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New insights into BRCA1 function and its role in cancer development 

Abstract 

 BRCA1 is a breast and ovarian tumor suppressor.  The role of BRCA1 in the repair of 

double strand DNA breaks by homologous recombination [HR] is its best understood function 

and the function most often implicated in BRCA1 breast cancer suppression.  However, BRCA1 

has less well defined roles in multiple other molecular processes. 

 Given its numerous, incompletely understood functions and the possibility that more 

exist, we performed complementary systematic screens in search of new BRCA1 protein 

interacting partners and functions.  We detected a new function for BRCA1 in the response to 

transcription-associated DNA damage, based on the screening results.  Genetic interactions were 

detected between BRCA1 and four of the newly identified interacting proteins [interactors] 

involved in transcription, TONSL, SETX, TCEANC, and TCEA2, and with specific interactors 

of one of these proteins.  This new function may be important in BRCA1 tumor suppression, 

since the expression of several interactors, including some of the above-noted transcription 

proteins, is aberrant in both breast and ovarian cancers.   

 These findings may be particularly meaningful with respect to the sporadic basal-like 

breast cancer [BLC] subtype.  This common subtype shares multiple biological properties with 

BRCA1 mutated breast tumors.  Despite being BRCA1+/+, sporadic BLCs are widely viewed as 

phenocopies of BRCA1-mutated breast cancers and are hypothesized to manifest a BRCA1 

functional defect or breakdown of a pathway[s] in which BRCA1 plays a major role.  Given that 
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the BRCA1 role in HR is its best understood function, it is suspected that sporadic BLC exhibit 

an HR defect.   

 To test this hypothesis and to search for other BRCA1 pathway defects, multiple HR 

assays were performed on a group of cell lines classified as sporadic BLC and on controls.  The 

sporadic BLC lines failed to exhibit an overt HR defect.  Rather, they exhibited defects in the 

repair of stalled replication forks and potentially damage associated with stalled transcription, a 

new BRCA1 function.    

 These results provide insight into why clinical trials of PARP inhibitors, which require 

HR defects for efficacy, have been unsuccessful in sporadic BLC, unlike cisplatin which elicits 

stalled replication and transcription fork repair and has shown efficacy in sporadic BLC.   
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Chapter 1:  Introduction                  (All writing in this chapter was performed by SJH.) 

Breast Cancer Genetics 

 5-10% of all breast cancer cases are familial (Melchor and Benitez, 2013; Venkitaraman, 

2002).  Of these cases, up to 25% are caused by mutations in the BRCA1 and BRCA2 gene 

products, both high penetrance breast and ovarian tumor suppressors (Melchor and Benitez, 

2013; Miki et al., 1994; Venkitaraman, 2002; Wooster et al., 1994).  Women with mutations in 

the BRCA1 gene have a 46-68% cumulative risk of breast cancer and a 39-60% cumulative risk 

of ovarian cancer by 70 years of age (Antoniou et al., 2003; Chen et al., 2006; Evans et al., 2008; 

Ford et al., 1998).  However, carrying a mutation in the BRCA1 locus may not be the only way 

to develop BRCA1 mutant breast cancer.  Multiple studies have now shown that it is common 

for the BRCA1 promoter to be methylated in sporadic breast and ovarian tumors (Dworkin et al., 

2009; Press et al., 2008).   

 Mutations in other high penetrance cancer genes such as p53 or PTEN and mutations in a 

variety of lower penetrance cancer genes whose gene products are BRCA1 protein binding or 

physiological partners, such as PALB2, Rad50, NBS1, and BACH1, amongst others, account for 

another 5-10% of familial cases of breast cancer (Melchor and Benitez, 2013; Silver and 

Livingston, 2012).  However, the majority of familial cases, along with most sporadic cases, are 

likely caused by both environmental factors and combinations of mutations in low penetrance 

genes, some discovered but many likely as yet undiscovered.  Thus, it is important to gain a 

mechanistic understanding of known breast cancer gene product action.  By doing so, the first 

goal is to identify pathways that may be defective and can thus be targeted in both familial and 

sporadic breast cancer.  The second goal is to use such an understanding to help to define protein 
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binding partners of these cancer gene products that function in those same pathways.  Some of 

these binding partners may be low penetrance cancer gene products themselves.  Given the high 

penetrance and organ specificity of BRCA1 mutations in breast cancer, a great deal of focus has 

been placed on understanding the molecular functions of BRCA1, with the hope of gaining 

insights into which of its functional pathways is/are defective in either familial or sporadic breast 

cancer and which of those defective pathways can be therapeutically targeted.      

Molecular functions of full length BRCA1 [p220] 

Functional Domains of p220 

 The 23-exon BRCA1 gene encodes at least three known proteins: full length p220, 11b, 

and IRIS (Figure 1); although it is likely that more isoforms are yet to be discovered (Tammaro 

et al., 2012).  The most studied isoform is the 1,863 amino acid full length protein referred to as 

p220.  Full length p220 [referred to as BRCA1 from now on] contains multiple functional 

domains including an N-terminal RING domain, a central protein scaffold encoded by exon 11, a 

coiled-coil domain that facilitates protein interactions, and two tandem BRCT motifs that both 

act to mediate various DNA damage protein interactions and help localize BRCA1 to sites of 

DNA damage through their phospho-peptide binding ability (Manke et al., 2003; Yu et al., 

2003).  All four of these domains are sites of well characterized clinical mutations as well as 

many sequence changes of unknown clinical significance (http://research.nhgri.nih.gov/bic/, 

Breast Cancer Information Core (BIC) Database; Szabo et al., 2000). 

The BRCA1-BARD1 heterodimer 

 BRCA1 stably interacts through its RING domain with another RING domain containing 

protein, BARD1 (Wu et al., 1996).   BARD1 is a major heterodimeric binding partner of BRCA1  
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Figure 1.  Map of BRCA1 isoforms:  The three known isoforms encoded by the human 

BRCA1 locus, p220, IRIS, and 11b, are shown here with all functional domains indicated.  In 

addition, the structure of mouse 11 is also shown to demonstrate the small difference between it 

and human 11b.   
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given that a majority of BRCA1 in cells interacts with BARD1(Yu and Baer, 2000) and nearly 

all detectable BRCA1 exists in complex with BARD1 in Xenopus extracts (Joukov et al., 2001).  

The RING domains of both BRCA1 and BARD1 exhibit E3 ligase activity on their own 

(Hashizume et al., 2001; Lorick et al., 1999; Ruffner et al., 2001), and this activity is enhanced 

when BRCA1 and BARD1 interact (Hashizume et al., 2001).  Although the substrates of the 

BRCA1-BARD1 E3 ligase are not yet well-defined, the E3 ligase function is required for 

BRCA1-BARD1-dependent repair of double strand breaks [DSB] by homologous recombination 

[HR] (Ruffner et al., 2001; Silver and Livingston, 2012).  This is demonstrated by the fact that 

when the E3 ligase function is disturbed by mutations in the BRCA1 RING domain, like C61G, 

cells exhibit increased sensitivity to gamma irradiation (Ruffner et al., 2001).   

Role in repair of double strand DNA breaks 

 The best studied BRCA1 function is its role in the maintenance of genome integrity.  

Major elements of this function are exhibited in cellular DNA damage responses.  The HR 

process and the repair of other forms of DNA damage, such as stalled and collapsed replication 

forks, are all BRCA1-affected processes. Upon induction of DNA damage by various agents 

including UV light, hydroxyurea, mitomycin C, and gamma irradiation, BRCA1 is 

phosphorylated and moves from its normal S-phase foci to areas of DNA damage along with 

BARD1 (Scully et al., 1997b).  At genomic DSBs, e.g. sites of gamma irradiation-induced 

damage, BRCA1 concentrates and directs error-free repair by HR.  For example, in a BRCA1 

mutant cell line known to be supersensitive to gamma irradiation [HCC1937], reconstitution with 

wildtype BRCA1 rescues this supersensitivity (Scully et al., 1999).  In addition, using an 
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integrated HR reporter, others have shown that reconstitution of p220 null mouse cells with p220 

significantly alleviates the HR defect (Moynahan et al., 2001).   

 BRCA1 does not carry out its role in HR-DSB repair alone.  Rather, the BRCA1-BARD1 

heterodimer does so as a member of multiple protein complexes.  Each complex is dedicated to 

executing a specific biochemical task and is composed of some common and other unique 

protein binding partners such as BRCA2, Rad51, NBS1, MRE11, BACH1, CtIP, RAP80, and 

PALB2 (Greenberg, 2008; Huen et al., 2010).  Some of these binding partners interact with well-

defined regions of the previously mentioned BRCA1 domains.  PALB2 binds to the coiled-coil 

(Xia et al., 2006) and phosphorylated BACH1 binds to the phospho-peptide binding BRCTs 

(Cantor et al., 2001; Yu et al., 2003).   

  Normally, the repair of DSBs is performed in either an error prone manner by NHEJ or 

what is considered to be an error free manner by HR.  Both processes are complex and involve 

multiple steps performed by dedicated sets of proteins and protein complexes.  Multiple factors 

govern the choice of which pathway is selected to conduct repair of a DSB.  The most dominant 

factor is likely the stage in the cell cycle in which the break occurs; however, recent evidence 

suggests that there is an antagonistic relationship between BRCA1 and 53BP1, in which 53BP1 

prevents DSB end resection by BRCA1-MRN-CtIP (MRN corresponds to MRE11, RAD50, 

NBS1) in G1 cells thereby preventing HR and promoting NHEJ (Chapman et al., 2012; Panier 

and Boulton, 2014).  NHEJ is the repair mechanism that is preferred in G0, G1, or very early S 

phase cells, and it involves the simple joining of the two ends of the broken DNA (Delacote and 

Lopez, 2008; Takata et al., 1998).    
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 In brief, the Ku70/Ku-80-DNA-PKCS complex binds to both sides of the DSB and recruits 

Artemis to process the ends of the break (Cary et al., 1997; Gottlieb and Jackson, 1993; Ma et 

al., 2002; Moshous et al., 2001; Walker et al., 2001; Yaneva et al., 1997; Yoo and Dynan, 1999).  

XRCC4 then recruits DNA Ligase IV to the processed ends to join them together (Grawunder et 

al., 1997; Gu et al., 2007).  This process can be error-prone, based largely on the sequence at the 

break and whether or not it requires extensive processing to be re-joined.  There is conflicting 

evidence from multiple studies about whether or not BRCA1 plays a role in NHEJ, so if BRCA1 

does have a function in NHEJ, the mechanism is not currently well defined (Zhang and Powell, 

2005).  However, recent studies suggesting that 53BP1 and BRCA1 play antagonistic roles in 

promoting NHEJ, in the case of 53BP1, and HR, in the case of BRCA1, imply that BRCA1 may 

not function in NHEJ (Panier and Boulton, 2014).   

 The error-free mechanism of DSB repair, HR, takes place in either S or G2 because it 

requires a specific template/substrate, usually the homologous sister chromatid or a sequence 

very similar to it, to execute repair.  If both ends of a break are present and share significant 

homology with an available donor template, HR occurs as follows (Anand et al., 2013; 

O'Donovan and Livingston, 2010; Svendsen and Harper, 2010).  The MRN complex is critical in 

the initial steps of HR.  It is responsible for recognizing both ends of a break and keeping them 

near each other, as well as recruiting and activating the ATM kinase which is important in 

modifying other DNA damage response proteins (Hopfner et al., 2002; Lee and Paull, 2004).  In 

addition, the MRN complex is important in initiating the resection at the ends of a break to create 

single stranded DNA (ssDNA) ends that are initially coated by RPA and later by Rad51 

(O'Donovan and Livingston, 2010; Paull and Gellert, 1998; Yu et al., 2001).  Rad51 is 
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responsible for invasion of a ssDNA end into the sister chromatid in search of a homologous 

sequence (O'Donovan and Livingston, 2010; Svendsen and Harper, 2010).  Once the 

homologous region is found, the invading strand synapses with the homologous strand leaving 

the non-bound strand to bubble out forming a structure called a D loop (Adelman and Boulton, 

2010; O'Donovan and Livingston, 2010; Panier and Boulton, 2014; Svendsen and Harper, 2010).  

This ssDNA functions as a primer for DNA synthesis to replace the DNA at the break site 

(Adelman and Boulton, 2010; O'Donovan and Livingston, 2010; Panier and Boulton, 2014; 

Svendsen and Harper, 2010).  The D-loop must be resolved, and this can occur in multiple ways 

(Adelman and Boulton, 2010; O'Donovan and Livingston, 2010; Panier and Boulton, 2014; 

Svendsen and Harper, 2010).  In one method, called synthesis-dependent strand annealing, one 

of the invading strands dissociates from the sister chromatid with the help of RTEL-1, thereby 

resolving the D-loop (Adelman and Boulton, 2010).  In another, the displaced D-loop interacts 

with the second 3’ overhang of the break which synapses with the homologous region of the D-

loop and also acts as a primer for DNA synthesis to repair the break, thereby linking the two 

sister chromatids in a complex structure termed a double Holliday junction (Adelman and 

Boulton, 2010; O'Donovan and Livingston, 2010; Panier and Boulton, 2014; Svendsen and 

Harper, 2010).  This structure can be resolved either by one of multiple resolvases or the BLM-

RecQ-RMI-TOP3 complex in methods that can result in a gene conversion or non-conversion 

event depending on which complex resolves the Holliday junction (Adelman and Boulton, 2010; 

O'Donovan and Livingston, 2010; Panier and Boulton, 2014; Svendsen and Harper, 2010).   

 When only one end of the DSB is available or only one is homologous to an available 

donor, a process called break-induced replication (BIR) may occur instead (Anand et al., 2013; 
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Malkova and Ira, 2013).  There is limited understanding of if or how this process occurs in 

mammalian cells (Anand et al., 2013; Malkova and Ira, 2013).  Recent data, however, has 

indicated that BIR is likely responsible for repair of replication stalling in mammalian cells and 

that POLD3 is the DNA polymerase responsible for the repair (Costantino et al., 2014).  In this 

process, the broken DSB end invades the homologous sequence and acts as a primer for DNA 

synthesis off the sister strand potentially to the end of the chromosome (Anand et al., 2013; 

Malkova and Ira, 2013).  It is not clear yet whether or not BRCA1 is involved in BIR. 

 Currently, BRCA1 is believed to participate in three separate steps of the HR process.  It 

does so as a member of three separate protein complexes.  In one complex, after a DSB is 

generated, BRCA1 is recruited to the site of the DSB through an interaction between the BRCA1 

BRCT motifs, Abraxas, and RAP80, which complex also plays a part in activating the G2-M 

checkpoint response (Kim et al., 2007a; Kim et al., 2007b; Liu et al., 2007; Sobhian et al., 2007; 

Wang et al., 2007; Yan et al., 2007).  The BRCA1-RAP80 complex has also been shown to 

control the amount of BRCA1 driven HR by controlling the rate at which other HR related 

proteins localize to DSBs with BRCA1 (Hu et al., 2011).  Once recruited to these sites, BRCA1 

functions in multiple aspects of the repair of these DSBs by HR as a member of different protein 

complexes.  In one complex, BRCA1-BARD1 interacts with CtIP and the MRN complex to aid 

in resection of the ends of the DSB to ssDNA to allow for the eventual loading of Rad51 onto the 

ssDNA (Chen et al., 2008; Yu et al., 1998; Yun and Hiom, 2009).  Not only does BRCA1 aid in 

this end resection, it also indirectly participates in the recruitment of Rad51 to the ssDNA ends.  

BRCA1 does not directly bind Rad51 to recruit it, rather it interacts with PALB2 which, in turn, 

binds to BRCA2 which directly interacts with and recruits Rad51 to DSB sites (Sy et al., 2009; 
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Xia et al., 2006; Zhang et al., 2009).  Rad51 then directs strand invasion of the resected end of 

the DSB to initiate the process of annealing with the intact sister strand.   

p220 participates in the repair of stalled replication forks  

 In addition to its role in the repair of DSBs by HR, BRCA1 also interacts with multiple 

protein partners to participate in the repair of stalled and collapsed replication forks.  Replication 

stalling can be caused by many different agents, but the forms of replication stalling that BRCA1 

has been linked to so far are those caused by UV damage, hydroxyurea [HU], and inter-strand 

crosslinking agents like cisplatin.   It occurs spontaneously in the setting of unresolved DNA 

lesions caused by various endogenous and exogenous agents, misincorporated nucleotides, 

challenging DNA templates, stalled transcription machinery, and problems with RNA processing 

(Zeman and Cimprich, 2014).   

 In the setting of UV damage, once a replication fork stalls, large areas of ssDNA coated 

with phosphorylated RPA are generated (Jones and Petermann, 2012; Parrilla-Castellar et al., 

2004; Walter and Newport, 2000; Zeman and Cimprich, 2014).  This coated ssDNA recruits 

ATRIP and ATR as well as other repair and checkpoint proteins like RAD17 and the 9-1-1 

complex (RAD1, RAD9, and HUS1) (Jones and Petermann, 2012; Parrilla-Castellar et al., 2004; 

Zou and Elledge, 2003).   

 The 9-1-1 complex is responsible for initiation of a replication-DNA damage checkpoint 

after activation (Jones and Petermann, 2012; Parrilla-Castellar et al., 2004).  Once recruited to 

the stalled fork, the 9-1-1 complex is loaded on to DNA by RAD17, and this promotes activation 

of CHK1 by ATR (Jones and Petermann, 2012; Parrilla-Castellar et al., 2004).  Once activated, 
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CHK1 can slow S phase and allow time to repair or proceed through damage at stalled forks 

(Jones and Petermann, 2012; Parrilla-Castellar et al., 2004).   

 Once the cell cycle has slowed, a stalled replicase may succeed in replicating through the 

lesion in a process called translesion synthesis (TLS).  Here a special polymerase capable of 

replicating through such abnormal structures is temporarily substituted for the existing replicase 

to allow replication through the lesion (Branzei and Foiani, 2010; Jones and Petermann, 2012).  

This method can be error prone and thus lead to mutations.  These lesions may also be overcome 

by HR mediated template switching in which Rad51 coats the nascent DNA and causes it to 

invade the sister strand and to use it as a replication template (Branzei and Foiani, 2010; Jones 

and Petermann, 2012).  If the fork collapses into a DSB, then HR repair of the break must occur 

before any replication can continue.  BRCA1 participates at UV stalled replication forks in 

multiple ways.  

 BRCA1 is required for elimination of UV photoproducts at UV stalled forks (Pathania et 

al., 2011).  It also licenses efficient generation of the RPA-coated ssDNA at sites of UV damage 

induced replication stress, one of the first steps in repair of these lesions (Pathania et al., 2011).  

In addition, BRCA1 has been shown to recruit the RFC-RAD17/9-1-1 complex to these sites 

(Pathania et al., 2011).  Finally, BRCA1 inhibits TLS after UV damage, and in the absence of 

BRCA1, the recruitment of the major polymerase required for TLS [PolH] is greatly increased 

and the number of DNA mutations occurring after UV greatly increases (Pathania et al., 2011).   

There is potential for stalled fork-associated hypermutagenesis to be relevant to BRCA1 

breast/ovarian cancer development, since gross genome instability, a likely by-product of failed 

stalled fork repair, appears to be a hallmark of loss of function BRCA1 and other inherited breast 
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cancer genes.  This raises the possibility that the BRCA1 function in stalled fork repair 

participates in BRCA1 tumor suppression.   

 In addition to its role at UV stalled forks, BRCA1 also plays a role at both HU and 

interstrand crosslinking agent-induced stalled forks, the latter in connection with members of the 

Fanconi Anemia pathway.  In the event of fork stalling due to an interstrand crosslink [ICL], the 

ICL is recognized by the FANCM-FAAP24 complex (Ciccia et al., 2007; Meetei et al., 2005).  

Once at the ICL site, FANCM-FAAP24 plays multiple roles.  It helps activate ATR checkpoint 

signaling and slows the cell cycle to allow repair by interacting with HCLK2 which aids in 

mediating ATR dependent checkpoint signaling, likely mediated by RPA coated ssDNA at these 

sites (Collis et al., 2008).  FANCM-FAAP24 also recruits the Fanconi anemia core complex 

which includes FANC- A, B, C, E, F, G, and L, which in turn leads to the monubiquitination of 

FANCD2 and the recruitment of the FANCD2-FANCI complex to the chromatin at the ICL site 

(Alpi et al., 2008; Garcia-Higuera et al., 2001; Smogorzewska et al., 2007; Taniguchi et al., 

2002; Wang et al., 2004).   This leads to the recruitment of various DNA repair nucleases 

(FAN1, EME1, MUS81, SLX4), TLS polymerases, and HR factors (Deans and West, 2011).  

Either the stalled fork is stabilized or a DSB may form at this site when the fork collapses, at 

which point HR and FA proteins stabilize the break (Deans and West, 2011).  Various nucleases, 

chosen likely based on the structure of the DNA at the ICL, then excise the ICL (Deans and 

West, 2011).  The excised area is filled in via TLS, HR is completed, and replication can 

continue (Deans and West, 2011).  The nucleases may also be necessary for resolution of HR 

repair structures (Al-Minawi et al., 2009; Wechsler et al., 2011).  
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 BRCA1 is involved in this process in multiple ways.  Through its role in directing key 

elements of HR, it participates in either the stabilization of stalled forks or the repair of collapsed 

forks.  In addition, multiple groups have shown that BRCA1 co-localizes with FANCD2 at 

damage sites and that BRCA1 is required for FANCD2 localization to ICL sites in a manner that 

is independent of its HR function (Bunting et al., 2012; Garcia-Higuera et al., 2001; Vandenberg 

et al., 2003).  Finally, BRCA1 is known to form a complex with BACH1 (FANCJ) and TopBP1 

(Cantor et al., 2001; Greenberg et al., 2006; Kim et al., 2005; Kumaraswamy and Shiekhattar, 

2007; Makiniemi et al., 2001; Xu et al., 2001a; Xu et al., 2002; Yu et al., 2003).  This complex 

helps mediate cell cycle arrest through checkpoint activation during replication stress and also 

functions to unwind DNA structures inhibiting replication progression (Cantor et al., 2001; Kim 

et al., 2005; Kumaraswamy and Shiekhattar, 2007; Makiniemi et al., 2001; Xu et al., 2001a; Xu 

et al., 2002; Yu et al., 2003) 

 Independent of its HR and ICL functions, BRCA1 also participates in confronting 

replication stress at HU stalled forks.  HU stalls replication by depleting the pool of nucleotides 

available, not by generating a DNA lesion that must be overcome, unlike UV and interstrand 

crosslinks.  Rad51 and BRCA2 have already been shown to protect stalled replication forks from 

degradation, independent of any HR function (Hashimoto et al., 2010; Schlacher et al., 2011).   

By measuring replication tract length in various settings, another study showed that BRCA1 and 

FANCD2 protect HU stalled replication forks from being degraded by the MRN complex 

(Schlacher et al., 2012).  Without this protection, chromosomal instability appeared (Schlacher et 

al., 2012), further supporting the idea that replication-associated DNA damage may foster the 

appearance of genomic instability thereby accelerating the development of breast tumorigenesis.   
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Other functions for BRCA1 

 BRCA1 has been linked to multiple other molecular processes, but these functions are 

either not as well defined as HR or stalled fork repair, or are linked to BRCA1 indirectly. 

BRCA1 functions in mitosis 

 BRCA1 is active in mitosis.  One study showed that BRCA1 participates in mitotic 

spindle pole formation (Joukov et al., 2006).  BRCA1 interacts with the spindle pole assembly 

proteins TPX2, XRHAMM, and NuMA (Joukov et al., 2006).  Through these interactions, 

BRCA1 is responsible for localizing the spindle pole assembly protein TPX2 to spindle poles 

and for attenuating levels of XRHAMM function in microtubule nucleation and spindle pole 

assembly (Joukov et al., 2006).  Loss of this BRCA1-BARD1 function led to spindle pole 

breakdown, improper chromosome segregation, and improper nuclear assembly in both Xenopus 

extracts and HeLa cells (Joukov et al., 2006).  These findings fit well with an early network 

analysis study of BRCA1 function (Pujana et al., 2007). 

 In addition to its role in mitotic spindle pole assembly, BRCA1 plays an important role in 

the maintenance of normal centrosome number (Hsu et al., 2001; Xu et al., 1999b).  Mouse 

embryonic fibroblasts that synthesized only the 11 isoform and not p220 exhibited an abnormal 

number of centrosomes which led to improper chromosome segregation and aneuploidy (Xu et 

al., 1999b).  In support of this finding, BRCA1 has been shown to interact with gamma tubulin, 

and when this interaction was disrupted, cells exhibited an abnormal number of centrosomes and 

abnormal mitotic spindle poles (Hsu et al., 2001).   

 This control of centrosome number is carried out, in part, by the BRCA1-BARD1 

complex along with the interacting protein OLA1, which, like BRCA1, binds -tubulin (Hsu et 
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al., 2001; Matsuzawa et al., 2014).  BRCA1 is responsible for localizing OLA1 at centrosomes, 

and the OLA1-BRCA1 complex likely plays a role in controlling centrosome number as 

depletion of either protein leads to the presence of extra centrosomes (Matsuzawa et al., 2014).  

An OLA1 mutant protein in breast cancer cells failed to bind to BRCA1, and this disruption of 

the BRCA1-OLA1 complex led to increased centrosome number when the mutant was expressed 

in the setting of endogenous OLA1 depletion, further suggesting that this complex is important 

in controlling centrosome number (Matsuzawa et al., 2014).  Thus in addition to its S-phase 

roles, BRCA1 is also important in regulating centrosome number and in supporting mitotic 

spindle pole formation in M phase.  Disruption in either of these processes can lead to both DNA 

damage and aneuploidy, both hallmarks of BRCA1 mutant cancers.  

Potential roles for BRCA1 in transcription-associated processes 

  BRCA1 has also been indirectly linked to transcription and various forms of 

transcription-associated damage.  Two independent studies have shown by immunofluorescence 

staining that BRCA1 co-localizes with the RNA helicase SETX at sites of DNA damage 

(Becherel et al., 2013; Yuce and West, 2013).  In one of those studies, BRCA1 was shown to be 

necessary for the recruitment of SETX to these damage sites on meiotic chromosomes which 

also contain transcription-associated R-loops (Becherel et al., 2013).   This is interesting because 

SETX is among a group of RNA binding proteins, including ASF, the loss of function of which 

can lead to stabilization of physiological structures called R loops and subsequent DNA damage 

(Li and Manley, 2005a, b, 2006; Mischo et al., 2011; Skourti-Stathaki et al., 2011).   

 R loops occur normally during transcription when the nascent RNA transcript binds to 

the transcribed strand of DNA and leaves the non-transcribed strand to bubble out.  Normally, 
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these structures are resolved quickly by unwinding helicases or potentially prevented from 

stabilizing by hnRNPs binding to the nascent transcript.  However, if proteins responsible for 

preventing R loop stabilization are lost, then the non-transcribed strand becomes susceptible to 

exogenous forms of damage which can lead to single strand breaks that evolve into double strand 

breaks.  Thus, loss of function of certain hnRNPs could lead to DNA damage in this way.  

Indeed, genomic instability has already been demonstrated upon loss of function of ASF and R 

loop induction (Li and Manley, 2005a), and thus repair of DNA damage at R loops or prevention 

of R loop stabilization may be yet another method for BRCA1 to prevent genomic instability.  

BRCA1 co-localization with SETX and recruitment of SETX to R loop associated DNA damage 

strongly suggests this possibility.  Our data will further support this. 

 In addition to a potential role in suppression of R loop associated DNA damage, BRCA1 

has also been implicated in transcription-coupled repair.  BRCA1 and BRCA2 were shown to be 

necessary for the removal of 8-oxoguanine (8-oxoG) lesions typically caused by oxidative stress 

in a plasmid recovery assay conducted in BRCA1 and BRCA2 deficient cell lines and controls, 

and the BRCA1 repair defect was rescued by expression of wildtype BRCA1 from an adenovirus 

(Le Page et al., 2000).  The inability to repair these lesions was the result of stalled transcription 

complexes at the 8-oxoG site, which suggests some role for BRCA1 in transcription coupled 

repair (Le Page et al., 2000).  The exact function BRCA1 plays in transcription coupled repair 

and the protein binding partners it executes this function with are not known.     

 Finally, BRCA1 has been indirectly linked to mRNA processing through its interactions 

with BARD1 and RNA Polymerase II (Scully et al., 1997a).  The functional relevance of the 

interaction with RNA Polymerase II is still unclear, but BARD1 has been linked to mRNA 
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processing and transcription associated damage, thereby suggesting a role for BRCA1 in these 

processes as well.   

 BARD1 interacts with the polyadenylation factor CstF50 to form a complex that inhibits 

polyadenylation of mRNA transcripts (Kleiman and Manley, 1999).  UV- and HU- induced 

DNA damage led to an increase in the inhibition of 3’ mRNA processing by this complex 

(Kleiman and Manley, 2001).  Although the protein levels do not change after UV exposure, the 

amount of BRCA1, BARD1, and CstF50 that interact, as shown by co-immunoprecipitation, 

increases after UV treatment.  Moreover, at least the BARD1-CstF50 complex is necessary for 

the inhibition of 3’ processing observed after UV damage (Kleiman and Manley, 2001).  This 

inhibition of processing likely results from the ubiquitination of active RNA Polymerase II, as 

triggered directly or indirectly, by the BRCA1-BARD1 complex and its subsequent degradation 

(Kleiman et al., 2005).  The inhibition of mRNA processing in each of these studies was 

BARD1-dependent.  Nevertheless, the close association between BRCA1 and BARD1 suggests 

that there may be a role for BRCA1 in this process as well, even if it is simply to enhance the E3 

activity of BARD1.   

 Given the above-noted evidence, there are likely multiple possible roles for BRCA1 in 

transcription or transcription-associated DNA damage, and our work supports this possibility and 

suggests new roles for BRCA1 in these processes.   

 In this regard, multiple studies have already shown that loss of function of certain RNA 

binding proteins can lead to DNA damage (Li and Manley, 2005a; Mischo et al., 2011; Paulsen 

et al., 2009), making transcription another source of genomic instability.  Dysfunction in any of 
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the above BRCA1-linked processes can lead to DNA damage and genomic instability, 

suggesting a possible role for RNA-based DNA damage control in BRCA1 tumor suppression. 

BRCA1 suppresses satellite RNA expression 

 Unexpectedly, BRCA1 maintains heterochromatic silencing of satellite DNA repeats 

through its monubiquitination of histone H2A (Zhu et al., 2011).  Loss of BRCA1 results in 

expression of other silenced genes as well, and this can be rescued by either expressing wildtype 

BRCA1 or an H2A-Ubiquitin (Ub) fusion protein, H2A-Ub (Zhu et al., 2011).  Expression of the 

H2A-Ub fusion protein in BRCA1 deficient cells also rescued multiple phenotypic traits 

associated with BRCA1 deficiency including cell cycle arrest and an HR defect, suggesting that 

BRCA1 control of heterochromatin silencing is actually its major function and that all of the 

other phenotypes observed with BRCA1 loss of function may just be byproducts of loss of this 

singular BRCA1 function (Zhu et al., 2011).  Readily detectable satellite RNA expression was 

observed in both BRCA1-deficient mouse mammary tumors and human tumors; and, following 

forced satellite RNA expression in a human mammary epithelial cell line, that line exhibited 

multiple characteristics of BRCA1-deficient cells, including a defect in HR, increased -H2AX 

foci, and impaired cell cycle checkpoints, all of which indicates that increased satellite RNA 

expression could lead to many of the BRCA1 functional defects associated with tumorigenesis 

(Zhu et al., 2011).  Thus, it is possible that the individual BRCA1 functions that are alleged to be 

important in tumor suppression may, at least in part, be dependent upon BRCA1 maintaining the 

integrity of heterochromatin through the monubiquitination of H2A, making this another 

potential tumor suppressor function.   

BRCA1 repairs DNA damage induced by estrogen metabolites 
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 BRCA1 has recently been shown to be important in repairing DSBs generated by certain 

estrogen metabolites and also regulating the level of certain estrogen metabolizing enzymes at 

the transcriptional level in estrogen-receptor- negative cells (Savage et al., 2014).  DNA 

damage caused by estrogen metabolites was increased in both BRCA1 depleted cells and cells 

heterozygous for a BRCA1 mutation compared to controls (Savage et al., 2014).  This function is 

intriguing, since it may offer insight into why BRCA1 mutations cause female-specific disease. 

BRCA1 and tumor suppression 

 Given the collective evidence, it is clear that p220 performs a variety of molecular 

functions.  The molecular steps in the execution of most of the above functions are not well 

understood, and it is likely new functions and new BRCA1-containing protein complexes remain 

to be discovered.  Therefore, one aspect of my work was to generate a larger BRCA1 

interactome with the goal of elucidating new functions for BRCA1 based on known functions of 

its interactors and/or to better understand known functions of BRCA1.   

 Of equal importance, which, if any, of the above-noted functions is important in BRCA1 

tumor suppression has not been determined.  There is in vitro and in some cases limited mouse 

model or human tumor evidence suggesting that some of these functions are perturbed in tumor 

cell lines or tumors, but there is only indirect but no direct evidence demonstrating which, if any, 

of these processes is important in BRCA1 tumor suppression, despite the fact that loss of a 

number of them is associated with sporadic breast and other cancer development.  Therefore, an 

additional goal of the BRCA1 interactome work performed and reported in this thesis was to 

better understand which pathways are deficient in BRCA1 mutant and sporadic breast cancers so 

that the therapeutic value of targeting those pathways could be assessed and the pathways could 
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be mined for potential biomarkers.  In addition, by better defining the BRCA1 interactome, we 

may detect clues to the existence and identities of new low penetrance breast cancer 

susceptibility genes among those encoding newly identified BRCA1 interacting proteins.   

There are at least two other BRCA1 isoforms with incompletely defined functions 

 In discussing BRCA1 function, it is important to remember that BRCA1 encodes at least 

two other known isoforms (Figure 1).  In addition, it is also not clear whether p220 is the only 

isoform important in tumor suppression, since little is known of the function of the other two 

isoforms, IRIS and 11b.        

 The IRIS coding sequence is composed of an uninterrupted open reading frame extending 

from exon 2 to the end of exon 11 and ending 34 triplets into intron 11, which are in frame with 

the exon 11 open reading frame (Figure 1) (ElShamy and Livingston, 2004).  Little is known of 

IRIS function other than that the endogenous protein normally stimulates DNA replication, can 

modulate certain transcriptional events, and, when endogenously overexpressed, exhibits certain 

properties of an oncoprotein (ElShamy and Livingston, 2004; Nakuci et al., 2006).  Unlike full 

length p220 and 11b, IRIS does not bind BARD1 (ElShamy and Livingston, 2004).  There are 

no mouse models lacking or expressing only IRIS, so its role in disease has not been explored 

beyond cell culture and tissue studies. 

 The knowledge of 11b function is also limited, despite the fact that it is the most 

conserved of all the known isoforms (Boulton et al., 2004).  When discussing 11b, a distinction 

must be made between 11 and 11b (Figure 1).  In mice, in contrast to humans, only a 11 

transcript (lacking all of exon 11) has been found, and no 11b transcript has been found (Figure 

1).  In humans, only the 11b transcript which contains a small portion of the exon 11 sequence 
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has been found, and no true 11 mRNA (lacking all of exon 11) has been found (Figure 1).  The 

sequences of mouse 11 and human 11b are similar enough that the information gathered on 

11 function in mice can likely be taken as relevant to 11b in humans.  Therefore, much 

information regarding 11b has been inferred from mice either lacking 11 expression or only 

expressing 11 and not full length BRCA1.  

 Two conditional BRCA1 mutant mouse models that only express 11 have been 

generated.  One strain is homozygous for an exon 11 deleted allele (BRCA111/11)  (Xu et al., 

2001b), and the other contains one BRCA1-null allele and one allele with exon 11 flanked by 

loxP sites that can be excised by Cre under the control of a breast-specific promoter (BRCA1-/11) 

(Xu et al., 1999a).  The BRCA1-/11 mice exhibited abnormal mammary gland development due 

to extensive apoptosis, increased mammary tumor development after long latency, and 

accelerated mammary tumor development in a Trp53+/- background similar to human BRCA1 

related tumors (Xu et al., 1999a).  This data was then extended in BRCA111/11 mice.  

BRCA111/11 embryos survived longer than BRCA1-/- embryos, but still died late in gestation 

due to increased apoptosis (Xu et al., 2001b).  However, this gestational death could be reversed 

by crossing the BRCA111/11 mice with Trp53+/- mice to give rise to BRCA111/11 Trp53+/- 

mice (Xu et al., 2001b).  The rescue resulted from reversal of cell cycle arrest and apoptosis 

caused by the complete loss of p220, suggesting the importance of p220 in cell cycle checkpoint 

control.  The loss of one p53 allele rescued the gestational lethality, but most of these mice 

developed mammary tumors within 6-10 months at which point the mice had almost all lost the 

remaining p53 allele (Xu et al., 2001b).  In addition, the male mice were shown to be sterile and 

to have problems with meiosis (Xu et al., 2003).     



 
 

22 
 

Taken together, these two mouse models indicate that 11 provides enough function to 

allow normal development, at least in a p53+/- setting, but it does not provide enough BRCA1 

function to prevent cancer as both mouse models developed breast tumors.  Thus 11, and likely 

11b in humans, is not sufficient for tumor suppression.  These data are supported by the fact 

that two published BRCA1 mutant breast cancer cell lines were derived from patients with 

mutations in exon 11 of the BRCA1 gene which cause them to express 11b only (Elstrodt et al., 

2006; Johannsson et al., 2003).  In addition, a patient carrying bi-allelic BRCA1 mutations which 

only allowed her to express 11b exhibited early onset ovarian cancer and developmental 

abnormalities (Domchek et al., 2013).  Despite these results, further transgenic mouse 

experiments have shown that11, and likely 11b in humans, is not inert. 

Mice lacking 11 expression and only expressing p220 (BRCA1FL/FL) have been 

generated via a knock-in approach that abrogated the ability to generate the 11 splice variant 

(Kim et al., 2006).  These mice lack gestational development issues, but they do show breast and 

uterine hyperplasia after one year of age and also spontaneously develop breast tumors (Kim et 

al., 2006).  In addition, BRCA1FL/FL mice are not hypersensitive to gamma irradiation and the 

MEFs from these mice lack defects in cell cycle checkpoints induced by gamma irradiation (Kim 

et al., 2006).  In cultured BRCA1FL/FL MEFs, there are increases in centrosome amplification and 

a decreased number of G1 cells with most cells containing increased levels of cyclin E and A 

which accelerate the transition from G1 to S (Kim et al., 2006).  Taken together, this data shows 

that 11, and probably 11b in humans, plays a role in preventing tumor formation (along with 

p220), controlling centrosome amplification, and directing the G1/S transition, possibly as a 

manifestation of a breakdown in checkpoint control.  It is not clear from these mouse models 
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whether or not 11b has a role in HR, but work shown here and also from others, suggests that 

this may be the case.   

Like p220, 11b binds BARD1; and like p220, 11b has been shown to localize to post-

IR damage foci, which would concentrate it in the right place to perform HR (Huber et al., 

2001).  It is not clear whether 11b is active in HR, however.  When an HR reporter was 

integrated into the genome of mouse ES cells that only express 11, the level of HR in those 

cells was not zero, indicating that 11 could perform some level of HR (Moynahan et al., 2001).  

The level of HR increased when a p220 cDNA was expressed in that line (Moynahan et al., 

2001).  Our results will support the possibility that 11b manifests HR capacity in the absence of 

p220 but is not the dominant isoform in performing this function and does not have enough HR 

capacity to prevent tumor formation.  Taken together, none of the existing data defines which 

BRCA1 function is most important in tumor suppression nor which isoform is solely responsible 

for this function.  

Sporadic BRCA1-like basal-like breast cancer     

HR is widely believed to participate in BRCA1-driven breast cancer suppression (Li and 

Greenberg, 2012; Silver and Livingston, 2012; Walsh and King, 2007).  In keeping with this 

view, BRCA1 mutant cell lines and tumors are generally defective in HR (Moynahan et al., 

1999; Scully et al., 1999), but they are also sensitive to other drugs that require other forms of 

DNA damage repair such as UV, mitomycin C, cisplatin, and hydrogen peroxide (Alli et al., 

2009; Bhattacharyya et al., 2000; Pathania et al., 2011).  In addition, some BRCA1 HR binding 

partners are known breast cancer susceptibility gene products, further implicating loss of HR 

function, or at least genomic instability, as playing a major role in breast tumorigenesis.  For this 
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reason, a major hypothesis in the field is that BRCA1 mutant, BRCA1 promoter methylated, or 

BRCA1-like sporadic tumors (especially sporadic basal-like breast tumors) harbor a defect in 

HR.  This has been a topic of debate.     

Gene expression profiling of breast cancers has led to the identification of five subtypes: 

luminal A, luminal B, Her2 amplified, basal like, and normal breast like (Perou et al., 2000; 

Sorlie et al., 2001).  The basal-like subtype is of particular interest due to the lack of relevant 

targeted therapies as well as its similarity to BRCA1-/- tumors.  BRCA1-/- tumors segregate with 

the basal-like cancer [BLC] subtype by gene expression profiling (Sorlie et al., 2003; van 't Veer 

et al., 2002).  These tumor species exhibit multiple biological similarities.  For example, both 

commonly fail to express ER, PR, and Her2 and are mutant for p53 (1997; Crook et al., 1998; 

Lakhani et al., 2005; Lakhani et al., 2002; Manie et al., 2009).  Moreover, both are associated 

with early relapse following clinically active breast cancer chemotherapy and experience similar 

patterns of metastasis (Valentin et al., 2012).  Not all BRCA1 mutant tumors are categorized as 

basal-like, since 20% are ER positive (Tung et al., 2010).  However, given the above similarities 

and the fact that the majority of BRCA1 mutant tumors segregate with the basal-like subtype, it 

is widely speculated that sporadic BLCs manifest a defect in a pathway(s) that is/are dependent 

upon BRCA1 function.    

The prevailing hypothesis in the BLC field was that the defect was in HR for the reasons 

noted above, and this thinking has spurred clinical trials with drugs that target HR deficiencies, 

like PARP inhibitors.  The prevailing hypothesis for PARP efficacy in cells with an HR defect is 

that its primary target, PARP1, binds to DNA damage sites where it parsylates and recruits 

members of the BER repair pathway (Telli and Ford, 2010).  Upon PARP1 inhibition, BER 
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repair is not executed at these sites, and DSBs result (Telli and Ford, 2010).  If a cell is defective 

in DSB repair, like a BRCA1 deficient cell would be, the cells will eventually be killed by the 

generation of such breaks in a synthetic lethal manner (Telli and Ford, 2010).  The first PARP 

inhibitor studies in BRCA1 and BRCA2 mutant cell lines strongly suggested this hypothesis 

(Bryant et al., 2005; Farmer et al., 2005), and this spurred clinical trials in BRCA1 mutant 

cancers and BRCA1-like cancers.  While PARP inhibitors have been successful in treating 

BRCA1 mutant breast tumors and sporadic ovarian tumors, there has been no success in treating 

sporadic BLC with PARP inhibitors (Fong et al., 2009; Gelmon et al., 2011; Liu et al., 2013) 

indicating that the BRCA1 HR function may be intact in these tumors and that there is another 

defective BRCA1 pathway that should be specifically targeted in this subtype.  Determining 

whether sporadic BLC do harbor an HR defect or perhaps a defect in a different BRCA1 

pathway was one goal of this work.  

Conclusion 

In summary, BRCA1 is a multi-functional breast and ovarian tumor suppressor gene.  

There are three BRCA1 isoforms, but the best studied isoform is full length p220.  Despite great 

effort since its discovery, there is limited in depth understanding of BRCA1-p220 molecular and 

tumor suppression function, and this has resulted in a lack of effective targeted therapies for 

BRCA1 mutant and BRCA1-like breast cancers.  These issues spurred both of the projects in this 

thesis work.   

The first project, covered in chapters two through four, involved a complementary set of 

protein interactor screens, performed in search of new BRCA1 binding partners.  The question in 

this screen was whether or not there are any as yet undetected BRCA1 functions, and with what 
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protein binding partners BRCA1 carries out these new functions or any known ones.  By gaining 

a better understanding of the pathways in which BRCA1 functions and with what interacting 

partners it does so, one should gain better insight into what pathways to target in certain cancers 

and become aware of new lower penetrance cancer genes.   

To address these questions, I carried out both a yeast two hybrid screen and mass 

spectrometry (MS) analysis of BRCA1-BARD1 protein complexes.  The reason for the dual 

screen was that both methodologies detect different types of interactions and are therefore 

capable of generating complementary results.  In the yeast two hybrid screen, one can detect 

direct interactions between BRCA1 and binding partners that do not require post-translational 

modifications.  In the MS analysis, one can detect both direct and indirect interactions with all 

post-translational modifications intact. 

 However, there is a caveat with the latter method.  Specifically, one cannot know 

whether a putative interaction is direct or indirect and mediated by many other proteins.  The 

pitfalls of each methodology were ameliorated by the results of the other methodology, and the 

screening effort led to an expansion of the BRCA1 interactome, the discovery of a new BRCA1 

function, and the identification of several interacting proteins with which BRCA1 might carry 

out this function.  Conceivably, the products of new breast cancer genes exist among the 

BRCA1-interacting proteins.   

The second project, covered in chapters five and six, focused on the question of what 

BRCA1 functional pathway(s) is/are defective in the sporadic BLC subtype.  A major goal was 

to determine whether or not these tumors exhibit a defect in HR or perhaps in a different BRCA1 
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functional pathway, either one that is already known or potentially one that emerged from the 

results of our screening effort.   
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Chapter 2:  Complementary screening effort identifies new BRCA1 protein binding 

partners and a new role for BRCA1 in the repair of transcription-associated DNA damage 

-Chapters 2-4 adapted from the following manuscript: 
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-All writing for this chapter was performed by SJH.  All experiments in this chapter were 

performed by SJH with help in the mass spectrometry and its analysis form Guillaume Adelmant 

and Jarrod Marto.  All yeast two hybrid screening was performed by SJH with initial guidance 

from Amélie Dricot, Nidhi Sahni, David E. Hill, and Marc Vidal.  All figures in this chapter 

were generated by SJH, with help generating Figure 2B from Thomas Rolland.  Thomas Rolland 

aided in bioinformatics analysis of the combined screen hits and statistical analysis of the data, 

and Tong Hao aided in the sequencing verification of the Y2H hits. 

Rationale 

 BRCA1 is a breast and ovarian tumor suppressor gene (Miki et al., 1994), and its full 

length protein product, p220, is a genome integrity maintenance protein (Silver and Livingston, 

2012).  Its validated functions include but are not limited to its role in the repair of double strand 

DNA breaks by homologous recombination (Silver and Livingston, 2012).  However, how and 

with what protein-binding partners BRCA1 executes its molecular and tumor suppression 

functions are not well understood.  Gaining a better understanding of these processes will be 

beneficial in conceiving new therapies for BRCA1 and BRCA1-like cancers.     

 Success in gaining a better understanding of the functions of certain proteins has been 

achieved through systematic mapping of their protein interaction networks (Rual et al., 2005; 

Stelzl et al., 2005) like that performed for a group of tumor viral oncoproteins (Rozenblatt-Rosen 

et al., 2012).  Focused work has identified such BRCA1 and BRCA2 interactors as BARD1 and 

PALB2 (Wu et al., 1996; Xia et al., 2006), while network analysis (Pujana et al., 2007), an 

immunoprecipitation-based study (Wang et al., 2000), and a yeast two hybrid and mass 

spectrometry-based analysis of a BRCA1 functional motif have identified yet other BRCA1-
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interacting proteins (Woods et al., 2012).  However, gaps in the BRCA1 network likely remain, 

given the limited understanding of BRCA1 function.   

 Therefore, we have carried out protein-protein interaction screens using two 

complementary methodologies to search for new BRCA1 interacting partners (Figure 2A).  A 

primary goal was to gain evidence of new functions for BRCA1 based on known functions of 

newly detected interacting proteins (aka interactors).  Another was to identify new cancer genes 

or therapeutically targetable signal transduction pathways served by newly identified interacting 

proteins. 

Results 

Bipartite screening effort identifies new BRCA1 interacting partners 

The bipartite screening effort involved two, complementary approaches.  The first 

consisted of a systematic, binary screen, using both full length BRCA1 protein (aka p220) and 

strategically designed fragments thereof (Table 1) tested against the gene products present in the 

human ORFeome v5.1 collection in a high throughput yeast two-hybrid (Y2H) format (Dreze et 

al., 2010).  We screened BRCA1 only as prey since the BRCT domain of this protein acted as an 

autoactivator.  The complementary screen was a tandem affinity purification followed by mass-

spectrometry (TAP-MS) analysis of BARD1-BRCA1 complexes isolated from the nuclei of 

HeLa S3 cells (Figure 2A).  BARD1 is the heterodimeric binding partner of BRCA1 (Silver and 

Livingston, 2012), and it was used as bait because expression of BRCA1 at levels high enough 

for TAP-MS is toxic to cells.   

In the TAP-MS screen, we identified 96 individual interactors (Table 2).  From the Y2H 

screen, we identified 54 individual interactors (Table 3).  Since some of the Y2H interactors  
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Figure 2. Bipartite screening effort to identify new protein interacting partners for 

BRCA1:  A) The Y2H and TAP-MS screening methods used are outlined here.  In the Y2H 

screen, depicted on the left, full length BRCA1 (p220) and fragments strategically designed to 

contain specific BRCA1 functional domains (shown in the map) were screened against the 

human ORFeome version 5.1.  The two example plates shown represent full length BRCA1 and 

fragment 33 screened against the same 94 members of the ORFeome.  The TAP-MS sequence is 

depicted on the right.  Nuclei were harvested from HeLa S3 cells stably expressing FLAG-

Streptactin [SII] tagged BARD1 or empty vector as a control.  The nuclei were fractionated into 

soluble nuclear and chromatin fractions from which the complexes were tandemly 

immunoprecipitated.  A silver-stained gel depicting a small fraction of one of the three 

purifications is shown at the bottom of the panel.  B) This network represents BARD1 and 

BRCA1 as the central nodes for TAP-MS associations and direct biophysical Y2H interactions 

respectively with all interactors from the screen emanating from them.  The code for edge color 

and style as well as node color is defined in the key below the network. 
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Table 1. Sequence information for full length BRCA1 and fragments used in Y2H screen, 

Related to Figure 2:  The base pair and amino acid coordinates in the BRCA1 coding sequence 

are given for each fragment used in the Y2H screen. 
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Table 1 (Continued). Sequence information for full length BRCA1 and 
fragments used in Y2H screen, Related to Figure 2 

Fragment # Amino Acid Coordinates Base Pair Coordinates 
Full Length BRCA1 
(p220) 1-1863 1-5592 
Fragment 1 1-110 1-330 
Fragment 3 24-78 70-234 
Fragment 5 1649-1863 4945-5592 
Fragment 8 224-1366 670-4098 
Fragment 9 250-1366 748-4098 
Fragment 19 1-550 1-1650 
Fragment 25 1-1485 1-4455 
Fragment 33 1366-1863 4096-5592 
Fragment 39 250-1863 748-5592 
Fragment 51 200-550 598-1650 
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Table 2. Full list of TAP-MS interactors sorted by soluble nuclear fraction, chromatin 

fraction, and combined list, Related to Figure 2:  The interactors detected by TAP-MS are 

listed here in full.  The first two columns show the gene symbol and gene ID for interactors 

detected in the soluble nuclear fraction.  The gene symbol and gene ID for interactors detected in 

the chromatin fraction are shown in the middle two columns.  The final four columns show the 

gene symbol and gene ID for all interactors with interactors found in the soluble nuclear fraction 

highlighted in blue and interactors found in the chromatin fraction highlighted in purple.   

 

 

 

 

 

 

 

 



Table 2 (Continued). Full list of TAP-MS interactors sorted by soluble nuclear fraction,
chromatin fraction, and combined list, Related to Figure 2 Soluble Nuclear Fraction Chromatin Fraction
Soluble Nuclear Interactors Chromatin Interactors Combined TAP-MS Interactors
Gene Symbols Gene IDs Gene Symbols Gene IDs Gene Symbols Gene IDs Gene Symbols Gene IDs
BARD1 580 ABCF2 10061 ABCF2 10061 RAD50 10111
BRCA1 672 AFAP1 60312 AFAP1 60312 RBBP8 5932
BRCC3 79184 BARD1 580 BARD1 580 RBBP8 5932
BRE 9577 BRCA1 672 BARD1 580 RBM28 55131
BRIP1 83990 BRCA2 675 BRCA1 672 RCL1 10171
C19orf62 (aka BABAM1) 29086 BRCC3 79184 BRCA1 672 RFC1 5981
CENPB 1059 BRE 9577 BRCA2 675 RFC2 5982
DDB1 1642 BRIP1 83990 BRCC3 79184 RFC4 5984
DDX54 79039 C19orf62 (aka BABAM1) 29086 BRCC3 79184 RNF169 254225
DNAJA1 3301 CBX3 11335 BRE 9577 RPL21 6144
EBNA1BP2 10969 CDC16 8881 BRE 9577 RPL28 6158
FAM175A 84142 CDCA2 157313 BRIP1 83990 RPL3 6122
FAM83A 84985 CEBPB 1051 BRIP1 83990 RPL32 6161
GAR1 54433 CIRH1A 84916 C19orf62 (aka BABAM1) 29086 RPL34 6164
GNL3L 54552 CMAS 55907 C19orf62 (aka BABAM1) 29086 RPS13 6207
HERC1 8925 CREB5 9586 CBX3 11335 RPS27 6232
KPNA2 3838 CSNK1D 1453 CDC16 8881 RPS27 6232
MLH1 4292 DDB1 1642 CDCA2 157313 RPS7 6201
MSH6 2956 DDX23 9416 CEBPB 1051 RSL1D1 26156
NAT10 55226 DDX39 (aka DDX39A) 10212 CENPB 1059 RUVBL2 10856
NOP2 4839 DNMT1 1786 CIRH1A 84916 RUVBL2 10856
NUMA1 4926 FAM175A 84142 CMAS 55907 SETX 23064
PGAM5 192111 FAM83A 84985 CREB5 9586 SLAIN2 57606
PMS2 5395 FHL2 2274 CSNK1D 1453 SMARCA5 8467
RBBP8 5932 FLYWCH1 84256 DDB1 1642 SMC1A 8243
RBM28 55131 FOSL2 2355 DDB1 1642 SMC3 9126
RCL1 10171 GATAD2B 57459 DDX23 9416 TERF2 7014
RPL21 6144 GTF2IRD1 9569 DDX39 (aka DDX39A) 10212 TONSL (aka NFKBIL2) 4796
RPL28 6158 HMMR 3161 DDX54 79039 TOP2A 7153
RPL3 6122 JUNB 3726 DNAJA1 3301 TOPBP1 11073
RPL32 6161 KIF20A 10112 DNMT1 1786 TPX2 22974
RPL34 6164 KIF22 3835 EBNA1BP2 10969 UIMC1 51720
RPS27 6232 KPNA2 3838 FAM175A 84142 UIMC1 51720
RPS7 6201 MKI67 4288 FAM175A 84142 USP7 7874
RSL1D1 26156 MLH1 4292 FAM83A 84985 WAPAL 23063
RUVBL2 10856 MORF4L2 9643 FAM83A 84985 WIZ 58525
SETX 23064 MRE11A 4361 FHL2 2274 ZC3H11A 9877
UIMC1 51720 MTA2 9219 FLYWCH1 84256 ZC3HAV1 56829
ZC3HAV1 56829 NBN 4683 FOSL2 2355 ZZZ3 26009

NIPBL 25836 GAR1 54433
NOL11 25926 GATAD2B 57459
NOP2 4839 GNL3L 54552
NUMA1 4926 GTF2IRD1 9569
OBFC2B 79035 HERC1 8925
ORC2 4999 HMMR 3161
PALB2 79728 JUNB 3726
PCNA 5111 KIF20A 10112
POLR2A 5430 KIF22 3835
RAD18 56852 KPNA2 3838
RAD21 5885 KPNA2 3838
RAD50 10111 MKI67 4288
RBBP8 5932 MLH1 4292
RFC1 5981 MLH1 4292
RFC2 5982 MORF4L2 9643
RFC4 5984 MRE11A 4361
RNF169 254225 MSH6 2956
RPS13 6207 MTA2 9219
RPS27 6232 NAT10 55226
RUVBL2 10856 NBN 4683
SLAIN2 57606 NIPBL 25836
SMARCA5 8467 NOL11 25926
SMC1A 8243 NOP2 4839
SMC3 9126 NOP2 4839
TERF2 7014 NUMA1 4926
TONSL (aka NFKBIL2) 4796 NUMA1 4926
TOP2A 7153 OBFC2B 79035
TOPBP1 11073 ORC2 4999
TPX2 22974 PALB2 79728
UIMC1 51720 PCNA 5111
USP7 7874 PGAM5 192111
WAPAL 23063 PMS2 5395
WIZ 58525 POLR2A 5430
ZC3H11A 9877 RAD18 56852
ZZZ3 26009 RAD21 5885
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Table 3. Full list of Y2H interactors and the BRCA1 fragments with which they interact, 

Related to Figure 2:  All Y2H BRCA1 interacting proteins are listed.  The gene symbol, Entrez 

gene ID, and all BRCA1 fragments with which the interactor was detected are given.  In some 

cases the fragments were used to map the domain of BRCA1 with which the interactor bound.   

 

 

 

 

 

 

 

 

 



Table 3 (Continued). Full list of Y2H interactors and the BRCA1  
fragments with which they interact, Related to Figure 2
Gene Symbols Gene IDs Fragments Interacted With

ABLIM3 22885 Full Length, 5, 33, 39

ACTN3 89 Full Length

ALS2CR11 151254 33

AP1M1 8907 Full Length

BARD1 580 Full Length, 1, 19, 25

BRSK1 84446 Full Length, 33, 39

C22orf29 79680 33

C6orf182 (aka CEP57L1) 285753 Full Length

CCDC120 90060 Full Length, 33, 39

CDK16 (aka PCTK1) 5127 Full Length, 5, 33, 39

CLK2 1196 33

CRY2 1408 33

CSNK1D 1453 Full Length, 19, 25, 39

CWF19L2 143884 Full Length, 39

DES 1674 Full Length, 5, 33, 39

DHPS 1725 3

FAM161A 84140 Full Length

FAM184A 79632 Full Length, 25, 39

FXR2 9513 Full Length, 25

GCC1 79571 Full Length, 25, 39

GOLGA8DP 100132979 25, 39

HGF 3082 33

HORMAD1 84072 Full Length, 19, 25

IFLTD1 160492 Full Length, 33, 39

KAT5 10524 Full Length

LCK 3932 39

MAP3K14 9020 33

MARCKSL1 65108 5

MCRS1 10445 Full Length, 33, 39

MID2 11043 Full Length, 1

MYOZ1 58529 39

NRIP1 8204 Full Length, 5, 33, 39

OBSCN 84033 33

POM121 9883 5, 33, 39

PPFIA1 8500 Full Length

PPP1R13B 23368 Full Length, 33

PRKAA2 5563 Full Length, 39

PRKAG3 53632 5

PRPF3 9129 Full Length

PSMD9 5715 Full Length, 19, 25, 39

RUNX1T1 862 Full Length, 25

RWDD2B 10069 Full Length

SETX 23064 Full Length, 33

SSX2IP 117178 Full Length

STAC2 342667 33

SYT6 148281 Full Lenth, 33, 39

TCEA2 6919 Full Length, 39

TCEANC 170082 39

TCEB3 6924 39

TENC1 23371 33

TMPRSS12 283471 33

TSGA10IP 254187 33

TXLNA 200081 Full Length, 25

ZNF423 23090 Full Length
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bound to multiple, overlapping BRCA1 fragments, we were able to map these interactions to 

specific domains of BRCA1 (Figure 3A, Table 3).  For example, based on the BRCA1 fragments 

with which it interacted, we were able to predict that a newly detected BRCA1 interactor, SETX, 

binds to the coiled coil domain of BRCA1 (Figure 2, Figure 3A, Table 3).  We also predict that 

the N-terminus of SETX interacts with this domain, since only full length SETX and not a 

shorter C-terminal fragment interacted with BRCA1 (Figure 3A).  Knowing the BRCA1 domain 

with which proteins interact may be important in predicting the subtype of disease or treatment 

strategies that can be deployed in association with a BRCA1 mutation that alters a highly 

specific BRCA1-protein X interaction. 

Co-immunoprecipitation (IP) was performed on a select subset of exogenously 

overexpressed interactors from both modalities as a quality assessment of the dataset, and we 

observed frequent co-precipitation with either exogenously overexpressed or endogenous 

BRCA1 (Figure 4A-H).    

 In total, 147 interactors were identified in the combined screening effort (Table 4).  The 

overlap between the methodologies was small, but it was significant (3 common network edges 

BARD1, CSNK1D, and SETX, P =0.002) and within the range expected based on the results of 

previous dual screens (Rozenblatt-Rosen et al., 2012).  The 147 interactors were grouped into a 

network in which the central nodes are BRCA1 and BARD1 (Figure 2B).  Twenty-five of these 

interactions had been previously detected in other screening efforts as physical interactors 

(Pujana et al., 2007; Wang et al., 2000; Woods et al., 2012).  The other 122 were novel.  In 

addition, 47 of the hits were identified as potential cancer genes in systematic cancer gene 

screening efforts (Beroukhim et al., 2010; Rozenblatt-Rosen et al., 2012; Tasan et al., 2014),  



 
 

40 
 

 

 

 

 

Figure 3. Analysis of Y2H screen hits, Related to Figure 2:  A) Based on the smallest 

fragment interaction detected for each bait, some of the interactions detected in the yeast two 

hybrid (Y2H) screen were mapped to specific functional domains of BRCA1.  The interactors 

from our screen mapping to each domain are listed below the domains in black (RING, Exon 11, 

Coiled Coil Domain (CCD), and BRCTs).  In the bottom left part of this panel is a map of full 

length SETX, with which BRCA1 did interact by Y2H, and a C-terminal SETX fragment with 

which BRCA1 did not interact by Y2H.  B) A graph demonstrating the results of an analysis 

performed on each BRCA1 interacting partner to determine whether it was associated with a 

specific “GO annotation” of interest (transcription, replication, DNA damage), whether it had 

been identified in any completed “systematic screens” searching for cancer genes (Sleeping 

Beauty, GWAS, SCNA, Somatic Mutations, tumor virus protein interactors), whether it had been 

identified in any previous “BRCA1 protein-protein interaction (PPI)” screens, or whether it is a 

“known cancer gene” in the Sanger Census or other relevant lists.  Hits that fit any of these 

criteria align with one or more black boxes, each representing one of the above-noted criteria.  

The hits that were validated through genetic analysis are represented in red.   
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Figure 4. Overexpression co-IPs of select screen hits with BRCA1 isoforms, related to 

Figure 2:  A) Cells were transiently transfected with an HA-FLAG tagged gene of interest 

(TONSL, a TAP-MS identified interactor, in this case) and a myc-tagged BRCA1 isoform (Full 

Length BRCA1 p220 which we have referred to as BRCA1 throughout the text or the exon 11 

missing isoform 11b).  Lysates from these cells were immunoprecipitated (IP’d)  with FLAG, 

electrophoresed, blotted with a myc antibody, and in some cases the blots stripped and then 

reacted with FLAG antibody.  Arrows denote the migration of proteins of interest.  B)  HA-

FLAG tagged TONSL was tandem affinity purified from the soluble nuclear and chromatin 

fractions of 293FT cells stably overexpressing this protein.  A silver stain showing the results of 

these purifications along with those performed on extracts of cells transduced by empty vector 

can be seen in the left panel.  A western blot of 10% of the purified fraction stained for BRCA1 

is shown in the right panel.  Endogenous p220/BRCA1 and 11b are marked by arrows.  C)      

Co-transfections, IPs, and blots were performed as noted for panel A, but here with HA-FLAG 

tagged MAP3K14 (from the Y2H screen) or BARD1 as a control.  Arrows indicate the location 

of p220/BRCA1 and 11b in this myc blot.  D)  HA-FLAG-tagged MAP3K14 was IP’d from 

lysates of cells stably expressing it, and these IPs were blotted with a BRCA1 antibody (left 

panel) and a FLAG antibody (right panel).  Arrows demonstrate the proteins of interest.  E)  Co-

transfections, IPs, and blots were performed as in panel A, but here with HA-FLAG tagged 

PPFIA1 (from the Y2H screen) or BARD1 as a control.  Arrows indicate the location of 

p220/BRCA1 and 11b on this myc blot.  F)  Co-transfections, IPs, and blots were performed as 

in panel A but with HA-FLAG tagged CLK2 or CWF19L2 (both interactors from the Y2H 

screen).  Arrows indicate the location of p220/BRCA1 and 11b on the myc blot shown in the  
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Figure 4 (Continued). Overexpression co-IPs of select screen hits with BRCA1 isoforms, 

related to Figure 2:  left panel.  This blot was stripped and re-probed with FLAG antibody, as 

shown in the right panel where arrows indicate the migration of CLK2 and CWF19L2.  G)  Co-

transfections, IPs, and blots were performed as in panel A but with HA-FLAG tagged PRKAA2 

(from the Y2H screen) or HA-FLAG-MLLT6 (a false positive from the Y2H screen).  Arrows 

indicate the migration of p220/BRCA1 and 11b on this myc blot.  H)  Co-transfections, IPs, 

and blots were performed as in panel A this time with HA-FLAG tagged MCRS1 (from the Y2H 

screen) or BARD1 as a control.  Arrows indicate the migration of p220/BRCA1 and 11b on this 

myc blot.   
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Table 4. Combined list of Y2H and MS interactors, Related to Figure 2:  Complete list of all 

interactors detected in the bipartite screening effort.  Interactors detected by both modalities are 

highlighted in pink. 

 

 

 

 

 

 

 

 



Table 4 (Continued). Combined list of Y2H and MS interactors, 
Related to Figure 2
Indicates Interactor found in both modalities

Technology Gene Symbols Gene IDs Technology Gene Symbols Gene IDs
TAP ABCF2 10061 TAP RPS27 6232
TAP AFAP1 60312 TAP RPS7 6201
TAP BARD1 580 TAP RSL1D1 26156
TAP BRCA1 672 TAP RUVBL2 10856
TAP BRCA2 675 TAP SETX 23064
TAP BRCC3 79184 TAP SLAIN2 57606
TAP BRE 9577 TAP SMARCA5 8467
TAP BRIP1 83990 TAP SMC1A 8243
TAP C19orf62 (aka BABAM1) 29086 TAP SMC3 9126
TAP CBX3 11335 TAP TERF2 7014
TAP CDC16 8881 TAP TONSL (aka NFKBIL2) 4796
TAP CDCA2 157313 TAP TOP2A 7153
TAP CEBPB 1051 TAP TOPBP1 11073
TAP CENPB 1059 TAP TPX2 22974
TAP CIRH1A 84916 TAP UIMC1 51720
TAP CMAS 55907 TAP USP7 7874
TAP CREB5 9586 TAP WAPAL 23063
TAP CSNK1D 1453 TAP WIZ 58525
TAP DDB1 1642 TAP ZC3H11A 9877
TAP DDX23 9416 TAP ZC3HAV1 56829
TAP DDX39 (aka DDX39A) 10212 TAP ZZZ3 26009
TAP DDX54 79039 Y2H ABLIM3 22885
TAP DNAJA1 3301 Y2H ACTN3 89
TAP DNMT1 1786 Y2H ALS2CR11 151254
TAP EBNA1BP2 10969 Y2H AP1M1 8907
TAP FAM175A 84142 Y2H BARD1 580
TAP FAM83A 84985 Y2H BRSK1 84446
TAP FHL2 2274 Y2H C22orf29 79680
TAP FLYWCH1 84256 Y2H C6orf182 (aka CEP57L1) 285753
TAP FOSL2 2355 Y2H CCDC120 90060
TAP GAR1 54433 Y2H CDK16 (aka PCTK1) 5127
TAP GATAD2B 57459 Y2H CLK2 1196
TAP GNL3L 54552 Y2H CRY2 1408
TAP GTF2IRD1 9569 Y2H CSNK1D 1453
TAP HERC1 8925 Y2H CWF19L2 143884
TAP HMMR 3161 Y2H DES 1674
TAP JUNB 3726 Y2H DHPS 1725
TAP KIF20A 10112 Y2H FAM161A 84140
TAP KIF22 3835 Y2H FAM184A 79632
TAP KPNA2 3838 Y2H FXR2 9513
TAP MKI67 4288 Y2H GCC1 79571
TAP MLH1 4292 Y2H GOLGA8DP 100132979
TAP MORF4L2 9643 Y2H HGF 3082
TAP MRE11A 4361 Y2H HORMAD1 84072
TAP MSH6 2956 Y2H IFLTD1 160492
TAP MTA2 9219 Y2H KAT5 10524
TAP NAT10 55226 Y2H LCK 3932
TAP NBN 4683 Y2H MAP3K14 9020
TAP NIPBL 25836 Y2H MARCKSL1 65108
TAP NOL11 25926 Y2H MCRS1 10445
TAP NOP2 4839 Y2H MID2 11043
TAP NUMA1 4926 Y2H MYOZ1 58529
TAP OBFC2B 79035 Y2H NRIP1 8204
TAP ORC2 4999 Y2H OBSCN 84033
TAP PALB2 79728 Y2H POM121 9883
TAP PCNA 5111 Y2H PPFIA1 8500
TAP PGAM5 192111 Y2H PPP1R13B 23368
TAP PMS2 5395 Y2H PRKAA2 5563
TAP POLR2A 5430 Y2H PRKAG3 53632
TAP RAD18 56852 Y2H PRPF3 9129
TAP RAD21 5885 Y2H PSMD9 5715
TAP RAD50 10111 Y2H RUNX1T1 862
TAP RBBP8 5932 Y2H RWDD2B 10069
TAP RBM28 55131 Y2H SETX 23064
TAP RCL1 10171 Y2H SSX2IP 117178
TAP RFC1 5981 Y2H STAC2 342667
TAP RFC2 5982 Y2H SYT6 148281
TAP RFC4 5984 Y2H TCEA2 6919
TAP RNF169 254225 Y2H TCEANC 170082
TAP RPL21 6144 Y2H TCEB3 6924
TAP RPL28 6158 Y2H TENC1 23371
TAP RPL3 6122 Y2H TMPRSS12 283471
TAP RPL32 6161 Y2H TSGA10IP 254187
TAP RPL34 6164 Y2H TXLNA 200081
TAP RPS13 6207 Y2H ZNF423 23090
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and 12 are present in two large cancer gene lists (the overlap between our 147 hits and those two 

cancer gene lists was significant, P=0.001) (Futreal et al., 2004; Vogelstein et al., 2013) (Figure 

2B, Figure 3B, Table 5).   

We queried the GO term (Ashburner et al., 2000) association of the interactors and found 

an enrichment (47 of the 147 hits) for proteins involved in DNA damage repair, replication, and 

transcription (all highlighted in the network with the gene symbol being selectively colored to 

reflect various GO term associations as indicated in the key), among other functions (Figure 2B, 

Figure 3B, Table 5).  BRCA1 is already known to participate in the first two functions, but the 

mechanisms by which it operates in these settings are not completely understood.  There is 

strong evidence that BARD1 plays a role in transcription/RNA processing-associated DNA 

damage (Kleiman and Manley, 1999, 2001; Kleiman et al., 2005), and BRCA1 is known to 

interact with RNA Polymerase II and has been suggested to have some role in transcription and 

transcription coupled repair (Le Page et al., 2000; Scully et al., 1997a).  However, the relevance 

of this interaction and the link between BRCA1 and transcription is mechanistically undefined.  

Therefore, insights into such a BRCA1 function would be valuable.    

Defective RNA processing or halting of transcription may arise from loss of function of 

relevant RNA binding proteins or physiological transcription modulating sites or from 

exogenous lesions in the DNA.  All can lead to DNA damage.  This can occur through the 

stabilization of physiologic R loops (structures that consist of the DNA loop formed when a 

nascent RNA transcript anneals to the transcribed DNA strand leaving the non-transcribed single 

strand to bubble out and become susceptible to damage if unresolved for prolonged periods), the  
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Table 5. Association of interactors with various datasets, Related to Figure 2 and Figure 

3B: We analyzed our interactors for specific GO term association and also searched various 

datasets to see if our interactors were included in them.  We searched various large cancer 

screens (Grouped as “Systematic Screens”) including the Sleeping Beauty dataset, a list of genes 

with somatic mutations, a list of genes with significant somatic copy number alterations, a 

GWAS cancer study, and the interactors identified in a screen of tumor virus proteins.  For the 

“Previous BRCA1 Paper” analysis, we searched for overlap with three other studies that 

searched for BRCA1 interactors.  For the “Known Cancer Gene Analysis” we searched the 

Sanger Census and results from a group that generated a similar list. The results of these analyses 

are shown here.  A ‘1’ in the column next to the interactor for the various analyses indicates that 

the interactor was in the dataset or had that GO term associated with it.  A 0 indicates that was 

not the case.  These analyses are mapped on the heat map in Figure 3B. 
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damaging of DNA opened up for transcription by exogenous agents, the collision of active 

transcription complexes and replication forks, and/or through the collapse of stalled transcription 

complexes (Aguilera and Garcia-Muse, 2012; Helmrich et al., 2013; Li and Manley, 2006; 

Mischo et al., 2011; Paulsen et al., 2009; Skourti-Stathaki et al., 2011).   

BRCA1 is already linked to transcription through its interaction with RNA Polymerase II 

(Scully et al., 1997a) and to mRNA processing in its binding to BARD1 (Kleiman and Manley, 

1999, 2001; Kleiman et al., 2005).  Therefore, we hypothesized that BRCA1 plays a significant 

role in the prevention or repair of DNA damage associated with transcription arrest and/or RNA 

processing, perhaps along with some of the proteins in our BRCA1 interactor dataset.  

BRCA1 depletion leads to increased sensitivity of cells to transcription arrest 

 To test the validity of this hypothesis, we asked whether BRCA1 depletion leads to 

increased cell sensitivity to the development of DNA damage that arises in the setting of 

transcription arrest induced by certain compounds.  We found that depletion of BRCA1 led to 

increased sensitivity to two compounds, each known to halt transcription and to induce DNA 

damage, DRB (Chodosh et al., 1989) (Figures 5A and 5B, Figure 6A) and alpha-Amanitin 

(Lindell et al., 1970) (Figures 5C and 5D, Figure 6A).  We also demonstrated that the DNA 

damage caused by alpha-Amanitin is exacerbated in the setting of BRCA1 depletion (Figure 5E, 

Figure 6A).    

To ascertain whether this was a BRCA1 depletion-specific effect, we attempted to rescue 

the alpha-Amanitin sensitivity of cells depleted of BRCA1 by stably expressing an siRNA- 

resistant BRCA1 cDNA in these cells (Figures 5F and 5G).  Rescue was achieved in repeated 
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Figure 5. BRCA1 is required to prevent or repair DNA damage associated with 

transcription arrest:  *See also Figure 6A for siRNA validation.  A) Dose curves and IC50s 

from the average of a minimum of three experiments in which U2OS cells were transfected with 

either siGL2, siBRCA1 exon 13, or siBRCA1 3’UTR and tested for sensitivity to varying doses 

of DRB by colony formation assay.  The error bars at each data point of the curves represent the 

standard deviation between the values from three or more experiments for each siRNA for that 

data point.  The bar graphs represent the IC50 estimated by GraphPad Prism by fitting a non-

linear regression to the curves from a minimum of three experiments.  In the bar graph, the error 

bars represent the 95% confidence interval for the estimation of the IC50 from all replicates of 

the experiment.  B) Representative photos of U2OS cells incubated in media containing either 

40uM DRB or an equivalent volume of ethanol and then stained for the DNA damage marker, 

H2AX.  C) Dose curves and IC50s from the average of three or more experiments for each 

siRNA in which U2OS cells were transfected with either siGL2, siBRCA1 exon 13, or siBRCA1 

3’UTR and tested for sensitivity to varying doses of alpha-Amanitin by colony formation assay. 

The data were plotted as described in 5A.  D) Representative photos of U2OS cells incubated in 

media containing either 0.35uM alpha-Amanitin (AA) or an equivalent volume of ddH2O and 

stained for the DNA damage marker, H2AX.  E) Bar graphs from one of three experiments 

representing the percentage of cells with two different tail length ranges from alkaline comet 

assays performed on U2OS cells transfected with siGL2 or siBRCA1 exon 13 in the bar graph on 

the left or with siGL2 or siBRCA1 3’UTR in the bar graph on the right and then cultured in 

media containing either 0.35uM alpha-Amanitin (AA) or the equivalent amount of water (H2O) 

for 24 hours.  The differences observed for tail lengths greater than 60 between the different  
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Figure 5 (Continued).  BRCA1 is required to prevent or repair DNA damage associated 

with transcription arrest:  siRNAs and different treatments were all statistically significant 

(comparisons indicated by brackets connecting pairs of bars being compared) as determined by 

calculations discussed in Materials and Methods.  The results of one of three replicates of these 

experiments are shown here.  All three replicates showed an identical pattern of DNA damage, 

and all were statistically significant (data not shown).  F)  IP-Western blot of WT HCC38 and 

HCC38+BRCA1 cDNA lines transfected with siRNAs used in panel G.  Arrows indicate various 

BRCA1 isoforms (p220 is full length BRCA1 and is what we refer to as BRCA1 throughout the 

text, 11b is a shorter isoform lacking exon 11 and with no known functions).  G)  Dose curves 

and IC50s from the average of three separate experiments in which either WT HCC38 cells or 

HCC38 cells stably expressing HA-tagged BRCA1 (HCC38 +BRCA1) were transfected with 

either siGL2 or a BRCA1 siRNA targeting its 3’UTR and tested for sensitivity to varying doses 

of alpha-Amanitin by colony formation assay plotted as described in 5A  
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Figure 6.  Assessment of siRNAs used in various experiments:  A)  IP-Western for BRCA1 in 

the WT/WT, BRCA1+/- and TONSL+/- lines transfected with each BRCA1 siRNA.  B1 stands 

for BRCA1 in all of the cell line and siRNA names below the blots.  The exon 13 and 3’UTR 

targeting siRNAs were used in multiple experiments in WT/WT cells throughout the thesis.  B)  

IP-Western for TONSL in the WT/WT, BRCA1+/-, and TONSL+/- lines with each TONSL 

siRNA.  These two TONSL siRNAs were used in multiple experiments in WT/WT cells 

throughout the thesis.  C)  Western blot of extracts of cells that were transfected with each 

SSRP1 siRNA.  The left panel is blotted with SSRP1, and the right panel is the same blot 

stripped and re-probed with a tubulin antibody to demonstrate equal loading.  These two SSRP1 

siRNAs were used in multiple experiments in WT/WT cells throughout the thesis.  D)  IP-

Western of WT/WT and BRCA1+/- cells transfected with SUPT16H siRNAs.  These two 

SUPT16H siRNAs were used in multiple experiments in WT/WT cells throughout the thesis.  E)  

IP-Western of WT/WT and BRCA1+/- lines transfected with SETX siRNAs.  The IP was carried 

out with an antibody targeting the C-terminus of SETX and the blot with an antibody targeting 

the N-terminus.  F)  qRT-PCR on cDNAs generated from whole cell RNA harvested from cells 

transfected with TCEANC siRNAs.  The bars represent the average of 5 replicates for the oligo 

pair/cell line, and the error bars represent the deviation between the replicates.  G)  qRT-PCR on 

cDNAs generated from whole cell RNA harvested from cells transfected with TCEA2 siRNAs.  

The bars represent the average of 5 replicates for the oligo pair/cell line, and the error bars 

represent the deviation between the replicates.    
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assays.   

Taken together, these data support the hypothesis that BRCA1 plays a role in the 

response to transcription arrest-associated DNA damage.  Moreover, BRCA1 may well play a 

major role in this process, since, when the BRCA1 concentration was increased over the baseline 

level, alpha-Amanitin sensitivity decreased significantly (Figure 5G-right panel, compare lanes 1 

and 3).   
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Chapter 3-Physiologic and clinical validation of hits from bipartite screening effort 

-All writing for this chapter was performed by SJH.  All experiments in this chapter were 

performed by SJH.  J. Keith Joung, Deepak Reyon, and Shengdar Q. Tsai generated the TALEN 

plasmids.  Ronny Drapkin aided in the IHC in Figure 10.  Thomas Rolland aided in the statistical 

analysis of the data and Travis I. Zack and Rameen Beroukhim aided in the TCGA analysis of 

the screen hits.  All figures in this chapter were generated by SJH.   

BRCA1 interacts genetically with transcription-associated proteins 

The results in Chapter 2 prompted a search for links between BRCA1 and transcription-

related proteins identified in our screens.  To assess the physiological relevance between BRCA1 

and previously unknown interactors from our screens, we searched for genetic interactions in cell 

lines bearing heterozygous mutations (generated by TALENs (Joung and Sander, 2013)) in 

BRCA1 or a given interactor.  Verification of mutations, and, where relevant, of the decreased 

expression of a protein of interest is shown in Figure 7A-F.  We confirmed that all cells that were 

studied proliferated and cycled at the same rate as wild-type (WT) controls, so that no abnormal 

phenotypes could be attributed to a cell cycle proliferation defect (Figure 7G). Searching for 

genetic interactions in such heterozygous mutant lines as a means of validating novel interactions 

is a reasonable approach, given that a recent study in cells heterozygous for mutations in the 

BRCA1 binding partner, PALB2, demonstrated that PALB2 heterozygosity can be associated 

with phenotypes that have mechanistic and biological implications (Nikkila et al., 2013).   

Thus, we posed the question of whether a BRCA1 heterozygous cell line reveals 

synthetic lethality upon depletion of a BRCA1 interacting protein of interest.  Positive results 

would reflect a breakdown in the physiological interaction between these proteins.   
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Figure 7. Generation of U2OS cells heterozygous for mutations in either BRCA1 or 

TONSL:  A)  Chromatogram depicting the TALEN cut site in a wildtype BRCA1 cDNA clone 

(left panel) and in a clone heterozygous for a BRCA1 mutation (right panel).  The red arrow 

indicates the start of the mutation in one copy.  B)  On the top, the sequences of the wildtype 

BRCA1 copy and mutant BRCA1 copy in the heterozygous clone are overlaid to depict the four 

base pair deletion in the mutant copy.  Below this is depicted the mRNA coding sequence for 

p220, and the start site of the four base pair deletion early in the coding sequence is indicated by 

a red arrow.  C)  BRCA1 IP-Western in the WT/WT line and BRCA1 +/- clone.  D)  

Chromatogram depicting the TALEN cut site in a wildtype TONSL line (left panel) and a clone 

heterozygous for a TONSL mutation (right panel).  The red arrow indicates the start of the 

mutation in one copy.  E)  On the top, the sequences of the wildtype TONSL copy and mutant 

TONSL copy in the heterozygous clone are overlaid to depict the two base pair deletion in the 

mutant copy.  Below this is the mRNA coding sequence for TONSL, and the start site of the two 

base pair deletion in the coding sequence is indicated by a red arrow.  F)  TONSL IP-Western in 

the WT/WT line and TONSL +/- clone.  G)  BrdU FACS profiles of the WT/WT control line, the 

BRCA1+/- clone (B1=BRCA1), and the TONSL+/- clone.  On three separate days, each cell line 

was plated individually and incubated with BrdU for 30 minutes prior to harvesting for FACS.  

The bar graphs represent the percentage of cells for each clone in each phase of the cell cycle as 

an average of the results of three experiments with the error bars representing the standard 

deviations between the three experiments. 
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 Genetic interaction between BRCA1 and an interactor from the screen was demonstrated 

by colony formation assays performed on WT/WT and BRCA1+/- cell lines transfected with a 

control siRNA (siGL2) or with two siRNAs targeting the interactor of interest.  If gene-specific 

depletion led to fewer colonies in the BRCA1+/- line than the WT/WT control, that would reflect 

a genetic interaction between BRCA1 and the interactor gene of interest.   

By colony formation assay, we detected a genetic interaction between BRCA1 and 

SETX, an RNA helicase that prevents R loop associated damage (Mischo et al., 2011; Skourti-

Stathaki et al., 2011) (Figure 8A, Figure 6E).  BRCA1 and SETX co-occupy sites on selected 

meiotic chromosomes (XY body), where the possibility of R loop involvement for both proteins 

in this setting exists (Becherel et al., 2013).  We also detected genetic interactions between 

BRCA1 and both TCEANC, a transcription elongation factor (Figure 8B and Figure 6F), and 

TCEA2, yet another transcription elongation factor (Figure 8C and Figure 6G).  TCEA2 is a 

member of a family of proteins that assists RNA polymerase II in traversing pause sites and 

certain transcription arresting sites (Wind and Reines, 2000).  It also engages in responses to 

DNA damage/errors that arise during transcription (Wind and Reines, 2000).  By contrast, the 

BRCA1-interacting and transcription elongating protein, TCEB3, failed this test, indicating that 

not all core transcription factors that directly interact with BRCA1 do so in a genetically 

definable manner.   

These results reinforce the view that BRCA1 responds to transcription-based DNA 

damage, since it influences or is influenced by these transcription-engaging proteins.   

Since some of the BRCA1 interactors with which genetic interactions were detected 

perform different biochemical activities related to this function, one can speculate that BRCA1  
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Figure 8. BRCA1 genetically interacts with various transcription-associated proteins, one 

of which has not been previously linked with transcription or transcription-associated DNA 

damage:  A-C) WT/WT and BRCA1+/- cell lines were treated with a control and multiple gene 

specific siRNAs to look for synthetic lethality upon co-depletion of specific genes with BRCA1.  

The average number of colonies from one representative experiment is shown for the WT/WT 

and BRCA1+/- cell lines transfected with either siGL2 or two different siRNAs targeting either 

SETX (A), TCEANC (B), or TCEA2 (C).  The error bars represent the standard deviation 

between replicates, and the p-values indicate the significance of the difference in colony number 

between heterozygous mutants and the WT/WT line for the gene-specific siRNA transfections.  

Due to differences in colony forming efficiency with each siRNA, the siGL2 results can only be 

compared to siGL2 and so forth.  D) The average number of colonies from one representative 

experiment is shown for WT/WT, BRCA1+/-, and TONLS+/- cell lines transfected with either 

siGL2, siBRCA1 exon 13, or siBRCA1 exon 11.  The plots are designed as described above.  E) 

The average number of colonies from one representative experiment is shown for WT/WT, 

BRCA1+/-, and TONLS+/- cell lines transfected with siGL2, siTONSL #1, or siTONSL #2, 

plotted as described above.  The results of only one representative experiment are shown for 

panels A-E, but these results were replicated in multiple repeats of the same experiments (data 

not shown).  F) UV dose curves (left panel) and IC50s (right panel) for cells depleted of TONSL 

or BRCA1 compared to controls.  Cells were transfected with siRNAs, plated at a suitable 

density for colony formation, treated with varying doses of UV, and later stained and counted.  

The curves represent the average of four experiments, and the error bars at each data point 

represent the standard deviation between those four experiments for that point.  The bar graphs  
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Figure 8 (Continued). BRCA1 genetically interacts with various transcription-associated 

proteins, one of which has not been previously linked with transcription or transcription-

associated DNA damage:  represent the IC50s estimated by GraphPad Prism from these 

experiments, and the error bars represent the 95% confidence interval for those estimates.  G) 

Representative IF photo of U2OS cells treated with 30J UV-C through micropores and stained 

for TONSL and BRCA1 four hours after treatment.  H and I) U2OS cells stably expressing 

either G1-specific Cdt1-RFP (H) or S phase specific Geminin-GFP (I) degrons were irradiated 

with 30J through micropores and, 4 hours later, they were stained for BRCA1 and TONSL. 

Yellow arrows indicate phase-specific cells in which TONSL localized in UV micropores.  ** 

Please note that these images are best viewed in the electronic version of the figure and not on a 

printed page.   

 

 

 

 

 



Figure 8 (Continued)
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performs its role(s) in this process through a number of biochemical routes, depending upon the 

specific functionality of its interacting partner protein(s). 

Genetic interaction between TONSL and BRCA1  

 In addition to testing the above-noted transcription related proteins, we also tested 

another interactor and potential transcription protein, TONSL, which was identified as an 

interactor in the BARD1 TAP-MS analysis.  We focused on TONSL for multiple reasons.  First, 

it was identified in Sleeping Beauty transposon tumorigenesis screens in mice (Figure 3B, Table 

5), signifying it as a candidate cancer gene (Starr et al., 2009).  In addition, complexes of 

overexpressed, tagged TONSL and endogenous BRCA1 concentrated in chromatin, consistent 

with them exerting a genome-associated function(s) (Figure 4B).  In this regard, TONSL is 

already known to participate in the repair of collapsed or stalled replication forks (Duro et al., 

2010; O'Connell et al., 2010; O'Donnell et al., 2010; Piwko et al., 2010), which is also a known 

BRCA1 function (Pathania et al., 2011; Schlacher et al., 2012).  However, we have found that 

TONSL may also participate in the response to transcription-associated damage.   

 Genetic interaction between BRCA1 and TONSL was demonstrated by colony formation 

assays performed on WT/WT, BRCA1+/-, and TONSL+/- cells lines (Figure 7A-G) transfected 

with a control siRNA (siGL2), with two siRNAs targeting BRCA1 (Figure 8D and Figure 6A), 

or two siRNAs targeting TONSL (Figure 8E and Figure 6B).  Compared to WT/WT controls, the 

BRCA1+/- and TONSL+/- lines were more sensitive to depletion of their respective WT residual 

proteins, showing that adequate function of each protein was essential for colony formation. 

TONSL and BRCA1 localize to UV-induced DNA damage sites 
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 Since TONSL and BRCA1 are both known to participate in the repair of stalled 

replication forks (Duro et al., 2010; O'Connell et al., 2010; O'Donnell et al., 2010; Pathania et al., 

2011; Piwko et al., 2010; Schlacher et al., 2012), we asked whether a BRCA1-TONSL complex 

is engaged in this repair.  To test this possibility, we searched for TONSL localization in UV 

irradiation-associated nuclear territories (micropores) (Polo et al., 2006) where BRCA1 localizes 

and where its only known function in such territories, thus far, is in the repair of stalled 

replication forks (Pathania et al., 2011).  Thus, cells were exposed to UV micropore irradiation 

and then immunostained for TONSL and BRCA1 up to 24 hours thereafter.  Like BRCA1, 

TONSL also localized in micropores (Figure 8G and Figure 9).  However, TONSL first appeared 

there 4-8 hours after irradiation, which is long after BRCA1 had concentrated at these sites 

(Figure 8G and Figure 9) (Pathania et al., 2011). 

Therefore, one manifestation of the BRCA1-TONSL genetic interaction may well operate 

at sites of UV-induced damage, where both proteins are normally engaged in a complex DNA 

damage response(s) (Duro et al., 2010; O'Connell et al., 2010; O'Donnell et al., 2010; Pathania et 

al., 2011; Piwko et al., 2010).  Indeed, as one might expect for a protein involved in a UV 

damage response, cells depleted of TONSL become more sensitive to UV treatment than 

controls, but not as sensitive as when BRCA1 is depleted (Figure 8F, Figure 6A and 6B).  Since 

TONSL did not localize at micropores in every cell in which BRCA1 was so localized, it is 

possible that co-localization only occurs during a limited cell cycle interval which may offer a 

clue as to the function of the BRCA1-TONSL complex.   
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Figure 9. TONSL localizes to sites of UV damage between four and eight hours after 

irradiation, Related to Figure 8G:  A-G)  U2OS cells were exposed to 0 or 30J UV irradiation 

through micropores and fixed at various timepoints for up to 24 hours thereafter.  Cells at the 

indicated timepoints were stained by immunofluorescence for BRCA1 (red) and TONSL (green).  

A representative photo for each timepoint is shown here.  Yellow arrows indicate cells that 

reveal TONSL co-localized at UV micropores with BRCA1 (D-F) or in which TONSL co-

localized with BRCA1 in nuclear foci in undamaged cells (A).  ** Please note that these images 

are best viewed in the electronic version of the figure and not on a printed page.   
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To test this possibility, detection of TONSL and BRCA1 in micropores was assessed in 

cells expressing cell cycle-dependent reporters (Mechali and Lutzmann, 2008; Sakaue-Sawano et 

al., 2008).  The results showed that TONSL concentrates in these damage sites during both S and 

G1 phases (Figure 8H and I).  The S-phase localization supports the suggested role for TONSL 

in repair of stalled and collapsed replication forks, but the G1-phase localization does not.  The 

G1 localization result is supported by IHC staining that we had independently performed on 

normal human fallopian tube for TONSL.  We found that TONSL stained the nuclei in both 

cycling and terminally differentiated cells in this tissue (Figure 10) suggesting that its function 

may not solely be directed at replication-associated repair.  A putative role in the response to 

transcription-associated DNA damage was also possible. 

Indeed, the list of known TONSL interactors includes proteins that function in 

transcription and that likely operate both in S and G1, in particular both members of the FACT 

complex, SSRP1 and SUPT16H (Duro et al., 2010; O'Connell et al., 2010; O'Donnell et al., 

2010; Piwko et al., 2010).  The FACT complex supports transcription elongation through regions 

of chromatin by facilitating alteration of and accurate replacement of nucleosome structure 

(Reinberg and Sims, 2006).  This allows transcription progression through chromatin regions 

without permanently disrupting epigenetic markers (Reinberg and Sims, 2006).  Such a function 

could occur in either G1 or S.  

TONSL and BRCA1 function at sites of transcription-associated damage together with the 

FACT complex 

 Thus, we searched for evidence linking FACT, TONSL, and BRCA1 at UV damage sites.  

We first asked whether TONSL localization at micropores is dependent upon BRCA1 or FACT.   
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Figure 10.  TONSL is expressed in both cycling and terminally differentiated cells: 

A and B) Sections of normal human fallopian tube were stained with both polyclonal antibodies 

generated against human TONSL for this work (Antibodies Q5 shown in 10A and Q6 shown in 

10B).  Staining with both antibodies indicated that TONSL was expressed in the nuclei of both 

cycling fimbriated cells (red arrows) and terminally differentiated secretory cells (green arrows) 

in this tissue. 
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We performed UV micropore assays with and without BRCA1, SSRP1, SUPT16H, and TONSL 

depletion (Figure 11A, Figure 6A, 6B, 6C, and 6D, and Figure 12A and 12B).  While SSRP1, 

SUPT16H, and TONSL depletion had no effect on BRCA1 micropore localization (Figure 12A), 

BRCA1, SSRP1, and SUPT16H depletion led to fewer cells exhibiting TONSL in micropores 

(Figure 11A).  Under the conditions employed, none of these depletions caused significant cell 

cycle arrest (Figure 12B).  Thus, BRCA1, SSRP1, and SUPT16H expression is necessary for 

TONSL localization at these damage sites in asynchronous cells.   

Given the influence of FACT on TONSL and the link between TONSL and BRCA1, it 

was possible that there was also a link between FACT and BRCA1.  Thus, we tested for a 

genetic interaction between BRCA1 and either SSRP1 (Figure 11B and Figure 6C) or SUPT16H 

(Figure 11C and Figure 6D), again using the colony-formation assay.  The BRCA1+/- line 

produced significantly fewer colonies than the WT/WT line when transfected with siRNAs 

specific for either SSRP1 or SUPT16H.  We concluded that BRCA1 interacts genetically with 

TONSL and with the TONSL partners SSRP1 and SUPT16H. 

Given this association, we wondered if either member of the FACT complex also 

localizes to UV induced damage sites with BRCA1, and if so, in which phase of the cell cycle 

this occurs.  Therefore, we searched for SSRP1 and SUPT16H in micropores with either TONSL 

or BRCA1 in both asynchronous cells and cells arrested in G1 by mimosine (Figure 11D-F and 

Figure 12C).  We failed to detect SUPT16H in micropores, but we did find that SSRP1 co-

localized with both BRCA1 (Figure 11D) and TONSL (Figure 11E) in micropores in both 

asynchronous and G1-arrested cells.  We also observed that TONSL co-localizes with BRCA1 in 

both asynchronous and G1-arrested cells (Figure 11F).   
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Figure 11. BRCA1, TONSL, and FACT functionally interact at sites of UV damage:  *See 

also Figure 6A, 6B, 6C and 6D, Figure 7, and Figure 12.  A) This bar graph represents the 

average number of cells containing TONSL in CPD (cyclobutane pyrimidine dimer)-positive 

micropores from four, separate experiments in which cells were transfected with a control siRNA 

(siGL2) or one of two different BRCA1, SSRP1, or SUPT16H specific siRNAs. After 

transfection, the cells were irradiated with 30J UV and stained for BRCA1, CPDs, and TONSL 

four hours later.  The error bars represent the standard deviation between the counts from the 

four experiments.  B and C) The average number of colonies from one of three, separate 

experiments is shown for the WT/WT and BRCA1+/- cell lines transfected with either siGL2 or 

two different siRNAs targeting either SSRP1 (B) or SUPT16H (C).  The plots are designed as 

described in Figure 8.  The results of only one experiment are shown here, but at least two other 

replicates of these experiments yielded similar data (data not shown).  D-F)  U2OS cells were 

incubated in media containing 0.5mM mimosine or an equivalent volume of vehicle for 24 hours, 

then irradiated with 30J through micropores, allowed to recover for 4 hours, and co-stained for 

SSRP1 and BRCA1 (D),  SSRP1 and TONSL (E), and TONSL and BRCA1 (F).  Arrows mark 

some of the cells where co-localization is observed.  ** Please note that these images are best 

viewed in the electronic version of the figure and not on a printed page.   
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Figure 12. TONSL localizes to sites of UV damage in a BRCA1- and FACT- dependent 

manner, Related to Figure 11A, 11D, 11E, and 11F:  A)  Representative photos are shown 

here for each siRNA treatment demonstrating that BRCA1 localization to micropores was not 

altered by any of the siRNA treatments from the experiments quantified in figure 11A.  U2OS 

cells were transfected with siRNAs directed at firefly luciferase (siGL2), BRCA1 exon 13, 

SSRP1, SUPT16H, or TONSL.  These cells were irradiated with 30J UV, and 4 hours later were 

stained for BRCA1, CPDs, and TONSL.  ** Please note that these images are best viewed in the 

electronic version of the figure and not on a printed page.  B)  Representative BrdU FACS 

analyses on one set of cells studied in figure 11A.  The various phases of the cell cycle for each 

siRNA treatment are depicted here.  Below the plots of cells are the percentages of cells in each 

phase (S, G1, G2/M) for each siRNA treatment.  C)  Representative BrdU FACS analyses on one 

set of cells studied in the UV micropore mimosine experiments in Figures 11D-F.  Plots are as 

described above in Figure 12B.   
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 Given the influence of FACT and BRCA1 on TONSL localization, the genetic 

interactions between FACT and BRCA1 and between TONSL and BRCA1, and the co-

localization of FACT, BRCA1, and TONSL at UV damage sites in G1 arrested cells, we 

speculated that, in addition to aiding in the repair of stalled replication forks, TONSL and 

BRCA1 co-function with FACT at sites of UV damage to prevent transcription through such 

sites or contribute to its restart or repair.  This hypothesis is supported by the fact that, after UV 

damage, the FACT complex interacts with RNA PolII pS5 and certain transcription-coupled 

NER proteins and participates in transcription restart (Dinant et al., 2013).   

BRCA1 localizes to sites of post-UV transcription associated DNA damage 

 To test this hypothesis and determine whether the UV sites at which BRCA1, TONSL, 

and FACT co-localize do contain transcription associated DNA damage, we asked whether 

actively transcribing RNA Polymerase II (RNA PolII pS5) co-localizes with the DNA damage 

marker H2AX and BRCA1 after UV treatment.  We were not able to perform micropore assays 

because RNA PolII pS5 does not concentrate in these large territories at levels greater than those 

detected in an unirradiated nucleus.  Thus, we performed whole cell UV irradiation since RNA 

PolII pS5 has been shown to form distinct foci in this setting when cells are appropriately fixed 

(Espinosa et al., 2003).  In preparation for these assays, we validated the specificity of our 

BRCA1 and RNA PolII pS5 antibodies by various means, since RNA Pol II detection requires 

harsher fixation conditions than micropore immunofluorescence (IF) staining (Figure 13A-E).   

 The results showed that active RNA Pol II forms an increased number of distinct foci 

after UV treatment (Figure 14 and Figure 15B).  These foci co-stained with the DNA damage 

marker, H2AX, as well as BRCA1 in increased quantities after UV treatment (Figure 14A and  
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Figure 13. Specificity of RNA Polymerase phospho-S5 antibody, SD123 BRCA1 antibody, 

and TFIIS antibody all used for immunofluorescence, Related to Figures 14 and 15:  A and 

B) Antibody mixtures to be used for RNA PolII pS5 immunofluorescence staining were prepared 

as described in Materials and Methods, except 2ug of either an un-phosphorylated peptide 

encoding the C-terminal domain (CTD) of RNA polymerase II or a peptide encoding the C-

terminal domain of RNA polymerase II phosphorylated on serine 5 were added to the mix.  

These mixtures were incubated at 4° with end over end rotation and were later used to stain 

U2OS cells that had been treated with 0J or 25J and fixed with methanol-acetic acid four hours 

later.  RNA PolII pS5 staining was unaffected by the un-phosphorylated peptide (A) but was 

eliminated by the peptide phosphorylated on serine 5 (B).  C-E)  U2OS cells were transfected 

with either a control siRNA (siGL2) or two different siRNAs targeting BRCA1, treated with 0J 

or 25J, fixed with methanol-acetic acid 4 hours later, and stained for BRCA1 foci.  The BRCA1 

foci are greatly reduced in the BRCA1 siRNA treated cells (D and E) compared to the control 

(C).  F-H)  U2OS cells were transfected with either siGL2 as a control or two different TCEA1 

(aka TFIIS) siRNAs, treated with 0J or 25J, fixed with methanol-acetic acid 4 hours later, and 

stained for TFIIS (aka TCEA1) foci.  The TFIIS foci are greatly reduced by the TCEA1 siRNAs 

(G and H) compared to the control (F).  ***The brightness for every photo in the figure has been 

increased by 40% using Powerpoint to overcome the difficulty of converting to PDF.  Please 

note that these images are best viewed in the electronic version of the figure and not on a printed 

page. 
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Figure 14. Active RNA Polymerase and BRCA1 co-localize in distinct foci after UV 

damage:  A and B)  U2OS cells were treated with 0J or 25J (whole cell irradiation, without 

micropore filters), fixed with methanol-acetic acid four hours later, and co-stained for either (A) 

active RNA Polymerase (RNA PolII pS5) and H2AX or (B) RNA PolII pS5 and BRCA1.  One 

representative photo of a field of cells is shown for each staining after 0J and 25J of UV, and one 

representative cell from the 25J photo in which there is significant co-localization between the 

co-stained proteins has been cut out and magnified using Powerpoint below the two fields.  

Yellow arrows point to the magnified cell in the 25J field of cells photos.  In addition, below the 

photos for each co-staining are counts of the indicated foci present in equivalent numbers of cells 

after exposure to 0J and 25J.  For these counts the same number of nuclei in the 0J and 25J slides 

were counted, and then the number of individual foci for each antibody and also the number of 

co-localizing foci from the co-stain were counted within those nuclei. These numbers are 

represented in the charts below the photos.  ***The brightness for every photo in the figure has 

been increased by 40% using Powerpoint to overcome the difficulty of converting to PDF.  

Please note that these images are best viewed in the electronic version of the figure and not on a 

printed page. 
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Figure 15.  BRCA1 and TFIIS localize to sites of UV induced transcription-associated DNA 

damage:  A and B) U2OS cells were treated with 0J or 25J (whole cell irradiation, without 

micropore filters), fixed with methanol-acetic acid four hours later, and co-stained for either (A) 

H2AX and BRCA1 or (B) RNA PolII pS5 and TFIIS.  One representative photo of a field of 

cells is shown for each staining for 0J and 25J, and one representative cell from the 25J photo in 

which there is significant co-localization between the co-stained proteins has been cut out and 

magnified using Powerpoint below the two fields.  Yellow arrows point to the magnified cell in 

the 25J photos.  In addition, below the photos for each co-staining are counts of the indicated 

foci present in equivalent numbers of cells after exposure to 0J and 25J.  For these counts the 

same number of nuclei in the 0J and 25J slides were counted, and then the number of individual 

foci for each antibody and also the number of co-localizing foci from the co-stain were counted 

within those nuclei.  These numbers are represented in the charts below the photos.  ***The 

brightness for every photo in the figure has been increased by 40% using Powerpoint to 

overcome the difficulty of converting to PDF.  Please note that these images are best viewed in 

the electronic version of the figure and not on a printed page. 
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14B).  BRCA1 also co-localized with H2AX foci after UV treatment (Figure 15A), and since 

almost all RNA Pol II pS5 foci co-localized with H2AX after UV and approximately two thirds 

of all BRCA1 foci co-localize with H2AX foci after treatment, it appeared that BRCA1 and 

active RNA Pol II co-localized at most H2AX-marked damage sites after UV exposure.  

 To test whether there is single-stranded DNA and, thus, R-loops, collapsed transcription 

complexes, or perhaps collapsed replication forks that had collided with a transcription fork at 

these damage sites, we stained for co-localization between BRCA1 and phosphorylated RPA 

which is known to coat single stranded DNA at such sites (Figure 16B).  We found that only one 

third of BRCA1 foci co-localize with pRPA after UV.  Thus R-loops, collapse, and collisions are 

unlikely to be the only types of transcription associated DNA damage being confronted by 

BRCA1 at these sites.   

 One possibility is that BRCA1 has recognized a stalled transcription fork and recruits 

other proteins to assist its restart.  One of the interactors detected in our screen, TCEA2, is a 

member of the TFIIS family of transcription factors which is responsible for assisting RNA 

polymerase in overcoming various obstacles encountered while transcribing DNA (Wind and 

Reines, 2000).  Although no available TCEA2 antibodies worked with the relevant fixation 

protocol, an antibody directed at a closely related isoform, TCEA1 (commonly referred to as 

TFIIS and referred to as TFIIS in figures and other parts of the thesis), did operate in this 

staining protocol (Figure 13F-H).  Moreover, after UV irradiation almost two thirds of RNA Pol 

II pS5 foci co-localized with TFIIS (Figure 15B); and almost two thirds of TFIIS foci co-

localized with H2AX (Figure 16A).  Thus, TFIIS also localized at post-UV transcription  
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Figure 16. TFIIS and BRCA1 co-localize with DNA damage markers after UV treatment, 

Related to Figures 14 and 15:  A and B)  U2OS cells were treated with 0J or 25J (whole cell 

irradiation, without micropore filters), fixed with methanol-acetic acid four hours later, and co-

stained for either (A) TFIIS and H2AX or (B) BRCA1 and phosphorylated-RPA (pRPA).  One 

representative photo of a field of cells is shown for each staining for 0J and 25J, and one 

representative cell from the 25J photo in which there is significant co-localization between the 

co-stained proteins has been cut out and magnified using Powerpoint below the two fields.  

Yellow arrows point to the magnified cell in the 25J photos.  In addition, below the photos for 

each co-staining are counts of the indicated foci present in equivalent numbers of cells after 

exposure to 0J and 25J.  For these counts the same number of nuclei in the 0J and 25J slides were 

counted, and then the number of individual foci for each antibody and also the number of co-

localizing foci from the co-stain were counted within those nuclei.  These numbers are 

represented in the charts below the photos.  ***The brightness for every photo in the figure has 

been increased by 40% using Powerpoint to overcome the difficulty of converting to PDF.  

Please note, that these images are best viewed in the electronic version of the figure and not on a 

printed page. 
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associated damage foci, and, given the frequency of TFIIS and BRCA1 foci co-localizing with 

H2AX, it is likely that BRCA1 and TFIIS co-localize in some of these foci, as well.        

 We were unable to test TCEANC, SETX, TONSL, SSRP1, or SUPT16H for RNAPolII 

pS5 co-localization, since we lacked antibodies that function in this fixation protocol.  

Nevertheless, this evidence further supports the hypothesis that BRCA1 functions at sites of 

transcription associated damage and the notion that a BRCA1-TONSL-FACT complex functions 

at these sites.  Given the co-localization of BRCA1 with active RNA Polymerase II at post-UV 

damage structures, it is likely that a BRCA1-TONSL-FACT complex participates in some part of 

the recognition or repair of these structures, since these proteins do localize to sites of UV 

damage in G1-arrested cells where transcription and not DNA replication is in progress and since 

FACT has already been implicated in such a function (Dinant et al., 2013). 

 Furthermore, this evidence, along with the above-noted TFIIS staining, implies that 

BRCA1 can participate in the response to various forms of transcription-associated DNA damage 

or stalling and that it does so in different ways by interacting with different protein binding 

partners, such as TFIIS or TONSL-FACT.   

Novel BRCA1 interactors identified in our screen exhibit cancer links with therapeutic 

implications  

The question of whether any of our interactors or the new role(s) for BRCA1 in dealing 

with transcription-associated DNA damage is clinically relevant was also addressed.  Oncomine 

Concepts Map was used (Rhodes et al., 2007) to search for associations between our results and 

those of prior gene expression profiling studies performed on breast and ovarian cancers.  

BRCA1 tumor suppression largely extends to these two organs.   
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The results show that our 147 screening hits are enriched for proteins that are 

significantly over- or under- expressed in tumors associated with negative clinical outcomes 

(Figure 17A), high grade pathology (Figure 17B), and advanced clinical stage (Figure 17C).  

This suggests that a number of interactors experience altered expression in clinically aggressive 

tumors and may, therefore, contribute to disease progression and lack of therapeutic benefit. 

In keeping with these observations, we also asked whether any of our interactors are 

encoded by genes that map to amplified or deleted regions in breast tumors, ovarian tumors, or 

across a set of 11 cancer types that have been systematically analyzed (Zack et al., 2013).  

Indeed, 90 out of 147 of our hits were located within these genomic regions (Figure 17D, Table 

6).  Sixty-three hits were localized to amplified regions, of which 15 are involved in 

transcription, replication, and/or DNA damage.  Thirty-nine additional hits mapped to deleted 

regions, of which 12 are known to engage in one or more of these same functions.  Moreover, 

some of the genes we demonstrated as being genetically associated with BRCA1 are located in 

these regions, including TONSL, TCEA2, and SETX.  These data are particularly interesting 

with respect to TONSL since it was found in a Sleeping Beauty tumor enhancement screen, 

thereby implying that it affects tumorigenesis, at least in animal models (Figure 3B and Table 5).   

One caveat associated with this data is that the regions identified here are large and 

contain multiple genes.  Hence, there is no guarantee that a BRCA1 interactor gene of interest 

operates as a tumor suppressor or an oncogene in these regions.  However, this concern is 

ameliorated by the fact that 12 of our hits are already known to be cancer-associated (Figure 2B, 

Figure 3B, Table 5) (Futreal et al., 2004; Vogelstein et al., 2013).  Therefore, these data suggest  
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Figure 17. Clinical outcome relationships of BRCA1 interactome members: A, B, and C) 

Networks representing statistically significant (p<0.05 and q<0.25) associations of the 147 hits 

(central white node) in the BRCA1 interactome with various expression profiling datasets for 

negative clinical outcomes (Figure 17A), high tumor grade (Figure 17B), and advanced clinical 

stage (Figure 17C) in Oncomine Concept Map.  The key for node color and statistical ranges is 

defined beneath each network.  The edge widths correspond to the p-value for the particular 

association.  D)  Networks representing the genes from our datasets that were found to be in 

either amplification (top panel) or deletion (bottom panel) regions in a statistically significant 

way (p<0.05 and q<0.25) in a TCGA dataset for breast cancers, ovarian cancers, or across 11 

different cancers. The nodes are grouped according to association with select GO terms, and the 

key to node color is noted below the networks.  *See also Table 6. 
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Table 6. Search for location of genes identified in screens in either amplification or deletion 

regions in breast tumors, ovarian tumors, or across 11 different tumor types, Related to 

figure 17D:  We queried the gene loci of the genes detected as BRCA1 interactors in our screens 

in TCGA amplification and deletion region datasets for breast cancer, ovarian cancer, and across 

11 different cancer types to see if our interactors were in any of these regions.  The p-value and 

q-value for each gene from our dataset being present in each type of region in each type of 

cancer is shown here.  We only plotted genes in the networks in 17D that had a p-value<0.05 and 

q-value <0.25. 
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that a number of the hits from our BRCA1 interactome screens and the new functional role 

proposed for BRCA1 do participate in human tumorigenesis.     
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Chapter 4-Discussion of bipartite screening results 

-All writing in this chapter was performed by SJH. 

The complementary protein interaction screening approaches used here have led to the 

generation of a more complete BRCA1 protein interaction network. Knowledge of the anatomy 

of this network has made possible genetic tests of the physiological relevance of certain 

interactions.  From the results of these analyses, the relevance of the function of certain BRCA1-

interacting proteins to BRCA1 function was demonstrated, and a combined role for BRCA1 and 

these interacting proteins in the response to transcription-associated DNA damage was detected.  

Assessing the significance of protein interactions in this manner may be useful in the 

future, since detection of binary interactions and, more importantly, detection of the 

physiological relevance of such interactions can be challenging.  This is especially true for 

BRCA1, since its complete depletion can lead to cell cycle arrest (Xu et al., 2001b), 

complicating mechanistic studies on several of its functions.  The BRCA1+/- lines used in our 

experiments cycled normally, and thus, it may be easier to study certain functions through 

genetic manipulations in such lines, allowing physiologically relevant insights to be made.   

Our approach has led to observations that may also be meaningful in the context of 

cancer development and treatment.  Determining the overlap between a physical and genetic 

interaction map may contribute to increased appreciation of important steps in disease 

development and towards the discovery of relevant, mechanism-driven treatment strategies.   

The results of our screening and of the validation of multiple interactors identified in it 

have uncovered a new role for BRCA1 in the prevention and/or repair of DNA damage 

associated with transcription arrest.  Imputed functions of TONSL and known functions of the 
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TONSL-binding FACT complex and of SETX, TCEANC, and TCEA2, all proteins engaged in 

transcription and/or RNA processing and all proteins that genetically interact with BRCA1, 

represent new processes through which BRCA1 participates in the prevention and/or repair of 

DNA damage.  That BRCA1 is engaged in transcription-associated damage control is supported 

as a concept by these results and phenomena observed by others for both BRCA1 and BARD1 

(Becherel et al., 2013; Kleiman and Manley, 1999, 2001; Kleiman et al., 2005; Le Page et al., 

2000; Yuce and West, 2013).  However, the current link between BRCA1 and transcription-

associated damage is poorly defined, and data reported here now strongly suggest that BRCA1 

responds to DNA damage at sites of stalled or defective transcription.  These findings are also 

consistent with the hypothesis that BRCA1 can perform different functions at these sites 

depending on the type of damage and on the particular interacting proteins (TONSL-FACT, 

TCEA2, etc.) that are co-recruited with it. 

For example, SETX is involved in preventing R loop stabilization (Mischo et al., 2011; 

Skourti-Stathaki et al., 2011). Thus, it is conceivable that BRCA1 accompanies RNAPII, with 

which it is known to interact (Scully et al., 1997a), to prevent stalling and damage at R loops. 

Alternatively, BRCA1 might be recruited to RNAPII that collects at pause sites or sites of DNA 

damage and recruits SETX to these sites to prevent R loop stabilization or repair of R loop 

associated damage.   

The FACT complex functions in rearranging chromatin to allow transcription elongation 

to proceed through chromatin without disturbing its epigenetic architecture (Reinberg and Sims, 

2006); and it has been implicated both in transcription restart after and potentially repair of UV-

induced transcription-associated damage (Dinant et al., 2013), as well as, R-loop-associated 
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damage (Herrera-Moyano et al., 2014).  Conceivably, a BRCA1-TONSL-FACT complex is 

recruited to active RNA Pol II, particularly after the kind of damage induced by UV irradiation 

or stabilized R-loops, to respond to damage at that site.   

 In keeping with this theme, the interactor TCEA2 is a member of the TFIIS family of 

transcription elongation factors.  TCEA1 (aka TFIIS or S-II) is the most studied member of this 

family.  TCEA1 promotes transcription elongation-associated RNA transcript cleavage when 

RNA Pol II encounters various endogenous and exogenously induced DNA obstacles as well as 

the elimination of transcript errors (Wind and Reines, 2000).  While TCEA2 was originally 

identified as a testes- and ovary- specific version of TFIIS (Wind and Reines, 2000), it is also 

expressed in certain somatic cells (Figure 6G).  TCEA2 and TCEA1 are homologous for a 

functional domain that is critical for TFIIS transcription elongation function (Wind and Reines, 

2000), and both stimulate RNA Pol II in the same way (Wind and Reines, 2000).  Since BRCA1 

and the closely related TCEA1 (labelled TFIIS in the figures) co-localized at UV induced sites of 

transcription-associated damage, it is likely that TCEA2 operates similarly.  These hypotheses fit 

with our observation that BRCA1 depletion leads to increased sensitivity to the halting of 

transcription.   

The possibility that BRCA1 responds to transcription-associated damage by all of the 

mechanisms described above may mean that there are multiple steps in these repair/response 

pathway(s) that could be targets for mutation and, possibly, even therapy.  The TCGA data cited 

earlier indicate that multiple transcription-associated proteins are altered across different types of 

cancers.  For example, TCEA2 is amplified across 11 different tumor types, including breast and 

ovarian cancers (Figure 17D).  One wonders whether this is a manifestation of compensation for 
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ongoing, broadly based threats to transcription procession, given the known functional 

interaction of TCEA2 with BRCA1.  If demonstrated, increasing transcription-associated damage 

or blocking TCEA2 involvement in such tumors may both be relevant therapeutic strategies for 

these cancers.  

In considering the therapeutic relevance of the new BRCA1 interaction network, the cell 

line used in the alpha-Amanitin rescue experiments, HCC38, is a cancer cell line in which the 

BRCA1 promoter is methylated, causing it to express less BRCA1 than normal cells (Xu et al., 

2010).  This makes HCC38 suspect for harboring a defect(s) in BRCA1 function (Xu et al., 

2010).   Not only did we observe rescue of alpha-Amanitin sensitivity induced by BRCA1 

depletion in this line by overexpression of the BRCA1 cDNA, there was also decreased 

sensitivity to alpha-Amanitin in the BRCA1 cDNA-expressing line compared to naïve WT cells 

(Figure 5G, compare lanes 1 and 3 in right panel).  This suggests that promoter methylation-

associated depletion of BRCA1 can give rise to increased sensitivity of cells to alpha-Amanitin 

or other transcription inhibitors.  If proven, residual BRCA1-driven transcription-associated 

DNA damage control might become a therapeutic target in tumors with decreased WT BRCA1 

levels. 

There may be an example of clinical success in targeting this BRCA1-driven 

transcription-associated damage control in BRCA1 mutant and sporadic basal-like breast tumors.  

These tumors are, in part, BRCA1 mutant breast cancer phenocopies.  Multiple clinical trials and 

retrospective studies in BRCA1 mutant (Silver et al., 2010) and sporadic basal-like breast tumors 

(Chew et al., 2009; Hurley et al., 2013; Silver et al., 2010; Sirohi et al., 2008; Staudacher et al., 

2011) reveal signs of efficacy following administration of the crosslinking agent, cisplatin.  
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Cisplatin crosslinks cause DNA damage by blocking the procession of transcription or DNA 

replication (Todd and Lippard, 2009).  BRCA1 is known to participate in the repair of stalled 

replication forks, and loss of this function could explain the therapeutic efficacy of cisplatin in 

these tumors (Pathania et al., 2011; Schlacher et al., 2012). However, data shown here suggest 

that a block of BRCA1 participation in transcription-associated damage control could also 

contribute to cisplatin efficacy in these tumors.  Indeed, cisplatin is also known to cause damage 

and cell death through transcription arrest (Todd and Lippard, 2009).  Thus, it is reasonable to 

speculate that cisplatin efficacy in these tumors is enhanced by simultaneously eliciting a defect 

in BRCA1-driven, transcription-associated DNA damage control.   

In conclusion, gaining a better understanding of how BRCA1 functions at sites of 

transcription-associated DNA damage with the interactors we have identified and likely other 

proteins yet to be detected may prove to be of therapeutic interest.  It could also provide 

opportunities to generate biomarkers useful in identifying subsets of breast and ovarian tumors 

that are susceptible to therapy that targets this pathway.  In addition, understanding the methods 

of BRCA1-dependent and independent repair of transcription-associated damage may be 

important in other diseases as well.  Transcription occurs constantly in all cells, even after 

terminal differentiation, such as in neuronal cells and cardiac myocytes (Zhang et al., 2008).  

Transcription-associated DNA damage may play a role in the pathogenesis of certain diseases in 

these tissues.  
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Chapter 5-Analysis of sporadic basal-like breast cancer cell lines for BRCA1 pathway 

functional defects 

 -Chapters 5 and 6 were adapted from the following manuscript: 

Title:  BRCA1 pathway function in basal-like breast cancer cells 
 
Authors:  Sarah J. Hill1,2, Allison P. Clark2, Daniel P. Silver2,3, †, and David M. Livingston1,2, †,# 
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-All writing for this chapter was done by SJH.  All experiments in this chapter were 

performed by SJH.  Allison P. Clark and Daniel P. Silver aided in the Southern blots shown in 

Figure 25.  All figures in this chapter were generated by SJH.   

Rationale 

The overall goals for the work in this chapter were to determine which known or new 

functions of BRCA1 are altered in sporadic basal-like breast cancer cells, since these cells are 

alleged to be phenocopies of BRCA1 mutant cells.   

Given the finding that BRCA1 plays a role in the response to transcription-associated 

DNA damage, and the discrepancy between the belief that sporadic basal-like cancers (BLC) 

harbor a defect in HR and the reality of current clinical trials with HR targeting drugs, we sought 

to determine what BRCA1 functional pathway(s) is/are defective in sporadic basal-like tumors.  

A major goal of this study was to determine whether sporadic BLC cells, like BRCA1 mutant 

tumor cells, are also defective in HR repair of DSBs and/or exhibit defects in other BRCA1-

dependent DNA damage repair pathways.  The answers to these questions might influence the 

application of mechanism-based approaches to sporadic BLC therapy.   

Results  

BRCA1 expression in sporadic BLC cell lines  

A collection of sporadic, BRCA1+/+ human breast cancer cell lines shown by expression 

profiling to represent the BLC subtype (Bamford et al., 2004; Elstrodt et al., 2006; Neve et al., 

2006) was analyzed, along with controls.  The controls consisted of two independently derived, 

telomerase-immortalized, normal breast epithelial cell strains, BPE and HME (Ince et al., 2007).  

Before performing assays of DNA repair proficiency in these cells, we asked whether these 
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sporadic BLC lines and the control lines express full length BRCA1 using non-quantitative, 

standardized BRCA1 IP-western analysis performed on asynchronous, undamaged cells (Figure 

18).  All sporadic BLC lines and controls expressed readily detectable full length p220 and 11b 

(Figure 18).  Thus, any HR defect observed in them cannot be attributed to a loss of BRCA1 

p220 or 11b expression.   

In addition, four BRCA1 mutant lines served as positive controls in all experiments.  Two 

of them (SUM149 and L56BRC1) have sustained nonsense mutations in BRCA1 exon 11 which 

prevent them from expressing p220 but allow them to express 11b (Figure 18).  HCC1937 

carries a classical, disease-producing BRCA1 mutation, 5382insC, in the sequence that encodes 

one of its BRCT motifs, and SUM1315 contains another classical disease-producing mutation, 

185delAG, which results in severe truncation of p220.  Thus, no readily detected BRCA1 protein 

was observed in these two lines (Figure 18).   

Evidence of post-damage DNA repair responses in nuclear foci  

The repair of DSB by HR and the repair of stalled or collapsed replication forks are 

dependent upon BRCA1-containing complexes concentrating at sites of DNA damage in a 

defined temporal order (Greenberg, 2008; Huen et al., 2010).  Thus, assessing the post-damage 

concentration of specific members of these protein complexes in IRIF by immunofluorescent 

(IF) staining can be used as an indirect, surrogate reporter of HR or stalled fork repair 

proficiency, at least up to the point of the arrival of the assayed proteins.   

HR Repair of DSBs:  To study HR, we assayed the formation or absence of post-IR 

BRCA1, Rad51, and 53BP1 nuclear foci (Figure 19A, B, C and Table 7), and all of the sporadic  
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Figure 18. Sporadic BLC cell lines express p220 and 11b:  Full length BRCA1 and the 11b 

BRCA1 isoform were immunoprecipitated from lysates of the sporadic BLC lines, normal 

controls, and BRCA1 mutant lines, using a C-terminal epitope BRCA1 antibody (sc6954).  Blots 

were performed with an N-terminal epitope BRCA1 antibody (MS110).  p220 migrates between 

the 148 and 250kDa markers and is marked by a red arrow in the molecular weight marker lane.  

11b migrates just above the 98 kDa marker and is marked by a green arrow in the molecular 

weight marker lane.  Different colored circles mark the type of line that was tested in each blot, 

and the key for the circles is shown.  Several BLC lines were blotted more than once to confirm 

the result.   

 

 

 

 

 



Figure 18 (Continued)
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Figure 19. Representative immunofluorescence results associated with different DNA 

damaging agents: A) MDA MB 231 +/-5Gy irradiation stained with H2AX and BRCA1 

antibodies 8 hours after treatment.  B) MDA MB 231 +/-5Gy irradiation stained with H2AX 

and Rad51 antibodies 8 hours after treatment.  C) MDA MB 231 +/-5Gy irradiation stained with 

H2AX and 53BP1 antibodies 8 hours after treatment.  D) MDA MB 231 four hours post 30J 

through micropores stained with BRCA1 and cyclobutane pyrimidine dimer (CPD) antibodies.  

CPDs are known to mark sites of UV damage.  Yellow arrows are placed next to a few 

representative cells in which there is co-localization.  The brightness has been increased by 20% 

and the contrast decreased by 20% using PowerPoint in every single panel to alleviate difficulties 

with the conversion of the images to PDF. 
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Table 7. Post-damage immunofluorescence results in all BLC lines and controls:  Cell lines 

were exposed to various forms of DNA damaging agents on coverslips and then stained for 

different DNA damage markers.  For gamma irradiation, one set was treated with 5Gy irradiation 

(IR) while a second, control set was not.  The cells were allowed to recover at 37°C for 8-9 

hours.  For UV treatment, cells were treated with 30J through a UV micropore filter and then 

allowed to recover for 4hr at 37°C.  A +++ in the BPE row indicates significantly more foci than 

in any other cell line.   The colored circle next to the cell line name indicates the type of cell line 

(control vs. BLC) according to the key below the table. 

 

 

 

 

 

 



Table 7 (Continued).  Post-damage immunofluorescence results in all BLC lines and controls

=Normal Breast cell Line =BRCA1 mutant cell line =BLC cell Line =ER Positive tumor cell line =HER2 amplified tumor cell line

Cell Line Post-IR BRCA1 Foci Post-IR Rad51 Foci Post-IR 53BP1 Foci Post-UV BRCA1-CPD Co-localization
BPE + +++ + +
HME + + + +
HCC38 + + + +
HCC1143 + + + +
MDA MB 157 + + + +
MDA MB 231 + + + +
MDA MB 468 + + + +
BT20 + + + +
BT549 + + + +
HS578T + + + +
HCC1937 - + + -
SUM1315 - - + -
SUM149 + + + +
L56BRC1 + + + +
MCF7 + + + +
T47D + + + +
SKBR3 + + + +
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BLC lines and controls revealed post-IR BRCA1 and 53BP1-containing foci.  While variable in 

prevalence, Rad51 foci were also regularly observed in all of these tumor cell lines.   

We chose to analyze 53BP1 foci in the sporadic BLC lines, because loss of 53BP1 

expression in BRCA1 mutant cells lead to restoration of HR in these cells (Bouwman et al., 

2010).  In cells deficient for both 53BP1 and BRCA1, DSB end excision can occur in an ATM-

dependent manner in such a way that it results in HR mediated DSB repair, despite the loss of 

BRCA1 (Bunting et al., 2010).  However, against the possibility that some or all of the sporadic 

BLC lines manifest a BRCA1-related defect in HR that is rescued by 53BP1 deficiency (Bunting 

et al., 2010), 53BP1 foci were readily detected in all sporadic BLC lines (Table 7).  This implies 

that BRCA1-driven HR function and its regulation by 53BP1 are intact in these sporadic BLC 

lines, at least, up to the point of Rad51 loading.   

IRIF formation was also analyzed in the BRCA1 mutant lines.  53BP1 foci were 

observed in all four BRCA1 mutant lines implying that any HR phenotypes observed in them are 

not due to 53BP1 loss.  In addition, BRCA1 foci were observed in both SUM149 and L56BRC1, 

the two lines that still express 11b.  These foci were absent when these lines were analyzed by 

IF using a BRCA1 antibody that recognizes an epitope in exon 11 (Figures 20, 21, and 22), and 

disappeared upon exposure to 11b-specific but not p220-specific siRNAs (Figure 23).  

Therefore, it is likely that the BRCA1 foci observed in these two lines contain 11b and lack 

p220.  Finally, Rad51 foci were observed in three of the BRCA1 mutant lines, SUM149, 

L56BRC1, and HCC1937.  Conceivably, SUM149 and L56BRC1 recruit Rad51 through 11b, 

or potentially all three lines recruit it by a BRCA1-independent route (Park et al., 2013).   
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Figures 20, 21, 22. Post-damage BRCA1 foci in 11b expressing mutant lines are not 

recognized by exon 11 specific BRCA1 antibodies:  The two BRCA1 mutant control lines 

expressing 11b but not p220 (L56BRC1- Figure 21 and SUM149-Figure 22), and a sporadic 

BLC line (MDA MB 231- Figure 20) were exposed to 5Gy gamma irradiation (IR) or no IR and 

allowed to recover for 8hr.  All cells were then stained with a C-terminal specific BRCA1 

antibody that recognizes both p220 and 11b (Supplementary Figures 20A, 21A, 22A) or an 

exon 11 BRCA1 antibody that cannot recognize 11b (Supplementary Figures 20B, 21B, and 

22B), both along with H2AX to mark DNA damage.  Yellow arrows are placed next to a few 

representative cells in which there is co-localization.  The brightness has been increased by 20% 

and the contrast decreased by 20% using PowerPoint in every single panel to alleviate difficulties 

with the conversion of the images to PDF.  
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Figures 20, 21, 22 (Continued).  Post-damage BRCA1 foci in 11b expressing mutant lines 

are not recognized by exon 11 specific BRCA1 antibodies:  The two BRCA1 mutant control 

lines expressing 11b but not p220 (L56BRC1- Figure 21 and SUM149-Figure 22), and a 

sporadic BLC line (MDA MB 231- Figure 20) were exposed to 5Gy gamma irradiation (IR) or 

no IR and allowed to recover for 8hr.  All cells were then stained with a C-terminal specific 

BRCA1 antibody that recognizes both p220 and 11b (Supplementary Figures 20A, 21A, 22A) 

or an exon 11 BRCA1 antibody that cannot recognize 11b (Supplementary Figures 20B, 21B, 

and 22B), both along with H2AX to mark DNA damage.  Yellow arrows are placed next to a 

few representative cells in which there is co-localization.  The brightness has been increased by 

20% and the contrast decreased by 20% using PowerPoint in every single panel to alleviate 

difficulties with the conversion of the images to PDF.  
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Figures 20, 21, 22 (Continued). Post-damage BRCA1 foci in 11b expressing mutant lines 

are not recognized by exon 11 specific BRCA1 antibodies:  The two BRCA1 mutant control 

lines expressing 11b but not p220 (L56BRC1- Figure 21 and SUM149-Figure 22), and a 

sporadic BLC line (MDA MB 231- Figure 20) were exposed to 5Gy gamma irradiation (IR) or 

no IR and allowed to recover for 8hr.  All cells were then stained with a C-terminal specific 

BRCA1 antibody that recognizes both p220 and 11b (Supplementary Figures 20A, 21A, 22A) 

or an exon 11 BRCA1 antibody that cannot recognize 11b (Supplementary Figures 20B, 21B, 

and 22B), both along with H2AX to mark DNA damage.  Yellow arrows are placed next to a 

few representative cells in which there is co-localization.  The brightness has been increased by 

20% and the contrast decreased by 20% using PowerPoint in every single panel to alleviate 

difficulties with the conversion of the images to PDF.  
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Figure 23. Post-Damage BRCA1 foci apparent in a BRCA1 mutant cell line able to express 

11b disappeared when the line was transfected with a 11b-specific siRNA:  The BRCA1 

mutant cell line, SUM149, expresses 11b but not p220.  It was transfected with either a control 

siRNA (siGL2) (23A), an exon 13-directed BRCA1 siRNA (23B), an exon 11-directed BRCA1 

siRNA (23C), and a 11b junction-directed siRNA (23D).  These cells were exposed to either 

5Gy gamma irradiation or mock treated, allowed to recover for 8hrs, and fixed.  

Immunofluorescence was then performed for BRCA1 with a C-terminal specific BRCA1 

antibody and for H2AX.  Yellow arrows are placed next to a few representative cells in which 

there is co-localization.  The brightness has been increased by 20% and the contrast decreased by 

20% using PowerPoint in every single panel to alleviate difficulties with the conversion of the 

images to PDF. 
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Stalled replication forks: We also assayed the cell lines for their ability to repair stalled or 

collapsed replication forks, another BRCA1 function (Pathania et al., 2011; Schlacher et al., 

2012).  This was undertaken by performing UV micropore analysis (Mone et al., 2001; Polo et 

al., 2006; Volker et al., 2001) (Figure 19D, Table 7).  In these assays, BRCA1 concentrates in 

UV-irradiated micropore territories approximately 30 minutes after UV-C exposure in a 

replication dependent manner (Pathania et al., 2011).  There it participates in the repair of 

stalled/collapsed replication forks (Pathania et al., 2011).    

In all sporadic BLC lines and controls that were tested, BRCA1 was readily attracted to 

micropore territories (Figure 19D and Table 7), implying that the role of BRCA1 in stalled fork 

repair is intact in these cell lines up to the point of its recruitment to these structures.  This does 

not mean that the function of some other BRCA1 partner in this pathway acting at the time of or 

after BRCA1 recruitment to these structures is not altered.  In such a scenario, wild type (wt) 

BRCA1 would concentrate in sites at which stalled forks are co-located, but it would still result 

in defects in the repair of stalled or collapsed forks due to loss of function of a relevant BRCA1 

binding partner.   

In contrast, no BRCA1 was observed in micropores in the BRCA1 mutant lines, 

HCC1937 and SUM1315, and only faint BRCA1 micropore staining (suspected of reflecting the 

presence of 11b) was observed in SUM149 and L56BRC1, the two p220 negative, 11b-

producing lines (Table 7). 

DNA repair analysis:  

Repair of mutagen-induced DNA damage 
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 With these data in mind, we searched for defects in the repair of DNA damage elicited by 

various mutagens.  We assayed all BLC cell lines for proficiency in the response to damage 

elicited by four, different mutagens by assessing colony formation after exposure to a range of 

doses (Figure 24).   

 To test DSB responses, we exposed the cell lines to gamma irradiation (IR) (Figure 24A).  

Half of the sporadic BLC lines were supersensitive to IR, like all BRCA1 mutant cell lines, 

suggesting the possibility of a functional defect, e.g. in a BRCA1 partner protein(s) that operates 

in DSB repair in these cells.  However, half of the sporadic BLC lines were IR-resistant, like the 

controls.  Since HR-incompetent cells are expected to be supersensitive to IR, these results 

suggested that not all of the sporadic BLC lines are defective in HR, in keeping with the above-

noted IRIF analyses of these cells.   

To test responses to interstrand cross link and stalled and collapsed replication forks, we 

exposed the cell lines to mitomycin C (MMC).  All but one of the sporadic BLC lines and all but 

one of the BRCA1 mutant lines were supersensitive to MMC (Figure 24C).  This suggests that 

these sporadic BLC lines are phenocopies of the BRCA1 mutant lines in manifesting defects in 

interstrand cross link  repair and/or the subsequent replication fork stalling they are responsible 

for.  BRCA1 contributes to such repair through multiple mechanisms (Bunting et al., 2012; 

Garcia-Higuera et al., 2001; Pathania et al., 2011; Schlacher et al., 2012; Vandenberg et al., 

2003).   

The responses to stalled and collapsed replication forks were independently tested by 

exposing the cells to UV irradiation.  Here all sporadic BLC lines were supersensitive to UV 

irradiation when compared to controls (Figure 24B).  The BRCA1 mutant lines had been  



 
 

120 
 

 

 

 

 

 

 

 

Figure 24. Sensitivity of cell lines to various DNA damaging agents: Enough cells for each 

line were plated in triplicate at a suitable density for colony formation, allowed to settle, treated 

with varying doses of different DNA damaging agents and then allowed to recover at 37°C until 

colonies became visible.  After appropriately sized colonies had grown, the colonies were stained 

with crystal violet staining solution and counted with a Microbiology International ProtoCOL 

colony counter.  IC50s for each cell line for each treatment were calculated based on the dose 

curves generated from these counts.  The average IC50s for each cell line from 2-3 experiments 

are plotted for A) gamma irradiation, B) UV irradiation, C) Mitomycin C (MMC) treatment, and 

D) Methyl Methane Sulfonate (MMS) treatment.  The color of the circle for each cell line 

represents the type of cell line as depicted in the key at the bottom of the figure. 
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previously tested for sensitivity to UV (Pathania et al., 2011), and all were found to be 

supersensitive, with IC50s similar to or less than those of all the sporadic BLC lines shown here 

(Pathania et al., 2011).   

When taken together, these and the MMC sensitivity results suggest that the sporadic 

BLC lines are phenocopies of BRCA1 mutant lines in their deficient responses to stalled 

replication fork development.  When normally executed, stalled fork repair and the suppression 

of replication stress are known BRCA1 functions (Bunting et al., 2012; Garcia-Higuera et al., 

2001; Pathania et al., 2011; Schlacher et al., 2012; Vandenberg et al., 2003).  Since the sporadic 

BLC lines that were tested lack BRCA1 mutations, failed suppression of replication stalling and 

failed repair of collapsed forks in these cells may be a product of the defective function of a 

protein(s) that is/are active in these types of repair or of a non-genetically derived alteration in 

BRCA1 function, itself.  These MMC and UV data suggest that stalled replication fork repair 

may be a commonly encountered problem in sporadic BLC lines. 

  Finally, in testing the cell lines for methyl-methane sulfonate [MMS] responsiveness, and 

thus an ability to perform base excision repair [BER], (Figure 24D), BRCA1 mutants and nearly 

all sporadic BLC lines revealed drug sensitivity similar to that of the controls.  In fact, only one 

sporadic BLC line exhibited supersensitivity.  This suggests that most of these lines are 

competent for base excision repair of MMS damage.   

In contrast, most of these sporadic BLC lines and BRCA1 mutant controls are known to 

be supersensitive to hydrogen peroxide-induced oxidative damage, which can also be repaired by 

BER among other pathways (Alli et al., 2009).  In addition, using an oxidative damage repair 

reporter, a decrease in oxidative damage repair efficiency has been observed in three of the 
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sporadic BLC lines, one of the BRCA1 mutant lines, and in a BRCA1-depleted line (Alli et al., 

2009).  Thus, loss of BRCA1 expression may result in a defect in oxidative damage-induced as 

opposed to base alkylation-induced BER (Alli et al., 2009).  Moreover, there may be a defect in 

this form of BER in certain sporadic BLC.  

Sporadic BLC lines are proficient in HR 

Given the IR sensitivity results (Figure 24A), experiments were performed to test 

whether or not the above-noted sporadic BLC lines could perform HR, using a well-established 

HR reporter that allows an assessment of the ability of a cell line in which it is integrated to 

perform HR using FACS analysis (Pierce et al., 1999).   

 Stably transfected derivatives of three of the cell lines analyzed in the above-noted 

experiments were generated, each bearing a single, integrated copy of the above-noted HR 

reporter.  One was a BRCA1 mutant line (SUM149), one an IR-resistant sporadic BLC line 

(MDA MB 231), and one an IR-sensitive sporadic BLC line (HCC38).  Multiple clones of each 

were tested by southern blotting in search of any that contained a single, integrated copy of the 

HR reporter.  One clone of each was identified (Figure 25A).  Each was then studied for its 

ability to perform HR.  

To test these cell lines for HR proficiency, we performed the above-noted HR reporter 

assay in cell lines transfected with either a firefly luciferase control siRNA (siGL2) or one of 

four, different BRCA1-specific siRNAs (Figure 25C, Table 8). To target 11b, we generated an 

siRNA targeting the unique junction sequence between the early part of exon 11, which is 

present in the 11b mRNA, and the 5’ region of exon 12 (Figure 25B).  An siRNA that targets 

exon 13 of BRCA1 was also employed.  It should deplete both full length p220 and 11b (Figure  
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Figure 25. BLC lines are HR proficient regardless of gamma irradiation sensitivity status:  

A) Southern blots were performed on multiple clones of the three cell lines used in the above 

experiments to identify a clone from each line that carries a single, integrated copy of the I-

SceI/GFP homologous recombination (HR) reporter.  Blots for the three clones used in the HR 

reporter experiments are shown here.  Based on the sequence of the reporter, we digested clonal 

genomic DNA separately with two different enzymes to assess reporter copy number.  We 

digested with HindIII which should give rise to a band of 812 base pairs and another single band 

of varying size in clones bearing a single copy of the reporter.   We also digested with StuI which 

should give a band of 2017 base pairs and another single band of varying size in clones bearing a 

single copy of the reporter.  B) Map of the target sites of the four BRCA1 siRNAs used in the 

HR experiments on p220 and 11b.  C) In the left panel, the average percentage of GFP-positive 

cells in the HR reporter assay for each cell line with each siRNA is represented in the bar graph.  

The error bars represent the standard deviation among four experiments.  In the right panel, the 

HR reporter results have been normalized to the siGL2 control for each respective day in each 

respective cell line, and the bars in the graph represent the average percent GFP-positive cells 

relative to the siGL2 control for that cell line with the error bars representing the standard 

deviation among the four experiments.  D) IP-western blotting was performed on extracts of each 

cell line transfected with each siRNA to demonstrate the efficacy of the specific isoform 

depletion of each siRNA.  IPs were performed with a C-terminal BRCA1 antibody, and the blots 

were developed with an N-terminal BRCA1 antibody so that both the p220 and 11b isoform 

could be detected.  A green arrow marks 11b and a red arrow p220.  E) Western blots were 

performed on half of the cells from one round of the HR reporter assay to demonstrate the I-SceI  
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Figure 25.  (Continued). BLC lines are HR proficient regardless of gamma irradiation 

sensitivity status:  protein levels were the same in each cell line after each siRNA treatment.  

The I-SceI that was transfected was tagged with HA.  After loading equivalent amounts of 

protein on the gel from each cell line transfected with each siRNA, the blots were stained with 

HA antibody to detect I-SceI.  Tubulin blotting was performed to show that equivalent amounts 

of protein were loaded in each lane. (B1=BRCA1, ex=exon) 
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Table 8. HR reporter data corresponding to Figure 25C:  Results from homologous 

recombination (HR) reporter assays on each cell line with each siRNA for four separate 

experiments.  On the top panel, the percentage of GFP positive cells is reported.  On the bottom 

panel the percentage of GFP positive cells relative to the siGL2 control is reported.  

(B1=BRCA1, ex=exon) 

 

 

 

 

 

 

 

 



Table 8 (Continued). HR reporter data corresponding to Figure 25C

Percent GFP-positive cells for each cell line with each siRNA for each of four separate experiments
SUM149 Day 1 Day 2 Day 3 Day 4 Average of 4 days Standard Deviation

SUM149 siGL2 0.336 0.33991 0.465 0.24689 0.346949321 0.089660661
SUM149 siB1 ex 11 #1 0.051 0.154 0.145 0.106 0.114 0.046882833
SUM149 siB1 ex 11 #2 0.165 0.23 0.33 0.31 0.25875 0.075979712
SUM149 si ∆11b junction 0.104 0.174 0.227 0.116 0.15525 0.056764866
SUM149 siB1 ex 13 0.062 0.162 0.102 0.07994 0.101486052 0.043533134

MDA MB 231 Day 1 Day 2 Day 3 Day 4 Average of 4 days Standard Deviation
MDA MB 231 siGL2 0.482 0.841 0.733 1.15 0.8015 0.276758017
MDA MB 231 siB1 ex 11 #1 0.188 0.37276 0.209 0.203 0.243191168 0.086832643
MDA MB 231 siB1 ex 11 #2 0.034 0.18309 0.198 0.137 0.138022069 0.074049422
MDA MB 231 si ∆11b junction 0.364 0.671 0.585 0.802 0.6055 0.184069733
MDA MB 231 siB1 ex 13 0.033 0.139 0.07 0.119 0.09025 0.047926158

HCC38 Day 1 Day 2 Day 3 Day 4 Average of 4 days Standard Deviation
HCC38 siGL2 2.0464 1.43826 2.353 2.50525 2.085726817 0.471941768
HCC38 siB1 ex 11 #1 0.458 0.385 0.512 0.42393 0.444731678 0.053857205
HCC38 siB1 ex 11 #2 0.622 0.425 0.905 0.61485 0.641712031 0.197817165
HCC38 si ∆11b junction 1.98 1.395 2.152 2.65274 2.044935959 0.518821277
HCC38 siB1 ex 13 0.484 0.47 0.862 0.78409 0.650023291 0.202386573

Percent GFP-positive relative to the siGL2 transfection for each cell line with each siRNA for each of four separate experiments
SUM149 Day 1 Day 2 Day 3 Day 4 Average of 4 days Standard Deviation

SUM149 siGL2 100 100 100 100 100 0
SUM149 siB1 ex 11 #1 15.1786 45.3066 31.1828 42.9339 33.65047371 13.77616905
SUM149 siB1 ex 11 #2 49.1071 67.6657 70.9677 125.561 78.32551109 32.92776246
SUM149 si ∆11b junction 30.9524 51.1906 48.8172 46.9843 44.48611456 9.185335681
SUM149 siB1 ex 13 18.4524 47.6602 21.9355 32.3804 30.10710683 13.11344285

MDA MB 231 Day 1 Day 2 Day 3 Day 4 Average of 4 days Standard Deviation
MDA MB 231 siGL2 100 100 100 100 100 0
MDA MB 231 siB1 ex 11 #1 39.0041 44.324 28.513 17.6522 32.37331592 11.80961034
MDA MB 231 siB1 ex 11 #2 7.05394 21.7703 27.0123 11.913 16.93739252 9.088216902
MDA MB 231 si ∆11b junction 75.5187 79.786 79.809 69.7391 76.21319395 4.764116973
MDA MB 231 siB1 ex 13 6.84647 16.5279 9.5498 10.3478 10.81800935 4.090879335

HCC38 Day 1 Day 2 Day 3 Day 4 Average of 4 days Standard Deviation
HCC38 siGL2 100 100 100 100 100 0
HCC38 siB1 ex 11 #1 22.3808 26.7684 21.7595 16.9215 21.95754929 4.030041933
HCC38 siB1 ex 11 #2 30.3949 29.5495 38.4615 24.5424 30.73709044 5.761036661
HCC38 si ∆11b junction 96.7555 96.9919 91.4577 105.887 97.77315153 5.982563043
HCC38 siB1 ex 13 23.6513 32.6783 36.6341 31.298 31.06543338 5.435497527
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25B).  Finally, we employed two exon 11-specific siRNAs that depleted p220 but not 11b 

(Figure 25B).   

IP-western blot analyses obtained with extracts of each of these single copy HR reporter-

containing clones showed that these siRNAs deplete the predicted BRCA1 isoforms (Figure 

25D).  The slight depletion of 11b in the MDA MB 231 clone observed with the exon 11 

siRNA #1 is likely due to slowing of the cell cycle caused by depletion of p220 and not an off 

target effect of the siRNA.  Thus, with this possible exception, the siRNAs deplete the 

appropriate BRCA1 isoforms.   

BRCA1 siRNAs were employed in these experiments for multiple reasons.  First, 

BRCA1 is a physiological contributor to normal HR function (Li and Greenberg, 2012; Silver 

and Livingston, 2012; Walsh and King, 2007).  Hence its depletion should result in a loss of HR 

capacity, if a given cell line can perform this function (Moynahan et al., 1999; Scully et al., 

1999).  Hence, in these experiments, BRCA1 depletion served as a positive control, employed to 

determine whether any GFP signals that were observed were a product of HR function.  Second, 

using BRCA1 siRNAs made it possible to determine whether or not any HR activity that was 

measured in a reporter cell line was BRCA1-dependent.  Finally, four, different BRCA1 siRNAs, 

each targeting a different region of the BRCA1 mRNA were employed (Figure 25B) to 

determine which isoform- p220, 11b, or both- was responsible for any HR activity that was 

observed in a given cell line.  This question was particularly relevant for SUM149, which 

expresses the 11b but not the full length p220 isoform.  IRIS does not concentrate in post IR-

foci or bind BARD1, both HR-associated properties (ElShamy and Livingston, 2004).  

Therefore, it is not believed to be involved in HR and was not tested here. 
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In the HR analyses that were performed, it was not possible to compare, even semi-

quantitatively, the HR functionality of the three lines that were tested.  This is because the I-SceI 

driven HR reporter was integrated at different genomic sites in each cell line and because the cell 

lines are not isogenic.  However, these considerations should not nullify the validity of an 

internal comparison within each cell line of I-SceI driven GFP production measured before and 

after BRCA1 depletion.   

The results of the HR assay were presented as both the percent GFP-positive cells for 

each cell line as well as the percent GFP-positive cells relative to the siGL2 control for that line 

to facilitate their interpretation (Figure 25C, Table 8).   

To control for variability in transfection efficiency of I-SceI, standardized western 

blotting for I-SceI was performed in conjunction with the HR assay (Figure 25E).  I-SceI levels 

were relatively uniform in each cell line and were unaffected by the various BRCA1-directed 

siRNA treatments (Figure 25E).  Thus, any differences in percent GFP- positive cells within a 

single cell line among the different siRNA transfections were not a product of varying 

transfection efficiency and/or I-SceI expression level.  In initial experiments, we also co-

transfected mCherry with the I-SceI and only scored mCherry positive cells in the FACS, also to 

control for transfection variability.  There, too, the results were similar regardless of mCherry co-

transfection (data not shown).   

As shown in Figure 25C (for other related results, see Table 8), the SUM149 HR 

reporter-containing clone, which synthesizes 11b and not p220, exhibited measurable BRCA1-

dependent HR function.  When the line was transfected with the exon 13 siRNA, which depletes 

both p220 and the 11b BRCA1 isoform, or with the 11b-specific junction siRNA, the 
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percentage of GFP positive cells decreased, reflecting the presence of  BRCA1 gene product-

dependent HR in this line.  As expected, one of the exon 11 siRNAs [#2] had no effect on HR 

activity in this line while the other [#1] caused a decrease.  In light of the junction siRNA effect 

and the lack of effect of exon 11 siRNA #2, one can argue that SUM149 HR activity is 11b 

dependent.  Given the HR-suppressing effect of the other exon 11 siRNA [#1], it is conceivable 

that a yet undetected, alternatively spliced BRCA1 mRNA is expressed in these cells and its 

product contributes to the observed HR function.  Alternatively, HR suppression by this siRNA 

species represents an off-target effect. 

 Among sporadic BLC HR reporter-containing lines, MDA MB 231, which was relatively 

IR-resistant (Figure 24A), appeared to be HR-proficient.  When this line was transfected with 

each of the exon 11 specific siRNAs or the exon 13 siRNA that depletes both isoforms, HR 

proficiency decreased significantly (Figure 25C, Table 8).  In contrast, the 11b specific junction 

siRNA had no effect (Figure 25C, Table 8).  Thus, this line appears to perform HR in a p220-

dependent manner.   

 HCC38 cells were supersensitive to IR (Figure 24A), but they yielded a significant 

percentage of GFP positive cells after siGL2 transfection and a decreased percentage of GFP 

positive cells after exposure to either of the exon 11 siRNAs or the exon 13 siRNA (Figure 25C, 

Table 8).  Like MDA MB 231 cells, its HR signal was unaffected by the 11b junction-specific 

siRNA (Figure 25C, Table 8).  Thus, although it is supersensitive to IR, HCC38 is HR-proficient, 

and it too performs HR in a p220-dependent manner.   

Taken together, these results strongly suggest that, in cells lacking a BRCA1 mutation 

(Bamford et al., 2004; Elstrodt et al., 2006), p220 is responsible for HR, but in cells only able to 
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express 11b, the 11b isoform is, itself, capable of performing HR.  In addition, these results 

and those described earlier collectively suggest that the multiple sporadic BLC lines tested, 

regardless of their IR sensitivity, are each HR-proficient and, where tested, this DNA repair 

function is BRCA1 gene product-dependent.   
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Chapter 6-Discussion of BLC results  

-All writing in this chapter was performed by SJH. 

The work in chapter 5 was performed on a subset of human breast cancer cell lines that 

collectively represent the BLC subtype (Neve et al., 2006).  The results fail to support the 

hypothesis that, as a general matter, sporadic BLCs exhibit an HR defect and, therefore, are valid 

phenocopies of BRCA1 mutant tumors in this regard.  Rather, they suggest that other BRCA1-

related DNA repair defect(s) exist in significant numbers of sporadic, BRCA1 wt, BLCs.  

Specifically, these defects affect the responses of cells to stalled and collapsed replication forks 

(Bunting et al., 2012; Garcia-Higuera et al., 2001; Pathania et al., 2011; Schlacher et al., 2012; 

Vandenberg et al., 2003).  These data are supported by the results of recent clinical trials and 

retrospective studies of this tumor subtype (Chew et al., 2009; Hurley et al., 2013; Silver et al., 

2010; Sirohi et al., 2008; Staudacher et al., 2011), and it suggests that therapeutic strategies 

aimed at inducing replication stress in tumor cells may be useful in this tumor type.   

In keeping with this notion, PARP inhibitors, the toxicity of which relies on tumor cells 

exhibiting an HR defect (Farmer et al., 2005; Helleday, 2011; Murai et al., 2012), have been of 

particular interest.  These agents have been tested in a wide variety of tumors, but they have been 

most promising in the clinic in the therapy of both BRCA1 and BRCA2 mutant breast and 

ovarian tumors (Fong et al., 2009; Gelmon et al., 2011; Liu et al., 2013), as well as in certain 

sporadic ovarian cancers (Gelmon et al., 2011; Liu et al., 2013).  The notion that sporadic BLCs 

manifest a defect in HR and the success of these agents in BRCA1 mutant tumors has spurred 

clinical trials with PARP inhibitors in sporadic BLC.  However, clinical trials of PARP inhibitors 

in sporadic BLC have failed both as single agents (Fong et al., 2009; Gelmon et al., 2011) and 
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when PARP inhibitors were combined with other drugs (Liu et al., 2013).  We did not test our 

cell line panel for PARP inhibitor sensitivity, because most of the cell lines along with others 

representing different subtypes had already been tested for sensitivity to two different PARP 

inhibitors (Pierce et al., 2013).  The results showed that sensitivity did not depend upon subtype 

or BRCA1 status (Pierce et al., 2013).  These results, taken together with the lack of an HR 

defect in sporadic BLC cell lines observed in our results, may help to explain why PARP 

inhibitors have failed in the therapy of sporadic BLCs.  In contrast, we did not test any ovarian 

cancer cell lines for HR proficiency, but, based on the PARP inhibitor trial results, this may be 

informative.   

 In contrast, clinical trials and retrospective studies examining the efficacy of the 

interstrand cross link-inducing and subsequent replication fork-stalling drug, cisplatin, have been 

successful in BLC (Chew et al., 2009; Hurley et al., 2013; Silver et al., 2010; Sirohi et al., 2008; 

Staudacher et al., 2011), and results presented here suggest a mechanism that underlies this 

success.  These data reveal that all of the sporadic BLC lines tested were supersensitive to an 

interstrand cross link-inducing agent and UV irradiation (Figure 24), both of which ultimately 

give rise to stalled and collapsed replication forks.  Moreover, BRCA1 participates in the repair 

of stalled and collapsed replication forks (Bunting et al., 2012; Garcia-Higuera et al., 2001; 

Pathania et al., 2011; Schlacher et al., 2012; Vandenberg et al., 2003).  In addition, BRCA1 

mutant cell lines proved to be supersensitive to agents that cause stalled replication forks such as 

MMC, cisplatin, and UV (Bhattacharyya et al., 2000; Pathania et al., 2011).   

 Given these findings, we propose that sporadic BLCs are phenocopies of BRCA1 tumors 

in manifesting a defect in various forms of stalled and collapsed replication fork repair (Bunting 
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et al., 2012; Garcia-Higuera et al., 2001; Pathania et al., 2011; Schlacher et al., 2012; 

Vandenberg et al., 2003).  However, they do not appear to be uniformly defective in HR.  These 

considerations suggest that pursuing agents which elicit replication fork stalling through a 

mechanism that threatens BLC survival because of their inability to repair it represent rational 

therapeutic strategies in sporadic BLC.   

 In addition, there may be a role for 11b in HR.  We have confirmed that 11b is 

recruited to post-gamma irradiation damage foci (Table 7, Figures 20-23) (Huber et al., 2001), 

which suggests that 11b concentrates in a suitable nuclear location to participate in HR 

function.  In addition, a BRCA1 mutant cell line that expresses 11b and not p220 exhibited a 

measurable level of 11b-driven HR in an HR reporter assay.   

 These data are supported by work in model organisms.  11b is the only BRCA1 isoform 

expressed in C. elegans, and it and the C. elegans BARD1 ortholog appeared to trigger DNA 

damage repair in that organism (Boulton et al., 2004).   In addition, in HR reporter-bearing 

mouse ES cells in which p220 but not 11b is deleted, HR levels were still detectable, 

suggesting that 11b is an HR contributor in this setting an observation that has also been made 

by others (DelloRusso et al., 2007; Moynahan et al., 1999; Moynahan et al., 2001; Westermark 

et al., 2003).    

The importance of this finding is highlighted by observations in patients and model 

organisms.  Mice that only express 11b in a p53 heterozygous setting developed normally but 

exhibited early onset breast tumors (Xu et al., 2001b).  Similarly, a patient with a bi-allelic 

mutation at the BRCA1 locus still expressing intact 11b but not p220 exhibited multiple 

developmental abnormalities and was diagnosed with early onset ovarian cancer (Domchek et 
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al., 2013).  Taken together, these results suggest a scenario in which 11b expression, in the 

absence of p220, generates enough BRCA1 DNA repair function, manifest at least in part 

through HR, to prevent embryonic lethality.  However, it does not generate enough other 

BRCA1 function to prevent embryonic development defects and BRCA1-related tumorigenesis.  

If validated, this would further imply that, even if it is required to suppress breast and ovarian 

cancer development, its HR function is insufficient to do so alone. 

 In summary, the results of this study demonstrate that tumor cell lines derived from a 

number of sporadic BLC (Neve et al., 2006) are BRCA1 mutant breast cancer cell phenocopies 

with respect to a subset of BRCA1 functions that direct the repair of stalled and collapsed 

replication forks (Bunting et al., 2012; Garcia-Higuera et al., 2001; Pathania et al., 2011; 

Schlacher et al., 2012; Vandenberg et al., 2003).  These findings are consistent with successes 

observed in clinical trials (Chew et al., 2009; Silver et al., 2010) and retrospective studies 

(Hurley et al., 2013; Sirohi et al., 2008; Staudacher et al., 2011) of cisplatin in sporadic BLC and 

support efforts to adapt a state of increased, BLC-specific replication stress to its therapy. 
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Chapter 7-Conclusion 

-All writing in this chapter was performed by SJH. 

 The work in this thesis focused on identifying new functions for BRCA1, on better 

understanding known functions, and on attempting to identify the functional pathways to which 

BRCA1 contributes that are defective and thus possibly therapeutic targets in BRCA1 mutant 

and sporadic BRCA1-like cancers.    

 Through a dual Y2H/TAP-MS screening effort we expanded the BRCA1 interactome. 

This was a particularly useful exercise, because there is still not a definitive list of known 

BRCA1 interactors available, despite multiple attempts at defining new interactors (Pujana et al., 

2007; Wang et al., 2000; Woods et al., 2012).  In assessing the quality of our dataset, we tried to 

ask how many known BRCA1 interactors we detected, and we found that 25 of the 147 hits from 

the dual screening effort had been detected as physical interactors in previous screens for 

BRCA1 protein binding partners (Pujana et al., 2007; Wang et al., 2000; Woods et al., 2012).  

This suggested that many of our hits may prove to be physiological interactors of BRCA1.  In 

addition, the hits from our screen can now be taken together with the hits of other similar screens 

as a list of known BRCA1 interacting proteins. 

 In addition, the work also highlighted new groups of BRCA1 interacting partners that aid 

in some of the known and also in a new BRCA1 function.  Among such associations, the screen 

revealed that BRCA1 interacts with multiple proteins involved in transcription and transcription-

associated DNA damage.  This led us to investigate whether BRCA1, perhaps along with some 

of those interactors, plays a role in that process.   
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 We demonstrated that cells depleted of BRCA1 become more sensitive to transcription-

arresting agents that cause DNA damage and that the DNA damage caused by those agents is 

exacerbated upon BRCA1 depletion.  These findings indicate a role for BRCA1 in the prevention 

or repair of transcription-associated DNA damage.  We validated the physiological interaction 

between BRCA1 and multiple transcription-associated hits from our screen by demonstrating 

genetic interactions between BRCA1 and TCEA2, TCEANC, SETX, and TONSL.  These 

interactions supported the hypothesis that BRCA1 participates in transcription-associated DNA 

damage repair and also suggest multiple mechanisms through which it might do so.  The 

identities of these proposed mechanisms are based on already known functions of the interactors.   

 Upon in depth analysis of the BRCA1-TONSL complex, we also found that BRCA1 

interacts genetically with the TONSL-interacting FACT complex, which consists of SSRP1 and 

SUPT16H.  This was interesting because FACT participates in chromatin remodeling during 

transcription to allow a transcription complex to move through DNA without interrupting its 

epigenetic signature (Reinberg and Sims, 2006).  Based on additional results, we hypothesized 

that a FACT-TONSL-BRCA1 complex participates in repairing transcription-associated DNA 

damage after UV treatment.  This was supported by the fact that, after UV irradiation, BRCA1 

concentrates at sites of transcription-associated DNA damage.   

 Finally, we demonstrated that proteins engaged in this new functional pathway and some 

of the BRCA1 interactors from the screen are potentially important in tumorigenesis.  We found 

that multiple hits from the screen exhibited altered expression levels in breast and ovarian tumors 

that are associated with bad clinical outcomes.  In addition, we found that multiple hits from the 

screen, including a number of the transcription-associated proteins map to amplification or 
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deletion regions in breast, ovarian, and across 11 different tumor types.  This suggests that some 

of the hits are also cancer genes.   

 The new role for BRCA1 in transcription-associated DNA damage identified by the 

screen may be clinically relevant.  As previously stated, some of the hits may be the products of 

cancer genes, since our analysis mapped many of them, including some of the transcription-

associated hits, to both amplification and deletion regions across multiple different cancer types.  

Also, the cross-linking agent cisplatin is effective in the therapy of some patients with sporadic, 

BRCA1-like basal-like breast cancer; and this success may be due to a defect in the ability of 

these cancer cells to repair transcription-associated DNA damage, one form of damage generated 

by cisplatin (Todd and Lippard, 2009).  Further analysis must be performed to determine whether 

it is transcription-associated DNA damage repair, stalled fork repair, or both that are defective in 

these tumors.   

 In addition to the above-noted findings, the bipartite, complementary screening method 

and the approaches used to validate key results of it proved to be especially valuable.  Hence, 

they may prove to be relevant to other such interaction screens. 

 While the overlap in hits detected in the two screening processes was small, it was 

meaningful, given results of previous screens of this nature (Rozenblatt-Rosen et al., 2012).  It is 

not surprising that there were only three overlapping proteins between the two screening 

modalities since the two methods ask different questions and each has different limitations.  The 

Y2H screen can only detect direct interactions that do not require post-translational 

modifications to either interactor, and it is limited to the library with which one is screening (in 

our case, a library of approximately 15,000 human open reading frames).  The Y2H could miss 
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certain interactions detected in a TAP-MS screen, because those interactions may require post-

translational modifications, may be indirect, or may involve complexes containing 

BRCA1/BARD1 and a protein or isoform of a protein not represented in the ORFeome library 

we screened.  In contrast to the Y2H method, the TAP-MS method detects interactions between 

large complexes of proteins that may be indirect and may rely on either post-translational 

modifications or perhaps linking structures like chromatin to facilitate the interaction.  These 

possibilities cannot be detected by Y2H.  However, the TAP-MS method does not reveal whether 

or not an interaction is direct, as the Y2H does.  These limitations explain the lack of overlap 

between the screens but also point out the value of performing a dual screen. 

 Despite the small overlap, the low number of overlapping hits detected amidst a relatively 

large number of total hits from the two screening approaches highlighted multiple benefits of 

performing a combined Y2H and TAP-MS screen.  First, it demonstrated that large numbers of 

non-overlapping new interactors involved in similar functions could be identified at the same 

time by both methods, highlighting the fact that utilizing two screening methods at once can be 

helpful in identifying a greater number of unique interactions.  In addition, the fact that there 

were sizable numbers of hits, including some of the overlapping interactors, that were engaged in 

a common set of transcription-associated functions led us to hypothesize and investigate a new 

functional role for BRCA1 in DNA damage responsiveness and repair.  The genetic and cell 

biological evidence reported here strongly supports this hypothesis, namely that BRCA1 operates 

in response to defective transcription and transcription-associated events that give rise to DNA 

damage.    
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 We employed a genetic assay to validate some of the hits from the screen.  We chose this 

approach because a) many of our interactors were difficult to co-immunoprecipitate as 

endogenous polypeptides, and b) for some there was a lack of commercially available antibodies.  

Genetic approaches based upon synthetic lethality obtained in cells rendered heterozygous for 

one or more putative interacting proteins may be a useful way to validate protein-protein 

interactions in the future which is often a difficult goal to achieve using traditional methodology, 

and, even when successful, may not allow one to know that a given interaction is physiologically 

relevant.  Genetic approaches can provide physiological insights, if suitably designed. 

 The results from the genetic interaction assays and also the DRB and alpha-Amanitin 

sensitivity testing in this thesis suggest that BRCA1 depletion is synthetically lethal in 

combination with halting of transcription or loss of function of one of the six genetic interactors.  

We have suggested that this is because BRCA1 operates in the repair of transcription-associated 

DNA damage by functioning in mechanistically similar ways as its genetic interactors or at least 

by recruiting those interactors to sites of transcription-associated DNA damage.  However, one 

must be careful when making such an assessment of genetic results, since it is entirely possible 

that it is the BRCA1 function in HR and/or another DNA repair process that is synthetically 

lethal in combination with halting of transcription or loss of function of certain transcription-

associated proteins.   

 An important aspect of the future work resulting from this screen will be in studying the 

mechanism(s) by which BRCA1 participates at sites of transcription-associated DNA damage.  

To ascertain whether or not the role of BRCA1 in HR is important at these sites, it will be 

necessary to test whether or not co-depletion of both BRCA1 and 53BP1 can rescue the 
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sensitivity of BRCA1 depleted cells to DRB or alpha-Amanitin.  Depleting 53BP1 in BRCA1 

depleted cells rescues the HR defect observed in these cells (Bouwman et al., 2010).  Thus, if 

53BP1 depletion rescues the DRB or alpha-Amanitin sensitivity in BRCA1 depleted cells, this 

would suggest that it is the role of BRCA1 in HR that helps repair transcription-associated DNA 

damage and not a role in repair that is unique to transcription-associated DNA damage sites. 

 It is likely that there will be some role for HR in the repair of transcription-associated 

DNA damage.  However, it is also possible that BRCA1 plays a role in multiple aspects of the 

repair.  Since BRCA1 is known to interact with RNA Polymerase II, it is possible that BRCA1 is 

recruited to active transcription complexes that have stalled at difficult to transcribe templates or 

sites of damage, that have collapsed, or that have been paused long enough for stabilization of an 

R-loop.  Once recruited to these sites, BRCA1 may recruit different protein binding partners, 

such as SETX, TCEA2, TONSL, or FACT to help deal with various aspects of overcoming the 

obstacle or break or simply repairing the break.  It will be important to establish an order of 

arrival at transcription-associated DNA damage sites for these proteins in the future, as well as 

any others identified in the dual screening effort.  It will also be important to determine which, if 

any, BRCA1 HR repair machinery is recruited to these sites.   

 Generating a transcription reporter plasmid in which a single break or obstacle to 

transcription can be generated and easily detected by ChIP would be useful in this regard.  One 

could follow the temporal and proximal binding dynamics of BRCA1, DNA damage response 

proteins, and transcription-related proteins at these sites in a quantitative and temporal manner by 

ChIP.   
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 In addition to studying BRCA1 function at transcription-associated sites of DNA damage, 

it will also be important to study what other proteins are important in the repair or prevention of 

this type of damage.  One approach to defining such proteins would be to perform an siRNA 

screen in cells exposed to a sub-lethal dose of DRB or alpha-Amanitin and determine which 

depletions lead to cell death in this setting.  This may suggest new protein partners important in 

this type of repair and also may define new pathways associated with this type of DNA damage.  

It may also help to define therapeutic targets relevant in specifically treating tumors with defects 

in this type of repair.   

 In the second part of my work, multiple breast cancer cell lines were employed to search 

for the presence of any BRCA1 DNA damage response pathway defects present in sporadic BLC 

cells.  The prevailing hypothesis was that, given the similarity to BRCA1-/- breast cancer, an HR 

defect would exist in some if not most BLC cancers.  However, based on the results of our 

sensitivity screening and HR reporter assays, it appears that sporadic BLC lines are often 

competent for HR but defective in the repair of DNA damage generated by crosslinking agents 

and UV.   

 Crosslinking agents like MMC and cisplatin can arrest both transcription and DNA 

replication generating DNA damage by both methods (Todd and Lippard, 2009) as can UV 

damage.  BRCA1 was known to be involved in the repair of stalled replication forks prior to this 

work (Pathania et al., 2011; Schlacher et al., 2012).  Therefore, it is possible that sporadic BLC 

exhibit a defect in stalled fork repair.  However, crosslinking agents and UV also cause 

transcription arrest and may give rise to transcription-associated DNA damage.  We have 

identified a role for BRCA1 in this process, and thus at least some sporadic BLC may exhibit a 
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defect in this process.  If so, some of those tumors should, in principle, be sensitive to DNA 

crosslinking agents, which clinical trials reveal is the case.  The pathways responsible for the 

sensitivity must be studied further to test this hypothesis and determine whether it is clinically 

relevant.    

 Thus far, the BLC data is consistent with the results of current clinical trials.  The fact 

that sporadic BLC do not harbor an HR defect fits with the finding that PARP inhibitors, drugs 

that rely on an HR defect for efficacy, have failed in trials of sporadic BLC (Fong et al., 2009; 

Gelmon et al., 2011; Liu et al., 2013).  Our finding that sporadic BLC likely harbor a defect in 

stalled replication fork repair or transcription-associated DNA damage repair fits with the finding 

that some cases of sporadic BLC respond well to treatment with cisplatin (Chew et al., 2009; 

Hurley et al., 2013; Silver et al., 2010; Sirohi et al., 2008; Staudacher et al., 2011), which causes 

these types of damage (Todd and Lippard, 2009).   

 An important aspect of future work on this project will be to determine whether sporadic 

BLC harbor a defect in stalled replication fork repair, transcription-associated DNA damage 

repair, or both.  Determining whether or not the panel of sporadic BLC lines is super-sensitive to 

alpha-Amanitin would suggest that the lines harbor a defect in repairing the type of DNA 

damage caused by this agent.  If a subset of sporadic BLC cell lines are sensitive to alpha-

Amanitin, it would be important to test the ability of those lines to restart transcription after 

various forms of DNA damage.  This would allow one to be certain that the sensitivity to alpha-

Amanitin was not due to a defect in repairing replication forks stalled by halted transcription.  

This could be achieved by staining for EdU nucleotide incorporation, which is specific to 

transcription, at various timepoints after UV damage or other forms of damage, which is an 
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effective method of studying transcription restart (Dinant et al., 2013).  If some of the lines 

exhibit defects in repairing transcription-associated damage, it will be important to determine 

what the mechanistic defect is and whether or not this is a therapeutic target. 

 Determining the mechanism of the defect in sporadic BLC will be important regardless of 

whether it is in transcription- or replication-associated repair.  In addition to the above 

experiments, it may be interesting to perform siRNA screens on a subset of the sporadic BLC 

lines and controls in the setting of cisplatin or alpha-Amanitin treatment in an attempt to 

determine which proteins or pathways make these lines exquisitely sensitive to these agents.  

This may be important in generating relevant targeted therapies that are directed against specific 

functional pathways or even specific proteins in these types of tumors. 

 Overall, the work reported in this thesis has identified a new BRCA1 functional pathway 

and potentially new cancer genes associated with it.  These insights are based, in part, upon the 

genetic interactions detected between BRCA1 and relevant interactors in the screen.  In addition, 

the work has shown that the prevailing hypothesis regarding a common/universal HR defect in  

sporadic BRCA1-like breast cancers is not correct.   Rather, at least some of these cancers are 

defective in repairing DNA damage caused by interstrand crosslinks and/or in the repair of 

stalled replication forks and transcription complexes.   

 Gaining a better understanding of how stalled forks and halted transcription-associated 

damage are repaired by BRCA1 could lead to specific targeted therapies for this type of breast 

cancer.   It could also lead to relevant biomarkers and somatic genetic mutation associations with 

this type of breast cancer.  Finally, gaining a better understanding of transcription-associated 

DNA damage and its repair in general may be important in non-neoplastic diseases, as well.  
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This type of damage also occurs in G0 cells, such as axon-bearing cells in the CNS, cells of the 

myocardium, etc.  Hence it might prove to be associated with the pathogenesis of certain 

diseases that affect these cell types. 
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Appendix 

Materials and Methods for chapters 2-4 

-All writing in this section was performed by SJH.  Thomas Rolland assisted in the statistics 

sections, and Guillaume Adelmant assisted in the mass spectrometry section. 

Statistics:  All statistics were computed using the R software unless otherwise stated (R Core 

Team. R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria, 2013).  Calculations specific to each assay will be described with 

the assay below. 

 

Yeast two-hybrid (Y2H) screen: 

Generation of BRCA1 open reading frame clones: The full-length and ten selected 

fragments of the BRCA1 (p220) open reading frame (ORF) were generated by PCR from a 

sequenced p220 cDNA and cloned using Gateway recombinational cloning (Rual et al., 2004). 

Preparation of Y2H bait and prey libraries: All BRCA1 ORFs were transferred into 

Y2H destination vectors pDEST-AD-CYH2 by Gateway recombinational cloning (Life 

Technologies) to generate Gal4 activation domain hybrid proteins (AD-ORFs). BRCA1 could 

only be screened as prey, because the BRCT domains render BRCA1 an autoactivator. The 

collection of ~15,000 ORFs of the human ORFeome v5.1 was previously transferred into the 

Y2H destination vector, pDEST-DB, to generate Gal4 DNA binding domain hybrid proteins 

(DB-ORFs) (Dreze et al., 2010). The opposite orientation was not tested since BRCA1 ORFs 

were found to be autoactivating when fused to the DB domain. 
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Y2H screen: All BRCA1 full length and fragment AD-ORFs were pooled and screened 

against each DB ORF, as described previously (Dreze et al., 2010).  Two, independent screens 

were performed, and a mix of colonies was picked from each growth spot to account for multiple 

interactions involving different AD-ORFs, a result of the pooling strategy. We performed PCR 

amplification of each primary positive colony, and PCR amplicons were Sanger sequenced 

individually.  Sequencing reads were matched to the hORFeome v5.1 database and to BRCA1 

ORFs, using BLASTN with default parameters.  The e-value cutoff was set to 1 × 10-15, and the 

ORFs were assembled into Interacting Sequence Tags (ISTs).  For each IST found, all 

combinations of each BRCA1 AD-ORF and the identified hORFeome v5.1 DB-ORF were 

considered and subjected to verification. 

Y2H verification: Each candidate primary hit was verified multiple times by individual 

pair-wise retesting to obtain the highest possible quality (Dreze et al., 2010).  Each primary hit 

was retested either in single pairwise retest screens or in high-throughput screens as 

quadruplicates.  The individual pairwise retests were performed multiple times, and interactors 

had to appear in a retest in order to be considered positive.  For the quadruplicates, only those 

found positive in at least three out of the four independent replicates were considered positive. 

To confirm identity of the verified interactors, positive colonies were picked and processed for 

Sanger sequencing and aligned to the corresponding ORFs as described above. 

Filtering the Y2H results: Three proteins were not found to interact with the full-length 

BRCA1 protein but with products of non-overlapping fragments of the BRCA1 ORF.  They 

were, therefore, removed from the list of positive BRCA1 interactors. 
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Cell Culture:  U2OS, HeLa S3, and 293FT cells were cultured in DMEM containing 10%FBS 

and 1%PenStrep.  Selective antibiotics were added as described in the various assays below.  

HCC38 cells were cultured in ATCC RPMI 1640 (ATCC Cat. #30-2001) with 10%FBS and 

1%PenStrep.  The BRCA1 stably transduced HCC38 cell line was cultivated in Blasticidin 

(2.5ug/mL)-containing medium.    

 

Packaging and Infection of FLAG-StrepTactin-BARD1 and other retroviral cDNAs:  

TONSL and MAP3K14 were cloned into a retroviral expression vector, MSCV HA-FLAG-puro 

(a gift from Wade Harper), via Gateway cloning (Life Technologies).  Full length BARD1 

cDNA was cloned into the pSTR-N-IL2R vector.  Plasmids were packaged into retroviruses 

using standard packaging plasmids (HDM.G and pMD.MLV) by co-transfection into 293FT 

cells using Polyfect (Qiagen Cat. # 301105).  Cells were infected with virus and selected for 

infection 48 hours later.   For the pSTR-N infections, the cells were sorted three times after 

infection using IL2R antibody (Millipore 05-170)-coated magnetic beads (Life Technologies 

Cat. # 11033).  For the MSCV-HA-FLAG infections, cells were selected by adding 1ug/mL 

puromycin to the media. 

 

Tandem Affinity Purification and MS: Nuclei were harvested from 30x15cm plates of pSTR-

N-vector or pSTR-N-BARD1 containing HeLa S3 cells by dounce homogenization.   

All buffers described in the remainder of the protocol contained Roche EDTA Free 

Protease Inhibitor (Roche Diagnostics 11 836 170 001) and a phosphatase inhibitor (Sigma 

P0044).  The nuclei were lysed at 4°C in buffer containing 150mM NaCl, 50mM Tris-HCl pH 
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7.5, 1mM EDTA, 0.5% NP40, and 10% glycerol.  The lysate from this step was saved and used 

as the soluble nuclear fraction.  The pellet was digested with micrococcal nuclease (Roche 

Diagnostic 10107921001).  For this digest, the pellet was first resuspended, by pipetting up and 

down multiple times, in micrococcal nuclease buffer (MNase buffer) containing 20mM Tris-HCl 

pH 7.5, 100mM KCl, 2mM MgCl2, and 1mM CaCl2.  It was then pelleted in a microcentrifuge 

at maximum speed at 4°C.  The pellet was then resuspended in MNase buffer containing 

micrococcal nuclease at 3 units/uL.  Digestion was carried out with constant vortexing at room 

temperature for 30 minutes.  The solubilized chromatin was diluted 1:2 in 2X StrepTactin IP 

buffer (300mM NaCl, 100mM Tris-HCl pH 8.0, 2mM EDTA, 0.1% NP-40, and 20% glycerol) 

and shaken at 4°C for 30 minutes.  This extract was pelleted by spinning at 4°C in a 

microcentrifuge for 10 minutes at maximum speed.  The lysate from this digest was used as the 

chromatin fraction.   

TAP was carried out on both the soluble nuclear and chromatin fractions as follows.  The 

various lysates were incubated with M2 FLAG beads (Sigma A2220) for 4 hours at 4°C.  The 

lysate was removed from the beads and the beads were washed twice in the lysis buffer described 

above and a third time in StrepTactin IP buffer (150mM NaCl, 50mM Tris-HCl pH 8.0, 1mM 

EDTA, 0.05% NP40, and 10% glycerol).  Proteins were then eluted from the beads by two 

sequential 30 minute incubations with FLAG peptide (Sigma F3290) dissolved in StrepTactin IP 

buffer.  The elutions were performed while shaking the sample at 4°C.  The eluates were 

combined and passed through a centrifuge filter tube (Millipore Cat. #UFC30HV00) prior to the 

next IP.  The second precipitation was carried out on these elutions using StrepTactin sepharose 

(GE Healthcare 28-9355-99).  The eluates were incubated with StrepTactin beads for 3 hours at 
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4°C with constant shaking.  Proteins were eluted from the beads in two sequential 30 minute 

elutions with d-Desthiobiotin (Sigma D1411) diluted in StrepTactin IP buffer while shaking the 

samples at 4°C.  d-Desthiobiotin was prepared at a concentration of 7.5mM in buffer containing 

150mM NaCl and 50mM Tris-HCl pH 8.0.  The elution buffer itself contained the d-

Desthiobiotin stock diluted 5-fold in StrepTactin IP buffer.  The final eluates were combined and 

passed through a centrifuge filter tube.  5% of the final elutions were electrophoresed through a 

1.0mM 4-12% Bis-Tris gel (Life Technologies Cat. # NP0323BOX) together with Life 

Technologies’ Benchmark Protein ladder (Cat. # 10747-012) which was loaded at a dilution of 

1:100.  The gel was subsequently silver stained using Life Technologies’ kit (Cat. #LC6070).  

The final elutions were digested, analyzed by liquid chromatography-tandem mass spectrometry, 

and the results processed all as described below.   

Protein digestion: Proteins from the TAP samples were directly processed in solution: 

Cysteine residues were reduced with 10 mM DTT for 30 minutes at 56°C and alkylated with 

22.5 mM iodoacetamide for 20 minutes at room temperature in the dark. Proteins were digested 

overnight at 37ºC using 5 micrograms of trypsin after adjusting the pH to 8.0 with Tris. The 

resulting tryptic peptide solutions were acidified by adding TFA to a final concentration of 1% 

and desalted by C18 solid phase extraction followed by Strong Cation Exchange (SCX), both 

performed in batch-mode format. Eluted peptides were concentrated in a vacuum concentrator, 

and reconstituted with 20 μl of 0.1% TFA. 

LC-MS/MS analysis: Purified tryptic peptides were analyzed by LC-MS/MS on an LTQ-

Orbitrap-XL mass spectrometer (Thermo, Waltham, MA) equipped with a Digital PicoView 

electrospray source platform (New Objective, Woburn, MA) (Ficarro et al., 2009). The 
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instrument was operated in data dependent mode where the 8 most abundant ions in each MS 

scan were selected (isolation width = 2.8 Da, threshold = 20,000) for MS/MS by CAD (35% 

normalized collision energy). Dynamic exclusion was enabled with a repeat count of 1 and 

exclusion duration of 30 seconds.  ESI voltage was set to 2.2 kV. 

Data processing: MS/MS spectra were converted into peak lists (Mascot generic file 

format, .mgf) using multiplierz scripts (Askenazi et al., 2009; Parikh et al., 2009) and searched 

by with Mascot (version 2.3) against three appended databases consisting of: i) human protein 

sequences (downloaded from RefSeq on 08/11/2010); ii) common lab contaminants, and iii) a 

decoy database generated by reversing the sequences from these two databases. For Mascot 

searches, precursor mass tolerance was set to 20 ppm and product ion mass tolerance was set to 

0.6 Da. Search parameters included trypsin specificity, up to 2 missed cleavages, fixed 

carbamidomethylation of cysteine (C, +57 Da), variable oxidation of methionine (M, +16 Da), 

and variable phosphorylation of serine and threonine (S, T, +80 Da). Spectra matching to 

peptides from the reverse database were used to calculate a global false discovery rate, and were 

discarded. Data were further processed to remove peptide spectral matches (PSMs) to the 

forward database with an FDR greater than 1.0%. 

Data analysis: Entrez Gene IDs and corresponding HGNC (HUGO Gene Nomenclature 

Committee) symbols were retrieved for each protein group identified by Mascot. Entrez Gene 

IDs and HGNC symbols were used as unique protein identifiers for subsequent analyses. 

Proteins identified in more than 1% of 108 negative TAP controls (Rozenblatt-Rosen et al., 

2012) were removed from the sets of BARD1 interactors. Proteins identified in any of three 

negative control TAP experiments (prepared independently from chromatin and nuclear 
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fractions) were also removed. Only proteins identified in at least 2 of 3 biological replicates 

(starting from 3 independent cell culture pellets, each separately processed for TAP/MS) were 

considered for further analyses. 

 

Generation of TALEN induced heterozygotes:  TALENs were generated for target sites in 

BRCA1 and TONSL using the Fast Ligation-based Automatable Solid-phase High-throughput 

(FLASH) assembly method as previously described (Reyon et al., 2012).  The BRCA1 binding 

(green) and target cut (red) sites were composed of the following sequences: 

TTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCAGA.  The 

TONSL binding (green) and target cut (red) sites are as follows: 

TGGGCTGTGCCGTGGCCCACCGCAAGATCGGAGAGCGCCTGGCCGAGATGGA.  The 

TALEN plasmids were introduced into U2OS cells using Amaxa’s Nucleofector IIb and Cell 

Line Nucleofector Kit V (Lonza Cat. # VCA-1003).  Two days after nucleofection, the cells were 

plated as single cells and clones were harvested into 96 well plates after approximately two 

weeks, using cloning discs.  Once enough material was generated, whole genomic DNA was 

harvested from each clone, and the region around the cut site was amplified using PCR (Can use 

regular Taq or Phusion Polymerase (New England Biolabs Cat. # M0530L)).  The PCR product 

was purified using Qiagen’s PCR Purification kit (Qiagen Cat. #28106), and the purified PCR 

product was sequenced to search for mutations.  Clones in which appropriate mutations were 

generated were sequenced multiple times, each using a different primer pair.  The primers used 

included the following: B1-TAL-F2-tacccggtcagtcactcctc, B1-TAL-F4-aaggctaccaccacctaccc, 

B1-TAL-R3-tggaagaaaagccaaaatgc, TONSL-TAL-F2-tcttcctcccacagAGCTGA, TONSL-
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TALnew-F3-ctcccacagAGCTGAGCAA, TONSL-TAL-R2-Tggtgccaggaaacctactc, and TONSL-

TAL-R3-atgcacccctcacacaaga. 

 

Transfection:  Lipofectamine RNAiMax (Life Technologies Cat. # 13778150) was used for the 

transfection of all siRNAs.  For siRNA transfection, cells were plated on day 1, transfected with 

10pmol of each siRNA on day two, transfected with 10pmol of each siRNA again on day three, 

and used for various experimental procedures on day 4.  Lipofectamine 2000 (Life Technologies 

Cat. # 11668019) was used for all transfections needed in overexpression co-IP experiments. 

 

siRNAs:  All siRNAs were purchased from Dharmacon.  siGL2 (Dharmacon Cat. # D-001100-

01-20).  siBRCA1 exon 13 sequence: GGGAUACCAUGCAACAUAA (Dharmacon Cat. # D-

003461-06-0020).  siBRCA1 exon 11 sequence: CCAAAUCAGUAGAGAGUAAUU.  

siBRCA1 3’UTR sequence:  CCAUACAGCUUCAUAAAUAUU.  siTONSL #1 sequence: 

GAGCUGGACUUAAGCAUGA (Dharmacon Cat. # D-013665-01.  siTONSL #2 sequence: 

CUACGGGCAUCUAGAAAUU, (Dharmacon Cat. # D-013665-02.  siTCEANC #1 sequence: 

GGAAAGCUGUUUAUAAGCA, (Dharmacon Cat. #D-024910-01).  siTCEANC #3 sequence:  

GCAUAGAGCUUCUUUACGC (Dharmacon Cat. #D-024910-03).  siTCEA2 #2 sequence:  

GUAAGGCCAUGACCAAGGA (Dharmacon Cat. #D-016235-02).  siTCEA2 #3 sequence: 

AGUCGUAUCUCCAACCUGA (Dharmacon Cat. #D-016235-03).  siSETX #1 sequence:  

GCACGUCAGUCAUGCGUAA (Dharmacon Cat. #D-021420-01).  siSETX #2 sequence: 

UAGCACAGGUUGUUAAUCA (Dharmacon Cat. #D-021420-02).  siSUPT16H #1 sequence: 

GAAGAUAUGUGACGUGUAU (Dharmacon Cat. #D-009517-01).  siSUPT16H #2 sequence: 
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GAACAAAGUCGAAGUAUGA (Dharmacon Cat. #D-009517-02).  siSSRP1 #1 sequence: 

GAUGAGAUCUCCUUUGUCA (Dharmacon Cat. #D-011783-01).  siSSRP1 #3 sequence: 

GACUUAAACUGCUUACAAA (Dharmacon Cat. #D-011783-03).  siTCEA1 #1 sequence: 

GAAAGAACCUGCAAUUACA (Dharmacon Cat. #D-010496-01).  siTCEA1 #3 sequence: 

CAAAGUCUCUCAUCAAAUC (Dharmacon Cat. #D-010496-03). 

 

Packaging of pLX304 BRCA1: 

Full length HA-myc tagged BRCA1 was cloned in the pLX304 vector.  pLX304-HA-Myc-

BRCA1 was packaged into lentiviruses in 293FT cells using the transfection reagent, TransIT-

LT1 (Mirus Cat. # MIR 2306) and standard lentiviral packaging plasmids (pHDM.Hgpm2, pRev, 

pTat, pHDM.G).  After infection, cells were selected by incubation in medium containing 

2.5ug/mL Blasticidin. 

 

Oligos for qPCR:  TCEANC Set 1: TCEANC F1-TGAGGATCTTGGCAACCACC and 

TCEANC R1-CCACAGAGGGGCAGTTTTTG.  TCEANC Set 2:  TCEANC F3-

GGATCTTGGCAACCACCTTA and TCEANC R3-TTCCTCGCTTTGGAGTGAGT.  TCEA2 

Set 1: TCEA2 F1-CACGCAGACAGACCTGTTCA and TCEA2 R1-

AACTTCCAGCGGTTTCCACA.  TCEA2 Set 2: TCEA2 F2-CAGAGGAGATGGCCAGTGAT 

and TCEA2 R2-GCAGACAACAAAGGTGGTCA.  Housekeeping Gene Control Set (Target is 

RPLP0 aka human 36B4): h36b 4F-ATCAACGGGTACAAACGAGTCCTG and h36b 4R-

AAGGCAGATGGATCAGCCAAGAAG. 
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cDNA generation and qPCR:  Whole cell RNA was harvested from cells transfected with 

various siRNAs using Qiagen’s RNEASY kit (Cat. #74104), and the concentration of this RNA 

was measured.  cDNA was generated from equal amounts of the RNA derived from each cell 

line using the Superscript III 1st Strand Synthesis System from Life Technologies (Cat. 

#18080051).  This cDNA was used in qPCR reactions run in quintuplicate replicates for each 

cDNA with each pair of oligos listed above using iTAQ Universal SYBR Green Supermix from 

Bio-Rad (Cat. #172-5124).  The qPCR results are represented in Figures 6F and 6G as 2-CT, the 

calculation method of which was described previously (Livak and Schmittgen, 2001).  The 

deviation between replicates, which is represented by the error bars in these figures was 

calculated as follows.  The positive deviation=High Range-2-CT, where the  

High Range=2-(CT-) and =SQRT((SD of CT replicates for 36B4)2+ (SD of CT replicates for 

GOI)2).  The negative deviation= 2-CT-Low Range, where the Low Range= 2-(CT+) and 

=SQRT((SD of CT replicates for 36B4)2+ (SD of CT replicates for GOI)2).  In the above 

equations, SQRT=square root, SD=standard deviation, and GOI=gene of interest 

 The above-noted cDNA was also used to clone various interactors from the Y2H and 

TAP-MS screens into expression vectors.  Gateway cloning using BP and LR recombinases (Life 

Technologies) was used to move the cloned cDNAs between various plasmids (pDNR223 was 

the only donor vector; pDEST-CMV-Myc and pDEST-MSCV-HA-FLAG puro were the final 

DEST vectors). 

 

Antibodies for Immunoprecipitation and Western Blotting:  Two polyclonal TONSL 

antibodies were generated in rabbits using GST-tagged fragments of TONSL.  Affinity purified 
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versions of these antibodies were used for all experiments.  The fragments used were residues 

450-850 (antibody-Q5) and 850-1378 (antibody-Q6).  Two polyclonal SETX antibodies were 

generated in rabbits using GST tagged fragments of SETX, and affinity purified versions of these 

antibodies were used for all experiments.  The fragments used were residues 1-398 (antibody-

R1) and 2271-2677 (antibody-R2).  For the overexpression co-IPs, FLAG M2 beads (Sigma 

A2220) were used for the IP and FLAG peptide (Sigma F3290) was used for the elution.  

Antibodies for these blots included FLAG M5 (Sigma F4042) and Myc (Santa Cruz sc-40).  

BRCA1 antibodies included the monoclonal BRCA1 C-terminal epitope antibody sc6954 (Santa 

Cruz), and the N-terminal BRCA1 antibody MS110 (Abcam Cat. #AB-16780).  Mouse anti-

SSRP1 (BioLegend Cat. Number 609702) was used for blots.   Mouse anti-SUPT16H 

(BioLegend Cat. Number 607001) was used for immunoprecipitation, and rabbit anti-SUPT16H 

(Santa Cruz Cat. Number sc-28734) was used for blots.  Mouse anti-Tubulin was also used for 

blots (Sigma Cat. #T-5168). 

 

Immunoprecipitation and Western Blotting:  Cell lines were grown to near 80% confluence, 

trypsinized, and lysed in lysis buffer containing 300mM NaCl, 50mM Tris-HCl pH 7.5, 1mM 

EDTA, 0.5% NP40, and 10% Glycerol.  Lysates containing equivalent amounts of protein were 

incubated overnight at 4°C with the appropriate antibodies accompanied by end over end 

rocking.  The next day the lysates were incubated, again rocking end over end at 4°C, with 10uL 

protein A beads for 1 hour.  The beads were washed three times with the above-noted lysis 

buffer, and equal amounts of Laemmli Buffer containing BME were added to each sample.  LDS 

sample buffer (Life Technologies NP0007) was used for SETX immunoprecipitations.  
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Equivalent amounts of each sample were electrophoresed through 4-12% Bis-Tris gels (3-8% 

Tris-Acetate gels for SETX) which were transferred to 0.45uM nitrocellulose membranes.  For 

the overexpression co-IPs, the lysates were incubated with FLAG M2 beads for 4 hours and then 

eluted with FLAG peptide diluted in lysis buffer for 30 minutes.  Laemelli buffer was added to 

the eluate, and blots were electrophoresed as described above.  All blots were incubated with the 

appropriate primary antibodies overnight, washed, incubated with HRP-conjugated secondary 

antibodies, washed, and detected using standard chemiluminescence reagents and film.   

 

Immunofluorescence:  If the cells were treated with siRNA, the experiment was as follows: 

U2OS cells were plated on cover-slips in a 6cm plate on day 1, transfected with 10pmol siRNA 

on day 2, transfected with 10pmol siRNA on day 3, and treated with DNA damage and stained 

on day 4.  Otherwise, U2OS were plated on coverslips in 12-well plates and allowed to settle 

overnight.  

 For DRB treatment (Sigma D1916 dissolved in ethanol), the media was changed to 

medium containing either 40uM DRB or medium containing an equivalent amount of ethanol, 

and the cells were allowed to incubate in this medium for 24hr.  The cells were then fixed in 4% 

paraformaldehyde, permeabilized with 0.5% Triton, and stained with the appropriate antibodies.   

For alpha-Amanitin treatment (Sigma A2263 dissolved in ddH2O), the medium was changed to 

medium containing either 0.35uM alpha amanitin or medium containing an equivalent amount of 

ddH2O; and the cells were allowed to incubate in this media for 24hr.  The cells were then fixed 

in 4% paraformaldehyde, permeabilized with 0.5% Triton, and stained with the appropriate 

antibodies.  For mimosine arrest, cells were plated on day 1, the media was changed to either 
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media containing 0.5mM mimosine on day 2 (Sigma Cat. #M0253 dissolved at a concentration 

of 252.3mM in 1M NaOH) or media containing an equivalent volume of 1M NaOH, and 24 

hours later on day three were treated with DNA damage and eventually stained.  UV irradiation 

was carried out using a 254 nm UV-C lamp (UVP Inc., Upland, CA).  Doses were measured 

using a UVX radiometer (UVP Inc., Upland, CA).  Cell-loaded coverslips were washed once 

with PBS and then irradiated with 30J/m2 through a 3 mm isopore/micropore polycarbonate filter 

(Millipore TSTP02500) as described previously (Pathania et al., 2011; Polo et al., 2006).  The 

cells were  then allowed to recover for varying amounts of time at 37°C and then fixed in 4% 

paraformaldehyde, permeabilized with 0.5% Triton, and stained with either the appropriate 

antibodies or for cyclobutane pyrimidine dimers (CPDs) as described previously (Pathania et al., 

2011; Polo et al., 2006).  For SSRP1 staining, the cells were permeabilized with 0.5% Triton first 

and then fixed in 4% paraformaldehyde due to the ubiquitous staining pattern of this protein.  For 

the above staining, cells were incubated at 37°C for 30 minutes with primary antibody, washed, 

incubated for 30 minutes at 37°C with secondary, washed, and mounted with DAPI containing 

mounting medium.  Primary antibodies included the monoclonal BRCA1 C-terminal epitope 

sc6954 (Santa Cruz), the polyclonal BRCA1 C-terminal antibody (Upstate 07-434), the 

polyclonal TONSL antibodies Q5 and Q6 described above, a mouse SSRP1 antibody 

(BioLegend Cat. Number 609702), and a monoclonal anti-CPD antibody clone TDM-2 (Cosmo 

Bio #CAC-NM-DND-001).  Secondary antibodies were from Jackson labs. 

 For the RNA Polymerase II pS5 staining, the cells were treated with either 0J (equivalent 

time air exposure) or 25J/m2 (carried out as described above).  Fixation and staining were 

performed as described previously (Espinosa et al., 2003).  Briefly, the cells were fixed four 
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hours after UV treatment in a 3:1 mixture of chilled methanol:acetic acid at 4°C.  After washing 

in PBS, the cells were blocked for 30 minutes at 37°C in 1mg/mL BSA, 5% normal goat serum, 

1% Triton X-100, and PBS.  After washing in PBS, the cells were stained with primary and 

secondary antibodies diluted in 1mg/mL BSA, 5% normal goat serum, 1% Triton X-100, and 

PBS.  The coverslips were then mounted using DAPI containing mounting medium.  Primary 

antibodies included rabbit polyclonal RNA Polymerase II pS5 (Abcam Cat. #AB5131), mouse 

monoclonal anti-human BRCA1 SD123 (targets residues 758-1313 of human BRCA1) (Chen et 

al., 1998), mouse anti-H2AX (Millipore 05-636-KC), rabbit anti-H2AX (Upstate 07-164), 

rabbit anti-phospho-RPA (Bethyl Cat. #A300-245A), and mouse anti-TFIIS (BD Cat. #611204).  

Secondaries included Jackson lab antibodies and Alexa Fluor 488 anti-rabbit and 594 anti-mouse 

antibodies from Abcam (Cat. #Ab150077 and Ab150116).  

 For the RNA Polymerase II peptide competition experiments, 2ug of either un-

phosphorylated RNA-PolII C terminal domain (CTD) peptide (Abcam Cat. #AB12795) or RNA-

PolII CTD peptide phosphorylated on Serine 5 (Abcam Cat. #AB18488) were incubated with the 

antibody mixture to be used for staining the cells (containing RNA PolII pS5 antibody, 1mg/mL 

BSA, 5% normal goat serum, 1% Triton-X-100, and PBS) for 2 hours at 4°C rocking end over 

end.  This mixture was then used to stain the methanol:acetic acid fixed cells as described above. 

 

Colony Formation Assays:  U2OS and HCC38 cells were tested for colony forming efficiency 

after piloting various siRNA transfection conditions. Enough cells for each line were plated in 

triplicate (six replicates for the genetic interaction experiments) to form between 100-300 

colonies.  Cells were transfected with 10pmol of the appropriate siRNAs on days one and two 



 
 

161 
 

and plated for the following experiments on the third day.  For genetic interaction experiments, 

cells were plated on day three and cultivated until colonies formed.  For DNA damage treatment 

experiments, the cells were plated on day three and then allowed to settle for at least 4 hours. 

Plates were then treated with varying doses of DRB, alpha-Amanitin, or UV and then allowed to 

recover at 37°C until colonies became visible.  For DRB treatment, after the initial plating, the 

medium was removed and replaced with medium containing 0uM (an equivalent volume of 

ethanol as was used in the highest DRB dose was added to the 0uM medium), 5uM, 10uM, 

15uM, 20uM, or 25uM, 30uM, 35uM, 40uM, or 50uM DRB for 24 hours.  There were three 

replicates for each dose in every experiment.  The cells were then washed once with PBS, and 

medium containing no drug was added to allow the cells to recover.  For alpha-Amanitin 

treatment, after the initial plating, the medium was removed and for the U2OS cells it was 

replaced with medium containing 0uM (an equivalent volume of ddH2O to that used in adding 

the highest alpha-Amanitin dose was added to the culture medium), 0.025uM, 0.05uM, 0.075uM, 

0.1uM, or 0.125uM, 0.15uM, 0.175uM, 0.2uM, 0.225uM, 0.25uM, or 0.35uM alpha-Amanitin 

for 24 hours.  There were three replicates for each dose in every experiment.  For HCC38 cells, 

the dose curve was 0uM (an equivalent volume of ddH2O to that used in the highest alpha-

Amanitin dose was added to media), 0.1uM, 0.2uM, 0.25uM, 0.3uM, or 0.35uM, 0.4uM, 0.5uM, 

0.75uM,  or 1uM.  There were three replicates for each dose in every experiment.  After 24 

hours, the cells were washed once with PBS, and medium containing no drug was added to allow 

the cells to recover.  For UV treatment, the cells were plated at the appropriate density and then 

treated with UV (dosage and treatment method described in above immunofluorescence section).  

The dose curve was as follows 0J (exposed to air for the equivalent amount of time as the highest 
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UV dose), 1J, 3J, 5J, 7J, 10J, 20J, and 50J.  After appropriately sized colonies had grown, the 

cells were stained with crystal violet, and the colonies were counted using Microbiology 

International’s ProtoCOL colony counter.  For the genetic interaction experiments, the average 

number of colonies was calculated from these results.  For the drug treatments, dose curves from 

each experiment were generated from these counts.  

 Statistics for genetic interaction colony formation experiments:  For each replicate of 

each experiment, we estimated the significance of the difference in number of colonies between 

wild-type cell lines and heterozygous cell lines. For each replicate, six independent 

measurements of the numbers of colonies were compared between the two cell lines and the p-

value was estimated using a two-sided Student’s t-test of equality of the means. The p-values 

were also estimated for the union of all replicates. 

 Statistical analysis of the DRB, alpha-Amanitin, and UV colony formation assays:  For 

each replicate of each experiment, dose curves were obtained as described above, and the 

average and standard deviation of the data were calculated based on the three or more 

independent replicates of the fraction of untreated cells at each individual dose.  The average 

percentage of viable cells for each siRNA at each dose from a minimum of three separate 

experiments for each damaging agent was entered into the GraphPad Prism statistical software 

program, and a non-linear regression curve was fit to these data.  From this curve, an IC50 was 

estimated for each siRNA and each treatment, and the error in these calculations was estimated 

by generating a 95% confidence interval for the IC50 estimate in GraphPad Prism.  
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BrdU FACS analysis:  Cells were treated with 10uM BrdU for 30 minutes at 37°C.  Cells were 

trypsinized, washed once in PBS, and then fixed in 70% ethanol for a minimum of 30 minutes.  

The cells were washed with PBS once and incubated in fresh 2N HCL at room temperature for 

15 minutes.  The cells were then washed once in PBS and incubated in 0.1M Na2B4O7, pH8.5 

for 30 minutes at room temperature.  This solution was aspirated, and the cells were resuspended 

in blocking solution (Pierce #37545) containing either FITC conjugated anti-BrdU or FITC 

conjugated anti-mouse IgG antibodies (BD Biosciences 556028) for 30 minutes at room 

temperature in the dark.  The cells were washed in 10mL PBS, resuspended in 0.5mL PI/RNASE 

solution (BD Biosciences Cat. # 550825), and analyzed on the flow cytometer. 

 

Comet Assays:  Cells were transfected with 10pmol of the appropriate siRNAs two days in a 

row.  Media containing 0.35uM alpha-Amanitin or an equivalent volume of water was added on 

the third day for 24hr.  24hr after addition of the drug, alkaline comet assays were carried out on 

these cells using Trevigen’s comet assay kit (Cat. # 4250-05-0-K) according to their protocol.  

Comet tail length was analyzed using TriTek’s CometScore Software.  

Statistical analysis of comet assays: 

For each replicate of each experiment, we measured the fraction of damaged cells with 

tail lengths from 0 to 230 pixels for the cell line treated with different siRNAs and with or 

without alpha-Amanitin. For each tail length threshold and each treatment / siRNA, we measured 

the standard error of the proportion of the measured fraction of damaged cells, and drew a 

normal distribution of 100 values based on the fraction of damaged cells and the standard error 

of the proportion. The p-value for the significance of the difference in the fraction of damaged 
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cells between compound and siRNA treatments was estimated using a one-sided Student’s t-test 

comparing the normal distributions. 

 

Oncomine Analysis:  The list of 147 interactors was used as a primary concept in Oncomine 

Concepts Map (Life Technologies) and compared to all the datasets in the Concepts Map 

program.  We focused specifically on clinical outcome, stage, and grade for both breast and 

ovarian cancer and only accepted datasets with odds ratios of 2.0 or better or p-values less than 

0.01 in the initial analysis.  From the datasets found to overlap with the genes in our dataset, we 

plotted only datasets with a p<0.05 and q<0.25 for the overlap using Cytoscape.  Analysis results 

were last checked on the Oncomine site on 11-23-13.   

 

Overlap between Y2H and TAP-MS screens and between screen hits and known cancer 

genes:  The significance of the overlap between the hits of the two screens was measured by 

comparing the observed overlap with the overlap when randomizing the Y2H and/or TAP-MS 

hits 1,000 times.  The Y2H hits were randomized so that as many hits were selected at random in 

the space tested in the experiment (hORFeome v5.1, see above).  To control for any expression 

bias of the TAP-MS experiment, the TAP-MS hits where randomized by controlling for their 

expression in HeLa S3 cells. The expression data was extracted from the GEO Platform 

Accession GPL5175-78, corresponding to three biological replicates of an RNAseq experiment 

in HeLa S3 cells, to match the cell lines used in the TAP-MS experiment. The expression level 

of each gene in all three replicates was averaged, and we divided all genes into bins 

corresponding to the four quartiles of the expression level distribution.  In any randomization of 
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the TAP-MS hits, we selected one gene from the expression bin in which the TAP-MS gene was 

found for every TAP-MS gene.  Y2H and TAP-MS hits were randomized both separately and 

collectively to measure the significance of the overlap as an empirical p-value, being the number 

of randomizations giving rise to at least as many overlapping hits as was observed in the original 

experiment. The same randomization strategy was adopted to measure the significance of the 

overlap between the two screens and known cancer genes. 

 

Cancer-related data sets:  The following data sets were extracted and compared to the BRCA1 

screen hits. All lists were matched to the most up-to-date Entrez Gene IDs: 

- Sleeping Beauty: We extracted 1,359 candidate cancer genes from four “Sleeping 

Beauty” transposon-based murine insertional mutagenesis screens (Mann et al., 2012; 

March et al., 2011; Starr et al., 2009; Starr et al., 2011), originally unified in a previous 

publication (Rozenblatt-Rosen et al., 2012). 

- Somatic Mutations: 928 somatically mutated genes were extracted from a previous 

publication (Rozenblatt-Rosen et al., 2012), based on catalogues of somatic mutations 

from nine genome-wide cancer sequencing studies (2011; Agrawal et al., 2011; Chapman 

et al., 2011; Lee et al., 2010; Parsons et al., 2008; Parsons et al., 2011; Pleasance et al., 

2010; Puente et al., 2011; Stransky et al., 2011).  

- Virhost: We extracted 947 proteins through TAP-MS association, Y2H interaction or 

differentially expressed transcription factors from expression array analysis, from a 

previous study (Rozenblatt-Rosen et al., 2012). 

- GWAS: 278 gene products described in another report were used (Tasan et al., 2014). 
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- SCNA: We extracted 225 genes from loci significantly amplified or deleted in cancer 

(Beroukhim et al., 2010). 

- Sanger Cancer Gene Census: A list of 485 cancer-associated genes (Futreal et al., 2004) 

downloaded on March 15, 2013 was used. 

- Vogelstein et al.: We extracted 125 genes found to be cancer drivers (Vogelstein et al., 

2013). 

- Woods et al.: The 717 proteins from the BRCT-based screen were used (Woods et al., 

2012). 

- Pujana et al.: The 69 proteins of the BRCA-centered network (BCN) were used (Pujana 

et al., 2007). 

- Wang et al.: The 8 proteins found to be part of the BASC complex were used (Wang et 

al., 2000). 

Interactome maps 

The connectivity between the Y2H and TAP-MS screen hits and with BRCA1 and BARD1 was 

derived from the following up-to-date protein-protein interaction/association maps: 

- The union of all CCSB human protein-protein interaction maps (Rual et al., 2005; Tasan 

et al., 2014; Venkatesan et al., 2009; Yu et al., 2011), and binary literature with multiple 

evidences (Tasan et al., 2014) formed the “binary literature” data set. 

- The union of a co-fractionation experiment (Havugimana et al., 2012) and a prediction-

based map (Zhang et al., 2012) of precision comparable to high-throughput experiments 

(PrePPI LR cutoff of 15000) formed the “non-binary” data set. 
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Functional enrichment of BRCA1 interactors:  The list of all Gene Ontology (GO) terms 

annotated as children of the DNA damage (GO:0006974), DNA replication (GO:0006220) and 

Transcription DNA Dependent (GO:0006351) terms were extracted from the Gene Ontology 

server (Ashburner et al., 2000). The list of BRCA1 interactors found in the Y2H and TAP-MS 

screens were unified to form a list of query proteins for a GO term enrichment analysis using the 

FuncAssociate program (Berriz et al., 2009). All significantly enriched GO terms were extracted 

(adjusted p-value < 0.05) with their corresponding query proteins.  For each query protein in 

each enriched GO term, we assigned the corresponding parental GO term(s) using the DNA 

damage, DNA replication and Transcription children lists.   

 

TCGA Data Analysis:  The significance of amplifications and deletions involving genes from 

the BRCA1-interacting network was determined using GISTIC 2.0 applied to 4934 cancer 

samples across 11 cancer types, including 872 breast cancers and 563 ovarian cancers, as 

previously described (Zack et al., 2013).  The genes with q-values less than 0.25 and p-values 

less than 0.05 were plotted in amplification and deletion region networks using Cytoscape. 
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Materials and Methods for chapters 5 and 6 

-All writing in this section was performed by SJH 

Cell Culture:  All cell lines were cultured according to Neve and Gray, 2006 (Neve et al., 2006).  

For cell lines into which a single copy of the DR-GFP reporter (Pierce et al., 1999) had been 

integrated, puromycin (1ug/mL) was added to the culture media to select for the constant 

presence of the integrated sequence. 

 

Immunoprecipitation (IP) and Western Blotting:  Cell lines were grown to approximately 

80% confluence, pelleted, and lysed in buffer containing 300mM NaCl, 50mM Tris pH 7.5, 

1mM EDTA, 0.5% NP40, 10% Glycerol, and a protease inhibitor (Roche Diagnostics Cat. # 

11836170001).  Lysates containing equivalent amounts of protein were incubated overnight with 

either the C-terminal BRCA1 antibody sc6954 (Santa Cruz) or a mouse IgG control (Santa Cruz 

sc-2025).  The next day these lysates were incubated with protein A beads for 1 hour at 4°C.  

The beads were washed three times in the above-noted lysis buffer, and equal amounts of 

Laemmli Buffer (Boston BioProducts Cat. # BP-110NR) containing 2.5% beta-mercaptoethanol 

(BME) (Sigma Cat. # M6250) were added to each sample.  Equivalent amounts of protein from 

each cell extract were IPd and equivalent amounts of protein from each IP were electrophoresed 

in 4-12% Tris-Glycine gels (Life Technologies Cat. # EC60385BOX) which were then 

transferred to 0.45uM nitrocellulose membranes.  These were incubated in the N-terminal 

BRCA1 monoclonal antibody MS110 (Abcam ab16780) overnight, and incubated with HRP-

conjugated anti-mouse light chain secondary antibody (BD Biosciences Cat. # 559751) for 1 

hour the next day.  Bands in each blot were developed using standard ECL solution (Perkin 
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Elmer Cat. # NEL105001EA) and visualized by exposing film to the blot for various amounts of 

time.  For the HA-tagged I-SceI blots, the lysates were harvested from the cells in the lysis buffer 

described above and appropriate amounts of Laemmli sample buffer containing 2.5% BME were 

added to each sample to normalize the concentrations.  Equivalent amounts of cell extract were 

electrophoresed in 4-12% Bis-Tris gels (Life Technologies Cat. # NP0336BOX) which were 

then transferred to 0.45uM nitrocellulose membranes. The blots were carried out as described 

above except the primary antibodies were a monoclonal HA antibody (Covance Cat. # MMS-

101P) and a tubulin antibody (Sigma Cat. #T-5168).    

 

Immunofluorescence:  Cells were plated on coverslips in 6- or 12-well plates and allowed to 

settle overnight.  For gamma irradiation, the next day one set was treated with 5Gy, while a 

second control set was not.  Cells were allowed to recover at 37°C for 8 hours, fixed in 4% 

paraformaldehyde, permeabilized with 0.5% Triton, and then stained with primary and secondary 

antibodies.   

 For UV treatment, cells on coverslips were irradiated at 30J/m2 (dose measured using a 

UVX radiometer (UVP Inc., Upland, CA) using a 254 nm UV-C lamp (UVP Inc., Upland, CA) 

through 3 mm isopore/micropore polycarbonate filters (Millipore TSTP02500), as described in 

Polo et al., 2006 (Polo et al., 2006).  They were then allowed to recover for 4 hours at 37°C and 

were then fixed in 4% paraformaldehyde, permeabilized with 0.5% Triton, and stained for 

cyclobutane pyrimidine dimers (CPDs) as described in Polo, et al., 2006 (Polo et al., 2006).   

 If the cells were to be transfected with siRNAs, the cells were plated on coverslips in a 

6cm plate on day 1, transfected with 10pmol of the appropriate siRNAs on day 2, transfected 
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again with 10pmol of the appropriate siRNAs on day 3, and treated with DNA damaging agents, 

fixed, permeabilized, and stained on day 4.   

 Primary antibodies in these assays included the monoclonal BRCA1 C-terminal antibody 

sc6954 (Santa Cruz), a polyclonal BRCA1 C-terminal antibody (Upstate 07-434), a purified 

monoclonal antibody targeting exon 11 of BRCA1 called SD118 (Chen et al., 1998), a 

monoclonal anti-cyclobutane pyrimidine dimer (CPD) antibody, clone TDM-2 (Cosmo Bio 

#CAC-NM-DND-001), a polyclonal H2AX antibody (Upstate 07-164), a monoclonal H2AX 

antibody (Millipore 05-636-KC), a monoclonal 53BP1 antibody (BD 612523), and a polyclonal 

Rad51 (H-92) antibody (Santa Cruz sc-8349).  Secondary antibodies were from Jackson labs. 

 

Colony Formation Assays:  All BLC lines and controls were tested for colony forming 

efficiency.  Enough cells of each line were plated in triplicate to form 

between 80 and 300 colonies.  The cells were allowed to settle overnight.  Plates were  

then treated with varying doses of each of a series of DNA damaging agents and allowed to 

recover at 37°C until colonies became visible (7-14 days depending on the cell line).   

 For gamma irradiation, cells were treated with 0Gy, 1Gy, 2Gy, 3Gy, 4Gy, or 5Gy using a 

cesium source.   

 For UV irradiation, cells were treated with 0J/m2 (air exposure time equal to longest UV 

exposure time), 1J/m2, 2J/m2, 4J/m2, 5J/m2, 10J/m2, 20J/m2, or 50J/m2 using a 254 nm UV-C 

lamp (UVP Inc., Upland, CA).  UV doses were measured with a UVX radiometer (UVP Inc., 

Upland, CA).   
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 For mitomycin C (MMC) treatment, the medium was removed and replaced with medium 

containing 0uM (added volume of ethanol to this medium equivalent to that added with the 

highest MMC dose), 0.1uM, 0.2uM, 0.3uM, 0.4uM, or 0.5uM MMC (Sigma Cat. #M4287 

dissolved in ethanol) for 4 hours.  The cells were then washed with PBS, and medium containing 

no drug was added to allow the cells to recover.   

 For methyl methane sulfonate (MMS), the medium was removed after the initial cell 

plating and replaced with medium containing 0mM, 1mM, 2mM, 3mM, 4mM, or 5mM MMS 

(Sigma Cat. #129925) for 4 hours.  The cells were then washed once with PBS and drug-free 

medium was added to allow the cells to recover.   

 After appropriate sized colonies had grown, the cells were stained with crystal violet and 

counted with a Microbiology International ProtoCOL colony counter.  The average number of 

colonies for each cell line at each treatment level was calculated, and, from 

these values, the percentage of cells that survived at each level of treatment was compared to 

untreated controls.  These values were plotted as cell killing curves using GraphPad Prism 

Software, and IC50s were obtained for each cell line in each experiment.  Cells lines were tested 

with each damaging agent 2-3 times, and the IC50s were calculated in this way each time.   

 

Southern Blots:  Genomic DNA was prepared from each clone after phenol/chloroform 

extraction.  50ug of DNA was digested with either HindIII or StuI overnight.  The digested DNA 

was electrophoresed through a 0.8% agarose gel and transferred to a nylon membrane (Whatman 

Cat# 10416282) by neutral transfer.  Membranes were then probed with an 812 base pair GFP 

sequence-containing fragment derived from hprt pDR-GFP puro by HindIII digestion (Pierce et 
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al., 1999).  The probe was labeled using the Ladderman Labeling Kit by Takara (Cat #6046), and 

blotting was performed, using a modification of the Church-Gilbert method (Church and Gilbert, 

1984). 

 

siRNAs:  siGL2 was purchased from Dharmacon (Cat. # D-001100-01-20).  The sequence of 

siBRCA1 exon 13 was GGGAUACCAUGCAACAUAA (Dharmacon Cat. # D-003461-06-

0020).  The sequence of siBRCA1 exon 11 #1 was CCAAAUCAGUAGAGAGUAAUU.  The 

sequence of siBRCA1 exon 11 #2 was GUUAGAUGAUGGUGAAAUA.  The si11b junction 

sequence was GUAUCAGGGUGAAGCAGCAUU. 

 

Transfection:  Lipofectamine RNAiMax (Life Technologies Cat. # 13778150) was used for the 

transfection of all siRNAs.  Lipofectamine 2000 (Life Technologies Cat. # 11668019) was used 

for the transfection of I-SceI. 

 

HR Reporter Assay:  Plating efficiencies were determined for each cell line such that the cells 

could reach the end of the assay without becoming completely confluent.  Cells were plated in a 

6cm plate at an appropriate density on day one.  On day two cells were transfected with 10pmol 

of each siRNA.  On day three cells were transfected with 2ug of the I-SceI plasmid (pCBAS).  

Cells were then allowed to recover for 72 hours.  At that point, one half of the cells were 

harvested for an I-SceI-HA western blot; and the other half were fixed with 4% 

paraformaldehyde and assayed for GFP positive cells by FACS.   
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 For the IP/western blots performed to test the effects of the various siRNAs introduced 

into each cell line, the transfection sequence and siRNA amounts were different than those used 

in the HR assays.  The cells were plated on day one, transfected with 75pmol of each siRNA on 

day 2, transfected with 75pmol of each siRNA on day 3, transfected with 2ug I-SceI on day 4, 

and harvested and extracted for IP 72 hours after I-SceI transfection. 
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