, the rest of the distribution will be approximately a Poisson dis-

tribution, but with hk replaced by hk−kmin
. Muller’s ratchet can then be thought of

as a process by which kmin increases over time. This increase is a random process,

but has some average rate, leading to an average kmin(t). As we look backwards in

time during the fitness-class coalescent process, the value of kmin is decreasing due to

Muller’s ratchet. This suggests a simple approximation: we replace the actual value

of k with an “effective” value of k that accounts for the fact that kmin decreases as we

look backwards in time. For each step through the fitness distribution, we imagine

that kmin has decreased by the appropriate amount, and hence the effective value

of k in the new fitness class is decreased by less than 1 compared to the old fitness

class. When Ne−Ud/s < 1 the ratchet is an almost deterministic process, so a similar

approximation may prove useful, but in this case the distribution hk is on average
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shifted from the Poisson form (Gessler 1995). To incorporate the ratchet into our

analysis in this situation, we first must recalculate the relevant coalescence probabil-

ities given the expected average form of hk, and then carry out the above program.

These and other methods to account for Muller’s ratchet remain an interesting topic

for future work.

Despite the potential relevance of Muller’s ratchet in practical situations, we note

that it does not affect our results in the standard coalescent limit. As is apparent

from our general expressions for the coalescence probabilities, the structure of our

fitness-class coalescent theory does not depend on all three parameters N , Ud, and

s independently. Rather, it depends only on the combinations NUd and Ns. Thus

our theory makes sense in the standard limit where NUd and Ns are held constant

while we take N → ∞. In this limit, Muller’s ratchet does not occur. Whether this

means we can neglect the ratchet for large but finite N depends on the convergence

properties of the coalescent limit. This is a difficult limit to explore with simulations,

because it requires large population sizes. However, we have used simulations to

verify in a few cases that, as expected, increasing N while keeping NUd and Ns

constant does not change the predicted structure of genealogies but decreases some of

the systematic differences between theoretical predictions and the simulations which

are suggestive of the effect of the ratchet. Note that while this ratchet-free limit does

not change the structure of genealogies in our fitness-class coalescent, the distribution

of real coalescent times does change, since all real timescales are proportional to s.

Thus, as might be expected, we must also take NUn constant as N →∞ if we wish

neutral diversity to also remain unaffected in this limit.

Note that this ratchet-free limit, while fairly standard in coalescent theory, is

somewhat different from the mutation-time approximation we discussed above. Of

course, we can easily imagine a population which is large enough that the mutation-

time approximation applies, and then take the standard coalescent limit.
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2.8.6 Conclusion

Our fitness-class coalescent approach provides a framework in which we can compute

distributions of genealogical structures in situations where many linked negatively

selected sites distort patterns of genetic variation. We have used this framework to

calculate the distributions of a few simple statistics describing sequence variation. It

remains for future work to use this fitness-class coalescent approach to compute a

wide array of statistics to better understand the details of how purifying selection on

many linked sites distorts patterns of genetic variation. The eventual goal will be to

use our results to help interpret the increasing amounts of sequence data which seem

to point to the importance of negative selection on many linked sites.
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2.10 Appendix A: The Fitness-class Coalescent Probabilities

2.10.1 PRF Lineage-Structure Approach

In the main text, we used our PRF lineage-structure approach to write an integral

expression for the probability P k,k′→k−`
c that two individuals sampled from fitness

classes k and k′ coalesce in class k − `, Eq. (2.13) above. In this Appendix, we

evaluate this integral to calculate the coalescent probabilities.

Eq. (2.13) depends on the transition probability for the change in the frequency

of a lineage from x to y in a time |t1 − t2| in class k − `, Gk−`(y → x, |t2 − t1|). This

transition probability was calculated by Kimura (1955) and can be expressed as an

infinite sum of Gegenbauer polynomials. Fortunately, it appears in the context of an

integral

IG =

∫
yGk−`(y → x, |t2 − t1|)dy, (2.44)

which is simply the average of y over Gk−`. Hence this integral is given by the

deterministic result for the change in the frequency of the lineage,

IG = xe−s(k−`)|t2−t1|. (2.45)

Note this deterministic solution simply reflects the exponential decline in frequency

of a rare deleterious allele. Substituting Eq. (2.45) into Eq. (2.13), we find

P k,k′→k−`
c =

∫
dxdt1dt2Q

k−`
k,k′ (t1, t2)

x2fk−`(x)

h2
k−`

e−s(k−`)|t2−t1|. (2.46)

The x integral can be evaluated using standard asymptotic methods; we find∫ 1

0

dxx2fk−`(x) ≡ Ik−`x =
1

1 + 2Nhk−`s(k − `)
. (2.47)

Note that this and all further expressions for Ik−`x incorporate the branching process

correction for fluctuations in hk described in Appendix B. Plugging in this result, we

find

P k,k′→k−`
c = Ik−`x

∫
dt1dt2Q

k−`
k,k′ (t1, t2)e−s(k−`)|t2−t1|. (2.48)

To make further progress, we must understand Qk−`
k,k′ (t1, t2), the joint distribution

of the times at which individuals sampled from fitness classes k and k′ originally
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mutated from class k− ` to class k− `+ 1. In general, t1 and t2 are not independent,

since in order for the two lineages to have coalesced in class k − ` they must not

have coalesced in any earlier classes, which makes them less likely to have been in

those classes at the same time. In Supplemental Information A.1, we analyze these

distortions and their effects on the coalescence probabilities. Here we make use of

a simpler approximation: since the coalescence probability in each step will turn

out to be small, conditioning on not coalescing in a particular class does not shift

the distribution of mutation timings much. We therefore neglect the complications

associated with the probability distributions of the mutant timings conditional on

non-coalescence. We refer to this as the non-conditional approximation, and discuss

its validity further in Supplemental Information A.1.

In the non-conditional approximation, the times t1 and t2 are independent,

Qk−`
k,k′ (t1, t2) = Qk−`

k (t1)Qk−`
k (t2) (2.49)

. We calculate these distributions of mutant timingsQk−`
k (t) in Supplemental Informa-

tion A.2. Plugging these in, and evaluating the integrals as described in Supplemental

Information A.3, we find∫
dt1dt2Q

k−`
k,k′ (t1, t2)e−s(k−`)|t2−t1| =

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) ≡ Ak,k
′

` . (2.50)

Plugging this result into Eq. (2.48), we find P k,k′→k−`
c = Ik−`x Ak,k

′

` , the result quoted

in the main text. We note that e−s(k−`)|t2−t1| is the probability the ancestor of the

first individual to mutate into class k−` is still there when the ancestor of the second

individual mutated into that class. Thus Ak,k
′

` is the probability that the ancestors of

the two individuals were in class k− ` at the same time, while Ik−`x is the probability

that they coalesce if so, as described in the main text.

2.10.2 Sum of Ancestral Paths Approach

In the main text, we considered the probability of any particular ancestral path in the

history of a sample of two individuals. In this section, we sum over the probabilities

of all possible ancestral paths to compute the fitness-class coalescence probabilities.
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First, we consider sampling two individuals from the same fitness class k. In order

for these two individuals to coalesce in class k, the first event must be a coalescent

event. Using the event probabilities computed in the main text, we find P k,k→k
c = Ikx ,

equivalent to our earlier lineage-based result. In order for these individuals to coalesce

in class k − 1, the first event must be a deleterious mutation event. Since both

individuals’ ancestral lineages are currently in class k, the probability the first event

is a deleterious mutation event is 1− Ikx . After this event, there is now one ancestral

lineage in class k − 1, and one in class k. The next event must be a deleterious

mutation in the latter, which occurs with probability k
2k−1

. Finally, the third event

must be a coalescent event. This implies

φkk(1) = (1− Ikx)Ik−1
x

k

2k − 1
. (2.51)

Note that this logic has given us an expression for the probability that the coalescent

steptime is 1, φkk(1), and not the probability of coalescence in this class given that

coalescence has not yet occurred, P k,k→k−`
c , because we have already included the

probability that the coalescence event does not happen in class `.

We can continue to extend this logic to subsequent fitness classes. For example,

for coalescence to occur in class k−2, there are six possible paths. We can label them

as AABBc, BBAAc, ABABc, ABBAc, BABAc, and BAABc, where A corresponds

to a mutation in the first individuals’ ancestral lineage, B corresponds to a mutation

in the second individuals’ ancestral lineage, and c corresponds to a coalescent event.

We can calculate the probability of each path. For example,

P (AABBc) =
(

1−Ikx
2

) (
k−1
2k−1

) (
k

2k−2

) (
k−1
2k−3

)
Ik−2
x . (2.52)

The probability of path BBAAc is identical, since it has the same probabilities at

each step. However, the remaining four paths have a different probability, because

the ancestral lineages exist together in the k− 1 class at the same time. This distorts

the probability of mutations at that step, since coalescence could also have occurred.

For paths of this type, we have

P (ABABc) =
(

1−Ikx
2

) (
k

2k−1

) (
1−Ik−1

x

2

) (
k−1
2k−3

)
Ik−2
x . (2.53)
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We add up each path to find

φkk(2) = Ik−2
x

k(k−1)
4(2k−1)(2k−3)(2(1−Ikx)+4(1−Ikx)(1−Ik−1

x )) (2.54)

= Ik−2
x

3k(k−1)
2(2k−1)(2k−3)(1−Ikx− 2

3
Ik−1
x + 2

3
IkxI

k−1
x ). (2.55)

It is informative to consider the form of this result. The Ik−2
x factor is the proba-

bility that the two ancestral lineages coalesce in class k − 2, given that they existed

in class k− 2 at the same time. The remaining factors represent the probability that

the two ancestral lineages existed at the same time in class k − 2. This consists of

a leading order term k(k−1)
4(2k−1)(2k−3)

(identical to our earlier result for Ak`=2), multiplied

by a correction due to the distortion in paths from the possibility of coalescence in

previous steps.

We can continue on to consider the probability of coalescence in class k−3. There

are now a total of
(

6
3

)
possible paths. These can be split into four types, depending

upon whether the two ancestral lineages coexisted in both classes k − 1 and k − 2

(e.g. ABABABc), in class k − 1 only (e.g. ABAABBc), in class k − 2 only (e.g.

AABBABc), or in neither (e.g. AAABBBc). The probability of each type of path is

identical, except for a distortion factor (1− Ik−ix ) for each class k− i in which the two

ancestral lineages were together at the same time. The probabilities can be calculated

as before, and summed to yield φkk(3). Using similar logic, we can extend this approach

to the situation where two individuals are sampled from different classes, k′ and k.

In Supplemental Information A.4, we describe the details of carrying out this

summation over all possible paths to determine the coalescent probabilities. We find

φk
′

k (`) = Ik−`x

(
k′

k−`

)(
k
k−`

)(
k′+k

k′−k+2`

) [1−
`−1∑
i=0

(
k′−k+2i

i

)(
2`−2i
`−i

)(
k′−k+2`

`

) Ik−ix + (2.56)

`−2∑
i=0

`−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2`−2j
`−j

)(
k′−k+2`

`

) Ik−ix Ik−jx − . . .

]
, (2.57)

where as always we have assumed k ≤ k′ by convention. The form of this solution

is intuitive. The factor Ik−`x is the probability of coalescence in class k − `, given

that the two ancestral lineages existed in this class at the same time. The remaining

factors reflect the probability that the two lineages are together in class k− ` at some
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point. This consists of a leading order term, which is identical to the Ak,k
′

` calculated

previously, times a correction. The correction represents the distortion in the paths

due to the possibility that coalescence could have occurred at previous steps. There

are a total of l + 1 terms in the correction, each of which is known and calculable.

Provided that 2Nhksk � 1, we can neglect the higher-order terms in Eq. (2.57).

This is equivalent to calculating the probability of coalescence in a given class, without

considering the possibility that coalescence events could have occurred in previous

classes. Thus it converts our expression for φk
′

k (`) into an expression for P k,k′→k−`
c .

Neglecting these terms also implicitly makes the non-conditional approximation, as

we did in the PRF method, because it assumes that the fact that coalescence did not

occur in previous classes does not distort the likelihood of taking particular paths.

Making this approximation, we find

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (2.58)

which exactly matches our expression for the coalescence probabilities in the non-

conditional approximation in our PRF approach, Eq. (2.15).

The condition 2Nhksk � 1 is the condition we are already assuming in treating

the frequencies of each class, hk as constant (see Appendix B). Thus the results from

the PRF method and the sum of ancestral paths are exactly equivalent in the regime

where they are valid. We discuss the correspondence between approximations in the

sum of ancestral paths method as compared to the PRF method in more detail in

Supplemental Information A.4.

2.11 Appendix B: Fluctuations in hk

Throughout our analysis, we have neglected fluctuations in the frequencies of each

frequency class hk. This approximation was necessary to write our PRF expressions

for lineage structure, fk(x), which depend on hk. Similarly, it was necessary for us

to compute the probabilities of each possible ancestral event in our sum of ancestral

paths method. In this Appendix, we examine this approximation in detail and analyze

its regime of validity.
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Fluctuations in the fitness class frequencies affect the coalescence probability

within class k in three different ways. First, fluctuations in hk−1 affect the rate

at which mutations enter class k. When hk−1 is larger than average, more mutations

occur. Within the PRF method, this means that there will be more small lineages

than the steady state fk(x) accounts for, which reduces the coalescence probability.

In the sum of ancestral paths method, this means that the probability of mutation

events increases relative to the probability of coalescence events, which similarly re-

duces the coalescence probability. When hk−1 is smaller than average, less mutations

occur, and the reverse is true.

Second, fluctuations in hk affect the coalescence rates within this class. Consider

the case where hk is larger than average. Within the PRF method, this means that

the probability that two individuals randomly sampled from class k come from a

given lineage of size x is less than our assumption of x2

h2
k
. This reduces the coalescence

probability. In the sum of ancestral paths method, this means that the probability

of coalescence events decreases relative to mutation events, which similarly reduces

the coalescence probability. As before, when hk is smaller than average, the reverse

is true.

The third effect of fluctuations is specific to the PRF method, in which we assumed

that the probability two individuals in class k come from a lineage of frequency x

(given that the lineage exists) is x2

h2
k
. This implicitly assumes that the fact that there

exists a lineage of frequency x in fitness class k does not affect the expected frequency

of the class hk. This is not strictly true: given that there exists a lineage at high

frequency, it is likely that hk is larger than average, and vice versa. In other words,

there is a correlation between the size of a lineage and the frequency of the class,

so the probability that two individuals picked from a class come from the a lineage

of frequency x is not precisely x2

h2
k
. When x is large, this expression overestimates

the probability two individuals are from the same lineage, since given that those

high-frequency lineages exist, hk will be larger than average. Similarly (though less

dramatically), when x is small our expression underestimates the probability two

individuals are from the same lineage.

Note that this third effect of fluctuations is distinct from the second effect above.
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The second effect describes fluctuations in hk that are uncorrelated to the frequency

of a particular lineage. It thus applies to both the PRF and sum of ancestral paths

methods; it reflects the general fact that when hk is larger coalescence is less likely.

The third effect, on the other hand, reflects the fact that if we assume we sample

an individual from a lineage of size x, this biases the value of hk. Since our sum of

ancestral paths method never makes any references to lineages, this third effect of

fluctuations only applies to the PRF method.

These three effects all depend on the size of the fluctuations relative to the average

size of the each fitness class. Thus neglecting fluctuations will be a good approxima-

tion provided that the fluctuations in hk are small compared to hk. To determine when

this will hold, we note that each lineage in class k can reach, at most, a maximum

size of order 1
sk

individuals (selection prevents any individual lineage from becoming

more common than this). The total number of individuals in the class is on average

Nhk. This means that, provided that Nhk � 1
sk

, each fitness class is made up of

many individual lineages. Thus we would expect that the fluctuations in the sizes of

each one would tend to cancel, and the overall fluctuations in hk should be negligible

provided that this condition holds.

To make this intuition more precise, we must calculate the variance in hk and

compare it to hk. In principle this information is contained in our PRF expressions,

but it is much simpler to compute using a continuous-time branching process method.

That is, rather than use a diffusion approximation to describe the dynamics of each

lineage, we use a continuous-time branching process. As before, we imagine that new

lineages in class k are created at a rate θk/2. In steady state there will be some

time-independent probability that there are n total individuals across all the lineages

in the class, P (n). Note that on average we must have n/N = hk, and that P (n)

contains information on the fluctuations in the hk. We first compute the generating

function for P (n),

H(z) ≡
∞∑
n=0

P (n)zn. (2.59)

To do so, we start by computing the generating function for the probability distri-

bution of the number of individuals from each lineage, as described by Eqs. (7-9) of
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Desai and Fisher (2007). We substitute this expression into Eq. (24) of Desai and

Fisher (2007) and integrate. We find

H(z) ≡
∞∑
n=0

P (n, t)zn ≡ 〈zn〉 =

[
s

1− z(1− s)

] θ
2(1−s)

, (2.60)

where angle brackets denote expectation values, and we have suppressed the k sub-

scripts. Note that this calculation is based on a continuous-time branching process, in

which individuals have a different distribution of offspring number than in a Wright-

Fisher process, leading to a transient distribution of the frequencies of individual

lineages that is half as large as in the Wright-Fisher model for lineages of substantial

frequency. Thus to make comparisons with the Wright-Fisher process, we have to take

θ → 2θ (as we would in comparing Wright-Fisher to Moran models), as described by

Desai and Fisher (2007).

Eq. (2.60) describes the fluctuations in the size of an individual fitness class: the

mean, variance, and higher moments of n can be easily computed by taking derivatives

of H(z). Thus we can immediately compute V ar(hk)/hk using standard generating

function methods. We find that in fact the fluctuations in hk are indeed negligible

provided that

Nhksk � 1. (2.61)

In practice, this condition will often break down in the high and low-fitness tails of the

fitness distribution. Fortunately, provided it holds in the bulk of the distribution in

which most individuals will be sampled, which will typically be true provided Ns� 1,

our approach will still be a good approximation.

2.11.1 Correcting for Correlations between the Size of a Lineage and the Fre-

quency of the Fitness Class

All three effects of fluctuations in hk described above are negligible in the same

parameter regime, Nhksk � 1. However, the fact that the third effect applies only

to our PRF result obscures the precise relationship between our two approaches,

and the relationship to earlier work. Further, relaxing this approximation provides a

useful comparison of the subtle differences between the assumptions underlying the
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approaches. Thus we describe here an alternative approach to understanding the

lineage structure in a fitness class which allows us to account for these correlations

between the size of a lineage, x, and the frequency of the fitness class, hk.

We first note that, in his original calculation of the neutral ESF, Ewens (1972)

used a diffusion result, f(x), roughly analogous to our PRF expression to describe

the probability that there exists a lineage with frequency x in the population at

a given time. However, Ewens’ f(x) was derived as the solution to the diffusion

approximation to the K-allele Wright-Fisher process, in the limit of infinite alleles.

This process explicitly imposes the constraint that the sum of all lineages in the

population at a given time must add to 1. This means that there is no correlation

between the size of a lineage and the total number of individuals in the population.

The PRF calculation of the lineage structure does not involve this explicit con-

straint. This is what makes it possible to compute a simple analytical expression

for fk(x). This lack of constraint means that the PRF result admits fluctuations in

hk, which lead to corresponding correlations between x and hk. We could partially

avoid this by defining γk = Nhksk, rather than Nhk, as we have so far. This would

effectively mean that each lineage is assumed to be diffusing between 0 and hk rather

than between 0 and 1, and forbid any lineage from reaching a frequency larger than

hk. Thus it reduces the discrepancies associated with the correlations between x and

hk. However, even with this redefinition, there is no constraint that the lineages in a

given class all add to precisely hk, and so correlations still exist.

To correct exactly for the effects of correlations between x and hk, we extend the

continuous-time branching process model introduced above. We now imagine that

there are B sites in the genome, each of which can mutate to create a new lineage in

class k. In the large-B limit, each distinct lineage in class k arose from a mutation

at a different site in the genome (and we will later make the infinite-sites assumption

B → ∞, which makes this exactly true). The rate at which new mutations found

lineages in class k due to mutations at a specific one of these B sites is θk
2B

. This

means that, analogous to Eq. (2.60), the generating function for the probability that

81



Chapter 2

there are n mutations at a particular site i in class k is

Hi(z) =

[
s

1− z(1− s)

] θ
B(1−s)

, (2.62)

where again we have suppressed the k subscripts and we have taken θ → 2θ to match

to the Wright-Fisher model as described above.

If we define ni,k to be the total number of mutants at site i in class k, we have

that

σk ≡
B∑
i=1

ni,k (2.63)

is the total number of individuals in the class (note that on average we expect σk =

Nhk). We now imagine that we sample some number m individuals from class k. The

probability that they are all from the same lineage is

J
(k)
m =

〈∑B
i=1

nmi,k
σmk

〉
=
〈

nm1,k
(n1,k+...n1,B)m

+
nm2,k

(n1,k+...n1,B)m
+ ...+

nmB,k
(n1,k+..n1,B)m

〉
. (2.64)

Note this has the same form as our PRF expression, except we are averaging over
nmi
σm

rather than averaging over nmi and then dividing by the average σm. In other words,

we are explicitly accounting for the correlations between x and hk.

We can rewrite Eq. (2.64) using the identity

1

σmk
=

∫ ∞
0

xm−1

(m− 1)!
e−xσkdx. (2.65)

This identity can easily be verified by integrating the RHS by parts. Using this, and

noting that lineages at each of the B sites are independent, we find

J (k)
m =

〈
B∑
i=1

nmi

∫ ∞
0

xm−1

(m− 1)!
e−xσkdx

〉

= B

∫ ∞
0

xm−1

(m− 1)!
〈nm1 e−xσk〉dx

= B

∫ ∞
0

xm−1

(m− 1)!
〈e−xni〉B−1〈nm1 e−xn1〉dx. (2.66)

The first expectation value inside the integral can be computed by noting that

〈e−xni〉 = H(z = 1− x) =

[
1 + x

1− s
s

] θ
B(1−s)

. (2.67)
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Differentiating this result m times with respect to x results in an expression for

〈nm1 e−xn1〉. Plugging these results in and integrating, taking the limit B → ∞, and

neglecting higher order terms in s, we find

J (k)
m = θ

m−1∑
j=0

(−1)j
(
m− 1

j

)
1

θ + j
=

(m− 1)!∏m−1
j=1 (θ + j)

=
1(

θ+m−1
θ

) . (2.68)

If we were to use the original PRF result to calculate the probability two indi-

viduals sampled simultaneously from class k are from the same lineage, we would

find
∫ 1

0

(
x
hk

)2

fk(x)dx = 1
θ
. Using our branching process result for J

(k)
2 , we see that

correcting the PRF result for the third effect of fluctuations in hk yields the mod-

ified probability 1
1+θk

. As expected, the branching process result precisely matches

the sum of ancestral paths approach, which is also unaffected by this third effect of

fluctuations in the hk. All of the formulae quoted in the main text and shown in

the figures incorporate this correction, which appropriately handles the correlations

between the frequency of an individual lineage and the size of the fitness class.

2.12 Appendix C: Relation to Previous Work

In this Appendix we compare our analysis to related work, and summarize the key ap-

proximations that we and others have used. We have presented two main approaches

to calculating coalescence probabilities in this paper. The first approach is based on

the lineage structure within each fitness class, described using a PRF-based method.

The second approach involves summing over all possible ancestral paths, based on the

structured coalescent framework introduced by Kaplan et al. (1988) and Hudson

and Kaplan (1994, 1995b). We show in this paper that both approaches involve

closely related approximations and yield equivalent expressions for the coalescence

probabilities.

Historically, attempts to describe the coalescent process in the presence of selec-

tion go back to the structured coalescent introduced by Kaplan et al. (1988). These

authors considered a sample of individuals from given fitness classes and computed

the relative probabilities that the next event to occur backwards in time would in-

volve a mutation or coalescent event, without explicitly describing lineage structure.
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this Hudson & Hudson & Gordo Charlesworth Barton & Seger O’Fallon
work Kaplan 88 Kaplan 94,95 et al 02 et al 93 Etheridge 04 et al.10 et al. 10

analytical expressions
for genealogy structure x x x x
accounts for frequency

class fluctuations
(valid for Ns ∼ 1) x x x x∗

valid for

Nse−U/s << ln[U/s] x x x x x x x
valid for
Ns� 1 x x x x x x x
valid for

many classes x x x x x x x
accounts for

Muller’s ratchet x x† x
discrete

fitness classes x x x x x x x

Table 2.1: A summary of related approaches to the coalescence process in the presence
of purifying selection. ∗Addresses Ns ∼ 1 situation, but assumes deterministic fitness
distribution. †Within a two-class framework.

In their original work, Kaplan et al. (1988) used a full stochastic description of the

frequencies of each fitness class, in which one keeps track of the probability distribu-

tion of these frequencies to account for selection. They derived diffusion equations for

the transition probabilities between states. This approach is very general, but as a re-

sult is complex and requires numerical evaluation. Barton and Etheridge (2004)

developed this diffusion approach to compute the effect of selection on genealogies in

a system in which selection acts only on a single locus.

Hudson and Kaplan (1994) later simplified their original structured coalescent

approach to describe the case where fluctuations in the frequencies of fitness classes

can be neglected. In this deterministic approximation, they showed that one can

compute very simple expressions for the relative probabilities of the next event to

occur backwards in time in the history of a sample. In this manner, Hudson and

Kaplan (1994) were able to generate a simple recursion relation for the mean time

to a common ancestor, their Eq. (12). Gordo et al. (2002) used this equation as

the basis for a coalescent simulation, and Zeng and Charlesworth (2011) recently

extended this method to describe the joint effects of recombination and background

selection.

Recursion relations of the Hudson and Kaplan (1994) form can be solved nu-

merically, and have been used to generate data describing coalescent statistics, but

have not yet led to an analytic description of the structure of genealogies in the pres-
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ence of negative selection at many linked sites. In this paper we have shown that one

can sum over ancestral paths within this framework, to derive analytical formulas

for the coalescence probabilities which are equivalent to those computed from our

lineage-based formalism. This equivalence means that our analytical results in this

paper match earlier numerical and simulation results based on the Hudson and Ka-

plan (1994) formulation. However, like the Hudson and Kaplan (1994) framework,

neither of our approaches in this paper account for fluctuations in the frequencies of

fitness classes.

In reality, the frequency of each fitness class will fluctuate due to genetic drift.

As we have described in Appendix B, these fluctuations are substantial in classes

whose deterministic size is small compared to the inverse of the effective selection

pressure against individuals in that class, Nhksk < 1. This leads to important effects

on the structure of genealogies if most fitness classes through the bulk of the fitness

distribution fluctuate substantially. This will occur whenever Ns . 1, so fluctuations

must therefore be taken into account for small Ns. While the diffusion approach of

Kaplan et al. (1988) in principle provides a complete solution to this problem for

all values of Ns, this formalism and the related results of Barton and Etheridge

(2004) are computationally strenuous. There remains a need for further work on

accurate but more analytically tractable approaches which are able to account for the

frequency fluctuations.

We note that the work of O’Fallon et al. (2010) and of Hermisson et al. (2002)

introduced analytical approaches valid for the case of Ns ∼ 1, although these methods

are not based on a model related to the ideas of Kaplan et al. (1988). We also note

that the problem of fluctuating fitness class sizes has been considered in the case of

other problems (for example, forward selection Coop and Griffiths (2004)), but a

detailed discussion is outside the scope of this work.

Neglecting the fluctuations in fitness class frequencies is in principle reasonable

when Ns � 1. However, we note that even when Ns � 1, the sizes of the small-

est fitness classes near the tails of the distribution may still fluctuate substantially.

Muller’s ratchet is one aspect of this general effect. Recently Seger et al. (2010)

extended the simulation scheme of Gordo et al. (2002) to address this problem by
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first doing a forward-time simulation, recording the fluctuations in the classes (in-

cluding Muller’s ratchet) from this simulation, and then putting these fluctuations

into a backwards simulation by hand. Our methods do not account for these effects.

They are therefore less general than the work of Seger et al. (2010), and break down

due to fluctuation effects more quickly as Ns decreases. On the other hand, our

analysis does not rely on forward simulations and is able to compute simple analytic

expressions for coalescence probabilities.

We also note that although we consider the large Ns approximation, our approach

has a broader range of applicability than the effective population size approximation,

which assumes that the coalescence time is dominated by the time to coalescence

within the most-fit class. For the EPS approximation to be valid requires that this

latter time (∼ Ne−Ud/s) is small compared to the time average individuals took to

descend from the most-fit class (∼ 1
s

lnNs). Thus for the EPS approximation to hold,

we require Ne−Ud/s � 1
s

ln [Ud/s], not just Ns� 1. Thus we can easily have Ns� 1,

yet Nse−Ud/s � ln [Ud/s], in which case the EPS approximation breaks down and yet

our approach is still valid.
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The Structure of Allelic Diversity in

the Presence of Purifying

Selection

In the absence of selection, the structure of equilibrium allelic diversity

is described by the elegant sampling formula of Ewens. This formula has

helped shape our expectations of empirical patterns of molecular varia-

tion. Along with coalescent theory, it provides statistical techniques for

rejecting the null model of neutrality. However, we still do not fully un-

derstand the statistics of the allelic diversity expected in the presence of

natural selection. Earlier work has described the effects of strongly dele-

terious mutations linked to many neutral sites, and allelic variation in

models where offspring fitness is unrelated to parental fitness, but it has

proven difficult to understand allelic diversity in the presence of purifying

selection at many linked sites. Here, we study the population genetics of

infinitely many perfectly linked sites, some neutral and some deleterious.

Our approach is based on studying the lineage structure within each class

of individuals of similar fitness in the deleterious mutation-selection bal-

ance. Consistent with previous observations, we find that for moderate

and weak selection pressures, the patterns of allelic diversity cannot be
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described by a neutral model for any choice of the effective population

site. We compute precisely how purifying selection at many linked sites

distorts the patterns of allelic diversity, by developing expressions for the

likelihood of any configuration of allelic types in a sample analogous to the

Ewens sampling formula.

3.1 Introduction

In any evolving population, new clonal lineages are constantly being created and

destroyed. The balance between the creation of lineages by new mutations and their

destruction by natural selection and genetic drift determines the statistics of the

clonal structure of the population. In the absence of natural selection, Ewens (1972)

computed an elegant sampling formula describing the clonal structure of a neutral

population, and explained how the allelic (i.e. lineage) configuration in a sample of

individuals from the population provides a window into this clonal structure.

Natural selection distorts the clonal structure of a population away from this

neutral expectation. Of particular interest is purifying (negative) selection against

many linked deleterious mutations (“background selection”). Recent evidence has

suggested this may be generally important in a wide range of populations (see Hahn

(2008) for a recent review). In this paper, we explore how this type of selection alters

the clonal (i.e. allelic) structure of a population. Our analysis leads to a generalization

of the Ewens sampling formula to situations involving background selection.

Over the past few decades, numerous authors have studied allelic diversity in

infinite-alleles frameworks that incorporate selection. Li (1977) and Watterson

(1978) introduced models in which alleles may have a few different selective effects.

(Li 1978) and others (Li 1979; Ewens and Li 1980; Griffiths 1983) analyzed the

structure of allelic diversity in these models. More recent work has analyzed a very

general model of selection introduced by Ethier and Kurtz (1987), which allows for

diverse types of selection pressures (Ethier and Kurtz 1994; Joyce and Tavare

1995; Grote and Speed 2002; Joyce 1995). This work has helped us understand

the general effects of selection in distorting the frequency spectrum of sampled alleles.
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However, the models these authors have analyzed cannot be directly connected to a

concrete description of mutations and selection occurring at specific sites. Rather,

they assume that each new mutation creates a new allele whose fitness is completely

independent of the fitness of its parent. In other words, there is no sense of relatedness

among alleles, or of a correlation in fitness between closely related alleles. Etheridge

and Griffiths (2009) and Etheridge et al. (2010) have more recently derived a

coalescent dual of the Moran process with an arbitrary number of types, mutation

rates between types, and genic selection coefficients, but it is not clear how this

corresponds to selection acting on some fraction of an infinite number of specific

sites.

In this paper we take a different approach, based on the specific model of linked

sites described by Charlesworth et al. (1993) and Hudson and Kaplan (1994).

That is, we imagine that each individual has a genome comprised of many neutral and

many negatively selected sites. The fitness of each individual is determined by the

number of mutations it carries at the negatively selected sites. We make the infinite-

sites assumption that no two mutations at the same site ever segregate simultaneously.

This is also an infinite-alleles model, but it is based on a specific model of mutations

at individual sites, and the fitness of each new allele depends on the fitness of its

parent.

Earlier studies have investigated the effects of purifying selection in models iden-

tical or closely related to the one we consider here. Charlesworth et al. (1993)

introduced a model essentially identical to the one we analyze here, and Kaplan

et al. (1988) and Hudson and Kaplan (1994) developed a simple algorithm which

can be used to recursively compute how purifying selection alters the structure of ge-

nealogies. Hudson and Kaplan (1995b) and Gordo et al. (2002) further developed

this idea, resulting in a simple computational method for sampling genealogical rela-

tionships in the presence of background selection. Related simulation and analytical

work has further characterized the structure of genealogies and the statistics of genetic

diversity at the level of individual sites in this or closely related models (McVean

and Charlesworth 2000; Seger et al. 2010; Charlesworth et al. 1993; Com-

eron and Kreitman 2002; Comeron et al. 2008; Barton and Etheridge 2004).
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However, this earlier work does not provide an analytic description of lineage struc-

ture, or sampling formulae for allelic diversity in the presence of purifying selection

on many linked sites.

In this paper, we explicitly analyze the lineage structure, and we derive a se-

lected version of the Ewens sampling formula. We begin by noting that the balance

between mutations at deleterious sites and selection against them leads to a steady

state mutation-selection balance (Haigh 1978). Our approach is to study the struc-

ture of lineages within this steady state, using the Poisson Random Field (PRF)

method developed by Sawyer and Hartl (1992). We show that this lineage struc-

ture can alternatively be derived using a retrospective approach, by considering the

probabilities of mutation and coalescence events in the ancestry of each individual;

these probabilities are calculated by Hudson and Kaplan (1994) and Gordo et al.

(2002) (and implicitly in a related context by Barton and Etheridge (2004)).

Our description of lineage structure is thus precisely consistent with the analysis of

genealogical structures in this earlier work. Finally, we use our description of lin-

eage structure to calculate sampling formulae for allelic diversity, and compare our

predictions to the results of Monte Carlo simulations.

Provided that selection is strong and deleterious mutation rates are sufficiently

small, our results show that the effect of background selection on allelic diversity is to

reduce the effective population size without otherwise distorting the lineage structure.

Our results are thus consistent with the effective population size approximation to

background selection proposed by Charlesworth et al. (1993). For weaker selec-

tion, however, or higher mutation rates, the effective population size approximation

breaks down, and the effects of background selection become more complex. We show

that in this case the allelic diversity cannot be described by neutral theory with some

appropriately chosen effective population size. This is consistent with earlier obser-

vations that background selection leads to distortions in the structure of genealogies

(McVean and Charlesworth 2000; Seger et al. 2010; O’Fallon et al. 2010;

Comeron and Kreitman 2002; Comeron et al. 2008; Barton and Etheridge

2004; Gordo et al. 2002; Hermisson et al. 2002; Williamson and Orive 2002).

Our analysis here allows us to compute precisely how these distortions due to purify-
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ing selection at many linked sites alter patterns of allelic diversity, and hence provides

an analytical framework for exploring where statistical power may lie to distinguish

purifying selection from neutrality.

Our approach relies on the assumption that we can describe the distribution of

fitnesses within the population with the steady state mutation-selection balance. In

particular, we neglect fluctuations within this balance. We note that the PRF and

retrospective approaches depend somewhat differently on this key approximation,

which offers some insight into the role of fluctuations in our model. We analyze

the validity of this approximation in more detail below, and describe a correction

for some aspects of the effects of fluctuations in the PRF formalism, which allows

us to make a precise correspondence with the retrospective approach. Related to

this approximation, we also neglect the effects of Muller’s ratchet. We discuss this

approximation in detail in the Discussion. We further test the validity of our analysis

via Monte Carlo simulations; we find that these approximations are reasonable across

a broad parameter regime spanning weak and strong selective pressures.

Our analysis in this paper is limited to allelic diversity, and it does not address

the degree of relatedness among sampled alleles. In other words, our analysis only

tells us the probability that individuals are genetically identical, not the distribution

of the number of specific sites at which individuals may differ. Our results are thus

not directly comparable to the work described above, which makes predictions about

expected diversity at the level of individual sites. However, while our allele-based re-

sults provide an incomplete picture of genetic diversity within the population, they do

provide a useful perspective on how purifying selection distorts patterns of molecular

evolution. Most importantly, we are able to make precise analytical predictions about

how purifying selection distorts allelic diversity, in ways that cannot be described by

a single reduced effective population size.

3.2 Model

We imagine a finite haploid population of constant size N . Each haploid genome has

a large number of sites, which begin in some ancestral state and mutate at a constant
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rate. Each mutation is either neutral or confers some fitness disadvantage s (where

by convention s > 0). We assume an infinite-sites framework, so there is negligible

probability that two mutations segregate simultaneously at the same site.

We assume that there is no epistasis for fitness, and that each deleterious mutation

carries fitness cost s, so that the fitness of an individual with k deleterious mutations

is wk = (1−s)k. Since we assume that s� 1, we will often approximate wk by 1−sk.

Later we comment briefly on extensions to our method to consider the case when the

selection coefficient of a deleterious mutations is drawn from some fixed distribution.

The population dynamics are assumed to follow the diffusion limit of the stan-

dard Wright-Fisher model. That is, we assume that deleterious mutations occur at

a genome-wide rate Ud per individual per generation (with deleterious mutations as-

sumed to be decoupled from selection). We define θd/2 ≡ NUd, the per-genome

scaled deleterious mutation rate. Similarly, neutral mutations occur at a rate Un per

individual per generation, and we analogously define θn/2 ≡ NUn. We assume that

each newly arising mutation occurs at a site at which there are no other segregating

polymorphisms in the population (the infinite-sites assumption). Since in this paper

we focus only on allelic diversity, this infinite-sites approximation simply means that

each new mutation creates a unique allele. Throughout the analysis we assume that

Muller’s ratchet can be neglected; we discuss the validity of this approximation in the

Discussion.

We study the case of perfect linkage. In other words, we imagine that all the sites

we are considering are in an asexual genome or within a short enough distance in a

sexual genome that recombination can be entirely neglected. Although our model is

defined for haploids, this assumption means that our analysis also applies to diploid

populations provided that there is no dominance (i.e. being homozygous for the

deleterious mutation carries twice the fitness cost as being heterozygous).

We believe that this is the simplest possible model based on a concrete picture of

mutations at individual sites that can describe the effects of a large number of linked

negatively selected sites on patterns of genetic variation. It is essentially equivalent

to the model described by Charlesworth et al. (1993) and Hudson and Kaplan

(1994), which has formed the basis for much of the analysis of background selection
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(Gordo et al. 2002; Seger et al. 2010).

3.3 Analysis

The balance between mutations and selection leads to a steady state distribution of

fitnesses within the population; this is the well-known ‘mutation-selection balance’.

However, the individuals of a given fitness are not all genetically homogeneous, but

rather comprise a number of different alleles. The number and frequency distribu-

tion of these alleles depends on how quickly new alleles are created by deleterious

mutations from more-fit individuals, and hence on the overall fitness distribution.

We begin by describing the relevant aspects of the mutation-selection balance that

leads to a steady state distribution of fitnesses within the population. Our description

of this steady state fitness distribution is entirely deterministic. Of course, in a finite

population, there will be random fluctuations in the values of hk, the fraction of

the population harboring k deleterious mutations. In the most extreme case, these

fluctuations lead to Muller’s ratchet. In our analysis below, we will neglect these

fluctuations in hk, assuming that these frequencies are always at their deterministic

steady state. Consistent with this approximation, we will also neglect the effects of

Muller’s ratchet. We will then return in a later section to use our results to determine

when these approximations are valid.

If we assume for a moment that these approximations are reasonable, we can

already guess the form of our result for the allelic diversity. New alleles are constantly

being generated within fitness class k due to deleterious mutations from class k − 1

and neutral mutations from class k. Within class k, all alleles drift neutrally with

respect to each other. Therefore, conditional on mutations and selection keeping the

frequency of the class at hk, the allelic diversity within this class will be the same

as in a neutral population of size Nhk in which new alleles are created by mutations

at the appropriate rate. Thus for example the probability two individuals are of

the same allelic type is the probability that they are both in the same class k times

the appropriate neutral result for the homozygosity within that class, summed over

all possible classes. Sampling formulae for larger samples can be calculated in the
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analogous way.

The remainder of our analysis in this paper is, essentially, devoted to making this

simple intuition precise and showing when it is accurate. We start by summarizing

earlier results for the steady state mutation-selection balance hk, and then compute

the allelic diversity in detail, neglecting all fluctuations in hk. This allows us to see

precisely when this approximation is reasonable, and hence prove when the simple

intuition described above holds.

3.3.1 The Steady State Fitness Distribution

In our model, all deleterious mutations have the same fitness cost s, so we can char-

acterize individuals by their Hamming class, k, relative to the wildtype (which by

definition has k = 0). That is, individuals in class k have k deleterious mutations

more than the most-fit individuals in the population. Here k refers only to the num-

ber of deleterious mutations an individual has; individuals with the same k can have

different numbers of neutral mutations. We normalize fitness such that by definition

all individuals in class k = 0 have fitness 1. Individuals in class k then have fitness

1− ks.
Imagine that at a given time a fraction hk(t) of the population is in class k. This

class is acquiring new individuals due to deleterious mutations arising in class k − 1,

and it is losing individuals due to deleterious mutations away to class k + 1. It also

gains or loses individuals at a rate −(k − k̄)s due to selection, where k̄ is the mean

k within the population, k̄ ≡
∑
khk. This is illustrated in Fig. 3.1. Note that the

term involving k̄ simply normalizes the effect of selection (selection favors a class if it

is more fit than the average individual, and vice versa). This means that on average

hk(t) will evolve according to the equation

dhk(t)

dt
= Udhk−1 − Udhk − (k − k̄)hks. (3.1)

Note this is a system of k equations for all the hk(t). Of course random genetic drift

will also affect the hk(t), and these deterministic equations are only true on average.

We return to this point below, but for now we neglect drift and focus on the steady

state distribution.
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Figure 3.1: Schematic of the Allelic Diversity in Mutation-Selection Bal-
ance: (a) Sketch of the mutation-selection balance in the case Ud

s
= 5. The steady

state distribution of fitness within the population is maintained by a balance between
mutations moving individuals towards lower fitness and selection favoring those classes
more fit than average at the expense of those less fit than average. (b) The inset
shows the processes maintaining a class of individuals with k deleterious mutations.
Deleterious mutations from class k − 1 found new lineages within class k at rate
Nhk−1Ud. Neutral mutations found new lineages in the class at a rate NhkUn. Selec-
tion favors or disfavors individuals from each lineage at a per capita rate −(k − k̄)s,
and deleterious mutations eliminate individuals from each lineage at a per capita rate
Ud + Un.

The steady state fitness distribution (the mutation-selection balance) is given by

the values of hk(t) after a long time. We can find this mutation-selection balance by

setting the right hand side of Eq. (3.1) equal to 0 for all values of k. This calculation

was originally carried out by Kimura and Maruyama (1966) and Haigh (1978);

they found that the steady state, ĥk, is given by a Poisson distribution with mean
Ud
s

,

ĥk =
e−Ud/s

k!

(
Ud
s

)k
. (3.2)

Note that this means the average fitness in the population is 1− Ud, and k̄ = Ud
s

.
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3.3.2 Allelic Diversity within a given Fitness Class

We now look more closely at individuals within a given fitness class, as illustrated in

Fig. 3.1b. For the moment we neglect neutral mutations; we consider their effects

further below.

All lineages in class k originally arose from a deleterious mutation to an individual

in class k − 1. Each of these deleterious mutations founds a new lineage within class

k. Such lineages are founded at a rate θk/2, where we define

θk = 2Nhk−1Ud. (3.3)

Note this is true whether or not the hk are at their steady-state values, though for

the purposes of our analysis we will always assume the steady state.

In our infinite-alleles approximation, each new lineage is an allele that is unique

within the population. The fate of this lineage (allele) is then determined by the

forces of random drift, selection, and additional mutations. Additional mutations

that occur within this lineage go on to found new alleles. Thus from the point of view

of this particular lineage, additional mutations cause individuals to be lost from the

lineage. This means that individuals are removed from a lineage in class k at a per

capita rate

sk ≡ −Ud − s(k − k̄). (3.4)

We refer to sk as the effective selection coefficient against an allele in class k, because

it is the rate at which any particular lineage in class k loses individuals (note we have

defined signs such that sk < 0). Note that sk depends implicitly on the hk through

the term involving k̄ (recall k̄ is the average value of k, k̄ ≡
∑
khk). For convenience

we will define the scaled effective selection coefficient γk by

γk = Nsk. (3.5)

Note that in steady state, when the fitness distribution hk takes the mutation-

selection balance form ĥk derived above, k̄ = Ud/s and the effective selection coeffi-

cient sk is negative for all fitness classes with k > 0. This makes intuitive sense: each

fitness class (except k = 0) is constantly receiving new individuals due to mutations.
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Thus older individuals must on average die out, if the fitness class is to stay at a

constant steady state size. The only exception is the k = 0 class, for which sk = 0.

This class drifts effectively neutrally, with its actual selective advantage relative to

the mean exactly balanced by the loss of individuals due to deleterious mutations.

For k = 1 we have s1 = −s, and in general sk = −ks. On the other hand, θk/hk

increases with k, reflecting the fact that the stronger selection against the larger-k

classes is balanced by a larger influx of new deleterious mutations into these classes.

We can now incorporate the effect of neutral mutations. Each neutral mutation

within an individual in class k creates a new lineage in class k. Thus we may simply

redefine the rate at which new lineages are founded, giving

θk ≡ 2Nhk−1Ud + 2NhkUn. (3.6)

When the hk’s are in steady state this defintion simplifies to θk = 2Nhk(sk + Un).

Each neutral mutation also causes an individual to be lost from the lineage it was in

before the mutation, so we also redefine the effective selection coefficient

sk ≡ −Ud − Un + s(k − k̄). (3.7)

These neutral mutations are also reflected in Fig. 3.1b. Note that for all k, neutral

mutations tend to increase θk, and make sk more negative. In the presence of neutral

mutations, even s0 is negative.

We have seen that new lineages are founded within fitness class k at rate θk/2, and

then drift randomly subject to an effective selective pressure sk. We now make the

key assumption that each lineage is independent of all the others. This assumption

is valid provided that no lineage ever becomes a substantial fraction of the overall

population, which will be true whenever N |sk| � 1 (i.e. all lineages are selected

against strongly enough). A sufficient condition for this to hold in the bulk of the

fitness distribution is simply N(Un+Ud)� 1, and in fact our approximation will also

hold even in some circumstances when this condition breaks down (we describe this

further below).
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3.3.3 Poisson Random Field Description of Lineage Structure

Using the independence assumption, we have reduced the problem of describing a

lineage within a given fitness class to exactly the situation addressed by the Poisson

Random Field model of Sawyer and Hartl (1992). Thus the frequency distribution

of lineages (alleles) in fitness class k is a Poisson Random Field (PRF) with parameters

θk and γk (where as before γk ≡ Nsk). That is, the number of distinct lineages in

class k segregating at a frequency between a and b in the entire population is Poisson

distributed with mean ∫ b

a

fk(x)dx, (3.8)

where

fk(x) =
θk

x(1− x)

1− e−2γk(1−x)

1− e−2γk
. (3.9)

This is equivalent to saying that the probability that there exists a lineage in class k

with frequency between x and x+ dx is fk(x)dx, for infinitesimal dx. Note that this

PRF result implicitly assumes that θk and γk are constant (which requires constant

hk), and hence only describes the diversity in steady state.

This PRF description offers a convenient and well-established way to describe

the lineage structure. It is similar in spirit to the diffusion result used by Ewens

(1972) in his original computation of the neutral ESF. However, there is an important

difference: Ewens’ f(x) was derived as the solution to the diffusion approximation

to the K-allele Wright-Fisher process, in the limit of infinite alleles. This explicitly

constrains all lineages to add to a total frequency of 1. The PRF does not impose this

constraint. This makes it possible to compute a simple analytical expression for fk(x)

in the presence of selection. However, it does involve an implicit approximation. In

the Supplementary Appendix, we describe this approximation along with a way to

relax it using an alternative branching process model to describe lineage structure.

3.3.4 The Self-Consistency Condition

It is clear from our PRF formulation above that the allelic diversity within each fitness

class depends on the θk and γk, which in turn depend on the hk. Yet the sum of the
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frequencies of all the alleles within fitness class k is, by definition, hk. In steady state,

these two quantities must be equal. Verifying under what conditions these quantities

are equal allows us to determine in what parameter regime the PRF formulation is

self-consistent.

More specifically, we have derived the steady state value of hk in Eq. (3.2),

hk =
e−Ud/s

k!

(
Ud
s

)k
.

When we plug these hk into our PRF result, the summed allele frequencies according

to the PRF must agree with steady-state value we used for hk, for consistency. Ac-

cording to our PRF result, the sum of the frequencies of all the alleles in fitness class

k is

hk =

∫ 1

0

xfk(x) dx. (3.10)

Because Eq. (3.2) is equivalent to requiring θk/2 = |γk|hk for all k (i.e. in steady

state the net influx of individuals into a class must equal the average rate at which

individuals within that class are lost), we can rewrite the self-consistency equation as

θk
2|γk|

=

∫ 1

0

x · θk
x(1− x)

1− e−2γk(1−x)

1− e−2γk
dx. (3.11)

Some algebra reduces this to the condition∫ 1

0

1− e−2γkx

x
dx =

1− e−2γk

2|γk|
. (3.12)

The analysis in Appendix A shows that this condition holds to the level of approxi-

mation considered whenever |γk| � 1. When this is true, the steady state mutation-

selection balance of Eq. (3.2) is also the distribution hk that makes our PRF analysis

of the allelic diversity within each fitness class self-consistent.

The condition |γk| � 1 corresponds to saying that the effective selection coefficient

in each class is large compared to 1/N . This will be true for all k whenever NUn � 1.

In practice, even when this condition fails in some fitness classes, it is still valid for

all classes in which |γk| � 1. Thus our results still give a good approximation to

the population allelic diversity provided |γk| � 1 for the classes around k̄ that make

up the bulk of the population. This will hold whenever γk̄ = N(Ud + Un) � 1.
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When this condition does not apply, our PRF result for the allelic diversity within

each fitness class is inaccurate. This is because, when |γk| � 1, the growth of some

mutant lineages is limited by the size of the population, which is ignored by the

PRF approximation. Thus the PRF approximation overestimates the probability

that lineages become common, and the self-consistency breaks down.

It is important to note that we also require an additional, stronger condition for

other aspects of our analysis to be valid. The self-consistency condition ensures that

the average size of the fitness class implied by the PRF analysis equals the steady

state hk. However, even when this holds, there could be substantial fluctuations in hk

around its average value. The PRF result for fk(x) tells us the probability that a set

of lineages exists at any given frequencies. Therefore it contains detailed information

about these fluctuations. However, we have neglected these fluctuations in substitut-

ing the hk into our expressions for θk and sk, and will also neglect these fluctuations

below in calculating sampling formulae. We return to consider this additional ap-

proximation in a later section.

3.3.5 An Alternative, Retrospective Approach

It is possible to derive the neutral Ewens sampling formula in two quite different ways.

Ewens (1972) imagined new alleles being created continuously by new mutations,

and considered the frequency distribution of lineages set up by the balance between

the continual creation of new alleles and the extinction of older alleles. This leads

to expressions analogous to those in our PRF calculation of the lineage structure.

We can calculate sampling formulas from this lineage structure, as Ewens did in the

neutral case. First, however, we note that in a companion paper to Ewens (1972),

Karlin and McGregor (1972) showed that the Ewens sampling formula could

also be derived using a retrospective analysis, by considering the ancestral history of

a sample of individuals. This same type of retrospective approach is also possible in

our model; in this section we describe this alternative derivation of the allelic diversity

as relevant to the case of purifying selection.

In order to calculate the probability of a particular allelic configuration, we con-
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sider the ancestral history of a sampled set of individuals. In particular, we are

interested in the most recent event to occur in the history of a sample, backwards in

time. We classify these possible events into one of three possible types: coalescence

events (i.e. identity by descent), neutral mutations, and deleterious mutations.

This method is easiest to understand if we begin by considering a sample of size

two. In order for two individuals to have the same genotype, they of course must be

in the same fitness class k. Furthermore, if we look at the ancestral history of each of

these two individuals, the most recent event to occur, backwards in time, must be a

coalescent event. In contrast, for them to have a different genotype, the most recent

event to occur must be a mutation event. Therefore, to calculate the probability of

either configuration, we need only calculate the probability that the most recent event

is a coalescent event.

In order to calculate the probabilities of each possible most recent event, we must

know the distribution of times until each type of event. In general, neutral mutations

are exponentially distributed with rate Un per generation. Assuming the steady state

values for hk, deleterious mutations are also exponentially distributed with rate sk

per generation (Hudson and Kaplan 1994). Finally, within each class, coalescence

occurs as a neutral process with rate
(
i
2

)
per Nhk generations. Therefore, for a sample

of size 2, each of which are sampled from class k, we have that:

P (1st Event: Coal.) =

∫ ∞
0

dtP (Coal at t)P (No Neut. Mut by t)P (No Del. Mut. by t)

=

∫ ∞
0

dte−te−2NhkUnte−2Nhkskt

=
1

1 + 2Nhk(Un + sk)
=

1

1 + θk
, (3.13)

where we have defined θk ≡ 2Nhk(sk + Un). Of course, this result agrees with the

standard neutral result, replacing θ by θk (see below).

This same logic can be easily extended to larger sample sizes. For example, if we

consider i individuals within the same class, the probability that the first event is a

coalescence event is
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P (1st Event: Coal.) =

∫ ∞
0

dtP (Coal at t)P (No Neut. Mut by t)P (No Del. Mut. by t)

=

∫ ∞
0

dt
(i

2

)
e
−
(
i
2

)
t
e−iNhkUnte−iNhkskt

=

(i
2

)(i
2

)
+ iNhk(Un + sk)

=
i− 1

i− 1 + θk
. (3.14)

If the first event is a coalescence event, that means two of the individuals are of the

same allelic type. This leaves us with i− 1 individuals in the class which may or may

not be identical; we can now use the identical method to ask whether any of these

remaining individuals are of the same allelic type. Similarly, if the first event is a

mutation event, the remaining i − 1 individuals could still coalesce with each other

before they also experience mutation events.

We note that our analysis in this section is very similar in spirit to that of Hudson

and Kaplan (1994), Barton and Etheridge (2004), and particularly to Gordo

et al. (2002). These earlier authors considered the relative probabilities of muta-

tions and coalescence in the ancestry of each individual, leading to expressions that

implicitly contain results analogous to those in this section. They did not however

consider the implications of these results for the overall patterns of allelic diversity in

the population, which we now turn to.

3.3.6 Sampling Formulae

We can now calculate the probability of sampled configurations of allelic types. Our

goal is to calculate the probability that a sample of n individuals will have some

distribution of allelic types (e.g. n1 individuals with allele 1, n2 individuals with allele

2, etc.). Specifically, we aim to calculate a negative selection version of the neutral

Ewens sampling formula (ESF). As we will see, this calculation proceeds exactly

analogously whether we use the lineage structure (PRF) or retrospective analysis.

We begin with the simplest case, a sample of n = 2 individuals from the popu-

lation. What is the chance that these individuals are the same genotype? In other

words, what is the allelic homozygosity, Q2, in the population? In order to be the

same genotype, the two individuals must carry the same number of deleterious mu-

tations — i.e. they must fall in the same Hamming class, k. In addition, they must
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also be of the same mutant lineage within class k. This must equal the probability

that the most recent event in the history of these 2 individuals is a coalescence event;

from Eq. (3.14) this is 1
1+θk

. Alternatively, we could calculate the probability the two

individuals are in the same lineage directly from our PRF result; it is the expected

value of x2, where x is integrated over the distribution of lineage frequencies in class

k: ∫ 1

0

x2

h2
k

fk(x)dx =
1

1 + θk
, (3.15)

where we have evaluate the integral as described in Appendix A (see also the correc-

tions in the Supplementary Appendix).

We therefore find that the full probability that two sampled individuals have the

same genotype, which we denote Q2, is given by

Q2 =
∞∑
k=0

h2
k

(
1

1 + θk

)
. (3.16)

Note that, in the case Ud = 0, all individuals are in the zero class, such that hk 6=0 → 0

and h0 → 1. Therefore:

QNeutral
2 → 1

1 + 2NUn
, (3.17)

in agreement with the neutral Ewens sampling formula.

In order for two individuals to have a different genotype, there are two possibilities:

either the two individuals could be sampled from different classes (in which case they

must have a different genotype), or they could be sampled from the same class, and

be of different allelic types (cf. the first event in their ancestral history is a mutation

event). Therefore:

Q1,1=
∑
k,k′ 6=k hkhk′+

∑
k h

2
k

(
θk

1+θk

)
=1−

∑
k h

2
k

(
1

1+θk

)
=1−Q2. (3.18)

Note that:

QNeutral
1,1 → 2NUn

1 + 2NUn
, (3.19)

in agreement with the neutral Ewens sampling formula.
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Relationship with the Neutral Result:

At this point, it is informative to consider the form of this result. The presence of

selection serves to subdivide the population into classes, as given by the mutation-

selection balance result. Thus, in order for a sample of individuals to have a particular

allelic configuration, they must be sampled from a set of classes consistent with that

configuration. However, within each class, the population behaves identically to that

of a neutral population, with a different population size (N → Nhk) and mutation

rate (Un → Un + sk). We can see this explicitly by defining:

QESF{Configuration},k≡ESF Result for {Configuration} with θ → 2Nhk(Un + sk). (3.20)

For example, we have that:

QESF
{2},k =

1

1 + θk
, QESF

{1,1},k =
θk

1 + θk
. (3.21)

We can then rewrite our results as:

Q2 =
∑
k

h2
kQ

ESF
{2},k, (3.22)

Q1,1 =
∑
k

h2
kQ

ESF
{1,1},k +

∑
k,k′ 6=k

hkhk′ . (3.23)

Thus we see that, within each class, the probability of a particular configuration is

effectively neutral with parameter θ = 2Nhk(Un + sk), consistent with our initial

intuitive guess for the form of our result. The overall probability of a given allelic

configuration is then the probability that a specific configuration is achieved within

each class, summed over all possible sets of class configurations that are consistent

with the allelic configuration.

Sample Size n = 3

This logic can be extended to larger sample sizes. In order for three randomly-selected

individuals to have the same genotype, all three individuals must be sampled from

the same class and they must all be from the same lineage (i.e. both of the first two
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events must be coalescence). This can be computed by considering the average of x3

over the PRF,
∫ 1

0
x3fk(x)dx, or by using the results from Eq. (3.14). We find:

Q3 =
∑
k

h3
k

(
2

2 + θk

)(
1

1 + θk

)
. (3.24)

Note that, for Ud = 0, hk 6=0 → 0 and h0 → 1, such that:

QNeutral
3 → 2

(2 + θ)(1 + θ)
, (3.25)

in agreement with the neutral Ewens sampling formula.

In order for two individuals to have the same genotype and the third individual

to have a different genotype – a configuration we term bizygotic – there are two

possibilities. First, two individuals could have been selected from the same class and

the third individual could have been selected from a different class. In this case, the

two individuals in the same class must be from the same lineage (i.e. coalesce prior to

a mutation event). Alternatively, all three individuals could have been selected from

the same class. In this case, two must be from the same lineage and the third from

a different lineage, which occurs with probability∫ 1

0

3x2(1− x)fk(x)dx. (3.26)

Thinking about this retrospectively, this is equivalent to the sum of two possibilities:

either the first event could be a mutation event, in which case the next event among

the other two lineages must be a coalescent event, or the first event could be a

coalescent event, in which case the next event among the third lineage and the merged

lineage must be a mutation event. We find

Q2,1 = ∑
k,k′ 6=k 3h2

khk′
(

1
1+θk

)
+
∑
k h

3
k

[(
2

2+θk

)(
θk

1+θk

)
+
(

θk
2+θk

)(
1

1+θk

)]
= ∑

k

3h2
k

1+θk

(
1− 2hk

2+θk

)
. (3.27)

Note that:

QNeutral
2,1 → 3θ

(1 + θ)(2 + θ)
, (3.28)

in agreement with the neutral Ewens sampling formula for this configuration, which

we call bizygotic.
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Analogous considerations lead to the probability that all three individuals are of

different allelic types,

Q1,1,1 = ∑
k,k′ 6=k,k′′ 6=k′,k hkhk′hk′′+

∑
k,k′ 6=k 3h2

khk′
(

θk
1+θk

)
+
∑
k h

3
k

(
θk

2+θk

)(
θk

1+θk

)
= 1−

∑
k 3h2

k

(
1

1+θk

)
+
∑
k h

3
k

(
4

(1+θk)(2+θk)

)
=1−Q3−Q2,1, (3.29)

as expected. Note that

QNeutral
1,1,1 =

θ2

(1 + θ)(2 + θ)
, (3.30)

in agreement with the neutral Ewens sampling formula.

Relationship with the Neutral Result

As before, we define a class-specific version of the neutral Ewens sampling formula

with θ → 2Nhk(Un + sk):

QESF{Configuration},k≡ESF Result for {Configuration} with θ → 2Nhk(Un + sk). (3.31)

In particular, we have that:

QESF{3},k= 2
(1+θk)(2+θk)

, QESF{2,1},k=
3θk

(1+θk)(2+θk)
, QESF{1,1,1},k=

θ2k
(1+θk)(2+θk)

.

Using these formulae, we can rewrite our results:

Q3 =
∑
k

h3
kQ

ESF
{3},k, (3.32)

Q2,1 =
∑
k

h3
kQ

ESF
{2,1},k +

∑
k,k′ 6=k

3h2
khk′Q

ESF
{2},k, (3.33)

Q1,1,1 =
∑
k

h3
kQ

ESF
{1,1,1},k +

∑
k,k′ 6=k

3h2
khk′Q

ESF
{1,1},k +

∑
k,k′ 6=k,k′′ 6=k′,k

hkhk′hk′′ . (3.34)

Therefore, we again see that, within each class, the probabilities of a particular con-

figuration are effectively neutral with parameter θ → 2Nhk(Un + sk). The overall

probability of a given allelic configuration is then the probability that a specific con-

figuration is achieved within each class, summed over all possible class configurations

that are consistent with the allelic configuration.
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Sampling Formulae for Arbitrary Sample Size

We can extend this method to arbitrary sample size. For example, in order for a

sample of n individuals to each have the same genotype, all individuals must be

sampled from the same class. They must all be of the same allelic type, which occurs

with probability
∫ 1

0
xnfk(x)dx. Or equivalently, the first event among the n lineages

must be a coalescent event, the next event among the remaining n− 1 lineages must

also be a coalescent event, and so on. We find

Qn =
∑
k

hnk

(
n− 1

n− 1 + θk

)(
n− 2

n− 2 + θk

)
. . .

(
1

1 + θk

)
=

∑
k

hnk(
θk+n−1

θk

) . (3.35)

Note that:

QNeutral
n → 1(

θ+n−1
θ

) , (3.36)

in agreement with the neutral Ewens sampling formula.

In principle, this method can be extended to calculate the probability of any allelic

configuration. Alternatively, we can use the relationship between these results and

the neutral Ewens sampling formula to infer the probabilities. We found that, for the

cases n = 2 and n = 3, we can write the probability of a given allelic configuration as

the probability that, within each class, a particular configuration is achieved, summed

over all sets of class configurations that are consistent with the allelic configuration.

Similarly, we see that for Qn:

Qn =
∑
k

hnkQ
ESF
{n},k, (3.37)

where we have defined:

QESF{Configuration},k≡ESF Result for {Configuration} with θ → 2Nhk(Un + sk). (3.38)

Using this logic, we can infer the probability of additional configurations. For

example, in order to sample n individuals of one genotype and n−m of another, there

are two possibilities: First, m individuals could be sampled from class k and n −m
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individuals could be sampled from another class k′. The probability of sampling in

this manner is hmk h
n−m
k′

(
n
m

)
. Within class k, the probability of them individuals having

the same genotype is given by the neutral result QESF
{m},k with θ → 2Nhk(sk + Un).

Similarly, within class k′, the probability of the n −m individuals having the same

genotype is QESF
{n−m},k′ . Alternatively, all n individuals could be sampled from the same

class k. This occurs with probability hnk . The probability of m individuals having the

same genotype and n − m individuals having another is then given by QESF
{m,n−m},k.

Combining these results and summing over all sets of k and k′, we have that:

Qm,n−m=
∑
k h

n
kQ

ESF
{m,n−m},k+

∑
k,k′ 6=k h

m
k h

n−m
k′ (nm)QESF{m},kQ

ESF
{n−m},k′ . (3.39)

Note, however, that if m = n −m we must divide by two in the second term in the

above expression, to avoid double-counting.

Extending this logic, we have that:

Qn−m−p,m,p=
∑
k h

n
kQ

ESF
{n−m−p,m,p},k+

∑
k,k′ 6=k h

n−m−p
k hm+p

k′ ( n
m+p)QESF{n−m−p},kQ

ESF
{m,p},k′

+
∑
k,k′ 6=k h

p
kh
n−p
k′ (np)QESF{p},kQ

ESF
{n−m−p,m},k′+

∑
k,k′ 6=k h

m
k h

n−m
k′ (nm)QESF{m},kQ

ESF
{n−m−p,p},k′ (3.40)

+
∑
k,k′ 6=k,k′′ 6=k,k′ h

n−m−p
k hm

k′h
p

k′′(
n

n−m−p,m,p)QESF{n−m−p},kQ
ESF
{m},k′Q

ESF
{p},k′′ .

Note, however, that we must correct the above expression for overcounting if two

or more classes require identical configurations (e.g. if n −m − p = m = p we must

divide the second through fourth terms in the above expression by 3 and the last

term by 6). In general, the probability of any allelic configuration can be written as

the sum over all possible class combinations that are consistent with a given allelic

configuration, where the probability of each configuration within a class is given by

the neutral result with θ → 2Nhk(sk+Un). In the Supplement we provide a computer

algorithm that performs this sum symbolically, for any allelic configuration Qi,j,k,....

Note that, in the case Ud = 0, all individuals are sampled from the zero-class,

such that hk 6=0 → 0 and h0 → 1. In this case, only the leading-order term will be

non-zero in the above results. Therefore, the results reduce exactly to the neutral

Ewens sampling formula.
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3.3.7 Fluctuations in the Steady State hk

Even when the self-consistency condition holds, the frequencies hk will fluctuate about

their steady state frequencies. However, both our PRF description of the lineage

structure and our retrospective analysis assume that the fitness distribution is always

in the steady state, hk. We have previously studied this approximation in Walczak

et al. (2012). Here we summarize our analysis of the validity of this approximation,

as relevant for the present paper.

Each allele in class k can at most contain 1
sk

individuals; selection prevents any

individual allele from becoming more common than this. The total number of in-

dividuals in the class is on average Nhk. Thus when Nhk � 1
sk

, each fitness class

contains many individual alleles. Thus we expect that the overall fluctuations in hk

should be negligible provided that this condition holds. This intuition can be made

precise: we can calculate the variance in hk in steady state from our PRF approach,

or more easily from a branching process approximation described in the Supplemen-

tary Appendix. By computing V ar(hk)/hk, we show that in fact the fluctuations in

hk are indeed negligible provided that

Nhksk � 1. (3.41)

In practice, this condition will often not hold in the high-fitness (and low-fitness)

tails of the distribution. However, provided it holds in the center of the fitness

distribution from which most individuals will be sampled (i.e. for those fitness classes

near the mean), our approach will still give a good approximation to the population

allelic diversity.

We note that in addition to assuming hk are in their steady state values in defining

θk and sk for both the PRF and retrospective approaches, the PRF contains an ad-

ditional implicit approximation. In writing the PRF sampling formulae, we assumed

that, for example, the probability two individuals in class k come from a lineage of

frequency x (given that lineage exists) is x2

hk
. This assumes that hk and x are inde-

pendent quantities. That is, we assume that all the lineages in the class always add

up to a frequency hk (i.e., we neglect fluctuations in hk). However, the existence of
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a high-frequency lineage naturally implies that hk is likely to be larger than average,

and vice versa.

These correlations between the frequency of an individual lineage and the hk do

not pose a problem to our retrospective analysis, which never makes reference to

lineages, but it does lead to small errors in the PRF results. We show in the Supple-

mentary Appendix that these errors are negligible provided that fluctuations in hk

can be neglected (i.e. provided Nhksk � 1). However, they do lead to small discrep-

ancies between the PRF and retrospective results (and between the PRF results and

the neutral ESF in the Ud → 0 limit, since the neutral ESF is derived assuming a

strict constraint on the total population size). Thus in the Supplementary Appendix

we describe a method to correct for these effects, making the lineage-based and retro-

spective approaches to allelic diversity exactly equivalent. All of the above sampling

formulae include this correction, as do all our figures.

As a result of fluctuations in the values of hk, there will also be fluctuations in

the value of the average class, k̄. But these are negligible in the same situations that

fluctuations in hk are.

There is one additional extreme effect of fluctuations in hk: a fluctuation in h0 can

lead to loss of this most-fit class, a process referred to as Muller’s ratchet. We expect

that, provided the ratchet does not click many times over the timescale in which

individual lineages exist, this will not significantly affect the allelic diversity. Thus

we have neglected the ratchet in our analysis. We return to consider this in more

detail in the Discussion, and test the validity of our approximation with numerical

simulations.

3.3.8 A Distribution of Fitness Effects of Deleterious Mutations

We have analyzed a model in which all deleterious mutations have the same fitness

cost, s. However, in most real populations it is likely that deleterious mutations have

a range of possible fitness effects. We could model this by assuming that the overall

deleterious mutation rate is still Ud, but that deleterious mutations have a fitness

cost between s and s + ds with probability ρ(s)ds. That is, ρ(s) is the distribution
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of fitness effects of deleterious mutations.

In this more general situation, there is still a steady state distribution of fitness

within the population. Generalizing our earlier notation, we can write this distribu-

tion as h(k), where Nh(k) is the steady state number of individuals with a fitness

between sk and (s+ds)k, where s is the average fitness cost of a deleterious mutation

and k is no longer constrained to be an integer. For certain ρ(s) (e.g. an exponential

distribution) it is possible to calculate h(k) analytically, but even when this is not

possible there does exist some steady state h(k).

The basic ideas behind our analysis still apply in this more general situation. The

rate at which new lineages within fitness “class” h(k) are created is now

θ(k)/2 = Nh(k)Un +N

∫ k

0

h(k′)ρ((k − k′)/s)dk′. (3.42)

The effective selection pressure against individuals in this class is

s(k) = Un + Ud − (k − k̄)s. (3.43)

Using these modified parameters, we can now apply our analysis as before; the dis-

tribution of lineage frequencies in class k is given by the PRF formula f(k;x) with

appropriate θ(k) and s(k). We can then find sampling formulas as before — the

only difference is that instead of summing over a discrete set of fitness classes, we

must integrate over a continuous set of possible fitnesses. For example, we have

Q2 =
∫∞

0

∫ 1

0
x2f(k, x)dxdk.

This extension of our model allows us to calculate the effects of more general forms

of purifying selection on allelic diversity. However, there is a wide array of possible

distributions ρ(s), and using this more general form obscures the basic effects of

selection. Thus in analyzing our results and comparing to simulations we focus on

the simpler case in which all deleterious mutations have the same fitness cost s. This

focus has the advantage of simplicity, and it allows us to explore more clearly how

the strength of selection affects the patterns of allelic diversity.

111



Chapter 3

3.3.9 Simulations

In order to check the validity of our analysis, we have performed simulations of a

Wright-Fisher population. In our simulations, we consider a population of constant

size N and keep track of the frequencies of all genotypes over successive, discrete

generations. In each generation, N individuals are sampled with replacement from

the preceding generation, according to the standard Wright-Fisher process (Ewens

2004) in which the chance of sampling an individual is determined by its fitness

relative to the population mean fitness.

In each generation, a Poisson number of deleterious mutations are introduced,

with mean NUd, and a Poisson number of neutral mutations are introduced, with

mean NUn. The mutations are distributed randomly and independently among the

individuals in the population (so that a single individual might receive multiple mu-

tations in a given generation). Each new mutation is ascribed to a novel site, so that

each mutation results in a new genotype.

Starting from a monomorphic population, all simulations were run for at least

1
s

ln(Ud/s) generations (or for at least several times N generations when Ud/s < 1),

to ensure relaxation both to the steady-state mutation-selection equilibrium and to

the PRF equilibrium of allelic frequencies within each fitness class. Appropriate

relaxation to steady state was checked by extending the simulations and ensuring our

results did not change. The final state of the population – i.e. the frequencies of

all surviving genotypes – was recorded at the last generation, and Q2 and Q2,1 were

calculated from these frequencies. This was repeated and averaged over 250 replicate

simulations to produce the points shown in the figures.

Our simulations allowed for random fluctuations in the frequencies of each fitness

class, as well as for Muller’s ratchet. The ratchet did not proceed substantially for the

simulations relevant for Fig. 3.3, except for the highest Ud point shown in that figure.

However, it did proceed substantially in the simulations shown in Fig. 3.2, such that

the most-fit individuals at the end of each simulation contained typically a few (for

small Ud/s) to more than a dozen (for larger Ud/s ∼ 10) deleterious mutations. We

can see that, despite the effects of Muller’s ratchet and fluctuations in the hk, our
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simulations are generally in excellent agreement with our theoretical predictions.
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Figure 3.2: A Comparison between Simulation Results (dots) and the Pre-
dictions of our Theory (gray lines), for the case where some mutations are
deleterious and others are neutral. For comparison we also show the predictions of
NS interpretation of the neutral Ewens Sampling formula (black lines; the NM inter-
pretation gives a worse fit to the data). (a) Homozygosity Q2 as a function of Ud/s
for N = 5× 104. (b) Q2,1 as a function of Ud/s for N = 5× 104. (c) Homozygosity
Q2 as a function of N for Ud/s = 6. (d) Q2,1 as a function of N for Ud/s = 6. In all
plots Un = 3.2× 10−4, s = 10−3.

3.4 Results and Discussion

Using the approach we have described, we can calculate the probability of any al-

lelic configuration within a sample of n individuals from a population experiencing

negative selection at many linked sites. From this, we can calculate the expected dis-

tribution of any statistic describing allelic diversity. To do so we must first determine
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which allelic configurations lead to what values of the statistic. The probability of

each possible value of the statistic is then the sum of the probabilities of all allelic

configurations leading to that value. This is identical to the calculation we would

do in the neutral case — the only difference is that to calculate the probability of

each allelic configuration, we use our sampling formula rather than the neutral Ewens

sampling formula.

In practice, some statistics are easier to calculate than others. While we can

easily calculate the distribution of statistics describing diversity in a small sample,

and we could in principle calculate certain statistics in larger samples (e.g. the total

number of alleles in a sample of size n, Kn), further work is needed to develop efficient

methods of calculating arbitrary statistics in large samples. This is clearly important

for applications of our method to analysis of sequence data, but the combinatoric

and computational issues involved are an extensive topic which is tangential to the

ideas underlying our method. Instead, we focus here on describing the distributions

of simple statistics involving small samples. Our aim is to highlight the essential

differences between neutral diversity and the diversity in situations involving linked

deleterious mutations.

Aside from likelihoods of configurations, and associated statistics, our approach

could also be used to calculate the full distribution of branch lengths, following the

generating function approach used by Lohse et al. (2011).

3.4.1 Relationship to the Neutral Ewens Sampling Formula

Although it may seem counterintuitive, our analysis applies even when Ud = 0 (that

is, in the case where all mutations are neutral). In this case, our model is the same

as that studied by Ewens (1972). If we apply our methods to this Ud = 0 case,

all genotypes are in the fitness class k = 0, and we have h0 = 1, γ0 = −NUn and

θ0 = θ = 2NUn. Provided that |γ0| � 1, the conditions for our PRF analysis to be

valid are met, and all of our previous results still apply, but are greatly simplified.

And from our analysis of sampling formulas above we can immediately see that, as

expected, setting Ud = 0 always causes our results to exactly reduce to the neutral
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Ewens sampling formula. Note that we must take the limit Ud → 0 rather than s→ 0

to recover the neutral result, because taking s → 0 with finite Ud causes the steady

state mutation-selection balance to break down (i.e. we have hk → 0 and fluctuations

in the frequencies of each class become crucial).

For nonzero Ud, we expect that our results will differ from the predictions of

the neutral ESF. To illustrate these differences in more detail, we study the allelic

configurations in samples of size n = 2 and n = 3. Consider first the homozygosity

Q2 in a sample of size n = 2. In Fig. 3.2a and c we show how Q2 depends on Ud

and the population size N , both under our theory and in monte carlo simulations.

We compare these results with the predictions of the neutral ESF. We make the

same comparisons for the heterozygosity Q2,1 in Fig. 3.2b and d. We note that the

simulation results agree well with our predictions and differ from those of the ESF.

In making this comparison, there is some ambiguity about how to interpret the

ESF, which depends only on θ, for Ud > 0. In one interpretation, we neglect selection

against the deleterious mutations and set θ = 2N(Un + Ud); we refer to this as the

NS-ESF case. Alternatively, we could neglect the deleterious mutations entirely and

set θ = 2NUn; we refer to this as the NM-ESF case.

In Fig. 3.3 we explore the ambiguity in the interpretation of the ESF, and com-

pare the predictions of our theory to the two different interpretations of the ESF.

For small Ud, our prediction is equivalent to both interpretations of the neutral ESF.

As Ud increases, our predicted homozygosity decreases slowly until it experiences a

sharp transition at Ud ≈ s. This transition makes intuitive sense: when Ud < s,

most individuals in the population have no deleterious mutations, and hence the al-

lelic diversity is similar to the neutral case. As Ud increases past s, most individuals

have deleterious mutations, so these mutations decrease the expected homozygosity.

These deleterious mutations decrease homozygosity by less than they would if they

were neutral, so our predicted homozygosity is higher than the NS-ESF (neglect-

ing selection against deleterious mutations) but lower than the NM-ESF (neglecting

deleterious mutations entirely).

We can gain further insight into this behavior by comparing our predictions to

those of the NS-ESF and the NM-ESF in more detail (Fig. 3.3). We see that even
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Figure 3.3: Allelic Diversity as a Function of lnUd, for Un = 10−4, s = 10−3, and
N = 5× 104. Our predictions are shown as a solid line, compared to the predictions
of the NS-ESF (dotted line) and NM-ESF (dash-dotted line). We also compare our
results to the predictions of a neutral ESF using the effective population size that
would be predicted by background selection (BGS, dashed line), though we empha-
size this is not the situation the BGS approximation was developed to address. These
analytical predictions can be compared to simulation results (dots). (a) Homozygos-
ity Q2. (b) Q2,1. Note that Q3 ≈ 0 everywhere for these parameters, so for these
predictions Q1,1,1 ≈ 1−Q2,1.
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when Ud = Un, our predicted homozygosity is only slightly lower than when Ud = 0,

despite the fact that there are twice as many mutations occurring (and hence the

NS-ESF prediction for Q2 has declined by a factor of two). Here the NM-ESF predic-

tion is fairly accurate, reflecting the fact that selection is still strong (with Ud � s)

so that most individuals have no deleterious mutations at all. However, as Ud in-

creases past s, most individuals now have one or more deleterious mutations and

hence these mutations decrease our prediction for the allelic homozygosity. In this

regime, the NM-ESF becomes inaccurate, because the deleterious mutations are suf-

ficiently weakly selected (Ud & s) that their presence is important to the diversity.

However, despite this being weak selection, the fact that selection eliminates deleteri-

ous mutations from the population more rapidly than if they were neutral means that

the allelic homozygosity is higher than the NS-ESF, even as Ud becomes very large.

As Ud increases, our predictions become more similar to the NS-ESF, and in the limit

of infinite Ud will equal the NS-ESF. In Fig. 3.3b we show the bizygosity Q2,1 as a

function of Ud. Through this parameter range Q3 is small, and so Q1,1,1 ≈ 1 − Q2,1.

As Fig. 3.3b shows, the dependence of bizygosity on Ud is similar to the behavior of

heterozygosity, for essentially the same reasons.

This shift in our results from being approximately equal to the NM-ESF for small

Ud to the NS-ESF for large Ud has an intuitive explanation from the form of our

results for θk. For Ud � s, h0 is close to 1, since most individuals have no deleterious

mutations. In this class, we have θ0 = 2Nh0s0 ≈ 2NUn, the same as the θ for the NM-

ESF. Since diversity within each class is neutral with the appropriate θ, in this Ud � s

regime the diversity is approximately that predicted by the NM-ESF. On the other

hand, in the limit of very large Ud, hk becomes sharply peaked about k = Ud/s, so

almost all individuals have approximately the same fitness, and individual deleterious

mutations change fitness by a negligible amount. Thus the diversity is approximately

that predicted by the NS-ESF. This behavior is exactly as reflected in Fig. 3.3, with

the transition between the two regimes occurring at Ud ∼ s, as this analysis would

predict.

Our analysis above makes it clear that the difference between weak and strong

selection for the purpose of allelic diversity is set by whether s is small or large com-
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pared to Ud. We have potentially three regimes of selection strength. For Ns < 1,

selection is ineffective relative to drift, and we always have nearly neutral diversity.

For Ns > 1, we can have weak, moderate, or strong selection. When s � Ud, we

have weak selection as described above; the NS-ESF is accurate. When s . Ud, we

have a “moderate selection” regime where the diversity generated by the deleterious

mutations themselves can be important, and hence the NM-ESF is inaccurate. How-

ever selection is not so weak that the NS-ESF is accurate either; the selection against

the deleterious mutations does reduce the amount of diversity they contribute. In

this regime, neither interpretation of the Ewens neutral sampling formula provides

an accurate prediction for allelic diversity. Finally, for s � Ud, we have a “strong

selection” regime, where deleterious mutations are eliminated quickly from the pop-

ulation and hence do not contribute to diversity, and the NM-ESF is accurate. The

NS-ESF is also accurate in this regime when Ud � Un but it will underestimate ho-

mozygosity when Ud & Un. Note that in Fig. 3.3 we show a case where s > Un, so

there is a regime where s� Ud but Ud & Un and hence the NM-ESF is accurate but

the NS-ESF is not. Such a regime does not exist in the case s < Un, but otherwise

the same qualitative patterns exist for the same reasons.

3.4.2 Comparison to the Effective Population Size Approximation

The background selection model we have studied has been the subject of much ear-

lier work, although this has largely been focused on the structure of genealogies in

the presence of purifying selection, rather than allelic diversity (Hudson and Ka-

plan 1994, 1995b; Gordo et al. 2002; Seger et al. 2010). A particularly simple

and useful approximation to the effects of background selection was developed by

Charlesworth et al. (1993), Charlesworth (1994), and Charlesworth et al.

(1995). This approximation is widely used to summarize the effects of background

selection (Hartl 1988). We refer to it here as the effective population size ap-

proximation (EPS). The EPS analysis makes predictions about the the structure of

genealogies and hence about genetic diversity at the level of individual sites, not just

the allelic diversity we consider here. Further, it focuses on the genetic diversity
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among neutral mutations only. Thus it is not directly comparable to our results in

this paper. Despite this, we find it instructive to briefly examine how EPS compares

to our results, if we apply it to predict allelic diversity. We stress that this is not the

interpretation intended by Charlesworth et al. (1993) and does not provide a fair

picture of its accuracy in general. Since EPS describes the structure of genealogies,

we defer a detailed discussion of the accuracy of the EPS approximation and its re-

lationship to our results to Walczak et al. (2012), where we calculate the structure

of genealogies under our model.

The EPS approximation assumes that deleterious mutations are eliminated by

selection quickly compared to the coalescence time between two individuals who do

not have any such mutations. When this is true, almost all neutral mutations we

observe occurred in individuals that did not have any deleterious mutations, because

they have little time to occur in individuals that do have deleterious mutations before

these individuals are eliminated by selection. Thus, according to the EPS approxi-

mation, the genetic diversity among neutral sites linked to negatively selected sites

is exactly the same as the entirely neutral case, but with the population size N re-

placed by the size of the least-loaded (i.e. most-fit) class. That is, N is replaced by

the effective population size

Ne = Nh0 = Ne−Ud/s. (3.44)

Given this Ne, EPS predicts that any properties of neutral diversity are identical

to those of coalescent theory with the appropriate Ne. Applying this to the allelic

diversity, this predicts that the sampling properties of neutral alleles will be given by

the classical Ewens’ sampling formula, using θ = 2NUnh0 = 2NUne
−Ud/|s|. Note this

is effectively a NM-EPS case, which seems most natural. An alternative NS-EPS case

can be defined using θ = 2N(Un + Ud)h0; this leads to similar conclusions.

In the strong selection regime where Ud � s, most individuals are in the 0-class.

Thus our analysis predicts that this class will dominate allelic diversity, which will

be neutral with θ0 = 2Nh0s0 = 2Ne−Ud/sUn. Thus our analysis reduces exactly to

the predictions of the NM-EPS in this regime. This is the regime in which the EPS

approximation is expected to hold (Walczak et al. 2012), so our analysis reduces to
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the EPS in the regime in which it should.

However, for the moderate and weak selection regimes, Ud & s, the EPS predic-

tion breaks down dramatically, consistent with the earlier observations of Nordborg

et al. (1996) and Kaiser and Charlesworth (2009). We graph this prediction in

Fig. 3.3 (using the NS interpration of the EPS, which provides a slightly better pre-

diction than the NM interpretation). In this regime the EPS predicts that the neutral

homozygosity increases dramatically, since the least-loaded class becomes negligible

in size. However, the homozygosity is not so large in reality, as our predictions

demonstrate. Rather, both neutral and deleterious variation among individuals that

harbor one or more deleterious mutations is important. Our theory accounts for this

effect, while EPS fails because the approximation that the coalescence time between

individuals is dominated by the time in the least-loaded class breaks down.

We note that, contrary to the intuition one might be tempted to draw from EPS,

having more deleterious mutations can never decrease allelic diversity. That is, if we

fix all other parameters, simply having more deleterious mutations (i.e. increasing

Ud) does not reduce heterozygosity. Certainly it reduces neutral heterozygosity, but

accounting for all variation a population with a larger deleterious mutation rate will

have more allelic heterozygosity.

3.4.3 Distortions in Allelic Diversity

The above discussion makes clear that for given population sizes, mutation rates, and

selection strengths, purifying selection changes the probabilities of particular allelic

configurations in a sample. However, this does not necessarily imply that selection

leads to distortions in the patterns of genetic variation compared to the neutral case.

In the neutral case, the probabilities of all allelic configurations in a sample are

determined by a single parameter θ. This means that we can infer θ from a statistic

which depends on the probabilities of one set of allelic configurations, and this θ then

predicts the expected distribution of all other statistics describing genetic variation

within the population, provided it is evolving neutrally.

Our discussion of the EPS approximation above makes clear that for sufficiently
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strong selection, genetic diversity is not distorted relative to the neutral case. In

this section, we show that for moderate to weaker selection (relative to mutation

rates), there is no effective population size Ne which can describe genetic diversity

in our model. As we noted in the Introduction, this is consistent with earlier obser-

vations that background selection leads to distortions in the structure of genealogies

(McVean and Charlesworth 2000; Seger et al. 2010; O’Fallon et al. 2010;

Comeron and Kreitman 2002; Comeron et al. 2008; Barton and Etheridge

2004; Gordo et al. 2002; Hermisson et al. 2002; Williamson and Orive 2002).

Here we compute precisely how these distortions alter particular aspects of the pat-

terns of allelic diversity. Our analysis in this section demonstrates one place in which

statistical power exists to distinguish purifying selection from neutral processes at

a reduced effective population size. Our framework can in principle be used to ex-

plore where such statistical power lies more generally, but we leave this more general

question for future work.

In this section, we simply show that there is no effective neutral population size

Ne to describe diversity in our model. To do this, it is sufficient to show that the

effective θ that one would infer from one statistic predicts the incorrect values of other

statistics. The simplest way to do this is to begin with the Q2 we would predict given

some set of parameters. We calculate the effective θe one would infer from this Q2

using the neutral ESF (i.e. we choose θe such that Q2 = 1
1+θe

). We then calculate

the neutral prediction for Q2,1 (or Q3) based on this θe. We compare this with

our predictions for Q2,1 (or Q3) given the real parameters. The difference between

these two predictions is a measure of the deviation from neutrality. We show this

deviation from neutrality, expressed as the ratio of the neutral effective population

size prediction to the actual result, for Q2,1 in Fig. 3.4a and for Q3 in Fig. 3.4b.

We see from Fig. 3.4 that negative selection distorts the allelic diversity away

from high-frequency polymorphisms and towards lower-frequency polymorphisms, for

a given level of overall heterozygosity. The effects are strongest when Ud is of order

(or slightly larger than) s, and the distortion is stronger for smaller Un and N .

These two simple statistics measuring deviations from neutrality demonstrate that

there is no effective population size describing allelic diversity. These particular com-

121



Chapter 3

1

1.01

1.02

1.03

1.04

1.05

1.06

-7 -6 -5 -4 -3 -2 -1 0

Series1

Series2

Series3

𝑄
2

,1
 D

ev
ia

ti
o

n
 f

ro
m

 N
eu

tr
al

it
y 

log10 𝑈𝑑  

𝑈𝑛 = 10−4,   𝑁 = 105   

𝑈𝑛 = 10−4,   𝑁 = 106   

𝑈𝑛 = 10−5,   𝑁 = 106   

0

0.2

0.4

0.6

0.8

1

-7 -6 -5 -4 -3 -2 -1 0

Series1

Series2

Series3

𝑄
3

 D
ev

ia
ti

o
n

 f
ro

m
 N

eu
tr

al
it

y 

log10 𝑈𝑑  

𝑈𝑛 = 10−4,   𝑁 = 105   

𝑈𝑛 = 10−4,   𝑁 = 106   

𝑈𝑛 = 10−5,   𝑁 = 106   

Figure 3.4: The Deviation from Neutrality: We take Q2 as predicted by our
theory, and use the neutral ESF to find the effective θ that this implies by setting
Q2 = 1

1+θe
. We then use this effective θe in the neutral ESF to predict the values of

Q2,1 and Q3 it corresponds to. We compare this to the Q2,1 and Q3 predicted by our
theory. This is a measure of the deviation from neutrality, the skew in the frequency
spectrum of allelic diversity away from neutral results with some modified effective
population size. (a) The ratio of Q2,1 from the effective population size description
to the Q2,1 from our theory, as a function of ln(Ud), for s = 10−3 and three different
values of Un and N . (b) The ratio of Q3 from the effective population size description
to the Q3 from our theory as a function of ln(Ud), for s = 10−3 and three different
values of Un and N .
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parisons are presumably not the most statistically powerful way to detect this type

of negative selection, but they do show that statistical power exists. Using the frame-

work developed in this paper, it is now possible to systematically investigate exactly

how linked negatively selected sites generate different patterns of allelic diversity

from the neutral case, and to determine which statistics provide the most power de-

tect this type of selection. Note for example that the deviation from neutrality is

much stronger in Fig. 3.4b than in Fig. 3.4a. This reflects the fact that we are

inferring θ from Q2, which in our theory is more closely related to Q2,1 than it is to

Q3. Even more powerful tests for selection are presumably possible. While much ear-

lier work has anticipated that purifying selection distorts the structure of genealogies

(McVean and Charlesworth 2000; Gordo et al. 2002; Hahn 2008; Comeron

et al. 2008; Seger et al. 2010; Betancourt et al. 2009; Comeron and Kreitman

2002; Williamson and Orive 2002), no analytic formalism has previously provided

a way to determine precisely how selection alters patterns of allelic diversity (and

hence, where statistical power may lie).

While we have shown that there is no neutral effective population size describing

allelic diversity, this allelic diversity is a summary statistic of the full per-site diversity.

Thus our result also implies that genetic diversity at a per-site level also cannot

be described by a neutral effective population size, and that additional power to

distinguish neutrality from negative selection can be found in data on site-based

variation, consistent with the earlier work described above.

3.4.4 Muller’s Ratchet

Throughout our analysis, we have assumed that Muller’s ratchet can be neglected.

This is clearly not true in general. The problem Muller’s ratchet creates is that hk can

change with time, and this changes the distribution of allele frequencies within each

class. After a “click” of the ratchet, the distribution of hk shifts, eventually reaching

a new state shifted left by one class (so the class that was originally at frequency hk

is now at frequency hk−1, and so on). The PRF distribution of lineage frequencies in

class k correspondingly shifts from fk to fk−1, and so on, which changes the allelic
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diversity.

Fortunately, since fk(x) is similar to fk+1 and fk−1, this effect is unlikely to cause

major inaccuracies, provided the ratchet does not click many times over the timescale

on which the lineage frequency spectrum turns over. We expect that this is generally

true within the bulk of the fitness distribution. At the tails of the distribution, where

hk is small, the allele frequency distribution can sometimes be substantially different

than expected due to the ratchet. However, by definition these classes represent a

small fraction of the overall population and hence we do not expect them to contribute

substantially to allelic diversity.

We tested the accuracy of our approximation neglecting Muller’s ratchet using

the simulations described above, all of which included the possibility of the ratchet.

Our predictions remain very accurate, even in simulations in which the ratchet was

observed to operate. Note, however, that the ratchet is potentially more problematic

in considering the genetic diversity at the level of individual sites, because the high-

fitness tail of the fitness distribution can be important for the structure of genealogies

even if it does not contribute substantially to allelic diversity at any time.

3.4.5 Conclusion

We have introduced a formalism to calculate the statistics of allelic diversity in the

presence of purifying selection at many linked selected sites. We have done so by calcu-

lating the structure of the individual lineages that maintain the deleterious mutation-

selection balance. This analysis is based on the PRF framework of Sawyer and

Hartl (1992), which was originally developed to describe the frequency of muta-

tions at completely unlinked sites. We have adapted this framework to our problem

with a shift in perspective: rather than treating new mutations at individual sites as

the basic and independently fluctuating quantities, we consider the lineages founded

by new mutations as the basic independent quantities. This allows us to describe as-

pects of the genetic diversity despite the fact that selection is acting on many linked

non-independent sites. We showed that this approach is exactly equivalent to a retro-

spective perspective, which studied the probability individuals are in the same lineage
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by considering the probability that coalescence events preceded mutations.

Of course, each lineage we describe contains many different mutations, and the

fluctuations in lineage frequency described by the PRF framework represent correlated

fluctuations in all of these individual mutations. If we could also describe how lineages

are related to each other, and hence the statistics of which mutations they share, we

could combine this with the results in this paper to describe the full per-site patterns

of genetic diversity despite the correlations between sites introduced by linkage and

selection. In this paper, however, we have focused on describing allelic diversity,

leading to a negatively selected version of the neutral Ewens sampling formula. This

analytical framework allows us to compute precisely how patterns of allelic diversity

are distorted by negative selection at many linked sites, and hence understand exactly

where statistical power may lie to distinguish purifying selection from neutrality.
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3.6 Appendix A: Integrals involving fk(x)

Our expressions for the probabilities of various allelic configurations involve integrals

of the form

I =

∫ 1

0

A(x)f(x), (3.45)

where A(x) is a polynomial function of the form A(x) = xn(1 − x)m (with n and m

integers). Here f(x) is the expression from Eq. (3.9),

f(x) =
ah

ea − 1

1

x(1− x)

[
ea(1−x) − 1

]
, (3.46)

where we have suppressed the subscripts and used the notation a ≡ −2γ.

Whenever n and m are both ≥ 1, these integrals are easy to evaluate analytically.

When either n or m equals zero, the integrals can be separated into an exactly solvable

analytical part and a part that involves the integral

I ′ =

∫ 1

0

eay − 1

y
dy. (3.47)

This integral I ′ is a known special function Ein(−a); see p. 228 of Abramowitz

and Stegun (1965).

Consider for example the integral

I2 =

∫ 1

0

x2f(x)dx. (3.48)

Substituting in for f(x) and substituting y = 1− x in the integral gives

I2 =
ah

ea − 1

∫ 1

0

1− y
y

[eay − 1] dy. (3.49)

We now simply write 1−y
y

= 1
y
− 1 and evaluate the analytically solvable parts of this

integral to get

I2 =
ah

ea − 1
I ′ − h+

ah

ea − 1
. (3.50)

Fortunately, we can calculate a simple analytic approximation for I ′ in the limit

a� 1 (i.e. |γ| � 1), which is the limit we are always working in. This is a standard

asymptotic expansion of the Ein function; we have

I ′ ≈ 1

a
ea
[
1 +

1

a

]
. (3.51)
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We can now plug our approximation for I ′ into our result for I2 to get

I2 =
h

a
. (3.52)

For more complex integrals, we need to keep higher order terms in the asymptotic

expansion of I ′. In general, we find

In =

∫ 1

0

xnf(x) =
(n− 1)!h

an−1
. (3.53)

Similar calculations can be used to find an analogous approximation for Im =
∫ 1

0
(1−

x)mf(x)dx, but this integral is not necessary for our purposes in this paper.

These calculations allow us to give simple analytic expressions for any integrals

of the form
∫
xn(1− x)mf(x)dx. Whenever m and n are both ≥ 1, the integrals can

be evaluated exactly in terms of elementary functions, and when either m or n are 0

we can use the above results to provide simple analytic approximations to whatever

precision we require.
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Distortions in Genealogies due to

Purifying Selection

Purifying selection can substantially alter patterns of molecular evolu-

tion. Its main effect is to reduce overall levels of genetic variation, leading

to a reduced effective population size. However, it also distorts genealogies

relative to neutral expectations. Hudson and Kaplan (1994) introduced a

structured coalescent approach to describe this effect, which forms the ba-

sis for numerical methods and simulations. Here, we extend this approach

by making the additional approximation that lineages may be treated in-

dependently, which is valid only in the strong selection regime. We show

that in this regime, the distortions due to purifying selection can be de-

scribed by a time-dependent effective population size and mutation rate,

confirming earlier intuition. We calculate simple analytical expressions

for these functions, Ne(t) and Ue(t). These results allow us to describe the

structure of genealogies in a population under strong purifying selection as

equivalent to a purely neutral population with varying population size and

mutation rate, thereby enabling the use of neutral methods of inference

and estimation for populations in the strong selection regime.
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4.1 Introduction

Purifying selection purges deleterious mutations from a population, and hence re-

duces genetic variation at both selected and linked neutral sites. Charlesworth

et al. (1993) introduced the background selection model to describe this effect. These

authors observed that when selection is sufficiently strong, deleterious variants are

quickly eliminated from the population, and thus all individuals are recently de-

scended from individuals without deleterious mutations. Thus molecular variation is

characteristic of a neutrally evolving population with a reduced effective population

size. This simple and intuitive approximation — background selection reduces Ne —

has been widely used to interpret patterns of molecular evolution in sequence data.

We refer to it as the effective population size (EPS) approximation, and it success-

fully captures the dominant effect of strong purifying selection on the structure of

genealogies: to decrease coalescence times without distorting genealogical structure.

However, even strong purifying selection does not act instantaneously. Instead,

deleterious variants can segregate for a time that is inversely proportional to the

strength of selection against them. This leads to two main distortions in the structure

of genealogies. First, since purifying selection has not had time to act against dele-

terious mutations that occurred recently, the number of individuals that contribute

to effective population size is higher in the recent past than the distant past. Nu-

merous simulation and numerical studies have argued that this effect is similar to an

effective population size Ne(t) that declines as time recedes into the past (McVean

and Charlesworth 2000; Comeron and Kreitman 2002; Gordo et al. 2002;

O’Fallon et al. 2010; Seger et al. 2010; Walczak et al. 2012). Second, since

individuals that acquired deleterious mutations in the distant past are less likely to

have offspring in the present, mutations are not homogeneously distributed across

genealogies. Recent work has argued that this effect can be summarized by an effec-

tive mutation rate Ue(t) (representing the combined neutral and deleterious mutation

rates) that also declines as time recedes into the past (Nielsen and Weinreich

1999; Woodhams 2006; O’Fallon 2010), though the potential importance of this

effect is controversial (see Ho et al. (2011) for a recent review).
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Recent evidence suggesting that purifying selection may substantially alter pat-

terns of molecular evolution in nature (Eyre-Walker and Keightley 1999; Fay

et al. 2001; Hahn 2008) has led to increased interest in understanding these ef-

fects. Several general theoretical approaches exist. The ancestral selection graph

(Neuhauser and Krone 1997; Krone and Neuhauser 1997) offers a full formal

solution, but is computationally unwieldy (Przeworski et al. 1999). An alternative

approach is the structured coalescent method introduced by Kaplan et al. (1988).

In this approach, the population is subdivided into classes of individuals at differ-

ent fitnesses, where the average size of each fitness class is given by the steady state

mutation-selection balance (Kimura and Maruyama 1966; Haigh 1978). In its

most general form this method incorporates fluctuations in the class sizes, and hence

can describe both weak and strong selection, but as a result is complex and requires

numerical evaluation. This very general approach has since been further developed by

Barton and Etheridge (2004) to address the effect of selection on genealogies at

a linked neutral locus, including the effects of recombination. Hudson and Kaplan

(1994) employed a simplified version of this structured coalescent method by approx-

imating the distribution of fitness classes as fixed (i.e. neglecting fluctuations in their

sizes). This leads to a simpler recursion describing the effects of purifying selection,

which forms the basis for coalescent simulations (Gordo et al. 2002; Seger et al.

2010). We have recently shown that this recursion can be solved for the coalescence

probabilities in each fitness class, leading to expressions for the structure of genealo-

gies that can be evaluated numerically (Walczak et al. 2012). However, while these

numerical and simulation methods offer important insight into the effects of selection

on patterns of molecular evolution, they do not lead to simple analytic results.

In this paper, we propose an approximation which provides a simple analytic de-

scription of the leading effect of background selection in distorting genealogies. Our

analysis provides an intuitive description of the main qualitative difference between a

selected population and a neutral population with a reduced effective population size.

Our results are necessarily more complex than the EPS result, since in addition to

the main effect of background selection in reducing Ne they also capture the leading

effect of background selection in distorting genealogies. However they are much sim-
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pler (though correspondingly less generally valid) than the numerical and simulation

methods of the full structured coalescent approach.

Our analysis is based on the simplified structured coalescent of Hudson and Ka-

plan (1994), which assumes the size of each fitness class is fixed at the steady state

mutation-selection balance. We assume no recombination and neglect back mutations.

We trace the ancestry of individuals as they move through the fitness distribution via

mutations, as implemented in coalescent simulations by Gordo et al. (2002). We

make the key additional approximation that the ancestry of each individual can be

treated independently from all other individuals, which is valid only in the strong

selection regime. We show that this implies that the structure of genealogies is equiv-

alent to those in a neutrally evolving population with both a time-dependent effective

population size and a time-dependent effective mutation rate, consistent with earlier

intuition, and we calculate simple analytic formulas for Ne(t) and Ue(t). The time

dependence in Ne(t) reflects distortions in the structure of genealogies, while the

Ue(t) reflects the fact that mutations are not homogeneously distributed along the

genealogies.

Our results are valid only within a limited parameter regime, and represent a spe-

cial case of earlier more broadly applicable structured coalescent methods (Hudson

and Kaplan 1994; Gordo et al. 2002; Barton and Etheridge 2004; O’Fallon

et al. 2010; Seger et al. 2010). Our approximations highlight the conditions required

for the effects of purifying selection to be summarized by an Ne(t) and Ue(t); when

these conditions hold, the genealogies will be topologically neutral, and a selected pop-

ulation can be described as a neutral population with the appropriate time-varying

population size and mutation rate. However, when these conditions fail, we expect

selection to alter not only the distributions of coalescent branch lengths, but also the

distribution of genealogical topologies.

We begin in the next section by reviewing the relevant aspects of the structured

coalescent method of Hudson and Kaplan (1994), and discuss the approximations

underlying this approach. We then calculate the ancestral fitness distribution, and use

this to calculate the time-dependent effective population size Ne(t) and mutation rate

Ue(t). We discuss the relationship between our results and the EPS approximation,
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and compare our results with forward-time Wright-Fisher simulations. Finally, we

describe how our results have potential practical applications in improving methods

of inference and estimation for populations experiencing strong purifying selection.

Most importantly, they make it possible to use preexisting neutral methods for in-

ference of selection pressures, simply by using the appropriate Ne(t) and Ue(t). We

also describe the implications of our results for understanding the potential role of

purifying selection in explaining the apparently time-dependent mutation rates seen

in recent experiments (Ho et al. 2005; Penny 2005; Burridge et al. 2008; Weir

and Schluter 2008).

4.2 Model

We consider a haploid population of constant size N , with neutral mutation rate Un

and deleterious mutation rate Ud. Each deleterious mutation is assumed to confer a

fixed fitness cost s, with s � 1. We assume no epistasis and multiplicative fitness,

such that an individual carrying k deleterious mutations has fitness (1− s)k. In this

model, the population can be divided into fitness classes indexed by k. We assume

an infinite-sites framework, such that all mutations introduce a new genotype into

the population. We assume that there are no beneficial or back mutations, and we

assume no recombination.

This model is equivalent to the mutation-selection balance framework described

by Kimura and Maruyama (1966) and Haigh (1978). These authors showed that

the fraction of the population in fitness class k, hk, is given by

hk =

(
Ud
s

)k
e−Ud/s

k!
. (4.1)

This is illustrated in Fig. 4.1.

We now summarize the structured coalescent method of Hudson and Kaplan

(1994), as relevant for our analysis. Consider an individual sampled from fitness class

k. Tracing the ancestry of this individual backwards in time, three types of events

can occur. First, the individual may undergo a neutral mutation at rate Un. Second,

it can coalesce, but only with an individual in the same fitness class. Thus, it will
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Figure 4.1: : Schematic Depiction of Mutation-Selection Balance: Deleterious
mutations decrease the mean fitness of the population, while selection favors more-fit
individuals. At steady state, a balance between these two effects is reached.
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undergo coalescence with a specific individual from class k at rate 1
Nhk

. Finally, it

can undergo a deleterious mutation. Each generation, Nhk−1Ud individuals enter

class k due to deleterious mutations from class k − 1. Thus, the probability that an

individual in class k underwent a deleterious mutation in the previous generation is

approximately Nhk−1Ud
Nhk

= sk. To summarize these possible types of events and their

rates, we have

Rates of Events :


Neutral Mutation Un

Deleterious Mutation sk

Coalescence 1
Nhk

(4.2)

In this framework, each fitness class is treated as a subpopulation with size Nhk

and neutral mutation rate Un. Within each class, all individuals are neutral with

respect to one another. Deleterious mutation events are treated as migration events

between the subpopulations. This migration occurs at rate sk, but may only occur in

unit steps in one direction (towards higher fitness, backwards in time). This frame-

work is equivalent to the diploid model used by Hudson and Kaplan (1994), for

the case of no dominance.

This model makes use of an important approximation: we will assume through-

out that the fraction of the population in fitness class k is fixed at the steady-state

deterministic value, hk. We refer to this as the steady state approximation. This

approximation also implicitly neglects the effects of Muller’s ratchet, which occurs

when the zero-class fluctuates to extinction. In reality, the sizes of the classes will

fluctuate due to random drift, and Muller’s ratchet will occur. In general, the mag-

nitude of genetic drift is inversely proportional to the population size. Thus, in order

for the fluctuations in fitness class k to be negligible, we require that the magnitude

of selection and mutation be large compared to the size of the class. This implies

that our approximation will be reasonable provided Nhksk � 1. In a later section

below, we show that our approximations are indeed valid in this parameter regime

by comparing our results with forward-time Wright-Fisher simulations in which these

fluctuations can occur and Muller’s ratchet is able to proceed.
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4.3 Analysis

4.3.1 The Ancestral Fitness Distribution

First, we calculate the ancestral fitness distribution for the population. We consider

an individual sampled from class k. Deleterious mutations into the current class

occur at a time exponentially distributed with rate sk. Then, at a time exponentially

distributed with rate s(k− 1), the ancestral lineage will undergo the next deleterious

mutation, and so on. In general, the probability that the ancestral lineage of an

individual, sampled from class ki in the present, mutated out of class kf at time t in

the past is the convolution of these steps

P1(ki → kf |t) =

∫
δ(t−

∑
tj)

j=ki−kf−1∏
j=0

s(ki − j)e−s(ki−j)tjdtj (4.3)

The probability that the ancestral lineage remains in class kf for time tkf−ki (i.e.

does not undergo the next deleterious mutation) is
∫∞
tkf−ki

skfe
−skf t′dt′ = e−skf tkf−ki .

By convolving these two results, we find in Appendix A the probability that an

individual, sampled from class ki in the present, was in class kf at time t in the past,

P (ki → kf |t) = e−skit
(
est − 1

)ki−kf (ki
kf

)
. (4.4)

By summing over all possible starting classes ki, weighted by their probabilities

hki , we find the probability that a randomly chosen individual was in class kf at time

t in the past,

pkf (t) =
∞∑

ki=kf

hkiP (ki → kf |t)

=

(
U
s
e−st

)kf e−Us e−st
kf !

. (4.5)

This is the ancestral fitness distribution of a randomly sampled individual; we illus-

trate it in Fig. 4.2. We note that, like the current fitness distribution, the ancestral

fitness distribution is Poisson, but with reduced mean Ud
s
e−st. Thus, at time t = 0,

the distribution is equivalent to the mutation-selection balance result. As t → ∞,
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Figure 4.2: The Ancestral Fitness Distribution, shown for times t = 0, t = 1000,
and t = 2000 before the present. The bars are the theoretical result, and the circles
are simulations. In this plot, Ud

s
= 2, s = 0.001, and N = 105. The present population

is in mutation-selection balance. As time recedes into the past, the ancestral lineages
shift towards higher fitness. As t → ∞, all individuals eventually return to the
zero-class.

the mean of the ancestral fitness distribution approaches zero, reflecting the fact that

all individuals eventually descend from the zero-class.

This result intuitively agrees with the results of previous studies addressing the

ancestral fitness distribution of a population under purifying selection (Hermisson

et al. 2002; Barton and Etheridge 2004; O’Fallon et al. 2010). We find that the

mean fitness of the ancestral lineages increases as time recedes into the past, 〈k(t)〉 =
Ud
s
e−st. Furthermore, the variance of the ancestral fitness distribution decreases as

time recedes into the past, V ar[k(t)] = Ud
s
e−st. The consequence of this is that

ancestral individuals tend to have higher fitness, and tend to be in a narrower range

of classes. This leads to significant consequences for both the apparent deleterious

mutation rate and the per-generation probability of coalescence, as we will later see.

In the case of strong selection, the time to descend from the zero-class may be

fast compared with a typical coalescence time within the zero-class (which is Nh0 =
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Ne−Ud/s). This is the motivation behind the EPS approximation: if all individuals

coalesce in the zero-class, and the time to descend from the zero-class is negligible in

comparison to the coalescence time within the zero-class, then the population can be

treated as a neutral population with size equal to that of the zero-class. However, as

we will later see, the time to descend from the zero-class can be a significant fraction of

the total coalescence time. This can lead to qualitative differences between a selected

population and a neutral population with a fixed effective population size.

4.3.2 The Independent Lineage Approximation

The ancestral fitness distribution is defined for a single individual, moving through

the distribution according to the probabilities described in Eq. (5.1). Our eventual

goal will be to use this ancestral fitness distribution to understand the distributions

of coalescence times among a sample of individuals. To do so, we will make the key

approximation that the ancestral fitnesses of a larger sample of individuals can be

drawn independently from this distribution. This approximation is analogous to a

similar independence assumption made by O’Fallon et al. (2010).

In general, the ancestries of individuals will be correlated. In particular, by de-

manding that two or more lineages have not yet coalesced at a particular time, we bias

the lineages to be further apart than average. Throughout our analysis, we neglect

these biases. In general, if individuals are unlikely to share common ancestors except

in the zero-class, and the time to coalesce is usually dominated by the time within the

zero-class, then these distortions will not have a significant impact on the final result.

Typical times to coalescence in the zero-class are of order Ne−Ud/s, while deleterious

mutation events through the distribution occur on a time-scale of 1
sk

. Thus, we can

approximate lineages as independent provided Nse−Ud/s � 1.

4.3.3 Effective Population Size

We now use the ancestral fitness distribution to compute per-generation coalescence

probabilities. We have seen that two individuals in the same class will share a parent

with probability 1
Nhk

. Thus, as the ancestral fitness distribution shifts towards higher
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fitness, ancestral individuals are more likely to be in the same class concurrently,

and the per-generation probability of coalescence will increase over time. We can

define a time-dependent effective population size as the inverse of the time-dependent

per-generation coalescence probability,

Pn(t) =

(
n
2

)
Ne(t)

, (4.6)

where Pn(t) is the per-generation probability of coalescence in a sample of size n at

time t. We show below that the Ne(t) calculated in this manner is the same for any

sample size within our framework.

Using the independence approximation, the probability that two ancestral indi-

viduals are each in class k at time t is pk(t)
2. Therefore, we find for a sample of size

two,

1

Ne(t)
=
∞∑
k=0

pk(t)
2

Nhk
=
e−

2U
s
e−st

Ne−
U
s

∞∑
k=0

(
U
s
e−2st

)k
k!

.

This gives

Ne(t) = Ne−
U
s

(1−e−st)2

. (4.7)

Similarly, for arbitrary sample size, we have:(
n
2

)
Ne(t)

=
∞∑
k=0

1

Nhk

 n∑
i=2

(
n

i

)(
i

2

)
pik

(∑
k′ 6=k

pk′

)n−i
 (4.8)

=
∞∑
k=0

(
n
2

)
Nhk

[
n−2∑
i=0

(
n− 2

i

)
pi+2
k (1− pk)n−i−2

]
. (4.9)

Using the binomial expansion:

(a+ b)n =
n∑
i=0

aibn−i
(
n

i

)
, (4.10)

and identifying a = pk and b = 1− pk, this becomes:

Ne(t) = Ne−
U
s

(1−e−st)2

. (4.11)

Thus, we see that there is a simple Ne(t) that describes any size sample. In Fig. 4.3,

we illustrate our analytical prediction for Ne(t) and compare it to simulation results.
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Figure 4.3: Effective Population Size as a Function of Time, for (a) Ud
s

= 2 and

(b) Ud
s

= 4. In both cases, N = 105, Un = Ud, and s = 10−3. The effective population
size begins at N , but undergoes a transition to a long-term rate of approximately

Ne−
Ud
s .

We consider two parameter regimes. In the first, we have Nse−Ud/s = 13.53, which

represents a case where both the independent lineages and steady state approxima-

tions should hold reasonably well. In the second case, we have Nse−Ud/s = 1.83,

where both approximations begin to break down.

At t = 0, the effective population size is N . However, as t→∞, Ne(t)→ Ne−Ud/s,

reflecting the fact that all individuals will eventually return to the zero-class. At

intermediate times, there is a transition between the initial and long term population

sizes, representing the descent of lineages through the distribution. The rate of this

transition depends primarily on the selection coefficient, s. We note that the EPS

approximation corresponds to neglecting this transition, and assuming the long-time

limit applies immediately.

The consequence of this time-dependent effective population size is that branch

lengths in the recent past are relatively longer than branch lengths in the distant past.

Thus, we are able to capture a distortion in the relative branch lengths within gene
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genealogies. However, within our framework, the topologies of the genealogical trees

are unchanged from neutral expectations. When the independence approximation

does break down, it will break down more quickly for larger sample sizes, since the

correlations among many individuals will be larger than among a pair of individuals.

This means we no longer expect to find a single Ne(t) for the whole population,

and hence selection begins to distort tree topologies away from neutral expectations

precisely at the point where our approximations break down.

4.3.4 Effective Mutation Rates

We now have a method for describing the structure of genealogies using a time-

dependent effective population size. However, deleterious mutations will not be dis-

tributed homogeneously across these genealogies. We have seen that the rate of

deleterious mutations, backwards in time, depends upon the current class of an indi-

vidual. An individual at the mean fitness k has deleterious mutation rate sk = Ud,

as expected. An individual with more deleterious mutations is less fit, and thus will

tend to die out from the population quicker. As a consequence of this, those indi-

viduals that do exist with a large number of deleterious mutations will have more

recently descended from the previous class, such that their apparent mutation rate is

higher. Analogously, individuals with fewer than average deleterious mutations will

tend to die out more slowly, such that those who do exist appear to have a slower than

average deleterious mutation rate. Thus, we see that the deleterious mutation rate

depends upon the current class. A major consequence of this is that, as the ancestral

fitness distribution shifts toward higher fitness, the effective mutation rate decreases.

This captures the fact that deleterious mutations will be inhomogeneously distributed

along genealogies, with a bias towards occurring more recently, as previously observed

in simulations (Williamson and Orive 2002).

We can describe this effect by calculating the time-dependent rate at which mu-

tations occur along the ancestry of a given individual. An individual in class k will

undergo a deleterious mutation, backwards in time, at rate sk, and neutral mutations
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Figure 4.4: Effective Mutation Rate as a Function of Time, for (a) Ud = 0.002
and (b) Ud = 0.004. In both cases, N = 105, Un = Ud, and s = 10−3. The effective
mutation rate begins at the instantaneous mutation rate, Un + Ud, but undergoes a
transition to a long-term rate of Un. The transition is exponentially decreasing with
rate given by the selection coefficient, s.

at rate Un. Therefore we have

Ue(t) =
∞∑
k=0

pk(t)(Un + sk) (4.12)

= Un + Ude
−st. (4.13)

In Fig. 4.4, we illustrate our prediction for Ue(t) and compare it to simulation results,

again using two different parameter regimes. At t = 0, the effective mutation rate

is simply Un + Ud, as expected. As t → ∞, the mutation rate falls of to Un, as

in the EPS approximation. This is a consequence of the fact that for t → ∞ all

ancestral individuals have entered the zero-class, where only neutral mutations may

occur backwards in time. More generally, this reflects the fact that if a deleterious

mutation were to occur a long time in the past, it would be very likely to have died

out, and thus not be sampled in the present. Therefore, the deleterious mutations

that are seen in the present are biased toward more recent times.
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4.4 Simulations

We performed forward-time Wright-Fisher simulations to confirm the validity of our

results. Each generation, a new set of individuals were chosen from the previous

set using multinomial sampling, and mutations were introduced as a Poisson process

at rates NUn and NUd. The simulations ran for a total of at least 200, 000 (2N)

generations. These simulations allow for fluctuations in the class sizes, as well as

for Muller’s ratchet. In the parameter regime N = 105, s = 10−3, Ud
s

= 4, Muller’s

ratchet proceeded between 8 and 39 times in 200, 000 generations. In the parameter

regime N = 105, s = 10−3, Ud
s

= 2, Muller’s ratchet proceeded between 0 and 1 times

in 200, 000 generations. The simulations were repeated at least 6000 times, and the

results were averaged over trials.

4.5 Results and Discussion

Our analysis implies that the structure of genealogies in the presence of purifying

selection is equivalent to a neutral population with the time-dependent effective pop-

ulation size Ne(t) calculated above. Furthermore, we are able to account for the inho-

mogeneous distribution of mutations across these genealogies with our time-dependent

effective mutation rate Ue(t).

The idea that purifying selection can be described by a time-dependent effective

population size is not new. For example, O’Fallon et al. (2010) also derived a time-

dependent per- generation coalescence probability in the case of weak selection. They

were able to calculate an ancestral fitness distribution using a continuous approxi-

mation, which is in turn used to calculate coalescent times. Other work by Seger

et al. (2010) calculated a time-dependent effective population size by building upon

the simulated structured coalescent approach of Hudson and Kaplan (1994) and

Gordo et al. (2002). Our results are also based upon the framework of Hudson

and Kaplan (1994), and should therefore be analogous to those above. Our work

here is also related to our earlier analysis of the same model, in which we derived the

distribution of simple statistics without making the additional independent lineages
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approximation (Walczak et al. 2012; Desai et al. 2012). The analysis in this earlier

work is more general, but does not lead to the simple analytical conclusions we reach

here. We also note that Barton and Etheridge (2004) built on the more general

structured coalescence approach of Kaplan et al. (1988) to calculate genealogical

structure without assuming fitness classes are fixed in size, in a model where selection

acts only on a single locus. Finally, we note that the concept of the ancestral fitness

distribution was considered in detail in Hermisson et al. (2002). These authors de-

rived the ancestral distribution for a set of haploid mutation-selection models, and

our result can be seen as a limiting case of these results.

Although several of these earlier analyses found a time-dependent coalescence

probability, none of them lead to simple analytical results describing precisely what

Ne(t) is. Although our analysis only holds in the strong-selection regime, we are able

to account for qualitative differences between a selected population and the EPS ap-

proximation of a neutral population with reduced but constant effective population

size Ne = Ne−Ud/s, while maintaining an analytically simple formulation. Most im-

portantly, we see that the Ne(t) derived in this manner is the same for any sample

size. Our result for Ne(t) can therefore be used to calculate coalescence times among

any sample from the population, provided the assumption of independent lineages

can be maintained. Specifically, the distribution of the time to coalescence among a

sample of size n is

Ψn(t) =

(
n
2

)
Ne(t)

e
−(n2)

∫ t
0

1
Ne(t′)dt

′
. (4.14)

In Fig. 4.5, we compare this result with simulations, both in a parameter regime

where our approximations are expected to hold and where our approximations are

expected to break down. We also show for comparison the EPS approximation of

Charlesworth et al. (1993), which assumes that all individuals are instantly de-

scended from the zero-class. Our analysis is valid in a similar strong selection param-

eter regime, in which the time-scale of coalescence events is large compared to the

time-scale of mutations through the distribution. However, we still account for the

time of this descent, which leads to a qualitative difference between the predictions of

the EPS approximation and our model — in particular, there is a non-zero peak in the
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Figure 4.5: Coalescence Probabilities as a Function of Time for a Sample of
Size Two, for (a) Ud

s
= 2 and (b) Ud

s
= 4. In both cases, N = 105, Un = Ud, and

s = 10−3. In the effective population size (EPS) approximation, the per-generation

coalescence probability is fixed at 1
N0

, where N0 = Ne−
Ud
s . Therefore, the probability

of coalescence at a particular time is an exponentially decreasing function. In our
theory, the per-generation coalescence probability begins at 1

N
, and then transitions

to the long-time rate 1
N0

. This introduces a non-zero peak in the overall probability

of coalescence.

coalescence times reflecting the fact that the time to descend through the distribution

makes coalescence at early times less likely. As Nse−Ud/s →∞, our results approach

the EPS approximation. For Nse−Ud/s ≈ 1 our approximation begins to break down,

but it still partially captures the transition period in the coalescence probabilities and

hence describes the qualitative features of the distribution of coalescence times more

accurately than the EPS approximation.

We have shown that the distortions in genealogical structure due to a time-

dependent effective population size are not the only qualitative effect of purifying

selection on patterns of molecular evolution. We have also seen that deleterious mu-

tations do not occur along these genealogies homogeneously, and have calculated a

time-dependent effective mutation rate Ue(t). We note that this idea that purifying
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selection leads to a time-dependent mutation rate has been suggested by several recent

studies (Woodhams 2006; O’Fallon 2010), and evidence for such time dependence

has been presented in humans, fish, and birds (Ho et al. 2005; Penny 2005; Bur-

ridge et al. 2008; Weir and Schluter 2008). Our analysis shows the precise form

of the time-dependent mutation rate we expect due to purifying selection, though it

remains unclear whether this effect is responsible for the signatures found in recent

data.

By combining our result for the time-dependent mutation rate with our time-

dependent effective population size, we can in principle calculate any statistic of

interest describing patterns of molecular evolution. If we treat mutations as a Poisson

process, the probability that m mutations occur along n genealogical branches of

length t, beginning at t0, is given by

Pn(m|t, t0) =

[∫ t
t0
nU(t′)dt′

]m
m!

exp

[
−
∫ t

t0

nU(t′)dt′
]
. (4.15)

However, we note that this expression involves a subtle approximation. Although

neutral mutations may be treated as a Poisson process with constant rate Un, delete-

rious mutations are not strictly a nonhomogeneous Poisson process. This is because

mutation rates at different times are not independent: the actual deleterious muta-

tions are constrained by the fitness classes of individuals, such that if a mutation

occurs at a particular time t, the probability of mutations at other times is con-

strained. Therefore, it is not strictly appropriate to use the Poisson approximation

of Eq. (4.15). However, this approximation is closely related to the independent

lineages approximation. For example, consider the ancestry of a single individual.

Formally, the individual is drawn from a fitness class k that is Poisson distributed,

and the total number of deleterious mutations in the ancestry of this individual must

be exactly k. As a consequence, the number of deleterious mutations in the ancestry

of a randomly-chosen individual is Poisson distributed with mean Ud
s

. In contrast, in

our expression for Ue(t), we average over all classes from which this individual could

have been sampled, and we treat deleterious mutations as a nonhomogeneous Poisson

process at this rate. Thus, the number of deleterious mutations in the ancestry of
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Figure 4.6: Number of Pairwise Differences between Two Individuals, for
Ud = 0.002, N = 105, Un = Ud, and s = 10−3. We compare our theoretical result
with forward-time simulations. For reference, we include the effective population size
(EPS) approximation for both U = Un + Ud and U = Un.

the individual is again Poisson distributed with mean
∫∞

0
Ude

−stdt = Ud
s

. This cor-

respondence will no longer hold explicitly when tracing larger samples of individuals

through the fitness distribution, because the ancestral histories are interdependent,

and the formal class structure needs to be taken into account. However, provided

the independent lineages approximation holds, we expect these errors to be small. To

confirm the validity of this approximation, we can compare our theoretical result with

forward-time simulations. For example, the distribution of the number of pairwise

differences in a sample of two individuals is given by

P (Π = π) =

∫ ∞
0

Ψ2(t)P2(π|t)dt. (4.16)

We compare this theoretical result with forward-time simulations in Fig. 4.6. More

complicated statistics can be calculated in an analogous manner.
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4.6 Applications

Our results demonstrate that patterns of molecular evolution in a population under-

going strong purifying selection are identical to those in a purely neutral population

with the appropriate N(t) and U(t). This has the potential to aid in the analysis of

populations experiencing strong purifying selection, by allowing us to describe such

populations using an entirely neutral framework. Most importantly, it implies that

preexisting neutral methods of population genetic inference can be used to estimate

selection pressures, simply by incorporating the appropriate time-dependent popu-

lation size and mutation rate. This avoids the difficulties inherent in full methods

of inference using models that explicitly include selection, such as the need to iden-

tify each mutation as deleterious or neutral, and with summing over the possible

combinations of fitness classes.

To show that this correspondence between purely neutral methods and models in-

corporating selection is indeed accurate, we ran a set of neutral coalescent simulations

for a sample of size 15. These simulations assume that the population is entirely neu-

tral, but with the appropriate time-varying size and mutation rate, Ne(t) and Ue(t),

which our analysis has shown corresponds to a particular selected situation. In Fig.

4.7, we compare these results with forward-time simulations of a population under-

going strong purifying selection. In the figure, we show comparisons of the average

number of pairwise differences, the total number of segregating sites, Tajima’s D,

and Fu and Li’s D, for a sample of size 15. For comparison, we also show the EPS

approximation result. We see that the neutral model with the appropriate Ne(t) and

Ue(t) accurately captures a significant distortion due to selection in the shape of the

genealogies. The agreement is good but not perfect — for example, as seen in Fig.

4.3, our formula for Ne(t) slightly underestimates the long-term Ne(t), such that our

neutral coalescent simulations underestimate the branch lengths in the distant past,

leading to overestimates of Tajima’s D and Fu and Li’s D. However, these systematic

errors are small, and our analysis still accurately captures the general distortion in

the distribution of these statistics.

These results demonstrate that preexisting neutral coalescent-based methods of
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inference can be used for populations undergoing strong purifying selection by using

the appropriate Ne(t) and Ue(t). A recent study by O’Fallon (2010) used a similar

approach, in which the author incorporated a time-varying apparent mutation rate

into likelihood calculations for genealogical inference in LAMARC. This method was

then applied to data from the mitochondrion of the North Atlantic Cyamus ovalis.

In this study, the decline in the apparent mutation rate was described by the ad-hoc

function

λ(t) = 1− α(1− e−βt). (4.17)

In comparison, our analysis shows that this function should be

U(t)

U(0)
= 1− Ud

Un + Ud
(1− e−st). (4.18)

Thus, our analysis demonstrates that the function proposed by O’Fallon (2010) has

the correct form, and allows us to identify the parameters he infers from his models

with the actual selection pressures and mutation rates, provided the population is

evolving in the strong selection regime.

O’Fallon (2010) compared his ‘purifying rate’ model with forward-time simu-

lations, and observed a significant improvement over neutral models in inferring the

time to the most recent common ancestor. However, his method could not account

for the fact that selection is also expected to distort the genealogies, in addition to

creating a time-dependent mutation rate. Our results provide a method to overcome

this difficulty — we simply incorporate the appropriate time-varying population size

Ne(t) that corresponds to the same selection pressures as assumed in the time-varying

mutation rate Ue(t). By extending the analysis of O’Fallon (2010) to also include

this Ne(t), it is possible to perform full-scale inference on populations undergoing

strong purifying selection, simultaneously accounting for both the non-uniform dis-

tribution of mutations, as well as the distortions in the shape of genealogies. This

has the potential to significantly improve methods of dating and inference for such

populations.

In addition to full-scale inference methods, our results also have significant impli-

cations for data from recent studies investigating apparent time-dependence in the
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molecular clock (Ho et al. 2005; Burridge et al. 2008; Weir and Schluter 2008).

These studies rely on analyzing sequences where divergence times can be estimated

through geographical or fossil evidence. This data can then be used to estimate a

mutation rate at different calibration times. The simplest method is the following: in

neutrally evolving populations, the expected number of pairwise differences between

two individuals is equal to two times the mutation rate times the coalescence time. By

comparing the measured number of pairwise differences with the estimated divergence

time, a mutation rate can be inferred. Several recent studies have shown that the

mutation rate estimated using this method depends on the time at which coalescence

occurs, with recent coalescence events implying a larger mutation rate than more

ancient coalescence events. In other words, the mutation rate is apparently declining

into the past (referred to as the “J-shaped curve”) (Woodhams 2006; O’Fallon

2010; Ho et al. 2011).

Our analysis provides a way to determine whether these observations can be ex-

plained by the action of purifying selection, and to estimate the selection pressures

involved. In our model, the expected number of pairwise differences divided by the

coalescence time is µ(t) =
∫ t
0 U(t′)dt′

t
= Un + Ud

(
1−e−st
st

)
, which we refer to as the

“time-averaged apparent mutation rate”. For very short times, µ(t)→ Un +Ud, indi-

cating that selection has not yet had time to remove recent deleterious mutations from

the population. However, at long times, µ(t) falls off to Un, indicating that ancient

deleterious mutations have been removed. The transition between these extremes is

decreasing with rate given by the selection coefficient, s.

Our result for µ(t) provides a way to determine whether purifying selection is a

likely explanation for the observed time-dependence in recent studies, and to directly

estimate the neutral mutation rate, the deleterious mutation rate, and the selection

coefficient, provided the population is evolving under strong purifying selection. For

example, Burridge et al. (2008) studied the divergence rate in New Zealand fresh-

water fish as a function of time and found evidence for a time-dependent mutation

rate. The authors analyzed samples of fish mtDNA from isolated geographical loca-

tions that were once connected, and estimated the time of the isolation events. They

then used the isolation model of Wakeley and Hey (1997) to infer a divergence time
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(scaled by the mutation rate). By comparing this with their estimates of the isola-

tion events, the authors were able to infer mutation rates for isolation times ranging

from 0.007 − 5.0 Myr. They found that the resulting mutation rates were elevated

in the recent past, on a time-scale of approximately 200 kyr. Specifically, they fit an

exponential decay curve to data from galaxiidae, yielding a rate of change per site

per million years of 0.02 + 0.04e−5.3t. If we compare this result with our µ(t), this

would imply a per-site per-generation neutral mutation rate of 2×10−8 and a per-site

per-generation deleterious mutation rate of 4× 10−8. Our function µ(t) decays more

slowly than exponentially, implying a selection coefficient of approximately two to

three times the fitted exponential decay rate, or about 10−5. We note, however, that

the error bars on the short-term data points are large, such that the 95% confidence

intervals for the selection coefficient and deleterious mutation rate are high.

Importantly, we note that several other explanations have been proposed to ex-

plain the time-dependence of the mutation rate and may significantly contribute to

the observed rate in this case. However, our result provides an informative way to

interpret this data and suggests that purifying selection is a plausible explanation

for the observed results. In order to test this hypothesis in detail, it is now possible

to use our formula for Ue(t) to perform a similar inference test to that performed

in Burridge et al. (2008), without assuming a constant, fixed mutation rate. This

would provide us with a method to estimate both the neutral and deleterious muta-

tion rates, as well as the selection coefficient. One of the main benefits of this method

is that the inferred mutation rates and selection coefficient in turn imply a particular

Ne(t). Thus, if the observed time-dependence is a result of purifying selection, we

expect the population to be described by the corresponding Ne(t), whereas a differ-

ent population size may be expected if the time-dependence is a consequence of other

effects (such as an actually varying mutation rate).

Interestingly, as an example of this possibility, another study by Zemlak et al.

(2010) looked at the effects of historical climate factors in the Patagonian fish Galaxias

maculatus. In their study, they estimated the effective population size as a function of

time using a Bayesian skyline model, and similarly found a decay over a time-period

of 200 − 500 kyr, with an approximately 100-fold decay between the instantaneous
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effective population size and the long-term effective population size. Although this

result may be explained by climate effects that occurred on a similar timescale, this

behavior is consistent with a population undergoing purifying selection with Ud
s
≈

ln 100 ≈ 4.6 and selection coefficient of s ≈ 1
timescale

∼ 5× 10−6.

We note that our results hold only within the strong selection regime, when

Nse−Ud/s � 1. Thus, it is unclear whether our results will accurately describe these

specific data sets. In each case, we estimate s of order 10−5. This then requires

a long-term effective population size of at least ≈ 105 in order for the condition

Nse−Ud/s � 1 to hold. Thus, it is essential to jointly estimate the parameters using

full-scale inference methods along the lines of O’Fallon (2010), as described above,

in order to assess whether our results can be used to describe a particular data set.

This is an interesting topic for future work.

In general, we caution that our results hold only within the strong selection regime,

when Nse−Ud/s � 1. Furthermore, our results hold only in non-recombining regions

of the genome. This lack of recombination can potentially imply a large number of

linked selected sites, which may in turn imply a large Ud
s

. Therefore, it is important to

ensure that the strong selection condition is met in order to avoid misleading results.

4.7 Conclusion

In summary, we have calculated a time-dependent mutation rate and a time-dependent

effective population size that can be used to describe a population undergoing puri-

fying selection. Our expression for Ne(t) shows that recent genealogical branches are

increased in length relative to older branches, leading to an increase in rare muta-

tions relative to an undistorted model. This agrees with the qualitative conclusions

of previous work (Williamson and Orive 2002; O’Fallon et al. 2010; Seger

et al. 2010). Our expression for Ue(t) shows that in addition to this effect, deleterious

mutations are not uniformly distributed across the branches, and instead are biased

even further towards the more recent branches.

We note that our method breaks down for weak selection in small populations,

since both the steady state approximation and the independent lineage approxima-
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tion break down. Within the parameter regime we consider, Ne(t) is the same for any

sample size, such that the genealogical trees are topologically neutral. However, as

selection becomes weaker there is no longer any single Ne(t) that applies to all sam-

ples. This implies that in addition to causing distortions in branch lengths, purifying

selection also distorts the distribution of genealogical topologies. These topological

distortions offer potential statistical power to distinguish purifying selection from de-

mographic effects in patterns of molecular evolution. Our analysis has pointed to the

parameter regimes in which we can expect these topological distortions to exist. De-

veloping a simple analytical description of the nature of these topological distortions

remains an interesting and important topic for future work.
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4.9 Appendix A: Calculation of the Ancestral Fitness Distribution

In this Appendix, we calculate the ancestral fitness distribution P (ki → kf |t). We

have from the main text that

P (ki → kf |t) =
1

skf

∫
δ(t−

∑
tj)

j=ki−kf∏
j=0

s(ki − j)e−s(ki−j)tjdtj

In general, the convolution of n exponential distributions with parameters {λ0, λ1 . . . λn}
is

n∑
i=0

λie
−λit

n∏
j=0, 6=i

λj
λj − λi

,

as described by Wakeley (2009). Therefore, we have

P (ki → kf |t) =

ki−kf∑
i=0

e−s(ki−i)t


ki−kf−1∏
j=0

ki − j

ki−kf∏
j=0,6=i

i− j

 .

We can use the fact that

ki−kf−1∏
j=0

(ki − j) = (ki)(ki − 1) . . . (kf + 1) =
ki!

kf !

and

ki−kf∏
j=0, 6=i

(i− j) = i(i− 1) . . . (1)(−1)(−2) . . . (i− ki + kf ) = i!(ki − kf − i)!(−1)ki−kf−i

to write

P (ki → kf |t) =

ki−kf∑
i=0

(−1)ki−kf−ie−s(ki−i)t
(
ki − kf

i

)(
ki
kf

)
(4.19)

P (ki → kf |t) = e−skit(−1)ki−kf
(
ki
kf

) ki−kf∑
i=0

(−est)i
(
ki − kf

i

)
. (4.20)

Using the binomial equation:

(1 + x)n =
n∑
i=0

xi
(
n

i

)
,
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and identifying x = −est and n = ki − kf , this becomes

P (ki → kf |t) = e−skit(est − 1)ki−kf
(
ki
kf

)
, (4.21)

as claimed in the main text.
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Distortions in Genealogies due to

Purifying Selection and

Recombination

Purifying selection at many linked sites alters patterns of molecular

evolution, reducing overall diversity and distorting the shapes of genealo-

gies. Recombination attenuates these effects, however purifying selection

can significantly distort genealogies even for substantial recombination

rates. Here, we show that when selection and/or recombination are suf-

ficiently strong, the genealogy at any single site can be described by a

time-dependent effective population size, Ne(t), which has a simple ana-

lytic form. Our results illustrate how recombination reduces distortions in

genealogies, and allow us to quantitatively describe the shapes of genealo-

gies in the presence of strong purifying selection and recombination. We

also analyze the effects of a distribution of selection coefficients across the

genome.
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5.1 Introduction

Purifying selection acts to remove deleterious mutations, and variation linked to these

mutations, as they continually arise in a population. This leads to reduced genetic

diversity at both selected sites and linked neutral sites. This effect, known as back-

ground selection, can significantly impact the patterns of diversity evident in sequence

data. In recent years, substantial empirical evidence has arisen suggesting that these

effects may be pervasive in humans and other organisms (McVicker et al. (2009);

Lohmueller et al. (2011); Haddrill et al. (2010); see Charlesworth (2012) for

review).

When selection is very strong, these effects are well understood. Deleterious muta-

tions are purged almost immediately, leading to an overall reduction in diversity to the

level expected in a neutrally evolving population with a reduced population size Ne

(Hudson and Kaplan 1994, 1995a; Nordborg et al. 1996; Charlesworth 1994).

The size of this reduction depends upon the recombination rate, which determines

the extent to which each site is linked to potentially deleterious mutations. This ef-

fect is captured by a simple analytic formula showing how Ne depends upon mutation

rates, selection strengths, and recombination rates, and has been widely used to inter-

pret patterns of molecular evolution (Hudson and Kaplan 1995b; Charlesworth

2013).

However, it has long been recognized that in addition to overall reductions in

diversity, purifying selection also distorts the shapes of genealogies (Charlesworth

et al. 1993, 1995; Zeng and Charlesworth 2011). These distortions arise because

purifying selection does not act instantaneously, and hence deleterious mutations can

persist transiently in the population, lengthening coalescence times in the recent past

relative to those in the distant past (Barton and Etheridge 2004; Williamson

and Orive 2002). A number of recent studies have addressed these distortions in

the completely nonrecombining (asexual) case (Seger et al. (2010); O’Fallon et al.

(2010); Walczak et al. (2012); Nicolaisen and Desai (2012); see Charlesworth

(2013) for review). However, very little is quantitatively known about the shape and

magnitude of these distortions in the presence of recombination.
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To address this question, Zeng and Charlesworth (2011) recently developed

a structured coalescent algorithm to simulate genealogies in the presence of purifying

selection with recombination, analogous to the asexual structured coalescent (Hud-

son and Kaplan 1994). They used this method to analyze distortions in statistics

such as the mean coalescence time and the ratio of external branch length to total

branch length. This approach makes it possible to rapidly simulate any statistic de-

scribing the shape of genealogies, including those involving multiple sites (e.g. the

correlation in coalescence times at two sites). Although this approach is only valid

for sufficiently strong selection, it has led to many novel conclusions and offers great

promise as a useful practical tool.

However, despite these advantages, one of the main difficulties of simulation-based

methods is that they cannot provide simple analytical insight into how distortions in

genealogies depend upon the relevant parameters, and it is thus difficult to incorpo-

rate results into practical inference or estimation methods. In this paper, we show

that the distortions in genealogies may be described by a neutral population with a

time-dependent effective population size Ne(t), and we compute a simple analytical

formula describing how this Ne(t) depends upon mutation rates, selection strengths,

and recombination rates. Our approach is closely related to our earlier analysis of

the effects of purifying selection in completely nonrecombining regions (Nicolaisen

and Desai 2012), and many of our results are closely analogous, demonstrating that

many of the effects of selection in asexual populations remain qualitatively similar in

the presence of substantial recombination.

Our analysis is limited to describing genealogies at a single site, and is only valid

provided purifying selection and recombination are sufficiently strong. Thus, it is

unable to describe the topological distortions in genealogies which begin to appear

as selection and recombination become weaker. However, despite these limitations,

our results show that the effects of strong purifying selection and recombination may

be described by a time-varying population size, and explicitly describe the analytical

dependence of this time-varying population size on the underlying parameters. This

result can therefore be directly incorporated into pre-existing neutral methods of

inference and estimation in a time-varying population to describe or infer the effects
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of selection and recombination. As we will see, it is also straightforward to incorporate

the effects of variation in selection strengths across sites into our analysis.

We begin in the next section by describing our model, which is closely related to

earlier studies of background selection with recombination (Hudson and Kaplan

1994, 1995b,a; Nordborg et al. 1996; Charlesworth et al. 1993). We focus on

a single focal site in a randomly-sampled individual, and we trace that individual’s

ancestral history backwards in time. We calculate the probability that a single linked

site carries a deleterious mutation as a function of time in the past. In general, selec-

tion acts against individuals carrying deleterious mutations, such that the probability

an ancestor carried such a mutation decreases as we look further into the past. We

refer to this probability as the “ancestral fitness distribution,” and we use this to

calculate the probability that two individuals contain the same set of deleterious mu-

tations across all linked sites. This calculation will rely upon the key assumption

that we may treat the ancestral fitness distribution at each site as independent (see

Supplemental Information B.1). Finally, we use this to calculate the probability of

coalescence over time and thus, Ne(t).

5.2 Analysis

We consider a haploid population of N individuals. For simplicity, throughout most

of our analysis we will assume that each site experiences deleterious mutations at

rate µ to an allele carrying selective cost s. In a later section below, we show how

our results can be straightforwardly generalized to the case where each site has an

arbitrary mutation rate and selection coefficient. Throughout, we assume that there

is no epistasis, and that fitnesses combine multiplicatively, so that an individual

with k deleterious mutations has fitness (1− s)k. We note that this haploid model is

analogous to that of Zeng and Charlesworth (2011) and is closely related to earlier

diploid models of purifying selection and recombination (Hudson and Kaplan 1994,

1995b,a; Nordborg et al. 1996; Charlesworth et al. 1993) – resulting equations

can be compared with simple modifications.
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5.2.1 The Ancestral Fitness Distribution

We consider a single individual, randomly sampled from the population. We wish

to trace the ancestral history of that individual at a single focal site backwards-in-

time, in order to calculate the probability that the ancestor carries a mutation at a

particular linked site (referred to as the “index site”), as a function of time in the

past.

In the present, we know that the probability an individual carries a deleterious

mutation at a particular site is given by the classical mutation-selection balance result,

pmut = µ/s (Kimura and Maruyama 1966; Haigh 1978). However, there are two

types of events that may occur in the ancestral history. First, a deleterious mutation

may occur, which will move the ancestor from the mutant state into the non-mutant

state. This will occur at rate µN(1−pmut)
Npmut

≈ s, where we have neglected terms of

higher-order in µ/s. Second, a recombination event may occur between the index

and focal sites at rate r(xi, xf ), where xi denotes the index site and xf denotes the

focal site. When a recombination event separates the focal site from the index site,

the ancestor at the index site is randomly chosen from the population (Figure 1).

Thus, the ancestor will carry a mutation with probability pmut = µ/s. Writing this

out, we have that

dPmut(t)

dt
= −(s+ r(xi, xf ))Pmut(t) + r(xi, xf )µ/s,

where Pmut(t) is the probability the ancestral lineage carries a deleterious mutation at

the index site at time t. We note that we have neglected the effects of back mutations,

which introduce terms of higher-order in µ/s. However, it is straightforward to in-

clude these terms (see Supplemental Information B.2). Solving the above differential

equation, we have that the ancestral fitness distribution is simply

Pmut(xi, xf , t) =
µ

s

(
r(xi, xf )

r(xi, xf ) + s
+

s

r(xi, xf ) + s
e−r(xi,xf )t−st

)
. (5.1)

We note that Eq. (5.1) allows for recombination rates to vary in any arbitrary way

across the genome. However, to illustrate our main results, it is often helpful to make
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index
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Figure 5.1: A Recombination Event in an Ancestral Lineage: Each parent has
part of the genome ancestral to the descendant lineage (black); these have an ancestral
fitness distribution unaffected by the recombination event. The non-ancestral parts of
the parental genomes (blue) are effectively sampled at random from the population,
and hence have a fitness distribution reflective of the steady-state mutation-selection
balance. Throughout this paper, we focus only on the genealogies at a single focal
site xf , and hence only track the parent with the ancestral sequence at this site (right
branch in this figure).

the simplifying assumption that recombination occurs at constant per-site rate r. In

this case, denoting x ≡ |xf − xi|, Eq. (5.1) reduces to

Pmut(x, t) =
µ

s

(
rx

rx+ s
+

s

rx+ s
e−rxt−st

)
. (5.2)

For clarity we use this simpler expression throughout most of our subsequent analysis,

but we note that our results can all be generalized to account for the effects of variation

in recombination rates by replacing Eq. (5.2) with Eq. (5.1) throughout.

Intuitively, Eq. (5.2) reflects the fact that sites far from the focal site will typically

recombine away more frequently, and hence have an ancestral fitness distribution

that is closer to that given by the steady state mutation-selection balance, µ/s. By

contrast, sites very close to the focal site are unlikely to recombine away, and the

ancestral lineage at these sites is biased to be more fit than average. The distance

L∗ = s
r

is the boundary between these two regimes, and represents the natural length

scale on which the effects of selection are diminished. On distances small compared
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to L∗, the ancestral fitness distribution is comparable to the nonrecombining case,

since recombination occurs very infrequently compared to selection. By contrast, on

distances large compared to L∗, recombination occurs so rapidly that selection does

not have time to remove mutations from the ancestral lineage before it is reset by

recombination.

We note that, in analogy with earlier work on background selection with recom-

bination, as well as the structured coalescent method of Zeng and Charlesworth

(2011), this derivation assumes that all sites may be treated deterministically. This

approximation will be reasonable provided no individual lineage becomes a significant

fraction of the population (or, analogously, if the typical time-scale on which delete-

rious mutations are removed form the population is short relative to the population

size), which holds when Nse−
µL

s+rL/2 � 1. When this approximation breaks down,

mutant lineages may grow to a significant fraction of the total population, and our

results will no longer accurately capture the ancestral fitness distribution.

We compare our theoretical result in Eq. (5.2) with forward-time simulations

in Fig. 5.2. We compare the ancestral fitness distribution at five different an-

cestral timepoints, in two different parameter regimes. We see that for strong-

selection/recombination, Eq. (5.2) accurately describes the ancestral fitness distri-

bution at each timepoint, as predicted. By contrast, when selection and/or recom-

bination become weaker, we see that our Eq. (5.2) systematically overestimates the

ancestral fitness. Thus, as expected, our results become less accurate as Nes becomes

small and the deterministic approximation breaks down. This is a consequence of

fluctuations: as the strong-selection/recombination condition breaks down, mutant

lineages may occasionally grow to a substantial fraction of the population. This will

systematically bias mean mutation probabilities to higher values. As we will later see,

despite these events, we will still be able to accurately predict the shape of genealo-

gies as the strong-selection/recombination condition begins to be violated. However,

strong violations of this condition will cause our results to break down by introducing

additional distortions which we are not able to address.
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Figure 5.2: The Ancestral Fitness Distribution as a Function of Position:
In both figures, µ = 10−8, N = 104, and r = 4 ∗ 10−8. The focal site is located
at the center of a genome of length L = 106. Our theoretical results are shown
as solid lines, while the simulations are represented with circles. In the first figure,
s = 10−2, such that Nse−Ud/(s+R/2) = 71.7. In the second figure, s = 10−3, such that
Nse−Ud/(s+R/2) = 6.2. We see that as Nes becomes smaller, the deterministic approx-
imation begins to break down, and fluctuations in the population occasionally allow
lineages carrying deleterious mutations to become a large fraction of the population.
This, in turn, leads to less-fit ancestral lineages than predicted by our theoretical
results.

We note that in deriving Eq. (5.2), we have assumed a continuous approximation

which requires the per-generation rate of recombination to be small (rx � 1). This

will only be strictly valid if the total genome-wide recombination rate is small, rL� 1.

However, in practice, our result will still be valid even when rL > 1, since only sites

close to the focal site contribute to the effects of selection on genealogies. To be

specific, only sites within x . L∗ of the focal site are significantly affected by selection,

so Eq. (5.2) will in fact be roughly valid provided only that rL∗ ≈ s � 1, which we

generally expect to hold. In a similar vein, instead of approximating r(x) = rx, it

would be more appropriate to use a mapping function such as the Haldane formula,

r(x) = 1−e−2rx

2
(Haldane 1919). However, this is also roughly equivalent to our

approximation within the relevant range, provided only that s� 1. This was earlier
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noted by Nordborg et al. (1996), who observed that the choice of mapping function

was not significant since only closely linked sites contribute to the effects of selection.

We have derived an ancestral fitness distribution, which captures the probability

that the ancestor of an individual will have a mutation at a particular site in the past.

We now use this ancestral fitness distribution to calculate the probability that two or

more individuals share the same set of mutations, which will enable us to calculate

the probability of coalescence as a function of time.

5.2.2 The Effective Population Size

When two ancestral lineages have the same set of mutations across all sites (i.e.

they are in the same “configuration”), they coalesce with per-generation probability

1/Nconfig, where Nconfig is the total number of individuals in that configuration. Thus

the probability that two arbitrary ancestral lineages coalesce a time t in the past is the

probability they exist in the same configuration divided by the number of individuals

in that configuration,

Pc(t) =
1

Ne(t)
=

∑
configurations

Pconfig(t)2

Nconfig

.

As in earlier work on background selection with recombination, provided the deter-

ministic approximation holds and µ/s � 1, we may treat each site as independent

(see Supplemental Information B.1 for further details about this approximation). We

then have:

1

Ne(t)
=

1

N

∏
sites

[
Pmut(x, t)

2

Pmut(x, 0)
+

(1− Pmut(x, t))
2

1− Pmut(x, 0)

]

≈ 1

N

∏
sites

[
1 +

µ

s

(
s

rx+ s
(1− e−rxt−st)

)2
]

≈ 1

N
e
µ
s

∑
sites

( s
rx+s

(1−e−rxt−st))
2

,

where we have neglected terms of order µ2

s2
or higher. As before, it is possible to keep

this entirely general, allowing the focal site to be at any position along a genome of

arbitrary length. However, to illustrate our results, we will assume that the focal
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site is located at the center of a genome of length L. Approximating the sum as an

integral, this becomes:

Ne(t) ≈ Ne
− 2µ

s

L
2∫
0

( s
rx+s

(1−e−rxt−st))
2
dx

.

Carrying out the integral, we find

Ne(t) = N exp

[
−

2Ud

R

((
1− e−st

)2 − s

s+R/2

(
1− e−st−Rt/2

)2
+ 2st

(
Γ [0, st, 2st]− Γ [0, Rt/2 + st, Rt+ 2st]

))]
,

(5.3)

where we have defined rL ≡ R and µL ≡ Ud. Although we derived this result by

considering a sample of size two, we arrive at the same Ne(t) for arbitrary sample sizes

provided we may treat lineages as independent and exchangeable. This assumption

holds provided the typical time-scale for backwards-in-time mutation events is short

relative to the typical coalescence time (e.g. when Nse−Ud/(s+R/2) �
(
n
2

)
, where n

is the sample size). We note that this condition becomes more restrictive for larger

samples, but provided it holds the coalescence probabilities are described by the Ne(t)

given above.

We see from Eq. (5.3) that in the recent past, the effective population size is simply

Ne(0) = N . However, as time recedes into the past, the ancestral lineages become

biased toward more fit configurations, and are correspondingly more likely to coexist

in the same configuration concurrently. This implies that the rate of coalescence

increases with time. As t → ∞, our results reduce to Ne(∞) → Ne−Ud/(s+R/2), the

haploid version of the original background selection result.

We compare our result for Ne(t) in Eq. (5.3) with forward-time simulations in

Fig. 5.3, as a function of genome size and recombination rate. Fig. 5.3 illustrates the

significant period of transition from the larger Ne in the recent past, prior to reaching

the long-term result, which results in distortions in the shapes of genealogies. The

agreement is generally good, but we note that for smaller recombination rates our

analysis systematically underestimates Ne(t). This is a consequence of the determin-

istic approximation breaking down as the recombination rate decreases, leading to

strong fluctuations in the population.
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Figure 5.3: Effective Population Size as a Function of Time: In both figures,
µ = 10−8, s = 10−3, and N = 104. Our theoretical results are shown as solid lines,
while the simulations are represented with circles. In the first figure, r = 4 ∗ 10−8

and L varies from 5 ∗ 104 to 106, such that Nse−Ud/(s+R/2) varies from 6.2 to 7.8.
In the second figure, L = 106 and r/µ varies from 2 to 8, such that Nse−Ud/(s+R/2)

varies from 4.0 to 7.8. The agreement is generally good, however, as seen in the
second figure, as the recombination rate decreases and Nes falls off, the deterministic
approximation begins to break down, and our results become less accurate.

Our results differ from the classical background selection results by incorporating

the transient period during which deleterious alleles may segregate in the population

prior to being removed. The time-scale of this transition period is, roughly, of order

1/s generations. In the deterministic regime, we have assumed that Nes � 1, such

that this transition period is, by definition, short relative to the typical coalescence

times. However, despite this, as seen in Fig. 5.3, by accounting for this transition

period we are able to capture a significant deviation from the classical result. This

deviation is ultimately a primary source of the distortions we expect to see in ge-

nealogies, and thus our results are able to show how selection can lead to distortions

in genealogies and in genealogical statistics, and how these effects depend upon the

parameters involved. However, we note that our analysis is restricted to addressing

the distortions that arise due to this transient period – when the deterministic ap-
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proximation breaks down, fluctuations in the population become significant and lead

to further distortions, including topological distortions, which our analysis is not able

to capture.

5.2.3 Coalescence Times and other Single-Site Statistics

Our result for Ne(t) leads immediately to an expression for the distribution of times

to the next coalescence event in a sample of size n,

Ψn(t) =

(
n
2

)
Ne(t)

e
−
∫ t
0

(n2)
Ne(t′)dt

′
. (5.4)

We compare this prediction to forward-time simulations for a sample of two indi-

viduals in Fig. 5.4; we see that there are significant distortions introduced by the

time-dependence of Ne(t), which lead to a nonzero peak in the distribution of coales-

cence times.
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Figure 5.4: Coalescence Probability as a Function of Time for a Sample of
Size Two: In both figures, µ = 10−8, s = 10−3, and N = 104. Our theoretical results
are shown as solid lines, while the simulations are represented with circles. In the
first figure, r = 4 ∗ 10−8 and L varies from 5 ∗ 104 to 106, such that Nse−Ud/(s+R/2)

varies from 6.2 to 7.8. In the second figure, L = 106 and r/µ varies from 2 to 8, such
that Nse−Ud/(s+R/2) varies from 4.0 to 7.8.
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Using the distributions of coalescence times, we can calculate various statistics

describing genetic diversity. For example, the distribution of pairwise heterozygosity

at a neutral focal site is given by

P (Πneutral = π) ≈
∫ ∞

0

(2µt)π

π!
e−2µtΨ2(t)dt. (5.5)

In contrast, if the site is a selected site, then we have from Eq. (5.2) that the

probability the ancestor carries a deleterious mutation is Pmut(t) = µ
s
e−st. Backwards-

in-time, an individual carrying such a mutation will undergo a deleterious mutation

from the non-mutant state at rate µN(1−pmut)
Npmut

≈ s. Thus, the backwards-in-time

mutation rate is simply µe−st (Nicolaisen and Desai (2012)). Therefore, we can

estimate that:

P (Πdeleterious = π) ≈
∫ ∞

0

(2µe−st)π

π!
e−2µe−stΨ2(t)dt. (5.6)

Using similar logic, we can explicitly calculate more complex statistics using neutral

methods incorporating a time-varying population size. For example, the mean time

to the most recent common ancestor may be calculated using Eq. 4 of Austerlitz

et al. (1997), and arbitrary moments of the total branch length may be calculated

using Eq. 20 of Eriksson et al. (2010). Similarly, if the focal site is a neutral site, the

site frequency spectrum may be calculated using Eq. 2 of Polanski and Kimmel

(2003).

This approach is illustrated in Fig. 5.5. Here, we consider the total lengths of

branches ancestral to i individuals in a sample of size 10 (normalized by the length

of branches ancestral to 1 individual). We compare forward-time simulations (repre-

sented by circles) with our theoretical result. For comparison, we also show the result

expected for any fixed effective population size. We see that there is a noticeable

deviation from the neutral expectation, characterized by an excess of rare branch

lengths relative to more common branches.

If the focal site is a neutral site, mutations occur uniformly along the branch

lengths. Thus, our result in Fig. 5.5 would be directly analogous to the site frequency

spectrum, and implies an excess of rare alleles relative to common ones. In contrast,

168



Chapter 5

if the focal site is a selected site, deleterious mutations occur at a backwards-in-

time rate of µe−st. In this case, deleterious mutations will be further biased towards

recent branches, leading to an even more pronounced excess of rare alleles relative to

common ones. In order to understand the expected frequency spectrum in this case,

or to calculate any other complicated genealogical statistic, we can implement purely

neutral and nonrecombining coalescence simulations which account for the effects of

selection and recombination simply by using the appropriate Ne(t).
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Figure 5.5: Total Branch Length Ancestral to i Individuals for a Sample of
Size Ten: In both figures, µ = 10−8, s = 10−3, r/µ = 4, and N = 104. In the first
figure, L = 2.5 ∗ 103, such that Nse−Ud/(s+R/2) = 8.5 (compared to

(
n
2

)
= 45). In the

second figure, L = 200 ∗ 103, such that Nse−Ud/(s+R/2) = 6.7. Our theoretical result
is shown as a solid line, while the simulations are represented with circles. The fixed
effective population size result is shown as a solid black line.

5.2.4 Incorporating a Distribution of Fitness Effects

Our analysis can be easily extended to account for variation in recombination rates,

mutation rates, and selection coefficients across the genome. Using the same logic

described above, we find that in this more general case the time-dependent effective
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population size is given by

Ne(t) ≈ N exp

[
−
∑
i

2µ(xi)

s(xi)

(
s(xi)

r(xi, xf ) + s(xi)
(1− e−r(xi,xf )t−s(xi)t)

)2
]
, (5.7)

where µ(xi) and s(xi) are the mutation rate and selection coefficient at site xi respec-

tively, and r(xi, xf ) is the total recombination rate between xi and the focal site xf .

When t → ∞, this reduces to the classical background selection result (Nordborg

et al. 1996; Hudson and Kaplan 1995b; Charlesworth et al. 1996; Loewe and

Charlesworth 2007).

A particularly interesting case is the situation where mutation and recombination

rates are constant across the genome, but each selected site has a fitness effect drawn

from some distribution ρ(s). In this case, we find

Ne(t) ≈ N exp

[
−
∫ L

2

0

∫ ∞
0

2µ

s

(
s

rx+ s
(1− e−rxt−st)

)2

ρ(s)dsdx

]
. (5.8)

We note that this result assumes that lineages can be treated deterministically, which

requires that no lineage become a significant fraction of the total population, and

thus Nes � 1. Thus, we expect Eq. (5.8) to hold only when the bulk of the muta-

tions are either in this regime, Nesi � 1, or nearly neutral Nesi � 1. Although our

analysis is still reasonable when a small number of mutations exist in the interme-

diate regime, it requires that the bulk of the deviation from neutrality satisfies the

strong-selection/recombination condition, such that these mutations of intermediate

effect can be neglected. This issue was also addressed in earlier work considering a

distribution of fitness effects (see e.g. Nordborg et al. (1996)).

Several recent studies have suggested that the distribution of deleterious fitness

effects in humans and Drosophila may be characterized by a gamma distribution

with shape parameter β < 1. For example, Keightley and Eyre-Walker (2007)

estimated a shape parameter of β ∼ 0.2 for human populations, and β ∼ 0.35 for

Drosophila. Motivated by these findings, we compare our theoretical results in Eq.

(5.8) with forward-time simulations for two populations with gamma distributions of

fitness effects, using shape parameters of 0.5 and 0.25, in Fig. 5.6. For reference, we

also show the theoretical result expected under a single-s case, where s is the mean
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fitness effect. We see that our results accurately characterize the time-dependence of

the effective population size under a distribution of fitness effects.
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Figure 5.6: Effective Population Size and Coalescence Times for a Distri-
bution of Fitness Effects: The blue curve shows a gamma distribution with shape
parameter 1/2 and mean s∗ = 10−2. The green curve shows a gamma distribution
with shape parameter 1/4 and mean s∗ = 10−2. The circles represent forward time
simulations, while solid lines represent our theoretical results from Eq. (5.8). The
black line shows our theoretical results in the single-s case with s = s∗. The parame-
ters are: N = 104, u = 10−8, L = 106, and r/µ = 4.

5.2.5 Incorporating Temporal Variation in the Population Size

A key feature of our analysis is that, within this deterministic regime, the dynamics

of ancestral lineages are independent of the population size. The implication of this

is that the ancestral fitness distribution in Eq. (5.2) is independent of the popu-

lation size, and thus Eq. (5.3) depends only upon an overall multiplication by N .

This phenomenon was recently discussed in Zeng (2012), and was used as the basis

for incorporating a changing population size into structured coalescent simulations.

Similarly, we can incorporate a changing population size into our analysis, simply by

replacing N with N(t) in our Eq. (5.3).
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We caution, however, that this framework implicitly assumes that the population

remains in mutation-selection balance throughout its history, and is characterized by

the same mutation rates, recombination rates, and selection coefficients throughout.

If these other parameters are also changing with time, this will not hold. Similarly,

the strong-selection/recombination condition must hold throughout the time-scale of

coalescence.
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Figure 5.7: Effective Population Size and Coalescence Times for an
Exponentially-Growing Population: The blue curves represent an exponentially
growing population with growth rate ` = 5 ∗ 10−4. The green curves represent an
exponentially growing population with growth rate ` = 1∗10−4. The circles represent
forward time simulations, while solid lines represent our theoretical results from Eq.
(5.3) with N replaced by N(t) = Ne−`t. The dotted lines represent the predictions
under a neutral model. The parameters are: N = 104, s = 0.003, Ud = 0.0005, and
R/Ud = 4.

To illustrate this, in Fig. 5.7 we compare forward-time simulations for a population

experiencing exponential growth N(t) = Ne−`t (with t measured backwards in time

from the present) with our theoretical results from Eq. (5.3). For reference, we

include the predicted theoretical result in the absence of selection.
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5.2.6 Forward-time simulations

Our forward-time simulations are closely modeled off Zeng and Charlesworth

(2011). Specifically, we simulate a haploid population of constant size N, with a

genome of length L. Each generation, we introduce a Poisson-distributed number of

new deleterious mutations uniformly throughout the population, with mean NUd. We

then simulate reproduction, introducing a Poisson-distributed number of recombina-

tion events uniformly throughout the population. For any non-recombinant offspring,

one ancestor is chosen, weighted according to its fitness. For recombinant offspring,

two ancestors are chosen, again weighted according to their fitnesses. The appropriate

number of breakpoints are randomly chosen along the genome, and one of the two

resulting genotypes is randomly selected as the offspring. These steps are repeated

each generation.

We note that one key difference between our simulations and those of Zeng and

Charlesworth (2011) is that we allow multiple recombination events to occur

within a single individual. This makes it possible to consider the L → ∞ limit,

where multiple recombination events become common. We ran all simulations for a

minimum of at least 10N generations to achieve equilibrium. When incorporating a

distribution of fitness effects, we chose the fitness effect at each site according to the

fitness distribution ρ(s). In all figures, at least 10, 000 trials were completed for each

parameter regime.

5.3 Discussion

Our analysis demonstrates that the effects of strong purifying selection and recom-

bination can be summarized in terms of a time-dependent effective population size,

Ne(t). This Ne(t) characterizes the distortions we expect to see in genealogies, and

can be used as the basis for quick and efficient methods to analyze single-site statis-

tics. It illustrates how these statistics depend upon parameters such as the selection

coefficients, position in the genome, and variation in the recombination rate.

Our results extend earlier work that summarized the effects of purifying selection
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and recombination by using a reduced but constant effective population size Ne =

N exp
[
− Ud
s+R/2

]
(Charlesworth et al. 1993; Hudson and Kaplan 1995b). The

simplicity of this earlier result has made it broadly useful in interpreting patterns in

sequence data — for example, in determining whether background selection can be

responsible for observed relationships between diversity and local recombination rates

in humans and Drosophila (Hudson and Kaplan 1995b). Our analysis represents

the simplest analytical extension of this earlier work that can describe distortions

from neutrality in addition to overall reductions in diversity.

By summarizing these effects in a time-dependent effective population size, our

approach makes it possible to continue to use neutral methods for inference and

estimation even in the presence of background selection, simply by allowing the pop-

ulation size to vary appropriately with time. For example, our results could be used

in combination with a recent method developed by O’Fallon (2011) to incorporate

a time-varying coalescent rate into genealogy samplers as a means to improve ge-

nealogical inference. This method considered a coalescence rate that declines linearly

as time recedes into the past, but by instead incorporating the Ne(t) we have calcu-

lated here, we can incorporate background selection and recombination into this and

other existing neutral methods in a principled way.

We note that the Ne(t) derived here is very similar to the purely nonrecombining

case we analyzed in earlier work (Nicolaisen and Desai 2012). In both cases, Ne(t)

begins at the actual population size in the present, and then declines into the past be-

fore eventually reaching a long-term reduced size, Ne(∞). Although the explicit form

of the Ne(t) depends on the recombination rate, its qualitative features are similar to

and lead to similar distortions to the asexual case. This similarity suggests that the

general conclusions of earlier analyses of background selection in the nonrecombining

case may often be qualitatively robust to the presence of recombination.

The reasons for this qualitative similarity (and the extent to which it holds) re-

mains an open question. One appealing possibility is that local, closely linked genomic

regions can be treated as effectively nonrecombining blocks, while loci separated by

larger distances can be treated as freely recombining. Thus, a recombining population

would be analogous to an asexual population with a particular “block length,” which
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would depend upon the strength of selection and the recombination rate. However,

there are several problems with this intuition. In particular, it is not clear that there

is a sufficiently sharp transition between regions that are effectively nonrecombining

and those that are effectively freely recombining. Furthermore, the size of the effec-

tive block length may typically depend upon other parameters (such as the sample

size).

We can naively attempt to quantify this similarity between a recombining pop-

ulation and an asexual population: If we define an effective genome size L∗ (the

“effectively nonrecombining block length”, such that U∗d = µL∗), and an effective

selection strength s∗, then by demanding that the long-term effective population size

Ne(∞) and the typical transition time to this long-term result are equivalent between

the two populations, we arrive at

U∗d = Ud

(
1− R/4

s+R/4

)
s∗ = s

(
1 +

R/4

s+R/4

)
,

Using these effective parameters, we find a close (though not identical) match between

our results and the corresponding asexual model. However, it is not clear whether this

rough equivalence or the effective parameters L∗ and s∗ have any predictive power

beyond the statistics we have used here to define them. This remains an important

topic for future work.

We note that our analysis rests on the assumption that mutation frequencies can

be treated deterministically and that ancestral lineages can be treated independently.

The implication of this latter assumption is that all pairs of lineages are considered

independent and exchangeable, independent of the history of the sample. A con-

sequence of this assumption is that, since all pairs of lineages are equally likely to

coalesce, genealogies will be topologically neutral. As selection becomes weaker and

these assumptions are violated, correlations between the lineages become important,

topological distortions will arise, and our analysis breaks down. Furthermore, when

this begins to occur, fluctuations in the sizes of lineages become very significant, and

the deterministic assumption is also violated. Thus, methods capable of describing
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these fluctuations are required to fully understand the effects of purifying selection

and recombination in the weak selection regime. Very little is currently known about

this regime, which is an important direction for future work.

We note that recent work has begun to address these fluctuations and the ef-

fects of weak purifying selection, but only in the purely asexual case. For example,

(O’Fallon et al. 2010) developed a semi-analytical approach to understand these

effects in the Ns ≈ 1 regime. Their approach is to divide the population into a

continuous distribution of fitness classes, calculate a corresponding ancestral fitness

distribution and, in turn, coalescence rates. An alternative approach by Good et al.

(2013) has suggested that the effects of many weakly selected mutations on sequence

diversity are identical to the effects of fewer strongly selected mutations, making it

possible to “map” weakly selected populations onto their equivalent strongly selected

counterparts. An important question for future work is whether these weak selection

methods may be extended to include recombination. A detailed understanding of

the “effective” similarity between asexual and recombining populations, hinted at by

our results, may potentially provide a way forward, by suggesting that these new

asexual methods might also apply in the presence of recombination, with a suitable

reinterpretation of the parameters.
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Supplemental Information to Chapter

Two

A.1 The Full Conditional Calculation

In the main text, we focused primarily on the non-conditional approximation to the

coalescence probabilities, which led to our simple expression for the coalescence prob-

abilities, Eq. 2.15. In this Supplementary Appendix, we show how this approximation

can be relaxed in our lineage-structure framework by carrying out the full conditional

calculation for some of the simplest possible cases. We use this to understand the

structure of the conditional results and discuss the validity of the non-conditional

approximation. We note that the full conditional result can also be obtained from

the sum of ancestral paths approach by keeping the higher order terms in Eq. 2.56

of Appendix A, as described in Supplemental Information 1.4, and the validity of the

non-conditional approximation can be directly assessed with that approach.

We begin by considering the full conditional result for the probability that two

From: The Structure of Genealogies in the Presence of Purifying Selection: A
“Fitness-Class Coalescent” Aleksandra M. Walczak∗, Lauren E. Nicolaisen∗, Joshua B.
Plotkin, and Michael M. Desai, ∗These authors contributed equally to this work
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individuals both sampled from class k coalesce in class k − 2. From Appendix A of

the main text, we have

P k,k→k−2
c = Ik−2

x

∫
Qk−2
k,k (t1, t2) exp [−s(k − 2)|t1 − t2|] dt1dt2. (A.1)

In order to evaluate this integral, we need to determine the probability distribution of

mutant timings Qk−2
k,k (t1, t2). The time t1 is the sum of the time for one individual to

have mutated from class k−2 to class k−1 plus the time for it to have mutated from

class k − 1 to class k, and analogously for t2. However, in order for the two lineages

to coalesce in class k − 2, they must not have coalesced in class k − 1. To illustrate

the main point, we neglect the distortion in the mutant timings due to the fact that

individuals did not coalesce in class k and focus only on the distortions due to the

fact that coalescence did not occur in class k− 1; if desired, the former distortion can

also be included using analogous methods. We refer to the probability distribution

of the times when these individuals mutated from class k − 1 to class k conditional

on them not having coalesced in class k − 1 as Qk−1
k,k (t1, t2|nc). The distribution of

the times for these individuals to then have mutated from class k − 2 to class k − 1

is then given by

Qk−2
1step(t1, t2) = [s(k − 1)]2e−s(k−1)(t1+t2). (A.2)

Thus the distribution of t1 and t2 is given by

Qk−2
k,k (t1, t2) = Qk−1

k,k (t1, t2|nc) ? Qk−2
1step(t1, t2), (A.3)

where ? indicates a convolution. Note that much of the time when the individuals

did coalesce in class k − 1, they did so because t1 happened to be close to t2 (since

this increases the chance the two individuals mutated from the same lineage). Thus

in Qk−1
k,k (t1, t2|nc), t1 and t2 are on average further apart than in Qk−1

k,k (t1, t2), and t1

and t2 are no longer independent random variables.

We now need to calculate Qk−1
k,k (t1, t2|nc). We have

Qk−1
k,k (t1, t2|nc) =

Qk−1
k,k (t1, t2)−Qk−1

k,k (t1, t2|c)P k,k→k−1
c

1− P k,k→k−1
c

, (A.4)
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where Qk−1
k,k (t1, t2|c) is the distribution of timings of mutations from class k − 1 to

k given that the lineages do coalesce in class k − 1. Applying the general prob-

ability identity P (t1, t2|c) = 1
P (c)

P (c|t1, t2)P (t1, t2), and reading off the coalescence

probability given t1 and t2 from Eq. 2.13, we find that

Qk−1
k,k (t1, t2|c) =

Ik−1
x

P k,k→k−1
c

Qk−1
k,k (t1, t2)e−s(k−1)|t1−t2|. (A.5)

We therefore find

Qk−1
k,k (t1,t2|nc)= 1

1−Pk,k→k−1
c

[(sk)2e−sk(t1+t2)−Ik−1
x (sk)2e−2k(t1+t2)e−s(k−1)|t1−t2|]. (A.6)

Plugging this into our convolution formula for Qk−2
k,k (t1, t2) and evaluating the integrals

by separating out the possible time orderings, we find

Qk−2
k,k (t1,t2)=

k2[s(k−1)]2

1−Pk,k→k−1
c

e−s(k−1)(t1+t2)

[
(1−e−st1)(1−e−2t2)− I

k−1
x
k−2

B

]
, (A.7)

where we have defined

B =
1

(k − 2)

[
1− e−2smin(t1,t2) − 2

k

(
1− e−skmin(t1,t2)

)
+

1

k

(
1− e−2k|t1−t2|

) (
e−2smin(t1,t2) − e−skmin(t1,t2)

)]
. (A.8)

We can now use this expression in Eq. SI 1.1 to calculate the coalescence probability

P k,k→k−2
c . Since the result is tedious and does not further illuminate the structure of

the full conditional calculation, we do not do so explicitly here, but the integrals are

straightforward to evaluate with the methods we have used above.

To motivate the validity of the non-conditional approximation, we need to consider

the full calculation going back one additional step. Thus we consider the probability

that two individuals both sampled from class k coalesce in class k−3, P k,k→k−3
c . This

will be given by

P k,k→k−3
c =

∫
Qk−3
k,k (t1, t2)

x2

h2
k−3

fk−3(x)e−s(k−3)|t1−t2|dt1dt2dx, (A.9)

where here Qk−3
k,k (t1, t2) is the distribution of the time at which the ancestors of the

two sampled individuals originally mutated from class k−3 to class k−2, conditional

on them not coalescing in classes k − 2 or k − 1.
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We can calculate Qk−3
k,k (t1, t2) in the same way we calculated Qk−2

k,k (t1, t2). Explic-

itly,

Qk−3
k,k (t1, t2) = Qk−2

k,k (t1, t2|nc) ? Qk−3
1step(t1, t2), (A.10)

where analogously to the expression in the previous step

Qk−2
k,k (t1,t2|nc)= 1

1−Pk,k→k−2
c

[Qk−2
k,k (t1,t2)−Qk−2

k,k (t1,t2|c)Pk,k→k−2
c ]. (A.11)

We note that Qk−2
k,k (t1, t2) is the expression in Eq. (A.7) we calculated above. As

before, we have

Qk−2
k,k (t1, t2|c)P k,k→k−2

c = Ik−2
x Qk−2

k,k (t1, t2)e−s(k−2)|t1−t2|, (A.12)

hence we can write

Qk−2
k,k (t1, t2|nc) =

Qk−2
k,k (t1, t2)

1− P k,k→k−2
c

[
1− Ik−2

x e−s(k−2)|t1−t2|
]
. (A.13)

Plugging the above expression back into Eq. (A.10), we obtain

Qk−3
k,k (t1,t2) = s2(k−1)2k2s2(k−2)2

(1−Pk,k→k−1
c )(1−Pk,k→k−2

c )
e−s(k−2)(t1+t2)

∫ t2
0

∫ t1
0 es(k−2)(y+z)es(k−1)(y+z)

×[1−Ik−2
x e−s(k−z)|y−z|]

[
(1−e−sy)(1−e−sz)− I

k−1
x
k−2

B

]
. (A.14)

We could evaluate the integrals in the above expression for Qk−3
k,k (t1, t2) in the same

way that we did in our calculation for Qk−2
k,k (t1, t2). We would then substitute this

result for Qk−3
k,k (t1, t2) into an analogous calculation of Qk−4

k,k (t1, t2), and so on. In this

way we can build up the full conditional results. The most useful way to go about

this is to separate the results into powers of Ix, which is a small parameter related to

the coalescent probability in each step. We see from the expression for Qk−3
k,k (t1, t2)

that there is a term in (Ix)
0, which is exactly the non-conditional approximation.

There are two terms involving (Ix)
1, and a single term involving (Ix)

2. In general, in

the expression for Qk−`
k,k (t1, t2), we will have one (Ix)

0 term (which equals the result

in the non-conditional approximation) plus ` terms proportional to Ix,
(

2
`

)
terms

proportional to (Ix)
2, and so on. Fortunately, the dependence on the population

parameters is entirely contained within these powers of Ix. That is, the coefficients of

these various powers of Ix depend only on k and `, and not at all on the population
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parameters N , s, and Ud. Thus we could simply calculate a table of coefficients once,

and then would be able to understand all the distributions of mutant timings (and

from this all the coalescent probabilities).

In practice, it is easier to make these full conditional calculations within the sum of

ancestral paths approach. As we show in Supplemental Information 1.4, that approach

leads naturally to a power series in Ix of exactly the form described above, in which

the leading order term is the non-conditional approximation and the additional terms

represent the conditional corrections. This calculation shows that provided Ix � 1,

which is true provided our usual condition that Nhksk � 1 holds, these higher order

terms are all small, and our non-conditional approximation is valid.

These full conditional results are, however, very complex and unilluminating.

Therefore we focus here on understanding the general structure of these results, and

on showing why the non-conditional approximation is good description of the distri-

bution of mutation timings. We can see that at each step back through the fitness

distribution, the probability distribution of times shifts from the non-conditional re-

sults by a factor which is roughly proportional to the coalescence probability at that

step. That is, in general we have

Qk−`
k,k (t1, t2) =

1

1− P k,k→k−`
c

[
Qk−`
k,k (t1, t2)− P k,k→k−`

c Qk−2
k,k (t1, t2|c)

]
. (A.15)

The first term in square brackets reflects the fact that the probability distribution

at a given step conditional on non-coalescence at that step is almost equal to the

unconditional probability distribution at that step. The second term represents the

correction: note that it is proportional to the coalescence probability in that step,

P k,k→k−`
c . The nature of the correction can be seen by plugging in the distribution of

times conditional on coalescence, giving

Qk−`
k,k (t1, t2) =

Qk−`
k,k (t1, t2)

1− P k,k→k−`
c

[
1− Ik−`x e−s(k−`)|t1−t2|

]
. (A.16)

We see that the correction acts to reduce the probability that |t1− t2| is small — that

is, it makes it more likely that t1 and t2 are further apart, because this is more likely

to be the case given that coalescence did not occur.
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Since at each step the shift in the distribution of mutant timings is proportional

to the coalescence probability, and the coalescence probability at each step is small,

it seems clear that the non-conditional approximation where we simply ignore this

shift in mutant timings is reasonable. However there is one potential caveat we

must consider: although the shift in the distribution of mutation timings due to

conditioning on non-coalescence is small in each step, we typically take many steps

before the lineages coalesce. In fact, since the shift in mutation timings is proportional

to the coalescence probability, and we typically go back a number of steps of order

one over the coalescence probability, in principle the shifts in mutation timings could

add up to a substantial shift.

Fortunately, there are three factors which prevent this from happening. First, the

shift in mutation timings at each step is always to reduce the probability of times

t1 and t2 where |t1 − t2| . 1
(k−`)s . Since at each step ` is increasing, and the range

of separations between mutation timings at which coalescence can happen is also

increasing, the shifts in mutation timings from many steps ago are not a huge factor

in determining coalescence probabilities in a particular step. That is, though the

shifts in mutation timings add up over many steps, the shifts most relevant to the

coalescent probability in a given step do not. Second, the coalescence probabilities

at each step are different. This reduces the chance that we take enough steps to

shift the overall mutation timings substantially by the time we coalesce. Finally,

and most importantly, we will see that the there is a substantial probability that

the ancestors of the two individuals sampled do not coalesce until they are in the

most-fit class. This means that the total sum of coalescence probabilities (and hence

the total possible weight in the shift of mutation timings) remains small even in the

worst case where the two lineages do not coalesce for the maximum possible number

of steps. The non-conditional approximation will always be good in the regime where

this is true. All of these heuristic conclusions are reflected in the fact that the full

conditional result we calculate in the sum of ancestral paths approach is equal to the

non-conditional result plus corrections that are small provided Ix � 1.
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A.2 The Non-conditional Distributions of Mutant Timings

Within the non-conditional approximation we need to calculate the distribution of

mutant timings, as used in Eq. 2.48. Specifically, we need to calculate

Qk−`
k (t) = Qk−1

k (t) ? Qk−2
k−1(t) ? Qk−3

k−2(t) ? . . . ? Qk−`
k−`+1(t), (A.17)

where ? refers to a convolution and

Qk−`
k−`+1(t) = s(k − `+ 1)e−s(k−`+1)t, (A.18)

as given by Eq. (2.6). In general, the convolution of n exponential distributions with

parameters λ1 . . . λn is given by

n−1∑
i=0

λie
−λit

n−1∏
j=0,6=i

λj
λj − λi

. (A.19)

Applying this identity with λi = s(k − i), we find

Qk−`
k (t) =

`−1∑
i=0

se−s(k−i)t


`−1∏
j=0

k − j

`−1∏
j=0,6=i

i− j

 (A.20)

We can simplify this expression by noting that

`−1∏
j=0

(k − j) =
k!

(k − `)!
, (A.21)

and similarly that
`−1∏

j=0, 6=i

(i− j) = i!(`− 1− i)!(−1)`−1−i. (A.22)

This means we have

Qk−`
k (t) =

`−1∑
i=0

s`e−s(k−i)t(−1)`−i−1

(
`− 1

i

)(
k

k − `

)
. (A.23)

183



SI A

We can evaluate this sum by recognizing the binomial expansion formula

(1 + x)n =
n∑
i=0

xi
(
n

i

)
, (A.24)

where we identify x = −est. We find

Qk−`
k (t) = s`

(
k

`

)
e−skt

(
est − 1

)`−1
. (A.25)

More generally, we have

Qb
a(t) = s(a− b)

(
a

b

)
e−sat

(
est − 1

)a−b−1
. (A.26)
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A.3 General Coalescence Probabilities in the Non-conditional Ap-

proximation

The probability of coalescence for two individuals originally in two different classes k

and k′, as defined in Eq. 2.48 can be rewritten as

P k,k′→k′−`
c =

1

1 + 2Nhk−`s(k − `)
[I1 + I2] , (A.27)

where we have defined

I1 =

∫ ∞
0

Qk−`
k′ (t1)e−s(k−`)t1

∫ t1

0

Qk−`
k (t2)es(k−`)t2dt2dt1 (A.28)

I2 =

∫ ∞
0

Qk−`
k (t2)e−s(k−`)t2

∫ t2

0

Qk−`
k′ (t1)es(k−`)t1dt1dt2. (A.29)

Note that both I1 and I2 involve integrals of the form

Ia =

∫ t

0

Qb
a(t
′)esbt

′
dt′. (A.30)

Plugging in the results for the non-conditional distributions of mutant timings, Eq.

SI 1.26, and making use of the binomial expansion formula for (1 + x)n noted in

Supplemental Information 1.2, we find this integral becomes

Ia = s(a− b)
(
a

b

)∫ t

0

es(b−a)t′
(
est
′ − 1

)a−b−1

dt′ (A.31)

= s(a− b)
(
a

b

) a−b−1∑
i=0

(−1)a−b−1+i

(
a− b− 1

i

)∫ t

0

es(b−a+i)t′dt′ (A.32)

= (a− b)
(
a

b

)
(−1)a−b

a−b−1∑
i=0

(−1)i

a− b

(
a− b
i

)(
es(b−a+i)t − 1

)
(A.33)

=

(
a

b

)
(−1)a−b

a−b∑
i=0

(−1)i
(
a− b
i

)(
es(b−a+i)t − 1

)
(A.34)

=

(
a

b

)
(−1)a−bes(b−a)t

a−b∑
i=0

(
−est

)i(a− b
i

)
(A.35)

=

(
a

b

)
es(b−a)t

(
est − 1

)a−b
. (A.36)
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We now substitute this result for Ia into our expressions for I1 and I2. We note

that both have terms of the form

Ib =

∫ ∞
0

Qb
a(t)

(
c

b

)
e−sct

(
est − 1

)c−b
dt. (A.37)

Using similar manipulations to those above, we find

Ib = (a−b)(ab)(
c
b)
∫∞
0 e−s(a+c)t(est−1)

a+c−2b−1
dt (A.38)

= s(a−b)(ab)(
c
b)(−1)a+c−1

∑a+c−2b−1
i=0 (a+c−2b−1

i )(−1)i
∫∞
0 e−s(a+c−i)tdt (A.39)

= (a−b)(ab)(
c
b)(−1)a+c−1

∑a+c−2b−1
i=0 (−1)i(a+c−2b−1

i ) 1
a+c−i . (A.40)

Using the partial fraction decomposition

1(
n+x
n

) =
n∑
i=1

(−1)i−1

(
n

i

)
i

x+ i
, (A.41)

we find

Ib =
a−b

a+c−2b

(
a
b

)(
c
b

)
(−1)a+c(−2b−1

a+c−2b

) =
a−b

a+c−2b

(
a
b

)(
c
b

)
(−1)2b(

a+c
a+c−2b

) . (A.42)

We can now use this result for Ib to determine I1 and I2, and hence compute

P k,k′→k′−`
c . We find

P k,k′→k′−`
c =

1

1 + 2Nhk−`s(k − `)

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) . (A.43)

As we noted in the main text, this is just

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (A.44)

with Ak,k
′

` as defined in Eq. 2.16. Note that when k = k′, this result simplifies to

P k,k→k−`
c as defined in the main text, as expected.
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A.4 Computing Sums of Ancestral Paths

In this appendix, we describe the calculation of φk
′

k (`) using the sum of ancestral

paths approach.

A.4.1 Calculation of φkk(3)

We begin by considering a simpler specific case, where k = k′ and ` = 3. There are

a total of
(

6
3

)
= 20 possible ancestral paths by which two individuals sampled from

class k can coalesce in class k− 3. These can be separated into four types, according

to whether the two ancestral lineages were ever together in classes k− 1 or k− 2. We

can list all paths of each type, using the notation that A is a mutation event in the

first lineage, and B is a mutation event in the second lineage. We have



ABABAB

ABABBA

ABBAAB

ABBABA

BAABAB

BAABBA

BABAAB

BABABA


︸ ︷︷ ︸
(21)(

2
1)(

2
1)=8 ways


ABAABB

ABBBAA

BAAABB

BABBAA


︸ ︷︷ ︸

(21)((
4
2)−(

2
1)(

2
1))=4 ways


AABBAB

AABBBA

BBAAAB

BBAABA


︸ ︷︷ ︸

(21)((
4
2)−(

2
1)(

2
1))=4 ways


AAABBB

AABABB

BBBAAA

BBABAA


︸ ︷︷ ︸
(63)−others=4ways

.

The probabilities of all paths of a particular type are identical. We can calculate

the probability of each of the four types of paths using the same logic as outlined in

the main text. We find

P (AAABBBc) = Ik−3
x

k(k−1)(k−2)
8(2k−1)(2k−3)(2k−5)

(
1− Ikx

)
, (A.45)

P (AABBABc) = Ik−3
x

k(k−1)(k−2)
8(2k−1)(2k−3)(2k−5)(1−Ikx)(1−Ik−1

x ), (A.46)

P (ABAABBc) = Ik−3
x

k(k−1)(k−2)
8(2k−1)(2k−3)(2k−5)(1−Ikx)(1−Ik−2

x ), (A.47)

P (ABABABc) = Ik−3
x

k(k−1)(k−2)
8(2k−1)(2k−3)(2k−5)(1−Ikx)(1−Ik−1

x )(1−Ik−2
x ). (A.48)
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Summing over all the possible paths, we find

φkk(3)=Ik−3
( k
k−3)( k

k−3)
(2k

6 )

[
1−

(2
1)(4

2)
(6

3)
Ik−1−

(2
1)(4

2)
(6

3)
Ik−2+

(2
1)(2

1)(2
1)

(6
3)

Ik−1Ik−2

]
. (A.49)

We now pause to consider the form of the probabilities of each type of ancestral

path. These probabilities differ only by factors of (1 − Ik−ix ). One such factor arises

each time the two ancestral lineages are together in class k − i. In other words, we

can rewrite the probability of each path as the probability of an undistorted path

(defined to be a path in which the contributions due to the possibility of coalescence

in previous classes are neglected), times a correction for each class in which the two

lineages are together:

P (AAABBBc) = P (Undistorted Path)(1−Ikx) (A.50)

P (AABBABc) = P (Undistorted Path)(1−Ikx)(1−Ik−1
x ) (A.51)

P (ABAABBc) = P (Undistorted Path)(1−Ikx)(1−Ik−2
x ) (A.52)

P (ABABABc) = P (Undistorted Path)(1−Ikx)(1−Ik−1
x )(1−Ik−2

x ). (A.53)

By definition, the “undistorted path” probability is the probability neglecting the

contributions due to the possibility of coalescence in previous steps, and is therefore

the same for all paths. We have

P (Undistorted Path) = k(k−1)(k−2)k(k−1)(k−2)
2k(2k−1)(2k−2)(2k−3)(2k−4)(2k−5)

Ik−`x (A.54)

=
k!

(k−3)!
k!

(k−3)!
2k!

(2k−6)!

Ik−`x . (A.55)

Using these results, we can write φkk(3) as

φkk(3) = [# of Paths]P (Undistorted Path)[Fk(1−Ikx )+Fk,k−1(1−Ikx )(1−Ik−1
x )

+Fk,k−2(1−Ikx )(1−Ik−2
x )+Fk,k−1,k−2(1−Ikx )(1−Ik−1

x )(1−Ik−2
x )], (A.56)

where we have defined F{a} to be the fraction of paths that are together in the set of

classes {a} (and are not together in any other class).

A.4.2 Calculation of φkk′(`)

We now use this approach to calculate the coalescence probability in the general case.

The probability of any particular ancestral path from k and k′ to k− ` is the product
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of the individual probabilities of each mutational step that makes up this path. Each

such individual probability consists of three parts: a numerator, which depends only

on the current class of the lineage that mutates, divided by a denominator, which

depends only on the sum of the current set of classes for both lineages, times a

correction factor of (1− Ik−ix ) if the two lineages are in the same class at that step.

Although in each ancestral path the mutations will occur in a different order, all

paths will ultimately consist of the same set of mutations (k′ → k′− 1→ . . .→ k− `
and k → k−1→ . . .→ k−`). Therefore, regardless of the path taken, the product of

the numerators from each step will be identical. Similarly, the sum of the current set

of classes will begin at k′+k, and decrement by one each time a deleterious mutation

occurs, until both lineages are in the final class (k′+k → k′+k−1→ . . .→ 2k−2`).

Therefore, regardless of the path taken, the product of the denominators from each

step will also be identical. Therefore, the paths will differ only by the correction factor

(1− Ik−ix ) for each class in which the two ancestral lineages are together. This means

that, analogous to the case of φkk(3) we described above, the probability of each path

is the probability of an “undistorted path” times the appropriate correction factor.

The probability of the undistorted path is

P (Undistorted Path) = k′(k′−1)...(k−`+1)k(k−1)...(k−`+1)
(k′+k)(k′+k−1)...(2k−2`+1)

Ik−`x . (A.57)

We can now sum up all possible paths to obtain

φk
k′ (`) = [# of Paths]P (Undistorted Path)[F∅+

∑`
i=0 Fk−i(1−I

k−i
x )

+
∑`−1
i=0

∑`
j>i Fk−i,k−j(1−I

k−i
x )(1−Ik−jx ) (A.58)

+
∑`−2
i=0

∑`−1
j>i

∑`
m>j Fk−i,k−j,k−m(1−Ik−ix )(1−Ik−jx )(1−Ik−mx )+...],

where as before F{a} is the fraction of paths that are together in the set of classes {a}
(and are not together in any other class). Note that there are a total of ` + 1 terms

in this equation, representing the possibility that the two lineages can be together in

anywhere from 0 to ` of the classes. We can rearrange these terms to write

φk
k′ (`) = [# of Paths]P (Undistorted Path)[1−

∑`
i=0Gk−iI

k−i
x

+
∑`−1
i=0

∑`
j>iGk−i,k−jI

k−i
x Ik−jx (A.59)

−
∑`−2
i=0

∑`−1
j>i

∑`
m>j Gk−i,k−j,k−mI

k−i
x Ik−jx Ik−mx +...],
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where we have defined G{a} to be the fraction of paths that are together in at least

the set of classes {a}.
We can evaluate each of these factors of G. For example, the fraction of paths that

are together in class k − i equals the number of ways for the two lineages to descend

from classes k′ and k to be together in class k− i,
(
k′−k+2i

i

)
, times the number of ways

for the two lineages to descend from class k − i to be together in class k − `,
(

2i−2`
i−`

)
,

divided by the total number of ways for the two lineages to descend from classes k′

and k to be together in k − `,
(
k′−k+2`

`

)
. Using this logic, we find

φk
k′ (`) = [# of Paths]P (Undistorted Path) (A.60)

×

1−
∑`−1
i=0

(k
′−k+2i
i )(2`−2i

`−i )
(k
′−k+2`
` )

Ik−ix +
∑`−2
i=0

∑`−1
j>i

(k
′−k+2i
i )(2j−2i

j−i )(2`−2j
`−j )

(k
′−k+2`
` )

Ik−ix Ik−jx ...

.
The total number of paths is

(
k′−k+2`

`

)
, so we finally find that the full probability of

coalescence in class k − ` is

φk
′

k (`) = Ik−`x

(
k′

k−`

)(
k
k−`

)(
k′+k

k′−k+2`

) [1−
`−1∑
i=0

(
k′−k+2i

i

)(
2`−2i
`−i

)(
k′−k+2`

`

) Ik−ix +

`−2∑
i=0

`−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2`−2j
`−j

)(
k′−k+2`

`

) Ik−ix Ik−jx − . . .

]
. (A.61)

This is Eq. 2.56 from the main text. Note that it equals our non-conditional result

for P k,k′→`
c times a correction factor. There are a total of `+1 terms in this correction

factor. This full correction factor can be arbitrarily complex for large `, so we do not

write out a general form here. However, it is straightforward to calculate for any

values of k, k′, and `; a Mathematica script to do so is available on request.
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A.5 The Correspondence between Steptimes and Real Times

In this Supplementary Appendix, we calculate the correspondence between steptimes

and the actual times measured in generations. Our goal is to calculate the probability

distribution of real coalescence times, ψ(t|k, k′, `), given that individuals were initially

in classes k and k′ and coalesced in class k − `.
To begin, we neglect the coalescence time within class k − `, and consider the

distribution of the time at which an ancestor of one of the two sampled individuals

first mutated from class k − ` to class k − ` + 1. We refer to this as ψ1(t|k, k′, `).
We first calculate the joint distribution of the times at which both ancestors mutated

out of the class, Rk−`
k,k′ (t1, t2). Conditional on coalescence in class k− `, Rk−`

k,k′ (t1, t2), is

given by the probability of t1 and t2 and coalescence divided by the total probability

of coalescence. That is,

R(t1, t2) =
P (coal|t1, t2)P (t1, t2)

P (coal)
. (A.62)

Substituting in the relevant expressions from the main text, this gives

Rk−`
k,k′ (t1, t2) =

1

Ak,k
′

`

Qk−`
k,k′ (t1, t2)e−s(k−`)|t1−t2|. (A.63)

The time at which the first ancestor mutated out of class k− ` is the longer of the

two times t1 and t2,

ψ(t|k, k′, `) =

[∫ t

0

Rk−`
k,k′ (t1, t)dt1 +

∫ t

0

Rk−`
k,k′ (t, t2)dt2

]
. (A.64)

Substituting in our expression for Rk−`
k,k′ (t1, t2) and carrying out the integrals as in

Supplemental Information 1.3, we find

ψ1(t|k, k′, `) = sπde
−s(k′+k)t(est − 1)πd−1

(
k′ + k

πd

)
, (A.65)

where we have used πd = k′ − k + 2`.

We can alternatively calculate ψ1(t|k, k′, `) using our sum of ancestral paths ap-

proach. As before, we imagine two individuals sampled from classes k and k′ and

condition on them coalescing in class k − `. Consider a case where k 6= k′. Then
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the first event in the history of these two individuals must be a deleterious mutation.

Since these mutations happen at rate sk and sk′ in each lineage, the distribution of

times since this mutation occurred in one of the two ancestral lineages is

P (t) = s(k + k′)e−s(k+k′)t. (A.66)

With probability k′

k+k′
, this mutation is in the lineage sampled from class k′, in which

case the two lineages are now in classes k and k′ − 1. Alternatively, the mutaion

occurred in the lineage sampled from k and the lineages are in classes k − 1 and k′.

We can now consider the time to the next event backwards in time. If the two

lineages are in the same class (but not yet in class k− `), the distribution of times to

the next deleterious mutation event is somewhat shorter, because we are conditioning

on coalescence not occuring. However, provided that 2sk1 � 1
Nhk

(the condition we

are already making elsewhere), this shortening of the time will be a small correction

and neglecting it is a good approximation.

Making this approximation, the rate at which the next deleterious mutation event

occurs when the two lineages are in classes k1 and k2 is just s(k1 + k2). Regardless

of the order in which these mutations happen between the two lineages, this sum is

simply decreased by s at each step. This will continue until the both ancestral lineages

are in class k− `. Therefore, the distribution of times until the original mutation out

of class k − ` is given by:

ψ1(t|k′,k,`)=s(k′+k)e−s(k
′+k)t?s(k′+k−1)e−s(k

′+k−1)t?...?s(2k−2`+1)e−s(2k−2`+1)t. (A.67)

This can be written as

ψ1(t|k′, k, `) = λ0e
−λ0t ? λ1e

−λ1t ? . . . ? λk′−k+2`−1e
−λk′−k+2`−1t, (A.68)

where we have defined:

λi = s(k′ + k − i). (A.69)

We can compute this convolution as in Supplemental Information 1.2 (compare to

Eq. SI 1.17 for Q2k−2`
k+k′ (t)). We find

ψ1(t|k, k′, `) = sπde
−s(k′+k)t(est − 1)πd−1

(
k′ + k

πd

)
, (A.70)

identical to the result of our lineage structure calculation above.
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A.5.1 Distribution of Coalescence Times

To calculate the correspondence between steptimes and real times, we now need to

add the time it takes two individuals two coalesce in class k− `, which we refer to as

ψ2(t|k, k′, `), to the time it took them both to get to that class, ψ1(t|k, k′, k− `). The

rate of coalescence once in class k − ` is 1
Nhk−`

, so we have

ψ2(t|k′, k, `) = (2s(k − `) + 1/Nhk−`) e
−[2s(k−`)+1/Nhk−l]t. (A.71)

Putting this together, the full distribution of times since coalescence is

ψ(t|k′, k, `) = ψ1(t|k′, k, `) ? ψ2(t|k′, k, `). (A.72)

Carrying out this convolution (and expanding the binomial factor (est−1)πd−1 in ψ1),

we find

ψ(t|k′,k,`)=
∑πd−1

i=0 sπd(−1)πd−i−1(πd−1
i )(k

′+k
πd

) B
A−B (e−sBt−e−sAt), (A.73)

where we have defined A ≡ k′ + k − i and B ≡ 2 (k − `) + 1
Nshk−`

.
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A.6 An Alternative Approach to Neutral Diversity

Instead of calculating the distribution of neutral heterozygosity by first computing

the distribution of real times, we could alternatively incorporate neutral mutations

directly into the sum of ancestral paths framework. This completely bypasses the

correspondence with real coalescence times. To do this, we characterize ancestral

paths not only by the ordering of deleterious mutation and coalescence events, but also

by the ordering of neutral mutations. This means that if we sample two individuals

A and B, there are five types of events that can happen in their ancestral paths: a

deleterious mutation (DM) in A or in B, a neutral mutation (NM) in either A or in

B, and or a coalescence (C) event (if A and B are currently in the same class).

We now imagine that we sample two individuals from classes k and k′, and that

they coalesce in class k − `. Our goal is to calculate the probability distribution of

πn given k, k′, and `, ρ(πn|k, k′, `). We will find it helpful to divide the five types

of events that can occur into two classes: neutral mutations on the one hand, and

deleterious mutations or coalescence (which we call “steps”) on the other. We begin

by computing the probability that a given number of NMs occur before the next DM

or C events (i.e. the number of neutral mutations that occur at this “step”). We have

P (a NMs, then DM in k′ or k′|k′, k) =

(
2Un
s

k′ + k + 2Un
s

)a
k + k′

k′ + k + 2Un
s

, (A.74)

where we have made our usual assumption that Nhksk � 1, allowing us to neglect

the rates of coalescence events (when k = k′) in writing this expression.

This probability only depends on the sum of the current classes the individulas are

in. At each subsequent step, regardless of the path taken, this sum of the classes will

decrease by one. Therefore, the probability that ai neutral mutations occur at step i is

independent of the path taken. This observation allows us to calculate the probability

that a given total number of neutral mutations have occurred since coalescence. We

first calculate the probability that a given number of neutral mutations have occurred

since the first deleterious mutation out of the k−` class. We will add in the additional

neutral mutations once in the k − ` class at the end.
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In order for πn neutral mutations to have occurred since the first deleterious

mutation out of class k− `, we require that a0 mutations occurred at the first step, a1

mutations occurred at the second step, and so on, such that a0+a1+. . .+ak′−k+2`−1 =

πn. This gives

ρ(πn=X|k′,k,`)=
(k′+k)!
(2k−2`)!

( 2Un
s +k′+k)!

( 2Un
s +2k−2`)!

∑
|~a|=X

(
2Un/s

2Un/s+k+k′

)a0
...( 2Un/s

2Un/s+2k−2l+1)
ak′−k+2l−1 . (A.75)

We can define x ≡ 2Un/s+ k + k′, recognize πd = k′ − k + 2`, and relabel the ai as

a0→X−b0, a1→b0−b1, ... aπd−2→bπd−3−bπd−2, aπd−1→bπd−2. (A.76)

This gives

ρ(Πn=X|k′,k,`) = (k
′+k
πd

)

(
2Un
s +k′+k
πd

)
( 2Un

s )
X

( 1
x)

X∑X
b0=0( x

x−1)
b0 (A.77)

∑b0
b1=0(

x−1
x−2)

b1 ...
∑bπd−3

bπd−2=0

(
x−πd+2

x−πd+1

)bπd−2
.

To simnplify this expression, it is helpful to define a function f such that:

f(A,B) ≡ ( 1
x)

X∑X
b0=0( x

x−1)
b0 (A.78)

∑b0
b1=0(

x−1
x−2)

b1 ...
∑X
bA−1=0(x−A+1

x−A )
b0 ∑bA−1

bA=0(
x−A
x−B )

bA

In other words, f (A,B) is a set of A nested sums, each of the same form, except for

the final sum, which can have a different denominator. Using this definition, we have

P (Πn = X|k′, k, `) =

(
k′+k
πd

)( 2Un
s

+k′+k
πd

) (2Un
s

)X
f (πd − 2, πd − 1) . (A.79)

The virtue of this definition is that this sum can be solved recursively. We have

bA−1∑
bA=0

(
x− A
x−B

)bA
=
x−B
A−B

− x− A
A−B

(
x− A
x−B

)bA−1

. (A.80)

Therefore we have

f (A,B) =
x− A
B − A

f (A− 1, B)− x−B
B − A

f (A− 1, A) . (A.81)
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Repeatedly inserting this result yields:

f (A,A+ 1) → (x−A)(x−A−1)
1

(
f(A−1,A+1)
x−A−1

− f(A−1,A)
x−A

)
f (A,A+ 1) → (x−A+1)(x−A)(x−A−1)

2 [ f(A−2,A+1)
x−A−1

− 2f(A−2,A)
x−A +

f(A−2,A−1)
x−A+1 ]

...

f (A,A+ 1) → (m+1)(x−A−1+m
m+1 )

∑m
i=0

(−1)i+m

x−A−1+i(
m
i )f(A−m,A+1−i). (A.82)

Note that f(−1, B) = 1/BX , since there are no more sums to compute. Thus, for

m = A+ 1 we have

f (A,A+ 1) = (A+ 2)

(
x

A+ 2

) A+1∑
i=0

(−1)i+A+1

(x− A− 1 + i)X+1

(
A+ 1

i

)
. (A.83)

Relabeling the sum and taking A = πd − 2, we have

f (πd − 2, πd − 1) = πd

(
x

πd

) πd−1∑
i=0

(−1)i

(x− i)X+1

(
πd − 1

i

)
. (A.84)

We can now substitute these results into our expression for πn, to find

ρ1(Πn=X|k′,k,`)=πd(k
′+k
πd

)( 2Un
s )

X∑πd−1

i=0
(−1)i

(2Un/s+k+k′−i)X+1 (πd−1
i ) (A.85)

Note, however, that this is only the distribution of neutral mutations since the first

deleterious mutation out of class k − l. It is also possible for neutral mutations to

occur prior to the coalescence event. Adding in this factor, we find

ρ(Πn=X|k′,k,`) = πd(k
′+k
πd

)
∑πd−1

i=0 (−1)i(πd−1
i ) (A.86)

×
∑πn
X=0

(2Un/s)
X

(2Un/s+k+k′−i)X+1

(
2Nk−lUn

1+2Nk−lUn+2Nk−ls(k−l)

)πn−X
.

Rearranging this expression gives

ρ(πn|k′,k,`)=
∑πd−1

i=0 πd(−1)πd−i−1(πd−1
i )(k

′+k
πd

) B
A−B

(
( 2Un
s )πn

( 2Un
s +B)πn+1

− ( 2Un
s )πn

( 2Un
s +A)πn+1

)
, (A.87)

where we have defind

A = k′ + k − i, B = 2 (k − `) +
1

Nshk−l
, (A.88)

identical to our earlier result.
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Supplemental Information to Chapter

Five

B.1 Approximations

In our derivation of the time-dependent effective population size, we have made two

key approximations. First, we have assumed that lineages and allele frequencies may

be treated as effectively deterministic. Second, we have assumed that the ancestral

fitness distributions at different sites may be treated as independent. These two

approximations are prevalent in the history of background selection, and form the

basis for many of the strong-selection results currently in use (Charlesworth 2012;

Charlesworth et al. 1993; Hudson and Kaplan 1995b). In this Supplemental

Information, we discuss these two approximations in detail.

B.1.1 The Deterministic Approximation

One of the central assumptions of background selection is that the population may be

treated as approximately deterministic. This implies that frequencies may be assumed

From: Distortions in Genealogies due to Purifying Selection and Recombination
Lauren E. Nicolaisen and Michael M. Desai, Genetics 195, 1 (2013).
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to be at mutation-selection balance, and that lineages may be described using deter-

ministic equations such as that used to derive Eq. (5.1). In general, this assumption

will hold when the strength of selection is sufficiently strong that it dominates the

effects of drift (or analogously, when lineages are selected against sufficiently strongly

that they never grow to a substantial fraction of the population). As a result, we

expect the deterministic approximation to hold roughly when Nse−Ud/(s+R/2) � 1.

This approximation forms the foundation for previous results in background selection,

including the structured coalescent results of Zeng and Charlesworth (2011) and

the original background selection formulae from Charlesworth et al. (1993) and

Hudson and Kaplan (1995b).

The main difference between the classic background selection analysis and our

analysis is that we include the transient period during which deleterious alleles may

segregate in the population prior to being removed by selection. The traditional

analysis assumes that this time-period is sufficiently small relative to the total coa-

lescence time that it can be neglected. In general, the time-scale of this transition

is roughly of order 1/s, and therefore, by definition, should be small relative to the

typical coalescence times, ≈ Ne, whenever the deterministic approximation holds.

However, in practice, as seen in Figures 5.3-5, the deterministic approximation

is still reasonable even when the time-scale of the transition begins to represent a

significant fraction of the total coalescence times. Thus, by incorporating this tran-

sition time, we are able to more accurately describe the distribution of coalescence

times and other statistics. This allows us to capture the distortions that begin to

arise as a consequence of this transition period, and thus to qualitatively understand

how selection distorts the shapes of genealogies, and how this depends upon the pa-

rameters involved. Even when this effect is small, by taking advantage of the fact

that, in the presence of recombination, sites far away from one another become effec-

tively independent, it may be possible to detect even small differences with enough

sequence data. We note, however, that our method is only able to account for the

distortions that arise due to this transition period, and not the additional effects that

arise from fluctuations. As Nes becomes smaller, our analysis begins to break down

as fluctuations in the population become very strong. When this happens, additional
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distortions (including topological distortions) arise which we are not able to capture

with our analysis.

The breakdown of the deterministic approximation when Nes ≈ 1 has been dis-

cussed in several notable studies considering the weak selection regime (Barton and

Etheridge 2004; O’Fallon et al. 2010). Earlier studies have suggested that the

deterministic approximation is reasonable for the calculation of pairwise coalescence

times when Nes > 3 (Barton and Etheridge 2004; Charlesworth 2012), which

is consistent with our findings in Figure 5.4. However, it is unclear whether such a

precise threshold would remain accurate for more extreme parameter combinations,

where additional logarithmic corrections could arise.

B.1.2 The Independent-Sites Approximation

The second key approximation made in the main text is that we may treat the an-

cestral fitness distribution at each site as independent. In other words, we assume

that the joint ancestral fitness distribution across all sites is equal to the product of

the ancestral fitness distribution at each site, Pk1,k2,k3...kL(t) = Pk1(t)Pk2(t) . . . PkL(t),

where ki is either 0 or 1, indicating whether a mutation exists at site i.

In an asexual population, this holds whenever the deterministic approximation

is valid. However, in the presence of recombination, correlations will exist between

neighboring sites. This is a consequence of the fact that, when an ancestral recombi-

nation event occurs between the focal site and multiple index sites, all of those sites

will now be randomly chosen from the population at the same time, and thus will all

be ‘reset’ to the steady state mutation-selection balance simultaneously. Thus, sites

that share the same history will be correlated.

However, this effect will be small provided that the deterministic approximation

is valid (Nes � 1) and that the probability of a mutation at any given site is small

(µ/s� 1). This approximation is prominent in previous literature on background se-

lection, and is discussed in detail in the appendix of Hudson and Kaplan (1995b).

In order to justify this approximation, we will show that, provided the conditions

stated above hold, the joint fitness distribution at two loci are approximately in-
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dependent, i.e. Pk1,k2(t) = Pk1(t)Pk2(t) + O(µ
2

s2
). The same argument can then be

extended to additional loci.

We denote the ancestral fitness distribution of an individual as Pij(t), where i and

j represent whether a mutation exists at two sites of distances x1 and x2 from the

focal site, respectively. We know from the main text that, to first order in µ/s:

P00(t) + P01(t) = 1− µ
s

(
rx1

rx1+s
+ s

rx1+s
e−st−rx1t

)
P00(t) + P10(t) = 1−µ

s

(
rx2
rx2+s

+ s
rx2+s

e−st−rx2t
)
.

We can now write out the backwards-in-time master equation for P00(t), again keeping

only first-order terms in µ, s, rx1, and rx2:

P00(t+ 1) = P00(t)(1−rx1(1−f00)−r(x2−x1)(1−f00−f10))

+P01(t)f00

f01
(µ+ rx1f01 + r(x2 − x1)(f01 + f11))

+P10(t)
f00
f10

(µ+rx1f10)

+P11(t)
f00
f11

(rx1f11).

Making the continuous approximation this becomes:

dP00(t)
dt

= −rx2P00(t) + rx1f00(P00(t) + P01(t) + P10(t) + P11(t))

+r(x2 − x1)
(
P00(t)(f00 + f10) + f00

f01
P01(t)(f01 + f11)

)
+ µf00

(
P01(t)
f01

+ P10(t)
f10

)
= −(rx2+2s−2µ)P00(t)+rx1(1−µ

s )
2

+r(x2−x1)(1−µ
s )
(

1−µ
s

(
rx1
rx1+s

+ s
rx1+s

e−st−rx1t
))

+s(1−µ
s )
(

2−µ
s

(
rx1
rx1+s

+ s
rx1+s

e−st−rx1t
)
−µ
s

(
rx2
rx2+s

+ s
rx2+s

e−st−rx2t
))
.

Solving this to first order in µ/s:

P00(t) = 1− µ
s

(
rx1

rx1+s
+ s

rx1+s
e−st−rx1t

)
− µ

s

(
rx2

rx2+s
+ s

rx2+s
e−st−rx2t

)
+O

(
µ2

s2

)
P01(t) = µ

s

(
rx2
rx2+s

+ s
rx2+s

e−st−rx2t
)

+O
(
µ2

s2

)
P10(t) = µ

s

(
rx1
rx1+s

+ s
rx1+s

e−st−rx1t
)

+O
(
µ2

s2

)
P11(t) = O

(
µ2

s2

)
.

Thus, we see that Pij(t) = Pi(t)Pj(t)+O (µ2/s2), such that the sites are approximately

independent. We note, however, that this independence does not hold to higher-order
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in µ
s
, and corrections would be required to accurately capture the joint ancestral

probability at those orders. Thus, the independence approximation will only strictly

hold when µ/s� 1, and when the deterministic approximation holds.

We note that this approximation is discussed in detail in the appendix of Hudson

and Kaplan (1995b). They provide an analogous derivation of the joint mutation

probability at two loci (see Equation A10), and similarly find that sites may be treated

as independent provided the deterministic approximation holds and µ/s� 1.
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B.2 Incorporating Back Mutations

In our derivation of the time-dependent effective population size, we have neglected

the effect of back mutations. In practice, back mutations only introduce terms of

higher-order in µ/s, and thus are of negligible contribution in the regime we consider.

However, it is straightforward to incorporate these terms into our analysis, which we

do here.

First, we consider the steady-state distribution of mutations at a single site. This

is determined by the solution to the equations:

f1 =
f1(1− s)

ω
(1− µb) +

f0

ω
µf

f0 =
f1(1− s)

ω
µb +

f0

ω
(1− µf ),

where µf and µb are the forward and back mutation rates, respectively. This yields:

f1 =
s+ µb(1− s) + µf −

√
(s+ µb(1− s) + µf )2 − 4sµf

2s

f0 =
s− µb(1− s)− µf +

√
(s+ µb(1− s) + µf )2 − 4sµf

2s
.

When µb = 0, these reduce to the usual mutation-selection balance results, f1 = µf/s

and f0 = 1 − µf/s. Furthermore, if we define µf ≡ µ and µb ≡ cµ, and expand this

result in orders of µ/s, we see that:

f1 =
µ

s
− µ2

s2
c(1− s) +

µ3

s3
(c2(1− s)2 − c(1− s)) . . .

f0 = 1− µ

s
+
µ2

s2
c(1− s)− µ3

s3
(c2(1− s)2 − c(1− s)) . . .

Thus, we see that incorporating back mutations leads to a correction of order µ2/s2.

As a consequence, the effect of back mutations is negligible in the regime we consider.

However, we may derive Equation 5.2 from the main text including them. We have

that:

dPmut(t)

dt
= −

(
rx+

µfNf0

Nf1

+
µbNf1

Nf0

)
Pmut(t) + rxf1 +

µbNf1

Nf0
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Solving this yields:

Pmut(x, t) =
rxf1 + µbf1

f0

rx+
µff0

f1
+ µbf1

f0

+
µff0 − µbf1

rx+
µff0

f1
+ µbf1

f0

e
−
(
rx+

µf f0
f1

+
µbf1
f0

)
t
.

which replaces Equation 5.2 in the main text. Similarly, Equation 5.1 may be re-

covered by substituting rx → r(xi, xf ). We note that these equations are identical

to those given in the main text to leading-order in µ/s, and thus back mutations

represent only a small correction to our results in the regime we consider.
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