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Abstract

This dissertation consists of two essays on the behavior of traders in opaque financial markets

and one on the behavior of firms while they are learning to use a new technology.

The first essay describes the market for borrowing corporate bonds using a comprehensive

dataset from a major lender. The cost of borrowing corporate bonds is comparable to the cost

of borrowing stock, between 10 and 20 basis points, and both have fallen over time. Factors

that influence borrowing costs are loan size, percentage of inventory lent, rating, and borrower

identity. There is no evidence that bond short sellers have private information. Bonds with

CDS contracts are more actively lent than those without. Finally, the 2007 Credit Crunch does

not affect average borrowing costs or loan volume, but does increase borrowing cost variance.

The second essay studies how mandatory transparency affects trading in the corporate

bond market. In July 2002, TRACE began requiring the public dissemination of post-trade

price and volume information for corporate bonds. Dissemination took place in Phases, with

actively traded, investment grade bonds becoming transparent before thinly traded, high-yield

bonds. Using new data and a differences-in-differences research design, this essay shows that

transparency causes a significant decrease in price dispersion for all bonds and a significant

decrease in trading activity for some categories of bonds. The largest decrease in daily price

standard deviation, 24.7%, and the largest decrease in trading activity, 41.3%, occurs for

bonds in the final Phase, which consisted primarily of high-yield bonds. These results indicate

that mandated transparency may help some investors and dealers through a decline in price

dispersion, while harming others through a reduction in trading activity.
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The third essay examines firms’ learning behavior using data on their operational choices,

profits, and information sets. I study companies using hydraulic fracturing in North Dakota’s

Bakken Shale formation, where firms must learn the relationship between fracking input use

and oil production. Using a new dataset that covers every well since the introduction of

fracking to this formation, I find that firms made more profitable input choices over time, but

did so slowly and incompletely, only capturing 68% of possible profits from fracking at the

end of 2011. To understand what factors may have limited learning, I estimate a model of

fracking input use in the presence of technology uncertainty. Firms are more likely to make

fracking input choices with higher expected profits and lower standard deviation of profits,

consistent with passive learning but not active experimentation. Most firms over-weight their

own information relative to observable information generated by others. These results suggest

the existence of economically important frictions in the learning process.
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Chapter 1

The Market for Borrowing Corporate

Bonds1

1.1 Introduction

This paper analyzes the market for borrowing and shorting corporate bonds. The corporate

bond market is one of the largest over-the-counter (OTC) financial markets in the world.

Between 2004 and 2007, the time period of our study, the value of outstanding corporate

debt averaged $6.6 trillion and, according to the Securities Industry and Financial Market

Association (SIFMA), trading activity averaged $17.3 billion per day. We estimate that

shorting represents 19.1% of all corporate bond trades.

There is a large theoretical literature on short sales constraints and their impact on asset

prices. Constraints on short selling may lead to mis-valuation because they limit the ability of

some market participants to influence prices. The empirical literature on short sales, while

also large, has focused almost exclusively on stocks. Our analysis of shorting corporate bonds

allows us to determine if the empirical findings on shorting stocks are present in other markets.

In addition, unlike stocks, where borrowing takes place in an OTC market and short selling

takes place on an exchange, both borrowing and shorting activities take place OTC in the

1with Paul Asquith, Andrea S. Au and Parag A. Pathak
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corporate bond market. Thus, any effects of short sale constraints may be amplified in the

bond market.

A major issue in the study of any OTC market is the availability of data. Unlike stock

short positions, which are reported bimonthly by the stock exchanges, bond shorting is not

regularly reported. In addition, while a number of studies have access to proprietary databases

of stock lending for short periods (e.g., D’avolio (2002); Geczy et al. (2002)), comparable

analyses of bond lending do not exist, with the exception of Nashikkar and Pedersen (2007).

This paper uses a large proprietary database of corporate bond loan transactions from a

major depository institution for the four year period, January 1, 2004 through December 31,

2007. Although our data is only from one lender, the size and coverage of our database allows

us to study the functioning of a relatively opaque, yet large market. Our lender’s par value of

loanable bond inventory averages $193.3 billion daily and accounts for 2.9% of the overall par

value of outstanding corporate bonds listed by the Fixed Income Securities Database (FISD).

From this inventory, our lender loans an average daily par value of $14.3 billion and 66.4% of

bonds which appear in inventory are lent out at some point during our time period 2004-2007.

This paper describes the market for shorting corporate bonds along several dimensions. In

Section 1.3 we discuss why and how corporate bonds are shorted and estimate the market’s size.

After describing our data sample in Section 1.4, we examine cross-sectional and time-series

determinants of borrowing activity and costs in Section 1.5. In Section 1.6, we investigate

the relationship between bond and stock shorting. In Section 1.7, we check if bond short

sellers have private information. The next two sections consider how corporate bond shorting

relates to the CDS market and whether it was impacted by the Credit Crunch of 2007. Finally,

Section 1.10 outlines some implications of our results and concludes.

Since this paper is largely descriptive, after reading Sections 1.1-1.5, readers interested

only in one of these later topics can skip directly to the relevant section. A brief summary of

our results follows.

We find that the market for borrowing bonds is large and most lent bonds have small

borrowing costs. In our database, the mean and median annual borrowing cost, equally-

2



weighted by loan, are 33 and 18 basis points (bps), respectively, for the entire sample period.

In mid-2006, there is a dramatic narrowing in the distribution of bond borrowing costs. This

compression causes a reduction in mean and median borrowing costs during the latter part of

our sample period. By 2007, these rates fall to 19 and 13 bps, respectively. Borrowing costs

are related to several factors. Four significant factors are loan size, the bond’s credit rating,

on-loan percentage, which is the fraction of the lender’s inventory already lent, and the identity

of the borrowing broker. Smaller loans (less than 100 bonds) and lower rated bonds have

higher borrowing costs. In addition, borrowing costs increase after ratings downgrades and

bankruptcy filings. Borrowing costs remain flat until on-loan percentage reaches approximately

70% and then rise sharply for high yield bonds. Finally, while our lender lends to 65 brokers,

a select few borrow at significantly lower rates.

Borrowing costs for corporate bonds and stocks are linked. Since our lender has a significant

market share of stock shorting, we construct a matched sample of corporate bond and stock

loans for the same firms. The costs of borrowing the two securities are usually quite close and

63.7% of matched loan borrowing costs are within 10 bps of each other. When the borrowing

costs of matched loans are not close, the stock is usually more expensive to borrow than the

bond.

Bond shorting does not appear to be motivated by investors possessing private information

since bond short sellers do not earn excess returns on average. Portfolios of bonds with a high

on loan percentage or with high borrowing costs do not underperform the market portfolio of

corporate bonds. In addition, mimicking the actual positions of bond short sellers (using the

beginning and ending dates of bond loans) does not generate excess returns.

We examine two other aspects of the market for borrowing corporate bonds. The first is

whether credit default swap (CDS) contracts impact bond borrowing activity. Almost half

of our borrowed bonds also have CDS contracts available. These bonds are more actively

borrowed and have higher average higher borrowing costs (1 bp) than those where CDS

contracts are not available.

The second aspect is the Credit Crunch of 2007. We examine the second half of 2007, the

3



beginning of the Credit Crunch, separately to see if borrowing activity changes. In this period,

borrowing costs became more volatile. However, the volume of bond shorting remained stable,

as did the average level of borrowing costs. In addition, the average returns to shorting bonds

did not change.

1.2 Related Literature

The theoretical literature on the effects of short sale constraints on asset prices is extensive.

One modeling approach examines the implications of heterogeneous investor beliefs in the

presence of short sale constraints and whether this causes mis-valuation. Miller (1977) argues

that short sale constraints keep more pessimistic investors from participating in the market,

so market prices reflect only optimists’ valuations (see also Lintner 1971). Harrison and Kreps

(1978) consider a dynamic environment and provide conditions where short sale constraints

can drive the price above the valuation of even the most optimistic investor. More recent

contributions include Chen et al. (2002) who relate differences of opinion between optimists

and pessimists to measures of stock ownership, and Fostel and Geanakoplos (2008), who

consider the additional effects of collateral constraints.

Another approach to studying the effects of short sale constraints focuses on search and

bargaining frictions, which arise because investors must first locate securities to short (Duffie

1996; Duffie et al. 2002). Finally, there is theoretical literature in the rational expectations

tradition, which examines how short sale constraints can impede the informativeness of prices

(see Diamond and Verrecchia 1987; Bai et al. 2006).

The empirical literature on short sale constraints focuses almost entirely on stocks. An

early strand of this literature examines the information content of short interest (see Asquith

and Meulbroek 1995) where short interest is the number of shares shorted divided by the

number of shares outstanding. This literature advanced in two directions as richer data sets

became available. The first direction examines daily quantities of short sales by observing

transactions either from proprietary order data (Boehmer et al. 2008) or from Regulation SHO

data (Diether et al. 2009). Both papers find that short sellers possess private information and
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that trading strategies based on observing their trades generate abnormal returns. The second

direction in this literature examines the direct cost (or price) of borrowing stocks. These

papers either use data from a unique time period when the market for borrowing stocks was

public (Jones and Lamont 2002) or proprietary data from stock lenders (D’avolio 2002; Geczy

et al. 2002; and Ofek et al. 2004). Jones and Lamont (2002) and Ofek et al. (2004) find that

stocks with abnormally high rebate rates have lower subsequent returns, while Geczy et al.

(2002) find that higher borrowing costs do not eliminate abnormal returns from various short

selling strategies. D’avolio (2002) and the other three papers find that only a small number

of stocks are expensive to borrow. Using data from 12 lenders, Kolasinski et al. (2013) find

that the equity loan market is opaque, and this, in combination with search costs, results in

borrowing costs varying across lenders.

A challenge identified in this literature is that short interest is a quantity and borrowing

costs are a price, both of which are simultaneously determined by shorting demand and the

supply of shares available to short. A high borrowing cost may indicate either a high shorting

demand or a limited supply of shares available to short. As a result, some researchers have

constructed proxies for demand and supply and have tried to isolate shifts in either demand

or supply. Asquith et al. (2005) use institutional ownership as a proxy for the supply of shares

available for shorting and find that stocks that have high short interest and low levels of

institutional ownership significantly underperform the market on an equally-weighted basis,

but not on a value-weighted basis. Using richer, proprietary loan-level data, Cohen et al.

(2007) examine shifts in the demand for shorting, and find that an increase in shorting demand

indicates negative abnormal returns for the stocks being shorted. Both papers highlight that

their results only apply to a small fraction of outstanding stocks.

The only paper on corporate bond market shorting is Nashikkar and Pedersen (2007), who

describe a proprietary dataset from a corporate bond lender between September 2005 and June

2006. Their examination of the cross-sectional determinants of borrowing costs complements

ours, but they do not examine as extensively the differences between investment grade and

high yield bonds, the relationship between bond and stock shorting, and the profitability of
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short selling corporate bonds. Furthermore, our longer time period allows us to document

several time-series patterns, such as the reduction in borrowing costs and the increase in

volatility of borrowing costs during the 2007 Credit Crunch.

1.3 Shorting a Corporate Bond: Rationales, Mechanics, and

Market Size

1.3.1 Rationales for Shorting Corporate Bonds

The primary purpose of borrowing a corporate bond is to facilitate a short sale of that bond.

Aside from market making activities, investors short bonds for the same reason they short

stocks: to bet that the security will decline in price. If short sellers focus on overvalued firms

and can either short the stock or the bond, it would seem that they would target the stock

due to the priority of claims. That is, since bond holders have a higher priority in bankruptcy,

stock prices should decline before bond prices when there is a threat of financial distress. Thus,

on first pass, short sellers short bonds only if they cannot find the stock to short or it is too

expensive to short.

One potential reason why a firm’s stock cannot be borrowed is that the firm is private, yet

has publicly traded debt. That is, there is public debt but no public stock. In this case, taking

a position that the firm is overvalued requires an investor to short bonds. We show below that

we are unable to match our corporate bonds to publicly traded stock for 18.4% of our sample.2

If a stock is publicly traded and the stock and bond markets are linked, bond shorting is

attractive if the net return for shorting bonds is greater than the net return for shorting stocks,

adjusting for risk. We expect this to occur more frequently for lower credit quality bonds.

This is because bonds without default risk trade at par (absent interest rate movements) while

lower rated bonds will experience greater price fluctuations. Thus, investment grade bonds

should not decrease in price as often as high yield bonds, and therefore, the market for shorting

2This does not mean that 18.4% of our bonds were issued by private firms, however. We discuss this further
below.

6



high yield bonds should be different than the market for shorting investment grade bonds.

If the stock and bond markets are not linked, bonds may be shorted due to segmentation.

One possibility is that bond short sellers are separate from stock short sellers and evaluate

the firm’s prospects independently. For instance, practitioners have told us that within an

investment firm, the bond and stock trading desks may not trade in each other’s instruments.

Hence, the bond desk may short the bonds, while the stock desk shorts the stocks.

There are also reasons for shorting bonds that are not related to the value of the firm’s

stock. If there is a capital structure arbitrage, investors may go long one tier of the firm’s

capital structure and short another. Arbitrage is also possible between a firm’s bonds and

their CDS (or other securities reflecting the firm’s credit).

Arbitrage trades involving bond shorting are not necessarily specific to an individual

bond issue. Two examples are credit spread arbitrage (between different yield curves) and

market-wide interest rate arbitrage. In the first case, if investors believe that yield curves are

mispriced in relation to one another, they will short one credit category of bonds, and go long

another. In this instance, it is not important which firm issued the bond, only the bond’s

credit rating. In the second case, we expect that investors who believe interest rates will rise

prefer to short government bonds rather than corporate bonds because of their low credit risk.

However, bond traders have told us that AAA-rated debt is occasionally used for this purpose

because it is sometimes cheaper to borrow than treasuries. Here, it is not important which

firm issued the AAA-rated debt.

Finally, corporate bonds may be borrowed short term to facilitate clearing of long trades

in the presence of temporary frictions in the delivery process.

1.3.2 Mechanics of Shorting Bonds

The mechanics of shorting corporate bonds parallel those of shorting stocks. Shorted bonds

must first be located and then borrowed. The investor has three days to locate the bonds

after placing a short order. Investors usually borrow bonds through an intermediary such as a

depository bank. Such banks serve as custodians for financial securities and pay depositors a
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fee in exchange for the right to lend out securities. The borrower must post collateral of 102%

of the market value of the borrowed bond, which is re-valued each day. Loans are typically

collateralized with cash although US Treasuries may also be used. In our sample, 99.6% of

bond loans are collateralized by cash. Investors subject to Federal Reserve Regulation T must

post an additional 50% in margin, a requirement that can be satisfied with any security. The

loan is “on-demand” meaning that the lender of the security may recall it at any time. Hence,

most loans are effectively rolled over each night, and there is very little term lending.

The rebate rate determines the fee that the borrower pays for the bond loan. The rebate

rate is the interest rate that is returned by the lender of the security for the use of the collateral.

For example, if the parties agree to a bond loan fee of 20 bps, and the current market rate for

collateral is 100 bps, then the lender of the corporate bond returns, or “rebates”, 80 bps back

to the borrower undertaking the short position. There can be variability in the rebate rate for

the same bond even on the same day. It is even possible that the rebate rate is negative, which

means the borrower receives no rebate on their collateral and has to pay the lender. Finally,

if a bond makes coupon payments or has other distributions, the borrower is responsible for

making these payments back to the owner of the security.

1.3.3 Size of the Bond Loan Market

There is limited information about the size of the markets for shorting any security. For

stocks, all three major stock exchanges release short interest statistics bimonthly.3 Short

interest is the number of shares shorted at a particular point in time divided by the total

shares outstanding and is often represented as a percentage. In addition, daily stock shorting

information is available from January 2005 through July 2007 when Regulation SHO was in

effect. Regulation SHO required all exchanges to mark stock trades as long or short. This is

no longer the case.

To estimate the size of the market for shorting stocks, most researchers first examine stock

short interest statistics released by the exchanges. Asquith et al. (2005) report that in 2002

3Prior to September 2007, all three exchanges reported short interest once a month.
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the equally-weighted average short interest for stocks is approximately 2.4% for the NYSE

and AMEX combined, and 2.5% for the NASDAQ-NMS. That is, 2.4% or 2.5% of the total

number of shares are lent out on average. To examine short sales as a percentage of trading

volume, Diether et al. (2009) use Regulation SHO data and find that short sales represent 31%

of share volume for NASDAQ-listed stocks and 24% of share volume for NYSE-listed stocks in

2005. Asquith et al. (2006) report that short sales represent 29.8% of all stock trades on the

NYSE, AMEX, and NASDAQ-NMS exchanges during the entire SHO period.4 Since bonds

primarily trade OTC, comparable information on short interest does not exist and Regulation

SHO did not apply.

To estimate the size of the market for shorting corporate bonds, we assume that our

proprietary lender’s share of the bond shorting market is identical to their share of the stock

shorting market. Asquith et al. (2006) report that our proprietary lender made stock loans

totaling 16.7% of all stock shorting volume on the NYSE, AMEX, and NASDAQ-NMS markets

during the SHO period. From Table 1.1, discussed below, the average daily par value of the

bonds on loan by our proprietary lender is $14.3 billion. This measure is comparable to short

interest, i.e. it is the daily average par value of bonds shorted over our sample period. If

we assume that our lender represents 16.7% of the bonds lent, then total bonds lent for the

entire market on an average day is $85.6 billion. This is 1.3% of the average par value of

corporate bonds outstanding as reported from the FISD database discussed below. Thus, by

this measure, bond shorting is approximately half as large as stock shorting.

The average daily new corporate bond loan volume of our proprietary lender is $550.3

million. If we again assume our proprietary lender is responsible for the same proportion of

loans to bond short sellers as they are to stock short sellers, this implies that the average daily

par value of corporate bonds shorted is $3.3 billion. SIFMA reports that the average daily

corporate bond trading volume for the years 2004-2007 is $17.3 billion. By this measure, bond

short selling would represent 19.1% of all corporate bond trades.

4Asquith et al. (2010) find for a sample of NYSE and NASDAQ stocks, that short trades are 27.9% of
trading volume in 2005.
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Using these estimates implies that shorting corporate bonds is an important market activity.

The percentage of corporate bonds shorted, 1.3%, is slightly greater than half the percentage

of stocks shorted, 2.5%. Furthermore, the percentage of all daily corporate bond trades that

represents short selling, 19.1%, is almost two-thirds the percentage of stock trades that entails

short selling, 29.8%. Thus, at any point in time the amount of corporate bonds shorted is

large, and trading in the corporate bond market includes significant short sale activity.

1.4 Description of Sample

We use four separate databases, two that are commercially available and two that are propri-

etary, to construct the sample of corporate bonds used in this paper. All four databases cover

the period from January 1, 2004 through December 31, 2007. The commercially available

databases are the Trade Reporting and Compliance Engine database (TRACE) and the Fixed

Income Securities Database (FISD). The two proprietary databases are a bond inventory

database and a bond loan database. These databases were provided to us by one of the world’s

largest custodians of corporate bonds. The bond inventory database contains all corporate

bonds available for lending, and the companion bond loan database describes the loans made

from that inventory. The bond CUSIP is used as the common variable to link these four

databases.

TRACE is a database of all OTC corporate bond transactions and was first implemented

on a limited basis on July 1, 2002. TRACE reports the time, price, and quantity of bond

trades, where the quantity is top-coded if the par value of the trade is $5 million or more

for investment grade bonds and $1 million or more for high yield bonds. Over time, bond

coverage expanded in phases, and the compliance time for reporting and dissemination of

bond prices shortened. Our sample begins between Phase II and III of TRACE. Phase II was

implemented on March 3, 2003, while Phase III was implemented in two stages, on October 1,

2004 and on February 7, 2005. Phase III required reporting on almost all public corporate
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bond transactions.5 Since the vast majority of corporate bonds are traded over-the-counter,

TRACE provides the first reliable daily pricing data for corporate bonds.

The FISD database contains detailed information on all corporate bond issues including

the offering amount, issue date, maturity date, coupon rate, bond rating, whether the bond is

fixed or floating rate, and whether it is issued under SEC Rule 144a. We exclude any corporate

bond in the inventory file that we cannot match to FISD. In addition we also exclude all

convertibles, exchangeables, equity-linked bonds, and unit deals.

The proprietary bond inventory database contains the number of bonds in inventory and

number of bonds available to lend. From January 1, 2004 through March 30, 2005 we have

end-of-the month inventory information for all bonds. The database reports daily inventory

information from April 1, 2005 to December 31, 2007. In contrast to the inventory database,

the loan database is updated daily for the entire period January 1, 2004 through December

31, 2007.6 For each day, the loan database includes which bonds are lent, the size of the

loan, the rebate rate paid to the borrower, and an indicator of who borrows the bond. The

proprietary loan database identifies 65 unique borrowers for corporate bonds. These borrowers

are primarily brokerage firms and hedge funds.

Table 1.1 describes the match between the proprietary bond inventory and loan databases

to the overall universe of FISD corporate bonds averaged by day. Panel A shows that from 2004

to 2007, the average number of bonds in the inventory database is 7,752. This represents 20.7%

of all corporate bonds in FISD for an average day. The relationship between the number of

bonds in FISD and the inventory is stable over each of the four years. Although not aggregated

in Table 1.1, there are a total of 15,493 unique bonds in the bond inventory sample that match

5Phase I of TRACE covered transaction information on approximately 500 bonds. It required users to
report transaction information on covered bonds to the NASD (since renamed FINRA) within 75 minutes.
Phase II of TRACE expanded coverage of bonds to approximately 4,650 bonds. Coverage of additional 120
bonds was added on April 14, 2003. On October 1, 2003 the time to report was shortened to 45 minutes. A
year later, on October 1, 2004, reporting time was shortened again to 30 minutes. Finally, on July 1, 2005 the
reporting time was shortened to 15 minutes. Most reported trades are immediately disseminated by FINRA.

6There are several missing days in the loan database. On these days the file we obtained from the proprietary
lender was either unreadable or a duplicate of an earlier daily file. These days are December 16-31, 2004, all of
February 2005, June 7, 2006, and November 27, 2007.

11



T
ab

le
1.

1:
N

um
be

r
an

d
P
ar

V
al

ue
of

B
on

ds
in

C
or

po
ra

te
B
on

d
D

at
ab

as
es

Pa
ne

l A
: D

ai
ly

 A
ve

ra
ge

 N
um

be
r 

of
 B

on
ds

20
04

 - 
20

07
20

04
20

05
20

06
20

07

N
um

be
r o

f C
or

po
ra

te
 B

on
d 

C
U

SI
Ps

 in
 F

IS
D

37
,5

35
32

,9
19

35
,7

96
37

,4
71

39
,1

63

N
um

be
r o

f C
or

po
ra

te
 B

on
d 

C
U

SI
Ps

 in
 B

ot
h 

Le
nd

er
 D

at
ab

as
e 

an
d 

FI
SD

7,
75

2
7,

59
2

7,
66

9
7,

75
0

7,
82

7

Pe
rc

en
t o

f F
IS

D
 R

ep
re

se
nt

ed
 in

 L
en

de
r D

at
ab

as
e

20
.7

%
23

.1
%

21
.4

%
20

.7
%

20
.0

%

N
um

be
r o

f C
or

po
ra

te
 B

on
d 

C
U

SI
Ps

 in
 L

en
de

r 
D

at
ab

as
e 

an
d 

FI
SD

 T
ha

t G
o 

on
 L

oa
n

2,
90

1
2,

61
2

2,
79

7
2,

84
1

3,
05

4

Pe
rc

en
t o

f C
or

po
ra

te
 B

on
d 

C
U

SI
Ps

 in
 L

en
de

r 
D

at
ab

as
e 

an
d 

FI
SD

 T
ha

t G
o 

on
 L

oa
n

37
.4

%
34

.4
%

36
.5

%
36

.7
%

39
.0

%

Pa
ne

l B
: P

ar
 V

al
ue

 o
f B

on
ds

20
04

 - 
20

07
20

04
20

05
20

06
20

07

Av
er

ag
e 

D
ai

ly
 P

ar
 V

al
ue

 o
f E

xi
st

in
g 

FI
SD

 B
on

ds
 

(B
ill

io
ns

 o
f $

)
6,

61
9

5,
64

9
6,

10
5

6,
53

0
7,

15
9

Av
er

ag
e 

D
ai

ly
 P

ar
 V

al
ue

 o
f E

xi
st

in
g 

FI
SD

 B
on

ds
 

in
 L

en
de

r I
nv

en
to

ry
 (B

ill
io

ns
 o

f $
)

19
3.

3
18

3.
4

18
6.

7
19

5.
5

19
6.

8

Le
nd

er
 In

ve
nt

or
y 

as
 a

 %
 o

f F
IS

D
 P

ar
 V

al
ue

2.
9%

3.
2%

3.
1%

3.
0%

2.
7%

Av
er

ag
e 

D
ai

ly
 P

ar
 V

al
ue

 o
f B

on
ds

 O
n 

Lo
an

 in
 

Le
nd

er
 In

ve
nt

or
y 

(B
ill

io
ns

 o
f $

)
14

.3
14

.2
14

.7
13

.9
14

.4

Le
nt

 a
s a

 %
 o

f L
en

de
r I

nv
en

to
ry

7.
4%

7.
7%

7.
9%

7.
1%

7.
3%

Ta
bl

e
1.

1
re

po
rt

s
th

e
nu

m
be

r
an

d
pa

r
va

lu
e

of
bo

nd
s

in
th

e
FI

SD
C

or
po

ra
te

B
on

d,
P

ro
pr

ie
ta

ry
B

on
d

In
ve

nt
or

y,
an

d
P

ro
pr

ie
ta

ry
B

on
d

Lo
an

da
ta

ba
se

s
fo

r
th

e
ov

er
al

lp
er

io
d

an
d

by
ye

ar
.

C
on

ve
rt

ib
le

s,
ex

ch
an

ge
ab

le
s,

un
it

de
al

s,
pe

rp
et

ua
lb

on
ds

,b
on

ds
w

it
h

m
is

si
ng

or
no

ns
en

si
ca

lo
ffe

ri
ng

am
ou

nt
da

ta
,a

nd
al

lb
on

ds
w

it
h

“K
N

O
C

K
”,

“R
E

V
E

R
SE

”,
or

“E
Q

U
IT

Y
”

in
th

ei
r

de
sc

ri
pt

io
n

ar
e

ex
cl

ud
ed

.
T

he
ti

m
e

pe
ri

od
an

al
yz

ed
is

Ja
nu

ar
y

1,
20

04
th

ro
ug

h
D

ec
em

be
r

31
,2

00
7.

A
ll

da
ta

is
da

ily
ex

ce
pt

fo
r

da
ta

fr
om

th
e

pr
op

ri
et

ar
y

in
ve

nt
or

y
da

ta
ba

se
w

hi
ch

is
on

ly
av

ai
la

bl
e

m
on

th
ly

fr
om

Ja
nu

ar
y

1,
20

04
to

M
ar

ch
31

,2
00

5.

12



to FISD at some point. In addition, 2,901 or 37.4% of bonds in the lender inventory are on

loan on an average day. There is a slight upward trend in the fraction of bonds lent from

inventory during 2004 to 2007. There are 10,293 unique bonds in the merged database that

are lent at some point during the four-year period.

Table 1.1 Panel B reports similar comparisons using the par value of the bonds. The

average daily par value of corporate bonds outstanding in the FISD database during the period

2004 to 2007 is $6.6 trillion, while the average daily par value of corporate bond inventory in

the database is $193.3 billion. This represents 2.9% of the total par value of corporate bonds

issued and listed in FISD. Of this inventory, an average $14.3 billion, or 7.4% of the total par

value of the inventory, is on loan each day.

In Figure 1.1, we plot our proprietary lender’s number of loans outstanding, on the left

hand axis, and the total par value of these loans, on the right hand axis, over time. On an

average day, there are between 7,000 and 11,000 outstanding loans. The total par value of

outstanding loans also fluctuates around the overall mean of $14.3 billion, with a maximum of

more than $16.8 billion in October 2004, and a minimum of about $10.5 billion in January

2004.

Table 1.1 and Figure 1.1 clearly demonstrate that the number and value of corporate bonds

and corporate bond loans in the two proprietary databases are large. The bond inventory

database covers 20.7% of the bonds in FISD. The par value of the inventory is $193.3 billion

on average, representing 2.9% of the $6.6 trillion market. In total, the proprietary database

consists of 367,751 loans, covering 10,293 bonds, and representing an average par value of

$14.3 billion per day. We believe this is of sufficient size to draw inferences about the overall

market.

1.4.1 Sample Characteristics

Tables 1.2 and 1.3 compare various bond characteristics from FISD to the proprietary in-

ventory and loan databases by year and for the entire period. It allows us to determine

how representative the proprietary databases are of the entire corporate bond market. We
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focus on characteristics that are likely to affect the demand and supply for corporate bond

loans. The characteristics we examine are the size at issue, maturity, time since issuance,

percent defaulted, percent floating rate, and percent subject to SEC Rule 144a. Rule 144a is a

provision that allows for certain private resale of restricted securities to qualified institutional

buyers.

Table 1.2 shows that the average bond in the inventory is much larger at issue ($418.6

million) than the average FISD bond at issue ($175.3 million). The average bond lent is even

larger at issue with a size of $487.4 million. The average maturity at issue of the bonds in the

inventory database (11.3 years) is close to the average maturity at issue of the universe of all

FISD corporate bonds (10.7 years). The average maturity at issue for lent bonds is 11.9 years.

A comparison of time since issuance indicates that lent bonds are not outstanding as long as

the average bond in the inventory or in FISD. There are no year-to-year trends in the values

of these bond characteristics.7

Bonds in the FISD database are less likely to default (0.6%) than bonds in inventory (1.1%)

and the default percentage for lent bonds is between the two (0.7%). Bonds on loan are much

less likely to be floating rate bonds (10.6%) than bonds in either the FISD dataset (22.4%) or

the inventory dataset (17.0%). The fraction of bonds that are subject to SEC Rule 144a is

much lower for bonds on loan than for the FISD and inventory samples.

Table 1.3 reports Standard and Poor’s (S&P) rating characteristics of corporate bonds.

The coverage of the S&P ratings information in FISD is not as extensive as those characteristics

reported in Panel A, however. For instance, there are 57,896 bonds in FISD where we observe

the size at issue, while we observe S&P ratings for only 39,197 of these bonds. Fortunately, the

limited coverage of ratings in FISD has a smaller impact on the inventory and loan samples.

While we have issue size information for 10,293 lent bonds, we have an S&P rating for 9,822,

or 95.4% of lent bonds.

7The values for some of the variables, e.g. maturity and time since issuance, over the entire period are
outside the range of the per-year means. This is because each bond is only counted once for the entire period,
but may be counted multiple times when counting the observations in the per-year columns. For example, the
number of FISD, inventory, and lent bonds for the entire sample period is not the respective sums of the four
separate years.
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The bond inventory has a lower median rating at time of issue and over our time period

than the universe of FISD corporate bonds. The sample of lent bonds has the same median

rating at time of issue as inventory, but a lower rating over the entire period. The other rows

of Panel B, which show percentage investment grade at issue and percentage investment grade

as of the date of the loan, show a pattern consistent with the lower ratings for lent bonds than

for FISD bonds.8

In summary, Tables 1.2 and 1.3 show that shorted bonds are much larger at issue, have a

slightly longer maturity at issue, and have a lower median rating at issue than the average

FISD bond. 68.9% of the lent bonds are investment grade, while 79.2% of all FISD bonds are.

Lent bonds are also more likely to be fixed rate and less likely to be defaulted.

1.4.2 Properties of Short Positions

Each loan in the loan database has a unique loan number, which allows us to describe the

time series properties of lent positions. Using the loan number, we are able to determine when

the loan is initiated, the duration of the loan, and the number of bonds lent over the duration

of the loan. Table 1.4 provides descriptive statistics for the new bond loans in the database in

total and split by whether the bonds are investment grade or high yield and unrated.9 There

are 10,293 unique bonds lent in the database, and 367,751 unique loans for an average of 35.7

loans per bond. Some bonds change ratings between investment grade and high yield over the

sample period. There are 293,649 loans on investment grade bonds and 128,102 loans on high

yield bonds.

The data in Table 1.4 indicates that the size and duration of loans are skewed and this

skewness differs between investment grade and high yield loans. The mean loan size for

8The data on treasury spreads has a different pattern. The lent bonds have a smaller spread to treasuries
than do our inventory or the FISD database. It is important to note, however, that the available information
on treasury spreads is much smaller than that of bond ratings, and therefore these two descriptives are not
directly comparable since the samples are different. The notes in Tables 1.2 and 1.3 give more information on
this issue.

9There are only 13,884 loans to unrated bonds in our database and we have grouped them with high yield
bonds. Holding the unrated bonds out as a separate sample does not change the analysis. We will refer to high
yield and unrated bonds as high yield in the text going forward.
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investment grade bonds is 1,267.3 bonds or approximately $1.3 million at a par value of $1,000.

The median loan size is only 200 bonds or $200,000. The mode loan size is $100,000. High

yield bonds have a higher mean, $1.8 million, a higher median, $980,000, and a mode of $1.0

million. The mean new investment grade loan is outstanding for 28 calendar days, with a

median time outstanding of 10 days and a mode of one day. For high yield bonds the mean is

40 days, the median is 13 days, and the mode is also one day. Thus, loans for high yield bonds

are larger and longer than those for investment grade bonds.

The last three rows of Table 1.4 show how often loan size changes during the life of the loan.

Changes to loan size may occur if borrowers partially repay the loan or if portions of their loan

are recalled by the lender. In the sample, loan size decreases for 29.3% of investment grade

loans and 34.8% of high yield loans before the loan is closed. Of the loans which change size,

the average decreases of the initial loan size are 55.7% and 58.6% respectively, and the average

number of decreases are 1.9 and 1.8. We do not observe increases in loan size, presumably

because a borrower who wishes to borrow more bonds initiates a new loan.

Tables 1.1, 1.2, 1.3, 1.4 and Figure 1.1 show that the proprietary inventory and loan

databases are extensive. The inventory database covers over 20% of all corporate bonds issued

and the loan database contains over 367,000 loans on over 10,000 bonds. The average amount

in inventory per day is $193.3 billion, and the average amount on loan per day is $14.3 billion.

The lent bonds are larger, have a longer duration, and have a lower rating than the average

bond in the FISD database. Loan activity is extensive throughout the entire period. New bond

loans average over $1.4 million and have an average duration of 32 days. Loans on high yield

bonds are larger and longer than those on investment grade bonds. Finally, approximately

one-third of loans are partially repaid before being closed out.

1.5 Costs of Borrowing Corporate Bonds

The borrowing cost for corporate bonds has two major components: the rebate rate paid by

the lender and the market interest rate. The rebate rate is the interest rate the lender pays

on the collateral posted by the borrower and is typically lower than the market rate that
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the borrower could receive on the same funds invested at similar risk and duration elsewhere.

Thus, we calculate the cost of borrowing as the difference between the market rate and the

rebate rate. The loan database gives the rebate rate paid by the lender, but not the market

rate. We use the one-month commercial paper rate as a proxy for the market rate.10

Even though most corporate bond loans are short term, as shown in Table 1.4, borrowing

costs vary frequently over the life of the loan. Although not shown in a table, overall, 49.3%

of the bond loans in the sample experience a change of at least 5 bps in their borrowing cost

before repayment. These changes are due both to changes in the rebate rate and changes in

the commercial paper rate. 42.3% of bond loans experience a rebate rate change of at least 5

bps, while 21.2% experience a change in the commercial paper rate of at least 5 bps.11

It is possible for the lender to change the rebate rate frequently because all of the loans are

demand loans. In addition, if supply and demand conditions for the bond improve, and if the

lender does not raise the rebate rate, the borrower has the option of closing out the loan and

borrowing from a different lender. For the loan sample, there is an average of 3.5 rebate rate

changes of at least 5 bps per loan, or approximately 8 rebate rate changes for those loans with

changes. Furthermore, rebate rate changes of at least 5 bps go in both directions. 38.4% of all

loans have a rebate rate increase, 29.7% of all loans have a rebate rate decrease, and 25.8% of

all loans have both. Hence, a considerable factor driving changes in the cost of borrowing is

changes in the rebate rate on existing loans by the lender.

The frequent changes in borrowing costs suggest that existing loans should track current

market conditions, although perhaps with a lag. Comparing new and existing loans, the

average absolute difference in the borrowing costs for the same bonds on the same day is 4.3

bps, with a standard deviation of 27.6 bps. Moreover, for those bonds that have new and

existing loans on the same day, 46.5% of new loans have an average borrowing cost that is

10An alternative to the commercial paper rate is the Fed Funds rate. We use the commercial paper rate
because we think it more accurately represents the rate the borrowers could get on their collateral. For most of
the period, January 1, 2004 through December 31, 2007, the commercial paper and Fed Funds rates correlate
highly (the average difference across days is 4.9 bps and the coefficient of correlation is 0.998).

11High yield loans are more likely than investment grade loans to experience a rebate rate change of at least
5 bps (45.9% versus 40.4%), though this may be due to their longer average duration.
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more expensive than existing loans and 35.4% of new loans are cheaper than existing loans.

Given these differences, the analyses below only use the borrowing cost for new loans unless

otherwise stated. All loans start as new loans, and new loans must reflect current market

conditions.

1.5.1 Time Series and Cross-Section of Borrowing Costs

Figure 1.2 plots the distribution of equally-weighted borrowing costs by quintile for each month

of our sample period. The plot shows that the distribution of borrowing costs changes abruptly

between March and July 2006. Before March 2006, the 60th and 80th percentiles of borrowing

costs are usually at or above 50 bps for each month. After March 2006, the 60th percentile is

at or below 20 bps for each month. The 80th percentile drops below 20 bps in August 2006

and is near or below 20 bps until the start of the Credit Crunch in August 2007. The plot of

value-weighted loan borrowing costs, although not shown, shows a similar but less dramatic

pattern during the same time period.

The reasons why borrowing costs are reduced in 2006 are not immediately clear. Table

1.1, Table 1.2, Table 1.3 and Figure 1.1 show that the lender’s inventory of bonds and the

amount lent do not change significantly after 2005. Furthermore, although not reported, the

duration of bond loans also does not change significantly over time. To further investigate

the decline in borrowing costs, Table 1.5 presents borrowing costs over time partitioned by

loan size and credit quality. Over the sample period 2004-2007, shown in the first column, the

equally-weighted mean and median borrowing costs are 33 bps and 18 bps, respectively.12 The

composition of loans by size and credit quality does not change dramatically in 2006. Table

1.5 shows that the percentage of large loans remains fairly constant (it decreases slightly by

2007) and the percentage of investment grade loans remains flat.

Panel A divides loans into those of 100 bonds or less (i.e., $100,000 par value, the overall

mode loan size) and those of more than 100 bonds. It shows that large loans have lower

12The borrowing costs in Table 1.5 are equally-weighted by loan. When value-weighting borrowing costs by
loan size, the value-weighted mean borrowing cost is 22 bps and the median is 14 bps.
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borrowing costs than small loans, but this difference diminishes over time. For example, in

2004 the mean borrowing cost for loans of 100 bonds or less is 51 bps. For loans of more than

100 bonds, the mean borrowing cost is 31 bps. By 2007, it appears that size is no longer priced

as the mean borrowing cost for small loans is 19 bps, which is identical to that of large loans.

The median borrowing costs behave similarly.

Panel B presents borrowing costs over time by credit rating. For the entire period high

yield bonds have a higher average borrowing cost than investment grade bonds, 37.4 bps versus

30.0 bps, but identical medians of 18.0 bps. Borrowing costs for both investment grade and

high yield bonds decline by 2007. The decline in both mean and median borrowing costs is

greater for investment grade bonds than for high yield bonds.

Thus, Table 1.5 shows that average borrowing costs are usually lower for large loans and for

investment grade loans. Borrowing costs generally decline over our sample period regardless of

loan size and credit quality. In addition, the decline in borrowing costs is not explained by

changes in the composition of large vs. small or investment grade vs. high yield loans.

Another factor why borrowing costs change over time may be greater transparency in bond

market pricing related to the growth of TRACE during our sample period. The sample begins

between Phases II and III of TRACE. As stated above, Phase II was implemented on April 14,

2003, while implementation of Phase III was completed by February 7, 2005. Phase III required

reporting on almost all public corporate bond transactions. It seems unreasonable, however,

that it would take more than a year, until April 2006, for the effects of this increased coverage

to have an impact. Finally, the growth of the CDS market may have driven improvements in

the liquidity of corporate bonds, and the narrowing of borrowing cost spreads may reflect this

trend. We investigate the impact of the CDS market for the market for borrowing corporate

bonds in Section 1.8.

1.5.2 Determinants of Borrowing Costs

We next investigate how the cost of borrowing is related to the available supply of bonds in

the lender’s inventory. As previously mentioned, we do not have daily inventory data from
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January 2004 to March 2005, and thus cannot compute the daily available supply of bond

inventory during this period. Figure 1.3 plots the relationship between the average borrowing

cost and the amount of inventory on loan divided by investment grade and high yield loans

for the periods April 2005 to March 2006 and April 2006 to December 2007. It also plots the

Credit Crunch 2007 period from July 2007 to December 2007 which we will discuss later in

Section 1.9. The vertical axis displays average borrowing cost and the horizontal axis displays

amount of inventory lent.

For both periods, April 2005 to March 2006 and April 2006 to December 2007, high

yield bonds are more expensive to borrow than investment grade bonds at higher on loan

percentages. When the loan percentage is below 40-45%, there is no noticeable difference in

borrowing costs between high yield and investment grade bonds. However, when the on-loan

percentage is greater than 45% high yield bonds become more expensive while the cost of

borrowing investment grade bonds remain flat. Finally, at approximately 70% on loan there is

a steep increase in the average borrowing cost for high yield bonds: each 10% increase in the

amount on loan is associated with a greater than 10 bps increase in the average borrowing

cost.13 In contrast, the borrowing costs for investment grade bonds continue to be insensitive

to on loan percentage.

Figure 1.3 also shows that borrowing costs are significantly lower in the latter period, April

2006 through December 2007, compared to the earlier period, April 2005 to March 2006. This

is true for both high yield and investment grade bonds. This result is consistent with Figure

1.3 and Table 1.5, which show a decrease in borrowing costs after April 2006. Note, the kink

at 70% of available inventory still exists, and although borrowing costs are lower in the latter

period, the slope of that segment is similar. This suggests that the reduction in borrowing

costs in the latter half of our sample period is not due to changes in how inventory impacts

borrowing costs. Finally, the pattern for high yield and investment grade bonds during the

2007 Credit Crunch is similar.

13The pattern for high yield bonds is consistent with the results of D’avolio (2002) and Kolasinski et al.

(2013) for the equity loan market. Neither paper divides the equity loan market by credit quality.
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Table 1.6 presents the 35 corporate bonds with the highest borrowing costs in the sample.

Each bond is listed once, together with its maximum loan borrowing cost and the date and

borrowing cost corresponding to that maximum. Since there is a great deal of clustering by

firm of the most expensive bonds to borrow, the last column of Table 1.6 indicates the number

of bonds from that issuer where the borrowing cost is greater than the 250th most expensive

to borrow bond in the sample. For example, the borrowing cost of the most expensive loan on

the Calpine Corp bond with CUSIP 131347AW6 is 14.50%, but there are 10 other Calpine

Corp bonds which have borrowing costs above the 250th most expensive to borrow bond in

the sample.

There are three features of the bonds in Table 1.6 that are worth noting. First, these

bonds are highly lent out. The average percentage on loan is 79.7%, well above the 70% “kink”

observed in Figure 1.3. Second, most of the firms in Table 1.6 experience credit problems

around the date they appeared on our list and as seen in the next to the last column, all of

the bonds are high yield. Of the 35 firms on the list, 9 are bankrupt as of the date of the

loan, while another 6, while not filing for bankruptcy, were downgraded in the prior year. In

addition, 7 of the firms, while not bankrupt or downgraded, were frequently mentioned in

the press in the previous year as “financially struggling.” Interestingly, 8 of the remaining

firms undertook an LBO during this period. Although we did not check explicitly, we infer

the increased leverage from the LBO impacted the bond’s borrowing cost.

A third feature of Table 1.6 is that a large fraction of the most expensive bond loans take

place during the latter half of 2007. Thirteen out of 35 bond loans in our list are after July

1, 2007, and 8 of these are on one day, October 31, 2007. Importantly, all 8 have negative

rebate rates on that date. This means their inclusion cannot be explained solely by that day’s

reported commercial paper rate.

Calculated borrowing costs are not always positive. A negative borrowing cost is the result

of the lender paying a rebate rate above the commercial paper rate, and it implies that the

lender loses money on the loan. In total, we have 11,971 loans (or 3.3% of the total) with

negative borrowing costs in the sample. Most of the loans with negative borrowing costs
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coincide with the 2007 Credit Crunch from August 2007 until December 2007. This can

be seen in Figure 1.2, which shows that the borrowing cost of the bottom quintile becomes

negative after July 2007. Of the 11,971 loans with negative borrowing costs, 8,832 of them

occur between August and December 2007, of which 7,960 are on only 26 different days.

There is more than one possible reason why the cost of borrowing is negative for some

bond loans. It is possible that the reported one-month commercial paper rate, which we take

from the Federal Reserve Board’s website, is not representative of the true market conditions

for all days. This is particularly true for those days with very large intra-day interest rate

movements. During the 2007 Credit Crunch, the Fed eased credit and dropped the Fed Funds

rate several times, causing the commercial paper rate to fall as well. It is also possible that

the proprietary lender is slow to respond to changes in credit conditions.

Finally, it should be noted that during the Credit Crunch in the last half of 2007, the Fed’s

intervention caused short-term rates to fall substantially below medium-term rates. If the

reinvestment rate on collateral received by the lending institution is above short-term rates,

the lender can still make a profit on their bond loans even with negative borrowing costs.14

Alternatively, the Credit Crunch of 2007 may have caused borrowers of the bond to want to

close out their short position and have their collateral returned. If the lender has invested

the collateral in illiquid securities which have lost value, they may have difficulty in returning

collateral on demand. In this instance, they may subsidize borrowers to avoid reducing their

collateral pool. This scenario was reported in the financial press and a number of lenders

reported losses on their collateral during this period.15 To determine if the market for lending

bonds in the period July to December 2007 is different, we examine this time period separately

14Our loan database provides a reinvestment rate which the lender estimates they will receive on the
collateral. This rate is not constant across all loans or even across all loans on one particular bond at a point in
time. The reason for this is that the lender invests the collateral in a number of different funds at the direction
of the bond’s owner. These funds can have a different duration and risk than that represented by investing
short term at the commercial paper rate. We ignore these reinvestment rates when calculating borrowing costs
since they do not represent the opportunity cost of the borrower’s collateral.

15See Weiss, AIG to Absorb $5 Billion Loss on Securities Lending, Bloomberg News, June 27, 2008 and
Karmin and Scism, Securities-Lending Sector Feels Credit Squeeze, Wall Street Journal, October 30, 2008.
Also, see State Street Press Release on July 7, 2010, State Street Records Second-Quarter After-Tax Charge of
$251 Million, or $0.50 Per Share.
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in Section 1.9.

1.5.3 Regression Analysis of Borrowing Costs

Although we know that borrowing costs are lower in 2006 and 2007 than they are in 2004 and

2005 and that borrowing costs are dependent on the size of the loan, the credit rating of the

bond, and the available inventory to borrow, it is hard to determine the relative importance

of these factors from the univariate comparisons we have made so far. We next conduct

a multivariate analysis, which allows us to simultaneously control for the factors we have

examined.

Even though bond loans are fully collateralized, bond characteristics may affect borrowing

costs because they reflect supply and demand conditions. A bond’s time since issuance may

be important if it affects how widely the bond is held, and thus how difficult it is to locate,

or if investor beliefs become more heterogeneous the longer the bond is outstanding. The

availability to borrow may also be proxied by whether the debt is public or private (Rule

144a), as private debt may be harder to sell short. Smaller issue size may also make the bonds

harder to find, increasing borrowing costs. Another factor is whether the bond is fixed or

floating rate. Floating rate bonds re-price with interest rate movements and are thus less likely

to deviate from par.

In addition, a bond’s rating may be an important determinant of borrowing costs. As

stated earlier, high yield bonds might attract more shorting activity because they are more

likely to deviate from par than investment grade bonds. In our sample, 5.0% of the inventory

for investment grade bonds is lent out, while for high yield it is 13.7% of inventory. Moreover,

ratings will impact borrowing costs if lower rated bonds are in short supply. For our lender,

investment grade bonds represent 70.8% of inventory, while high yield bonds are 29.2%. This

29.2% is under-represented (relative to FISD), where high yield bonds constitute 43.5% of the

FISD universe.

Borrowing costs may also differ for a given bond because of loan characteristics. As Figure

1.3 shows for high-yield bonds, a larger percentage of bonds already on loan may lead to higher
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borrowing costs. However, holding inventory constant, larger loans may have lower borrowing

costs if there is a size discount. Further, borrowing costs may differ by borrower if the lender

either gives a discount to large volume borrowers or if some borrowers are more knowledgeable

about the lending market than others.

Our regression model incorporates the data on bond characteristics from Tables 1.2 and

1.3 as well as on loan percentage, loan size, and loan initiation day dummies. In some

specifications, we also include dummy variables for each bond’s CUSIP and the identity of the

borrowing broker. The CUSIP controls allow us to examine how pricing varies across loan

market variables, while fixing bond characteristics. Since daily inventory data is only available

after March 2005, the regression analysis covers the period April 2005 through December 2007.

The models we estimate are variations of the following model for the borrowing cost of loan i

on bond b on day t:

Borrowing Cost
ibt

= CPrate
t

� RR
ibt

= �1on loan %
bt

+ �2loan size
i

+ �3rating
bt

+ �4issue size
b

+ �5time since issue
bt

+ �6floating rate
b

+ �7rule144a
b

+ �
t

+ 
b

+ �broker + ✏
ibt

where CPrate is the one month financial commercial paper rate (in our model 100 basis points

= 1.00) and RR is the rebate rate (with the same scale as the CPrate). The on loan % is the

percentage of daily inventory already lent, and loan size is the total number of bonds lent in

thousands of bonds (that is, the loan value in millions of dollars). Rating is the bond’s S&P

rating at the time of the loan (where AAA is given a value of 1, D is given a value of 22, and

all intermediate ratings are given consecutive values between 1 and 22). Issue size is the size of

the initial bond offering (in $100 millions). The time since issue variable is the time since the

bond was issued (in years). The floating rate variable is a dummy variable equal to 1 if the

bond pays a floating rate coupon and 0 if the bond has a fixed rate coupon. The Rule 144a

variable is a dummy variable equal to 1 if the bond was issued under SEC Rule 144a and 0

otherwise. �
t

represents a set of dummies for each trading day in the sample. 
b

represents a

set of dummies for each bond CUSIP in the sample, and �broker are a set of dummies for each
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unique borrower in the sample who borrows 100 or more times during our sample period.16

We report heteroscedasticity-robust standard errors.

Table 1.7 reports estimates from four specifications of the regression for all bonds: one

without broker or bond CUSIP dummies, one with broker dummies, one with bond CUSIP

dummies, and one with both broker and bond CUSIP dummies. The specifications with

bond CUSIP dummies do not include issue size, floating rate, and Rule 144a since these

characteristics are completely captured by the bond-specific controls. We also exclude time

since issuance when we have bond and date controls since these controls together capture

nearly all of the variation in this variable. In addition, Table 1.7 also reports estimates from

two specifications for only high-yield bonds using both broker and bond CUSIP dummies.

In the first four specifications (i.e. for all bonds), the on loan % coefficient is positive and

significant. In the two specifications without CUSIP dummies, the coefficient is 26.30 without

broker dummies and 26.23 with broker dummies. When we add the bond-specific controls, the

estimates fall to 3.19 and 4.38. The coefficients decrease because the bond-specific controls

pick up much of the variation in bond inventory. Still, consistent with the pattern we observed

in Figure 1.3, the larger the percentage of the inventory lent, the higher the borrowing cost.

Increasing the percentage lent by 10% is associated with an increase in borrowing costs by 2.6

bps across the sample of all bonds. For a specific bond, a 10% increase in on loan percentage

is associated with an increase of 0.3 to 0.4 bps on average.

For the sample of high-yield bonds in column (5), the coefficient for on loan percentage is

10.36, which is more than double the estimate for the same regression model on the entire

sample in column (4). This is consistent with the plots in Figure 1.3 for high yield versus

investment grade bonds. We also estimate a version of our regression model where we include

two additional measures of on loan percentage. These allow the slope to differ when on loan

percentage is greater than 50% and when it is greater than 70%. We choose these percentages

16Our lender identifies 65 borrowers. 40 make 100 or more loans and 25 make less than 100 loans during
our sample period. The average number of loans made by the largest 40 is 9,178 and the average made by
the smallest 25 is 25. Restricting our sample to the period covered by the regression, there are a total of 62
borrowers, 38 of whom make 100 or more loans.
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given the discussion of Figure 1.3 above. The difference in coefficients between columns (5)

and (6) is due to loans where the on loan percentage is greater than 70%. The coefficient

for on loan percentage alone in column (6) is 4.44, comparable to 4.38 in column (4). The

coefficient for on loan % greater than 70% is an incremental 5.09. There is no statistically

significant differential effect for on loan percentage greater than 50

Loan size is negative and significant for all six specifications showing that the larger the

loan, the lower the borrowing cost. The magnitude of the coefficient is economically large and

similar across all regression models, ranging from -1.36 to -2.16. This means that adding 1,000

bonds to loan size decreases borrowing costs by 1.36 to 2.16 bps.

The coefficients on bond ratings are positive and significant in all six specifications. The

lower rated the bond, the higher the borrowing costs. The magnitude of the estimate is larger

when we include bond-specific controls. For the specification in column (4), with broker and

CUSIP dummies, the estimates imply that a full letter downgrade raises borrowing costs by

9.69 bps (three times the regression coefficient estimate of 3.23). The magnitude is even larger

when we restrict the sample to high-yield bonds in column (5) where a full letter downgrade

raises borrowing costs by 16.56 bps.

The estimated coefficient for issue size is small, but positive and significant for the first

two specifications. Issue size must increase by $300 million for borrowing costs to increase by

1 bp. The coefficient on time since issuance is positive and significant in the two specifications,

implying that the longer a bond is outstanding, the higher the borrowing cost. For every year

a bond is outstanding, the borrowing cost increases by 0.7 bps.

The last two bond characteristics from Table 1.2 are indicators for floating rate bonds and

for whether a bond is Rule 144a. The estimates imply that fixed rate bonds are almost 6 bps

more expensive to borrow than floating rate bonds and that the borrowing costs for Rule 144a

bonds are about 3 bps more expensive.

The identity of the borrower who initiates a loan is also important in determining borrowing

costs. The proprietary database only allows us to observe the borrowing broker (or hedge

fund); it does not allow us to determine the final party undertaking the short sale transaction.
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In the database each bond is lent to one of 65 unique brokers who then either delivers the

bonds to their own institutional and retail clients for short selling or keeps them for its own

account.

The specifications in Table 1.7 columns (2), (4), (5) and (6) include 38 broker dummies,

each of which borrowed 100 or more bonds from April 2005 to December 2007. For all

specifications, we can reject the hypothesis that all broker coefficients are zero. The difference

between maximum and minimum broker coefficients and the 75th and 25th percentile broker

coefficients are also reported. In column (4), the “best” broker receives borrowing costs 59

bps less than the “worst” broker. This means that on the same day for the same CUSIP and

loan size, the lowest cost broker is able to borrow at a rate 59 bps lower than the rate for the

highest cost broker. This difference is considerably larger than the average borrowing cost

of 33 bps as reported in Table 1.5. The difference between the 75th and 25th percentiles in

column (4) is 20 bps. All differences are statistically significant.17

Table 1.8 further explores whether some brokers obtain lower borrowing costs. We examine

all days where two or more brokers borrow the same bond. Requiring that a broker “compete”

with another broker on the same day at least 100 times restricts us to consider 26 brokers.

For this group, we rank each broker’s “performance” on that day for that bond by evaluating

whether they received a lower, higher, or the same borrowing cost as another competing

broker.18 Those results are summarized in Table 1.8 and show that some brokers receive

consistently lower borrowing costs. We ran two sets of “competitive” races per borrower. One

set was between two brokers only; the second set was between three or more brokers. The

top-rated broker received the lowest borrowing cost for any given day and bond 92.5% of

the time when there were two brokers and 78.9% of the time when there were three or more

brokers for the same bond on the same day.

17While we find differences in costs across borrowers, Kolasinski et al. (2013) find significant differences in
costs across lenders for the equity lending market.

18The last line of Table 1.8 with Broker ID “Remainder” is a summary line that consolidates the other
39 brokers as one competitor. The competitive race results in columns 5-8 represent contests between the
combined 39 brokers and any of the 26 brokers above. It does not include contests that the 39 remaining
brokers have with each other.
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The two winning percentages of the top-rated broker are both significant using the sign

test. In fact, the top eight brokers all have winning percentages which are significantly greater

than 50% at the 1% level when “competing” with one other broker and significantly greater

than 33% when competing with two or more brokers. This success in the competitive races is

not dependent on the number of loans or the amount borrowed by the borrower. Rank order

correlations between placement in the competitive races and either the number of loans or the

dollar amount of the bonds borrowed are not significant. Furthermore, the differences are not

due to differences in the credit quality of brokers. Using broker bond ratings from S&P and

5-year CDS spreads from Markit, there is no significant relationship between either and broker

rank in the competitive race.19 Thus it appears that differences in borrowing costs between

borrowers reflect differences in market knowledge and abilities to negotiate borrowing costs.20

To summarize, the borrowing cost regression results in Table 1.7 show that a smaller loan

size, a higher percentage of inventory lent, and a lower bond rating lead to higher borrowing

costs. These results hold for all specifications of the model, although the coefficients for

on loan percentage are weaker when CUSIP dummies are included. Finally, the identity of

the borrowing broker significantly influences borrowing costs, both in aggregate and when

comparing loans for the same bond, regardless of the broker’s volume.

1.5.4 Borrowing Costs Around Credit Events

We next look at borrowing costs in the 30 days before and after significant credit events. The

events we examine are bankruptcy filings and large credit rating changes. We define a large

credit rating change as a movement of three or more S&P ratings, or one full letter or more,

e.g. going from an A+ to a B+ or from a BB- to an AA-. There are 241 bonds in the inventory

database of corporate bonds involved in a bankruptcy, representing 93 unique bankruptcies.

However, only 88 bonds have lending activity during the period from 30 trading days before

19We only found ratings and CDS spreads for 15 and 17 of the 31 brokers, respectively.

20Each unique broker’s identity is available to us from the proprietary database, although we are not allowed,
for confidentiality reasons, to disclose it. The differences in borrowing costs are consistent with our perceptions
of reputation.

38



until 30 trading days after the bankruptcy, which corresponds to 42 unique bankruptcies.

The average borrowing cost of these bonds for each of the 61 days is plotted in Figure

1.4. Since there are new loans for only 2.9 bankrupt bonds per day in the period -30 to +30

days around bankruptcy, we expand the sample by including old loans (which, as we discussed

above, are re-priced). This expands the number of bonds per day in Figure 1.4 to an average

of 60. However, not all bonds have a loan outstanding for all 61 days. We have also done the

analysis only on new loans and only on bonds that have loans for all 61 days. Although there

are far fewer observations, the results are qualitatively similar.

Figure 1.4 shows that bond borrowing costs are high for the entire period from -30 days

to +30 days, where Day 0 is the bankruptcy filing date. The average equally-weighted bond

borrowing cost for firms that file bankruptcy is 173 bps during the 30 days before filing. This

is substantially greater than the average 33 bps reported for all new loans in Table 1.5 and

indicates that these bonds are difficult to borrow before bankruptcy. After bankruptcy, bond

borrowing costs increase further to an average of 245 bps for the 30 days after the filing.

Thus, the borrowing costs indicate that short sellers identify firms in financial distress prior to

bankruptcy, but the bankruptcy filing is not completely anticipated since borrowing costs rise

after that date.

In Figure 1.5, we report a similar analysis for large bond downgrades and upgrades. There

are 292 full-letter upgrade events on bonds in the inventory, covering 281 unique bonds as some

bonds have multiple upgrades. Our loan data covers 125 of these events, which correspond to

122 unique bonds. The plot for these upgrade events shows that the average upgraded bond

borrowing cost is close to the average for all bonds before the upgrade and does not vary much

after the rating change. The average borrowing cost for the 30 days before the upgrade is 29.9

bps, and the average borrowing cost for the 30 days after the upgrade is 32.1 bps.

The bond borrowing costs for downgrades are much lower than those for bankruptcies,

but are above the average of all bonds and increase after the downgrade. There are 381

full-letter downgrade events during our time period on 356 unique bonds. The data covers 206

of these events on 193 bonds. The average borrowing cost for the bonds involved in a full-letter
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downgrade is 38.4 bps in the 30 days before the downgrade and 52.3 bps in the 30 days after

the downgrade. It is important to remember that all downgrades are included, including those

between investment grades, i.e. from an A+ to a BBB+, and thus all downgrades do not

signal financial distress.

Thus, Figures 1.4 and 1.5 show that bankruptcies and large credit downgrades increase a

bond’s borrowing cost, while large credit upgrades do not decrease a bond’s borrowing cost.

The reasons for these changes in borrowing costs around bankruptcies and downgrades are

difficult to discern. Although not shown, for bankruptcies, the supply of bankrupt bonds in

inventory falls by 12.5% in the 30 days after bankruptcy is announced compared to the 30

days before. That is, our lender has 12.5% less bonds to lend. The amount lent also falls

after bankruptcy by 23.9% comparing 30 days after to 30 days before. Hence, while the cost

of borrowing bankrupt bonds increases, we cannot definitively rule out that the reason is

a decrease in supply versus changes in demand. For downgrades, however, the amount of

inventory actually increases by 4%, and the quantity of bonds borrowed increases by 6%.

Since the cost of borrowing also goes up after downgrades, we can infer that there is increased

demand for borrowing these bonds.

1.6 Relationship Between Bond and Stock Shorting

1.6.1 Matching Bonds and Stocks

We next investigate how the market for shorting corporate bonds is related to the market for

shorting stocks. If the purpose of borrowing securities is to short the firm, we expect the two

markets to be integrated. As mentioned above, given the priority of claims, the stock of a firm

should lose its value before the debt, suggesting that investors who wish to express a negative

view about the firm may prefer to short stocks. This is consistent with loan activity by our

proprietary lender who made 367,751 bond loans and made 7,241,173 stock loans during our

sample time period.21

21The stock loan database has some borrowing costs that are suggestive of data errors. In particular,
there are stock loans that occur at large negative borrowing costs, implying that borrowers were being paid
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To understand how the market for shorting corporate bonds is related to the market for

shorting stocks, we matched each firm’s bonds to its corresponding common stock. We match

the first 6 digits of the bond CUSIP to the first 6 digits of the common stock CUSIP. This

match was not complete since many of the bonds in the dataset are subsidiaries or private

firms and thus have 6 digit CUSIPs which do not directly correspond to a common stock

CUSIP. To add the subsidiary bonds (which may have a different 6 digit CUSIP), we hand

matched the remaining bonds using SEC filings and CUSIP.com. To avoid potential biases

that hand matching may introduce, we analyze our results for both methods separately, i.e.

those that were matched with 6 digit CUSIPs versus those which were hand matched. There

are 15,493 bond CUSIPs in the inventory file. We were able to match 11,591 bond CUSIPs,

5,997 using the 6-digit CUSIP match, and an additional 5,594 were matched by hand. We

found no significant differences in results between the two subsamples.

Another matching problem is that there are many firms with multiple bond issues. For

instance, there are 124 different GM bonds in inventory, and we want to relate the borrowing

costs of all of those bonds to the cost of borrowing GM’s common stock. We group all issues

of bonds together for this analysis. The reason we group in this way is that for any given

day, within the same firm, bond rebate rates are close. When different bonds from the same

firm have a new loan on the same day, the median absolute value of the difference in bond

borrowing costs is zero bps. This means that for more than half the firm-day observations, the

borrowing costs are the same for all bonds of a given firm. Furthermore, the 75th percentile of

this distribution is only 4 bps.

As a result, for our bond and stock analysis, if a firm has more than one new bond loan

on a given day, we aggregate the borrowing costs across all bonds and all new loans by

computing a value-weighted median borrowing cost. Likewise, for stocks we take the median

a significant amount to borrow the stock. We eliminate the 53,481 stock loans with borrowing costs below
-5%. Also, there are some stock loans at high borrowing costs which would require that a significant amount
of the borrower’s collateral would be consumed by lending fees. We eliminate 4,883 stock loans where the
borrowing cost is greater than or equal to 6% if that is the most expensive loan for a stock on a given day and
the borrowing cost for the next most expensive loan for that stock on that day is no more than 3 times the
general collateral rate.
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stock borrowing cost for new loans weighted by shares lent. Hence the unit of observation in

this section is a matched firm-day, corresponding to a firm’s median value-weighted borrowing

cost across bonds and the firm’s median value weighted stock borrowing cost.

There are 336,449 bond loans which are matched to a stock in our sample. This represents

91.5% of all bond loans. There are 2,304,127 stock loans which are matched to a bond in our

sample, which is 31.8% of all stock loans. Thus, it is much more likely that a bond loan occurs

in conjunction with a stock loan, than vice versa.

1.6.2 Comparison of Bond and Stock Borrowing Costs

Figure 1.6 plots the equally-weighted distribution of stock loan borrowing costs over time by

quintile for matched stock loans. It is comparable to Figure 1.2, which plots a similar time

series for bond borrowing costs. Comparing Figure 1.6 to Figure 1.2 shows that the 20th and

40th percentiles of bond and stock borrowing costs are similar. However, the 60th and 80th

percentiles of stock borrowing cost are less expensive than bonds until mid 2006. At that

point, there is a compression in the distribution of stock borrowing costs generated by the

large drop at the top quintiles. This compression occurs at the same time as the compression

in bond borrowing costs discussed extensively above and seen in Figure 1.2. After mid 2006,

stock and bond borrowing costs are similar at all quintiles.22

To compare borrowing costs for stocks and bonds within a firm, it is necessary to impose

the restriction that stock and bond loans occur on the same day. This restriction reduces our

sample to 238,940 bond loans and 316,216 stock loans, corresponding to 113,548 matched

firm-days.

For most firms, there is a fixed link between bond and stock borrowing costs. In particular,

the difference between stock and bond borrowing costs is one of six distinct values: -10 bps, -5

bps, -1 bp, 0 bps, +35 bps, and +40 bps for 75.5% of the firm-days in the matched sample.

This is seen in Figure 1.7, which plots the percentage of loans in the matched sample in each

22The extreme values of stock borrowing costs are significantly greater than those of bond borrowing costs
throughout the period. For example, the borrowing cost for the 35th most expensive stock loan is still three
times the most expensive bond loan shown in Table 1.6.
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of these six categories over time.

The largest category in Figure 1.7 is new bond loans with borrowing costs 1 bp below

new stock loans. For the matched loans, this category accounts for an average of 39.4% of

observations. This 1 bp difference is impossible to explain if bond and stock borrowing costs

are not related. There are two other major fixed borrowing cost differences where bonds are

cheaper to borrow than stocks. They are -5 bps and -10 bps, which average 14.0% together.

The second largest category of fixed borrowing cost differences is bond loans with borrowing

costs 35 bps more expensive than stock loans. This relationship changes, however, during our

sample period. For the period from December 2004 until March 2006, the mean number of

observations in this category is 22.8%. For the period from April 2006 until December 2007,

the mean number in this category is 6.7%. This drop is clearly shown in Figure 1.7 and April

2006 appears to be a fundamental shift in the pricing relationship between bond and stock

loans. Moreover, the +40 bps category, where bond loans are 40 bps more expensive than

stocks, disappears by June 2006. These changes coincide with the reduction in the premium

charged for small bond loans in April 2006, as described in Section 1.5.

There is a category that expands dramatically after March 2006: bond and stock loans

that have the same borrowing cost. Before March 2006, the average percentage of matched

loans in this category is 0.2%, while after March 2006, it is 7.1%. The percentage of loans in

this category expands exactly when the percentage of loans in the +35 bps category decreases,

although not by equal amounts. The -1 bp category also increases after March 2006.

While Figure 1.7 graphs the differences in bond and stock borrowing costs, Table 1.9

considers these differences by credit quality and compares expensive bond and stock loans.

The first part of Table 1.9 confirms Figure 1.7 and shows that 63.7% of loans in the matched

sample have borrowing costs within 10 bps of each other. There is no significant difference

between investment grade firms and high yield firms which have 63.6% and 64.0% of matched

loans within 10 bps of each other respectively for the sample period.

For expensive matched loans the borrowing costs are not close to one another; the stock

loan is more likely to be expensive. In particular, only 1.3% of all matched bond loans are over
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100 bps, while 6.2% of matched stock loans are over 100 bps. Furthermore, if a bond borrowing

cost is more than 100 bps, 15.6% of matched stock borrowing costs also costs more than 100

bps. For the converse, if a stock borrowing cost is more than 100 bps, only 3.2% of the matched

bond borrowing costs are over 100 bps. This means that it is more common for stocks to be

hard to borrow (as measured by borrowing costs) than it is for bonds. Furthermore, when

a bond is harder to borrow, the stock is more likely to be as well. While not definitive, this

pattern is consistent with stock borrowing activity leading bond borrowing activity.

These aggregate differences in stock and bond loan percentages are largely driven by high

yield bonds. Only 0.3% of all matched investment grade bond loans are over 100 bps, while

3.0% of all matched high yield bond loans are over 100 bps. For matching stock loans there is

little difference between investment grade and high yield (6.0% vs. 6.4%, respectively). In

addition, for investment grade bonds if a stock borrowing cost is more than 100 bps, only 0.4%

of bonds are greater than 100bps, whereas for high yield bonds, the corresponding number is

7.6%. This indicates that loan costs are more likely to be linked for high yield securities, which

is consistent with high yield bonds serving as substitutes for stocks when stocks are expensive

to borrow. These patterns also hold for borrowing costs greater than 75 bps. Finally, since

borrowing costs for stocks are insensitive to investment grade status, while borrowing costs

for bonds are, supports credit quality as an important determinant of borrowing activity for

bonds.

To summarize, there are three main results on the relationship between bond and stock

market shorting. First, most bond and stock loans for the same firm differ by one of six

fixed amounts, which do not depend on the day of the loan. For example, the most common

differences in borrowing costs between bonds and stocks, which are -1 bps and +35 bps,

constitute 55.1% of the matched sample. Second, bond borrowing costs are very close to

stock borrowing costs for most matched loans. For matched bond and stock loans from the

same firm on the same day, 63.7% of the borrowing costs are within +/- 10 bps of each other.

Finally, if neither the bond nor the stock is hard to borrow, they are priced very similarly.

However, on a day when a stock is expensive to borrow, bonds from the same firm are usually
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not, and vice versa. This suggests that for low levels of borrowing costs bond and stock lending

markets are similar, but when borrowing costs are high the bond and stock lending markets

are fragmented.

1.7 Returns to Shorting Bonds

In the last two sections, we calculated bond borrowing costs, described their cross-sectional

and time-series distribution, and examined some of their important determining factors. In

this section, we perform similar analysis on the returns to shorting bonds. As mentioned

above, we do not know if all borrowed bonds are necessarily shorted, but for the purposes

of this section we assume they are. The literature on stock shorting that uses proprietary

lending databases makes a similar, although usually unstated, assumption. The literature on

shorting stocks infers that excess returns from highly shorted stocks imply the existence of

private information among short sellers and/or borrowing constraints. We make the same

inference for the market for shorting bonds.

To calculate bond returns over any holding period, it is necessary to have bond prices at

the beginning and end of the period. Following the approach of Bao and Pan (2013) we match

the proprietary databases of bond inventory and loans to the FISD TRACE database, which

provides transaction bond prices. The number of bonds covered in TRACE increased during

our sample period. This increase ostensibly extended TRACE’s coverage to all US corporate

bonds by February 7, 2005. Even with universal TRACE coverage, there are difficulties in

computing bond returns. (See Bessembinder et al. (2009) for the difficulty of working with

bond returns in general and TRACE in particular.)

We calculate bond returns with the following formula23:

return =

sale price � buy price + sale accrued interest � buy accrued interest + coupons paid
buy price + buy accrued interest

In this formula, the return is computed from the point of view of a long holder of the bond.

23This is a formula from Bessembinder et al. (2009) with a correction for a typographical error in that paper.
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That is, the returns are positive if the bond prices increase. A short seller of the bond, therefore,

benefits if the return is negative. In the formula, sale and buy prices are “clean”, meaning net

of accrued interest, which is the way prices are reported in TRACE. In some databases bond

prices are “dirty”, meaning they include accrued interest, and the above formula has to be

modified appropriately.

Of the 10,293 bonds that are ever loaned in the bond loan database, 8,212 bonds have at

least one TRACE price observation, and 8,033 have at least ten TRACE price observations.

Since a bond must only be delivered to a buyer within three trading days after a short sale, a

bond loan does not always occur on the same day as the linked trade. They can either be

located first and then sold short, or sold short and then located within 3 days after the sale.

Of the 367,751 bond loans during the sample period, 301,167 have TRACE prices both within

three days before or after the initiation of the loan and three days before or after the loan’s

termination.24

The fact that bonds do not trade every day and that short sales may occur on different

days than the bond loans complicates calculating holding-period returns. As a result, our

approach to calculating monthly returns for a bond is not precisely over thirty days because

the bond may not trade exactly one month apart. We compute a monthly bond return when

a bond has a trade in two consecutive calendar months. If there is more than one bond trade

in a calendar month, we use the price of the last trade in that month. If there are multiple

bond trades on this day, we use the trade-size-weighted median price for the day. Following

Bessembinder et al. (2009) we exclude bond trades that are cancelled, modified, or include

commissions. An equally-weighted monthly portfolio return is then calculated by equally

weighting the monthly returns of the individual bonds in the portfolio. We also calculate an

issue-size value-weighted monthly portfolio return by weighting monthly returns by the bond’s

issue amount. Weekly returns are calculated in a similar manner.

24After February 7, 2005 when TRACE’s universal coverage became effective, 245,508 out of 277,220 bond
loans have TRACE prices both three days before or after the initiation of the loan and three days before or
after the loan’s termination.
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1.7.1 Returns to Portfolios of Shorted Bonds

In Table 1.10, we form monthly portfolios of bonds sorted by either percent of inventory on

loan or borrowing cost. Panel A reports the returns from taking long positions in portfolios of

bonds based on the percentage of inventory lent as of the last day of the month. The first

two rows of Panel A report the monthly returns for portfolios of bonds that are not lent as

well as those that are. In addition for each month, we calculate on loan percentage quintiles

and assign the lent bonds to one of five portfolios. We also construct portfolios of bonds in

the 95th and 99th percentiles of the on loan percentage distribution. These portfolios are

formed conditional on the bonds being lent; that is, e.g, the 95th percentile portfolio is only

selected from the universe of lent bonds. We report four different one-month returns for these

portfolios.

In column 1, we report the number of bonds in each portfolio. Quintile sizes are not

exactly equal because some values of on loan percentage are identical. Column 3 reports the

equally-weighted raw portfolio return, while column 7 reports equally-weighted excess portfolio

returns. Columns 5 and 9 report issue-size value-weighted raw and excess portfolio returns.25

We calculate excess returns by subtracting equally-weighted and issue-size value-weighted

TRACE index returns from the corresponding portfolio’s raw returns.26

The results in Table 1.10 Panel A show that there is no significant difference in the raw

or excess returns between portfolios of bonds that are not lent and those that are lent. In

fact, the mean issue-size value-weighted excess return in column 9 for the portfolio of lent

bonds is -0.02%. Moreover, Panel A does not support the hypothesis that bonds which have

higher on loan percentage are more likely to have lower returns in the future. In fact, both

25We calculated value-weighted returns several ways including using the bond price times issue size as the
weight. This results in no significant differences relative to the discussion below.

26It is customary to use the Lehman Brothers (now Barclays) Corporate Bond Index when calculating bond
excess returns (see, e.g., Bessembinder et al. 2009 and Bao and Pan 2013). While we also used this benchmark,
we calculated a separate TRACE bond index using corporate bond prices from TRACE that were also in our
FISD sample. We do this for two reasons. First, the Lehman Index uses matrix pricing while our TRACE
index uses transaction prices. Second, the Lehman Index is a single aggregate number and does not match as
closely our sample, e.g., the Lehman Corporate Bond Index does not include high yield bonds, but we include
them in our TRACE index, since they are in our sample.
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the equally-weighted and issue-size value-weighted returns for the 5th quintile, which has the

highest amount lent, are larger than those for all of the other quintiles in columns 3, 5, 7, and

9. Across quintile portfolios, the equally-weighted portfolio excess returns in column 7, though

mostly negative, are small, and the issue-size value-weighted portfolio excess returns in column

9 are all within 8 bps of zero. Finally, the standard deviations of all portfolios returns, both

equally- and issue-size value-weighted, are much larger than the means. As a result, none of

the excess returns are significantly different from zero or from each other.

In Panel B, we form monthly portfolios based on the borrowing cost of the bonds. The first

row of the Panel reports returns for all new loans. Each bond is then assigned a borrowing

cost equal to the borrowing cost of the last new loans in the month, median-weighted by loan

size. Then, for each month we calculate borrowing cost quintiles and assign bonds to one of

the five portfolios. As in Panel A, we report one-month returns for these portfolios as well

as for portfolios that include only bonds in the 95th and 99th percentiles of borrowing costs.

Panel B has fewer observations than Panel A because it includes only bonds with new loans,

whereas Panel A includes bonds with existing loans.

The results in Panel B do not support the hypothesis that bonds which are more expensive

to borrow are more likely to have lower returns in the future. The 95th and 99th percentile

portfolios have the highest borrowing costs, but they also have the highest average returns

across all measures. Furthermore, the returns for the quintiles are not monotonic. Overall,

the results in Panel B parallel those in Panel A: there are no significant results for any of the

portfolios or any of the differences between the portfolios.

Table 1.10 shows that none of the portfolio returns or differences in Panels A or B are

statistically significant. That is, neither the bond’s on loan percentage nor the borrowing cost

predicts future returns. Although not shown, we also calculated one week, two week, and

three-month returns for all of the portfolios in Table 1.10. In no instances were any of the

excess returns significantly different from zero. In addition, we also did the analysis in Table

1.10 split into investment-grade or high-yield bonds. Neither of those results are significantly

different from zero, nor are they statistically different from each other.
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1.7.2 Profitability to Short Sellers of Corporate Bonds

Table 1.10 indicates that shorting portfolios of bonds with high on loan percentage or high

borrowing costs are not strategies that yield abnormal returns to short sellers. These results

are based on shorting portfolios of bonds that are already highly shorted. They may indicate,

but do not accurately measure, whether short sellers made money on their short positions. To

evaluate the profitability of actual short trades, we must know the period the short position

was held, and we must net out the borrowing costs and the overall movements in the bond

market. The bond loan database, which has the start and end date of bond loans and their

borrowing costs, allows us to undertake this analysis.

To calculate short sellers’ profitability, we compute a return on capital net of coupons

paid, accrued interest, and borrowing costs. We assume that the beginning and ending dates

of a short position are the same as the beginning and ending dates of a bond loan. Since

corporate bonds do not necessarily trade every day, we take as the starting price the TRACE

price closest to the loan’s actual start date in the period three trading days before until three

trading days after the loan’s initiation. The ending price is computed analogously. If there are

multiple trades in one day, we take the trade-size-weighted median price of all trades that day.

Loans where the nearest trades are more than three days removed from either the loan start

or end date are eliminated. We also eliminate loans where the starting and ending dates are

matched to the same TRACE trade. This can occur if the loan is short term and there is only

one reported TRACE trade during the time period from three days before the initiation until

three days after loan termination. The profit from each loan, net of borrowing costs, accrued

interest, and coupon payments, is then summed to obtain aggregate short sellers’ profits over

some period. This amount is then divided by the average capital invested during that period.

Average capital invested is the summed daily par value of new and old outstanding loans

divided by the number of days in the time period. Thus, the net return on capital is calculated

as total net profit divided by average capital invested over a time period.

As an example, for the entire four-year period, the total profit assuming all borrowed bonds

were shorted is -$2.4 billion, which is a loss for short sellers. The borrowing cost for all loans
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over the same period totaled $112 million. The average amount of bond loans outstanding per

day is $12.4 billion.27 Thus, the average monthly return over the four-year sample period is

-48 bps. This is consistent with positive monthly returns to long portfolios of shorted bonds

in Table 1.10. For example, in Panel A, the raw portfolio returns for equally-weighted and

issue-size value-weighted for all lent bonds are both 40 bps, and in Panel B, the comparable

returns for all new loans are 43 bps. These values do not account for the average 2.8 bps

monthly borrowing cost.

We next evaluate short seller profits by several loan characteristics, including loan size,

duration, and borrowing cost. Loan size and duration do not substantively change the result

reported above, but borrowing costs appear to be responsible for some variation in short seller

profits. The return on capital for loans where the borrowing cost is greater than 100 bps is

substantially lower than the return on loans where the borrowing cost is less than 100 bps.

The return on capital is -123 bps per month for the more expensive loans and -46 bps per

month for the less expensive loans. Even though borrowing costs are higher for the more

expensive loans, they only account for 31 bps of the difference. This finding of larger losses for

high borrowing cost loans parallels the finding of high positive returns for the 95th and 99th

borrowing cost portfolios in Table 1.10.

Table 1.10 shows that portfolios formed on the basis of bond shorting activity do not earn

significant excess returns. Examining realized profits from the actual short trades indicates

that short sellers do not have private information. In fact, the average monthly return for

short sellers is negative and almost the opposite of the returns from holding the bond market.

This result is consistent with short selling being used as a hedging activity with short sellers

paying for the hedge.

27This number differs from the average daily par value of bonds on loan in the lender inventory in Table 1.1
because we only compute profits when we have both beginning and ending TRACE prices, and the loan must
begin and end during our four-year period.
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1.8 Relationship Between the Market for Shorting Bonds and

the CDS Market

Rather than shorting a bond, another way for an investor to profit from a bond price decline is

to purchase a credit default swap. This is similar to a stock investor purchasing a put. Unlike

the options market for equities, which is smaller in notional amount than the stock market,

the notional amount of the CDS market has become larger than the market value of corporate

bonds. In mid 2009, the par value of corporate bonds was $6.8 trillion, while the notional

principal amount of CDS on corporate debt was $12.1 trillion.28

There is a documented link between shorting stocks and the equity options market. Many

dealers who write equity puts hedge their positions by shorting stocks. There is also a link

between option put-call parity and shorting constraints in the stock market (see, for example,

Figlewski and Webb (1993) and Ofek et al., (2004)).

We use Markit as the source for the CDS data. Markit collects data from various financial

institutions, inter-dealer brokers, and electronic trading platforms. The data consist of daily

CDS spreads for reference securities. Each CDS contract is assigned a REDCODE number by

Markit, which we then map to individual bond CUSIPs. Because of cross-default provisions,

CDS contracts can correspond to more than one bond for any given firm. As a result, we

ultimately match individual CDS to multiple bonds based on the first six digits of the bond

CUSIPs.

Of the 15,493 bonds in the lender’s inventory, we are able to match 7,033 (45.4%) to a

CDS. The percentage of bonds lent with a CDS is higher: of the 10,293 bonds ever lent, 5,540

(53.8%) had a corresponding CDS at some point during our sample period. Furthermore, of

the 367,751 new loans in the sample, 77.8% are of bonds with CDS. Thus, inventory bonds

matched with CDS are more likely to be lent and constitute a much larger fraction of new

loans. This suggests that there are common factors that determine which bonds have CDS

28Corporate bond value is from SIFMA (2009), and CDS market value is from Depository Trust and Clearing
Corporation (DTCC). This data is from 2009 because we are unable to find the breakout of corporate debt
CDS during our sample period. The par value of outstanding corporate bonds in 2007 is $7.2 trillion.
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contracts and which bonds are lent.

We next use the bond characteristics in Tables 1.2 and 1.3 to examine the differences

between bonds with CDS and those without. Lent bonds with CDS tend to be larger and

have much higher credit quality than lent bonds without CDS. For example, 70.7% of the lent

bonds with CDS are investment grade at the time of the loan, while only 50.4% of the lent

bonds without CDS are. Examining loan size and duration in a manner similar to Table 1.4,

we find that loans on bonds with CDS have similar sizes and median duration to those without.

Importantly, the distribution of borrowing costs is almost identical between bonds with CDS

and those without. For example, the mean and median equally-weighted borrowing costs for

bonds with CDS are 33 and 19 bps, while they are 32 and 18 bps for bonds without CDS.

When we include an indicator for CDS in the borrowing cost regression presented in Table

1.7, we find that the presence of a CDS results in a significant increase in borrowing costs of

1.5-2.0 bps and has no discernible impact on the relative importance of the other factors we

previously examined. This cross-sectional comparison does not imply that the presence of CDS

causes higher borrowing costs; rather it may reflect the fact that bonds that are most likely to

be shorted are more expensive to short and, are also most likely to have a CDS contract.

To look at the impact of CDS on borrowing costs, we next examine the introduction of a

CDS contract. We plot the borrowing cost on individual bonds for the 30 days before and

after Markit first lists a CDS on those bonds. This time series comparison holds fixed all

other bond attributes unlike the previous cross-sectional comparisons. There are 332 new CDS

introductions during our sample period, representing 1,589 lent bonds. 820 of these bonds

have borrowing cost data in the 61-day window. There is no noticeable change in borrowing

costs over this period. The average borrowing cost for the 30 days prior to the introduction of

a CDS contract is 27.2 bps, while the average for the 30 days after is 25.3 bps. There is also no

noticeable increase or decrease in the amount lent. Since Markit does not collect information

from all dealers, there is the possibility that CDS contracts exist for some bonds before they

first appear in Markit.

In summary, bonds with CDS tend to have higher loan activity than bonds without. In
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addition, borrowing costs for loans with CDS are slightly higher than those without. Finally,

the introduction of a CDS contract does not materially affect borrowing costs in the short term.

All of these facts suggest that CDS are correlated with bond shorting, but do not substantially

replace it.

1.9 The 2007 Credit Crunch

The Credit Crunch of 2007-2008 started in late July or early August 2007. The 3-month LIBOR-

OIS rate, the difference between LIBOR and the overnight indexed swap rate, increased from

12.3 bps on August 1st to 40.0 bps on August 8th. By September 10th, the rate was 94.9 bps.

The LIBOR-OIS rate is considered by many to be a “barometer of fears of bank insolvency.”29

This increase occurred shortly after Bear Stearns announced they were liquidating two hedge

funds investing in mortgage-backed securities on July 31, 2007. The Federal Reserve Bank

took immediate action, reducing interest rates starting in mid-August 2007.

We examine the impact of this credit market turmoil on the market for borrowing corporate

bonds. Although we do not have data from the entire Credit Crunch of 2007-2008 in our

sample period, we are able to investigate the first six months, from July – December 2007. In

particular, we investigate the impact of the 2007 Credit Crunch on lending activity, borrowing

costs, and their determinants.

Figure 1.1 indicates that there was no distinguishable change in the number or par value

of outstanding loans during the period July 2007 to December 2007 compared to the first half

of 2007. Moreover, in Table 1.1, the average daily par value of bonds on loans in 2007 is $14.4

billion and the percentage of inventory lent is 7.3%. Although not shown, the average daily

par value of bonds on loan for the first and second half of 2007 are both $14.4 billion, and

the percentage of inventory lent changes from 7.1% to 7.5%. Both measures of loan activity

are greater than those in 2006, but below the activity in 2005. The average characteristics of

bonds lent reported in Tables 1.2 and 1.3 also do not change between the first and the second

29Alan Greenspan quoted in Thornton (2009).
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half of 2007. The size and duration of lent bonds reported in Table 1.4 also do not change in

any meaningful way even when dividing the sample by investment grade and high yield.

While the number of bonds lent, their characteristics, and loan size do not change in the

second half of 2007, borrowing costs do. Figure 1.2 shows that following the March 2006

period, the distribution of borrowing costs is compressed. During the first half of 2007, the

spread between the 20th and the 80th percentile borrowing cost averages 6 bps per month.

In the second half, the spread expands and the average difference between the 20th and the

80th percentile is 28 bps per month. This increase in spread is due to both an increase and

decrease in borrowing costs. As seen in Figure 1.2, the borrowing costs for the 80th percentile

climbs from an average of 14 bps to 28 bps. At the same time, the borrowing cost for the

20th percentile falls from an average of 8 bps to 0 bps with three months showing negative

borrowing costs.

This increase in volatility of borrowing costs does not affect the mean or median borrowing

costs substantially. The mean equally-weighted and value-weighted borrowing costs for the

first half of 2007 are 19 and 13 bps, respectively. The comparable mean borrowing costs for

the second half of 2007 are 20 and 13 bps. The median equally-weighted and value-weighted

borrowing costs behave similarly: they are 13 and 8 bps in the first half of 2007 and 13 and 7

bps in the second.

Borrowing costs becomes more volatile in the second half of 2007 because both components

of borrowing costs, the commercial paper rate and the rebate rate, are more volatile. Although

not shown, in the first half of 2007, only 6.7% of loans experienced commercial paper rate

changes of at least 5 bps, while in the second half, 59.0% of loans experienced commercial

paper rate changes of at least 5 bps. There is also a large increase in the percentage of loans

that have a change in their loan rebate rate during the second half of 2007. For the first

half of 2007 the percentage with rebate rate changes is 29.4%, while for the second half it is

63.4%. Thus, during the Credit Crunch of 2007 borrowing costs are reset more frequently

than previously.

There are also a large number of loans with negative borrowing costs during the 2007
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Credit Crunch period. This differs from the earlier sample period. During the second half of

2007, 17.6% of the loans have negative borrowing costs as compared to 3.4% during the first

half of 2007. Interestingly, 90% of the loans with negative borrowing costs in the second half

of 2007 occur on only 26 days. As discussed in Section 1.5, these negative borrowing costs

may occur for two reasons. First, during this period short-term rates fell substantially below

medium-term rates and, as a result, reported commercial paper rates may not reflect market

conditions.30 Second, these negative borrowing costs may arise if the lender is subsidizing

borrowers to maintain collateral pools.

This large number of loans with negative borrowing costs is the reason why in Figure 1.3,

where we plot borrowing costs against inventory lent, the lines for the July 2007 to December

2007 period are below the other plotted lines for most of the range. This is true for both

investment grade and high yield bonds. The slope of the high yield line from this period

continues to have a kink at 70%, and is similar to that of high yield lines from earlier periods.

Since the distribution of borrowing costs widens during the second half of 2007, we re-

estimate the borrowing cost regression presented in Table 1.7 using only data from the second

half of 2007. For all four specifications of the model, the coefficients for the second half of

2007 have similar magnitudes as the entire period presented in Table 1.7. All coefficients also

remain significant.

In summary, the Credit Crunch of 2007 affected the market for borrowing corporate bonds

primarily by widening the distribution of borrowing costs. The number of loans, the types of

bonds lent, the size of loans, and the average borrowing costs all remained relatively stable

in the second half of 2007 compared to the prior period. Thus, the change we document in

March 2006 appears to be more of a structural change than that occurring during the Credit

Crunch of 2007.

30Our use of commercial paper rates as the market rate is not responsible for these negative borrowing costs.
If we use the Fed Funds rate, loans with negative borrowing costs are still prevalent.
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1.10 Conclusion and Implications

This paper presents the first complete examination of short selling for securities traded in

an OTC market. It does this by utilizing a detailed proprietary database of corporate bond

loans from 2004 to 2007. Short selling activity in corporate bonds is large and substantial. We

estimate that short selling constitutes 19.1% of trading activity in the corporate bond market.

This is about two-thirds of the percentage of short selling in equity markets.

Borrowing costs for corporate bonds are comparable to stocks and have become cheaper

over time. The average borrowing cost of loans in the sample is 33 bps per year on an

equally-weighted basis. There is a structural change in the pricing of corporate bond loans

starting in April 2006 when the entire distribution of borrowing costs is compressed. As a

result, the average equally weighted borrowing costs by 2007 is 19 bps.

Our analysis shows that bond borrowing costs are related to loan size, the bond’s credit

rating, and the lender’s inventory. The importance of loan size on borrowing costs diminishes

over our sample period. At the beginning, the median borrowing cost of a small loan is

three times that of a large loan, while by the end, loan size is no longer priced. Credit

rating and inventory remain important throughout our sample period. High yield bonds are

more expensive to borrow than investment grade. Furthermore, borrowing costs increase

substantially following bankruptcy and bonds with credit downgrades, not involving bankruptcy,

also experience increases in borrowing costs.

A bond’s credit quality also impacts the relationship between inventory and borrowing

costs. When the lender has greater than 70% of its available bonds lent out, borrowing costs

for high yield bonds rise sharply. In contrast, borrowing costs for investment grade bonds are

not positively related to the percent of inventory lent. This holds before and after the mid

2006 structural shift.

Another factor impacting borrowing costs is the identity of the borrower. Broker effects

are significant both in our regression analysis and in our competitive broker races. Moreover,

our results do not indicate that this pricing differential is due to loan volume or the credit

quality of the borrowing broker.
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The market for borrowing corporate bonds is linked closely to the market for borrowing

stock. 63.7% of the matched borrowing costs are within +/- 10 bps of each other, and 42.6%

are within 1 bp. In fact, borrowing costs for 75.5% of the matched bond and stock loans for

the same firm on the same day differ by one of only six distinct amounts. The distribution of

stock borrowing costs also becomes compressed starting in April 2006, like the bond borrowing

costs.

After examining returns to short selling, there is no evidence that, on average, bond short

sellers have private information. Portfolios formed on the basis of corporate bond borrowing

costs or levels of borrowing activity do not generate excess returns. Moreover, in aggregate,

bond short-sellers do not realize a profit from their trades. In addition, borrowing costs have a

very small influence on overall trade performance. Finally, there is strong evidence that short

sellers, on average, pay a small cost for shorting corporate bonds.

We also investigate the impact of the CDS market on the market for borrowing corporate

bonds tangentially. We find that bonds that have higher lending activity are more likely to

have CDS contracts. Furthermore, we find that these bonds have small, but significantly

higher borrowing costs (one or two bps) than bonds without CDS contracts. These differences

are after controlling for other factors such as percent on loan, loan size, and bond rating. We

conclude that the CDS market is correlated with bond shorting and is not a perfect substitute.

Finally, we examine six months of the 2007 Credit Crunch and compare it to the remainder

of our period. We find that the volume and average pricing of corporate bond loans do not

change. We do find, however, that the distribution of borrowing costs widen substantially

during this period. There may be effects of the 2007 Credit Crunch on this market that do

not appear until 2008, which our analysis does not capture.

An important caveat to our work is that we only examine data from one proprietary lender.

We do not know with certainty if the patterns we document are particular to our lender or

are market-wide. However, given the number of bonds and the size of lending activity by our

lender, our analysis applies to a large portion of the market for shorting corporate bonds.

Our results speak to the larger literature on short sale constraints and their effects on asset
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prices. That literature has argued that short sale constraints may generate mis-valuation. We

find, at least for the sample of bonds covered by our lender, that while short selling is a large

and important market activity, constraints, as measured by borrowing costs, do not have a

measurable impact on corporate bond pricing. In addition, we find that shorting securities that

are traded in an over-the-counter market is very similar to shorting exchange-listed securities,

in particular stocks. Moreover, the fact that portfolios of heavily shorted bonds do not generate

excess returns suggests that private information is not driving shorting activity. Finally, our

results indicate that short selling is not responsible for the growth of the CDS market, nor is

it being replaced by it.
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Chapter 2

The Effects of Mandatory

Transparency in Financial Market

Design: Evidence from the Corporate

Bond Market1

“...capital markets ... [are] replete with problems in the economics of information:
[e.g.] What over-the-counter transactions should be required to be reported?”

Stigler (1964)

2.1 Introduction

Trading in many financial securities takes place in environments with a great deal of trans-

parency. For instance, nearly all U.S. stocks trade on exchanges with real-time reporting of

pre-trade bid and ask quotes and post-trade transaction prices and volume. On the other

hand, some securities, such as credit default swaps and collateralized debt obligations, have

1with Paul Asquith and Parag A. Pathak
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historically traded over-the-counter without even post-trade information about previous trans-

actions. This paper studies the effects of a dramatic increase in transparency in the corporate

bond market. We find that transparency significantly reduces price dispersion for all bonds

and significantly reduces trading activity for some categories of bonds.

Corporate bonds were largely exchange-traded in the 1930s, which meant that post-trade

prices and volume were publicly available (Biais and Green (2007)). After World War II,

however, trading in this market migrated to over-the-counter, with private bilateral negotiations

and no public reporting of transaction details. If investors wanted information on a bond’s

market price, they had a limited set of options: they could contact corporate bond dealers and

ask for quotes or they could consult a vendor that provides estimated prices (widely known as

“matrix prices”).

The corporate bond market underwent a significant change in July 2002 when information

on the prices and volume of completed transactions were once again publicly disclosed. FINRA

(then the NASD) mandated transparency in the corporate bond market through the Trade

Reporting and Compliance Engine (TRACE) program. FINRA required that all transactions

in U.S. corporate bonds by regulated market participants be reported on a timely basis to

TRACE. Corporate bonds are one of the world’s largest over-the-counter markets with average

transactions of $4.2 trillion a year over this period (SIFMA 2013). FINRA then made this

information transparent by publicly releasing (in their words “disseminating”) the prices and

volume of completed bond trades. Bond trade dissemination was Phased-in on four separate

dates over a three-and-a-half year period. The increase in information available to market

participants was so significant that it has been compared to the early 20th century introduction

of stock market tickers and electronic screens for Treasuries (Vames 2003).

Studies of changes in market design for opaque markets are usually limited because, although

data sometimes exists after the new design is implemented, there is rarely comprehensive

information on market behavior beforehand. Prior to 2010, FINRA did not release any

information regarding a bond’s trades until after the dissemination Phase for that bond began.

In 2010, however, FINRA released transactions data on all bonds, disseminated and not
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disseminated, since the start of TRACE. With this newly released dataset, it now possible to

observe changes in the trading behavior of corporate bonds using data from periods before

and after their trades are disseminated. Moreover, this comprehensive record of transactions

makes it is possible to provide a definitive account of the effect of TRACE across all categories

of bonds.2

Even before FINRA released this historical transaction-level data, TRACE had become a

template for how financial market reform and regulation should proceed. Difficulties evaluating

the trading and value of over-the-counter instruments during the 2008 financial crisis motivated

some to propose reforms inspired by TRACE. See, for example, Acharya et al. (2009) or the

recommendations of the Squam Lake Group (French et al. 2010) which state:

Regulators should promote greater transparency in the CDS market for the more
liquid and standardized index and single-name contracts. Consideration should be
given to the introduction of a trade reporting system for these contracts similar to
the TRACE system.

Furthermore, TRACE was expanded in March 2010 to include Agency-Backed Securities and

in May 2011 to include Asset-Backed Securities (Shenn and Scheer 2009). In April 2013, the

FINRA board approved a proposal, currently awaiting SEC approval, to publicly disseminate

144A transactions. There are also on-going efforts to mimic TRACE for European corporate

bonds (Learner 2011). Finally, Title VII of the Dodd-Frank Wall Street Reform and Consumer

Protection Act (Dodd-Frank) requires that swaps (including credit default swaps, interest rate

swaps, collateralized debt obligations, and other derivatives) be traded and cleared centrally

on exchanges. Dodd-Frank follows TRACE’s definition of transparency by requiring public

dissemination of post-trade transaction information regarding price and volume.

Proponents of TRACE argue that transparency makes the corporate bond market accessible

to retail clients, enhances market integrity and stability, and provides regulators greater ability

to monitor the market. They reason that with the introduction of transparency, price discovery

2Because of data limitations, earlier studies of TRACE focused on part of TRACE’s implementation and,
therefore, on particular subsets of bonds. For instance, Bessembinder et al. (2006) primarily study the effect of
Phase 1 of TRACE on using data from the National Association of Insurance Commissioners. Edwards et al.

(2007) and Goldstein et al. (2007) study the effect of Phase 2 on different samples of bonds.
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and the bargaining power of previously uninformed participants should improve (NASD 2005a).

This in turn should be reflected in a decrease in bond price dispersion and, if more stable

prices attract additional participants, an increase in trading activity (Levitt 1999).

Opponents of TRACE object to mandatory transparency, saying that is unnecessary and

potentially harmful. They argue that “transparency would add little or no value” to highly

liquid and investment grade bonds since these issues often trade based on widely known US

Treasury benchmarks (NASD 2006). They further argue that if additional information about

trades was indeed valuable, then third-party participants would already collect and provide

it, a view that dates back to Stigler (1964). Opponents also forecast adverse consequences

for investors since, if price transparency reduces dealer margins, dealers would be less willing

to commit capital to hold certain securities in inventory making it more difficult to trade in

these securities. The Bond Market Association argued that the adverse effects of transparency

may be exacerbated for lower-rated and less frequently traded bonds (Mullen 2004). Lastly,

opponents saw TRACE as imposing heavy compliance costs, particularly for small firms who

do not self-clear (Jamieson (2006)). Thus, opponents argue that market transparency reduces

overall trading activity and the depth of the market. Not surprisingly, similar arguments

for and against transparency have resurfaced in response to the recent introduction of the

Dodd-Frank’s post-trade transparency requirements for swaps (Economist (2011)).

The implementation of TRACE and the release of the new database provide a unique

opportunity to study the impacts of mandated transparency on market behavior. TRACE’s

dissemination of price and volume data was not implemented on all bonds simultaneously.

In July 2002, FINRA began collecting price and volume information for all corporate bond

trades. On the same day, FINRA began dissemination of this information for just a subset of

bonds. There were three other major “Phase-ins,” Phase 2, 3A, and 3B, expanding the set

of bonds covered. Bonds were assigned to Phases using bond issue size, credit quality, and

previous levels of trading activity. By February 2005, the price and volume of every corporate

bond trade was publicly disseminated shortly after the trade’s execution. Thus, between 2002

and 2005, corporate bond market participants went from having little knowledge of trading
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activity to having post-trade knowledge similar to equity market participants.

Our empirical strategy exploits these Phases to construct a before-and-after comparison

between bonds subject to a change in transparency and bonds that are not. This difference-in-

difference research design gives us the chance to avoid confounding the effects of transparency

with unobserved shocks to the corporate bond market. Although our approach does not cover

the first Phase of TRACE (where there is no TRACE data beforehand), it covers the remaining

Phases, which represent 98% of bonds in the Phases.

The new database and our research design allow us to ask questions previous researchers

were unable to investigate. Previous work on TRACE focused on imputed transaction costs.

In this paper, we focus on TRACE’s impact on market behavior, in particular its effect on

trading activity and price dispersion. Earlier work also focused only on Phase 1 and/or Phase

2. This paper covers the entire TRACE implementation period, which is important because

the types of bonds covered by TRACE in later Phases differ from that of earlier Phases by

design. In particular, bonds covered in earlier Phases had large issue sizes and investment

grade ratings, while bonds covered in later Phases of TRACE were bonds with smaller issue

sizes and lower credit quality. These latter bonds are exactly the ones that opponents of

TRACE warned would have the most adverse consequences.

We find that post-trade transparency of price and volume leads to a significant reduction

in trading activity and price dispersion. Using our main measure of trading activity, trading

volume/issue size, and our preferred difference-in-differences specification, we find a significant

15.2% reduction in trading activity in the 90 days after TRACE’s introduction for the pooled

sample across Phases 2, 3A, and 3B, i.e., the Phases where we can observe trading before and

after dissemination. This result is driven primarily by Phase 3B bonds, which experience a

significant 41.3% reduction in volume/issue size. Phase 3B bonds are largely bonds with credit

ratings below investment grade that trade infrequently. Event studies show that the reduction

in trading activity for Phase 3B bonds occurs immediately upon dissemination. In addition,

these results are robust to alternative difference-in-differences specifications that vary time

trends and control groups. The reduction in trading activity caused by TRACE is also seen
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using several other measures of trading activity such as volume, number of trades, and average

trade size.

Transparency also causes a significant reduction in price dispersion. We find a significant

8.5% reduction in within-day price standard deviation in the 90 days after TRACE’s introduc-

tion for the pooled sample, and significant reductions for Phases 2, 3A, and 3B when examined

individually. The largest reduction is for Phase 3B bonds, which is a significant 24.7%. The

reduction for Phases 2 and 3A are also both significant at 7.3% and 6.5%, respectively. Event

studies show that price dispersion falls immediately upon dissemination for all three Phases.

In addition, these results are robust to trends and alternative assumptions about control

groups. The reduction is also evident using other measures of price dispersion such as the

difference between the maximum and minimum price on a given day and price standard

deviation measures computed over longer time windows.

FINRA implemented TRACE in Phases because of concerns about the possible negative

impact of transparency on thinly traded, small issue and low-credit rated bonds. Examining

issue size across all Phases, we find that trading activity decreases more for large issue size

bonds, but that the reduction in price dispersion is uncorrelated with issue size. Credit ratings,

however, matter for both trading activity and price dispersion. High-yield bonds experience a

large and significant reduction in trading activity, while the results are mixed for investment

grade bonds. High-yield bonds also experience the largest decrease in price dispersion, but

price dispersion significantly falls across all credit qualities. Therefore, the introduction of

transparency in the corporate bond market has heterogeneous effects across sizes and rating

classes.

Lastly, we report on a complementary analysis using transactions data from the National

Association of Insurance Commissioners (NAIC) in an attempt to investigate the effect of

TRACE on Phase 1 bonds. This analysis is inconclusive. However, since NAIC data reports

the identity of the security dealer doing each trade, we analyze that data and show that

TRACE causes a reduction in dealer volume and number of trades for the largest dealers for

all Phases.
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The rest of this paper is organized as follows. Section 2.2 presents additional background

on TRACE and reviews the related literature. Section 2.3 describes the historical TRACE

database and presents descriptive statistics. Section 2.4 describes our research design and the

main results. Section 2.5 examines the robustness of our findings and reports on TRACE’s

effect on alternative measures of trading activity and price dispersion. In Section 2.6, we

further explore heterogeneity in our findings based on ratings and issue size. Section 2.7

reports on an investigation of corporate bond trading using the NAIC database. The last

section states our conclusions and discusses the implications of our findings.

2.2 TRACE and the Corporate Bond Market

2.2.1 History and Implementation of TRACE

The Trade Reporting and Compliance Engine (TRACE) was launched in July 2002, but it has

its origins in the late 1990s when the Securities and Exchange Commission (SEC) reviewed

issues related to price transparency in U.S. debt markets. After this review, the SEC asked

the National Association of Security Dealers (NASD) to take three steps to enhance the

transparency and the integrity of the corporate debt market: 1) adopt rules to report all

transactions in U.S. corporate bonds to NASD and develop systems to receive and distribute

transaction prices on an immediate basis; 2) create a database of transactions in corporate

bonds to enable NASD and other regulators to take a proactive role in supervising the corporate

debt market; and 3) create a surveillance program to better detect misconduct and foster

investor confidence in the corporate debt market. The NASD changed its name to the Financial

Industry Regulatory Agency (FINRA) in 2007.3

By January 2001, the SEC approved rules requiring NASD members to report all over-

the-counter (OTC) market transactions in eligible fixed income securities to the NASD and

mandating that certain market transactions be disseminated. NASD developed a platform,

TRACE, to facilitate this mandatory reporting. The rules, referred to as the “TRACE Rules,”

3http://www.finra.org/Industry/Compliance/MarketTransparency/TRACE/FAQ/P085430, Last accessed:
July 14, 2012.
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are contained in the new Rule 6200 Series that replaced the old Rule 6200 Series, which

governed the Fixed Income Pricing System (FIPS). FIPS started in April 1994 with reported

transactions information on approximately 50 high-yield bonds at any point in time.

NASD’s stated rationale for the introduction of TRACE was to bring transparency to the

corporate bond market. Advocates of transparency anticipated that almost everyone would

benefit because of increased market participation. For instance, SEC commissioner Arthur

Levitt remarked that “this participation means more trading, more market liquidity, and

perhaps even new business for bond dealers” (Levitt 1999). Doug Shulman, NASD’s President

of Markets, Services and Information stated as much: “By disseminating accurate and timely

trading information, TRACE enhances the integrity of the corporate bond market and creates

a level playing field for all investors” (NASD 2005a). The 2005 TRACE Fact Book adds:

“From a regulatory standpoint, such levels of transparency better enable regulators to monitor

the market, pricing and execution quality” (NASD 2005b).

Critics were concerned about how disclosure would impact the incentives of dealers and

traders (see e.g., Bravo 2003 and Decker 2007) and in turn the operation of the corporate bond

market. The Bond Market Association warned of “serious concerns about the potential harm

to liquidity resulting from rapid transaction data on lower rated, less frequently traded issues”

(Mullen 2004). In particular, there was a concern that dealers may be less likely to commit

capital to hold inventory in illiquid securities when information about their transactions was

made public. If bid-ask spreads subsidize dealers inventory holding costs and if TRACE

reduces these spreads, it may become too costly for dealers to hold some less actively traded

securities.

Another concern was that making trades public, particularly large trades, would disadvan-

tage dealers. If large dealers buy in quantity and then provide liquidity to the market, having

the price and quantity they buy at known may cap the resale price they can charge. Thus, as

Duffie (2011) states, censoring trade information allows dealers to “have the chance to reduce

inventory imbalances stemming from large trades with less concern that the size of a trade or

their reservation price will be used to the bargaining advantage of their next counterparties.”
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These concerns ultimately motivated the NASD to censor trade size reports at $1,000,000 for

high-yield bonds and $5,000,000 for investment grade bonds (Vames 2003).

On July 1, 2002, FINRA implemented TRACE, requiring dealers to report all bond

transactions on TRACE-eligible securities within 75 minutes. As described in Table 2.1,

FINRA began disseminating price and volume data for trades in selected investment-grade

bonds with initial issue of $1 billion or greater (i.e., Phase 1 bonds). FINRA’s dissemination

occurred immediately upon reporting for these bonds. A “TRACE-eligible security” is any

US dollar-denominated debt security that is depository-eligible and registered by the SEC, or

issued pursuant to Section 4(2) of the Securities Act of 1933 and purchased or sold pursuant to

Rule 144a.4 Additionally, the 50 high-yield securities disseminated under FIPS were transferred

to TRACE, which now disseminated their trades.5 We denote these bonds the FINRA50.

About 520 securities had their information disseminated by the end of 2002.

At the start of Phase 1, it was not certain when and to what extent TRACE would be

expanded. After all, the FIPS program had existed without expansion for eight years. Initially,

a bond transactions reporting committee comprised of NASD and the Bond Market Association

members was established to study TRACE’s impact. Their mandate was to focus not on the

largest, highest quality credit and actively traded issues, but rather on the rest of the market

(Vames 2003). Their recommendation was to expand TRACE’s coverage. The NASD approved

the expansion of TRACE on November 21, 2002 and by the SEC on February 28, 2003.

Phase 2 of TRACE was implemented on March 3, 2003, and it expanded dissemination

to include smaller investment grade issues. The new dissemination requirements included

securities with at least $100 million par value or greater and ratings of A- or higher. In

addition, dissemination began on April 14, 2003 for a group of 120 Investment-Grade securities

4The list of eligible security types is: (1) Investment-grade debt, including Rule 144A/DTCC eligible
securities, (2) High-yield and unrated debt of U.S. companies and foreign private companies, (3) Medium-term
notes, (4) Convertible debt and other equity-linked corporate debt not listed on a national securities exchange,
(5) Capital trust securities, (6) Equipment trust securities, (7) Floating rate notes, (8) Global bonds issued by
U.S. companies and foreign private companies, and (9) Risk-linked debt securities (e.g., “catastrophe bonds”).
TRACE-eligible securities exclude debt that is not depository-eligible, sovereign debt, development bank debt,
mortgage- and asset-backed securities, collateralized mortgage obligations, and money market instruments.

5Alexander et al. (2000) examine the liquidity of the bonds in the FIPS dataset.
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rated BBB. We denote these BBB bonds as the FINRA120.6 After Phase 2 was implemented,

the number of disseminated bonds increased to approximately 4,650 bonds. Meanwhile, the

FINRA50 subset did not remain constant over our time period. On July 13, 2003, the FINRA50

list was updated, and the list was then updated quarterly for the next 5 quarters.7

Finally, on April 22, 2004, after TRACE had been in effect for some bonds for almost two

years, the NASD approved the expansion of TRACE to almost all bonds. The last Phase came

in two parts, which FINRA designates as Phase 3A and Phase 3B. The distinction between

Phase 3A and 3B is that Phase 3B bonds are eligible for delayed dissemination. Dissemination

is delayed if a transaction is over $1 million and occurs in a bond that trades infrequently and

is rated BB or below. In addition, dissemination is delayed for trades immediately following

the offering of TRACE-eligible securities rated BBB or below. In Phase 3A, effective on

October 1, 2004, 9,558 new bonds started having their information about trades disseminated.

In Phase 3B, effective on February 7, 2005, an additional 3,016 bonds started dissemination,

though sometimes with delay.8 According to the NASD at that point, there was “real-time

dissemination of transaction and price data for 99 percent of corporate bond trades” (NASD

2005).

In an effort parallel to increasing the number of bonds with disseminated trade information,

FINRA reduced the time delay for reporting a transaction from 75 minutes on July 1, 2002, to

45 minutes on October 1, 2003, to 30 minutes on October 1, 2004, and to 15 minutes on July

1, 2005. On January 9, 2006, the time delay for dissemination was eliminated. Since most

bond trades infrequently, our trading analysis uses one day as the basic unit of time. In our

sample the average number of trades per day for a bond is 0.68. Therefore, we do not focus

6The FINRA120 sample was selected by FINRA to study the impact of dissemination on market behavior
and has been studied by Goldstein et al. (2007).

7The FINRA50 list was updated on July 13, 2003, October 15, 2003, January 15, 2004, April 14, 2004, and
July 14, 2004.

8Rule 6250(b)(2)(A) states: “Transactions that are greater than $1 million (par value) in BB-rated TRACE-
eligible securities that trade an average of less than one time per day will be disseminated two business days
from the time of execution.” Rule 6250(b)(2)(B) states: “Transactions that are greater than $1 million (par
value) in TRACE-eligible securities rated B or lower that trade an average of less than one time per day will
be disseminated four business days from the time of execution.” On January 9, 2006, this exception changed
and there was immediate dissemination of all trades.
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on changes in time to dissemination, but instead on new dissemination.

2.2.2 Related Literature

There are three main studies of TRACE, each of which focuses on either Phase 1 or Phase

2. Bessembinder et al. (2006) study 439 bonds in Phase 1 using transaction data from the

National Association of Insurance Commissioners. They formulate and estimate a structural

model of transaction costs and report a 4.9-7.9 basis point reduction in transaction costs for

Phase 1 bonds in a before-and-after comparison. They also find that after Phase 1, there is a

decline in the concentration ratio for the 12 largest dealers.

Two other studies examine transaction costs for Phase 2 bonds. Using a then proprietary

database of all bond trades (which is now publicly available), Edwards et al. (2007) also

examine imputed transaction costs. They find that transparent bonds have lower transaction

costs. Since this result may be due to bond characteristics rather than the effect of transparency,

they also report on a difference-in-difference analysis, which compares the transactions costs

of bonds which are newly disseminated to three distinct control groups of bonds that do not

change dissemination status. The transactions costs of newly disseminated bonds decrease

relative to each control group across the entire range of trade sizes.

Goldstein et al. (2007) report on a controlled experiment, commissioned by the NASD,

of 120 BBB Phase 2 bonds, 90 of which are actively traded and 30 of which are relatively

inactive. Through cooperation with the NASD, the authors construct a matched sample of

the 90 actively traded bonds based on industry, average trades per day, bond age, and time

to maturity. When the 90 actively traded bonds were disseminated on April 14, 2003, the

matched bond was not. To increase power, they also compare the disseminated sample to a

larger portfolio of non-disseminated bonds. For the 90 actively traded bonds, they find declines

in transaction costs for all but the group with the smallest trade size. There is no evidence of

a reduction in transaction costs for inactively traded bonds. In subsequent work, Hotchkiss

and Goldstein and Hotchkiss (2007) study new issues of corporate bonds, and find a secular

decline in price dispersion from July 2002 through February 2007 for newly issued bonds.

76



While these studies provide evidence that TRACE reduces transaction costs for Phase 1

and Phase 2 bonds, there is little evidence about TRACE’s effect on trading activity. For

their sample of 120 BBB bonds, Goldstein et al. (2007) report that TRACE did not cause

an increase in daily trading volume and the number of transactions per day. Despite this

small sample size and time period, Duffie (2011) concludes “the empirical evidence does not

generally support prior concerns by dealers that the introduction of TRACE would reduce

market liquidity.” Others, including the SEC, saw the evidence as inconclusive, stating that

concerns about liquidity were also not rejected.9

The absence of any trading activity results is surprising in light of the negative reaction

to TRACE from many market participants. For instance, Bessembinder and Maxwell (2008)

report that the near universal perception among bond dealers is that trading became more

difficult after TRACE. (See also Jamieson 2006 and Decker 2007). Bessembinder and Maxwell

(2008) are skeptical of these claims given that there was an upward trend in aggregate corporate

bond trading from 2002-2007. This increase in aggregate bond trading does not imply TRACE

increased trading activity, however, since there was also an upward trend in the amount of

corporate debt outstanding due to new issues. When we hold the number of bonds constant

by examining bonds covered in TRACE’s four Phases, there is a strong downward trend in

average daily volume (see Figure 2.1). In addition, we believe another the reason that previous

work did not detect significant adverse effects on trading activity is that it did not examine

the later Phases of TRACE, where the decline in trading activity is strongest.

Also relevant is a set of studies on municipal bonds. Green et al. (2007b) find significant

price dispersion in new issues of municipal bonds, which they attribute to the decentralized

and opaque market design. Green et al. (2007a) analyze broker-dealer and customer trades,

and report that dealers exercise substantial market power. On January 31, 2005 the Municipal

Securities Rulemaking Board started requiring that information about trades in municipal

9The SEC’s Director of Market Regulation Nazareth stated “the NASD commissioned two studies to address
this issue [the impact of TRACE on liquidity]. Neither study provided significant evidence that transparency
harms liquidity. However, neither study was extensive enough to address all concerns raised by dealers and
other market participants” (Nazareth 2004). The industry group, the Bond Market Association, described
these studies as largely inconclusive (Mullen 2004)
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bonds be reported within 15 minutes, similar to TRACE. Schultz (2012) compares price

dispersion at offering date for municipal bonds before and after this change and finds that it

falls sharply. He does not, however, study post-offer trading activity.

There is also empirical research on the effects of transparency in settings other than the

bond market. Greenstone et al. (2006) study the mandatory disclosure requirements of the

1964 Securities Act Amendment. These requirements required OTC firms to register with

the SEC, provide regular updates on financial positions, issue proxy statements, and report

on insider holdings and trades. They find that these newly registered OTC firms experience

positive abnormal returns post-disclosure. Further afield, Jensen (2007) investigates the impact

of increased information on price dispersion among fishermen in southern India. After mobile

phones became available, he finds a sharp reduction in price dispersion and a reduction of

waste due to excess fish.

Finally, the theoretical work on the impact of dissemination highlights various mechanisms

through which dissemination can impact trading behavior. (See Biais et al. 2005 for a review

of the literature on the impact of transparency on financial markets). Madhavan (1995)

demonstrates that dealers may prefer not to disclose trades because they benefit from the

reduction in price competition. Pagano and Röell (1996) argue that well-informed dealers

may be able to extract rents from less well-informed customers in an opaque market, and

that transparency may result in more uninformed traders entering the market. Bloomfield

and O’Hara (1999) show that transparency can reduce market makers incentives to supply

liquidity, if the market maker has more difficulty unwinding inventory following large trades.

On the other hand, Naik et al. (1999) show how transparency can improve dealers’ ability to

share risks, which decreases their inventory costs and therefore customers’ costs of trading.
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2.3 Data and Descriptive Statistics

2.3.1 Historical TRACE Data and Phase Identification

Beginning in July 2002, TRACE publicly provided price and volume data for disseminated

trades for Phase 1 bonds.10 This and later publicly disseminated trade data constitutes

the “Public” TRACE database available to market participants at the time. Simultaneously,

FINRA also collected non-disseminated trade data. This non-disseminated data represents

all trades on corporate bonds in the period before public dissemination. In March 2010,

FINRA released a “Historical” TRACE dataset, which includes both disseminated and non-

disseminated transaction records, starting from TRACE’s initiation in July 2002. We use the

Historical TRACE database to examine the period from July 1, 2002 through December 31,

2006. Since Phase 3B, the last major Phase of TRACE, concluded in February 2005, our time

period covers all four TRACE Phases.

The information in the FINRA databases (both Public and Historical) is self-reported by

bond dealers who are FINRA members. Dealers are required to report the bond’s CUSIP, the

trade’s execution time and date, the transaction price ($100 = par), and the volume traded

(in dollars of par). In addition, dealers are required to indicate whether they were the buyer

or the seller, and whether the counterparty to the trade was a dealer or a customer. Unlike

the Public TRACE database, the Historical TRACE database does not censor volume at $1

million or $5 million. Finally, dealers are required to correct errors in previously reported

trades with flags corresponding to trade cancels, modifies, or reversals.

There are a number of steps required to process this raw data into the analysis dataset

that we use. These steps and their rationale are described in detail in the Data Appendix and

outlined in Table A.1. Two of the major steps are to eliminate all bonds not contained in the

Mergent Fixed Income Securities Database (FISD), and to drop all bonds with an equity-like

component since partial price information may be available from the stock market. Next we

10FINRA censored reported trading volume at $1 million for high-yield bonds and $5 million for investment-
grade bonds. That is, for trades greater than this amount, the actual trading volume was not reported and
TRACE only reported that the trade size exceeded the cap.
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eliminate some of the trading records for the remaining bonds. There are three main reasons.

First, there are records for trades that do not actually take place since they are cancelled,

modified, or reversed. Second, there are records corresponding to trades that are reported

more than once. Third, there are records with issues concerning their price, size, or timing.

Table A.1 enumerates the number of bonds and trade records affected by each step.11 After

applying the filters described in Table A.1, there are 21,149,525 trades, corresponding to 30,643

CUSIPs, remaining in the Cleaned Historical TRACE database.

Phase Identification

FINRA’s criterion for a bond’s dissemination Phase is presented in Table 2.1. The main

criteria are the initial issue size and the credit rating. FINRA does not indicate a bond’s

Phase designation in either the Historical or Public FINRA dataset. As a result, we contacted

FINRA and obtained their listings of the bonds included at the start of Phases 2, 3A, and

3B. We obtained the list of bonds that are in the FINRA50 or FINRA120 directly from the

FINRA website.12

FINRA did not provide us a list of bonds in Phase 1. To construct the Phase 1 list, we

require a bond to have an initial issue size of $1 billion or more, be investment grade (following

the criteria FINRA used as outlined in Table 2.1), and have a publicly disseminated trade

before the start of Phase 2. Bonds which are simultaneously classified in a Phase and in either

the FINRA50 or FINRA120 are excluded from our Phase lists. The Data Appendix and Table

A.2 further describe the steps involved in matching the Phase lists to the Cleaned Historical

TRACE database.

Table A.2 shows that after cleaning, there are 343 Phase 1 bonds, 2,538 Phase 2 bonds,

11,087 Phase 3A bonds, and 2,853 Phase 3B bonds. We designate these 16,825 bonds and

14,210,328 trades as the Cleaned Phase Sample. The remaining bonds in the Cleaned Historical

11We do not exclude bonds trades that occurred on the NYSE’s Automated Bond System. Even though
they take place on an exchange and therefore are transparent, they constitute a tiny fraction of the market. For
instance, Goldstein et al. (2007) state that 99.9% of corporate bond trading in 2004 takes place over-the-counter.

12The list is available at http://www.finra.org/Industry/Compliance/MarketTransparency/TRACE/ An-
nouncements/P117685, last accessed January 28, 2013.
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TRACE database are not associated with any Phase. 7,669 bonds are always disseminated

(they were issued after the beginning of their Phases and always disseminated) and 1,708

bonds are never disseminated (they matured before the start of what would have been their

Phase). Finally, 671 bonds are not disseminated consistent with FINRA’s guidelines. They

either have some non-disseminated trades after a bond’s Phase began or some disseminated

trades before the Phase’s start date.

Although the number of bonds disseminated in Phase 1 and Phase 2 is lower than the

number in Phases 3A and 3B, bonds in the earlier Phases account for a larger number of trades

per bond. For instance, bonds in Phase 1 are heavily traded with a total of 10,208 trades per

bond over our sample period. In contrast, bonds in Phase 3B have only 351 trades per bond.

2.3.2 Bond Characteristics

Table 2.2 shows the distribution of issue size, credit rating, coupon rate, and maturity for our

sample of bonds by Phases. As mentioned above, when assigning bonds to Phases, FINRA

uses issue size and rating as criteria. Table 2.2 shows the mean bond issue size decreases from

Phase 1 to Phase 3A, consistent with the rules set by FINRA outlined in Table 2.1. Phase 1

bonds have by far the largest issue size with a mean of $1.466 billion and Phase 3A bonds are

the smallest with mean issue sizes of $82 million. Phase 3B bonds have a larger mean issue

size of $181 million.

We also report the quartiles of the issue size distribution as well as the 10th and 90th

percentiles. These quantiles show that there is overlap in issue size between Phases 2, 3A, and

3B. For example, the median of Phase 3B bonds equals the 25th percentile of Phase 2 bonds

and the 75th percentile of Phase 3A bonds is close to the 25th percentile of Phase 3B bonds.

These overlapping intervals allow us to compare bonds with similar issue sizes across Phases 2,

3A, and 3B.

Data on credit ratings comes from two sources. We first use ratings information from S&P

RatingsXpress if it is available. This covers 74.5% of bonds for the four Phases. If ratings are
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Table 2.2: Bond Characteristics by Phase

Phase&1 Phase&2 Phase&3A Phase&3B
(1) (2) (3) (4)

Number&of&Bonds 343 2,538 11,087 2,853

Size&at&Issue&($M)
&&&&mean& 1,466 263 82 181
&&&&&p10& 1,000 100 1 8
&&&&&p25& 1,000 150 3 85
&&&&&median 1,250 200 12 150
&&&&&p75& 1,750 300 75 232
&&&&&p90& 2,500 500 288 350

Rating&at&Phase&Start
&&&&mean& A A+ AJ B
&&&&&p10& AAJ AA AA BB+
&&&&&p25& A+ A+ A BBJ
&&&&&median A A+ AJ B
&&&&&p75& BBB+ A BBB& CCC&
&&&&&p90& BBB& AJ BBBJ D
#&where&rating&is&from&S&P&RatingsXpress 331 2,191 7,733 2,274
#&where&rating&is&from&FISD 12 345 3,319 489

Fixed&Coupon&Rate
&&&&mean& 6.7 6.9 5.8 9.0
&&&&median 6.8 6.9 5.9 8.8
&&&&number&fixed&coupon 309 2,155 10,149 2,632

Maturity&at&Issue&(years)
&&&&mean& 9.0 15.0 11.8 12.4
&&&&median 5.1 10.0 10.0 9.7

Years&since&Issue&(at&Phase&Start)
&&&&mean& 1.9 5.5 3.4 5.9
&&&&median 1.5 5.1 1.9 5.7

Bond issue size, coupon, maturity, and issue date characteristics are from FISD. Bond rating
are the most recent rating before the Phase starts. Bond rating characteristics are from S&P
RatingsXPress database. If ratings are not available in S&P RatingsXpress, we use ratings from
FISD. To assign a FISD rating, we first use the S&P value if it exists, otherwise the Moody’s value,
otherwise the Fitch value, and otherwise the Duff and Phelps value. Mean ratings are computed
by first converting each rating to a number (AAA=1, AA+=2, AA=3, . . . , and D=22) and then
converting the number back to a letter rating.
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not available in S&P RatingsXpress, we use ratings from FISD.13,14 FISD includes ratings

from S&P, Moody’s, Fitch and Duff and Phelps. To assign a FISD rating, we first use the

S&P value if it exists, otherwise the Moody’s value, otherwise the Fitch value, and otherwise

the Duff and Phelps value. If FISD does not have a rating from any of the four, we classify

the bond as unrated. Using both sources, there are ratings for 99.2% of bonds, and 127 bonds

are classified as unrated.

Table 2.2 shows the distribution of credit ratings at the start of each Phase. The average

rating at the beginning of the Phase is similar between Phases 1, 2, and 3A. Bonds in Phase

3B have significantly lower credit ratings. While there is overlap between the ratings in Phases

1, 2, and 3A, there is little or no overlap in ratings between Phase 3B and the other Phases.

The 10th percentile rating in Phase 3B is a BB+, while the 90th percentile rating in Phase 1,

2, and 3A are BBB, A-, and BBB-, respectively.

Table 2.2 also describes bond characteristics not used by FINRA when assigning Phases.

For example, most bonds have fixed coupon rates. The only Phase with less than 90% fixed

coupons is Phase 2 and even these bonds have fixed coupons 84.9% of the time. Consistent

with ratings, the highest coupon rates are for Phase 3B. In addition, Phase 1 bonds have the

lowest maturity at issue with a mean of 8.98 years and a median of 5.10 years. All three of

the other Phases have a mean maturity greater than 11.8 years and a median maturity greater

than 9.7 years.

2.3.3 Measuring Trading Activity and Price Dispersion

We measure trading activity in several ways. Our first measure is trading volume, which we

define as the number of bonds traded times their par value. Figure 2.1 plots the daily trading

volume averaged by week for the bonds in Phases 2, 3A, and 3B from July 2002 through

13Akins (2012) states that the S&P RatingsXpress database is more complete than FISD’s S&P ratings
database.

14FINRA does not rely exclusively on S&P ratings. It also uses ratings from other nationally recognized
statistical rating organizations. If a bond is unrated or split rated, FINRA has specific rules determining the
bond’s rating for the purposes of Phase classification.
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December 2006.15 The three vertical lines correspond to the starting date for each of the three

Phases.16 For all three Phases, the average daily trading volume fell by about a half over the

entire period July 2002 to December 2006. While this volume drop may be due to TRACE,

we cannot, at this point, exclude the possibility that there is a pre-existing downward trend in

volume independent of TRACE.

To focus on changes in the immediate time period surrounding dissemination, the first

section of Table 2.3 reports the mean and quartiles of daily volume for the period 90-days

before and 90-days after the beginning of each Phase.17 Table 2.3 shows the mean trading

volume is lower in the 90-day period after the start of each Phase than in the 90-day period

before each Phase. The declines in Phases 2 and 3A are not as large as that for Phase 3B,

where the average 90-day trading volume falls 41.9%. For Phase 2 and 3A, the percentage

declines are 4.9% and 5.5%, respectively.

Table 2.3 also shows how skewed the distribution of trading volume is across our sample.

The mean trading volume in Phases 3A and 3B is roughly 100 times greater than the medians

in the period before dissemination. In addition, more than half of the Phase 3B bonds do not

trade in the 90 days after dissemination. Moreover, the average trading volume for Phase 1

bonds is more than 50 times greater than the average trading volume for Phase 3B bonds

for the post 90-day period. Taken together, these facts suggest substantial heterogeneity in

trading volume within and across our bond samples.

These differences in trading volume across Phases may be due to difference in bond issue

sizes. A larger bond issue may generate more after-market trading simply because there are

more bonds to trade. As shown in Table 2.2, the mean issue size of Phase 1 bonds is almost

six times greater than those in Phase 2. Phase 2 bonds’ mean issue size is three times those of

15Figure 2.1 does not include trading days that SIFMA recommends that bond dealers take off or operate
for less than a full day. Additionally, Figure 2.1 does not include the two weeks spanning Christmas and New
Year’s Day due to significantly reduced volume.

16Bonds in Phase 1 are not plotted in Figure 2.1 because of scaling. Phase 1 bonds have an average daily
volume of 7,513,772 for the sample period.

17Since bonds trade infrequently, we use a 90-day window to capture changes in trading behavior. In Table
2.4, we also look at 30- and 60-day windows.
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bonds in Phase 3A. Comparing median issue sizes in Table 2.2 across Phases sometimes leads

to even larger differences. For example, the median issue size in Phase 2 is $200 million, while

the median issue size in Phase 3A is $12 million.

To address the issue of whether the difference in volume across Phases is driven by

differences in issue size, we next examine volume divided by issue size. Figure 2.2 plots volume

divided by issue size for each of the four Phases. While the time-series of volume/issue size

in Figure 2.2 follows the time-series for volume in Figure 2.1, dividing volume by issue size

makes the plots of trading activity for Phases 2, 3A, and 3B closer to one another than volume

alone. In addition, the second section of Table 2.3, which reports statistics on volume/issue

size by Phase, reinforces this conclusion.18 Normalizing by issue size reduces the skewness

in comparisons both within and across Phases. Comparing within Phases, the mean of

volume/issue size in Phases 3A and 3B is four and 18 times the median respectively. This

compares to a ratio of about 100 for volume as discussed above. Comparing across Phases,

the mean of volume/issue size in Phase 1 is eight times that in Phase 3B in the 90 days after

dissemination. This compares to 50 times when using volume. Consequently, the remainder

of the paper reports volume/issue size as our primary measure of trading activity. We also

conduct the entire analysis using volume alone, but to save space we only report those results

when discussing alternative measures of trading in Table 2.6.

Table 2.3 also reports a within-bond metric, by computing the fraction of bonds for which

trading volume increases, decreases or remains the same in the 90 days before and after the

Phase initiation date. Since the comparison is before vs. after for a given bond, the numbers

are identical whether using volume or volume/issue size. Phase 3B bonds show a pronounced

decline in trading activity in the within-bond comparisons. 45.1% of Phase 3B bonds have

more trading volume before dissemination, while 15.2% of Phase 3B bonds have more trading

volume afterwards. A large percentage of Phase 3B bonds, 39.7%, do not trade in the 90-days

before or after the beginning of the Phase. The within-bond results for Phase 2 bonds also

18An alternative normalization would be log volume. As seen in Table 2.3, this is infeasible since volume is
equal to zero for many bonds in the 90 days surrounding the Phase starts.

87



F
ig

ur
e

2.
2:

W
ee

kl
y

Tr
ad

in
g

V
ol

um
e/

Is
su

e
Si

ze
by

P
ha

se

0.
00
%
$

0.
10
%
$

0.
20
%
$

0.
30
%
$

0.
40
%
$

0.
50
%
$

0.
60
%
$

0.
70
%
$

0.
80
%
$

0.
90
%
$

1.
00
%
$

Ph
as
e$
1$

Ph
as
e$
2$

Ph
as
e$
3A

$

Ph
as
e$
3B

$

Fi
gu

re
do

es
no

t
in

cl
ud

e
tr

ad
in

g
da

ys
th

at
SI

FM
A

re
co

m
m

en
ds

th
at

bo
nd

de
al

er
s

ta
ke

off
or

op
er

at
e

fo
r

le
ss

th
an

a
fu

ll
da

y.
Fi

gu
re

ls
o

do
es

no
t

in
cl

ud
e

th
e

tw
o

w
ee

ks
sp

an
ni

ng
C

hr
is

tm
as

an
d

N
ew

Y
ea

r’
s

D
ay

.

88



show a decline but not as much, from 51.4% to 43.7%. The results for Phase 3A are mixed.

The fraction of bonds with higher volume post dissemination is slightly greater than for before

dissemination, however, the mean volume declines from the period before to after.

Price Dispersion

We also examine the impact of transparency on price dispersion. We begin by focusing on the

daily price standard deviation, defined for bond i on day t as

�
it

=

0

@ 1

N
it

X

j

(p
itj

� p
it

)

2

1

A

1
2

where N
it

is the number of trades for bond i on day t, p
itj

is the price of bond i for trade j on

day t and p
it

is the average price of bond i on day t. We focus on price standard deviation

because it does not depend on assumptions about the relationship between transaction prices

and order flow. We examine other measures of price dispersion in Section 2.5. All measures of

daily price standard deviation are in units of dollars.

To compute a daily price standard deviation, it is necessary to observe at least two bond

trades in a day. Given the lack of trading in many bonds, we often do not observe two trades.19

Further, to measure the effects of dissemination on price dispersion, we require that there is

at least one daily price standard deviation observation both in the 90 days before and in the

90 days after the bond’s change in dissemination. As a result, the number of bonds used in

our price standard deviation analysis is substantially smaller than the number used in the

volume analysis. This can be seen in Table 2.3’s sample counts for each Phase. For example,

only 57.0% of Phase 3A and 40.0% of Phase 3B bonds in the volume sample are also in the

price standard deviation sample. Although not shown, the bonds for which we can compute

price standard deviation tend to have a larger size at issue and higher rating than the volume

sample.

19Measures of transaction costs such as direct round trip or imputed transaction costs also present difficulties
for less actively traded bonds since they require observing multiple trades within a short time horizon. For
instance, Edwards et al. (2007)’s method requires that a bond trades at least nine times.
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There is a potential bias in our price standard deviation measure since the sample is defined

based on trading behavior both before and after changes in dissemination. If dissemination

causes an increase or decrease in bond trading, this may change the number of bonds for

which we can compute price standard deviation.20 Thus, if the bonds that would have traded

without dissemination substantially differ from the bonds that do trade with dissemination,

then it may be difficult to interpret changes in price standard deviation.21 This appears to

not to be an issue for our sample. To further investigate the robustness of our price standard

deviation findings, in Section 2.5 we construct a matched sample of bonds holding constant

the observable characteristics of bonds before and after dissemination.

Figure 2.3 plots the daily price standard deviation averaged by week from July 2002

through December 2006.22 Just as with trading volume, there is a reduction in price standard

deviation over the entire time period. In fact, the price standard deviation falls by over a

half from July 2002 to December 2006. However, unlike trading volume, the decline in price

standard deviation seems to initiate at TRACE’s launch, and continues through 2005. Another

pattern in Figure 2.3 is that price standard deviation, over the entire period, is usually highest

for Phase 3A bonds, and is lowest for Phase 1. Furthermore, standard deviation for Phase

20This problem does not affect our volume calculations because when a bond does not trade, it counts as
having zero trading volume.

21The probability that any of the Phase 2, 3A, or 3B bonds trade at least twice on a day in the 90 days
before dissemination is 12.5%. To test whether this probability changes after TRACE, we estimate the effect
of TRACE on the probability that a bond trades twice or more on a given day. The estimates come from
a difference-in-difference regression similar to those estimated in Table 2.6, where the dependent variable
is an indicator for whether a bond trades two or more times in a day. (The next section introduces our
difference-in-difference methodology.) There is a statistically significant 0.37% reduction in the probability
of trading for treated bonds across all three Phases. Assuming that the likelihood of trading is independent
across days, this implies that TRACE causes a negligible reduction in the probability that a bond’s price
standard deviation can be measured across 90 calendar days. The estimated probability that a bond is no
longer in the price standard deviation sample due to TRACE is less than 0.01%. This is calculated as follows:
the probability that in any day among the 90 calendar days before there are at least two trades on the same
day and that in any day among the 90 calendar days after dissemination there at least two trades on the same
day is equal (1� (1� Pr(at least two trades on day))64) ⇤ (1� (1� Pr(at least two trades on day))64), where
64 is the average number of trading days among 90 calendar days. The 0.37% reduction in the probability of
at least two trades on a day from estimated probability of at least two trades before TRACE of 12.5% yields a
0.01% reduction in the probability that a bond will be in price standard deviation sample due to TRACE.

22Following Figure 2.1, Figure 2.2 does not include trading days that SIFMA recommends that bond dealers
take off or operate for less than a full day and does not include the two weeks spanning Christmas and New
Year’s Day.
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1 bonds is lower than for Phase 2 and Phase 3A in the early part of the sample period, but

converges by the end of our sample period.

Table 2.3 also reports on price standard deviation in the 90-day window around when

a bond changes its dissemination status. There is a reduction in price standard deviation,

measured in dollars, for bonds in all three Phases. The average Phase 2 bond’s price standard

deviation falls from $0.83 to $0.76, a 8.4% reduction, while the median Phase 2 bond’s price

standard deviation falls from $0.67 to $0.65. The percentage of bonds with higher standard

deviation before the start of Phase 2 is 56.6%. The drop in price standard deviation is even

greater for Phase 3A and 3B bonds. The average Phase 3A bond’s price standard deviation falls

by $0.10, which is a 13.1% decrease, while the average Phase 3B falls by $0.20, which is a 30.8%

decrease. The median bond’s price standard deviation drops by $0.08 and $0.10, respectively.

Column (5) of Table 2.3 shows that the number of bonds for whom the price standard deviation

is greater beforehand is 59.6% and 63.5% for Phases 3A and 3B, respectively.

Thus, Figures 2.1, 2.2, and 2.3 and Table 2.3 show that TRACE coincides with a decrease

in trading volume for Phase 3B bonds. Moreover, there are sharp reductions in price standard

deviation in each of the three Phases within a short 90-day window surrounding dissemination.

However, changes in either volume or price standard deviation are contemporaneous with an

overall downward trend in trading activity and in price standard deviation during our sample

period. As a result, we cannot immediately conclude that any changes or lack of changes are

the result of TRACE alone. Our next task is to adjust for market trends.

2.4 Research Design and Main Results

2.4.1 Difference in Differences Framework

Although the before-and-after comparisons in Table 2.3 show that price standard deviation

falls for bonds in all Phases and trading volume declines for Phase 3B bonds, a before-and-after

comparison is not sufficient to attribute the changes to dissemination alone. We adjust for

market trends by comparing the changes in the treated sample to those in a control group by
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estimating difference-in-differences models of the form:

y
it

= ↵+ �0Disseminate
i

+ �1Post
t

+ �Disseminate
i

⇥ Post
t

+ ✏
it

(2.1)

where y
it

is bond i’s outcome (i.e., measures of trading activity or price dispersion) on day t,

Disseminate
i

is an indicator for whether the bond changes dissemination status (i.e., is in the

treated group) and Post
t

is an indicator for the trade outcomes on days after the dissemination

period. Since there are repeated observations per bond, in all estimates, the standard errors

are clustered by bond.

In equation 2.1, any pre-existing difference between bonds that change dissemination status

and those that do not are captured by �0. Any effects of dissemination that accrue to all bonds

- that is, effects that are not limited to only bonds that change their dissemination status in

the Phase - are absorbed by time effects �1. The coefficient of interest is �, which estimates the

direct effect of transparency on a bond’s trading outcome. The coefficient � reflects the change

in trading outcomes for bonds that change dissemination status compared to the change in

trading outcomes for bonds that do not change dissemination status. Estimates of �, therefore,

net out aggregate changes in bond trading outcomes.

It is possible that changes in dissemination will also affect bonds that do not change

dissemination if the market impounds that information into all trading activity. Indeed, the

overall downward trend in trading activity and price standard deviation in Figures 2.1 and 2.2

may be the consequence of TRACE’s introduction in July 2002. However, we cannot assert

that TRACE caused this decrease because we do not observe trading activity before Phase

1. The overall downward trend could instead be due to macroeconomic factors affecting the

corporate bond market. For example, the Federal Reserve Bank raised interest rates 17 times

from June 2004 through June 2006 (NASD (2006)). In our regression equation, the time effects

incorporate all of these potential factors, and therefore we cannot interpret the estimates of �1

as a causal effect of dissemination.

For � to provide unbiased estimates of the causal effect of transparency there are several

important necessary assumptions. First, transparency and its consequences must not have
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been fully anticipated by market participants; to the degree that impacts were foreseen by

traders and dealers, the impacts on trading activity and price dispersion would appear before

the actual change in dissemination status. If all trade outcomes responded immediately at

Phase 1, our TRACE results for Phases 2, 3A, and 3B would only measure the incremental

impact of later Phases of TRACE. Bessembinder et al. (2006) first emphasized this point when

they argued that TRACE’s initiation affected all bonds, not only those in Phase 1. In this

case, our estimates understate the true impact of TRACE. (In Section 2.7, we investigate

Phase 1 using a separate data set from the National Association of Insurance Commissioners.)

It seems unlikely that the effects of TRACE occurred in their entirety at the beginning of

Phase 1. Even though TRACE started collecting information on trade activity for all bonds

from July 1, 2002, the schedule of when transaction data would be disseminated remained

uncertain. The timing of the expansions was not initially known and took place incrementally,

depending on both FINRA and SEC approval. For example, FINRA, then NASD, approved

Phase 2 on November 21, 2002, but the SEC did not approve it until February 28, 2003. Phase

2 was implemented on March 3, 2003. Thus, participants knew in advance that dissemination

would expand, but they did not exact timing until shortly before it occurred.

The second assumption for � to be a causal estimate is that there are no other changes

simultaneous with the Phase start date that affects the trading activity for those bonds

changing dissemination status. That is, in equation (2), the interaction between Disseminate

and Post is uncorrelated with other unmeasured factors that affect trade activity that change

at the same time as the change in dissemination status (but are not caused by the change in

dissemination status). There are trends in the bond market trading during our time period,

but we are unaware of any changes to bond market trading that coincide with the Phase start

dates.

Finally, a third assumption is that we can measure the counterfactual difference in bond

trading with the bonds that do not change dissemination status. That is, we assume that the

change over time in control bonds’ behavior reveals what would have occurred to treated bonds

if there had been no change in their dissemination status. Note this assumption does not mean
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that control bonds must have the same characteristics as treated bonds, but rather that the

change in their behavior captures the counterfactual time path. This is important because our

treated bonds have different attributes than our control bonds by definition. FINRA selected

bonds for Phases based on characteristics such as ratings and issue size. For instance, Phase 2

bonds are investment grade and have an original issue size of at least $100 million. Hence, our

third assumption will be violated if the bond trading activity varies substantially over time

due to different bond characteristics. We examine the sensitivity of our results to these three

assumptions in the next section.

To estimate equation 2.1, there are two implementation decisions. First, it is necessary to

specify the estimation window. Since bonds trade infrequently, a longer time window may be

needed to observe changes in trading activity. A longer time window, however, may lead us to

misattribute the effect of a change in dissemination to underlying market trends. For these

reasons, we report estimates of equation 2.1 for three different estimation windows covering

30, 60, and 90 days surrounding the Phase start dates.

The second implementation decision is how to define the control bonds for any Phase for

these regressions. Because of the four distinct TRACE Phases, there are several possibilities for

defining control bonds. Control bonds can be defined as bonds that were already disseminated

before the Phase begins. For example, to measure the impact of transparency on Phase 2

bonds, we can compare the trading behavior of Phase 2 bonds with the trading behavior of

Phase 1 bonds. Alternatively, a control group can be defined as bonds that are disseminated

in a later Phase. For example, for Phase 2 bonds, the control group could be Phase 3A and

Phase 3B bonds.

We defined our control group several ways, both including Phase 1 bonds that were already

disseminated and also excluding Phase 1 and only including bonds from later Phases that

were not disseminated. We find that including or excluding Phase 1 bonds does not change

our results in any meaningful way. With the exception of our robustness tests in Table 2.6,

our Tables all use Phase 1 bonds in the control groups.

Another issue with control groups that we must confront is that Phase 3A and Phase 3B
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occur just over four months apart, on October 1, 2004 and February 7, 2005, respectively. If

we use a 90-day window before and after a Phase to capture the effects of dissemination, the

post-dissemination trading of Phase 3A overlaps with the pre-dissemination trading of Phase

3B. Therefore, we do not use Phase 3B bonds as controls for Phase 3A bonds, and vice versa.

When we present the analysis below, we use the bonds in Phases 1, 3A, and 3B as control

bonds for Phase 2, and we use the bonds in Phases 1 and 2 as control bonds for Phases 3A

and 3B.

2.4.2 Estimates

Table 2.4 reports estimates of equation 2.1 for 30, 60, and 90-day windows for bonds in Phases

2, 3A, and 3B, separately. It also reports pooled estimates, based on equation 2.1, with data

stacked across the three Phases. That is, there are separate intercepts ↵ for each Phase and

�0 and �1 is also allowed to differ by Phase, while � does not differ by Phase.

The estimate of the effect of TRACE on trading volume/issue size, pooled across all

three Phases, is negative and significant for all three estimation windows. Across all Phases,

volume/issue size (in percent, i.e., multiplied by 100) drops by 0.027 in the 90-day window

around dissemination, which is significant at the 1% level. This is a 15.2% reduction from

0.178, the average level before dissemination. Across Phases, the only statistically significant

reduction in volume/issue size for all estimation windows is for Phase 3B, which is significant

at the 1% level.

In the 90-day window, TRACE reduces the average volume/issue size (in percent) for Phase

3B bonds by 0.074. This represents a 41.3% drop from the average level before dissemination.

These findings reinforce the within-bond comparisons reported in column (9) of Table 2.3,

which shows that three times as many bonds in Phase 3B have lower volume after dissemination

than before.

Price standard deviation, reported in columns (6), (7) and (8), drops significantly (at the

1% level) after dissemination for all estimation windows, and for both the pooled sample and

each Phase separately. In the 90-day window the pooled estimate of the reduction in price
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standard deviation is 7.7 cents and is highly significant. Across the Phases, the smallest 90-day

drop is for Phase 3A bonds. These bonds experience a significant reduction of 5.9 cents in their

daily price standard deviation, which represents a 6.5% decrease relative to before the start of

the Phase 3A. The largest drop is for bonds in Phase 3B. These bonds experience a significant

reduction by 16.8 cents, which corresponds to a 24.7% reduction from the previous level. This

pattern mirrors those the price standard deviation results in the within-bond comparisons

reported in Table 2.3.23

In summary, the estimates in Table 2.4 suggest that transparency causes a significant

reduction in volume/issue size for Phase 3B bonds. In addition, daily price standard deviation

falls significantly across all Phases. Since for each Phase our results are more precisely

estimated at the 90-day window than at the 30 or 60-day window in subsequent tables, we

report estimates from the 90-day estimation windows.

2.5 Timing, Robustness, and Other Measures of Trading Activ-

ity and Price Dispersion

In this section, we revisit the assumptions underlying the difference-in-differences estimates

above and report estimates for other measures of trading activity and price dispersion.

2.5.1 Event Study and Time Windows

Table 2.4 does not tell us how long it takes for the market to react to a change in dissemination.

Changes may be immediate if market participants anticipate the effects of dissemination in

advance of Phase start dates. On the other hand, changes due to dissemination may occur

with delay because of adjustment costs, such as rebalancing inventories, faced by market

23The mean daily price standard deviation in column (5) of Table 2.4 is not identical to the mean daily
price standard deviation in column (1) of Table 2.3. In Table 2.3, we compute the average daily price standard
deviation, equally weighted by bond. In Table 2.4, we compute the average daily price standard deviation
without weighting by bond, and cluster by bond in the regression. Since we require at least two trades on a
day to calculate daily price standard deviation, unlike volume, we do not observe price standard deviation
for each day and, hence, the calculated daily price standard deviation differs between Table 2.3 and 4 due to
weighting. The measured daily price standard deviation in Tables 2.3 and 2.4 are close, and the relative sizes
by Phase are similar.
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participants. Delays may also occur if participants require time to utilize the newly available

data. Moreover, the relative infrequency of bond trading may make it difficult to detect the

effects of dissemination in short estimation periods.

To examine when the effects of dissemination begin, we estimate an “event-study” version

of the regression model that allows the effects to differ by one-week intervals:

y
it

= ↵+ �0Disseminate
i

+ �
w

One-Week Interval
t

+ �
w

Disseminate
i

⇥ One-Week Interval
t

+ ✏
it

(2.2)

where the One-Week Interval
t

is an indicator of whether day t is in week w. Equation 2.2

is estimated for each Phase separately. �0 captures any pre-existing difference between

disseminated and non-disseminated bonds, while �
w

captures the overall trend in trading

outcome in week w.

The estimate of �
w

is the amount by which the average newly disseminated bond deviates

in trading outcome (either volume/issue size or price standard deviation) from control bonds

during the one-week interval w. If there is a trend in the market that only affects bonds that

change dissemination status, it should be reflected in the relative levels of �
w

. For example,

if volume in newly disseminated bonds is trending down in the time period before a change

in dissemination, the �
w

’s will be higher before than after. Since the estimates of �
w

are

based on one-week contrasts, they will be estimated less precisely than models which impose a

common effect for the period before and a separate common effect for the period after as in

equation 2.1.

Figure 2.4 plots values of �
w

for trading volume/issue size for each week by Phase. We

adopt the convention that week 0 includes the dissemination date and the six calendar days

following it. We normalize �
w

to be zero in the week before the change in dissemination (i.e.,

week -1) and we add a vertical line to the plot for that week.24 The patterns in Figure 2.4 for

Phase 2 and 3A are consistent with the results in Tables 2.3 and 2.4. Volume/issue size is not

affected by transparency for bonds since there is no shift in the level of coefficient estimates

24Since the event study includes the period from 90 days before and 90 days after day 0, there is one fewer
calendar day in week -13.
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after dissemination in the Figure.

The Phase 3B plot in Figure 2.4 shows a sharp and significant drop in volume/issue size

from the week immediately preceding dissemination to the first week after it. This suggests

that the negative volume/issue size results for Phase 3B in Tables 2.3 and 2.4 are caused by

dissemination and occur shortly after Phase 3B starts. In addition, for Phase 3B, the level of

trading activity remains lower for the 12 weeks after dissemination begins. This persistent

reduction is consistent with the Table 2.4 Phase 3B difference-in-differences estimates for 30,

60, and 90-days being similar.

For price standard deviation, the event study plots in Figure 2.5 show a clear drop at

dissemination for all three Phases. The coefficients for each Phase are at or above zero

before dissemination, and are clearly below zero after dissemination. Importantly, there

is a pronounced drop in price standard deviation between week -1 and the first week of

dissemination in each of the three Phases. The absence of visual evidence of trends provides

support for a causal interpretation of TRACE’s effect on price standard deviation.

In summary, the event-study plots in Figure 2.4 show a volume effect only for Phase

3B bonds, while Figure 2.5 shows a decline in price standard deviation for all three Phases.

Furthermore, there is no pre-trend in price standard deviation for newly disseminated bonds.

This fact provides support for our identification assumptions of incomplete anticipation

and no simultaneous non-dissemination related changes in the bond market. Moreover, a

large percentage of the overall effect for price standard deviation occurs immediately after

dissemination.

2.5.2 Time Trends

Another assumption underlying the difference-in-differences estimates is common parallel

trends. That is, we assume that if treated bonds had not changed their dissemination status,

their trading behavior would follow the same trajectory as the control group bonds. However,

it is possible that trading outcomes for treated bonds follow different trajectories than control

bonds. As discussed above in Section 2.4, one reason for this possibility is that the control
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bonds have different characteristics than treated bonds, particularly since FINRA uses size

and credit ratings to determine Phase classifications.

To relax the common trends assumption, in Table 2.5, we estimate specifications allowing

the trade outcomes for bonds to evolve over time depending on whether they are investment-

grade or not. Specifically, we estimate models with linear and quadratic time trends by

including Phase-specific quadratic functions of time in equation 2.1 as follows:

y
it

= ↵+ �0Disseminate
i

+ �01Investment Grade
i

⇥ t

+ �02Investment Grade
i

⇥ t2 + �1Post
t

+ �Disseminate
i

⇥ Post
t

+ ✏
it

(2.3)

where Investment Grade
i

is an indicator for bond ratings of BBB- and above. For each Phase,

the variable t starts at zero at the beginning of the time window. For the pooled estimate, we

estimate separate Phase-specific trends.

Since equation 2.3 adds more flexible time trends to our difference-in-differences regression,

we anticipate a reduction in the precision of the estimates in Table 2.5 compared to Table 2.4.

The precision of each significant estimate in Table 2.5 column (2) is lower than that in Table

2.4 (which is repeated for convenience as column (1)). The pooled estimate of volume/issue size

although smaller is still significant at the 5% level. The estimate for Phase 2 volume/issue size

becomes insignificant with trends. Importantly, the estimate for Phase 3B remains significant

at the 1% level.

When estimating equation 2.3 for price standard deviation, Table 2.5 column (6) shows

that the results are robust to the addition of trends. For each Phase separately, as well as

pooled, the estimates remain negative and significant at the 1% level.

2.5.3 Control Groups

We also address the robustness of the Table 2.4 results by considering two variations on the

control group. First, we eliminate Phase 1 bonds from the control group. As discussed above,

Phase 1 bonds are larger and more actively traded than bonds in any other Phase. It is

therefore possible that the change in trading behavior of Phase 1 bonds does not provide an

adequate counterfactual for bonds that change their dissemination status. In columns (3)
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and (7) of Table 2.5, we report estimates for volume/issue size and price standard deviation

where Phase 1 bonds are not used as controls. This means that for Phase 2, the control bonds

are from Phase 3A and 3B. For Phase 3A and 3B, the control bonds are from Phase 2. The

estimates reported in columns (3) and (7) are nearly identical to our base results in columns

(1) and (5), respectively.

Second, we construct a matched sample, restricting the treated sample to bonds for which

there is a suitable control bond with similar pre-treatment characteristics. The pre-treatment

bond characteristics we use to construct the matched sample are issue size, credit rating

at Phase start, time to maturity at Phase start, and years since issue at Phase start.25 To

construct the matched sample, we divide the sample (which includes Phase 1 bonds) by issue

size into four quartiles. For the other three characteristics, we divide in two groups: investment

grade and high-yield, above and below the median time to maturity, and above and below the

median years since issue. This results in 32 potential cells for each Phase. We exclude a cell if

there are either fewer than 5 treated bonds or fewer than 5 control bonds. When we define

the matched sample using our four bond characteristics, we cover 99.6% of Phase 2 bonds in

our volume sample, but for Phases 3A and 3B the treated sample is only 41.1% and 28.3%,

respectively for volume/issue size. For price standard deviation, we cover 99.9% of Phase 2

bonds in our price standard deviation sample, 47.7% of Phase 3A bonds, and 28.8% of Phase

3B bonds.

The estimates for the matched-sample difference-in-differences regression are in columns (4)

and (8) of Table 2.5. To control for bond attributes, we add a dummy variable for each cell to

equation 2.1, and interact the cell dummy with Post and treated. Their inclusion means that

our estimates are a weighted average of the within-cell difference-and-differences estimates.

For the matched sample, the volume/issue size estimates in column (4) for the pooled sample

and Phase 3B remain negative and significant. Thus, the negative and significant effect of

dissemination on volume/issue size documented in Table 2.4 for Phase 3B and the pooled

sample is robust to the alternative specifications in columns (2)-(4).

25We eliminate bonds that are unrated from the matched sample.
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The price standard deviation results for the matched sample in column (8) are similar

to those in columns (5)-(7) for the both the pooled and Phase samples. The only difference

worth highlighting is that for Phase 3B, the effect on price standard deviation is no longer

significant. This reduction in significance may be due to the small sample size of only 325

treated and 1,582 control bonds. Thus, examining columns (5)-(8) of Table 2.5 shows that the

negative and significant effect of dissemination documented in Table 2.4 is robust across all

alternative specifications for the pooled sample, and Phases 2 and 3A. The results are also

robust for two of the three alternative specifications for Phase 3B.

2.5.4 Alternative Measures of Trading Activity and Price Dispersion

Trading Activity

So far, we’ve focused our investigation on volume/issue size and price standard deviation as the

measures of TRACE’s impact on bond trading. Next, we consider some alternative measures

of trading activity and price dispersion in Table 2.6 and 2.7, respectively. Both Tables report

estimates from the difference-in-differences regressions with 90-day windows used in Table 2.4,

but with different outcomes.

As described above, TRACE proponents expected that transparency would increase trading

activity, expand market participation, and attract greater retail interest.26 In Table 2.6, we

consider volume (not normalized by issue size), the probability of trade, the probability of

a large trade, the number of trades, and the average trade size. The probability of trade is

the percentage of days a bond trades during our sample period. The odd-numbered columns

of Table 2.6 report the average value of the dependent variable for treated bonds in the 90

days before dissemination. The even numbered columns report the difference-in-differences

estimate for each of the outcomes.

Before turning to the effects of dissemination on alternative measures of trading activity,

we note some important differences in trading activity across Phases in means reported in

the odd-numbered columns in Table 2.6. Trade sizes for Phase 3B bonds are quite large, but

26FINRA defines retail trades as $100,000 or less (Ketchum (2012).
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Phase 3B bonds trade infrequently. For instance, the average trade size for Phase 3B bonds is

1,205,940, which is much larger than Phase 2 bonds and more than twice the average size of

Phase 3A bonds. Despite this larger trade size, volume for Phase 3B bonds is much smaller

than Phase 2 bonds, and approximately the same size as Phase 3A bonds. This is explained

by the much lower probability of trading for Phase 3B bonds.

Dissemination causes a significant reduction in volume for the pooled sample and for

Phases 3A and 3B separately as seen in column (2). For the pooled sample, there is 17.2%

percent reduction in volume / issue after dissemination, significant at the 1% level. For

Phase 3A bonds, the reduction is 28.7%, while for Phase 3B bonds, the reduction is 26.8%,

both significant at the 5% level. The percentage reduction volume for in Phase 3B is not

as large as the percentage reduction in volume/issue size in Table 2.4 and the significance

level is lower. This difference may be due to greater skewness for trading volume, caused

by idiosyncratic large trades, compared to volume/issue size when Phase 1 are included in

the controls. Although not shown in the Table, when we eliminate Phase 1 bonds from our

difference-in-differences regression on volume, only the Phase 3B and pooled estimates are

negative and both are significant at the 1% level.27

In the next two columns of Table 2.6, we fit models of the probability of any trade and the

probability of a trade over $1 million in size. In the Public TRACE dataset, TRACE censored

the reporting of trades greater than $1 million (for high-yield) and $5 million (for investment

grade). This was due to objections from dealers and certain institutional market participants

who claimed that it would be possible to infer their trading positions from the release of large

trade sizes and therefore place them at a competitive disadvantage.

Our estimates for the probability of any trade indicate that in the pooled sample, TRACE

reduces trading. However, there are significant opposite patterns by Phase. The probability of

trade for Phase 2 bonds decreases significantly at the 1% level, the probability of trade for

Phase 3A bonds increases significantly at the 1% level, and the probability of trade in Phase

27The estimate for Phase 3B volume without Phase 1 as a control is -96,507.7, similar to our estimate
of -98,343.6 in Table 2.6, but the standard error is 19,386.6, much below the standard error in Table 2.6 of
45,222.4.
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3B decreases significantly at the 10% level. When we measure of probability of trades over $1

million in size, the effect for Phase 3A is no longer significantly positive, but the effect for

Phase 2 and 3B remain significantly negative. For Phase 3B, the reduction in the probability

of a large trade is -0.012, which is a 23.1% reduction from the mean level of 0.052. Thus, these

two findings suggest that TRACE’s influence on participation, as measured by probability of

trade, is not positive as proponents anticipated.

he results for the number of trades are also similar to that for volume/issue size. In column

(8), the change in the number of trades for the pooled sample and Phase 3B is negative and

significant at the 1% level. Interestingly, the 0.49 reduction in the number of trades in Phase

3B of is greater than the mean number of trades, 0.30, prior to dissemination. The reason for

this is that the number of trades for Phase 3B bonds which trade most frequently experience

a greater reduction than the number of trades for Phase 3B bonds which trade infrequently.28

We also examine average trade size in columns (9) and (10). Those results repeat the

pattern of a significant decline for the pooled result and for Phase 3B. It’s worth noting that

trade sizes are larger for Phase 3B than in any other Phase. The reduction in trade sizes occurs

even though certain infrequently traded Phase 3B bonds were subject to delayed dissemination

if their transaction size was $1 million or greater.29 These results imply that the decline of

large trades in Phase 3B play a large role in our overall volume findings.

Finally, in unreported tabulations, we also find that TRACE does not increase the likelihood

of retail size trades. For instance, the pooled estimate for the probability of a trade less than

$100,000 is 0.000 with standard error 0.00128. In Phase 2, the estimate is significantly negative,

-0.0127 with standard error 0.00218. Hence, TRACE did not increase the likelihood of retail

size trades.

28In an unreported analysis, we further investigated the reduction in the number of trades. There is a
gradient in the percentage reduction in the probability that a bond trades multiple times a day. The percentage
reduction in the likelihood of trading at least 20 times a day is greater than the percentage reduction at least
10 times a day, which in turn is greater than the percentage reduction in the probability of trading at least 5
times a day.

29An infrequently traded bond is one that does not average one or more trades per day over last 20 business
days of a 90-day period determined each quarter by NASD.
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In summary, the results in Table 2.6 show that volume, probability of a large trade, number

of trades, and trade size follow the same pattern as volume/issue size. Thus, TRACE does not

appear to have increased market participation even from retail investors.

Price Dispersion

A weakness of our daily price dispersion measure is that since we require at least two trades

in a day, it cannot be computed for all bonds. It is possible that TRACE also affects price

dispersion for bonds that do not trade at least twice a day. To examine this possibility, in

Table 2.7, we consider three additional measures of price dispersion: the intra-day absolute

spread (max price minus min price)30, the price standard deviation of all trades in 10-day

windows, and the price standard deviation of all trades in 30-day windows. Using the 10-day

and 30-day price standard deviation increases our sample sizes slightly. For instance, with

the 30-day measure our coverage of Phase 3A bonds is 63.0% and Phase 3B bonds is 42.1%

compared to 57.0% and 40.0% respectively with the intraday measure.

The results on other measures of price dispersion in Table 2.7 confirm the price standard

deviation results in Tables 2.4 and 2.5. Every measure for the pooled sample and for each

Phase is negative and significant. As with daily price standard deviation, the largest effect

of dissemination occurs in Phase 3B for all three measures of dispersion. For the absolute

spread, a reduction of 39.7 cents represents 28.6% of the average spread pre-transparency.

This percentage reduction is similar to the 24.7% reduction for daily price standard deviation.

Thus, transparency reduces price dispersion for four different metrics for all Phases.

2.6 Heterogeneity in Credit Rating and Issue Size

While the price dispersion results are consistent across all Phases, the results on trading

activity differ for Phase 3B. What is different about the bonds in Phase 3B? FINRA selects

the bonds in each Phase using credit rating, issue size, and trading activity. Examining credit

30Using equity data from TAQ, Corwin and Schultz (2012) demonstrate that intraday absolute spread is
highly correlated with bid ask spreads and show that it also outperforms other low-frequency spread measures.
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rating and issue size in Table 2.2 shows that Phase 3B differs from the other Phases because it

is the only Phase with a majority of high-yield bonds. However, there is some overlap of credit

rating and issue size between Phases, making it possible to identify whether credit rating or

size is the main determinants of the Phase 3B results.

In Table 2.8, we pool the Phases, and split the treated sample by credit rating and issue

size. We split credit ratings into investment grade, BBB- or above, and high-yield, BB+ or

below. We split issue size into bonds with issue size less than or greater than or equal to $100

million. These criteria follow FINRA’s breakpoints for Phase 2 classification. The control

bonds remain the same across columns. The overlap between Phases on credit quality and

issue size is shown in Table 2.8. For the 3,164 high-yield bonds in our sample, 634 are from

Phase 3A, while the remainder is in Phase 3B. For 9,087 bonds with issue size less than $100

million, 677 are from Phase 3B, while 8,410 are from Phase 3A and 10 are from Phase 2. Thus,

pooling the high-yield sample amounts to combining most of Phase 3B with a portion of Phase

3A, while pooling the small issue size sample amounts to combining most of Phase 3A with a

portion of Phase 3B.

The effect of dissemination on volume/issue size on high-yield bonds is a highly significant

-0.057, while it is a smaller and less significant -0.013 for investment grade bonds, as shown in

columns (1) and (2) of Table 2.8. This 4.4 ratio of effects represents a statistically significant

difference as shown by the p-value from the Chi-square test reported below the estimates.

Turning to issue size, the effect of dissemination on volume/issue size is primarily driven by

bonds with issue size � $100 million. The estimate for bonds with issue size < $100 million is

not statistically significant and close to zero. This is consistent with the results in Table 2.4,

which show that Phase 3A bonds do not experience a reduction in trading activity. These

bonds by definition primarily have issue size less than $100 million. Thus, the volume/issue

size findings appear to be driven by low credit bonds or bonds with issue size � $100 million.

To examine which feature is more responsible for driving the volume/issue size results, we

next report a two-way split of the sample. In column (5) and (6), we split the investment grade

sample into small and large issue size bonds. In column (7) and (8), we split the high-yield
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sample into small and large issue size bonds. The estimate for small investment grade bonds

is not significant, but the estimate for large investment grade bonds is negative and significant.

This estimate, however, is smaller than either estimate for high-yield bonds, which are both

negative and similar in size for both small and large issue size bonds. Therefore, it appears

that the results for volume/issue are affected more by credit ratings than issue size.

The second panel of Table 2.8 reports on price standard deviation split by ratings and

issue size. Each of the estimates is negative and highly significant for all subgroups, but

the reduction in price standard deviation is significantly larger for high-yield bonds than

for investment grade bonds throughout. When examining issue size, the reduction in price

dispersion is only slightly larger for bonds with issue size � $100 million.

Thus, the reason the results on Phase 3B are different than the other Phases is largely

because of the high proportion of high-yield bonds in that Phase. Although not shown, the

other measures of trading activity in Table 2.6 and the measures of price dispersion in Table

2.7 decrease more for high-yield bonds than for investment grade bonds. Therefore, our initial

question in this subsection of why the bonds in Phase 3B behave differently needs to be recast

to ask why do high-yield bonds behave differently?

The fact that investment grade and high-yield bonds behave differently is not a surprise.

Investment grade bonds trade near par except for price fluctuations due to market interest

rate movements. This means that they can be treated as substitutes with one another within

credit rating categories. High-yield bonds, even within the same rating category, are not as

close as substitutes since they are subject to idiosyncratic, firm-specific risks.31 Moreover,

some market participants such as pension and mutual funds have rules restricting ownership

of high-yield bonds. Furthermore, since investment grade bonds trade more frequently than

high-yield, they are also less opaque. For instance, the probability of a trade on any given

day (pre-TRACE) is more than three times higher for the investment-grade sample in Phase

2 compared to the mostly high-yield sample in Phase 3B. Given these differences, TRACE

31Asquith et al. (2013) document significant differences between investment grade and high-yield bonds in
the market for borrowing bonds.
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probably provided more incremental information on trading activity for high-yield bonds than

for investment grade bonds.

In addition, the bond market is a dealer market, so dealer inventory will affect trading

levels and the potential impacts of TRACE. Dealers only hold inventory in those bonds with

sufficient trading activity to cover their carry cost. Thinly traded bonds may require dealers

to have higher spreads to cover their holding costs. Since TRACE reduces price dispersion

significantly, the benefit of holding bonds in inventory decreases. TRACE reduces price

dispersion the most for high-yield bonds, so the incentive to reduce inventory is strongest for

those bonds. Thus, lower trading activity in high-yield bonds post-TRACE may be the result

of a supply-side response of dealers.

2.7 NAIC

The evidence so far leaves open the question of TRACE’s impact on Phase 1 bonds. TRACE

data does not exist before July 2, 2002 when Phase 1 begins; therefore, our analysis of the

effects of transparency using trades both before and after dissemination in TRACE is limited

to Phases 2, 3A, and 3B. Phase 1 is important because, as discussed above in Section IV,

dissemination of Phase 1 bonds may affect the corporate bond market behavior more broadly

if transparency in part of the market influences trading in the rest of the market. As described

in Section II, Bessembinder et al. (2006) examine trading costs in Phase 1 using data from the

National Association of Insurance Companies (NAIC). While the NAIC database is not as

complete as TRACE because it only contains transaction data for insurance companies, the

NAIC data begins in 1994.

In this section, we describe the NAIC data and use that database from January 1, 2000

through December 31, 2006 to examine the effects of Phase 1 of TRACE as well as to verify

our results for Phases 2, 3A, and 3B. The NAIC database also contains information about

dealer activity not available in TRACE, which we use to examine how TRACE affected dealer

market share.

Before using the NAIC data, we first compare it to the TRACE data both for coverage and
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to determine whether insurance companies trade differently than the rest of the corporate bond

market. According to the Federal Reserve’s Flow of Funds statement, insurance companies

own 24.6% of outstanding corporate bonds in 2002Q3-2006Q4.32 While several other papers,

notably Bessembinder et al. (2006) and Campbell and Taksler (2003), have previously used

NAIC data, to our knowledge we provide the first direct comparison of the two databases.33

The NAIC Data Appendix and Tables B1 and B2 describe the NAIC data and how it

compares to the TRACE database. Importantly, in the process of making this comparison,

we discovered a systematic error in how NAIC’s trades are reported. Many NAIC trades are

disaggregated and reported as multiple transactions in the NAIC database. Since previous

research on the NAIC database (e.g. Bessembinder et al. 2006 do not mention this problem of

disaggregation, we assume that they treated these multiple transactions as multiple trades,

when they are not. This leads to an over-reporting in the number of trades and an under-

reporting of the true price dispersion.34

NAIC’s reporting requirements require many individual trades to be split into separate

records for reporting purposes. For example, insurance companies must separately report

bonds purchased and sold in the same calendar year from bonds purchased and held through

the end of the year. This means if an insurance company purchases $1 million par of a bond

on January 1, 2001 and sells $500,000 of this before December 31, 2001 and the remaining

$500,000 in the following year, under NAIC reporting guidelines, this single purchase would be

split into two separate purchases of $500,000 each. If this is treated as two trades, volume is

unaffected, but the number of trades is overstated and price standard deviation is understated.

A more complete discussion of the misreporting of trades is explained in the NAIC Appendix.

Table A.3 reports the steps we took to process the raw NAIC file into our cleaned NAIC

database. We only use those bonds from the NAIC database that are also in the Cleaned

32Campbell and Taksler (2003) estimate that insurance companies hold between one-third and 40% of
corporate bonds.

33Bessembinder et al. (2006) do divide the NAIC database into TRACE and non-TRACE samples, but do
not compare trading by NAIC members to trading by non-NAIC members.

34We do not know trade disaggregation changes Bessembinder et al. (2006) results. However, since Edwards
et al. (2007) results are similar using TRACE data, we assume this issue does not change the results substantially.
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Historical TRACE database for our analysis.35 Because of the misreporting issue discussed

above, Table A.3 reports the total number of transactions from the NAIC database in the

column labeled “Ungrouped Trades.” It also reports an estimate of the true number of trades by

grouping transactions with identical CUSIP, date, price, and counterparty into a single record

with volume summed for the grouping. These are labeled “Grouped Trades” in a separate

column in Table A.3. The NAIC data appendix contains more details on this process. From

July 2, 2002 to December 31, 2006, the clean NAIC database contains 14,574 bonds. There

are 481,135 ungrouped trades, which correspond to 394,679 grouped trades. This compares to

21,217,807 trades on 30,958 bonds in the Cleaned Historical TRACE database over the same

period.

Table A.4 compares the cleaned NAIC and TRACE datasets by Phase and shows that

insurance companies trade very differently than the rest of the corporate bond market for the

same time period and universe of bonds.36 It compares the number of bonds covered, the

trading volume, the number of trades, and the trade sizes in both cleaned databases. A high

percentage of Phase 1, Phase 2, and Phase 3B TRACE bonds are contained in NAIC (94.2%,

81.7%, and 72.7% respectively). NAIC contains 42.2% of Phase 3A TRACE bonds. NAIC

volume, however, is much smaller percentage of TRACE volume for all Phases. For Phase 1

bonds, during the 90 days after the announcement of the Phase, the NAIC volume is 6.3% of

comparable TRACE volume. For Phase 2, 3A, and 3B, NAIC volume is 11.5%, 7.2%, and

4.4% of TRACE volume respectively.

The number of NAIC trades is an even smaller percentage of TRACE trades for Phases 1,

2, and 3A. In Phase 3B, the percentage of trades in TRACE is lower than the percentage of

volume. This means for Phases 1, 2, and 3A, TRACE trades are usually larger than rest of the

market. Grouped NAIC trades are larger than TRACE trades, on average, by a factor of 4.1

3545,902 bonds in the NAIC database are not in the Cleaned Historical TRACE database. A large fraction
of these bonds are SEC Rule 144a bonds. SEC Rule 144A bonds are not covered by TRACE during our sample
period.

36In order to examine trading in Phase 1 bonds before the start of Phase 1, we use NAIC data from the
period January 1, 2000 until July 1, 2002. We only compare trading activity between the databases during the
TRACE period, which starts July 2, 2002.
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in Phase 1, 2.1 in Phase 2, 2.2 in Phase 3A. Thus, NAIC is a small share of TRACE’s volume

and trades, but the average size of NAIC trades is often larger than the average TRACE trade.

Table A.4 also compares price standard deviation between NAIC and TRACE. The standard

deviation for NAIC trades is typically much smaller than for TRACE. This is true for each

Phase using the ungrouped NAIC trade database, and is true for Phases 1, 2, and 3B using

the grouped NAIC trade database. It’s worth noting that the NAIC price standard deviation

is measured using far fewer CUSIPS and bond-days. In Phase 2 for example, we measure

TRACE price standard deviation for 2,130 CUSIPs and 40,713 bond-days, while we only

measure it for 261 CUSIPs and 481 bond-days in NAIC using grouped trades. This restricts

our ability to draw strong inferences about price standard deviation using the NAIC sample.

We conclude that the NAIC database represents a small fraction of the trading in the

corporate bond market covered by TRACE. Summing volume across all four Phases in the

90-days after Phase start, NAIC volume is only 7.6% of total TRACE volume. NAIC trades

are also typically larger than those in the TRACE database. It is therefore possible that

the effects of transparency may manifest themselves differently in TRACE than in NAIC.

As a consequence, conclusions drawn about TRACE from the NAIC dataset may not be

representative of the overall corporate bond market.

2.7.1 Trading Activity and Price Dispersion Using NAIC data

Table 2.9 reports volume/issue size and price standard deviation (both grouped and ungrouped)

for 90 days before and after each Phase using the NAIC database. It also reports in column

(9) coefficients from difference-in-differences regressions similar to those reported in Table 2.4.

The Phase 1 difference-in-differences results in column (9) of Table 2.9 are not significant for

either volume/issue size or price standard deviation. In addition, the within-bond comparisons,

shown in columns (5) and (6), are mixed. That is, the fraction of Phase 1 bonds that experience

a decrease in volume/issue size is greater than the fraction experiencing an increase, but the

fraction of Phase 1 bonds that experience a decrease is price standard deviation is less.

There are several possible reasons for the lack of significant or consistent results for Phase
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1. It may be that TRACE has no effect on Phase 1 bonds. It may also be that the insurance

segment of the corporate bond market, which NAIC measures, behaves very differently than

the remainder of the market. It may also be because the amount of trading captured by NAIC

is so much smaller than the entire corporate bond market covered by TRACE, making it

difficult to detect changes due to dissemination.

The results for Phases 2, 3A, and 3B provide further evidence on these alternatives

explanations. The NAIC price standard deviation results in column (9) for Phases 2 and 3A in

Table 2.9 are not significant, while all of our price dispersion results using the TRACE database

found significant declines. Moreover, in Phase 3B, where the TRACE results on trading activity

and price standard deviation are strongest, the corresponding NAIC estimates are marginally

significant. Thus, the lack of significant Phase 1 NAIC results does not necessarily imply that

TRACE did not have an effect in Phase 1.

2.7.2 Dealer Trading Activity

The NAIC database contains additional information not available in TRACE. In particular, it

identifies the counterparty dealer opposite the NAIC member for each trade. Bessembinder

et al. (2006) use this data to examine dealer concentration ratios during Phase 1. Though it

only represents dealer trades with insurance companies, this data provides an opportunity

to measure how dealers are affected by dissemination. The NAIC Data Appendix describes

how we compute trading activity by dealer. We employ our difference-in-differences design to

examine dealer volume and the number of trades across all four Phases. We present results

for both the top 4 and top 8 dealers. The top 4 dealers cover 37.9% of volume and 32.7% of

trades. The top 8 dealers cover 68.4% of volume and 58.6% of trades.37

Table 2.10 reports difference-in-differences estimates of the effect of TRACE on dealer

volume and number of trades. For each Phase, we compute the par value of trades and count

the number of trades that a counterparty was party to during the 12 weeks before and after

37We explored other divisions such as top 2, top 5, and top 10, but all of the results are qualitatively similar
to what we describe herein.
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the Phase start. We examine weekly volume and number of trades because NAIC trades less

frequently. Across Phases, there is a 15.3% reduction in par volume for each of the top 4

dealers due to TRACE and a 15.6% reduction for each of the top 8 dealers. When examining

dealer volume estimates by Phase, there is a significant drop in volume traded for both top 4

and top 8 dealers in Phases 1, 3A, and 3B. There is also a reduction in Phase 2, but it is not

significant. The analysis on the number of trades per dealer is similar.

Overall, the results indicate that trading activity between dealers and insurance companies

is rebalanced away from the largest dealers due to TRACE. If this result holds for the entire

corporate bond market, this would indicate that TRACE, although reducing overall trading

activity, also leveled the playing field between the largest dealers and the remaining dealers.

2.8 Conclusions and Implications

The introduction of TRACE, which was implemented in four Phases over a three-and-a-half

year period, combined with the availability of trading records before and after dissemination,

provides a unique opportunity to study how markets respond to transparency. This paper

finds that mandated post-trade transparency in the corporate bond market leads to an overall

reduction in trading activity. No sample of bonds in any Phase experiences an increase in

trading activity and Phase 3B bonds experience a large and significant reduction. For that

group, TRACE reduces trading activity by 41.3% in the 90 days following the dissemination

of price and volume information. This finding is robust across different measures of trading

activity and alternative regression specifications. Event studies support a causal interpretation

of our findings since the decrease occurs immediately after the start of dissemination.

Price dispersion also decreases due to TRACE. This decrease is significant across bonds that

change dissemination in Phases 2, 3A, and 3B, but is largest, 24.7%, for Phase 3B bonds. This

finding is also robust across different measures of price dispersion and alternative regression

specifications. Moreover, event studies show that the fall in price dispersion occurs immediately

after the start of dissemination. It is important to note, if the transparency introduced in Phase

1 affects bonds that become transparent in subsequent Phases, our estimates are probably

121



T
ab

le
2.

10
:

E
st

im
at

es
of

Tr
an

sp
ar

en
cy

E
ffe

ct
s

on
N

A
IC

D
ea

le
r

M
ar

ke
t
Sh

ar
e

fo
r

12
W

ee
k

W
in

do
w

A
ro

un
d

P
ha

se
St

ar
t

Pa
r$V

ol
um

e$
($
M
)

N
um

be
r$o

f$T
ra
de

s
W
ee
kl
y$
Av

er
ag
e$
Be

fo
re

Es
tim

at
e

W
ee
kl
y$
Av

er
ag
e$
Be

fo
re

Es
tim

at
e

To
p$
4$

De
al
er
s

To
p$
8$

De
al
er
s

To
p$
4$

De
al
er
s

To
p$
8$

De
al
er
s

To
p$
4$

De
al
er
s

To
p$
8$

De
al
er
s

To
p$
4$

De
al
er
s

To
p$
8$

De
al
er
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

A.
$P
oo

le
d

Al
l$F
ou

r$P
ha
se
s

87
.5
9

81
.8
7

M1
3.
36
**
*

M1
2.
74
**
*

35
.0
4

33
.9
7

M3
.0
8*
**

M2
.8
7*
**

(4
.9
7)

(3
.3
7)

(0
.9
6)

(0
.7
92

)
M1
5.
3%

M1
5.
6%

M8
.8
%

M8
.4
%

B.
$B
y$
Ph

as
e

Ph
as
e$
1

11
2.
64

11
5.
13

M2
8.
06
**
*

M2
0.
22
**

40
.4
6

41
.8
8

M6
.2
0*
**

M4
.2
8*
*

(8
.1
9)

(8
.8
8)

(1
.9
2)

(1
.8
2)

M2
4.
9%

M1
7.
6%

M1
5.
3%

M1
0.
2%

Ph
as
e$
2

98
.5
0

92
.0
2

M2
.6
48

M5
.2
83

41
.0
6

38
.5
7

M3
.6
6*
*

M1
.8
4

(1
2.
56

)
(7
.4
1)

(1
.6
6)

(1
.4
7)

M2
.7
%

M5
.7
%

M8
.9
%

M4
.8
%

Ph
as
e$
3A

12
6.
88

10
8.
31

M2
0.
09
**
*

M2
2.
40
**
*

49
.5
2

46
.2
0

M1
.0
4

M4
.3
9*
*

(7
.6
4)

(4
.2
2)

(1
.9
5)

(1
.8
5)

M1
5.
8%

M2
0.
7%

M2
.1
%

M9
.5
%

Ph
as
e$
3B

12
.3
4

12
.0
4

M2
.6
6*
*

M3
.0
7*
**

9.
13

9.
22

M1
.4
3*
*

M0
.9
7*

(1
.2
7)

(0
.8
7)

(0
.7
2)

(0
.5
0)

M2
1.
5%

M2
5.
5%

M1
5.
7%

M1
0.
5%

H 0
:$P
ha
se
$e
ffe

ct
s$e

qu
al

0.
00
3

0
0.
09
0

0.
12
0

#$
of
$P
ha
se
$1
$c
ou

nt
er
pa
rt
ie
s

79
79

79
79

#$
of
$P
ha
se
$2
$c
ou

nt
er
pa
rt
ie
s

81
81

81
81

#$
of
$P
ha
se
$3
A$
co
un

te
rp
ar
tie

s
84

84
84

84
#$
of
$P
ha
se
$3
B$
co
un

te
rp
ar
tie

s
83

83
83

83
#$
of
$c
ou

nt
er
pa
rt
yM
w
ee
ks

7,
84
8

7,
84
8

7,
84
8

7,
84
8

T
hi

s
ta

bl
e

re
po

rt
s

es
ti

m
at

es
of

D
is

se
m

in
at

e
x

P
os

t
fo

r
pa

r
vo

lu
m

e
an

d
th

e
nu

m
be

r
of

tr
ad

es
fo

r
co

un
te

rp
ar

ti
es

in
th

e
N

A
IC

da
ta

ba
se

in
a

di
ffe

re
nc

e-
in

-d
iff

er
en

ce
re

gr
es

si
on

fo
llo

w
in

g
T
ab

le
2.

4.
P
an

el
A

re
po

rt
s

es
ti

m
at

es
fr

om
P

ha
se

s
1,

2,
3A

,
an

d
3B

po
ol

ed
to

ge
th

er
,

w
hi

le
pa

ne
l

B
re

po
rt

s
es

ti
m

at
es

fo
r

ea
ch

P
ha

se
se

pa
ra

te
ly

.
R

ob
us

t
st

an
da

rd
er

ro
rs

cl
us

te
re

d
by

bo
nd

an
d

P
ha

se
ar

e
in

pa
re

nt
he

si
s

im
m

ed
ia

te
ly

be
lo

w
th

e
es

ti
m

at
es

.
T
op

4
an

d
8

de
al

er
s

ar
e

co
m

pu
te

d
ba

se
d

on
ra

nk
in

gs
of

de
al

er
s

of
th

e
to

ta
lp

ar
vo

lu
m

e
of

al
lt

ra
de

s
be

tw
ee

n
20

00
-2

00
1.

T
he

de
al

er
s

in
th

e
to

p
4

an
d

8
ar

e
id

en
ti

ca
li

f
th

e
ra

nk
in

g
is

ba
se

d
on

nu
m

be
r

of
tr

ad
es

be
tw

ee
n

20
00

-2
00

1.
T

he
ti

m
e

pe
ri

od
is

12
w

ee
ks

be
fo

re
an

d
af

te
r

di
ss

em
in

at
io

n.
A

cr
os

s
th

e
sa

m
pl

e,
th

er
e

ar
e

a
to

ta
lo

f8
7

co
m

po
si

te
co

un
te

rp
ar

ti
es

co
ns

tr
uc

te
d

fr
om

th
e

N
A

IC
da

ta
se

t.
E

ac
h

de
pe

nd
en

t
va

ri
ab

le
is

a
co

un
te

rp
ar

ty
-w

ee
k,

co
rr

es
po

nd
in

g
to

al
l

of
th

e
tr

ad
es

w
it

h
th

e
co

un
te

rp
ar

ty
am

on
g

bo
nd

s
in

th
e

P
ha

se
fo

r
th

e
w

ee
k.

W
ee

kl
y

av
er

ag
e

be
fo

re
co

rr
es

po
nd

s
to

th
e

12
w

ee
k

av
er

ag
e

fo
r

pa
r

vo
lu

m
e

or
nu

m
be

r
of

tr
ad

es
fo

r
co

un
te

rp
ar

ti
es

im
m

ed
ia

te
ly

be
fo

re
th

e
P

ha
se

st
ar

t.
P
er

ce
nt

ag
e

eff
ec

ts
ar

e
co

m
pu

te
d

by
di

vi
di

ng
th

e
es

ti
m

at
e

by
th

e
pr

io
r

m
ea

n.
*

si
gn

ifi
ca

nt
at

10
%

;*
*

si
gn

ifi
ca

nt
at

5%
;*

**
si

gn
ifi

ca
nt

at
1%

122



lower bounds on TRACE’s overall impact.

To further investigate how bond characteristics affect our results, we examine trading

activity and price dispersion for samples with the same credit quality and issue size across

Phases. We find that the credit quality is the most consistent factor in explaining the reduction

in trading activity. High-yield bonds experience a significantly greater reduction in trading

activity than investment grade bonds. Our results confirm the view that transparency has a

limited impact on the trading activity of the most liquid and investment grade segment of

the market. Moreover, our results show that ignoring the less actively traded and high-yield

bonds in Phase 3B leads to an incomplete account of TRACE’s effect on trading activity.

One possible reason TRACE has different effects on high-yield bonds is that pre-TRACE

trading in high-yield bonds may be relatively more opaque than trading in investment-grade

bonds. As a result, TRACE may provide more incremental information and thus cause larger

change in the high-yield market. A second possible reason is that the lower trading activity in

high-yield bonds post-TRACE may be the result of a supply-side response of dealers. Price

dispersion falls more for high-yield bonds post-TRACE. In addition, high-yield bonds trade less

frequently than investment grade bonds pre-TRACE. The fact that there is a large reduction

of price dispersion for thinly traded high-yield bonds may result in lower spreads and thus

cause dealers to hold less inventory. This in turn may result in a decrease in trading activity.

There are several welfare implications of increased transparency in the corporate bond

market. One consequence is that it may change the relative bargaining positions of investors

and dealers, allowing investors to obtain fairer prices at the expense of dealers. The reduction

in price dispersion should allow investors and dealers to base their capital allocation and

inventory holding decisions on more stable prices. Therefore, the reduction of price dispersion

likely benefits customers and possibly, but not necessarily, dealers.

The implications of a reduction in trading activity are not as clear. Whether a reduction in

trading activity is desirable depends on why market participants trade. A decrease in trading

activity may be beneficial if much of the trading in a bond is unnecessary “noise” trading.

On the other hand, if most trading is information-based, a decrease in trading activity may
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slow down how quickly prices reflect new information. In addition, if the decrease in trading

activity is the result of dealers’ unwillingness to hold inventory, transparency will have caused

a reduction in the range of investing opportunities. That is, even if a decline in price dispersion

reflects a decrease in transaction costs, the concomitant decrease in trading activity could

reflect an increased cost of transacting due to the inability to complete trades.

Our results on the corporate bond market have two major implications for the current and

planned expansions of mandated market transparency. The implicit assumption underlying the

proposed TRACE extensions and the use of TRACE as a template for regulations such as Dodd-

Frank is that transparency is universally beneficial. First, it is not clear that transparency for

all instruments is necessarily beneficial. Overall, trading in the corporate bond market is large

and active, although, as seen, not comparable across all types of bonds. Many over-the-counter

securities are similar to the bonds FINRA placed in Phase 3B. That is, they are infrequently

traded, subject to dealer inventory availability, and trading in these securities is motivated

by idiosyncratic, firm-specific information. Therefore, the expansion of TRACE-inspired

regulations, such as those for 144a bonds, asset- and mortgage-backed securities, and the swap

market, may have adverse consequences on trading activity and may not, on net, be beneficial.

Second, our results indicate that transparency affects different segments of the same

market in different ways. As a consequence, our results provide empirical support for the

view that not every segment of each security market should be subject to the same degree

of mandated transparency. Both academic commentators (French et al. 2010, Acharya et al.

2009) and leading industry associations (e.g., Forum 2013) have articulated this position.

Despite these recommendations, the expansion of transparency by the Commodity Futures

Trading Commission (CFTC) in various swap markets, i.e. interest rate, credit index, equity,

foreign exchange and commodities, in December 2012 and February 2013 was immediate for

all swaps in those markets. This stands in sharp contrast to FINRA’s cautious implementation

of TRACE in Phases. Our results on the effect of transparency in the corporate bond market

suggest that the extension of mandatory transparency to all markets may make it more difficult

to transact in some of those markets.
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Chapter 3

Experiential and Social Learning in

Firms: The Case of Hydraulic

Fracturing in the Bakken Shale

3.1 Introduction

New technologies are important contributors to economic growth1, but little is known about

how firms learn to profitably use them. While there is longstanding evidence that firms learn

from their own experiences (learning-by-doing), and from others (social learning), the specific

actions that firms actually take in learning are not well understood. Models of learning predict

that firms efficiently analyze information about new technologies, invest in experiments to

create new information, and incorporate information generated by other firms.2 However, to

test these models, it is necessary to observe data on the information that firms have, which is

difficult to acquire in many empirical settings. This paper tests predictions of learning models

for the first time, using data on oil companies that employ hydraulic fracturing (fracking) in

1See, for example, Arrow (1962), Romer (1986) and Kogan et al. (2012)

2See Aghion et al. (1991) in the single agent context and Bolton and Harris (1999) in the multi-agent
context.
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the North Dakota Bakken Shale. The data covers operational choices, profits, and measures

of the information firms had when making choices. The oil companies in this data learn to

use fracking more profitably over time, but are slow to respond to new information, avoid

experiments and underutilize data provided by their competitors.

Fracking is a useful context to study learning behavior in firms. The profit maximizing

choice of fracking inputs may vary across drilling locations in unpredictable ways, so firms

must empirically learn this relationship over time and change their behavior accordingly. In

North Dakota, firms can learn about fracking from a wealth of publicly available information.

Regulators collect and publicly disseminate unusually detailed, well-specific information about

oil production and fracking input choices. Moreover, regulators delay dissemination until 6

months after a well is fracked, making it possible to measure differences in knowledge about

fracking across firms. The industry is not concentrated, which motivates studying learning as

a single agent problem. During the time period I study, there are 70 active firms, the market

share of the largest firm is only 13% and the combined share of the five largest firms is under

50%. The two main inputs to fracking, sand and water, are commodities, as is the output of

fracking, crude oil. The unique regulation and industry structure make fracking in the Bakken

shale an unusually compelling setting for studying learning in firms. Moreover, the stakes in

fracking are large. Using a production function, I estimate that the average NPV of profits

per well for actual fracking choices is about $12.8 million, while the average profit for each

well’s most profitable choice is $24.5 million. Since the regulator in North Dakota expects that

40,000 wells will eventually be fracked over the next 18 years, the potential for lost profits

from inefficient learning is substantial.3

Learning-by-doing and social learning are both important in this context. Between 2005

and 2006, the average well is fracked by a firm that had fracked only a single well before.

By 2011, the average well is fracked by a firm that had previously fracked 117 wells. Thus,

firms can learn from an increasing amount of their own experience. However, North Dakota’s

disclosure laws make it possible for firms to study their competitors’ data. Between 2005 and

3See https://www.dmr.nd.gov/oilgas/presentations/NDOGCPC091013.pdf
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2006, the average well is fracked by a firm that can observe 10 wells previously fracked by

other firms, a number which rises to 1,783 in 2011. As a result, most of the information firms

have comes from others, and firms have the ability to socially learn.

The data I collect from the regulator in North Dakota is well suited to estimate the

relationship between location, fracking, and oil production. I observe the complete operating

history of every firm and every well they frack in the Bakken Shale between January 2005

and December 2011 (70 firms and 2,699 wells), so there is no possibility for survivorship bias.

The data contains precise measurements of a well’s production, location and most important

fracking inputs, so there are no endogenous omitted variables. Moreover, the engineering

requirements for wells drilled into the Bakken prevent firms from selecting observed fracking

inputs on the basis of information I do not observe. Thus, the standard endogeneity problem

in production function estimation is unlikely to be a concern.

Using the data I collect, I semi-parametrically estimate a production function for fracking

which represents what firms need to learn. These estimates show that amount of oil in the

ground and the sensitivity of its production to fracking both vary over space, a result that is

consistent with geological theory and data. Estimates made using subsets of the data that

were available to firms when they were fracking have qualitatively similar results, suggesting

that firms could have used this data to make informed fracking decisions. The estimated

production function fits the data well and is stable across robustness tests.

I use this production function to measure how quickly firms learn. Wells fracked in 2005

capture only 16% of the profits that optimally fracked wells would have produced. However,

profit capture grows almost monotonically over time, with firms capturing 68% of maximal

profits in 2011. This growth is driven by improved fracking input choices, with firms gradually

increasing their use of sand and water towards optimal levels over time. I interpret this upward

trend in the profitability of fracking input choices as evidence for learning.

Existing research measures learning from upward trends in productivity, or residual produc-

tion that is not explained by input choices. I test for productivity based learning by analyzing

the growth of estimated production function residuals over time. Wells fracked in 2011 are
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34% more productive than wells fracked in 2005, suggesting some role for productivity-driven

learning. However, the majority of the growth in productivity occurs by 2008, and there is no

statistically significant difference in productivity between 2008 and 2011. This contrasts with

the fraction of profits captured, which increases monotonically over time, and from 44% to 67%

between 2008 and 2011. Thus, during 2008-2011, when 95% of wells in my data are fracked,

there is little productivity growth, even though there is substantial growth in the fraction of

profits captured. These results help clarify the difference between models of learning in which

knowledge is a direct input in the production function, and a model of learning about the

production function itself.

To see if firms are using their information to make better fracking choices over time, I

estimate ex ante production functions for each well, using the subset of the data that firms

had when they were making choices. I use these estimates to compute ex ante profits. Though

firms capture 76% of ex ante optimal profits in 2007, they capture only 68% in 2011. The

fraction of ex ante profits falls because initial fracking input choices are close to the (then)

estimated optimal levels, but optimal levels subsequently change more quickly than choices do.

Theory predicts that firms may sacrifice estimated profits in the current period by experi-

menting in order to generate information for the future. To test if experimenting behavior can

rationalize the decline in the fraction of estimated ex ante optimal profits captured, I estimate

a simple model of fracking input choice under technology uncertainty. In this model, firms

have preferences over the expectation and standard deviation of their ex ante estimates of

profits for a fracking input choice. If firms are experimenting, they should be empirically more

likely to choose inputs with higher standard deviations of profit. I do not find support for

this theory. Firms are more likely to select fracking designs with higher expected profits and

lower standard deviation of profits. Firms are indifferent between a $0.60-$0.98 increase in

expectation of profits and a $1 reduction in the standard deviation of profits.

My calculation of the expectation and standard deviation of profits assumes that firms

equally learn from their own and others’ experiences. However, firms may treat the social

portion of their data differently than the data they directly experience, and in the process
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form different estimates of profits than what I calculate. To account for this possibility, I

modify my fracking input choice model to allow for weighted production function estimates

estimates. I use this model and data on firms’ choices to estimate the weight they place

on their own experiences relative to their competitors’ experiences. Most firms place more

weight on their own experiences than their competitors’ experiences. Even after controlling

for weighted estimates, firms still prefer fracking choices with lower standard deviations and

higher means.

This paper finds that firms are reluctant to experiment and ignore valuable data generated

by their competitors. These firms are not unsophisticated or under-incentivized. They have

access to capital markets, are managed by executives with engineering and business education

and are the primary equity holders in the wells they frack. These findings stand in contrast to

some theories of efficient learning behavior by rational agents, which predict that firms will

take experimental risk and learn from all the information they have.

In addition to its usefulness as a laboratory to study learning, fracking plays a prominent

role in current public policy debates about growing oil production and its effects on the

environment. The US EIA reports that fracking has caused national oil production to grow

22% since 2009, reversing almost two decades of declines.4 There is early evidence that fracking-

driven resource booms have affected housing prices5 and local banking markets.6 However,

there are growing concerns about the potential for fracking to negatively affect the quantity

and quality of local ground water supplies,7 which the US EPA is currently studying.8 In

response to these concerns, federal regulators have proposed significant increases to disclosure

requirements for fracking operations.9 Though this push for increased transparency around

4http://www.eia.gov/todayinenergy/detail.cfm?id=13251

5Muehlenbachs et al. (2012) find that housing prices increase after the introduction of fracking to a
community, except for houses that depend on groundwater.

6See Gilje (2012)

7See Vidic et al. (2013) for an overview

8See http://www2.epa.gov/hfstudy

9See Deutsch (2011).
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fracking is driven by environmental concerns, new disclosure regulations may also have an

impact on learning by increasing the availability of data.

Finally, the Bakken Shale unlikely to be the last oil and gas formation where fracking

and the learning it requires play an important role. Fracking is currently in use in the Eagle

Ford and Barnett Shales in Texas, the Woodford Shale in Oklahoma, and several locations in

Canada. International oil companies are now developing shale resources in Argentina, Poland

and China. The results of this paper may be useful to both policy makers and oil & gas

companies alike in regulating access to information and understanding the benefits of more

efficient learning behavior.

3.1.1 Related literature

Firms in many industries and time periods have become more productive by learning from their

own experiences. Researchers studying the manufacturing of World War II ships (Thornton

and Thompson 2001), aircraft (Benkard 2000) and automobiles (Levitt et al. 2012) have

documented an important empirical regularity: with the same inputs, firms are able to produce

more output as they accumulate experience in production.10 That is, they learn by doing

(LBD). The LBD result that productivity is correlated with experience suggests that the

knowledge embedded in this experience is a direct input to the production function. Changes

over time in capital, labor and materials are thus interpreted as profit-maximizing responses

to increases in productivity, not changes in specific knowledge. In this paper, I instead

assume that the production technology itself is initially unknown and that experience has no

direct impact on production. As firms accumulate experience in fracking, they acquire more

data about the fracking production function, perform inference on this data, and make more

profitable input choices on the basis of their inference. This is similar to the approach taken

by Foster and Rosenzweig (1995) and Conley and Udry (2010) in the development literature.

Economic theory predicts that when firms are learning about a new technology, they face

a tradeoff between “exploration” and “exploitation” (or experimentation). Firms may actively

10This phenomenon has also been observed by Anand and Khanna (2000) in the corporate strategy setting.
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learn by experimenting with fracking input choices that have highly uncertain profits or

passively learn by exploiting choices with high expected profits. Except in the simplest theory

models, the optimal amount of experimentation and exploitation is a challenging problem to

solve. However, most models of learning predict that forward-looking firms will always do some

experimenting. In the single agent context, Aghion et al. (1991) show that forward-looking

firms will almost always do some exploration. Bolton and Harris (1999) find a similar result

in the multi-agent context. Wieland (2000) employs computational methods to characterize

the costs and benefits of exploration, finding that firms who only exploit can get stuck, and

repeatedly choose suboptimal actions. To my knowledge, this paper is the first to empirically

measure the amount of experimenting that firms perform in a learning situation.

This paper adds to a wide literature documenting the existence and importance of social

learning between firms. Most of this evidence is in agricultural settings. Ryan and Gross (1943),

Griliches (1957) and Foster and Rosenzweig (1995) demonstrate that farmers learn about the

benefits of adopting new technologies from the experiences of their neighbors. Conley and

Udry (2010) show that farmers in Ghana learn about the efficient use of fertilizer from other

farmers in their social networks, demonstrating that social learning in agriculture is not limited

to the adoption decision. Social learning has also been observed in manufacturing. During the

construction of WWII ships, Thornton and Thompson (2001) find that firms benefited from

accumulated experience by other firms. Similarly, Stoyanov and Zubanov (2012) find evidence

that firms in Denmark became more productive after hiring workers away from their more

productive competitors.

Finally, this paper is complementary to the existing literature on learning behavior by oil

and gas companies. Levitt (2011) shows that the observed temporal and spatial patterns of the

oil exploration process match the predictions of a forward-looking learning model. In a study

of offshore drilling, Corts and Singh (2004) show that as oil companies gain experience with

their service contractors, they learn to trust them and tend to select low-powered contracting

terms. Kellogg (2011) studies this phenomenon in the on-shore setting and shows that oil

companies and their service contractors jointly learn to be more productive in drilling as they
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accumulate shared operating experience.

The remainder of the paper is as follows. In Section 3.2, I provide institutional background

on fracking in North Dakota and describe the data I have on operational choices, production

results and information sets. Next, in Section 3.3, I estimate a production function model of

fracking and evaluate its ability to predict oil production. In Section 3.4, I use the production

function estimates to test if firms learned to make more profitable fracking choices over time.

In Section 3.5, I specify and estimate the model of fracking input choice under technology

uncertainty. Finally, I conclude in Section 3.6.

3.2 Institutional Background and Data

3.2.1 Fracking and US Oil Production

The hydraulic fracturing of shale formations, like the Bakken, has had a profound impact

on the fortunes of energy producing states and the US as a whole. In 2009, the US Energy

Information Administration reported that national oil production grew 6.8% year-over-year,

the first increase in over two decades.11 This trend has continued and between 2009 and 2012,

national oil production increased 21.7%. Three states represent the majority of this growth:

Texas, Oklahoma and North Dakota. This paper focuses on what has happened in North

Dakota.

In March 2012, North Dakota surpassed Alaska to become the second most prolific oil

producing state in the US, after Texas. Between January 2005 and July 2013, oil production

in North Dakota increased from 93,000 barrels (bbl) per day to 874,000 bbl per day. During

the same time period, total US oil production increased from 5.63 million bbl per day to 7.48

million bbl per day, meaning that increased production in North Dakota amounted to 42% of

the net increase in total production. Though production increased in Texas and Oklahoma

as well, it is striking that North Dakota went from producing less than 2% of national oil

11See the EIA Annual Energy Review, 2009. http://www.eia.gov/totalenergy/data/annual/archive/038409.pdf
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production to almost 12% in the span of 8 years.12 This vast expansion in North Dakotan oil

production coincided with the introduction of fracking to the Bakken Shale formation.

3.2.2 The Bakken Shale and Hydraulic Fracturing

The Bakken Shale spans 200,000 square miles in North Dakota, Montana and Saskatchewan.13

It lies 10,000 feet underground and contains 3 distinct layers: the upper Bakken member (a

shale layer), the middle Bakken member (a layer of sandstone and dolomite ), and the lower

Bakken member (also a shale layer). The US Geological Survey estimates that the upper and

lower shales together contain 4.6 billion bbl of recoverable oil.14 Though the middle Bakken

member is not formed from organic materal and as such does not generate any oil of its own,

firms typically drill horizontally through it and use hydraulic fracturing, or “fracking”, to make

contact with the oil bearing shales above and below, as shown in Figure 3.1.

Fracking is the process of pumping a mix of water, sand and chemicals into a well at high

pressures. The high pressure of the mix fractures the surrounding rock and the sand in the

mix props those fractures open.15 The fractures created by fracking the middle Bakken radiate

outwards into the upper and lower Bakken shales, as shown in Figure 3.1. These fractures

both serve as a conduit between the wellbore in the middle Bakken and the upper and lower

shales, and also increase the permeability of the upper and lower shales.

Permeability is a geological measure of the ease at which oil naturally flows through rock.

The upper and lower shales are unusually impermeable, making it impossible for the oil they

contain to naturally reach a wellbore drilled through the middle member. Without fracking,

12Texas also experienced production significant production increases during that same time period, though
from a much higher base level (from 1.08 million bbl per day to 2.62 million bbl per day, a 143% increase).
Much of this increase can also be attributed to the technology changes described here. Operators applied
fracking technology successfully to the Eagle Ford, Permian and Barnett shales.

13See Gaswirth (2013)

14See Gaswirth (2013)

15Chemicals reduce mineral scaling, inhibit bacterial growth, reduce wear and tear on fracking hardware
and increase the buoyancy of sand in the fracking mixture. See http://www.fracfocus.org for an overview.
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Figure 3.1: Diagram of a Hydraulically Fractured Bakken Shale well 
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wells drilled into the middle member will not produce profitable quantities of oil.16 After

fracking, oil inside the lower and upper shales can more easily travel through the new fractures

into the wellbore in the middle member.

Firms choose how much water and sand to use in fracking and this choice can have a large

impact on the profitability of a well. Wells fracked with more sand and water may produce

more oil than wells fracked with less, but fracking is expensive, and water and sand represent

the bulk of this expense. In 2013, the reported costs of fracking range from $2-5 million per

well, out of total well costs of $9 million.17 Thus, to maximize profits, firms must balance the

benefits of sand and water use in fracking with their costs. This requires firms to understand

the relationship between oil production and fracking inputs, and it is unlikely that firms

initially knew this relationship. The first Bakken wells to be developed with fracking were not

drilled until 2005, and at the time, the firms developing those wells had limited experience in

fracking shale formations.18 Without prior experience, firms had to learn how to use fracking

by doing it themselves or by studying their competitors.

There is now a growing literature about best practices in fracking. Petroleum engineers

have found that wells fracked with more water and sand are often more productive than

similar wells with less aggressive fracking treatments.19 However, there is also evidence that

the relationship between oil production and fracking inputs is not necessarily monotonic and

that it varies over drilling locations.20 Research documenting these results was not publicly

available to firms during the time period I study, which means that firms faced a complicated

16See Hicks (2012)

17See Hicks (2012)

18Fracking was first successfully used in shale formations in the 1990s. Under the hunch that permeability
issues could eventually be resolved through the use of fracking, Mitchell Energy worked for years on its own
and with the help of the US Department of Energy to learn how to apply fracking technology to the Barnett
shale in Texas. They succeeded in 1997. See Shellenberger et al. (2012). Two firms active in North Dakota,
EOG and XTO, were active in the Barnett as well. However, the Barnett Shale is different from the Bakken.
Barnett wells are drilled directly into the shale layer, and produce natural gas instead of oil. It is unlikely that
any knowledge that these firms may have had about fracking in the Barnett was useful in the Bakken.

19See Shelley et al. (2012)

20See Baihly et al. (2012)
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learning problem.

3.2.3 The Information Environment in North Dakota

Firms in North Dakota can learn about the relationship between oil production, location,

and fracking inputs from the past experiences of other firms. After a firm fracks a well, the

oil and gas regulator in North Dakota requires the firm to submit a well completion report,

detailing the well’s horizontal length, location and fracking inputs. Additionally, the regulator

and tax authorities require the firm to submit audited production records on a monthly basis.

The regulator publishes this information on the internet, making it easy for firms to learn

information about every previously fracked well in the state, including information about wells

that they took no part in developing.

North Dakota’s well confidentiality laws generate a 6 month delay between when firms

submit well completion reports and when the regulator makes them public. This delay creates

differences across firms in what wells they can learn from at each point in time, as the operating

firm of a well has a temporary knowledge advantage over other firms. However, the ownership

structure of mineral rights in a well mitigates some of these differences. Mineral rights for

a well are often owned by many separate firms. Every firm that owns mineral rights in the

area spanned by a well is entitled to pay a share of the capital expenditures needed to develop

the well in exchange for a share of the revenue generated by the well. The firm with the

largest mineral rights claim in a well is called the “operator”, and it retains all control rights,

including the choice of the well’s fracking inputs. The remaining owners of mineral rights are

called “non-operating participants”. Figure 3.2 depicts a hypothetical ownership situation for

a well in the Bakken. The land spanned by the well is a 2 mile by 1 mile rectangle, called a

“spacing unit”. Within this spacing unit, Firm A has the largest mineral rights claim, followed

by firms B and C. The wellhead enters the ground in A’s claim and the horizontal segment

passes through B’s claim. Though the well does not directly pass through C’s claim, it is close

enough to C’s claim that it may be drawing oil from the claim. While A retains control rights,
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Figure 3.2: Diagram of a hypothetical spacing unit

B and C must pay their respective share of capital expenditures.21

Non-operating participants have immediate access to a well’s completion report.22 This

means that non-operating participants in a well are not subject to well confidentiality rules

and thus observe information regarding a well before the public does.

3.2.4 Data

Well Characteristics and Production History

I have collected operating and production data for every well targeting the Bakken shale

formation in North Dakota that was fracked between January 1, 2005 and December 31, 2011.

This data is reported by oil companies to the North Dakota Industrial Commission (NDIC),

and the NDIC publishes their submissions on the internet. For each well i, I observe the

21Firms can choose to opt out of a spacing unit, but that does not allow them to operate another well
within the spacing unit, so opt outs are rare.

22See Larsen (2011)
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location of its wellhead in latitude lat
i

and longitude lon
i

coordinates, its horizontal length

H
i

, the mass of sand S
i

and volume of water W
i

per foot of horizontal length used in fracking

and the identity of the operating firm f
i

. Additionally, I observe oil production Y
it

for well

i in it’s t-th month of existence and the number of days D
it

during that month that the

well was actually producing. Let X
it

denote the set (H
i

, f
i

, D
it

) and let Z
i

denote the set

(S
i

,W
i

, lat
i

, lon
i

). Then the dataset (Y
it

, X
it

, Z
i

) has a panel structure, where i indexes wells

and t indexes well-specific timing. Though I only study wells fracked during 2005-2011, I have

production data through February 2013, making it possible to study the performance of all

wells for at least a year. While the production history is reported electronically on the NDIC

website, the static well characteristics are stored in PDF format, so much of this dataset was

entered into the computer manually. I also observe the “township” ⌧
i

that the wellhead lies

in. Townships are 6 mile by 6 mile squares, defined by the US Geological Survey and are a

standard measure of location in the oil & gas business. There are 272 townships in North

Dakota with Bakken wells during 2005-2011. I have also collected the geographic boundaries of

the spacing units for every well. This data comes from various portions of the NDIC website.

Though most of the data I collect from the NDIC is self reported by firms, there are two

reasons why it is likely to be truthfully reported. First, oil and gas regulations in North

Dakota specify explicit penalties for failure to report required information and false reporting,

including fines of up to $12,500 per day per offense and felony prosecution.23 Second, because

operators wish to collect payment for capital expenditures from their non-operating partners,

they must share the documentation and billing they receive from their service contractors. If

operators were to report data to the NDIC that was at odds with what they had shared with

their non-operating partners, they might jeopardize their ability to collect payment.

Table 3.1 reports the cross-sectional distribution of well characteristics and oil production

in the first year. There is substantial variation across wells in both fracking input use and

oil production. The 75th percentiles of sand, water and oil production are more than double

their respective 25th percentiles. This variation will be important later on in estimating the

23See Section 38-08-16 in the NDIC Rulebook.
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Table 3.1: Summary Statistics

Variable Mean Std. Dev P25 P50 P75 N

lbs sand per foot 265.02 138.68 158.27 264.53 378.66 2,699
gals water per foot 188.87 110.73 100.31 181.70 249.52 2,699
horizontal feet in length 8,040 2,138 5,600 9,135 9,518 2,699
avg producing days per month 26.80 2.99 25.90 27.56 28.67 2,699
oil production per foot in first year 10.86 8.95 5.38 8.39 12.99 2,699
# non-operating participants 3.00 2.50 1.00 3.00 4.00 2,699
# past wells fracked by operator 80 82 16 49 125 2,699
# past wells fracked by others 1,089 658 511 1,062 1,698 2,699

relationship between oil production and fracking inputs. Most wells have horizontal segments

that are 9,000 feet or longer. The length of a well’s horizontal segment is determined by the

size of its spacing unit. Though not shown in the table, approximately 75% of wells have

rectangular spacing units that are two miles wide and one mile tall. The remaining 25% have

1 mile square spacing units. The average well produces almost 11 bbl per foot of horizontal

length in its first year. Since the price of oil averaged $76 per bbl during 2005-2011, the value

of production in the first year for the average well is worth $6.6 million. Most wells tend to

produce on the majority of days during a month, and though not shown in the table, only

93 wells have fewer than 20 average producing days. The bottom rows of Table 3.1 show the

distribution of non-operating participants and past experience across wells. In the average

well, 3 other firms obtain knowledge about a well at the same time as the well’s operator.

The average well is fracked by a firm that has previously fracked 80 of its own wells, and can

observe the data on 1,089 wells fracked by others.

Table 3.2 shows the distribution of well characteristics and oil production. The number of

wells fracked and the number of active townships and firms all increase over time. More than

65% of all wells are fracked during the last two years, and in 2011, wells are fracked in 85% of

townships by 70% of all firms. Over time, firms frack longer wells, using more sand and more

water. Firms operating in 2011 use more than three times as much sand and four times as

much water per foot of horizontal length, on average, as firms in 2005. However, average oil

production does not rise monotonically, reaching its peak in 2008 and then falling thereafter.
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Table 3.2: Summary Statistics by Year

2005 2006 2007 2008 2009 2010 2011

# wells fracked 10 20 94 352 463 691 1,069
# active townships 9 17 37 102 132 179 231

# active firms 5 11 17 28 34 47 49

Sand Average 94.50 136.88 134.64 180.00 212.75 308.82 302.79
Std. Dev 22.01 152.43 143.15 146.79 145.32 121.68 110.85

Water Average 49.53 64.29 95.67 108.28 137.08 215.14 232.68
Std. Dev 25.03 61.87 83.72 59.90 88.36 99.88 111.28

Length Average 6,883 6,062 7,017 7,283 7,238 8,006 8,795
Std. Dev 1,679 2,001 2,048 2,233 2,316 2,144 1,715

Oil Average 3.08 4.85 10.76 13.41 11.55 11.15 9.73
Std. Dev 1.94 7.59 13.72 15.16 9.83 6.72 5.78

Table 3.3 reports average oil production per foot by quintiles of sand and water use per

foot.24 Across both sand and water use, the highest input levels are associated with higher oil

production. For every quintile of water use (columns), the top quintile of sand use has higher

production than the bottom quintile. For all but the second quintile of sand use (rows), the

top quintile of water use has higher production that the bottom quintile. Thus the data shows

that sand and water use affect oil production, though not strictly monotonically.

To verify the importance of spatial heterogeneity in the relationship between fracking

inputs and oil production, I estimate a simple Cobb-Douglas production function for fracking,

with and without township fixed effects. I regress the log of first years oil production per foot

of horizontal length on the well’s log sand use and log water use:

log oil per foot
i

= ↵0 + ↵
S

logS
i

+ ↵
W

logW
i

+ ⌧
i

+ ✏
i

Table 3.4 reports coefficient estimates for this regression. The first column shows estimates

without fixed effects, and the second column shows estimates with fixed effects. Consistent

with the results in Table 3.3, higher sand and water use are associated with higher production.

This is true with and without fixed effects. However, the inclusion of township fixed effects

24To control for the effects of location, I first subtract the average levels of oil production and input use per
township from actual production and input use. Then, I add back the overall average levels, creating township
fixed effects.
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Table 3.3: Average First Year’s Oil Production per Foot of Horizontal Length by Quintiles of Sand
and Water Use

Quintiles of Water Use
First Second Third Fourth Fifth

Q
ui

nt
ile

s
of

Sa
nd

U
se First 8.09 8.27 6.77 8.82 10.16

(0.33) (0.44) (0.73) (2.20) (0.81)

Second 9.53 10.50 9.27 10.50 9.37
(0.37) (0.35) (0.33) (0.56) (1.37)

Third 10.25 11.51 10.91 10.56 10.81
(0.52) (0.36) (0.29) (0.35) (0.76)

Fourth 10.71 10.48 13.24 11.46 11.87
(0.52) (0.58) (0.55) (0.40) (0.48)

Fifth 10.80 12.24 13.37 13.19 13.85
(1.06) (0.83) (0.98) (0.52) (0.37)

Net of township fixed effects. Standard errors in parentheses.

decreases the coefficient on sand use and increases the coefficient on water use, suggesting

the existence of spatial heterogeneity in oil production and the possibility that firms make

different input choices in different locations.

Oil Prices

I collect the daily spot prices for West Texas Intermediate crude oil at the Cushing, Oklahoma

oil trading hub from the US Energy Information Administration. The Cushing price is the

reference price for oil futures traded on the NYMEX commodity exchange, and the Cushing

hub is connected to North Dakota through the Keystone and Enbridge pipeline systems. Figure

3.3 plots quarterly average oil prices at the Cushing hub. Between 2005-2011, there was a

boom and bust in oil prices, with prices climbing from approximately $60 per bbl in early

2007, reaching more than $120 per bbl in mid 2008 and falling to $45 per bbl in early 2009. In

2010-2011, when more than 65% of the wells are fracked, oil prices average $87 per bbl.

3.2.5 Drilling and Fracking Costs

Though the NDIC does not require firms to report their costs, the legal process in North

Dakota occasionally makes this information public. In particular, when a non-operating
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Table 3.4: Spatial Heterogeneity in the Relationship Between Sand, Water and Oil Production

(1) (2)
Log Oil per foot Log Oil per foot

↵0 -0.0280 0.319
(0.104) (0.0948)

↵
S

0.352 0.208
(0.0211) (0.0183)

↵
W

0.0512 0.137
(0.0228) (0.0185)

Township FE X
N 2,698 2,698
R2 0.159 0.618

Standard errors in parentheses. OLS estimates of

log oil per foot
i

= ↵0 + ↵
S

logS
i

+ ↵
W

logW
i

+ ⌧
i

+ ✏
i

Figure 3.3: Quarterly Average Cushing Oil Prices
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mineral rights owner decides not to participate in a well, the operator can ask the NDIC to

impose a “risk penalty”, which temporarily prevents the non-participant from earning revenue

from its mineral rights.25 In order to make this request, the operator must legally submit its

estimate of the cost of drilling and fracking the well, and this information is publicly recorded

by the NDIC. Of the 2,699 wells in this dataset, the cost records for 90 are in the public

domain for this reason.

These wells span several years, so to make their costs comparable, I normalize them using

a cost index. There is no single publicly available cost index that is both specific to the

Bakken and available for all of 2005-2011, so I construct one by combining several other indices.

Between the first quarter of 2005 and the fourth quarter of 2007, the index grows at the rate

of the BLS Producer Price Index for oil & gas extraction. Between the the first quarter of

2008 and the fourth quarter of 2009, the index grows at the rate of a cost index for vertical

wells drilled in North Dakota, published by Spears & Associates, a private consulting firm.26

Finally, starting in the first quarter of 2010, the index grows at the rate of the Spears &

Associates cost index for horizontal wells drilled in North Dakota. I fix the cost index to 1 in

the first quarter of 2005 and define “normalized costs” as reported costs divided by the cost

index. Figure 3.4 plots the cost index over time.

To estimate the individual components of costs, I regress normalized costs for these 90 wells

onto a constant, lateral length, total sand use, total water use and year-quarter fixed effects.

The adjusted R-squared of this regression is 0.54, and the coefficients on lateral length, sand

and water are all significantly different from zero at the 5% level. I define the fixed drilling

and fracking cost as the sum of the constant and the year-quarter fixed effects, the variable

25A non-participating mineral rights owner faced with a risk penalty forfeits a significant portion of its
share of the well’s revenue. In North Dakota, risk penalties are set to 200% of a non-participant’s share of
capital expenditures. This means that non-participants do not earn any revenue from a well in which they own
mineral rights until the well has generated 200% of its capital expenditures in oil production.

26Spears & Associates surveys independent engineers in North Dakota quarterly, asking them to estimate
the cost of a reference well. The cost estimates are divided into 14 categories, of which 4 are fracking related
and 10 are drilling related. The data is separately available for a vertical reference well design, which begins in
the first quarter of 2008 and a horizontal reference well design, which begins in the first quarter of 2010. The
vertical reference design does not include a fracking treatment. The characteristics of the reference wells stay
constant over time, so the changes in estimated costs are due to changes in prices, not quantities.
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Figure 3.4: Fracking Cost Index

0
.5

1
1.

5
2

2.
5

In
de

x 
Va

lu
e

2005q3 2007q1 2008q3 2010q1 2011q3
Year, Quarter

The cost index is computed from the BLS Producer Purchasing Index (PPI) for the Oil & Gas Extraction
industry from the first quarter of 2005 to the fourth quarter of 2007. Then, from the first quarter of 2008
to the fourth quarter of 2009, it is calculated from the Spears & Associates data for vertical wells in North
Dakota. Finally, from the first quarter of 2010 to the fourth quarter of 2011 it is calculated from the Spears &
Associates data for horizontal wells in North Dakota.
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Figure 3.5: Fixed and Variable Costs of Drilling and Fracking
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Variable Costs of Drilling and Fracking

The variable costs of using sand and water in fracking are estimated from a regression of the normalized total
drilling and fracking costs for 90 wells with cost data in the public domain onto a constant, lateral length,
total sand use, total water use and year-quarter fixed effects. The estimated fixed cost of drilling and fracking
is equal to the constant plus the year-quarter fixed effect, divided by the cost index. The estimated variable
cost of drilling and fracking is equal to the coefficient on lateral length, divided by the cost index.

drilling and fracking cost as the coefficient on lateral length, and the sand and water costs as

the coefficients on sand and water use. Finally, I generate time-specific costs by multiplying

these estimates by the cost index. Figures 3.5 and 3.6 plot these costs over time.

Information Sets

At time t, firm f can learn about fracking from three sets of wells. First, f can observe all

wells that the regulator has made public by time t. This public knowledge includes wells that

f operated and wells that other firms operated. Second, f can observe its own wells which are

not yet public knowledge, due to well confidentiality. Third, f can observe other firms’ wells

in which it is a non-operating participant. I can compute the first two sets of information from
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Figure 3.6: Variable Costs of Using Sand and Water in Fracking
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Variable Cost of Water Use

The variable costs of using sand and water in fracking are estimated from a regression of the normalized total
drilling and fracking costs for 90 wells with cost data in the public domain onto a constant, lateral length,
total sand use, total water use and year-quarter fixed effects. The estimated cost of pumping 1 pound of sand
is equal to the coefficient on sand use, divided by the cost index, while the estimated cost of pumping 1 gallon
of water is equal to the coefficient on water use, divided by the cost index.
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well completion reports alone. To compute the third set, I must identify the mineral rights

owners in each well’s spacing unit.

I collect mineral rights lease data from DrillingInfo.com, which digitally records the universe

of mineral rights transactions filed in county registries of deeds. These leases are often between

a surface owner and an intermediary lease broker operating on behalf of an oil company. Once

the broker acquires a lease, it assigns this lease back to its client, a transaction which is not

recorded by DrillingInfo.com. To capture the information in the lease assignment process, I

also scrape the website of the North Dakota Registry Information Network (www.ndrin.com),

which electronically records lease assignments. I combine this lease and lease assignment data

into a single dataset identifying the names of any firm that has mineral rights in a spacing

unit. I assume that all firms with mineral rights in a well’s spacing unit that are not the well’s

operator are non-operating participants.27

Outside Experience

Throughout the paper, I assume that the only knowledge firms have about fracking comes from

the wells fracked in North Dakota during 2005-2011. To assess the validity of this assumption,

I collect firm-specific drilling history from IHS International for the 8 most active firms in my

data, which I report in Table 3.5. In the first column, I list the number of wells each firm

completed in the Bakken during 2005-2011. These 8 firms frack 60% of the wells in the dataset.

During the time period I study, these firms are all publicly held, either as independent firms

(Brigham, Continental Resources, EOG, Hess, Marathon and Whiting) or as subsidiaries of

larger oil companies (Burlington is owned by Conoco Phillips, XTO is owned by Exxon Mobil).

On the right hand side of Table 3.5, I list the US operating history of these firms outside

of North Dakota. In the 10 years prior to the period I study, these firms collectively completed

tens of thousands of vertical wells, which are typically drilled into conventional formations,

27That is, I assume that no mineral rights owners are non-participants. Since only 90 out of 2,699 wells in
this time period had risk penalty challenges, this is a reasonable assumption.
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Table 3.5: Wells Completed by the 8 Most Active Firms, by Location, Time and Well Characteristics

Firm
North Dakota Outside North Dakota

2005-2011 1995-2004 2005-2011
Bakken Shale Vertical Horizontal Vertical Horizontal

Brigham 113 161 0 93 0
Burlington 105 3,826 26 2,792 532
Continental Resources 313 597 3 657 167
EOG 354 4,659 91 6,566 2,914
Hess 165 639 2 219 15
Marathon 223 2,221 4 813 87
Whiting 247 131 0 1,150 11
XTO 101 2,349 53 7,749 2,801
Rest of industry 1,078

without frack jobs. However, they only completed 179 horizontal wells, suggesting that they

had very little experience with the technology necessary to develop wells in the Bakken Shale.

Only three firms had previously completed more than ten horizontal wells, and two had done

none. During 2005-2011, all eight firms are active outside North Dakota, with four firms

completing more than a thousand wells each. Except for EOG and XTO, the vast majority

of contemporaneous operational experience outside North Dakota is in vertical wells, though

seven of the eight firms do complete horizontal wells. Thus, there is limited scope for these

firms to learn about fracking from experience outside of the Bakken.

3.3 The Fracking Production Function

To quantify what knowledge firms learn about fracking, it is necessary to measure the empirical

relationship between oil production, location and fracking input choices. I do this by estimating

a production function for fracking. This production function accounts for variation in oil

production across a well’s life and variation between wells in average production levels.

A well’s production changes over time due to age and maintenance-driven downtime. I

measure the impact of these factors on oil production using a simple model common in the

petroleum engineering literature. Because a well’s age is outside the firm’s control and because

maintenance needs are both similar across wells and scheduled in advance, I argue that the
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time-varying error in production is plausibly exogenous.

Wells have different average production levels due to differences in their horizontal lengths,

locations and fracking inputs. Location and fracking inputs may nonlinearly affect production,

so I measure their impact non-parametrically, using Gaussian process regression (GPR), which

I describe in detail below. The well-specific error in average production includes the effects of

unobserved inputs, such as chemicals, the unobserved amount of oil that can be recovered and

its sensitivity to fracking. I argue that chemical choices are independent of sand and water

choices for engineering reasons, and that the information which only firms observe about the

well’s specific geological properties while drilling is unlikely to be correlated with production

outcomes.

In the next two sections, I explain this production function model in further detail.

3.3.1 The Time Series of Oil Production

Per unit of time, wells of all kinds (including non-fracked wells in conventional formations)

tend to produce more oil when they are younger and less oil when they are older. This decline

in performance over time is not surprising, because the amount of oil that can be recovered is

finite and as more of it is pumped out of the ground, the rest becomes more difficult to recover.

For nearly 70 years, petroleum engineers have used the simple "Arps" model to illustrate this

basic phenomenon (see Fetkovich 1980). The Arps model states that oil production in the t-th

month of well i’s life is:

Y
it

= Q
i

t� exp(⌫
it

)

where Q
i

is the baseline level of production, � < 0 is a constant governing the production

decline of the well and ⌫
it

is a mean-zero production shock. In log terms, this is

log Y
it

= logQ
i

+ � log t+ ⌫
it

meaning that a 1% increase in a well’s age should decrease per period production by ��%, on

average.

The operator of a well chooses D
it

, the number of days during month t that well i is
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producing. Unless the well needs maintenance, there is no reason the operator would choose

to produce for fewer than the full number of days during a month. All wells experience two

routine maintenance events: the installation of external pumping hardware, and the connection

of the well to a gas pipeline network. During maintenance, the operator must shut the well

down, reducing D
it

. My data does not indicate whether maintenance occurs in a month, but

it does report the number of producing days D
it

, which I incorporate in the model:

log Y
it

= logQ
i

+ � log t+ � logD
it

+ ⌫
it

The time-varying shock to log production, ⌫
it

, is the result of unobserved geological

variation and deviations from the Arps model. Firms cannot control t, the age of a well, and

it is unlikely that firms observe anything correlated with ⌫ before choosing to do maintenance.

Even if they did, firms would rather have the well producing on more days than fewer days,

independent of ⌫. Moreover, firms cannot predict ⌫ when fracking the well, which happens

before production starts. For these reasons, I assume that ⌫ is exogenous:

E [⌫
it

| t,H
i

, D
it

, S
i

,W
i

, lat
i

, lon
i

] = 0

3.3.2 The Cross Section of Oil Production

I specify a semi-parametric model for logQ, the log of baseline production:

logQ
i

= ↵+ ⌘ logH
i

+ f(S
i

,W
i

, lat
i

, lon
i

) + ✏
i

The parametric part of this model, ↵+⌘ logH
i

, is a Cobb-Douglas production function relating

the horizontal length of a well to its baseline production. Though it may seem natural that ⌘

should equal one, there are practical reasons why this may not be true. Fracking applied to

the furthest away points of the horizontal segment of a well may not always perform as well as

fracking applied to the closest points. If this decline in effectiveness is nonlinear, wells with

longer horizontal segments may not proportionally outperform wells with shorter horizontal

segments. The Hicks-neutral productivity ↵ measures the average log baseline production

across wells. I discuss the well-specific productivity shock ✏
i

in more detail below.
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The function f(S
i

,W
i

, lat
i

, lon
i

) = f(Z
i

) captures the relationship between baseline pro-

duction, location and fracking choices. Table 3.4 in the data section suggests that this

relationship differs across locations, and current petroleum engineering suggests that it may

be nonlinear. For this reason, I estimate f(Z
i

) non-parametrically, using Gaussian process

regression, or GPR. GPR makes kernel regression techniques available within a panel data

framework. Because there are few examples of GPR in applied economic settings, I provide a

basic overview of its application here.

Gaussian process regression

A Gaussian process G is a probability distribution over continuous real functions. Gaussian

processes are defined by two functions: a mean function m(Z) and a positive definite covariance

function k(Z,Z 0
). The mean function is the expectation of the value of a function f drawn at

random from G at the point Z. The covariance function is the covariance between f(Z) and

f(Z 0
). In mathematical terms, the mean and covariance functions satisfy:

m(Z) =

Z
f(Z)dG(f)

k(Z,Z 0
) =

Z
(f(Z)�m(Z))(f(Z 0

)�m(Z 0
))dG(f)

A Gaussian process is “Gaussian” because the joint distribution of the values f(Z1)...f(ZN

) is

multivariate normal, with a mean vector µ and covariance matrix ⌃ given by:

µ = (m(Z1)...m(Z
N

))

>

⌃

i,j

= k(Z
i

, Z
j

)

This implies that the distribution of f(Z) is also normal with mean m(Z) and variance k(Z,Z).

The normality property makes it easy to compute the likelihood that a dataset (g
i

, Z
i

)

N

i=1

is generated by the relationship g = f(Z) for a function f drawn from a Gaussian process

with mean m(Z) and covariance k(Z,Z 0
). By selecting mean and covariance functions from

parametric families, the parameters that best fit the dataset can be estimated using maximum

likelihood.
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To estimate the function f(Z
i

) above, I assume m(Z) = 0 due to the presence of the

constant term, ↵, in the parametric portion of the production function. I assume that k(Z,Z 0
)

takes the form of a multivariate normal kernel:

k(Z
i

, Z
j

| �) = exp(2�0) exp

0

@�1

2

X

d2S,W,lat,lon

(Z
i,d

� Z
j,d

)

2

exp(2�
d

)

1

A

The first parameter, �0, measures the variance of the unknown function f(Z). As points

(Z
i

, Z
j

) become arbitrarily close to each other, the covariance function approaches the variance

of f , and its formula collapses to exp(2�0). The remaining parameters � = (�
S

, �
W

, �
lat

, �
lon

)

measure how smooth f is in each dimension.

If the mean function is 0 and the covariance function parameters are �, then the log

likelihood of the data (g
i

, Z
i

)

N

i=1 is:

logL(�) = �1

2

g>K(�)�1g � log |K(�)|� N

2

log (2⇡)

where g = (g1...gN )

> and K(�)
i,j

= k(Z
i

, Z
j

| �). The process of maximizing this likelihood

over � is called Gaussian process regression, or GPR. Conditional on � and the data (g,Z),

the distribution of f evaluated at an out-of-sample point eZ is normal, with mean and variance

given by:

E
h
f( eZ) | g,Z, �

i
= k( eZ | �)>K(�)�1g

V
h
f( eZ) | g,Z, �

i
= k( eZ | �)>K(�)�1k( eZ | �)

where k( eZ | �) = (k(Z1, eZ | �)...k(Z
N

, eZ | �))>. Note that the formula for the mean of f( eZ)

is similar to the formula for the estimated regression function in kernel regression.28 However,

the additional assumptions about the distribution of possible regression functions in GPR

make it possible to select smoothing parameters � using likelihood techniques, which is not

possible in kernel regression. Moreover, since GPR can be defined in terms of a likelihood

28In kernel regression, the term k( eZ | �)>K(�)�1 in the estimated regression function is replaced with
k( eZ|�)>P
i k(Zi, eZ|�) . However, the estimates of variance in kernel regression are are not directly comparable to the

variance formulas in GPR.
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function, it can easily be incorporated into panel data methods, something which is challenging

in standard kernel regression.

Gaussian processes are commonly used in the artificial intelligence and operations research

literatures, though their application in economics is so far limited to econometric theory.29

For a detailed treatment of Gaussian processes, see Rasmussen and Williams (2005).

The Well-Specific Shock ✏
i

The well-specific shock to log baseline production, ✏
i

, contains unobserved inputs to the fracking

process and unobservable variation in geology. Fracking chemicals are the main unobserved

input.30 Firms primarily use chemicals to inhibit bacterial growth in the fracking mixture,

to provide lubrication for the pumping units used in fracking and to prevent corrosion and

mineral scaling in the well pipe.31 There is evidence in the petroleum engineering literature

that an operator’s choice of chemicals does not directly affect the efficiency of its sand and

water choices, so I assume that sand and water choices are independent of chemical choices.32

The petroleum engineering literature predicts that different parts of the Bakken contain

different amounts of oil and respond to fracking inputs differently.33 In particular, wells that

are drilled into parts of the Bakken which are thicker, contain more organic material or are

more thermally mature have more oil to draw from, and as a result, fracking inputs may be

more productive. Similarly, fracking inputs may generate more extensive fracture networks

in wells drilled into more permeable parts of the Bakken than wells in less permeable parts.

However, aside from the location-specific nature of the production function, I do not have

29See Kasy (2013) for a recent example.

30Another unobserved input is the characteristics of the piping and fracking hardware that firms use to
implement frack jobs. This hardware determines the number of fracture initiation points, their distribution
across the lateral segment and the level of pressure inside the wellbore.

31See http://www.fracfocus.org for further details on the chemicals used in fracking.

32See, for example, Jabbari et al. (2012)

33See Baihly et al. (2012), Jabbari et al. (2012) and Saputelli et al. (2014)
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data to control for geological variation in the Bakken.34 If firms have geological data that

may be indicative of how much oil a well contains or how amenable it is to fracking, they

may adjust their fracking inputs in response and ✏
i

will not be independent of these choices.

Unfortunately, I do not have instruments for fracking input choices, so it is important to

consider what addition information firms could have about the wells they are fracking and

whether they use it to make fracking decisions.

For the vast majority of wells, firms do not have well-specific information about the

thickness, organic content, thermal maturity or permeability of the rock they drill into. To

get this information, firms must perform expensive and time-consuming geological tests, the

results of which are publicly documented by the NDIC.35 These tests are only possible if

firms elect to drill the vertical portion of the wellbore all the way through the entire Bakken

formation, which they rarely do.36

Firms do have a potentially useful source of information about well quality in the samples

of rock that they collect during drilling, called “cuttings”. As the drill bit passes through the

upper Bakken shale on its way into the middle Bakken, firms can analyze the returned rock,

which may be indicative of the amount of the oil and the level of permeability in the upper

Bakken shale at the location where the horizontal segment starts. However, since the goal in

horizontal drilling is to stay inside the middle Bakken, firms receive no additional information

about the upper Bakken shale and receive no information at all about the lower Bakken shale

during the course of drilling. Moreover, the characteristics of the upper Bakken shale can

change over the length of the horizontal segment, and there is no guarantee that the lower

Bakken shale has the same characteristics at a point as the upper Bakken shale. During the

time period I study, laboratory tools to infer rock properties like permeability from cuttings

34In the appendix, I analyze the (limited) publicly available data on thickness, organic content and thermal
maturity. Broadly speaking, this data is not well-specific (it is spatially interpolated from a small number of
wells) and does not explain much variation in production after conditioning on location.

35Specifically, firms use gamma ray well logs to determine thickness, rock evaluation pyrolysis of cuttings or
well cores to measure organic content and thermal maturity and drill stem tests or MRI/NMR tests to measure
permeability.

36For example, Sitchler et al. (2013), a recent petroleum engineering study of well performance, fracking
inputs, and geology characteristics, has the necessary data for just seven wells.
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data had not yet been developed.37 Thus, the information firms can acquire during drilling is

unlikely to be helpful in choosing fracking inputs, and in practice may not be used at all.

For these reasons, I argue that ✏
i

is exogenous to firm choices and other well characteristics:

E [✏
i

| t,H
i

, D
it

, S
i

,W
i

, lat
i

, lon
i

] = 0

Combining everything together, the whole production function model is:

log Y
it

= ↵+ � log t+ � logD
it

+ ⌘ logH
i

+ f(Z
i

) + ✏
i

+ ⌫
it

Since Gaussian process regression generates a normal likelihood for f(Z
i

), I assume that ⌫
it

and ✏
i

are both normal, with zero mean and variances �2
⌫

and �2
✏

, respectively.

3.3.3 Likelihood

I compute the likelihood function in two steps. In the first step, I treat the unobserved effect of

fracking and location f(Z
i

) as observed and compute the likelihood of (Y
it

, X
it

) conditional on

f(Z
i

) and the parameters. In the second step, I integrate out the unobserved values of f(Z
i

)

using the likelihood function for f(Z
i

) generated by GPR. I describe the likelihood calculation

in detail in the appendix.

3.3.4 Production Function Estimates

Table 3.6 shows maximum likelihood estimates of the semi-parametric production function

described above in addition to a simpler parametric specification. The parametric specification

replaces f(S
i

,W
i

, lat
i

, lon
i

) with township fixed effects, ⌧
i

, and a Cobb-Douglas production

technology in sand and water, 
S

logS
i

+ 
W

logW
i

.

All of the parametric model coefficients are statistically significantly different from zero in

both specifications and the coefficients common to both have similar estimates. As expected,

wells produce less oil per month as they age, with an estimated log decline rate of �0.56.38

37See, for example, Ortega et al. (2012), who note that “Cuttings have not been used in the past quantitatively
for optimization of hydraulic fracturing jobs.”

38Current geophysics research on the Bakken has found similar decline rates. Hough and McClurg (2011),
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The coefficient on days producing is 1.75, suggesting that when wells undergo maintenance,

production per day is lower than when wells do not have maintenance issues. Wells with

longer horizontal segments produce more oil than wells with shorter segments, but the effect

is not linear. Doubling the horizontal length of a well increases production by 80% in the

Cobb-Douglas specification and 85% in the Gaussian process. The variance of ✏ is larger in the

Cobb-Douglas specification than in the Gaussian process, suggesting that the flexibility of the

Gaussian process explains more of the variation in baseline oil production than Cobb-Douglas

and location fixed effects do. The estimated Cobb-Douglas marginal productivities of sand

and water are precisely estimated and are smaller than the preliminary estimates in Table 3.4.

Sand and water both increase oil production, with decreasing returns to scale.

The estimated GPR smoothing parameters do not have an intuitive interpretation, so I

illustrate the estimated production relationships graphically in Figure 3.7. The top panel is

a contour plot of the non-parametrically estimated function f(S
i

,W
i

, lat
i

, lon
i

), evaluated

at the geographic centroid of the most active township during this time period. The lines

are iso-production curves, which are combinations of sand and water choices with the same

estimated value of f . Across all levels of water use, greater sand use is associated with

higher oil production, while greater water use is only associated with higher production at the

highest level of sand use, and only in a limited range. The middle panel shows contour lines

for the Cobb-Douglas specification. The Gaussian process and Cobb-Douglas specifications

make starkly different predictions about the impact of fracking inputs and location on oil

production. At the average sand and water choices for this township, 266 lbs and 131 gals per

foot, respectively, the Gaussian process predicts -3.5 log points of baseline production, while

Cobb-Douglas predicts -3.1, meaning that the predictions of the two models differ by 40%.

Additionally, the non-parametric specification makes different predictions in different locations.

The bottom panel shows contour lines for the production function evaluated at the centroid of

a nearby township. The location of the most productive sand and water choices differ across

the two townships. In the top panel, the maximal choice is approximately 600 lbs sand and

for example, estimates the decline rate to be �0.5.
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Table 3.6: Production Function Model Estimates

Cobb-Douglas Gaussian Process
Coefficient Estimate Std. Error Estimate Std. Error

↵ -4.4152 (0.3278)
� -0.5576 (0.0024) -0.5570 (0.0024)
� 1.7543 (0.0035) 1.7549 (0.0035)
⌘ 0.7977 (0.0363) 0.8479 (0.0357)
�0 -0.3945 (0.0572)
�
S

6.1757 (0.1343)
�
W

5.9467 (0.1232)
�
lat

-2.4702 (0.0539)
�
lon

-2.2376 (0.0609)

S

0.1582 (0.0157)

W

0.1148 (0.0159)
log �

✏

-0.9086 (0.0147) -1.0591 (0.0187)
log �

⌫

-0.4898 (0.0024) -0.4897 (0.0024)

Township Fixed-effects X

Overall R2 0.783 .811
Between R2 0.813 .882
Within R2 0.764 .764

# Wells 2,699
# Well-months 91,783

Maximum likelihood estimates of the Cobb-Douglas production function model:

log Y
it

= � log t+ � logD
it

+ ⌘ logH
i

+ 
S

logS
i

+ 
W

logW
i

+ ⌧
i

+ ✏
i

+ ⌫
it

and the Gaussian process production function model:

log Y
it

= ↵+ � log t+ � logD
it

+ ⌘ logH
i

+ f(Z
i

| �) + ✏
i

+ ⌫
it

Y
it

is oil production for well i when it is t months old, D
it

is the number of
days producing, H

i

is the horizontal length, and Z
i

is the vector of sand use
S
i

, water use W
i

, latitude lat
i

and longitude lon
i

. ⌧
i

is a set of township fixed
effects. “Between” R2 is the R2 for the average predicted log baseline production.
“Within” R2 is the R2 for the predicted time series of production.
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200 gals water, per foot, while in the bottom panel it is 400 lbs sand and 500 gals water, per

foot. This variation across townships in the relationship between oil production and inputs is

not possible with the Cobb-Douglas specification, so for the rest of the paper, I focus on the

Gaussian process specification.

The fit of both models is high, with R2’s of 78% for the Cobb-Douglas model and 81%

for the Gaussian process model. The “between” R2’s, which measure the correlation of

predicted baseline production and actual baseline production, are higher, at 81% and 88%,

respectively. The production function models fit the data well for several reasons. Both the

inputs to fracking, sand and water, and the single output of fracking, crude oil production, are

precisely measured. The main unobserved input, fracking chemicals, does not directly affect

production or observed input choices, and Gaussian process regression flexibly controls for

spatial heterogeneity. Moreover, the production function for fracking is an approximation to a

true physical relationship between sand, water, location and oil production. However, since I

estimate this approximation non-parametrically, there is the possibility that the estimated

smoothing parameters are too narrow, leading to over-fitting.

To check for this, I perform a cross-validation test of the model estimates. For each of 25

test runs, I randomly split the wells into two separate datasets: a training dataset containing

90% of the wells, and a validation dataset containing the remaining 10%. I re-estimate the

production function on the training dataset and use the estimates to predict production in

the validation dataset. I save the estimated production function coefficients, the R2 values

generated by the training data and the R2 values generated by the validation data, and report

their distribution across test runs in Table 3.7. The parametric components of the production

function model are quite stable across runs, with the average model estimates being similar

to the full dataset maximum likelihood estimates. The standard deviations across runs are

smaller than the maximum likelihood standard errors for the full dataset. Though the R2

values for validation samples are lower than for training samples, they are still quite high, with

the average overall R2 for validation samples at approximately 78%, compared to 81% in the

training samples. To complement these checks, I provide a series of robustness checks of the
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Figure 3.7: Contour Plots of Production Function Estimates
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Table 3.7: Production Function Model Cross-Validation Statistics

Coefficient Average Estimate Std. Dev. of Estimate

↵ -4.3388 0.1295
� -0.5570 0.0016
� 1.7533 0.0055
⌘ 0.8404 0.0136
�0 -0.4046 0.0290
�
S

6.1659 0.0532
�
W

5.9278 0.0616
�
lat

-2.4454 0.0236
�
lon

-2.2211 0.0392
log �

✏

-1.0545 0.0109
log �

⌫

-0.4916 0.0063

R2 comparisons

R2 type Avg. in training Avg. in validation

Overall R2 0.8116 0.7835
Between R2 0.8826 0.8098
Within R2 0.7652 0.7594

# Wells 2,699
# Well-months 91,783
# Cross validation samples 25

Maximum likelihood estimates of the production function model:

log Y
it

= ↵+ � log t+ � logD
it

+ ⌘ logH
i

+ f(Z
i

| �) + ✏
i

+ ⌫
it

Y
it

is oil production for well i when it is t months old, D
it

is the number of days
producing, H

i

is the horizontal length, and Z
i

is the vector of sand use S
i

, water use
W

i

, latitude lat
i

and longitude lon
i

.

stability of the production function across well cohorts in the appendix.

The consistency of the coefficient estimates across cross-validation tests and the high

goodness-of-fit measures in validation samples suggest that the maximum likelihood estimates

in Table 3.6 do not suffer from over-fitting and represent a stable and causal relationship

between inputs and production.
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3.4 Evidence for Learning

As firms learn to use fracking technology more efficiently, they should make more profitable

fracking design choices. If oil prices, input costs and the quality and size of drilling locations

were constant over time, I could test this prediction by extrapolating future production from

current production and simply check if average expected discounted profits per well increased

over time. However, oil prices, input costs and locations do vary over time, so I control for this

variation by examining trends in the ratio of actual profits to counterfactual maximal profits.

That is, I compute a profitability measure which compares the profits firms earned with the

highest amount of profits they could have earned with the best fracking design for each well.

I use the fracking production function to compute these profits. The profits to well i

fracked using design j are

⇧

ij

= �P
i

E
"

TX

t=1

⇢t eY
ijt

#
� c

i

(S
j

,W
j

)

where � is the fraction of oil production the firm keeps for itself, P
i

is the price the firm will

receive for its oil production, T is the number of periods the well is expected to produce for, ⇢

is the per-period discount rate, eY
ijt

is the realization of the level of oil production for well i

under fracking design j at age t, and c
i

(S
j

,W
j

) is the total cost of drilling and fracking that

design.39 The main empirical object needed in the calculation of ⇧
ij

is the expected present

value of discounted oil production, E [DOP
ij

]:

E [DOP
ij

] = E
"

TX

t=1

⇢t eY
ijt

#

=

TX

t=1

⇢tE
h
eY
ijt

i

I compute this expectation conditional on two different information sets: the full data that

39I assume firms believe oil prices follow a martingale process, and thus use a single price, Pi for all future
revenues. Additionally, I assume that the fraction of oil revenue that accrues to the firms is 70%, based
on typical royalty rates of 16.5%, state taxes of 11.5% and ongoing operating costs of 2%. I set T = 240

months, though the NDIC expects Bakken wells to produce for 540 months, making these profit calculations
an underestimate. I set ⇢ = .9, which is the standard discount rate use in oil & gas accounting. At this rate,
the difference between 540 months and 240 months is only 2.6% in present value terms.
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I have, and the data each firm had when it made a fracking design decision. The first case

represents an ex post expectation, and provides a way of asking whether firms made better

fracking design decisions over time, given today’s knowledge. The second case represents an

ex ante expectation, and provides a way of asking whether firms’ choices were consistent with

static profit maximization, given my measures of their information sets.

In both cases, I combine the production function parameter estimates in Table 3.6 with

the normality assumptions on the unobserved terms to compute a probability distribution over

oil production. Since the production function estimates depend on the full dataset, this means

that I am computing ex ante expectations under the assumption that firms had the same

beliefs about the production function parameters as I do now. This is a strong assumption.

The ex ante calculation of expected oil production will be biased if firms had different beliefs

than I do about the decline rate �, the productivity of producing days � and horizontal length

⌘, the bandwidth parameters � and the variances � of the unobservable production shocks.

I assume that these biases are small, as decline rates and productivity parameters can be

predicted using geophysical models40, and bandwidth and variance parameters do not affect

the asymptotic properties the production function estimate.41 Moreover, the impact of fracking

design and location f(Z) is computed nonparametrically from both the bandwidth parameters

� and the information set. Thus firms with different information sets will have different beliefs

about f(Z), and these beliefs will differ from the ex post beliefs as well.

I present the full calculation of expected discounted oil production in the appendix.

3.4.1 ex post Comparisons

Over time, firms choose fracking designs with higher ex post expected profits. The top half of

Figure 3.8 plots the ex post ratio of actual profits to maximal profits per well.42 The average

fraction of profits captured increases nearly monotonically over time, from 15.7% in 2005 to

40See Fetkovich (1980).

41See section 7.1 in Rasmussen and Williams (2005).

42I only include wells in this calculation that have both positive actual profits and positive maximal profits.
Over the entire sample, 5.2% of wells have either negative actual profits or negative maximal profits.

162



Figure 3.8: Fraction of Positive Profits Captured and Maximal Profits by Year, ex post
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Figure 3.9: Average Profit Maximizing Sand Use and Actual Sand Use Per Well, ex post
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67.6% in 2011. Much of this growth happens in two phases. Between 2005 and 2007, the

fraction increases from 15.7% to 43.9%, and between 2009 and 2010, the fraction increases

from 44.8% to 65.5%. By 2011, firms earn an average of 67.6% of the maximum profits they

could have earned with optimal fracking input choices.

The bottom half of Figure 3.8 shows how these maximal profits evolve over time. When

oil prices were at their peak in 2008, the profit maximizing input choice for the average well

would have generated $36.1 million in profits, meaning that in 2008, foregone profits from

inefficient fracking choices averaged $21.3 million per well. By 2011, lower oil prices reduced

these maximal profits to $25.6 million per well. Combined with the higher fraction of profits

captured, firms in 2011 left only $9.9 million on the table.

Firms captured more profits by selecting more profitable fracking designs over time. In

Figures 3.9 and 3.10, I plot average profit maximizing and actual input use per well over time.

Though firms use less sand in fracking than the estimated profit maximizing levels, starting
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Figure 3.10: Average Profit Maximizing Water Use and Actual Water Use Per Well, ex post
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Figure 3.11: Gaussian Process Year Effects
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in 2009, actual choices approach optimal choices. In 2005 and 2006, the average well was

fracked with approximately 275 lbs sand per foot less than the profit maximizing level. This

difference in sand use doesn’t meaningfull fall until reaching 132 lbs per foot in 2010. By 2011,

the difference between optimal sand use and actual sand use is only 120 lbs per foot.

Though the differences in actual and optimal water use start out considerably larger than

the differences in sand use, actual water choices get closer to optimal water choices in almost

every year. In 2005, firms fracked the average well with 300 gals per foot less water than the

water use in the optimal well. By 2011, the difference is only 98 gals per foot. These trends in

actual input use towards optimal input use are consistent with the idea that firms are learning

about the efficient use of fracking inputs as they observe more data, and with this knowledge

they make more profitable choices.
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3.4.2 Profitability vs. Productivity

The existing literature on learning in firms focuses on productivity instead of profitability.

Scholars in this literature measure learning by comparing estimates of the time-varying com-

ponent of Hicks-neutral productivity with the amount of experience a firm has in producing.43

This approach to studying learning does not treat the production function as an object for

firms to learn. Rather, the knowledge from accumulated experience serves as an input to the

firm’s production function, in the same way that labor, capital and materials do.

To determine if firms in this dataset became more productive, in addition to more profitable,

I add year fixed effects to the Gaussian process production function specification, and plot

their estimated values and confidence intervals in Figure 3.11.

Wells fracked in 2005 are actually 13.7% more productive than wells fracked in 2006.

However, the confidence interval around this estimate is wide enough to include zero, as

there are only 10 wells in 2005 and 20 wells in 2006. Wells fracked in later years are more

productive than wells fracked in 2005 or 2006. For example, wells fracked in 2009 are 35.6%

more productive than those in 2005, and 49.3% more productive than those in 2006. Again,

the confidence intervals around these estimates are wide, and I cannot reject the hypothesis

that there is no change in productivity between 2006 and 2009. In each of the next 2 years,

productivity falls slightly, though the differences are not statistically significant. Overall, wells

fracked between 2008-2011 cohorts are more productive than the earliest wells, but there is no

productivity growth during 2008-2011. Since this time period covers 95% of the wells studied

in this paper, I interpret this as evidence that firms learned to be more productive only in the

earliest years. In contrast, the results in the previous section show that firms learned to be

more profitable in all years, and especially during 2008-2011.
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Figure 3.12: Fraction of Positive Profits Captured and Maximal Profits by Year, ex ante
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3.4.3 ex ante Comparisons

Though firms make choices which approach the ex post estimates of optimal choices over time,

those choices do not always maximize the ex ante estimates of expected profits. The top

half of Figure 3.12 plots the ratio of actual profits to maximal profits per well using ex ante

expectations.44 Firms initially make fracking input choices with expected profits that are close

to the optimal choices, capturing 76.0% of potential ex ante profits in 2007. However, profit

capture actually falls over time, reaching 67.8% in 2011, approximately the same level as the

ex post case in 2011.

While the fraction of profits captured falls, ex ante expectations of maximal profits rise

from 2009-2011, as show in the bottom half of Figure 3.8. Unlike the ex post case, where the

highest level of maximal profits coincides with the 2008 peak in oil prices, ex ante maximal

profits are highest in 2011, reaching $28.8 million per well. Though average oil prices are

similar in 2008 ($100 per bbl) and 2011 ($95 per bbl), firms have much more information about

fracking in 2011 and this information generates more optimistic expectations. The combined

effect of falling ex ante profit capture and rising maximal profits increases foregone ex ante

profits from $3.1 million in 2007 to $10.6 million in 2011.

Firms capture a shrinking fraction of ex ante profits over time because their actual sand

use grows more slowly than the expected profit maximizing sand use does. Figure 3.13 plots

average profit maximizing and actual sand use per well over time. In 2007, actual sand use

is quite similar to ex ante optimal sand use. However, as the data firms have to learn from

accumulates, optimal sand use increases faster than actual sand use, and by 2011, the difference

between optimal and actual sand use reaches 131 lbs per foot. Though this difference is similar

to the difference in the ex post case during 2011, it is striking that the differences in actual and

43For example, Benkard (2000) correlates log labor requirements per unit of production with measures
of experience (and forgetting), and Thornton and Thompson (2001) estimate a semi-parametric production
function model in which various measures of experience are direct inputs to production.

44As in the ex post case, I only include wells in this calculation that have both positive actual profits and
positive maximal profits. Over the entire sample, 6.1% of wells have either negative actual profits or negative
maximal profits. Half of these wells are fracked in 2009. Moreover, I further limit the set of wells by computing
expected profits for the subset of wells that are fracked by firms which can observe 50 wells and 300 well-months
of production history. The first wells that satisfy this criteria are not fracked until 2007.
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Figure 3.13: Average Profit Maximizing Sand Use and Actual Sand Use Per Well, ex ante
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Figure 3.14: Average Profit Maximizing Water Use and Actual Water Use Per Well, ex ante
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optimal sand use increase over time in the ex ante case while decreasing in the ex post case.

Figure 3.14 plots average ex ante optimal and actual water use per well is similar to the ex

post case in Figure 3.10: on average, firms use less than the ex ante optimal amount of water

in fracking, but make improved water choices over time. In 2007, firms use 385 gals per foot

less water than the optimal level. This difference shrinks in each year, and by 2011, it is only

107 gals per foot.

3.5 Fracking input choice model

Though firms do learn over time, many of their choices do not coincide with the predicted

optimal choices, even on an ex ante basis. I consider two possible explanations for this

phenomenon based firm preferences. First, firms may care about the uncertainty in their

estimates of the profits of a fracking design. Second, in estimating the profits of a fracking

design, firms may weigh their own data differently than the data generated by their competitors.

3.5.1 Preferences Over Uncertainty

In comparing the expected profits a firm earned to the maximal expected profits a firm could

have earned, I have implicitly assumed that the correct strategy is for firms to select fracking

designs solely on the basis of expected profits, without regard to the uncertainty of profits

across designs. There are two potential problems with this assumption. First, viewing fracking

design as an investment project selection problem, there may be financial or organizational

factors that cause firms to have preference over uncertainty. Second, when learning about

the performance of different fracking designs, firms may care about uncertainty through the

explore vs. exploit tradeoff that exists in all learning problems.

Though it is appropriate for firms to ignore uncertainty in simple and frictionless models

of investment project selection, there are practical reasons why uncertainty may also matter.

Firms raise outside capital to finance operations and the presence of debt capital can lead

firms to select fracking designs with higher uncertainty, as bond holders will bear the downside

risk. On the other hand, capital constrained firms may not necessarily have the option of
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selecting fracking designs with higher uncertainty if they are more expensive to implement.

Financial considerations can thus push firms towards or away from fracking designs with more

uncertain profits. Firms must also hire and incentivize potentially risk averse engineers, who

select fracking designs. Depending on the extent of their career concerns and the structure of

their compensation, engineers themselves may have preferences over uncertainty.

The prescribed learning strategies in most theoretical models of learning involve uncertainty

seeking behavior. Analyses of the explore vs. exploit tradeoff in learning predict that agents

should always do some amount of exploration, by selecting actions with more uncertain payoffs.

This tradeoff will frequently require agents to sacrifice expected payoffs in the present in order

to acquire uncertainty resolution in the future. Since actions with the more uncertain payoffs

can resolve more future uncertainty, experimenting agents should have a positive taste for

uncertainty.

Most theory models predict that agents will experiment, at least initially. In most of the

settings studied by Aghion et al. (1991), a fully rational, expected present discounted value

maximizing agent will do some amount of exploring forever and a similar result obtains in

the multi-agent context studied by Bolton and Harris (1999). The implied preferences for

uncertainty in both of these models arise out of the natural dynamics of learning problems.

Agents are still risk neutral over their payoffs, but because there is present value to better

information in the future, they prefer those actions with uncertain payoffs which can produce

more future information.

Empirically, oil companies exhibit both risk seeking and risk averse behavior. The process

of acquiring mineral rights for new drilling prospects and establishing the existence of oil

within those prospects is an especially risky one (see, for example Walls and Dyer 1996 and

Reiss 1989). However, oil companies are price takers in the world market for oil, and many

use financial markets to hedge some or all of their future oil production, suggesting that firms

may wish to avoid risks associated with future price fluctuations (see Haushalter 2000).

Whether the companies I study here prefer fracking input choices with more or less

uncertain production is an empirical question. I estimate firm preferences over expectations
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and variance of fracking designs by analyzing realized choices. To do this, I fit a multinomial

logit preference model of fracking design choice in which the “utility” a firm has for fracking

design j applied to well i is:
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where � is the fraction of oil revenues firms keep, P
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the cost of fracking design j for well i, and ✏
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is an iid logit error. The parameters (⇠
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, ⇠
s

)

represent the firm’s preference over expected present discounted revenues and the standard

deviation of present discounted revenues, conditional on the data they have. Under this

preference specification, the probability that a firm selects design j for well i is given by the

standard logit formula:
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The mean utilities in this preference model are linear in the expectation and standard

deviation of profits to a fracking design. Preferences of this type have precedence in the

theoretical learning literature. Brezzi and Lai (2002) show that a linear combination of the

expectation and standard deviation of the payoff to a choice can represent a simple and efficient

approximation to the Gittins index value for the choice, if the choices have independently

distributed payoffs. Since Gittins and Jones (1979) show that ordinal preferences over Gittins

indices result in dynamically efficient learning behavior, agents that utilize these linear

approximations attain near-optimal learning. Though the profits to fracking input choices

are not distributed independently, authors in the computer science and operations research

literatures have found that these learning strategies also perform well in the general case. In

those literatures, learning strategies which select the choice with the highest value of a linear

combination of the expectation and standard deviation of payoffs are called “upper confidence

bound”, or UCB strategies. Rusmevichientong and Tsitsiklis (2010) and Srinivas et al. (2012)

have established that UCB strategies quickly identify the highest performing choice, and do so

in a way which minimizes an agent’s ex post cumulative regret over its past choices. UCB
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strategies are also reported to be in use at major technology companies, like Yahoo, Microsoft

and Google (see Chapelle and Li 2011, Graepel et al. 2010 and Scott 2010). In all of the

existing literature which utilizes UCB learning strategies, the weight on the standard deviation

of the payoffs to a choice is positive, hence the “upper” in upper confidence bound strategies.

This paper is not the first in economics to utilize UCB learning strategies in an empirical

context. Dickstein (2013) estimates the parameters of a UCB learning strategy in a study of

learning behavior by physicians.

With data on the choices firms made, expectation and standard deviation calculations made

using their information sets, and oil price and fracking cost data, I estimate the parameters

(⇠
m

, ⇠
s

) using maximum likelihood. I estimate separate values of (⇠
m

, ⇠
s

) for each of the 8 most

active firms, and also estimate a pooled value of (⇠
m

, ⇠
s

) for the industry as a whole. Table 3.8

reports these coefficient estimates, standard errors, and several measures of goodness-of-fit. All

firms and the pooled industry have positive “taste” for the expectation of profits of a fracking

design and negative “taste” for the standard deviation. That is, every firm appears to avoid

fracking input choices with high uncertainty. I can reject risk-neutrality for all firms and for

the pooled industry. In dollar terms, firms make choices as if they are willing to accept a

reduction in expected profits of $0.60 to $0.98 for a reduction of $1 in the standard deviation

of profits.

I report three goodness-of-fit statistics. The likelihood based pseudo-R2, which I refer to as

LLPR, is defined as 1 minus the ratio of the optimized log-likelihood over the log-likelihood

evaluated at the null hypothesis:

LLPR = 1� logL(b⇠
m

, b⇠
s

)

logL(0, 0)

This statistic is similar to a real R2 in that it varies between 0 and 1, with 0 indicating that

the model does not fit any better than no model and 1 indicating that the model fits the data

perfectly (see Train 2009). This measure of fit indicates how far from “perfect” the fit actually

is, but it does not have a “fraction of variance explained” interpretation the way a true R2

does. I also compute the correlation between the expected input use implied by the model’s
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Table 3.8: Uncertainty Preference Model Estimates

Firm c⇠
m

se(c⇠
m

)

b⇠
s

se(b⇠
s

) # Wells LLPR ⇢
S

⇢
W

Brigham 11.05 1.05 -11.30 1.16 111 0.24 0.00 0.15
Burlington 12.02 1.25 -15.39 1.57 102 0.34 0.55 0.47
Continental 13.54 0.83 -17.26 1.05 313 0.33 0.53 0.50
EOG 5.88 0.39 -7.75 0.57 339 0.17 -0.18 0.33
Hess 10.69 0.96 -13.10 1.10 143 0.30 0.60 0.45
Marathon 15.52 1.24 -21.99 1.67 209 0.44 0.61 0.30
Whiting 10.25 0.74 -16.97 1.21 247 0.36 -0.02 0.05
XTO 11.56 1.22 -14.36 1.45 101 0.32 0.50 0.51
All 7.46 0.17 -10.39 0.23 2,605 0.23 0.50 0.40

Maximum likelihood estimates of the uncertainty preference model:
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variance of the present discounted value of oil production for i under design j, c
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is the cost of implementing design j on well i, and ✏
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is an iid logit shock. LLPR is a
likelihood-based pseudo-R2:

LLPR = 1� logL(b⇠
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, b⇠
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)

logL(0, 0)

where L(b⇠
m

, b⇠
s

) is the likelihood of the model evalauted at the MLE and L(0, 0) is the
likelihood of the model evaluated at the null hypothesis. ⇢

S

and ⇢
W

are the correlations
of actual sand and water use decisions with their predicted values from the model.
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estimated choice probabilities and actual input use, for both sand and water. If expected

input use is similar to what is observed in the data, these correlations should be positive and

(ideally) close to 1.

The fit of this model varies a fair amount across firms, but is generally modest. The

pseudo-R2 measures are less than 50% for all firms and for the pooled industry, suggesting

that the best fitting values of the model’s parameters still require a lot of support from the

logit errors to rationalize firm behavior. For 6 of the 8 firms, the correlation between predicted

sand use and realized sand use is positive, and for 5 it is at least 50%. The correlations

between predicted and realized water use are smaller, with only 2 firms having correlations at

or above 50%, but no firms have negative correlations. Though the coefficient estimates are all

significantly different from zero, the low fit statistics suggest that preferences that are linear in

the mean and standard deviation of profits only explain a small portion of observed behavior.

I also estimate a version of this model which includes an interaction term between expected

profits and the standard deviation of profits. While learning rules which are nonlinear in the

mean and standard deviation do not appear in the existing learning literature, it is possible

that true firm preferences over risk and reward are more complicated than a linear model can

capture. By including an interaction between expected profits and the standard deviation of

profits, I allow for risk preferences that may vary with the mean. Table 3.9 reports estimates

of these models. The results are qualitatively the same as Table 3.8, with all firms showing

risk aversion and all but one firm showing increasingly negative taste for risk as reward

increases. Goodness-of-fit measures are slightly better for these models than for the standard

mean/variance models, though this is to be expected from the inclusion of an additional

covariate.

Overall, Tables 3.8 and 3.9 provide evidence that firms tend to select fracking designs with

higher expected profits and avoid fracking designs with higher standard deviation of profit.

This behavior is not consistent with the notion that firms are actively exploring uncertain

fracking designs, but it is consistent with passively learning firms that are constrained by

organizational or financially motivated variance aversion.
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Table 3.9: Uncertainty Preference Model Estimates, With Interaction

Firm c⇠
m

se(c⇠
m

)

b⇠
s

se(b⇠
s

)

b⇠
I

se(b⇠
I

) # Wells LLPR ⇢
S

⇢
W

Brigham 20.12 1.95 -8.37 1.27 -2.86 0.44 111 0.31 -0.03 0.16
Burlington 14.08 1.66 -14.81 1.58 -0.70 0.36 102 0.35 0.57 0.51
Continental 21.26 1.29 -17.25 1.12 -2.25 0.27 313 0.37 0.60 0.53
EOG 6.10 0.41 -7.49 0.58 -0.07 0.03 339 0.17 -0.17 0.35
Hess 9.80 1.16 -13.37 1.12 0.38 0.29 143 0.30 0.60 0.45
Marathon 20.55 1.72 -22.36 1.75 -1.44 0.33 209 0.45 0.67 0.25
Whiting 11.58 0.86 -17.03 1.24 -0.24 0.07 247 0.37 0.03 0.05
XTO 13.87 1.70 -14.59 1.48 -0.50 0.24 101 0.32 0.48 0.53
All 9.06 0.21 -10.59 0.23 -0.29 0.02 2,605 0.24 0.53 0.44

Maximum likelihood estimates of the uncertainty preference model:
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) is the likelihood of the model evalauted at the MLE and L(0, 0, 0) is the
likelihood of the model evaluated at the null hypothesis. ⇢
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actual sand and water use decisions with the predicted values from the model.
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3.5.2 Own-data bias

A different explanation for firms’ apparent unwillingness to select the fracking design with the

largest expected profits is that I am computing expectations with respect to different beliefs

than those held by firms. There are many ways that a firm’s beliefs may be different than

the ones I calculate: firms may have biased prior beliefs about the role of fracking design and

location, they may have simpler beliefs about the functional form relating fracking design and

location to production, or my fracking cost and oil price data could be different from the costs

and prices firms experience. However, using the data that I have, I am only able to test a

simpler explanation. I assume that firms do have the belief structure I have described here,

but do not necessarily treat all of the data available to them equally. In particular, firms may

weigh data from their own experiences differently than data from the experiences of other

firms that they observe through the public disclosure process. I refer to this explanation as

“own-data bias”.

To test for this phenomenon, I introduce a new parameter, � 2 (0, 1), which represents the

firm’s relative weighting scheme. If � = 0, the firm places no weight on the data generated by

other firms and if � = 1, the firm places no weight on its own data, relying entirely on outside

data to learn. At � =

1
2 , the firm puts equal weight on its own data and the data generated by

others, which gives the preference model described in the previous section. For each value of �,

I can compute the expectation and standard deviation of weighted discounted profits for well

i with fracking design j, for which I provide a calculation in the appendix. I then use these

weighted profits in the same multinomial logit choice model described in the previous section,

and refer to the choice model with weighted estimates as the weighted preference model.

In Table 3.10, I report maximum likelihood estimates of �, as well as the other preference

model coefficients, for the same specification in Table 3.8. The estimated value of � is less

than 1
2 for all individual firms, and for 5 firms, the 95% confidence intervals do not include

1
2 . The pooled estimate is also less than 1

2 and its 95% confidence interval does not include
1
2 . Comparing Tables 3.8 and 3.10, the preference model coefficients do change slightly, but

allowing for weighted beliefs does not affect the previous conclusion that all firms dislike
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Table 3.10: Weighted Uncertainty Preference Model Estimates

Firm c⇠
m

se(c⇠
m

)

b⇠
s

se(b⇠
s

)

b� se(b�) # Wells LLPR ⇢
S

⇢
W

Brigham 14.37 1.33 -17.27 1.71 0.12 0.04 111 0.30 0.04 0.16
Burlington 13.95 1.46 -17.98 1.84 0.41 0.05 102 0.36 0.55 0.50
Continental 18.26 1.10 -22.38 1.36 0.36 0.02 313 0.37 0.63 0.55
EOG 7.01 0.45 -10.65 0.75 0.15 0.04 313 0.20 -0.12 0.36
Hess 10.87 1.00 -14.13 1.19 0.46 0.05 143 0.31 0.62 0.46
Marathon 21.77 1.72 -27.79 2.12 0.34 0.03 209 0.47 0.68 0.24
Whiting 9.82 0.70 -16.00 1.14 0.00 247 0.36 0.04 0.06
XTO 12.98 1.52 -15.84 1.63 0.44 0.04 101 0.32 0.48 0.53
All 8.22 0.19 -11.74 0.26 0.38 0.01 2,605 0.24 0.54 0.45

Maximum likelihood estimates of the uncertainty preference model:
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are the correlations
of actual sand and water use decisions with the predicted values from the model. Because
Whiting’s estimate of � is at the boundary, standard errors are computed with respect to ⇠

m

and ⇠
s

only.

uncertainty in the profits of a fracking input choice. Firms are willing to trade $0.61 to $0.83

in expected profits for a reduction of $1 in the standard deviation of profits, which is a similar

range to the model estimated in Table 3.8. The fit of the model in Table 3.10 is somewhat

better than the model in Table 3.8, but it is still modest.

3.6 Conclusion

This paper provides one of the first empirical analyses of learning behavior in firms using

operational choices, realized profits, and information sets. Oil companies in the North Dakota
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Bakken Shale learned to more efficiently use fracking technology between 2005-2011, increasing

their capture of possible profits from 15.7% to 67.6% by making improved fracking design

choices over time. Contrary to the predictions of most theoretical models of learning, I do not

find evidence that firms actively experiment in order to learn. Instead, firms prefer fracking

input choices with lower variance, and are willing to give up $0.60-0.98 in expected profits

for a reduction of $1 in the standard deviation of profits. Finally, firms in my data appear

to overweight data from their own operations relative to the data they observe from their

competitors.

From a neoclassical economics perspective, it is surprising that these firms do not experi-

ment, even though it is valuable to do so. They operate in an industry known for its appetite

for risk and use of advanced technology and have access to a wealth of data to learn from.

However, they leave money on the table. Across the 2,699 wells in this data, the average well

appears to forego $12.1 million in profits on an ex post basis and $7.6 million on an ex ante

basis, resulting in $20-33 billion in lost profits.

These results complement recent work by petroleum engineers on their own failures to learn

to use to new technologies in a variety of contexts. Authors in this literature note that explicit

learning efforts like experiments do happen, but less frequently and later in the development

of a formation than they should.45 Much of this research cites two hurdles to learning: a

tendency by operators to prematurely focus their optimization efforts on cost reductions

instead of improvements in operational choices, and the absence of incentive contracts between

operators and their service contractors. The first phenomenon suggests that operators believe

they know the production function with high certainty, but later discover their beliefs were

wrong. In future work, I plan to incorporate this possiblity into my model of input choice

under uncertainty. The second phenomenon raises important questions about the effects of

contractual incompleteness on the oil and gas exploration industry that I hope to study in

future work.

45For a detailed overview of this literature, see Vincent (2012)
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Appendix A

Appendix to Chapter 2

A.1 TRACE Data Appendix

The TRACE dataset we use was purchased directly from FINRA. We refer to this data as the

Historical FINRA TRACE dataset since it contains both disseminated and non-disseminated

trades, indicated by the Dissemination Flag field (DISSEM_FL). There are also two TRACE

datasets available on WRDS, one from FINRA and one provided by Mergent FISD. These

databases only contain disseminated trade records that were available to market participants

in real time and do not contain any non-disseminated trades.

The Historical FINRA TRACE dataset contains 35,284,669 unique trade records, on 35,695

different CUSIPS, for July 1, 2002 until December 31, 2006. All FINRA trade records are

self-reported by FINRA members. To each self-reported transaction report, FINRA adds the

time and date that it received the report and a flag indicating whether or not the report

was disseminated to the public. Then, FINRA generates a message sequence number that is

unique within the reporting day. For transactions that are modifies or cancels, the message

sequence number of the original trade is included as a separate field called the “original”

message sequence number.

We first take the Historical FINRA TRACE dataset and match it to the universe of

corporate bonds in the Mergent FISD database, our source for bond characteristics such as
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issue size, ratings, maturity, etc. We drop all TRACE bonds that do not match to FISD. We

also drop all bonds with equity-like characteristics (convertibles, exchangeables, etc.) since

their equity component may be included in the bond price. We next drop all Rule 144a bonds

because TRACE does not report trading information on these bonds. Finally, FISD does not

report the correct issue size in all cases. For example, there are some bonds with a reported

issue size of $0. After hand checking a number of cases with small issue size, we decided to

drop all bonds with reported FISD issue size of less than $100,000, including those with issue

size of $0. The number of trades eliminated and their corresponding CUSIPs affected by these

steps are shown in first section of Table A.1.

FINRA reports prices on bond trades differently for principal and agency trades, denoted by

the Buyer Capacity field (BUY_CPCTY_CD) or Seller Capacity field (SELL_CPCTY_CD).

Prices reported on principal trades include “any markups or markdowns.” Prices reported

on agency trades do not include the commission charged “since commission is reported in a

separate field.” (TRACE USER Guide, version 2.2, page 17) To make our prices comparable

across all trades, we adjust trade prices for the commission paid whenever the buy or sell

commission field is non-empty. A total of 699,833 trades representing 19,999 CUSIPs are

modified.

Not all remaining trade records are unique or correct. We eliminate trade records for

four main reasons. First, some trades do not take place; they are later modified, revised, or

cancelled. Second, some trades are reported more than once. Third, some trade records have

erroneous price or volume data. Fourth, some trades have problems with their trade date.

Table A.1 reports the number of trade records affected for each of these reasons.

TRACE generates extra trade records for modified, cancelled, or reversed trades. Trades

cancelled within a day are marked as cancelled, while trades cancelled on subsequent days are

marked as reversals. When identifying trades that are subsequently modified, cancelled or

reversed, we rely on three data fields: Trade Status (TRC_ST), Message Sequence Number

(MSG_SEQ_NB), and Original Message Sequence Number (ORIG_MSG_SEQ_NB). The

first field, Trade Status, has a value of “W” if the trade record is a modification and “C” if it is
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Table A.1: Steps from Historical TRACE File to Cleaned Historical TRACE Sample

CUSIPs Trades
(1) (2)

Source:(Historical(TRACE(File 35,695 35,284,669

Eliminate(bonds(based(on(characteristics
777Bonds7unmatched7to7FISD7by7CUSIP 1,156 200,482
777Convertible7bonds 1,375 2,297,404
777Exchangeable7bonds 113 20,420
777Other7equityNlinked7bonds 615 221,543
777SEC7Rule7144a7bonds 551 38,583
777Bonds7with7missing7issue7size7or7issue7size7<7100,000 348 95,723

Adjust(prices(for(commissions(paid((these(transactions(are(NOT(dropped,(prices(are(changed) 19,999 699,833

Eliminate(trades(which(do(not(take(place(or(when(dissemination(is(delayed
777Modifies:7matched7to7earlier7record7using7sequence7number 23,877 883,146
777Cancels:7matched7to7earlier7record7using7sequence7number 22,557 504,789
777Cancels:7not7matched7to7earlier7record 2,502 4,201
777Reversals:7matched7to7earlier7record7using7sevenNway7match 21,234 837,740
777Reversals:7matched7to7earlier7record7using7sixNway7match 7,507 64,700
777Reversals:7not7matched7to7earlier7record 9,216 44,849
777Delayed7reversals 2,794 60,698
Delayed7disseminations 612 1,382

Eliminate(trades(which(are(reported(more(than(once
Dealer7buys7(total) 28,417 6,578,859
Dealer7buys7matched7to7dealer7sells7with7the7same7execution7time 20,710 590,372
Dealer7buys7matched7to7dealer7sells7with7different7execution7times 26,703 4,468,884
Unmatched7dealer7buys 26,703 1,519,603

Agency7trades7(agency7buys7matched7to7agency7sells) 18,424 563,658

Eliminated(trades(with(price(and(volume(data(issues
777Trades7with7missing7price 106 211
777Trades7with707price 0 0
777Trades7with7negative7price 0 0
777Trades7with7price7greater7than7220 497 806
777Trades7with7volume/issue7amount7≥750%7and7par7value7or7issue7amount7is7not7equal7to707or71 2,222 4,597
777Trades7with7volume7less7than71000 2,189 5,323

Eliminated(trades(with(timing(issues
777Trades7executed7before7bond's7offering7date 6,654 247,012
777Trades7executed7after7bond's7maturity7date 342 78,052
777Trades7with7different7reporting7and7execution7dates 30,736 799,570
777Trades7that7occur7on7SIFMA7Holidays 30,671 581,396

Cleaned(Historical(TRACE(Sample 30,643 21,149,525

Filters are applied sequentially. This table reports the steps from the historical TRACE file to the Clean Histor-
ical TRACE file. Other equity-linked bonds have "KNOCK", "REVERSE", "EQUITY", "LINKED", and "TBD"
in the bond’s FISD issue name. A seven-way match is based on CUSIP, execution date, execution time, price,
quantity, buy-sell indicator, and dealer-customer indicator. A six-way match drops the execution time require-
ment. Price cutoff of 220 is based on computing a bond’s value based on its maturity, coupons remaining
and lowest value of the treasury yield curve during our entire sample period. The maximum for our sample is
214, which we round to 220. SIFMA holidays correspond to "Recommended Early Close" and "Recommended
Full Close" dates listed at http://www.sifma.org/uploadedfiles/research/statistics/statisticsfiles/misc-us-historical-holiday-
market-recommendations-sifma.pdf
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a cancellation of another trade record received by FINRA on the same reporting day. If the

trade record is not a cancellation or a modification, Trade Status has a value of “T”. For each

reporting day, FINRA assigns every trade report a unique Message Sequence Number. The

third field, Original Message Sequence Number, is blank unless the trade is a cancellation or

modification. In those instances, the Original Message Sequence Number field contains the

Message Sequence Number of the trade record that is being cancelled or modified.

We link together the Original Message Sequence Numbers and the Message Sequence

Numbers to create chains of trade records, if such chains exist. Each chain starts with the

original trade and ends with the last modified or cancelled trade. The existence of a chain

means that some trades will be eliminated. For example, if a trade that is reported with

message sequence number “1” is modified in a record with message sequence number “2” and

then later modified in a record with message sequence number “3”, we eliminate the first two

records. We link these three records together, starting from record 3 and moving backwards

until we reach a record with the original message sequence number (the original trade). In a

similar manner, if a trade is later canceled, we link the canceled trade record with the original

trade record and eliminate both trade records from our sample. Since it is possible for different

trades in a chain to have different dissemination statuses, we treat the terminal trade record

in a chain as disseminated if any trade record in the chain was disseminated. If a trade is

modified, we remove all records except the last one in the chain. For cancelled trades, we

eliminate the entire chain of trades. When a cancelled trade cannot be matched to the original

trade, it alone is eliminated.

Trade reversals are identified by the As Of Indicator field (ASOF_CD) by “R”. Reversals

cannot be tracked using Message Sequence Number and Original Message Sequence Number

because the original trade and its reversal are reported to FINRA on different days. Message

Sequence Numbers are unique within each reporting day and cannot be linked across days.

Therefore, to link a reversal to its original trade, we match based on seven identifying

characteristics: CUSIP, execution date, execution time, price, volume, indicator for buyer or

seller, and indicator for dealer or customer. Matches with these criteria represent a “seven-way”

193



match.

Using these seven trade characteristics, however, often leads to a many-to-many match;

that is, there is often more than one possible pairing. (In fact, it appears that many reversals

are the result of a trade being entered twice and the second record being reversed). After

matching reversal and non-reversal reports using these seven trade characteristics, we eliminate

the minimum number of exact matches. If there is only one exact match, both the reversal

and its matched trade are eliminated. If there is more than one exact match, we eliminate the

reversal trade and one of the matching trades. Since, by definition, the trades occur at the

same time, date, price, and volume, these characteristics are unaffected by the choice of which

matching trade we eliminate. For example, if there are 4 reversals and 5 non-reversals, we

drop the 4 reversals and drop the first 4 non-reversals. A total of 837,740 trade records were

dropped as part of reversals.

Unfortunately, not all reversals have an exact seven-way match. A large number of the

unmatched reversals had a six-way match to another trade if we drop the same execution time

requirement. Since execution time is self-reported, we assume these six-way matches were

the original trades that were meant to be reversed, and we eliminate the reversal and the

matched trade from the sample following the steps above. Even after six-way matches, there

are 44,849 records labeled as reversals that we were unable to match to an original trade. We

dropped these reversals from the dataset, but were unable to identify the original matched

trade. In addition, the As Of Code field can also take on the values “X” corresponding to

delayed reversal and “D” corresponding to delayed dissemination. We drop these records as

well.

After eliminating modified, cancelled, and reversed records (which represent trades that

do not actually take place), we next deal with trades that take place, but are reported more

than once. There are two ways for duplicate records to occur in the Historical Trace database.

The first involves transactions between two dealers, who both report the trade to FINRA,

one as a buy trade and one as a sell trade. Both the buy and sell side of inter dealer trades

are included in the Historical TRACE database released by FINRA. In the Mergent FISD
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TRACE dataset on WRDS, only the seller’s report of an inter dealer trade is included. To

mimic this convention, we eliminate trade records for inter dealer trades submitted by the

buying dealer. We drop a total of 6,578,859 trade records where the transaction is labeled as a

buy (using the Buy/Sell Indicator, RPT_SIDE_CD) and where the transaction is associated

with a duplicate sell transaction. In addition, both the buy and sell records must be labeled

as inter dealer trades (using the Contra Party Indicator, CNTRA_MP_ID).

As shown in Table A.1, of the 6,578,859 dealer buy records we eliminated, 590,372

correspond to sell records with the same CUSIP, date, price, quantity, inter dealer trade

indicator, and execution time. An additional 4,468,884 buy records correspond to sell records

that have the same CUSIP, date, price, quantity, inter dealer trade indicator, but a different

execution time. As mentioned earlier, execution time is self-reported by both the buyer and

seller and we believe that two trades which have a match of all other characteristics other than

time are probably duplicates. Finally, 1,519,603 dealer buy records cannot be matched to a

dealer sell record. These records are a puzzle given that we have no record of a seller reporting

the trade in an inter dealer transaction. To be conservative, we eliminate these remaining

unmatched inter dealer buy records.

The second way duplicate trades appear in the database is when the dealer acts as in an

agent capacity. If a dealer acts as an agent for a customer, FINRA asks that trade be reported

as if the agent “stood between the customer and the contra party” (TRACE USER Guide,

version 2.2, page 21). That is, if a dealer sold bonds as an agent for their customer to another

party, they would report two records to TRACE: a buy transaction from the customer and

a sell transaction to the other party, even though this is a single transaction. We keep only

the sell transaction when there is both an agency buy transaction and agency sell transaction

with the same price, quantity, execution date, and execution time. This rule leads us to drop

563,658 trade records.

Another reason we eliminate trades from the dataset is that price or volume information

appears erroneous. Since, as mentioned above, all trades are self-reported, data entry errors

are possible even though FINRA monitors reported trades. We delete records with missing
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trade prices. We also drop trade records with unreasonably large prices. To compute our

definition of unreasonable large prices, we first calculated the maximum “risk free” price of each

bond in the sample. The maximum “risk free” price during our time period is the maximum

present value of future coupon and principal payments, discounted using the lowest treasury

rate observed across all bonds and all days between July 1, 2002 and December 31, 2006.

Across all the bonds in our sample, the maximum risk free price is $214. To be conservative,

we drop all bond trades that take place at price higher than $220. We also eliminated 4,597

trades where the volume of a single trade was higher than 50% of the issue amount.1 Finally,

we eliminated trades where the volume was reported as less than $1,000.

The last reason we drop records is trade timing issues. We drop any trade that occurs

before its offering date or after its maturity date. We also drop any trade that was reportedly

executed on a different day than it was reported. Finally, we drop all records that are reported

to have occurred on SIFMA holidays. After these eliminations, we are left with 21,149,525

trades involving 30,643 CUSIPs.

The entire dataset of cleaned bonds is not necessarily useful however to evaluate the effect

of TRACE. Our empirical strategy is based on comparing a bond’s trading behavior when it

changes from non-disseminated to disseminated. Many bonds will be disseminated for their

entire trading history. These include bonds that belong to a FINRA Phase that are issued

after the beginning of the Phase date, and bonds that may be issued before a Phase begins

but only trade after the dissemination change date for that Phase. There are also bonds that

are always non-disseminated. These are bonds that may mature before the beginning of their

Phase date as well as bonds that belong to a Phase but never trade after the Phase begins.

Table A.2 outlines the steps from Historical Cleaned Sample in Table A.1 to the Cleaned

Phase sample, the sample of bonds which exist and have zero or non-disseminated trading

before the start of a Phase and zero or disseminated trading after the start of a Phase. We

1This may represent a data error in FISD issue size. For example, about 2600 of the eliminated records
correspond to one company Alestra, which went through an exchange. FISD reports its issue size as $83,000,
but through press releases we determined it was at least $400,000,000. Another example is Countrywide
CCR.MQ.
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begin with a list of all Phase 1, 2, 3A and 3B bonds. There are 26,955 bonds in this list, of

which 20,595 exist in the Cleaned Historical TRACE Sample. They have 17,434,020 trades

during our sample period. Thus, about two-thirds of the bonds in our Cleaned Historical

TRACE Sample are in our Phase list, but this represents 82.4% of the trades.

We obtained Phases 2, 3A, and 3B from FINRA. FINRA provided us with a list of bonds

that began being disseminated at the start of each of the three Phases. This list was provided

in a non-electronic format where bonds were identified with ticker symbols. Unfortunately,

many ticker symbols longer than six characters were truncated. This was a problem for firms

with a four character company ticker symbol which also issued bonds with three character

security tickers. In particular, many GMAC bonds were truncated. Since FINRA also provided

us with coupon and maturity dates for each bond, we were able to hand-match many of the

truncated ticker symbols, but not all. The list of Phase 1 bonds was not provided by FINRA,

and we generated it ourselves given the criteria listed by TRACE for Phase 1 bonds. That is,

in addition to existing before the beginning of Phase 1, bonds had to be investment grade and

have an initial issue size of $1 billion or greater. After determining the set of bonds meeting

these criteria, we eliminated all bonds that are on the FINRA lists for Phases 2, 3A or 3B and

the bond had to have a disseminated trade before the beginning of Phase 2.

In addition to the four Phases that correspond to the FINRA dissemination dates, FINRA

also maintained two other lists of bonds, which we call the FINRA50 and the FINRA120.

The FINRA50 represent 50 Non-Investment Grade (High-Yield) securities disseminated under

Fixed Income Pricing System (FIPS2). This list of 50 bonds changes over time with bonds

both entering and exiting. FINRA lists all of these bonds on their website and there were a

total of 149 bonds that were in the FINRA50 at some point during its existence from July 1,

2002 until July 14, 2004. The FINRA120 list is a special set of 120 investment grade rated

Baa/BBB that FINRA delayed Phase 2 dissemination for. Phase 2 dissemination started on

March 3, 2003 for Phase 2 bonds, but started on April 14, 2003 for the FINRA120. This

special sample was created so that FINRA could conduct a controlled experiment to study the

effects of dissemination in Phase 2, contained in Goldstein, Hotchkiss, and Sirri (2007).
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Table A.2: Steps from FINRA’s Phase Listings to Cleaned Phase Sample

CUSIPs Trades
(1) (2)

Cleaned2Historical2TRACE2Sample2(after2Table2A1) 30,643 21,149,525
Source:(FINRA(list(of(Phase(173B(bonds 26,955 …
TRACE2Bonds2Never2on2FINRA2phase2listing

Issued2between27/1/022and22/7/052and2always2disseminated 2,135 1,537,412
Matured2before22/7/052and2never2disseminated 1,054 61,300
Matured2on2or2after22/7/052and2never2disseminated 654 68,011
Issued2before27/1/02,2always2disseminated,2trades2only2after23/3/2003 99 36,250
Issued2on2or2after22/7/052and2always2disseminated 5,435 860,996
None2of2the2above2(disseminated2and2nonTdisseminated) 671 1,151,536

Bonds2on2both2FINRA2Phase2list2and2Cleaned2Historical2TRACE2Sample 20,595 17,434,020

Phase21
2222222list2of2Phase212bonds* 450 4,539,063
2222222bonds2in2FINRA502at2start2of2phase 4 32,231
2222222bonds2do2not2exist2as2of2start2of2phase 60 685,047
2222222bonds2do2not2exist2during2the2period2902days2before2until2902days2after2start2of2phase 33 285,253
2222222bonds2with2nonTdisseminated2trades2after2start2of2phase 10 35,034
222Cleaned2Phase212Sample 343 3,501,498

Phase22
2222222FINRA's2list2of2Phase222bonds 3,747 …
2222222Phase222bonds2in2Cleaned2Historical2TRACE2Sample 3,049 2,934,214
2222222bonds2in2FINRA502before2or2at2start2of2phase 0 0
2222222bonds2do2not2exist2as2of2start2of2phase 272 21,459
2222222bonds2do2not2exist2during2the2period2902days2before2until2902days2after2start2of2phase 229 150,854
2222222bonds2with2disseminated2trades2before2start2of2phase 2 4,380
2222222bonds2with2nonTdisseminated2trades2after2start2of2phase 8 25,636
222Cleaned2Phase222Sample 2,538 2,731,885

Phase23A
2222222FINRA's2list2of2Phase23A2bonds 16,898 …
2222222Phase23A2bonds2in2Cleaned2Historical2TRACE2Sample 13,260 8,336,332
2222222bonds2in2FINRA502or2FINRA1202before2or2at2start2of2phase 78 603,109
2222222bonds2do2not2exist2as2of2start2of2phase 983 168,549
2222222bonds2do2not2exist2during2the2period2902days2before2until2902days2after2start2of2phase 1,075 259,894
2222222bonds2with2disseminated2trades2before2start2of2phase 36 330,722
2222222bonds2with2nonTdisseminated2trades2after2start2of2phase 1 244
222Cleaned2Phase23A2Sample 11,087 6,973,814

2Phase23B
2222222FINRA's2list2of2Phase23B2bonds 5,780 …
2222222Phase23B2bonds2in2Cleaned2Historical2TRACE2Sample 3,678 1,362,059
2222222bonds2in2FINRA502or2FINRA1202before2or2at2start2of2phase 26 52,945
2222222bonds2do2not2exist2as2of2start2of2phase 648 235,319
2222222bonds2do2not2exist2during2the2period2902days2before2until2902days2after2start2of2phase 132 46,791
2222222bonds2with2disseminated2trades2before2start2of2phase 15 22,135
2222222bonds2with2nonTdisseminated2trades2after2start2of2phase 4 1,738
222Cleaned2Phase23B2Sample 2,853 1,003,131

Total2Cleaned2Phase21T3B2Sample 16,821 14,210,328

This table reports the match between the Cleaned Historical TRACE file and FINRA’s Phase Listings. Not all bonds in
the TRACE Historical Sample are classified in a FINRA Phase. Excluded bonds are those issued after 7/1/02 that are
always disseminated and those that mature before 2/7/05 that are never disseminated. We construct the Phase 1 list by
including all bonds with disseminated trades before Phase 2 that are not on the FINRA Phase 2, 3A, or 3B lists. The
Phase 2, 3A, and 3B lists were obtained directly from FINRA. The FINRA50 and FINRA120 lists are from www.finra.org.
Bonds in FINRA’s Phase lists that are not in the Cleaned Historical TRACE Sample have either never traded during the
sample period or have been eliminated due to cleaning process in Table A.1.
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Table A.2 explains how we went from FINRA’s list of Phase 2, 3A, and 3B bonds, and our

list of Phase 1 bonds, to our cleaned Phase samples. For each Phase list, we only use bonds

that exist in our Cleaned Historical TRACE Sample. Some bonds on the FINRA lists did not

trade during our sample period and thus are not in the Historical TRACE sample. This is

shown between lines 1 and 2 under Phases 2, 3A, and 3B.

We next eliminate any bonds that also exist in the FINRA50 or FINRA120 list. Following

this, we eliminate bonds that do not exist (i.e., were not issued or matured) during the period

90 days before until 90 days after the start of the Phase. Finally, we dropped some bonds

with data problems. There are a few bonds where FINRA report disseminated trades before

the start of the Phase, or non-disseminated trades after start of Phase. After applying these

steps for each Phase list, what remains is our cleaned sample by Phases. There are a total

of 16,825 bonds in our total cleaned Phase sample representing 14,210,328 trades during our

time period.

A.2 NAIC Data Appendix

The National Association of Insurance Companies (NAIC) dataset we use is from Mergent

FISD available on WRDS. The NAIC requires insurance companies to self-report all securities

transactions in their financial statements. There are 63,859 bonds with 1,933,095 reported

transactions in the NAIC file over the period January 1, 2000 until December 31, 2006.

Schedule D of the annual NAIC filings require insurers to report all bond transactions in one

of three categories: bonds added to the portfolio during the calendar year and held through

the end of the year, bonds deleted from the portfolio during the calendar year that were not

added in the same year, and bonds added and deleted in the same calendar year. For each

transaction, the database records the CUSIP, date, par value of the transaction, the actual

value of the transaction, if it was an addition or deletion, and a field for the counterparty

involved in the transaction. Prices are not reported but can be computed from the ratio of the

value received in the transaction to the par value of the bonds in the transaction. Importantly,

the names of the insurance companies involved in the transactions are excluded from the data.
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To make the NAIC analysis comparable to the TRACE analysis, we first match our sample

of NAIC bonds with the Cleaned Historical TRACE sample by CUSIP. The universe of bonds

which insurance companies trade is much larger than that reported by FINRA. 45,902 NAIC

bonds representing 804,685 reported transactions are not included in our Cleaned Historical

TRACE sample and are eliminated. Table A.3 reports the number of transactions and CUSIPs

eliminated by this step.

Next we eliminate reported transactions that are not connected to trades. The NAIC

database contains all transactions involving insurance companies’ bond portfolios, not only

buy and sell transactions, but also other transactions such as bond calls and maturities. The

type of transaction is coded in the counterparty field. We eliminate all transactions that

change bond portfolio holdings that are not buys or sells. These include the following codes:

CALL, CANCEL, CONVERT, EXCHANGE, ISSUE, MATURE, PUT, REDEEM, SINKING

FUND, TAX-FREE EXCHANGE, TENDER, TRANSFER, PAYDOWN, and REPLACE.

There are two prevalent entries in the counterparty field comprising almost 15% of the

cleaned database that required additional attention: DIRECT and VARIOUS. DIRECT may

indicate a direct placement, similar to an underwriting, or it may indicate the name of a

counterparty in an actual trade. VARIOUS is simply an ambiguous catch-all, where some

records may be actual trades and some are not. To check whether DIRECT and VARIOUS

represent actual trades, we matched these NAIC records to TRACE using the CUSIP, price,

volume, and date of the transaction. For DIRECT, only about 3% of transactions match into

the TRACE dataset, while for VARIOUS only about 1% of transactions match. Because of the

problems identifying which of the DIRECT or VARIOUS transactions are actual trades, we

eliminate them along with the other codes listed above that are not buys and sells. As shown

in Table A.3, all such filters eliminate 290,998 reported transactions on 14,095 different bonds.

We eliminate a small number of trades with data issues, i.e. missing prices, negative prices,

etc. We next eliminate trades with timing issues, i.e., trades that are executed before or on the

bonds’ offering or after or on the bonds’ maturity date. A large fraction of NAIC transactions

take place on the offering and maturity dates. We believe that this is because insurance

200



T
ab

le
A

.3
:

St
ep

s
fr
om

H
is

to
ri

ca
lN

A
IC

Fi
le

to
C

le
an

ed
H

is
to

ri
ca

lS
am

pl
e

CU
SI
Ps

U
ng
ro
up

ed
/

Tr
ad

es
Gr
ou

pe
d/
/T
ra
de

s
CU

SI
Ps

U
ng
ro
up

ed
/

Tr
ad

es
Gr
ou

pe
d/
/T
ra
de

s
O
rig

in
al
/S
ou

rc
e:
/N
AI
C/
Tr
an

sa
ct
io
ns
/F
ile

63
,8
59

1,
93
3,
09
5

1,
49
0,
83
1

50
,9
68

1,
34
1,
47
1

1,
03
2,
12
4

M
at
ch
/N
AI
C/
Bo

nd
s/w

ith
/C
le
an

ed
/H
is
to
ric

al
/T
RA

CE
/sa

m
pl
e/

CU
SI
P,
no

t,
fo
un

d,
in
,C
le
an
ed

,H
is
to
ri
ca
l,T
RA

CE
,s
am

pl
e

46
,0
60

80
5,
48
3

62
5,
40
3

33
,6
45

53
3,
09
2

41
7,
88
1

El
im

in
at
e/
tr
an

sa
ct
io
ns
/w
hi
ch
/a
re
/n
ot
/tr
ad

es
N
on

Dt
ra
de

,in
di
ca
te
d,
by
,c
ou

nt
er
pa
rt
y,
fie

ld
,e
nt
ry
,(c
al
ls
,,c
on

ve
rt
s,
,e
tc
.)

13
,9
96

29
0,
80
2

21
0,
42
5

13
,4
24

23
3,
24
7

16
1,
14
0

El
im

in
at
e/
tr
ad

es
/w
ith

/d
at
a/
is
su
es

M
is
si
ng
,P
ri
ce

40
7

87
9

59
3

40
7

87
9

59
3

Ze
ro
,P
ri
ce
,(o

r,
Ze
ro
,P
ar
,V
al
ue

)
15
4

28
6

26
5

15
3

28
5

26
4

N
eg
at
iv
e,
Pr
ic
e,
(o
r,
N
eg
at
iv
e,
Pa
r,
V
al
ue

,A
m
ou

nt
)

15
1

19
4

19
0

13
2

16
2

15
9

Pr
ic
e,
gr
ea
te
r,
th
an
,2
20

53
85

80
50

82
77

Tr
ad
es
,w
it
h,
vo
lu
m
e/
is
su
e,
am

ou
nt
,>
=,
50
%
,&
,(P

ar
V
al
ue

,o
r,
Is
su
e,
am

ou
nt
,n
ot
eq

ua
l,t
o,
0,
or
,1
),

35
9

64
7

62
7

23
5

42
1

40
5

Tr
ad
es
,w
it
h,
vo
lu
m
e,
le
ss
,t
ha
n,
10
00
,d
ol
la
rs

14
0

29
5

28
0

11
6

24
9

23
5

El
im

in
at
ed

/tr
ad

es
/w
ith

/ti
m
in
g/
is
su
es

Tr
ad
es
,e
xe
cu
te
d,
on

,o
r,
be

fo
re
,b
on

d'
s,
of
fe
ri
ng
,d
at
e

7,
37
1

11
2,
41
3

61
,0
52

5,
18
7

73
,7
00

40
,7
83

Tr
ad
es
,e
xe
cu
te
d,
on

,o
r,
af
te
r,
bo

nd
's
,m

at
ur
it
y,
da
te

92
5

1,
58
5

1,
46
1

92
5

1,
58
5

1,
46
1

Tr
ad
es
,e
xe
cu
te
d,
on

,w
ee
ke
nd

,o
r,
SI
FM

A
,H
ol
id
ay

7,
30
8

26
,5
39

23
,3
05

5,
40
4

16
,6
19

14
,5
25

Po
st
,Ju

ly
,2
00
2,
tr
ad
es
,e
xe
cu
te
d,
on

,d
ay
s,
w
it
h,
no

,T
RA

CE
,t
ra
de

s*
*

7
13

9
7

13
9

Cl
ea
ne

d/
Hi
st
or
ic
al
/N
AI
C/
Sa
m
pl
e

16
,0
05

69
3,
86
1

56
7,
25
0

14
,5
73

48
1,
13
4

39
4,
67
8

Ja
nu

ar
y,
1,
,2
00
0,
D,D

ec
em

be
r,
31
,,2
00
6

Ju
ly
,1
,,2
00
2,
D,D

ec
em

be
r,
31
,,2
00
6

F
ilt

er
s

ar
e

ap
pl

ie
d

se
qu

en
ti

al
ly

.
T

he
C

U
SI

P
s

co
lu

m
n

gi
ve

s
to

ta
l
nu

m
be

r
of

C
U

SI
P

s
el

im
in

at
ed

fr
om

th
e

da
ta

ba
se

by
ad

di
ng

th
at

ro
w

’s
fil

te
r.

T
he

tr
ad

es
co

lu
m

n
gi

ve
s

to
ta

ln
um

be
r

of
ob

se
rv

at
io

ns
el

im
in

at
ed

by
ad

di
ng

th
at

ro
w

’s
fil

te
r.

*
P

ri
ce

cu
to

ff
of

22
0

ba
se

d
on

co
m

pu
ti

ng
th

e
a

bo
nd

’s
m

at
ur

it
y,

co
up

on
s

re
m

ai
ni

ng
an

d
lo

w
es

t
va

lu
e

of
th

e
tr

ea
su

ry
yi

el
d

cu
rv

e
du

ri
ng

ou
r

en
ti

re
sa

m
pl

e
pe

ri
od

an
d

ta
ki

ng
th

e
m

ax
im

um
ac

ro
ss

bo
nd

s.
T

ha
t

va
lu

e
of

21
4

is
ro

un
de

d
to

22
0.

**
O

n
Ju

ne
11

,2
00

4,
th

e
SE

C
de

cl
ar

ed
a

ho
lid

ay
w

he
n

be
ca

us
e

P
re

si
de

nt
R

ea
ga

n
di

ed
.

G
ro

up
in

g
is

do
ne

if
th

e
di

ffe
re

nc
e

in
P

ri
ce

is


|0
.
0
|a

nd
th

e
da

y,
co

un
te

rp
ar

ty
,i

ns
ur

er
ty

pe
,a

nd
bu

y
or

se
ll

ar
e

eq
ua

l.

201



companies are large customers of bond offerings and purchase the bonds at this time. The

NAIC rules require its members to list these purchases as a transaction since the bonds are

added to their portfolio. Since these transactions are probably part of the underwriting, we

do not include them as trades. If an insurance company holds the bond until its maturity,

that transaction will also be recorded by NAIC. Finally, we also exclude transactions listed on

bond holidays. These screens shown in Table A.3 are similar to those applied to the TRACE

dataset in Table A.1.

After the screens and matching, there are 16,006 bonds and 693,862 reported transactions

(which we believe to be buys and sells) in our “clean” NAIC sample. Importantly, the NAIC

time period in Table A.3 is thirty months longer than the TRACE time period in Table A.1.

When we restrict to the time period July 1, 2002 until December 31, 2006, there are 14,574

bonds and 481,135 transactions, as shown in the last three columns of Table A.3.

As mentioned above in Section VII, we believe that many trades in TRACE are disaggre-

gated by the NAIC reporting process. When comparing the NAIC and TRACE databases,

there are multiple NAIC transactions that match to a single TRACE trade using CUSIP, date,

price and counterparty, but not volume. However, if we group NAIC transactions by CUSIP,

date, price and counterparty into a single record with a combined volume, many of these

grouped NAIC trades match to a corresponding single trade in TRACE.

There are two reasons that trades are disaggregated in NAIC. The first reason is how

NAIC requires transactions to be reported on Schedule D of the annual NAIC filing. Insurers

must separately report bonds purchased and sold in the same year from bonds purchased and

held through the end of the year. This means if an insurance company purchases $1 million

par of a bond on January 1, 2001 and sells $500,000 of this before December 31, 2001 and the

remaining $500,000 sometime in the following year, under NAIC reporting instructions, this

single purchase would be split into two separate purchases of $500,000 each, reported in two

different sections of Schedule D. One $500,000 purchase would be reported in the long-term

purchase reporting section, and one $500,000 purchase would be reported in the short-term

holding section.
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When the NAIC database is compiled, the above trade would appear as two purchases of

the same bond occurring on the same day at the same price. In TRACE, however, the dealer

who sold the bond would report this as one $1 million trade. If we aggregate the volume of

the NAIC trades that occur in the same bond, on the same day, at the same price, the NAIC

transaction would match to the TRACE trade, as a single trade. It’s worth noting that since

the insurance company sold the bond holdings as two separate pieces of $500,000 each on two

separate days, two distinct sales of $500,000 would be reported as two sales in both NAIC and

TRACE.

A second reason for why a single trade may be reported as multiple trades is that distinct

subsidiaries of an insurance company may book portions of a trade to their respective division,

and each division makes its own statutory filings to the NAIC. This can occur, for instance, if

part of a trade is allocated to the property and casualty group and another portion allocated to

the life insurance group. In the NAIC database, this appears as two trades, while in TRACE,

it appears as one trade.

We attempt to correct for these two reporting problems by grouping transactions that

we believe correspond to the same trade. Any records that share the same date, CUSIP,

counterparty, transaction type (buy or sell), and have prices within 1 cent of another are

grouped and considered a single trade. We show this grouping in Table A.3. In the cleaned

NAIC file, from January 1, 2000 to December 31, 2006, the number of trades reduces from

693,862 to 567,251.

As discussed in Section VII, grouping trades does not affect our NAIC volume analysis.

However, the price standard deviation increases when we group trades. We, therefore, report

the analysis of NAIC trades both with and without grouping.

To assign the bonds in NAIC to a FINRA Phase, we simply match the cleaned Phase list

from TRACE used in Table A.2 to the sample of cleaned NAIC bonds. Table A.4 reports the

number of NAIC CUSIPs, and both grouped and ungrouped trades in each Phase. Importantly,

in Phase 1, we match 323 CUSIPs out of 343 TRACE Phase 1 CUSIPs.
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A.2.1 Market Share Analysis

Unlike TRACE, which does not identify the transacting parties, the NAIC database has

two fields which identify the counterparty to the insurance company in an NAIC sell or buy

trade. These are: NAME OF PURCHASER (in a sell trade by the insurance company) and

NAME OF VENDOR (in a buy trade by the insurance company). NAIC does not identify

the name of the insurance company involved in the transaction. This means only one side, the

non-insurance company side, is identified for each trade. We use this information, to construct

a COUNTERPARTY variable.

Importantly, the counterparty field is not always a trading partner. Insurance companies

also use this field to identify transactions that are calls, maturities, conversions, etc. and

these were excluded from our sample as described above. Moreover, since each insurance

company self-reports the data, there are often name variations in the counterparty field. For

example, “J P Morgan”, “J P Morgan & Co”, “J. P. Morgan”, “J. P. Morgan Securities” and “J. P.

Morgan Securities, Inc.” are listed as counterparties. We could not classify some counterparty

names such as “192” or “9-UNIVERSAL LIFE”, so we group these counterparties together

with names that appear infrequently into a LEFTOVER category. We grouped by hand the

counterparty names into 106 unique trading partners. These correspond to 105 actual trading

partners (originally from 7,319 distinct counterparty names), and the LEFTOVER category

(which represents 4,714 distinct counterparty names). Importantly, trades in the LEFTOVER

category only represent 11.0% of trades and 9.0% of total volume in the Cleaned Historical

TRACE dataset.

In addition, because of mergers, some trading partners, which appear to be listed under

separate names, are really part of one entity. For example, Salomon Brothers was acquired

by Citigroup in 1998, and in our counterparty fields, the trader is sometimes identified as

Salomon Brothers and sometimes as Citigroup, even though they were the same entity for our

sample period. We examined all merger and acquisition activity for our 106 counterparties

and if a merger took place before January 1, 2000 we combine the trading activity under the

successor company’s name.
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The following lists counterparties in our dataset that were acquired before our sample

period and the successor name:

1. DEAN WITTER was acquired by MORGAN STANLEY on February 05, 1997, so it is

called MORGAN STANLEY.

2. On June 30, 1997, MONTGOMERY SECURITIES acquired NATIONSBANK, which

was acquired by BANK OF AMERICA on September 30, 1998, so MONTGOMERY

SECURITIES is called BANK OF AMERICA.

3. SALOMON BROTHERS was acquired by CITIGROUP in 1998, so it is called CITI-

GROUP.

If merger activity occurs during the sample period, we keep the successor name. For

instance, BANK ONE CORP was acquired by JP MORGAN on July 01, 2004, so it is called

JP MORGAN in our sample. There are 22 counterparties that merged during our sample

period:

1. ADVEST was acquired by MERRILL LYNCH on December 02, 2005, so it is called

MERRILL LYNCH.

2. ALLIANCE CAPITAL MANAGEMENT was acquired by SANFORD C. BERNSTEIN

on October 02, 2000, so it is called ALLIANCE-BERNSTEIN.

3. AMSOUTH BANK was acquired by REGIONS FINANCIAL CORP on November 04,

2004, so it is called REGIONS FINANCIAL CORP.

4. AUTRANET INC was acquired by BNY on February 04, 2002, so it is called BNY.

5. BANK ONE CORP was acquired by JP MORGAN on July 01, 2004, so it is called JP

MORGAN.

6. FIRST CHICAGO BANK was acquired by NATIONAL BANK OF DETROIT, which

was acquired by BANK ONE CORP in April, 1998, so it is called JP MORGAN.
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7. BONDS DIRECT was acquired by JEFFRIES AND CO on October 07, 2004, so it is

called JEFFRIES AND CO.

8. CHASE was acquired by JP MORGAN on September 13, 2000, so it is called JP

MORGAN.

9. CREDIT LYONNAIS was acquired by CREDIT AGRICOLE on March 13, 2003, so it

is called CREDIT LYONNAIS-CREDIT AGRICOLE.

10. DAIN RAUSCHER was acquired by RBC on September 28, 2000, so it is called RBC.

11. DONALDSON LUFKIN JENRETTE was acquired by CREDIT SUISSE on November

03, 2000, so it is called CREDIT SUISSE.

12. FIRST UNION was acquired by WACHOVIA on September 01, 2001, so it is called

WACHOVIA.

13. FLEETBOSTON FINANCIAL was acquired by BANK OF AMERICA on April 01,

2004, so it is called BANK OF AMERICA.

14. GRUNTAL was acquired by RYAN BECK & CO on April 23, 2002, so it is called

GRUNTAL-RYAN BECK.

15. MORGAN KEEGAN was acquired by REGIONS FINANCIAL CORP on December 19,

2000, so it is called REGIONS FINANCIAL CORP.

16. PAIN WEBBER was acquired by UBS on November 03, 2000, so it is called UBS.

17. PRUDENTIAL SECURITIES was acquired by WACHOVIA on July 01, 2003, so it is

called WACHOVIA.

18. SPEAR LEADS & KELLOGG was acquired by GOLDMAN SACHS on September 11,

2000, so it is called GOLDMAN SACHS.

19. STANDISH was acquired by MELLON on July 31, 2001, so it is called MELLON.
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20. TUCKER ANTHONY was acquired by RBC on March 08, 2002, so it is called RBC.

21. US BANCORP spun off PIPER JAFFRAY on December 31, 2003, so it is called PIPER

JAFFRAY as US BANCORP.

22. WASSERSTEIN & PERELLA was acquired by DRESDNER KLEINWORT on January

01, 2001, so it is called DRESDNER KLEINWORT.

When we consolidate counterparties, we have 617,745 trades conducted by 86 unique

traders and 76,116 trades for the LEFTOVER category, for a total of 693,861 trades. The

total par volume in the LEFTOVER category is 135,375,226,962, which represents 9.0% of the

total NAIC trading activity.
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Appendix B

Appendix to Chapter 3

B.1 Likelihood Calculation

B.1.1 Step 1

Let ✓ = (↵,�, �, ⌘) represent the vector of the non-fracking parameters and let � = (�
✏

,�
⌫

)

represent the vector of the variance parameters. I compute the pseudo-observation g
i

from

(Y
it

, X
it

), conditional on ✓ as

g
i

=
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N
i

NiX
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(log Y
it

�X
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N
i

NiX
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+ ⌫
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= f(Z
i

) + ✏
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+
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N
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g
i

is the sum of the “true” effect of fracking and location on oil production and a normally

distributed error with zero mean and variance �2
✏

+

1
Ni
�2
⌫

.

B.1.2 Step 2

Conditional on the pseudo-observations g
i

, the likelihood of (Y
it

, X
it

) follows the standard

formula for panel data with a random effect on each well. Let  (· | µ,�) denote the normal
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likelihood with mean µ and standard deviation � and let e
it

= log Y
it

� X
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✓. Finally, let

bolded capital letters represent vectors of the time series of a variable. The likelihood of
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The first term in this final expression is simply a normal likelihood, evaluated at g
i

, the

effect of fracking and location for well i. The second term does not depend on g
i

. Though

g
i

is unobserved, by the properties of GPR, the vector g of g
i

’s for all N wells is distributed

multivariate normal with mean zero and variance K(Z | �). Thus, I can integrate over the

values of g
i

to obtain the likelihood in terms of observable data and parameters. Let T denote

the vector of values of T
i

, ⌃(T,�) be a N by N matrix with �2
✏

+

1
Ti
�2
⌫

in the i-th diagonal

position and zeros elsewhere and let µ(Y,X,T, ✓) be a vector with 1
Ti

P
Ti
t=1 eit in the i-th
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position. Then the full likelihood is:

L(Y,X,Z) =

Z
 (g | 0,K(Z | �))

NY
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where the last line comes as a result of equations A.7 and A.8 from Rasmussen and Williams

(2005). Having integrated out the unobserved values g
i

, the full likelihood is completely in

terms of the observed data (Y,X,T), the parameter vectors ✓ and �, and the covariance

matrix K(Z | �) of the nonparametric effect of fracking and location on oil production.

B.2 Expected Present Discounted Value of Oil Production

I compute ex post expectations for all wells, and I compute ex ante expectations for wells

fracked by firms with sufficiently large information sets. I require that a firm’s information set

has at least 50 wells and at least 300 well-months of production. This limits the set of wells I

can analyze, and the earliest wells with information sets this large do not appear until the

fourth quarter of 2007.

I compute E [DOP
ij

] using both expectation operators for a 10 by 10 grid of possible frack

designs j, with sand use between 0 and 650 lbs per foot and water use between 0 and 750 gals

per foot. These grid points cover 95% of observed sand choices and 99% of observed water

choices. By the normality assumptions in the production function model, the joint distribution

of log-production for well i under fracking design j over T months of existence (call this log eY
ij

)

is multivariate normal, with mean µ
ij

and covariance ⌃

ij

given by:

µ
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=
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where eX
i

is a matrix of well i’s static characteristics and a vector of log-age values from 1
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month to T months, eg(·) is the estimated GPR, Z
ij

is the a vector of design (S
j

,W
j

) and

latitude and longitude for well i, ⌃✓ is the covariance matrix for the estimates of ✓, �2
g,ij

is

the estimated variance of the GPR at Z
ij

, 1
T

is a T by T matrix of ones, and I
T

is a T by

T identity matrix. With this construction, I am assuming that the variances for ✏ and ⌫ are

estimated perfectly (i.e., there is no term in ⌃

ij

that accounts for variance in those estimates).

Because log

eY
ij

is multivariate normal, the distribution of the level of production over time,

eY
ij

, is multivariate log-normal with the same parameters. The mean vector and covariance

matrix of this distribution are:
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where D(·) represents the diagonal vector of a square matrix and [M ]

xy

is the (x, y)-th entry

of a matrix M .1 Finally, E [DOP
ij

] is:

E [DOP
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] =
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⇢teµ
ijt

A similar calculation is available for the variance of present discounted oil production:
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"

TX

t=1

⇢t eY
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f
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1By the properties of the log-normal distribution, the mean and standard deviation of production are
closely related, with the standard deviation equal to the mean times the exponent of the variance minus 1.
This means that the “correlation” between the mean and standard deviation of production, computed across
designs j will be positive by construction.
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B.3 Weighted Gaussian Process Estimates

Recall that the mean and variance of the Gaussian process estimates of f at the point eZ are

given by:

E
h
f( eZ) | g,Z, �

i
= k( eZ | �)>K(�)�1g

V
h
f( eZ) | g,Z, �

i
= k( eZ | �)>K(�)�1k( eZ | �)

where k( eZ | �) = (k(Z1, eZ | �)...k(Z
N

, eZ | �))>, K(�) is the matrix of pairwise kernel distances

for each point in Z and g = (g1...gN )

>. To compute a weighted mean and variance, I introduce

a weighting matrix function, L(�), and compute a weighted estimate of the mean and variance:

E
h
f( eZ) | g,Z, �,�

i
= k( eZ | �)>L(�)>K(�)�1g

V
h
f( eZ) | g,Z, �,�

i
= k( eZ | �)>L(�)>K(�)�1L(�)k( eZ | �)

The weighting matrix function L(�) biases these estimates towards a firm’s own experiences

when � is closer to 0 and towards other firms’ experiences when � is closer to 1. In particular,

if (k0(�),K0(�), g0) are the subsets of k(�),K(�), g computed using only the firm’s own wells,

and (k1(�),K1(�), g1) are the subsets computed using only other firms’ wells, then the weighted

estimates satisfy 3 relationships:

1. At � = 0, the weighted estimates are equal to the estimates computed using the subset

of wells the firm operated:

k( eZ | �)>L(0)>K(�)�1g = k0( eZ | �)>K0(�)
�1g0

k( eZ | �)>L(0)>K(�)�1L(0)k( eZ | �) = k0( eZ | �)>K0(�)
�1k0( eZ | �)

2. At � =

1
2 , the weighted estimates are equal to the unweighted estimates:

k( eZ | �)>L
✓
1

2

◆>
K(�)�1g = k( eZ | �)>K(�)�1g

k( eZ | �)>L
✓
1

2

◆>
K(�)�1L

✓
1

2

◆
k( eZ | �) = k( eZ | �)>K(�)�1k( eZ | �)
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3. At � = 1, the weighted estimates are equal to the estimates computed using the subset

of wells the firm did not operate:

k( eZ | �)>L(1)>K(�)�1g = k1( eZ | �)>K1(�)
�1g0

k( eZ | �)>L(1)>K(�)�1L(1)k( eZ | �) = k1( eZ | �)>K1(�)
�1k1( eZ | �)

At intermediate values of �, L(�) interpolates between these extremes. To accomplish this,

L(�) takes this form:

L(�) =

2

64
L1(�)In0 L2(�)K01(�)K11(�)�1

L3(�)K10(�)K00(�)�1 L4(�)In1

3

75

where n0 is the number of wells in the firm’s information set that it operated, n1 is the number

of wells that other firms operated, the matrices K00(�),K01(�),K10(�),K11(�) are submatrices

of K(�):

K(�) =

2

64
K00(�) K01(�)

K10(�) K11(�)

3

75

and the functions L1, L2, L3, L4 are

L1(�) = 1 + �� 2�2

L2(�) = ��+ 2�2

L3(�) = 1� 3�+ 2�2

L4(�) = 3�� 2�2

Thus, L(�) is a quadratic interpolation between L(0), which selects out the firm’s own wells,

and L(1), which selects out all other firms’ wells.

B.4 Geology Covariates

In the production function defined in Section 3.3, the only spatially varying observable

characteristics are the well’s location and the fracking choices its operator makes. However, the
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North Dakota Geological Survey (NDGS) has published maps of potentially relevant geological

information. In this appendix, I describe this data and evaluate its ability to explain oil

production. The geology data explains a small, but statistically significant amount of variation

in production, even after conditioning on a well’s location. However, compared to production

function models with location fixed effects, the explanatory power of geology data is small and

the coefficients do not always have the signs that would be predicted by geology theory.

B.4.1 Available Data

The quantity of oil that a well draws from depends broadly on three geological factors: the

thickness of the upper and lower Bakken shales, their total organic content, and their thermal

maturity. These three factors describe the quantity of rock in the formation, the fraction of

the rock that can generate oil, and the likelihood that oil generation has occurred, respectively.

Fortunately, in 2008, the North Dakota Geological Survey (NDGS) published maps and GIS

shape files documenting the spatial variation in these characteristics over the area covered by

the wells in this paper.2 I summarize this data in Table B.1.

As noted in Section 3.2, thicker locations in the Bakken have the potential to contain

more oil. Using data from NDGS map GI-59, Panel A of Table B.1 shows the mean, standard

deviation and within-township standard deviations of the thickness of the upper, middle, and

lower Bakken members across the wells in this paper. The overall Bakken formation averages

86 feet thick, about half of which is the middle member. There is large variation in each of

the thickness measures across wells, with the coefficient of variation ranging from 23-40%.

However, within a township, the standard deviations of thickness measures are only 22-31% of

the overall standard deviations.

In the upper and lower shales, oil can be generated from the fraction of mass that is organic

(i.e., containing mostly carbon and hydrogen). All else equal, shale that has a higher organic

content has the ability to generate more oil than shale with less organic content. Using data

2These maps are freely available in PDF format at https://www.dmr.nd.gov/ndgs/bakken/bakkenthree.asp.
The shape files are available for purchase from the NDGS.
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Table B.1: Geology Covariates Summary Statistics

Variable Mean Std. Dev Min Max Within Std. Dev

Panel A: Thickness (ft)

Bakken Formation 86.05 24.03 5.00 155.00 5.26
Upper Shale 16.50 3.74 1.00 31.00 1.16
Middle Member 42.39 13.10 2.50 82.50 2.86
Lower Shale 27.64 10.93 2.50 57.50 2.90

Panel B: Total Organic Content (%)

Upper Shale 13.80 2.44 3.00 27.00 1.01
Lower Shale 14.01 2.32 8.50 22.50 1.04

Panel C: Thermal Maturity - Hydrogen Index

Upper Shale 358.10 179.30 75.00 775.00 32.96
Lower Shale 343.27 181.90 25.00 1125.00 65.72

Panel D: Thermal Maturity - S2-TMAX (degrees celsius)

Upper Shale 435.68 5.60 417.50 447.50 1.92
Lower Shale 433.89 10.12 387.50 447.50 2.81

N = 2, 699. Reported Bakken Formation thickness does not exactly add up to the
sum of the thickness of the three members in the data. “Within Std. Dev” is the
standard deviation of the data after subtracting mean values within townships.
Source: NDGS Maps GI-59 and GI-63.
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from NDGS map GI-63, Panel B of Table B.1 shows the distribution of organic content in

the upper and lower shales. In the average well, approximately 14% of the mass is organic in

both members. There is limited variation in organic content, overall and within a township.

Though not shown in the table, 99% of wells have 9% or more organic content in the upper

shale and, 99% have 9.5% or more in the lower shale. For comparison, the organic content in

the Ghawar Field of Saudia Arabia, the most prolific oil field in history, is only 5%.3

Long term exposure to high temperatures converts organic material into oil. The extent of

exposure is called thermal maturity, and geologists use three categories to describe the thermal

maturity of a rock sample. Thermally immature rock has less exposure than is necessary

for the conversion of organic material into oil. Thermally mature rock has enough exposure

for the conversion of its organic content into oil. Thermally over-mature rock has too much

exposure, and its organic content is converted into natural gas.

In map series GI-63, the NDGS provides two measures of the thermal maturity of the

Bakken: hydrogen index and S2-TMAX. Both measures are collected by heating a rock

sample to high temperatures and measuring the rate of oil expulsion across temperatures.

The maximum rate at which oil is expelled, divided by organic content, gives the hydrogen

index. Since hydrogen is one of the two elements contained in all hydrocarbons, more hydrogen

indicates higher hydrocarbon generating potential. Potential oil production is higher for larger

values of the hydrogen index, with thermally mature rock at values as low as 200.4 The

temperature of the highest rate of oil expulsion, called S2-TMAX, is the other laboratory

measure of thermal maturity. Thermally mature rock corresponds to S2-TMAX values between

435 and 460, with higher values in that range corresponding to higher oil production. Above

460 degrees celsius, oil production is decreasing, and the rock is thermally over-mature.5

Panel C of Table B.1 shows the distribution of the hydrogen indices across wells. The

average well has a hydrogen index suggestive of thermal maturity for both the upper and lower

3See Fox and Ahlbrandt (2002)

4For more information, see McCarthy et al. (2011)

5For more information, see McCarthy et al. (2011)
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shales, though approximately 25% of wells are thermally immature. Within a township, the

standard deviations of the hydrogen indices are 18-30% of the overall standard deviations.

Panel D shows the distributions of S2-TMAX. The average well is just at the start of thermal

maturity and no wells are thermally over-mature. Over 80% of wells have S2-TMAX in the

range of thermal maturity in the upper shale, and 53% in the lower shale. Within a township,

the standard deviations of the S2-TMAX values are 29-34% of the overall standard deviations.

The NDGS developed these maps using the cuttings, cores and well logs that operators

are legally required to submit for every well they drill to the NDIC.6 Since the NDIC makes

these samples and logs available to anyone, the information content in these maps may have

been known by market participants before they were published.

Opportunities to measure the thickness, total organic content or thermal maturity of the

rock in a specific well are infrequent.7 Furthermore, only in the last few years have geologists

began to study the use of these cuttings in providing information about well quality.8 Even

if these techniques had been available (and in widespread use), they would only provide

information about the middle Bakken member, as that is the predominant source rock for

cuttings.

B.4.2 Explanatory Power

To evaluate the ability of these geology covariates to explain oil production, I estimate Cobb-

Douglas production function models with and without them. Table B.2 shows these results.

Column 1 is a specification with no township fixed effects and no geology covariates (i.e., it is

a simplification of the results in Colum 2 of Table 3.6). In Column 2, I add the township fixed

effects, increasing the between R-squared from 0.600 to 0.813, suggesting that location-specific

6Recall that “cuttings” are the returned rock samples generated during the drilling process. Occaisionally
operators also preserve contiguous sections of undrilled rock, called “cores”. By North Dakota Century Code
38-08-04, Section 43-02-03-38.1, operators are required to send physical samples of cuttings and cores to the
NDGS within 90 days of collection, where they can be publically observed and analyzed by anyone. Additionally,
operators are required to submit copies of all well logs and geology tests they perform.

7For example, Pimmel and Claypool (2001) notes that “rock eval pyrolysis is not normally used to make
real-time drilling decisions because of the lengthy sample preparation, running, and interpretation time.”

8See, for example, Ortega et al. (2012)
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factors explain a large portion of variation in production. Next, column 3 shows a specification

with the geology covariates but no township fixed effects. Compared to Column 1, the between

R-squared increases by 0.083 to 0.683. The coefficients on 6 of the 8 geology covariates are

significantly different from zero and a Wald test rejects the hypothesis that the coefficients on

the geology covariates are jointly equal to 0 at the 1% level. However, after conditioning on

location, the geology covariates have considerably less explanatory power. Column 4 shows a

specification with both township fixed effects and geology covariates. The increase in R-squared

values from Column 2 to Column 4 is only 0.003, and only 2 of the 8 coefficients on the

geology covariates are statistically significant. Again, a Wald test rejects the hypothesis that

the geology covariates are jointly equal to zero. These results show that geology covariates

do explain some of variation in oil production, but very little compared to the location fixed

effects.

Geology theory predicts that the coefficients on each of these covariates should be positive,

as greater thickness, organic content and thermal maturity are all thought to be associated

with higher oil production. However, the coefficient on organic content in the upper Bakken

shale is negative and statistically significant in both specifications.

The inclusion of geology covariates does not meaningfully change the Cobb-Douglas

estimates of the productivity of lateral length, sand or water, as the coefficients in columns 2

and 4 are nearly identical.

B.5 Stability of the Production Function Relationship

In order for firms to empirically learn the production function for fracking, the true relationship

between oil production, fracking inputs and location must be stable over time. To verify

whether the data is consisent with a stable production function, I examine the performance of

wells in similar locations that are fracked with similar designs but in different time periods. If

similar wells fracked in different time periods have different performance, on average, then its

possible that the production function is not stable over time.

To implement this test, I estimate two time varying production function specifications and
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Table B.2: Explanatory Power of Geology Covariates

Coefficient (1) (2) (3) (4)
Log Oil Log oil Log Oil Log Oil

� -0.557 -0.557 -0.557 -0.557
(0.00237) (0.00237) (0.00237) (0.00237)

� 1.755 1.754 1.755 1.754
(0.00355) (0.00354) (0.00355) (0.00354)

⌘ 0.436 0.798 0.549 0.795
(0.0370) (0.0373) (0.0358) (0.0374)

S 0.233 0.158 0.200 0.155
(0.0187) (0.0161) (0.0172) (0.0161)

W 0.0521 0.115 0.106 0.115
(0.0200) (0.0163) (0.0182) (0.0163)

TU 0.0400 0.0000848
(0.00333) (0.00744)

TL -0.00205 -0.00218
(0.00114) (0.00299)

CU -0.0494 -0.0350
(0.00530) (0.00915)

CL 0.0531 0.00718
(0.00524) (0.00960)

HU 0.00129 0.000441
(0.000115) (0.000268)

HL 0.0000825 0.0000323
(0.0000991) (0.000134)

SU 0.00875 0.0139
(0.00317) (0.00446)

SL 0.0153 0.00212
(0.00144) (0.00337)

Overall R2 0.690 0.784 0.728 0.785
Between R2 0.600 0.813 0.683 0.816
Within R2 0.765 0.765 0.765 0.765
Township Fixed-effects X X

Standard errors in parentheses. GLS random efffects estimates of the production function model:

log Yit = ↵+ � log t+ � logDit + ⌘ logHi + Zi + ⌧i + ✏i + ⌫it

Yit is oil production for well i when it is t months old, Dit is the number of days producing, Hi is the
horizontal length, and Zi is the vector of log sand use Si, log water use Wi, upper Bakken thickness (TU),
lower Bakken thickness (TL), upper Bakken organic content (CU), lower Bakken organic content (LU),
upper Bakken hydrogen index (HU), lower Bakken hydrogen index (HL), upper Bakken S2-TMAX (SU)
and lower Bakken S2-TMAX (SL), and ⌧i is a set of township fixed effects. “Between” R2 is the R2 for the
average predicted log baseline production. “Within” R2 is the R2 for the predicted time series of production.
Estimated off of all 2, 699 wells and 91, 783 well-months.
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conduct Wald tests of the hypothesis that the time effects are jointly equal to zero. In the first

specification, I assume that baseline production is Cobb-Douglas with time-varying coefficients.

If the true production function is both Cobb-Douglas and stable, the coefficients should not

vary over time. In the second specification, I assume that baseline production is the sum of a

year fixed effect and a fixed effect for wells with similar input choices and locations. To do

this, I form groups of wells that have the same deciles of sand and water use that are also in

the same township. Thus, this specification allows for a non-parametric relationship between

baseline production, location and inputs. If the true production function is not Cobb-Douglas,

but still constant over time, the time fixed effects should equal zero.

Table B.3 shows the results of these tests. The specifications in columns 1-3 are Cobb-

Douglas in lateral length, sand use and water use, with time fixed effects and time fixed effects

interacted with the sand and water use coefficients.9 Column 1 shows estimates computed

from the whole sample. Wells in the 2009 and 2010 cohorts are significantly more productive

than wells in the earlier cohorts, and wells in the 2009 cohort are significantly less sensitive to

water use than wells in earlier cohorts. Column 2 shows estimates computed from the set of

wells that are in bins with 2 or more wells. In this specification, wells in 2009 and 2010 are

also more productive than earlier wells, while wells in 2011 are less productive. Wells in 2010

and 2011 are less sensitive to sand use than ealier wells, and wells in 2011 are more sensitive to

water use. Column 3 shows estimates computed from the set of wells that are in bins with 2 or

more wells fracked in two or more years. Wells in 2010 are more productive than earlier wells,

while wells in 2011 are less productive. In this specification, none of the interaction terms are

significantly different from zero. In all 3 specifications, a Wald test of the hypothesis that the

year effects and their interactions are jointly equal to zero is rejected at the 1% level. These

parametric results suggest that if the true production technology is similar to Cobb-Douglas,

then it’s parameters may not be constant over time.

Next, columns 4-6 show estimates for the non-parametric specification. Again, column 4 is

9Because there are only 124 wells fracked between 2005 and 2007, I include them in the 2008 cohort, and
specify year dummies for the 2009, 2010 and 2011 cohorts.
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Table B.3: Stability of Production Function Estimates Over Time

Coefficient (1) (2) (3) (4) (5) (6)
Log Oil Log Oil Log Oil Log Oil Log Oil Log Oil

� -0.557 -0.557 -0.573 -0.557 -0.557 -0.573
(0.00237) (0.00297) (0.00405) (0.00237) (0.00297) (0.00405)

� 1.754 1.797 1.846 1.753 1.796 1.846
(0.00354) (0.00452) (0.00633) (0.00355) (0.00453) (0.00633)

⌘ 0.761 0.734 0.708 0.850 0.847 0.801
(0.0399) (0.0561) (0.0728) (0.0680) (0.0683) (0.0825)

S 0.159 0.177 0.171
(0.0318) (0.0390) (0.0621)

W 0.150 0.114 0.107
(0.0386) (0.0446) (0.0690)

09 0.785 0.721 0.645 -0.0236 -0.0224 -0.0232
(0.218) (0.282) (0.354) (0.0473) (0.0475) (0.0476)

10 0.706 0.732 1.005 -0.124 -0.121 -0.119
(0.263) (0.343) (0.412) (0.0589) (0.0592) (0.0597)

11 0.0933 -0.892 -1.602 -0.161 -0.155 -0.153
(0.227) (0.334) (0.490) (0.0645) (0.0648) (0.0657)

S,09 0.0285 0.0253 -0.0186
(0.0408) (0.0496) (0.0644)

S,10 -0.0621 -0.137 -0.0851
(0.0456) (0.0670) (0.0910)

S,11 -0.0190 -0.0235 0.147
(0.0423) (0.0776) (0.110)

W,09 -0.182 -0.177 -0.121
(0.0518) (0.0690) (0.0920)

W,10 -0.0577 0.000315 -0.118
(0.0523) (0.0830) (0.114)

W,11 0.00842 0.177 0.116
(0.0469) (0.0838) (0.116)

# Well-months 91,783 50,866 25,939 91,783 50,866 25,939
# Wells 2,699 1,399 708 2,699 1,399 708
Overall R2 0.785 0.805 0.808 0.836 0.827 0.823
Between R2 0.816 0.828 0.846 0.952 0.894 0.888
Within R2 0.765 0.792 0.800 0.765 0.792 0.800
Fixed-Effects Township Township Township Bins Bins Bins
Sample All Bins 1 Bins 2 All Bins 1 Bins 2

Standard errors in parentheses. GLS random efffects estimates of the production function model:

log Yit = ↵+ � log t+ � logDit + ⌘ logHi + Zi + ⌧i + ✏i + ⌫it

Yit is oil production for well i when it is t months old, Dit is the number of days producing, Hi is the horizontal length,
and Zi is the vector of log sand use Si, log water use Wi, dummies for the 2009, 2010 and 2011 cohorts, and interactions
between the dummies and log sand use and log water use. ⌧i is a set of fixed effects for townships or bins. “Between”
R2 is the R2 for the average predicted log baseline production. “Within” R2 is the R2 for the predicted time series of
production. “Bins 1” is the sample of wells in bins with 2 or more wells, while “Bins 2” is wells in bins with 2 or more
wells, fracked in 2 or more years.
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estimated on the entire sample, column 5 is estimated on the sample of wells in bins with 2

or more wells, and column 6 is estimated on the sample of wells in bins with 2 or more wells

fracked in 2 or more years. In these specifications, the later cohorts tend to be less productive

than the earlier cohorts. Wells in the 2010 and 2011 cohorts are significantly less productive

than wells in the 2008. However, a Wald test of the hypothesis that the year effects are jointly

equal to zero cannot be rejected at the 5% level in any of the nonparametric specifications,

providing some support to the idea that the production function is stable over time.

Since the true production function is unlikely to be spatially homogenous or monotonic in

sand and water or, the non-parametric results here may be more relevant.
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