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Thyroid Hormone and Insulin Metabolic Actions on Energy and Glucose Homeostasis 

 

ABSTRACT 

Faced with an environment of constantly changing nutrient availability, mammals have 

adapted complex homeostatic mechanisms to maintain energy balance. Deviations from this 

balance are largely corrected through a concerted, multi-organ effort that integrates hormonal 

signals with transcriptional regulatory networks. When these relationships are altered, as with 

over-nutrition and insulin resistance, metabolic disease ensues. Here, I present data concerning 

two distinct transcriptional pathways—one for thyroid hormone (TH) and one for insulin—that 

confer hormone responsiveness on metabolic gene programs that preserve energy homeostasis.  

 In brown adipose tissue (BAT), localized amplification of TH signaling by type 2 

deiodinase (D2) is necessary for the acute thermogenic response to cold. Using mice lacking D2 

(D2KO), we show that absence of D2-medaited TH signaling during BAT development 

decreases expression of the transcriptional program that defines BAT identity and underlies the 

thermogenic defects found in these mice in adulthood. Further, differentiation of D2KO brown 

adipocytes in vitro uncovered defective adipogenesis and decreased oxidative capacity 

consequent to enhanced oxidative stress and reduced insulin signaling. We hypothesized that 

impaired thermogenic potential of D2KO brown adipocytes alters metabolic response to high-fat 

feeding. Indeed, at thermoneutrality, D2KO mice exhibit increased susceptibility to obesity with 

glucose intolerance and hepatic steatosis. Interestingly, this phenotype was masked under room 

temperature thermal stress due to compensatory elevation of D2KO BAT sympathetic signaling. 
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These discoveries highlight the importance of local activation of TH signaling in BAT 

development and function, with significant ramifications for diet-induced thermogenesis and 

energy homeostasis control. 

 When nutrients and insulin signaling are low, hepatic forkhead transcription factor 

FoxO1 maintains glucose homeostasis by inducing expression of gluconeogenic enzymes. In an 

effort to understand posttranslational modifications that alter FoxO1 activity, we identified 

deubiquitinating enzyme USP7. We show that USP7-mediated mono-deubiquitination of FoxO1 

suppresses FoxO1 transcriptional activity by decreasing gene promoter occupancy. Knockdown 

of USP7 in hepatocytes elevated gluconeogenic genes in a FoxO1-dependent manner. 

Conversely, overexpression of USP7 suppressed gluconeogenic gene expression in hepatocyte 

cells and in mouse liver, decreasing hepatic glucose production. Insight into this pathway might 

aid in designing therapies to restore glucose metabolic control in those with type 2 diabetes. 

 



v!

Table of Contents 
 

 
 
Abstract           iii 
 
Table of Contents          v 
 
List of Figures           viii 
 
List of Tables           x 
 
Acknowledgements          xi 
 
Chapter 1 Introduction          
 
 Brown fat activation in the control of energy homeostasis    2 
  The obesity epidemic and weight loss strategies    2 

  Brown adipose tissue function      5 
  Brown adipose tissue in humans      7 

  Brown adipose tissue development      9 
  Transcriptional control of brown adipocyte differentiation   10 

  Thyroid hormone signaling       13 
  Type 2 deiodinase        16 

  D2 in adaptive thermogenesis       16 
  Deiodinases and development       17 

  Objectives         19 
Hepatic gluconeogenesis in the control of glucose homeostasis   19 

 Type 2 diabetes        20 
 Maintenance of glucose homeostasis      20 

 Transcriptional control of gluconeogenesis     21 
 FoxO family of transcription factors      24 

 Posttranslational modifications of FoxO proteins    25 
 Ubiquitination and deubiquitination      28 

 The deubiquitinating enzyme USP7      32 
 Objectives         33 

References          35 



vi!

Chapter 2 Absence of thyroid hormone activation during development  
underlies a permanent defect in adaptive thermogenesis    

 
 Author contributions         53 

 Title page          54 
 Abstract          55 

 Introduction          56 
 Materials and methods        58 

 Results           66 
  Local thyroid hormone signaling increases during  
  brown adipogenesis        66 
 
  Impaired expression of T3-dependent genes disrupts 
  D2KO brown adipogenesis       67 
 
  D2KO BAT has decreased antioxidant defenses and is 
  susceptible to oxidative stress       76 
 
 Discussion          84 
 Acknowledgements         87 

 References          88 
 

Chapter 3 Disruption of thyroid hormone activation in type 2 deiodianse 
  knockout mice causes obesity with glucose intolerance and 
  liver steatosis only at thermoneutrality      
 
 Author contributions         93 
 Title page          94 

 Abstract          95 
 Introduction          96 

 Materials and methods        97 
 Results           101 

  D2KO mouse metabolic profile depends on ambient temperature  101 
 
  D2KO mice have similar weight gain on high-fat diet at  
  room temperature        104 
 
  Thermoneutrality reveals sensitivity to diet-induced obesity in 
  D2KO mice         104 
 



vii!

  D2KO exhibit liver steatosis and glucose intolerance   108 
 Discussion          113 

 Acknowledgements         116 
References          117 

 
Chapter 4 USP7 attenuates hepatic gluconeogenesis through modulation 
  of FoxO1 gene promoter occupancy      
 
 Author contributions         122 
 Title page          123 

 Abstract          124 
 Introduction          124 

 Materials and methods        128 
 Results           136 

  USP7 interacts with and deubiquitinates monoubiquitinated FoxO1  136 
  
  FoxO1 transcriptional activity is suppressed by USP7   138 
 
  USP7 suppresses gluconeogenesis in primary hepatocytes   140 
 
  USP7 suppresses gluconeogenesis in mouse liver    146 
 
  Effect of USP7 on gluconeogenesis is dependent on FoxO1 activity 148 
  
  USP7 modulates FoxO1 occupancy on the promoters of 
  gluconeogenic genes        152 
 
 Discussion          155 

 Acknowledgements         159 
 References          161 

 
Chapter 5 Conclusions and Future Directions       
 
 Thyroid hormone signaling: D2 in adaptive thermogenesis    168 

 Insulin signaling: USP7 in glucose metabolic control    171 
 Closing remarks         174 

 References          175  



viii!

List of Figures 
 
 
 

Figure 1.1. Thyroid hormone deiodination      15 
 
Figure 1.2. Glucagon and insulin signaling on the gluconeogenic program 
  in the hepatocyte        23 
 
Figure 1.3. Posttranslational modifications of FoxO1     26 
 
Figure 1.4. Diversity of ubiquitin modifications      29 
 
Figure 1.5. Enzymatic cascade leading to substrate ubiquitination and its reversal 31 
 
Figure 2.1. Deiodinase expression during BAT development    57 
 
Figure 2.2. Reciprocal changes in deiodinase expression in vitro   68 
 
Figure 2.3. D2-generated T3 contributes to brown fat identity    69 
 
Figure 2.4. Impaired expression during differentiation of D2KO brown 
  adipocyte cultures        73 
 
Figure 2.5. Impaired D2KO brown adipocyte differentiation    74 
 
Figure 2.6. Decreased adipogenesis in D2KO brown adipocyte cultures   75 
 
Figure 2.7. Oxidative stress in D2KO embryonic BAT     77 
 
Figure 2.8. Elevated ROS levels in day 10 D2KO brown adipocyte cultures  79 
 
Figure 2.9. ROS causes decreased insulin signaling     81 
 
Figure 2.10 Insulin signaling components unchanged in D2KO brown  

preadipocytes         83 
 
Figure 2.11. Proposed model of positive feedback involving Dio2, PGC-1α,  

and UCP1 expression during BAT development    86 
 
Figure 3.1. Caloric intake in WT and D2KO      102 
 
Figure 3.2. Effect of ambient temperature on body composition, indirect 
  calorimetry, and NE turnover of D2KO mice     103 
 
 



ix!

Figure 3.3. Effect of high-fat feeding at room temperature on body  
composition and indirect calorimetry      105 

 
Figure 3.4. Effect of high-fat feeding at thermoneutrality on body composition 
  and indirect calorimetry       106 
 
Figure 3.5. Effect of acclimatization temperature and/or diet on lipid deposition 
  in the liver         110 
 
Figure 3.6. Effect of temperature and/or diet on glucose tolerance   112 
 
Figure 4.1. FoxO1 is a substrate of USP7       137 
 
Figure 4.2. USP7 affects FoxO1 transcriptional activity     139 
 
Figure 4.3. USP7 fails to affect FoxO1 nuclear/cytoplasmic localization  141 
 
Figure 4.4. USP7 knockdown increases gluconeogenic gene expression and  
  glucose production in primary hepatocytes     142 
 
Figure 4.5. USP7 manipulation does not lead to general activation of cAMP- 
  responsiveness         144 
 
Figure 4.6. USP7 overexpression suppresses gluconeogenic gene expression 
  in primary hepatocytes       145 
 
Figure 4.7. USP7 overexpression in C57BL/6 mouse liver suppresses  
  gluconeogenesis        147 
 
Figure 4.8. USP7’s effect on gluconeogenic gene expression is dependent on 
  FoxO1          149 
 
Figure 4.9. USP7 levels and activity are unchanged by fasting/feeding stimuli  150 
 
Figure 4.10. USP7 alters FoxO1 occupancy at gluconeogenic gene promoters  153 
 
Figure 4.11. FoxO1 targets show increased H3K9Ac despite steady levels of 
  nuclear FoxO1 upon USP7 knockdown     154 
 
  



x!

List of Tables 
 
 
 

Table 2.1. No gross morphological changes between WT, D2Het, and D2KO 
  embryos         70 
 
Table 2.2. Altered expression of oxygen and ROS metabolic pathways in  
  day 0 D2KO brown preadipocyte cultures     80 
 
Table 3.1. Liver triglycerides content (mg/g) and serum NEFA levels (mEq/L) 
  in WT and D2KO mice kept on chow or high-fat diet: effect of 
  environment temperature       109 
  



xi!

Acknowledgements 
 

 
 
 My path to the Ph.D. has been a long and rewarding journey that has pushed my growth 

intellectually and emotionally. First and foremost, I would like to thank my advisor, Pere 

Puigserver. Through his guidance, patience, and support, he has helped transform my 

understanding of science. He has taught me how to think critically as an independent researcher 

and how to approach hypotheses with flexibility. Pere’s excitement for unraveling new and 

important metabolic pathways is invigorating, and I am truly grateful to have been able to share 

in and contribute to his quest. I would also like to acknowledge my former mentor, Tony Bianco, 

who helped provide the foundation for my training as a scientist. 

 I am thankful to the members of my dissertation advisory committee, Bruce Spiegelman, 

John Blenis, Wade Harper, David Cohen, and Tony Hollenberg, for their invaluable advice and 

selfless commitment to my success. Also, I would like to express my sincere appreciation to the 

BBS program office, especially Kate Hodgins and Maria Bollinger, for their support and 

encouragement over the years and even across state-lines.  

 During my graduate studies, I have had the fortunate privilege of working with really 

talented, compassionate colleagues who have contributed to an academically enriching—and 

fun—lab environment. And although all have undoubtedly helped shape the scientist that I am 

today, there are some who deserve particular mention. To that end, I would like to thank Sharon 

Blättler, Helen Chim, John Dominy, Zach Gerhart-Hines, Tim Kelly, Yoonjin Lee, Ji-Hong Lim, 

Chi Luo, Joe Rodgers, Mitsu Tabata, Kiko Verdeguer, Rutger Vogel, Renata Grozovsky, John 

Harney, Brian Kim, Scott Ribich, Matt Rosene, Cintia Ueta, and Ann Marie Zavacki. Their 

friendship and guidance not only left a positive impact on my science, but also on my well-being.  



xii!

 I would also like to thank my friends outside of the lab. I am extremely lucky to have 

made some wonderful, lasting friendships in the BBS program, including Shariya Terrell, 

Monica Markovski, Alison Taylor, and Caitlin Reavey. Our shared graduate school experiences 

provided the strength and support that I needed to overcome the challenges and made the 

successes all the sweeter. I am also deeply grateful to my dear friends, Jamie Pool and Ale 

Schneider Leupold, for their encouragement, counsel, and humor. The laughs that we shared 

provided a most-welcomed escape from my life in the lab. I will always be thankful for their 

support and solidarity.  

Most importantly, I am indebted to the constant love and unwavering support from my 

family. I am immensely appreciative of my siblings, Elizabeth, Christopher, and Rebecca. Our 

silly adventures together have helped me keep life in perspective and rejuvenate the soul. 

Elizabeth, my courageous sister with type 1 diabetes, has also been a source of inspiration for my 

commitment toward diabetes research—I hope and trust that one day there will be a cure. 

Finally, I would like to express my deepest gratitude to my parents, Bill and Ilona. My dad’s 

calming advice and my mom’s care packages have helped brighten even the darkest days. They 

have been my biggest supporters every step of what has been a rather long and, at times, 

challenging graduate career. To them I extend a heartfelt thank you for their encouragement, for 

their sacrifices, and for always believing in me.  



 

 

 

 

 

Chapter 1 

 

Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

  



2 

A constant supply of energy is an essential requirement for life in all organisms. We 

obtain this energy from our environment, process what we need for immediate use, and store the 

rest. For mammals, extensive endocrine and neural signals coordinate the actions of multiple 

organ systems to maintain energy homeostasis despite fluctuating nutrient levels and varying 

degrees of energy demand. When these connections are damaged, however, balance is disrupted 

and a variety of common metabolic disorders may result. Throughout this work, I will provide 

data to suggest key pathways at the intersection of hormonal and transcriptional control that 

affect metabolic gene programs and alter organismal homeostasis. Namely, I will 1) examine a 

role for type 2 deiodinase in brown adipose tissue development and protection from obesity, and 

I will 2) characterize the function of deubiquitinating enzyme USP7 in hepatic gluconeogenesis 

and whole body glucose metabolism. 

 

BROWN FAT ACTIVATION IN THE CONTROL OF ENERGY HOMEOSTASIS 

 In this section, I first will introduce the obesity epidemic and discuss activation of brown 

adipose tissue as a possible therapeutic approach to increase energy expenditure and promote 

weight loss. Next, I will review our current understanding of the process by which precursor 

brown fat cells differentiate into mature adipocytes. Finally, I will discuss the importance of 

thyroid hormone signaling and the deiodinase enzymes in brown adipose tissue function. 

 

“The body is a ship which must not be overloaded” – Plutarch 

 

The obesity epidemic and weight loss strategies 

 We are a population with a growing healthcare concern as blatantly obvious as our 

expanding waistlines. Obesity, or corpulency as it was once referred to, results when energy 
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intake exceeds energy expenditure, which leads to a massive expansion of adipose tissue that has 

adverse health consequences. Using a function of weight and height, obesity is characterized as 

having a body mass index (BMI) of 30 or above. With this criterion in mind, the most recent data 

on obesity prevalence in the United States reveals an alarming statistic: 34.9% of American 

adults are obese (1). However, the obesity epidemic is not just a national concern, and the World 

Health Organization (WHO) estimates that more than half a billion adults worldwide are obese. 

These figures are nearly double that from 30 years ago, and the forecast for the future does not 

look promising. The excess weight carries with it a higher risk for an onslaught of comorbid 

conditions, including type 2 diabetes, cardiovascular disease, and some cancers, thereby reducing 

life expectancy and placing a massive burden on global healthcare (2). The challenge that lies 

ahead for the medical and scientific communities is to safely shrink our growing midsections and 

mitigate the comorbidities for those who have already tipped the scale. 

 A central tenet of obesity management is to avoid a positive energy balance by 

decreasing food intake and increasing energy expenditure. Modest weight loss of 5–10% of 

initial body weight achieved through intensive lifestyle modification is considered clinically 

meaningful, as it reduces cardiovascular disease risk factors, prevents or delays type 2 diabetes, 

and improves other health consequences of obesity (3). However, strong evolutionary pressure to 

avoid starvation in cases of famine has crafted our homeostatic mechanisms to favor energy 

storage over expenditure; evolution did not prepare us for an industrialized world with 

unrestricted food access (4). Indeed, fluctuations by 10% in body weight are accompanied by 

corresponding corrections in energy expenditure, making it difficult to deviate from one’s 

“usual” weight (5). Studies have shown that only about 20% of individuals who lose 10% of 
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their initial body weight are able to maintain this weight loss for at least 1 year post-treatment 

(6), which is associated with a decline in mitigated risk (7).  

Given the challenges of long-term weight maintenance, there is a medical need for 

adjunctive therapies in the weight-loss battle. Currently, all of the available pharmacotherapies 

tackle the energy intake side of the obesity equation (8). By suppressing appetite or limiting 

absorption of dietary fats, use of these agents in combination with lifestyle intervention can 

provide greater weight loss than diet and exercise alone. However, none of these obesity 

medications has been shown to decrease cardiovascular morbidity or mortality (9). On the 

contrary, several anti-obesity drugs have actually been withdrawn from the U.S. marketplace or 

are prescribed with caution due to increased risk of cardiovascular complications or alterations in 

hepatic function (10). And of the therapies available, unacceptable side effects often preclude a 

broader use (11). For extreme cases of obesity, bariatric surgery has documented success in 

causing long-term weight loss as well as complete remission of diabetes in many individuals, but 

surgical intervention is not practical on a global scale (12). 

Considering the difficulty and apparent limitations of altering energy intake, the obvious 

alternative is to target energy expenditure. Some components here are within our control, such as 

physical activity, but others are not, such as the energy expended for obligatory cellular 

processes that are necessary for maintaining life and limb. Another component of energy 

expenditure is thermogenesis—the production of heat energy—which occurs in all cells as a 

byproduct of inefficiencies in mitochondrial adenosine triphosphate (ATP) production and 

biochemical ATP use (i.e. “futile” metabolic cycles). However, adaptive thermogenesis, by 

transforming chemical energy into heat, has evolved as a defense to cold exposure and caloric 
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excess for some organisms (13). And one organ has made this its prime prerogative: brown 

adipose tissue (BAT).  

 

Brown adipose tissue function 

BAT was first discovered in 1551 by the Swiss naturalist Konrad Gessner (14), but it was 

not recognized for its dominant role in heat production until the latter half of the 20th century, 

when it was demonstrated as the major site for non-shivering thermogenesis of cold-exposed rats 

(15). Indeed, BAT is well documented in mammals where shivering is an inefficient means of 

heat generation, such as those with a high surface area to volume ratio and those that cannot 

afford the convective heat loss from body movement. These include small rodents and human 

infants. Hibernating mammals also use BAT to rapidly elevate body temperature during bouts of 

arousal from hibernation. In rodents, BAT is present in the interscapular, axillary, and 

perinephric depots. The interscapular depot, being the largest, is the one most commonly studied. 

Scientific understanding of BAT has greatly increased since its description as the “hibernating 

organ,” and it is now appreciated for having roles in both cold- and diet-induced thermogenesis 

(16). 

The functional unit of BAT is the brown adipocyte, which is a highly specialized cell 

capable of dissipating stored chemical energy in the form of heat. On a cellular level, brown 

adipocytes differ from white adipocytes in that they are multilocular (numerous small lipid 

inclusions as opposed to one large vacuole), contain a nucleus that is spherical and centrally 

located (as opposed to flattened against the periphery), and have a high concentration of iron-

containing mitochondria (providing the “brown” color from which they get their name). 

Mitochondria in brown adipocytes are unique in that they harbor a capacity to uncouple fuel 
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oxidation from ATP generation. Specifically, brown adipocytes express a BAT-specific protein 

called uncoupling protein 1 (UCP1) that sits in the inner mitochondrial membrane. When 

activated, UCP1 catalyzes a proton leak from the intermembrane space into the mitochondrial 

matrix. This short-circuits the electrochemical gradient that drives ADP phosphorylation. 

Combustion of substrates accelerates to offset the falling ATP levels, with a net result being the 

generation of heat (16).  

Both the sympathetic nervous system and thyroid hormone engage in a vital crosstalk to 

maintain BAT function. Sympathethic signaling increases in the cold, and chronic cold exposure 

leads to the recruitment (proliferation and differentiation) as well as activation of the mature 

adipocyte (17). Norepinephrine release from sympathethic nerve terminals stimulates β-

adrenergic receptors (β-AR), which results in a rapid accumulation of cyclic AMP (cAMP), a 

second messenger responsible for eliciting thermogenic effects in the brown adipocyte (18). One 

such effect is elevated transcription of the UCP1 gene, which occurs subsequent to binding of 

protein kinase A (PKA)-activated cAMP response element binding protein (CREB) to four 

cAMP response elements (CREs) in the UCP1 promoter and enhancer (19). Mice in which all 

three known β-ARs are lost (“β-less” mice) exhibit defective cold- and diet-induced 

thermogenesis, highlighting the requirement for β-adrenergic signaling (20). That thyroid 

hormone also plays a crucial role is seen by the inability of hypothyroid animals to survive in the 

cold (21, 22). This is related to the finding that inadequate levels of thyroid hormone render BAT 

incapable of heat generation upon norepinephrine stimulation (22, 23). Indeed, the appropriate 

thermogenic transcriptional response is mediated through several thyroid hormone-sensitive 

genes, including UCP1 (24). These processes are further intertwined, as sympathetic stimulation 

leads to a tissue-level thyrotoxicosis through type 2 deiodinase (D2), which is encoded by the 
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cAMP-dependent Dio2 gene and is responsible for amplifying thyroid hormone signaling 

(discussed in detail below). Of note, both thyroid hormone and catecholamines exert prominent 

effects on the basal metabolic rate, generating heat through obligatory thermogenesis, as well 

(25).  

 The potential for brown fat to have an anti-obesity effect has been highlighted in recent 

years. Certain high caloric diets that encourage overeating in rodents were found to stimulate 

BAT expansion and thermogenesis as a supposed physiological adaptation to thwart weight gain 

(26). This became known as “diet-induced thermogenesis” and led to the assumption that BAT 

normally functions to counter obesity by lowering metabolic efficiency. In support of this notion, 

brown fat ablation in transgenic mice with a UCP1 promoter-driven toxigene led to the 

development of obesity (27). The role of UCP1 per se in controlling body weight was further 

supported by additional studies using conventional knockout technology to delete UCP1. When 

these UCP1-deficient mice were housed at thermoneutrality (28–30°C), they too showed a 

propensity toward body weight gain (28). It is important to note that UCP1 knockout mice failed 

to show an obese phenotype when reared under the chronic thermal stress of standard “room 

temperature” conditions (18–22°C) (29, 30). Together, these studies emphasize the potential for 

BAT activation in the context of promoting and sustaining weight loss by increased energy 

expenditure. 

 

Brown adipose tissue in humans 

Until recently, the minimal BAT present in adult humans was considered vestigial—

likened to an organ of as questionable importance as the appendix. BAT was believed to be 

largely absent and metabolically irrelevant in healthy adults, appearing only under extreme 
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conditions of chronic cold exposure, as with the Finnish lumberjack, or in pheochromocytoma 

patients with pathological excess of catecholamines (31, 32). Moreover, the existence of brown 

fat in adult humans was so thoroughly denied that many cautioned against extrapolating the 

functional significance of BAT from rodent studies to man (33).  

 This position changed when a combination of whole-body imaging with molecular 

techniques finally allowed for definitive proof of BAT in adult humans. Early reports of high 

symmetric uptake of 18F-fluorodeoxyglucose (18F-FDG) in the neck/thoracic region of patients 

undergoing positron-emission tomography (PET) to detect tumors/metastases baffled oncologists 

(34). These symmetric “false positives” were deemed putative BAT after analysis with combined 

PET and computed tomography (CT; PET-CT) and recognizing the ability of norepinephrine to 

stimulate glucose uptake in BAT (35-37). However, debate in the scientific community persisted 

until 2009, when three groups determined that the tracer uptake in the supraclavicular and spinal 

regions was consistent with brown fat, with the detection of UCP1-positive cells serving as 

definitive proof (38-40). Moreover, these studies demonstrated that brown fat activity correlates 

inversely with age and obesity, generating excitement for a potential role of BAT in adult human 

metabolism. The presence and activity of BAT in the adult population means that it may be used 

as a target for interventions aimed at modulating energy expenditure. 

 In rodents, the thermogenic capacity of BAT to defend against obesity is impressive, but 

its potential to alter energy balance in adult humans is still unclear. Rothwell and Stock (1983) 

famously postulated that in humans, as little as 40–50 g of maximally active BAT could 

contribute up to 20% of basal energy consumption (41). However, this is most likely an 

overestimation for the oxidative capacity of human BAT (42). In mice at least, reduced BAT 

activity has been associated with predisposition to obesity (43, 44) and abnormal glucose 
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homeostasis (45). Although its predominant fuel source is lipid, its ability to catabolize glucose 

means that activation of BAT could have anti-obesity as well as anti-diabetic effects (46). The 

potential for inducing even small amounts of brown fat in adult humans to increase energy 

expenditure could provide a new therapeutic approach to curb the obesity crisis. 

In the 1930s, the chemical uncoupler 2,4-dinitophenol (DNP) was widely used as an anti-

obesity pill. Like activated UCP1, DNP promotes proton leakage across the mitochondrial 

membrane, albeit in a non-tissue-specific manner. Unfortunately for DNP, the pharmacologically 

effective dose is very close to that which leads to dangerous side effects, including death by 

hyperthermia, ultimately precluding its use today (8). Despite its failings, DNP treatment 

provides proof-of-concept support for targeting uncoupled respiration for weight loss and 

highlights the possible clinical utility of BAT activation therapy. The goal then should be to 

develop strategies that safely enhance respiratory uncoupling by exploiting the mechanisms 

naturally evolved to do so, as with the recruitment and activation of brown fat. 

 

Brown adipose tissue development  

BAT appears earlier during embryonic development than other fat depots and reaches its 

maximum mass shortly after birth (2–4% of birth weight in humans), with only small mammals 

maintaining large amounts of BAT into adulthood (47). In mice, an interscapular BAT depot is 

first observed around embryonic day 15 (E15). The rapidly expanding fat mass is accompanied 

by cell proliferation, increased triglyceride content, and a rise in mitochondrial number and 

activity, obtaining peak differentiation and functional activity postnatally (48). In humans, 

histomorphological studies have shown that immature brown adipocytes can be detected in the 

interscapluar region as early as in the 29th week of gestation (49). More recently, through a 
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combined use of high-resolution imaging and biochemical analysis, this interscapular depot of 

human infants has been confirmed to be bona fide brown fat, similar to rodents (50). Thus, late 

fetal development of rodent BAT provides a unique model to study brown adipocyte 

differentiation in vivo. 

 

Transcriptional control of brown adipocyte differentiation 

Differentiation, also known as adipogenesis, is the process by which precursor cells 

(preadipocytes) in adipose tissue undergo a transcriptional program to become mature 

adipocytes. Despite differences in function and developmental origin, the differentiation process 

for white and brown adipocytes involves many of the same factors, and much of what we know 

about brown adipocyte differentiation comes from studies of cultured white adipose cell lines 

originally developed by Howard Green and colleagues in the 1970s (51, 52). The differentiation 

of preadipocytes into adipocytes involves growth arrest, clonal expansion, and terminal 

differentiation. Adipogenesis is regulated by a coordinated transcriptional cascade, including the 

sequential activation of members of the CCAAT/enhancer-binding proteins (C/EBP) family of 

basic region leucine zipper (bZIP) transcription factors and the nuclear hormone receptor 

peroxisome proliferator-activated receptor γ (PPARγ) (53).  

PPARγ is the transcriptional master regulator of adipocyte differentiation and is 

absolutely required for adipogenesis (54). Key to the function of both brown and white 

adipocytes, PPARγ binds to and regulates a large number of genes that span the gamut of 

adipocyte metabolism, including those involved in fatty acid uptake, binding, and storage. This 

includes adipocyte fatty-acid-binding protein (FABP4, also known as aP2), a marker of 

terminally differentiated adipocytes (55, 56). Most pro-adipogenic transcription factors act, to 
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some extent, by inducing PPARγ expression and activity. The temporal expression of C/EBPβ, 

C/EBPδ, and C/EBPα are crucial in this role (57). Interestingly, C/EBPβ also has a unique 

function in brown adipocytes; it is enriched in brown adipose relative to white adipose, and it 

aids in controlling the brown fat-selective gene signature (58). Furthermore, although PPARγ is 

not exclusive to BAT, it does activate the UCP1 enhancer only in brown fat cells (59). 

There are also many negative regulators of adipogenesis. A widely accepted marker of 

both brown and white preadipocytes is preadipocyte factor 1 (Pref1; also known as Dlk1 or 

Drosophila Homolog-like 1). Its expression is high in preadipocytes and declines with 

differentiation (60). Mice lacking Pref1 exhibit several abnormalities including accelerated 

adiposity (61), whereas Pref1 overexpression in adipose results in decreased fat pad size (62). 

Other notable inhibitors of adipogenic differentiation include several members of the GATA-

binding and forkhead transcription factor families, as well as Wnt signaling family members 

(53). Many of these anti-adipogenic factors show decreased expression over the course of 

differentiation, highlighting the importance for their repression under a pro-adipogenic 

environment. 

 The final stages of brown adipocyte differentiation are unique for their preferential 

expression of a number of genes, such as PPARγ coactivator 1α (PGC-1α) and numerous genes 

involved in mitochondrial biogenesis (63). PGC-1 (now known as PGC-1α) was first identified 

in brown fat as a cold-inducible coactivator of PPARγ and thyroid hormone receptor β (TRβ) on 

the UCP1 promoter (64). The importance of PGC-1α extends well beyond its role in brown 

adipocyte biology, being hailed as a master regulator of mitochondrial biogenesis and oxidative 

metabolism in most tissues and coactivating numerous transcription factors for a key role in 

many areas of energy homeostasis (65).  
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PGC-1α is essential for cold- and cAMP-induced thermogenic gene expression. Two 

independent PGC-1α whole body knockout mouse lines were found to develop severe 

hypothermia when challenged with cold (66, 67), and PGC-1α knockout brown fat cells fail to 

mount a normal thermogenic response when treated with cAMP (68). Similarly, forced 

expression of PGC-1α in white fat cells induces the mitochondrial and thermogenic gene 

programs (64, 69). However, brown adipocytes lacking PGC-1α have the same adipogenic 

capacity as wildtype cells and express many BAT-selective markers, suggesting that the identity 

of brown fat cells does not require PGC-1α (68). Thus, while critical for the thermogenic 

function, PGC-1α does not dictate commitment to the brown fat fate. 

 While searching for a transcription factor that uniquely regulates all aspects of the 

specific brown adipocyte transcriptome, Seale and colleagues discovered the zinc-finger 

containing PR-domain-containing protein-16 (PRDM16) (70). Surprisingly, knockdown of 

PRDM16 from brown fat cells was shown to not only ablate the entire brown fat character, but it 

also uncovered a cell fate switch into muscle (70, 71). These discoveries and others (72, 73) 

challenged the preexisting belief that brown and white adipocytes originate from the same 

precursor population and provoked a paradigm shift in our understanding of preadipocyte lineage 

commitment. Specifically, current data support a new model where muscle and brown fat—but 

not white fat—derive from the same precursors (74). In addition, muscle-specific lineage tracing 

studies revealed that not all UCP1-containing cells originate from muscle precursors (71). Those 

that emerge in white fat depots upon chronic cold exposure or treatment with β-agonists, a 

process commonly referred to as “browning,” express a transcriptional signature distinct from 

“classical” interscapular brown adipocytes (75). These so-called “beige” or “recruitable BAT” 

cells have received considerable attention from the scientific community, especially given recent 
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studies indicating that the UCP1-positive cells in adult humans share more characteristics with 

rodent beige adipocytes than brown adipocytes (74, 76).  

 

Thyroid hormone signaling 

Thyroid hormone is critical for the time- and tissue-specific regulation of numerous 

developmental and metabolic processes (77). The thyroid gland is responsible for producing 

thyroid hormone, of which it secretes two varieties. The majority secreted is in the form of the 

biologically-inactive prohormone thyroxine (T4). Its triply iodinated derivative, 3,5,3%-

triiodothyronine (T3), is the active form capable of binding the nuclear TRs responsible for 

thyroid hormone signaling within a cell. This transcriptional response is aided by extrathyroidal 

production of T3, which contributes about 80% of the body’s daily T3 in humans (78). When 

systemic levels of thyroid hormone are low, the anterior pituitary releases thyroid stimulating 

hormone (TSH), which binds to the TSH receptor of the thyroid follicular cell to activate 

synthesis and secretion of thyroid hormone, providing a feedback mechanism to ensure steady 

levels of thyroid hormone in the plasma (79). This tight regulation reflects the necessity of 

thyroid hormone for the proper functioning of many physiological systems, and one’s health 

mandates that serum thyroid hormone levels stay within a normal euthyroid range. 

Cells acquire T3 from two different sources: plasma T3 and intracellular 5% 

monodeiodination of T4 in tissue. This deiodination of thyroid hormone is catalyzed by the 

iodothyronine deiodinases1, which selectively activate or inactivate thyroid hormone through 

removal of an iodide moiety from the phenolic (outer) or tyrosil (inner) ring of the 

                                                
1Note that type 1, 2, and 3 iodothyronine deiodinases are distinct from iodotyrosine deiodinase I.  
Throughout this body of work whenever “deiodinase” is mentioned, it is in reference to the 
iodothyronine deiodinases. 
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iodothyronines, respectively (Figure 1.1) (77). Type 2 deiodinase (D2) is the main deiodinase to 

catalyze local activation of thyroid hormone, whereas type 3 deiodinase (D3) is the main 

deiodinase to catalyze local inactivation of T3 and T4. Comparatively, type 1 deiodinase (D1) is 

kinetically inefficient and is the only deiodinase capable of both activating and inactivating T4 

(80). Together the deiodinases modulate thyroid hormone signaling in a tissue-specific manner 

despite a relatively constant level of thyroid hormone in plasma (80).  

 The extent of thyroid hormone signaling within a cell depends on the net occupation of 

T3-bound TRs. TRs bind to distinct DNA sequences known as thyroid hormone response 

elements (TREs) in the promoters of thyroid hormone-responsive genes, leading to 

transcriptional modification of these genes. Liganded TRs will activate genes with positive TREs 

and downregulate genes with negative TREs; however, the mechanism of negative regulation is 

not well understood. Importantly, the unliganded TR is not a passive bystander, as it can act as 

an aporeceptor and repress basal transcription through recruitment of corepressors (81, 82). For 

positively regulated T3-genes, T3 binding to the TR alters this transcriptional complex, 

remodeling chromatin to promote transcription (83). TR occupancy is dependent on the 

intracellular T3 concentration, which in the majority of tissues is similar to the serum free T3 

concentration (84). However, tissues expressing the deiodinases have either higher or lower 

levels of T3 concentration and TR saturation due to additional T3 (in the case of D2) or 

inactivation of T3 (in the case of D3) (80). An example of this is BAT, which upon cold-induced 

adrenergic stimulation increases intracellular T3 by ~5-fold through a ~50-fold increase in D2 

activity (85), eliciting the transcription of T3-responsive thermogenic genes (77). As a 

consequence, the amount of TR occupancy is much higher in D2-expressing cells (70–90% 

compared to 40–50% in most tissues) (80).  
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Figure 1.1. Thyroid hormone deiodination. Outer ring deiodination of T4 by D2 or D1 
produces T3, the biologically active form of thyroid hormone. T4 can be inactivated by D3 or D1 
to generate rT3. T2 is an inactive metabolite common to both pathways. Adapted from (80).  
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Type 2 deiodinase 

There are certain key features of D2 that endow it with the privileged capacity to 

specifically and transiently elevate nuclear TR occupancy by T3. In common to all three 

deiodinases, D2 is a thioredoxin-fold-containing enzyme that catalyzes the deiodination reaction 

through a vital selenocysteine in its active center (86, 87). Also integral to its catalytic activity is 

a homodimerization event that renders a proper conformation for its active center (88). D2 is 

located in the endoplasmic reticulum, which, given its close proximity to the nuclear 

compartment, provides D2 with a spatial advantage for easy access of its deiodinated substrate to 

the nucleus (78). This is perhaps best reflected by the longer nuclear retention time of D2-

generated T3 compared to T3 from the plasma (hours vs. minutes, respectively) (89). In addition, 

D2 is subjected to multiple levels of control that are both transcriptional and posttranslational to 

ensure tight regulation of its activity (90). As mentioned earlier, Dio2 is responsive to cAMP, as 

seen during cold exposure. Unique to BAT, Dio2 expression also increases in a feed-forward 

manner with T3 stimulation, highlighting the similarities between the Dio2 and UCP1 

transcriptional response (91). D2 is subject to ubiquitination and proteasomal degradation and 

has a short half-life (approximately 40 minutes), which is further decreased (to approximately 20 

minutes) upon exposure to substrate such as T4. The potency of substrate inhibition after 

catalysis provides a mode of negative feedback regulation that efficiently controls cellular T3 

production (92, 93). 

 

D2 in adaptive thermogenesis 

It is by now well established that D2 plays a critical role in BAT thermogenesis. The 

cold-induced activation of BAT thermogenic function relies on a cAMP-mediated increase in 
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D2-generated T3 (94), which increases T3-sensitive genes, such as UCP1. It is worth 

emphasizing that the increased T3 signaling of the cold-stimulated brown fat occurs in an 

isolated fashion; circulating T3 levels remain constant despite the local thyrotoxicosis in BAT 

(95). The role here of D2 has been further clarified by studies of mice with targeted disruption of 

the Dio2 gene [D2KO mouse (96)]. Upon cold exposure, D2KO mice exhibit a mild hypothermia 

that is otherwise offset by compensatory shivering, which is an unusual thermogenic behavior in 

mice (97). That these mice have impaired adaptive thermogenesis was clearly shown by a 

decreased thermal response of interscapular BAT to norepinephrine (97). Further, isolated brown 

adipocytes from D2KO mice had diminished norepinephrine-induced UCP1 expression, which 

could be rescued when mice were given a TR-saturating dose of T3 (97). A follow-up study 

revealed that D2KO mice are able to survive cold exposure due to increased sympathetic 

activity, which elevates to overcompensate for a decreased adrenergic responsiveness of the 

D2KO BAT (98). Since the D2KO mouse is systemically euthyroid, these results lend further 

support to the prevailing hypothesis that tissue-specific control of thyroid hormone signaling in 

BAT is important for increasing energy expenditure. In addition, supplementation of diet with 

bile acids mediates a resistance to diet-induced obesity in mice via upregulation of D2 activity in 

BAT, indicating that D2’s role in brown fat might extend beyond cold-induced thermogenesis 

(99). 

 

Deiodinases and development 

 Deiodinase-catalyzed temporal and spatial modulation of thyroid hormone signaling 

plays an essential role in the development of various tissues (80). The timing of deiodinase 

activity is crucial for a diverse set of developmental events, including D3 in proper rotation of 
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the retina in Xenopus laevis (100), ubiquitination and subsequent inactivation of D2 in the tibial 

growth plate of developing chickens (101), as well as D2 in a critical period of cochlear 

development in mammals (102, 103). The coordinated action of the deiodinases in modulating 

thyroid hormone signaling has been suggested to play a role in the switch between proliferation 

and differentiation in different cell models, such as in chondrocytes and keratinocytes, where 

activation of D3 and inactivation of D2 lead to a cellular hypothyroidism that enhances 

proliferation (101, 104). Thus, D3 is thought to promote proliferation by limiting intracellular 

T3, and D2, by increasing T3, is regarded as being pro-differentiative. 

 Thyroid hormone has long been known as an adipogenic factor for white preadipocytes 

based on studies in which cells were cultured under non-physiological conditions of hypo- or 

hyperthyroidism. T3 is frequently used in adipogenic cocktails at supra-physiological levels to 

induce differentiation and is absolutely required for terminal differentiation of some white 

preadipocyte cell lines (105-107). D3 has recently been recognized for its high expression and 

association with brown adipocyte proliferation (108), calling attention to a possible role for the 

deiodinases in brown adipocyte development. Notably, D3 is encoded in the same locus as the 

anti-adipogenic Pref1. Since imprinting is coordinately regulated (109), it seems likely that D3 is 

an additional member of this imprinted gene network that regulates differentiation of fat cells.  

Brown fat development is unique in that it reaches its maximum T3-binding capacity and 

TR expression prior to birth, which is unlike other thyroid hormone-sensitive tissues that attain 

maximum T3-resposniveness postnatal (110). With the exception of the thyroid gland, tissue T3 

concentration is higher in BAT than in any other tissue of the developing fetus. This is especially 

remarkable in light of the low prenatal circulating T3 levels (111). In fact, this tissue-specific 

increase in T3 most likely reflects the ontogenic profile of BAT D2 activity, which has been 
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shown to dramatically increase during late fetal life of rats and mice (110, 112, 113). But a 

precise role for D2 in the developing BAT remained unclear.  

 

Objectives 

There is an urgent need for new drugs to treat a growing population of obese individuals, 

and a better understanding of brown adipose tissue development and function may offer safe 

alternatives to increase energy expenditure as an anti-obesity therapy. D2 has previously been 

recognized for its important role in the acute thermogenic response to cold. In Chapter 2, I 

expand the role of D2 to brown fat development and adipogenesis. Using mice with inactivation 

of the D2 pathway (D2KO), we found that a lack of D2-generated T3 results in impaired BAT 

development that contributes to the thermogenic defect observed in adult mice. In Chapter 3, we 

tested whether defective thermogenesis of D2KO mice increases their susceptibility to diet-

induced obesity. When mice are reared at an ambient temperature that minimizes thermal stress, 

they become obese with glucose intolerance and hepatic steatosis. These findings provide novel 

insight into the role of D2 in brown fat development and function. 

 

HEPATIC GLUCONEOGENESIS IN THE CONTROL OF GLUCOSE HOMEOSTASIS 

 In this section, I will introduce type 2 diabetes, a chronic metabolic disease that is 

increasing globally in parallel with the rising obesity epidemic. Diabetes results from a failure to 

regulate glucose homeostasis, and I will discuss how this is predominantly due to uncontrolled 

elevation in hepatic gluconeogenesis. I will review the current scientific understanding of the 

transcriptional regulation of gluconeogenesis and the key role played by FoxO1 in conferring 

insulin sensitivity onto the expression of gluconeogenic genes. I will also discuss the known 
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posttranslational modifications that control FoxO1 activity with particular emphasis on 

ubiquitination. Finally, I will introduce the deubiquitinating enzyme USP7. 

 

“Corpulence is not only a disease itself, but the harbinger of others” – Hippocrates 

 
Type 2 diabetes 

Type 2 diabetes is one of obesity’s most distinct comorbidities. The conditions are so 

intimately tied that over 80% of people with type 2 diabetes are obese (114). Following the 

global epidemic of obesity, 439 million people are projected to suffer from diabetes mellitus by 

2030—a staggering 7.7% of the adult world population (115). Diabetes mellitus, more 

commonly referred to as diabetes, is a group of diseases marked by hyperglycemia due to 

defective insulin production, action, or both. Consequences of diabetes include both micro- and 

macrovascular complications, which can lead to blindness, renal insufficiency, cardiovascular 

disease, or stroke. Type 2 diabetes, also known as adult-onset diabetes, comprises approximately 

90–95% of diabetes cases worldwide and is characterized by peripheral insulin resistance, which 

is when the body fails to respond appropriately to insulin. It should not be confused with type 1 

diabetes, also known as juvenile diabetes, which is an insulin-dependent form of diabetes caused 

by autoimmune destruction of insulin-producing pancreatic beta cells (116). Diabetes results 

from impaired glucose utilization, and achieving glucose homeostasis is paramount to the 

management of this disease. 

 

Maintenance of glucose homeostasis 

Blood glucose must be kept within a narrow range to ensure vitality. This is especially 

important for the brain and red blood cells, which almost exclusively rely on glucose for energy. 
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Glucose levels remain relatively stable through the opposing actions of pancreatic hormones 

glucagon and insulin, which coordinate a synchronous effort from multiple tissues to facilitate 

glucose disposal in times of excess and production in times of scarcity. However, it is primarily 

the liver that carries the metabolic burden of safeguarding blood glucose levels and maintaining 

glucose homeostasis (117).  

During fasting, glucagon rises to initiate hepatic glucose production in order to replace 

scarce glucose. Initially, short-term needs of fasting are met by glycogen breakdown 

(glycogenolysis). After glycogen stores have been depleted, longer fasting requires 

gluconeogenesis, which entails the production of glucose from non-carbohydrate precursors, 

mainly lactate, pyruvate, glycerol, and alanine. Conversely, under fed conditions when dietary 

carbohydrates are sufficient to meet energy demands, insulin release stimulates glucose uptake in 

the muscle and fat, while repressing glucose output from the liver. However, in diabetes, where 

there is insulin insufficiency or insulin resistance, glucose is overproduced by the liver and 

underutilized by other organs; the diabetic is in a mode of biochemical starvation (117). 

Increased hepatic glucose production is one of the main contributors to the hyperglycemia in 

diabetes, which can be attributed predominantly to elevated gluconeogenesis (118, 119). Thus, a 

deeper understanding of the molecular mechanisms that regulate gluconeogenesis has the ability 

to provide key insight into treatments for diabetes.  

 

Transcriptional control of gluconeogenesis  

Gluconeogenesis is largely controlled at the transcriptional level, whereby hormonal cues 

are relayed through a vast and complex regulatory network that converges on the transcription of 

key rate limiting enzymes, glucose-6-phosphatase (G6Pc; G6Pase) and phosphoenolpyruvate 
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carboxykinase (Pck1; PEPCK) (Figure 1.2). During fasting, glucagon activates the cAMP/PKA 

pathway, which initiates a wave of transcriptional events that enhance the gluconeogenic gene 

program. Initially, PKA-activated CREB directly binds to CREs within the promoters of G6Pc 

and Pck1, stimulating their expression (120-122). Assisting the CREB response, cAMP-mediated 

dephosphorylation of CREB regulated transcription coactivator 2 (CRTC2, also known as 

TORC2) promotes its nuclear localization and coactivation of CREB (123). In a feed-forward 

manner, CREB/CRTC2 stimulates expression of PGC-1α, which plays a key role during the later 

phase of fasting (120, 123, 124). Namely, elevated levels of PGC-1α robustly amplify and 

maintain gluconeogenic gene expression through the coactivation of gluconeogenic transcription 

factors, such as forkhead box O1 (FoxO1) (125, 126). FoxO1 induces expression of G6Pc and 

Pck1 by interacting with an insulin responsive element (IRE) on their promoters (127-130). The 

promoter region of G6Pc contains at least three IRE motifs and the promoter region of Pck1 

contains at least one IRE motif (131, 132). 

Insulin adds another layer to the richness and complexity of gluconeogenic 

transcriptional control. In the hepatic response to feeding, insulin initiates a linear signaling 

cascade through the phosphatidylinositol 3-kinase (PI3K) pathway that results in 

phosphorylation and activation of the serine/threonine kinase Akt, which is a central node 

responsible for the insulin-induced suppression of G6Pc and Pck1 expression (133, 134). 

Although Akt antagonizes the fasting response in several ways, quite arguably the most 

important route by which insulin/Akt suppresses hepatic production of glucose is through 

phosphorylation of FoxO1 at Thr24, Ser256, and Ser319 of the human protein, resulting in its 

inactivation (125, 128, 135, 136). This phosphorylation event induces a nuclear-cytoplasmic 

shuttling by aid of the chaperone protein 14-3-3, which sequesters FoxO1 in the cytoplasm and,  
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Figure 1.2. Glucagon and insulin signaling on the gluconeogenic program in the hepatocyte. 
Glucagon signaling through cAMP/PKA activates CREB/CRTC2 that stimulates expression of 
PGC-1α. PGC-1α coactivates HNF4α and FoxO1 at cognate elements in the promoters of G6Pc 
and Pck1, leading to increased gluconeogenesis. Insulin suppresses gluconeogenic gene 
expression by signaling through Akt. Akt activates salt-inducible kinase 1 (Sik1), which 
promotes the cytoplasmic translocation of CRTC2 (123). Akt also directly inhibits PGC-1α 
(137). Akt-mediated phosphorylation of FoxO1 induces cytoplasmic localization, association 
with 14-3-3 proteins, and ubiquitination followed by proteasomal degradation. See the text for 
more details and references.  
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hence, reduces its transcriptional activity (138). Once rendered cytoplasmic by insulin, FoxO1 

becomes polyubiquitinated and degraded by the proteasome (139). By conferring insulin 

sensitivity onto the expression of gluconeogenic genes, FoxO1 is a critical regulator of hepatic 

gluconeogenesis. 

Several mouse models have demonstrated the importance of FoxO1 in glucose 

metabolism. Liver-specific deletion of FoxO1 results in a mouse with reduced gluconeogenic 

gene expression and reduced hepatic glucose output (both glycogenolysis and gluconeogenesis) 

as measured by hyperinsulinemic euglycemic clamp (140). However, a more profound 

phenotype is realized on a diabetic background. Using diabetic db/db mice, hepatic expression of 

a dominant negative FoxO1 decreases gluconeogenic gene expression and reduces glucose levels 

to that of non-diabetic mice (141). Moreover, in mice with genetically-induced diabetes—with 

either deletion of the insulin receptor (140), insulin receptor substrates IRS1 and IRS2 (142), or 

Akt1 and Akt2 (143)—the added deletion of FoxO1 rescues their hyperglycemia. There is also 

an emerging story of FoxO1 control in hepatic lipid metabolism, although its precise role 

remains unclear (144). Together, these studies strongly suggest that inhibition of FoxO1 could be 

a promising strategy to reverse hyperglycemia associated with insulin-resistant diabetes. 

Therefore, it is important to gain a better understanding of how FoxO1 is regulated. 

 

FoxO family of transcription factors 

FoxO1 belongs to a family of transcription factors within a larger family of Forkhead 

proteins, which are so-called based on their characteristic “forkhead box” DNA binding domain. 

In addition to FoxO1, the mammalian FoxO subfamily contains at least three other members, 

including FoxO3, FoxO4, and FoxO6 (145, 146). All FoxOs bind as monomers to the same 
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target consensus motif (that is 5%-TTGTTTAC-3%) (147). This consensus motif differs slightly 

from the IRE [5%-T(G/A)TTTTG-3%], which FoxOs bind to with lower affinity (148). FoxO1, 

FoxO3, and FoxO4 contain the same evolutionarily conserved Akt phosphorylation motifs, and 

all three are expressed in the adult mouse liver—albeit to a lesser extent for FoxO4 (138, 148-

150). FoxO6 lacks the third Akt phosphorylation motif, has slightly different nuclear-

cytoplasmic shuttling kinetics, and is expressed predominantly in neural cells (146). Given their 

similarities, FoxO proteins consequently display some level of redundancy (147). However, they 

appear to have unique functions as well (151). This is best realized upon global deletion of the 

specific FoxOs. Whereas mice lacking FoxO1 are embryonic lethal, FoxO3- and FoxO4-null 

mice are viable (152), thus, attesting to their functional diversity. Together, the FoxO family 

members are responsible for orchestrating gene expression programs involved in a broad 

spectrum of biological processes, including cell survival, growth, and metabolism (153).  

 

Posttranslational modifications of FoxO proteins 

 Contributing to their functional breadth, the activity of FoxO proteins can be altered by 

posttranslational modifications, including phosphorylation, acetylation, methylation, 

glycosylation, and ubiquitination (Figure 1.3). In response to various cellular signals, specific 

enzymes catalyze attachment of these moieties at defined residues, which leads to alterations in 

subcellular localization, DNA-binding ability, or molecular half-life (157). Phosphorylation of 

FoxOs by Akt has been discussed above and is a prime example of an inhibitory modification on 

FoxO activity. FoxOs can also be phosphorylated in an activating manner, such as with 

mammalian Ste20-like kinase (MST1). Under oxidative stress, MST1 phosphorylates FoxO 

proteins on a conserved site within the forkhead domain that prevents association with 14-3-3  
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Figure 1.3. Posttranslational modifications of FoxO1. The functional domains of human 
FoxO1 are shown together with the sites of modification and the responsible 
modifying/demodifying enzymes. Modifications that inhibit FoxO1 transcriptional activity are 
indicated with a (-). Activating modifications are indicated with a (+). The site(s) of 
polyubiquitination are unknown and are denoted by a question mark. See the text for references 
with the exception of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) 
(154), CK1 (155), and O-linked glycosylation with N-acetylglucosamine (O-GlcNac) transferase 
(OGT) (156). Phosphorylation (P); Methylation (Me); Acetylation (Ac); O-GlcNac (G); 
Ubiquitination (Ub); Nuclear localization sequence (NLS); Nuclear export sequence (NES).  
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proteins, rendering FoxO nuclear and active (158). In addition, there are modifications that can 

protect FoxOs from Akt-mediated inactivation, with an example being the methylation of 

arginine residues within its Akt consensus site as catalyzed by protein arginine methyltransferase 

(PRMT) (159). Another important modification of FoxO proteins is the attachment of acetyl 

groups, which reduces DNA binding ability and promotes cytoplasmic localization (160). FoxOs 

are acetylated by histone acetyltransferases CREB binding protein (CBP) and its related protein 

p300 (CBP/p300) and deacetylated by class I-II and III histone deacetylases, including Sirt1, an 

NAD+-dependent deacetylase (161-163). Furthermore, in addition to these aforementioned small 

molecule modifications, the function of FoxO proteins can be altered by attachment of an entire 

protein, such as ubiquitin. 

Ubiquitination is an important posttranslational modification for regulation of FoxO 

activity. Early studies focused on polyubiquitination of FoxO proteins, having found that FoxOs 

get polyubiquitinated and degraded by the proteasome in response to insulin (139, 164). This 

process was shown to require Akt-induced phosphorylation and cytosolic localization (139). 

Several E3 ligases responsible for FoxO polyubiquitination and degradation under various 

settings have been described, including Skp2, an F-box protein that is present in Skp1, Cullin-1, 

F-box protein complexes (165); mouse double minute 2 (MDM2) (166, 167); COP1, a Ring-

Finger E3 ubiquitin ligase (168); and C-terminus of Hsc70-interacting protein (CHIP), a co-

chaperone protein and functional E3 ubiquitin ligase (169). However, a potential role for 

monoubiquitination in the control of FoxO activity has recently received attention due to 

findings of oxidative stress-induced monoubiquitination of FoxO4 (170-172). In this scenario, 

monoubiquitination does not degrade FoxO4; instead, monoubiquitination actually promotes 

FoxO4 nuclear localization and enhances its transcriptional activity (170). Given that FoxO 
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family members share many of the same regulatory mechanisms, it will be informative to 

understand whether FoxO1 activity is also controlled by monoubiquitination. 

  

Ubiquitination and deubiquitination 

 Posttranslational modification by ubiquitin (ubiquitination) provides a robust signaling 

mechanism that regulates numerous aspects of cell biology, including cell division, DNA 

damage repair, and transcription (173). Ubiquitin, as the name suggests, is a ubiquitously 

expressed protein found in essentially every cell of the body. Weighing in at about 8 kDa, this 

small, globular protein is comprised of a 76 amino acid sequence that is highly conserved from 

yeast to man (174). Key features of its structure include seven lysine (Lys) residues (at positions 

6, 11, 27, 29, 33, 48, and 63) and an extended carboxyl tail with a C-terminal glycine residue. 

Through a sequential cascade of enzymatic reactions, this glycine residue most typically forms 

an isopeptide bond with the ε-amino group on a lysine of its target substrate. The covalent 

attachment of a single ubiquitin entity on one or multiple sites of a recipient protein results in 

mono- and multi-monoubiquitinated proteins, respectively. Ubiquitin itself can be subjected to 

this conjugation, with any one of its own lysine residues, or even its amino terminal methionine, 

serving as acceptor sites for another ubiquitin moiety. Sequential rounds of this process lead to 

the assembly of polyubiquitin chains on target substrates, which can vary in terms of linkage-

type topology (174). Although all linkage types have been detected in vivo, Lys48 and Lys63 

linked chains are the most abundant in both yeast and mammalian cells and the best studied 

(175-177); very little is known about the other “atypical” chains (178). A discussion of the 

distinct fates dictated by these various ubiquitin linkages goes beyond the scope of this 

introduction but is reflected in Figure 1.4. These modifications lead to diverse consequences for  
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Figure 1.4. Diversity of ubiquitin modifications. Ubiquitin (Ub) can be attached as a single 
moiety (monoubiquitination) or multiple single Ub moieties (multi-monoubiquitination) to a 
substrate protein. In addition, all seven lysine residues of Ub (and the N-terminal methionine of 
Ub) are capable of accepting additional Ub moieties in formation of a polyubiquitin chain. These 
polyubiquitin chains can exist as homotypic chains (all of the same linkage) or as heterotypic 
chains comprised of different linkage types. Heterotypic chains are either branched or non-
branched. The various Ub chain types lead to different outcomes as indicated. See the text for 
references and (174, 178).   
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the ubiquitinated protein, ranging from proteasome-dependent proteolysis to modulation of 

protein structure, assembly, localization, and/or function (174). 

The process of ubiquitination is tightly regulated and occurs through a three-step catalytic 

cycle (Figure 1.5). First, the ubiquitin activating enzyme (E1) forms a thioester bond between its 

active site cysteine and the C-terminus of ubiquitin in an ATP-consuming reaction. The activated 

ubiquitin intermediate is transferred from E1 to the ubiquitin conjugating enzyme (E2) as a 

thioester and is subsequently attached to the target substrate by an ubiquitin ligase (E3), which 

confers specificity through substrate recognition (179). The details differ in this last step 

depending on the nature of the E3 involved, with homologous with E6-associated protein C-

terminus (HECT) domain E3s forming a thioester intermediate with ubiquitin (180), whereas 

really interesting new gene (RING) domain E3s assist in direct transfer of ubiquitin from E2 to 

the recipient protein (181). The human genome encodes two E1 enzymes, about 40 E2 enzymes, 

and over 600 E3 ligases, attesting to the tight regulation and high level of specialization that 

surround this ubiquitin moiety (174). Indeed, ubiquitination is also a highly plastic 

posttranslational modification, and in one fell swoop the net action of the ubiquitin ligation 

machinery can be undone through a process of deubiquitination.  

Deubiquitinating enzymes (also referred to as deubiquitinases or DUBs) modulate 

ubiquitin signaling through the removal of both mono- and polyubiquitin moieties. They are also 

responsible for generating the pool of free ubiquitin monomers by processing the polyubiquitin 

gene product and by recycling ubiquitin from leftover polyubiquitin chains of degraded proteins 

(182). The human genome encodes approximately 100 DUBs that belong to five gene families, 

four classes of which are cysteine proteases. The cysteine proteases include the ubiquitin C- 

terminal hydrolase (UCH), the ubiquitin specific protease (USP), the ovarian tumor domain 
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Figure 1.5. Enzymatic cascade leading to substrate ubiquitination and its reversal. 
Ubiquitin (Ub) is activated by Ub activating enzyme (E1) and is then passed to Ub conjugating 
enzyme (E2). A Ub ligase (E3) aids in the final attachment of Ub to a substrate protein. The 
process of ubiquitination can be reversed by deubiquitination through the action of 
deubiquitinating enzymes (DUBs). See the text for more details and references.  
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(OTU), and the Josephin domain (MJD) DUBs. The fifth family is comprised of the 

JAB1/MPN/Mov34 metalloenzyme (JAMM) domain DUBs that are zinc-dependent 

metalloproteases (183). For the cysteine proteases, activity depends on a vital catalytic triad 

composed of a cysteine, a histidine, and an aspartate. During the act of deubiquitination, the 

catalytic cysteine performs a nucleophilic attack on the carbonyl group of the protein-ubiquitin 

linkage, cleaving the crucial isopeptide bond and liberating the substrate protein (183). To 

prevent against fortuitous cleavage, the activity of DUBs is tightly regulated on the 

transcriptional and posttranslational level; they themselves are even prone to ubiquitination. 

Also, DUBs contain ubiquitin-binding domains and protein-protein interaction domains, which 

aid in selecting the appropriate substrate and in recognizing different ubiquitin chains (182). 

Although recent efforts have begun to unravel the increasing importance of DUBs in a variety of 

cellular processes, the specific targets and physiological roles of most DUBs remain poorly 

understood (184). However, one DUB, USP7, has been heavily studied because of its connection 

to the cancer field. 

 

The deubiquitinating enzyme USP7 

Ubiquitin specific protease 7 (USP7; also known as herpesvirus-associated USP, 

HAUSP) is a DUB that was first identified in 1997 as a protein interacting with herpes simplex 

virus type I immediate early protein, ICP0 (or Vmw110) (185). However, insight into its cellular 

function did not begin to materialize until an association with the tumor suppressor p53 was 

made five years later (186). Although the original findings suggested that USP7 deubiquitinates 

and stabilizes p53, subsequent studies have found that USP7 preferentially deubiquitinates and 

stabilizes HDM2 (the human ortholog of MDM2), an E3 ligase responsible for the 
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polyubiquitination and degradation of p53 (187, 188). Interest in this DUB has skyrocketed since 

then, finding that it makes critical connections with numerous proteins involved in tumor 

suppression, DNA repair, response to infection, and epigenetic regulation of gene expression 

(187). And with the advent of high-throughput proteomic analysis, the list of potential USP7 

substrates continues to grow (189, 190).  

 USP7 has two other prominent tumor suppressor targets: phosphatase and tensin 

homologue (PTEN) and FoxO4. However, its regulation of these substrates is in a manner 

unrelated to protein turnover. Under both situations, USP7 deubiquitinates the 

monoubiquitinated protein, which leads to altered subcellular localization and activity (170, 

191). Similar to its net effect on p53, knockdown of USP7 leads to functional changes in PTEN 

and FoxO4 that promote their tumor suppressor activities (170, 191). Notably, USP7 

overexpression has been found to directly correlate with tumor aggressiveness in prostate cancer 

and possibly others (191, 192). Given the tractability of DUB inhibition, the therapeutic appeal 

of a USP7-targeted approach has not eluded drug companies. USP7 is the most studied DUB 

target, and several companies are actively pursuing USP7 drug discovery programs (193). 

 

Objectives 

Given the critical role of FoxO1 in gluconeogenesis, there is great interest in 

understanding enzymes that control its transcriptional activity, as they may provide potential 

drug targets in the treatment of hyperglycemia associated with insulin resistance. USP7 has been 

shown to inhibit the activity of FoxO4, which suggested that this deubiquitinating enzyme might 

also regulate FoxO1 and, therefore, impact gluconeogenesis. In Chapter 4, I describe FoxO1 as a 

novel target for USP7-mediated mono-deubiquitination and provide data that show USP7 
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inhibits FoxO1 transcription of gluconeogenic genes. These results expand USP7 to the context 

of glucose metabolic control and provide insight into an alternative pathway for the maintenance 

of glucose homeostasis. 
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ABSTRACT 

Type 2 deiodinase (D2), which is highly expressed in brown adipose tissue (BAT), is an 

enzyme that amplifies thyroid hormone signaling in individual cells. Mice with inactivation of 

the D2 pathway (D2KO) exhibit dramatically impaired thermogenesis in BAT, leading to 

hypothermia during cold exposure and a greater susceptibility to diet-induced obesity. This was 

interpreted as a result of defective acute activation of BAT D2. Here we report that the adult 

D2KO BAT has a permanent thermogenic defect that stems from impaired embryonic BAT 

development. D2KO embryos have normal serum T3 but due to lack of D2-generated T3 in 

BAT, this tissue exhibits decreased expression of genes defining BAT identity [i.e. UCP1, PGC-

1α and Dio2 (nonfunctional)], which results in impaired differentiation and oxidative capacity. 

Coinciding with a reduction of these T3-responsive genes, there is oxidative stress that in a cell 

model of brown adipogenesis can be linked to decreased insulin signaling and decreased 

adipogenesis. This discovery highlights the importance of deiodinase-controlled thyroid hormone 

signaling in BAT development, where it has important metabolic repercussions for energy 

homeostasis in adulthood. 
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INTRODUCTION 

Brown adipose tissue (BAT) is a major site of adaptive thermogenesis, having gained 

recent appreciation for presence and activity in adult humans (1). Its capacity to convert 

chemical energy into heat is used to preserve thermal and caloric homeostasis. Both pathways 

rely on uncoupling protein 1 (UCP1), a thyroid hormone-responsive gene (2). While small 

mammals use BAT activation to defend core temperature in the cold, hypothyroid animals 

succumb within hours because of insufficient BAT thermogenesis (3, 4). 

Thyroid hormone signaling can be controlled in individual cells through the selective 

activation or inactivation of thyroid hormone via the deiodinases (5). Although thyroid hormone 

primarily exists as the minimally active prohormone T4 (thyroxine), extrathyroidal tissues can 

convert T4 to the biologically active T3 (3,5,3′-triiodothyronine), which binds thyroid hormone 

receptor (TR) to regulate transcription of T3-responsive genes. This reaction is catalyzed by the 

type 2 deiodinase (D2), while both T4 and T3 can be inactivated by the type 3 deiodinase (D3) 

(Figure 2.1, A and B, respectively). As a result, D2-expressing cells have a higher T3 

concentration and TR activation. Correspondingly, D3-expressing cells can inactivate incoming 

T3, thereby reducing TR activation, such as during myocardium hypoxia (6). 

While the serum concentration of T3 is normal in mice with targeted deletion of D2 gene 

(D2KO) (7), BAT thermogenesis is severely impaired (8). Freshly isolated D2KO brown 

adipocytes have impaired lipogenesis, generate less cAMP, and fail to increase metabolic rate in 

response to adrenergic stimulation (8, 9). D2KO animals can only survive in the cold due to an 

increase in BAT sympathetic activity and shivering, a behavior not normally observed in cold-

exposed mice. In addition, D2KO mice are more susceptible to obesity when placed on a high-fat 

diet (Castillo & Hall et al., unpublished). 
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Figure 2.1. Deiodinase expression during BAT development. (A and B) Schematic of D2 and 
D3 modulation of thyroid hormone signal. D2 converts T4 to T3 (A), increasing nuclear T3 
levels, while D3 can inactivate T3 and T4 (B), decreasing thyroid hormone signal. (C) Image of 
H&E section of wildtype mouse embryo at E16.5 (top) and E18.5 (bottom) with arrow indicating 
interscapular BAT (iBAT). Inset shows enlarged iBAT, where a. is section of BAT dissected for 
subsequent analyses. Bars, 1 mm. (D) Dio2 and Dio3 mRNA levels of embryonic BAT graphed 
relative to E16.5 expression. (E) D2 and D3 activity of BAT sonicates from E16.5, E17.5, and 
E18.5 embryos. *, p < 0.05; **, p < 0.01; and ***, p < 0.001 by one-way ANOVA with 
Newman-Keuls Multiple comparison. (F) Chromatogram of T4-fate, as resolved by UPLC, when 
E16.5 (top) and E18.5 (bottom) BAT sonicates are incubated with 125I-T4. Deiodination products 
are labeled by arrow according to retention time. Area depicting T3 peak is colored in red; rT3 
peak in blue.  
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Here we investigated whether insufficient D2KO BAT thermogenesis stems from impaired BAT 

development or results primarily from defective activation of the mature tissue. We have found 

that absence of D2-mediated thyroid hormone signaling in embryonic BAT contributes to a 

decrease of T3-responsive genes, such as PGC-1α, UCP1, and Dio2. Furthermore, in D2KO 

embryonic BAT there is oxidative stress, which in a cell model of brown adipogenesis can lead 

to decreased insulin signaling and impaired differentiation. These data illustrate the critical role 

played by D2 in BAT development, the absence of which results in a defective mature brown 

adipocyte. 

 

MATERIALS AND METHODS 

Materials 

Unless otherwise specified, reagents were purchased from Sigma-Aldrich (St. Louis, 

MO). BODIPY 493/503, Fungizone, Trizol, Oil Red O, and SlowFade Gold with DAPI were 

from Invitrogen (Carlsbad, CA). Anion exchange resin AG1-X8 was obtained from Bio-Rad 

(Richmond, CA). Anti-Phospho-Akt (Ser473), anti-Akt, anti-Phospho-IRS-1 (Ser307), anti-IRS1 

antibody, anti-PDK1, and anti-Phospho-IκBα (Ser32) antibodies were obtained from Cell 

Signaling (Danvers, MA). Anti-IRβ antibody was from Santa Cruz Biotechnology (Santa Cruz, 

CA). The anti-rabbit Alexa647, anti-rabbit Alexa488, and anti-rabbit Alexa593 antibodies were 

from Invitrogen. Outer-ring labeled 125I-T4 and -T3 were purchased from PerkinElmer (Boston, 

MA) and purified on LH-20 columns (Sigma) before use. Dithiothreitol (DTT) was from 

Calbiochem (San Diego, CA).  
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Animals 

All studies were performed according to protocols approved by the Animal Care and Use 

Committees of Harvard Medical School and University of Miami Miller School of Medicine. 

Mice with targeted disruption of the Dio2 gene (D2KO) were backcrossed into a C57BL/6J 

background for 10 generations. Genotyping of D2KO mice was as previously described (9). 

C57BL/6J mice (wildtype, WT) were purchased from Jackson Laboratories (Bar Harbor, MA). 

For the embryo studies, WT mice were mated with D2KO mice to generate mice heterozygous 

for the D2KO allele (D2Het mice). Timed-pregnant dams of D2Het pairs were used to obtain 

littermate embryos of WT, D2Het and D2KO genotypes. Pregnancy was determined by presence 

of a vaginal plug (embryonic day 0.5, E0.5). All mice were maintained on normal chow and 

housed under a 12-hour light, 12-hour dark cycle at 22°C. 

 

Histology 

Hematoxylin and eosin staining was performed on paraffin-embedded sections of 

embryos that had been fixed in 10% neutral buffered formalin. 

 

Deiodination assays 

D2 and D3 activity was determined as previously described (10). D2 activity was 

measured on 30–40 µg protein of BAT homogenates in the presence of outer-ring labeled 125I-

T4, 0.1 nM T4 substrate, and 20 mM DTT for 4 hours at 37°C and 125I release quantified with a γ 

counter (2470 WIZARD2, PerkinElmer Life Sciences, Boston, MA). Samples treated with 100 

nM T4 (saturating) were used for background measurements. D3 activity was assayed by 

quantification of deiodination products on UPLC (ACQUITY, Waters Corporation, Milford, 
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MA) after 1-hour incubation at 37°C with outer-ring labeled 125I-T3, 0.1 nM T3 substrate, 1 mM 

PTU, and 10 mM DTT. For determination of T4-fate, deiodination products were resolved by 

Ultra Performance Liquid Chromatography (UPLC) after incubation for 2 hours with outer-ring 

labeled 125I-T4, 1 mM PTU, and 10 mM DTT. 

 

Plasma hormone levels 

Plasma levels of TSH, T4, and T3 were determined using a MILLIPLEX rat thyroid 

hormone panel kit as described by the manufacturer (Millipore, Billerica, MA) and read on a 

BioPlex (Bio-Rad, Hercules, CA). Plasma from hypo- and hyperthyroid mice (treated for 10 days 

with Sodium Perchlorate and Methimazole or 80 mg/kg T4, respectively) was used to prepare 

mouse TSH standards. Both rat and mouse curves were parallel and separated by a factor of 5. 

Mouse embryo serum samples were diluted 1:2.5 for analysis, and settings for the BioPlex 

included a modified specification of 100 events per bead. 

 

Brown preadipocyte tissue culture 

Interscapular brown adipose tissue (iBAT) was dissected from male and female mice 

from 4–8 weeks of age and processed as previously described (11). Unless indicated, cells were 

grown in DMEM + 10% fetal bovine serum, supplemented with 10 mM HEPES, 10-7 M sodium 

selenite, 3 nM insulin, 25 mg/L tetracycline, 25 mg/L streptomycin, 25 mg/L ampicillin, and 1 

mg/L fungizone. The preadipocytes were propagated and plated at confluence (20,000 cells/cm2), 

corresponding to day 0 of differentiation. Cells were differentiated for 10 days in this media 

unless noted. T3-responsiveness was performed with thyroid hormone-depleted serum (AG1-X8 

resin/charcoal-stripped) as previously described (11). An adipogenic cocktail of indomethacin 
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(125 µM), IBMX (0.5 mM), and dexamethasone (0.5 µM) was used with or without insulin in 

indicated experiments. Other treatments included Ascorbic Acid (1 mM), rT3 (200 nM), and T3 

(50 nM or 100 nM). 

 

Microscopy and cell counting 

For the cell counting experiments, day 0 cultures were differentiated on LabTek 

permanox slides (Nalge Nunc International, Rochester, NY). Cells were fixed in 4% PFA, and 

immunocytochemistry performed as suggested by antibody manufacturers (Abcam and 

Invitrogen). Slides were imaged on a Nikon Eclipse 90i microscope (Melville, NY), with a total 

of 15 fields in three different wells acquired for each sample at each time point. The location of 

individual fields was kept consistent between slides with a reference guide on the microscope 

stage. Nuclei or cells were counted using the Nikon NIS-Elements imaging software (for DAPI), 

or manually (for BODIPY 493/503). Identical thresholds for fluorescent intensity were used for 

WT and D2KO fields. Percent differentiation was determined as fraction of cells staining for 

BODIPY 493/503. 

 

Flow cytometry 

WT and D2KO cells differentiated for 10 days were treated with trypsin, resuspended in 

growth media, centrifuged briefly and both the upper layer of supernatant (containing 

adipocytes) and the cell pellet (containing preadipocytes) mixed together with BODIPY 493/503 

(6 ng/mL in PBS) for 5 min at room temperature. These cells were then centrifuged again and the 

upper layer of supernatant and the cell pellet resuspended together again in PBS. Cells were 

sorted in DakoCytomation MoFlo (Dako North America, Inc., Carpinteria, CA) using the FL1 
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channel (488 nm excitation and 515 nm emission) at the Dana-Farber Cancer Institute Flow 

Cytometry Core Facility (Boston, MA) and separated as positive and negative for BOPIDY 

staining. In each individual preparation, two cell populations were obtained based on the 

fluorescence intensity (FL): a preadipocyte population in which BODIPY staining was about 30 

FL units, close to that seen for the negative controls HEK293 and COS-7 cell lines (~20 FL 

units), and a differentiated brown adipocyte population containing fat droplets in which 

fluorescence intensity averaged 85 and 88 FL units for WT and D2KO cells.  

 

Cellular O2 consumption 

Ten-day differentiated WT and D2KO brown adipocyte cultures were seeded in 24-well 

microplates and assayed in the XF24 instrument from Seahorse Bioscience (Billerica, MA), as 

described previously (12). 

 

Quantitative RT–PCR 

For expression analyses of embryonic BAT, total RNA was extracted using RNeasy® 

Lipid Tissue Mini kit (Qiagen Sciences) and contaminating DNA removed with TURBO DNA-

free (Ambion), followed by cDNA preparation from 0.3–1 µg of total RNA with Applied 

Biosystem’s High Capacity cDNA RT kit. For cell culture samples, total RNA was extracted 

using the Trizol method, and 1.5–10 µg of total RNA was used in the SuperScript First-Strand 

Synthesis System for RT-PCR (Invitrogen) on a Robocycler (Stratagene, La Rolla, CA). For 

mitochondrial DNA content, DNA was recovered during the Trizol RNA isolation, and 18 ng of 

total DNA used for amplification. cDNA products were quantified by real-time PCR using the 

SYBR Green FastMix (Quanta) on a MyiQ iCycler (Bio-Rad) under conditions as previously 
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described (9). Primer sequences available upon request. Gene expression was determined by 

generation of a standard curve and normalized for the expression of Cyclophilin B. For the qRT-

PCR analysis of insulin signaling components, WT and D2KO preadipocytes were cultured in 

media without supplemental insulin to minimize secondary transcriptional effects of insulin 

resistance. 

 

Insulin signaling and Western blotting 

For insulin signaling experiments, brown preadipocyte cultures were serum starved for 20 

hours. Cells were stimulated with varying insulin concentrations (0–7.5 nM) for 5 min, and then 

lysed in 50 mM HEPES (pH 7.4), 137 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, 10 mM sodium 

pyrophosphate, 10 mM NaF, 2 mM EGTA, 2 mM Na3VO4, 2 mM phenylmethylsulfonylfluoride, 

1% NP-40, and 10% Glycerol. Extracts were sonicated, total lysates separated on a pre-cast gel 

(Bio-Rad), transferred to Immobilon-P transfer membranes (Millipore, Bedford, MA), and 

blotted as directed by manufacturer. Western blots were stripped using Restore PLUS Western 

Blot Stripping Buffer (Thermo Scientific, Rockford, IL) as directed. Scanned images were 

processed in Adobe Photoshop Elements 2.0 software and auto levels used to increase brightness 

for publication.  

 

Reactive oxygen species (ROS) detection by flow cytometry 

WT and D2KO preadipocyte cultures were pretreated for 30 min with 5 mm CM-

H2DCFDA (Invitrogen) and subsequently harvested and washed with PBS. Cell suspensions 

were immediately sorted at the Dana-Farber Cancer Institute Flow Cytometry Core Facility 
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(Boston, MA) Core. Data analysis was performed with the FlowJo Flow Cytometry Analysis 

Software (Ashland, OR), with a lower cutoff of 1000 FL intensity for the CM-H2DCFDA dye. 

 

ROS detection by confocal microscopy 

Intracellular ROS production was determined by confocal microscopy after incubation of 

day 10 WT and D2KO brown adipocyte cultures with CM-H2DCFDA using previously 

described methods (13).  

 

Detection of lipid peroxidation 

Embryonic BAT was frozen in liquid nitrogen upon dissection and stored at -80°C until 

analysis. For homogenization, tissue was resuspended in cell lysis buffer (Cell Signaling) 

containing a complete protease inhibitor cocktail from Roche (Basel, Switzerland) and sonicated. 

Protein concentration was determined using the Bradford method (Bio-Rad). Lipid peroxidation 

was detected on 20 µg of BAT protein lysate with the OxiSelect Malondialdehyde (MDA) 

Immunoblot kit (Cell Biolabs) using a rabbit anti-MDA antibody according to the manufacturer’s 

instructions. 

 

Oil Red O staining and analysis 

Oil Red O Staining was performed as described (14). Pictures were taken in a CKX41 

Culture microscope (Olympus, Melvile, NY) and analyzed in Adobe Photoshop Elements 2.0 

(Adobe, San Jose, CA). Oil Red O in the plates was eluted in DMSO and absorbance performed 

in a Smartspec spectrophotometer (BioRad, Richmond CA) at 535 nM.  
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Microarray analysis 

Total RNA (8 µg) was extracted from day 0 brown preadipocyte cultures using Trizol, 

digested with DNase I (Invitrogen), either re-extracted with Trizol or purified with the Rneasy 

MinElute Cleanup Kit (Qiagen, Valencia, CA), and submitted for microarray analysis at the 

Dana-Farber Cancer Institute Microarray Core Facility, Boston, MA, using Affimatrix chip 

MOE430 2.0. This was done in duplicate with cultures grown and processed independently, as a 

control for consistency. Data was initially processed and clustering analysis performed using the 

dCHIP software (http://biosun1.harvard.edu/complab/dchip/manual.htm) according to the 

developer’s manual (15). Comparison between WT and D2KO samples was performed and 

genes statistically different (fold difference > 1.05 and P < 0.05) selected. A further restriction 

was placed on genes requiring a P call > 20%. This analysis allows a wide approach to spot 

trends of alterations in different pathways while keeping False Detection Rate (FDR) low at 

7.9%. Hierarchical clustering of genes was done using dCHIP with restrictions of pathway p < 

0.05 and gene p < 0.005. Further expression analysis was also done using GenMAPP2 

(http://www.genmapp.org) (16). 

 

Statistical analysis 

Data were analyzed using PRISM software (GraphPad Software, Inc, San Diego, CA) 

and expressed as mean ± SEM. Western blot signal was analyzed with ImageJ software 

(National Institutes of Health, Bethesda, MD) and normalized to α-Tubulin signal on each blot. 

A two-tailed Student’s t test or one-way ANOVA with Newman-Keuls Multiple Comparison test 

(or Dunnett’s Multiple Comparison test, where indicated) was used to compare means between 

groups. 
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RESULTS 

Local thyroid hormone signaling increases during brown adipogenesis 

 It is not known whether D2 plays its critical role during development of BAT or 

exclusively during acute activation of mature BAT. To address this question, we focused on 

BAT development during embryonic life, where embryos are held in utero at thermoneutrality, 

allowing for capture of D2-mediated events of an adipogenic nature. In rodents, BAT develops 

late during the prenatal period, such that at birth the BAT is equipped with its full thermogenic 

potential (17). Using a mouse model of BAT development, an interscapular BAT depot became 

evident at embryonic day (E)16.5, reaching a substantial size by E18.5 (~5 mm) (Figure 2.1C). 

With this 3-day developmental snapshot to study in vivo adipogenesis, we then analyzed the 

mRNA transcripts of D2 and D3 (Dio2 and Dio3, respectively). Dio2 expression increased 

considerably from E16.5 to E18.5, reaching levels over 5-fold greater by E18.5 (Figure 2.1D). 

This corresponded with a decrease in Dio3, from its highest expression level at E16.5 to 27% by 

E18.5. Deiodinase activity correlated with mRNA levels for D3, where its highest activity was 

observed at E16.5. On the other hand, D2 activity increased from E16.5 to E18.5, with peak D2 

activity at E17.5 (Figure 2.1E).  

 We verified that these reciprocal changes in deiodinase activity modify thyroid hormone 

signaling in the developing brown adipocyte by following the fate of the prohormone T4 during 

incubation with E16.5 or E18.5 BAT sonicates (Figure 2.1F). At E16.5, almost all T4 exposed to 

BAT sonicates was inactivated to rT3 (via D3), and no T3 was detected, as it was rapidly 

inactivated to T2 (via D3). This indicates that early during brown adipogenesis thyroid hormone 

signaling is kept at a minimum as both T4 and T3 are inactivated by high levels of D3. On the 

other hand, at E18.5, there was an identifiable peak of T3, resulting from T4 activation by D2. At 
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the same time, rT3 production decreased dramatically, and T3 inactivation to T2 was undetected. 

Thus, coordinated changes in deiodinase behavior mediate an increase in thyroid hormone 

signaling during BAT development. These patterns of deiodinase expression were also found by 

comparing in vitro proliferating brown preadipocytes with isolated mature brown adipocytes 

(Figure 2.2). 

 

Impaired expression of T3-dependent genes disrupts D2KO brown adipogenesis 

 To test the hypothesis that D2-generated T3 plays a role during BAT development, we 

studied D2KO embryos from E16.5–E18.5. By breeding mice heterozygous for the D2KO allele 

(D2Het), we could compare D2KO and D2Het embryos with WT littermates. Importantly, we 

determined that E18.5 D2KO and D2Het embryos are systemically euthyroid with normal 

concentrations of T3 in plasma (Figure 2.3A), which is a phenotype that persists into adulthood 

(7). This is further supported by an analysis of 81 E18.5 WT, D2Het, and D2KO embryos, which 

had similar body weight and length (Table 2.1). Thus, differences between WT and D2KO BAT 

should reflect effects based on a local (tissue-specific) decrease in thyroid hormone signaling. 

 Although we were unable to find gross differences in BAT pad appearance or size 

between E18.5 WT and D2KO littermates (data not shown), we sought to detect changes at the 

transcript level that would shed light on BAT integrity. First, we looked at the expression of 

genes common to both white and brown adipogenesis, including the anti-adipogenic 

preadipocyte factor-1 (Pref1; also known as DLK1) and Dio3 (both genes are in the same locus) 

(18$20), and the master transcriptional regulators of adipogenesis CCAAT/enhancer-binding 

protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ) (21). Notably,  
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Figure 2.2. Reciprocal changes in deiodinase expression in vitro. Expression of Dio2 and 
Dio3 in proliferating brown preadipocytes (pre) and primary adipocytes isolated from BAT 
(adipocyte), as determined by qRT-PCR. *, P < 0.05; and ***, P < 0.001 vs. preadipocytes by 
Student’s t test.  
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Figure 2.3. D2-generated T3 contributes to brown fat identity. (A) Plasma TSH, T4, and T3 
concentrations of E18.5 WT (n = 3), D2Het (n = 8), and D2KO (n = 5) E18.5 embryos from 5 
litters. (B–D) Expression of selective genes in iBAT from WT, D2Het, and D2KO embryos at 
embryonic day E16.5, E17.5, and E18.5. mRNA levels were determined by qRT-PCR and are 
graphed relative to E16.5 WT expression. Genes are grouped into (B) genes common to both 
white and brown adipogenesis, (C) genes that are specific to BAT, and (D) genes that are 
involved in thermogenesis. *, P < 0.05; **, P < 0.01; and ***, p < 0.001 vs. WT of respective 
day by one-way ANOVA with Dunnett’s Multiple Comparison test. (E) Gene expression in 
confluent brown preadipocytes after 24 hours in stripped serum plus vehicle or 100 nM T3. *, P 
< 0.05; and **, P < 0.01 by Student’s t test.  
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Table 2.1. No gross morphological changes between WT, D2Het, and D2KO embryos.  
 

BODY WEIGHT 

! WT D2Het D2KO 

Embryonic Age Mean ± SEM n Mean ± SEM n Mean ± SEM n 

E16.5 0.54 ± 0.01 3 0.56 ± 0.02 4 0.54 ± 0.03 3 

E17.5 0.99 ± 0.04 4 0.92 ± 0.03 5 1.01 ± 0.03 3 

E18.5 1.20 ± 0.03 21 1.20 ± 0.01 39 1.17 ± 0.03 21 

 
 

CROWN-RUMP LENGTH 

! WT D2Het D2KO 

Embryonic Age Mean ± SEM n Mean ± SEM n Mean ± SEM n 

E16.5 1.53 ± 0.03 3 1.55 ± 0.04 4 1.53 ± 0.07 3 

E17.5 2.00 ± 0.04 4 1.93 ± 0.05 5 1.97 ± 0.03 3 

E18.5 2.21 ± 0.03 21 2.23 ± 0.06 39 2.22 ± 0.03 21 

 
Body weight (g) and crown-rump length (cm) measurements made on embryos from several 
litters that resulted from D2Het matings. Appropriate genotypes were determined post-
measurement. Data are expressed as mean ± SEM. Measurement differences between genotypes 
did not reach significance (P > 0.05) by one-way ANOVA with Newman-Keuls Multiple 
comparison.  
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while there was a trend for lower expression of PPARγ2 in the D2KO BAT, the expression of the 

terminal differentiation marker, aP2, which is a target of PPARγ, was significantly decreased by 

E18.5 in D2KO BAT (25% lower than WT) (Figure 2.3B). Second, we looked at genes selective 

for the molecular signature of brown adipocytes, where we found Cidea, which can modulate 

UCP1 activity (22), to be reduced 20% in D2KO E18.5 BAT, but other genes preferentially 

expressed in brown vs. white adipocytes (PRDM16, Elovl3, PPARα, and Cox8b) to be unaffected 

(Figure 2.3C). Third, we examined the expression of several genes important for the thermogenic 

function of BAT. UCP1 increased dramatically during the course of development, but 54% of 

this induction was lost by E18.5 in D2KO BAT (Figure 2.3D). D2KO mice still express a 

nonfunctional mRNA of Dio2 (7), and without D2 activity, the developmental induction of Dio2 

and PGC-1α were also significantly blunted (60% and 34% decreased, respectively). PGC-1β 

was slightly decreased in late prenatal D2KO BAT, but this difference did not reach statistical 

significance. Long-chain acyl-CoA synthetase (ACSL5), which plays a role in β-oxidation, was 

also significantly decreased in D2KO E18.5 BAT (38%). Moreover, BAT from D2Het embryos 

tended to have an intermediate phenotype, at times behaving more like WT BAT (i.e. expression 

of Cidea), and at other times like D2KO BAT (i.e. expression of UCP1), suggesting that BAT 

impairment is related to dose of the Dio2 gene. In fact, whereas embryonic D2KO BAT has no 

D2 activity, heterozygotes have ~50% less D2 activity in BAT compared with WT (data not 

shown). 

 Thus, targeted disruption of Dio2 selectively impairs the expression of key molecules in 

brown adipogenesis involved in fatty acid metabolism (aP2, Cidea, and ACSL5) and 

mitochondrial respiration (UCP1, PGC-1α, and D2). To test the hypothesis that these are T3-

responsive pathways, we turned to an in vitro primary culture model of differentiating brown 
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preadipocytes, in which differentiation is induced in 10 days driven only by low levels (3 nM) of 

insulin (Figure 2.4, A–C). These cells are propagated in 10% fetal bovine serum (FBS), which 

provides physiological levels of thyroid hormone (23). In this setting, induction of aP2, Cidea, 

UCP1, and PGC-1α in D2KO brown adipocytes were progressively less than WT cultures 

(Figure 2.4D and data not shown). Additionally, C/EBPα and PPARγ2 reached levels lower than 

50% of WT by day 10. An expanded search of several downstream targets of C/EBPα and 

PPARγ2 led to the detection of 13 additional genes with known roles in brown adipocyte 

function that were insufficiently induced in D2KO cells (Figure 2.4D). Lastly, gene 

responsiveness to T3 was tested in confluent WT brown preadipocytes exposed to T3 for 24 

hours, which resulted in a 5.5-fold induction of UCP1, and about 2-fold induction of PGC-1α 

and Dio2, confirming direct responsiveness to T3 (Figure 2.3E). On the other hand, prolonged 

T3 exposure (6 days) caused the additional stimulation of PPARγ2 and CEBPα (data not shown). 

Taken together, these data indicate a role for D2-generated T3 in BAT development, where the 

enhanced thyroid hormone signaling provided by intracellular T3 production primes the mature 

tissue with molecular aspects required for adaptive thermogenesis. 

 Confirming that these reductions in the expression of T3-responsive genes were 

detrimentally affecting the differentiation process, the phenotype of the D2KO cells included a 

delay in the maturation process as assessed by lipid accumulation via immunofluorescence after 

staining with the lipid-specific dye BODIPY 493/503 (Figure 2.5A). D2KO adipocyte cultures 

contained a lower fractional number of lipid-containing cells (37% lower at day 10), indicating 

that fewer D2KO cells terminally differentiate into brown adipocytes at each time-point analyzed 

(Figure 2.5A). This was verified by flow cytometry (Figure 2.6A) and Oil Red O staining 

intensity (Figure 2.6B). Notably, these changes are connected with a decrease in thyroid 
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Figure 2.4. Impaired expression during differentiation of D2KO brown adipocyte cultures. 
(A) Bright field imaging of day 0 undifferentiated WT preadipocytes (grayscale image). 10X 
magnification; bars are 200 µm. (B) Oil Red O staining of WT brown adipocytes cultures at day 
10 (grayscale image). 60X magnification; bars are 25 µm. (C) High magnification 
immunofluorescent imaging of differentiated adipocytes. Blue: DAPI. Green: BODIPY 493/503. 
Red: anti-α-Tubulin antibody. (D) Relative mRNA levels as quantified by qRT-PCR for the 
indicated genes during differentiation in WT and D2KO brown adipocyte cultures. All entries 
were normalized to the respective WT value at day 2. Gene profile at day 10 was similar in 
another 4 independent experiments. Gene expression was determined by ΔCt method. *, P < 0.05 
as compared to WT value by Student’s t test.   
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Figure 2.5. Impaired D2KO brown adipocyte differentiation. (A) Brown preadipocytes were 
isolated from iBAT of WT and D2KO mice and differentiated in culture. Percentage of 
differentiated brown adipocytes determined by immunocytochemistry after staining with 
BODIPY 493/503. (B) Treatment of D2KO preadipocyte cultures with 50 nM T3 during the 
early stages of differentiation (days 0–4) restores the WT percentage differentiation at day 10. 
(C) Mitochondrial content in WT and D2KO day 10 brown adipocytes by quantification of 
Cox1/2 and Cox8 gDNA by qRT-PCR, expressed as mitochondrial/genomic DNA ratio. (D) O2 
consumption of WT and D2KO day 10 brown adipocyte cultures in response to increasing 
concentrations of forskolin. (A–D) Values are mean ± SEM of 3–30 data points unless otherwise 
indicated. *, P < 0.05; and **, P < 0.01 vs. WT (or as indicated) by Student’s t test.  
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Figure 2.6. Decreased adipogenesis in D2KO brown adipocyte cultures. (A) Flow cytometry 
of WT and D2KO brown adipocytes. Frequency distribution of approximately 3x106 WT or 
D2KO brown adipocytes as sorted by fluorescence activated cell sorting (FACS) using BODIPY 
493/503, a neutral lipid fluorescent dye. Fluorescence intensity is given in arbitrary units. 
Viability was about 50% for both cell genotypes. D2KO cultures contained approximately 27% 
fewer mature brown adipocytes. (B) Determination of lipid content in day 10 WT and D2KO 
brown adipocyte cultures. Cultures were stained with Oil Red O and then eluted for 
measurement of Oil Red O absorbance. **, P < 0.01, as measured by Student’s t-test.  
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hormone signaling, given the complete rescue of the D2KO phenotype by treatment with 50 nM 

T3 (Figure 2.5B). If not rescued, the D2KO brown adipocytes have approximately 40% fewer 

mitochondria (Figure 2.5C) and impaired cAMP-induced oxidative capacity (Figure 2.5D). 

Using a XF24 instrument that monitors oxygen (O2) consumption, D2KO brown adipocyte 

cultures failed to increase O2 consumption in a wide range of forskolin concentrations (Figure 

2.5D). Collectively, these findings indicate a defect in differentiation that results in a substantial 

impairment in the mature adipocyte function, such as lipid accumulation and oxidative capacity. 

 

D2KO BAT has decreased antioxidant defenses and is susceptible to oxidative stress 

 As an unbiased approach to elucidate additional transcriptional pathways that underlie the 

D2KO BAT phenotype, we used microarray analysis of E18.5 BAT from WT and D2KO 

littermates. This approach confirmed our previous observations (Figure 2.3 and data not shown) 

and led to additional genes with reported roles in regulation of ROS formation and damage, 

including GPx3, Mb, Msrb2, and PKD1. The expression of these genes (with the exception of 

PKD1) was greatly increased throughout the course of BAT development (Figure 2.7A). 

Glutathione peroxidase 3 (GPx3), which is an antioxidant that is highly expressed in BAT (24), 

was significantly less (38%) in BAT pads of D2KO mice. Also, reductions of approximately 

30% were seen in expression of methionine sulfoxide reductase B2 (MsrB2), an enzyme that 

repairs oxidized proteins and protects against oxidative stress (25), and protein kinase D1 

(PKD1), which regulates protective signaling in response to ROS (26). Most dramatically, 

expression of myoglobin (Mb) was reduced by 72% in E18.5 D2KO BAT compared with WT. 

Mb, which is known to increase in BAT during cold exposure (27), plays roles in oxygen  
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Figure 2.7. Oxidative stress in D2KO embryonic BAT. (A) Expression of genes related to 
oxidative stress response processes in iBAT from WT, D2Het, and D2KO embryos at embryonic 
day E16.5, E17.5, and E18.5. mRNA levels determined by qRT-PCR are graphed relative to 
E16.5 WT expression. *, P < 0.05; **, p < 0.01; and ***, P < 0.001 vs. WT of respective day by 
one-way ANOVA with Dunnet’s Multiple correction. (B) Lipid peroxidation in iBAT lysates 
from E18.5 WT and D2KO littermates as indicated by immunoblotting for malonaldehyde 
(MDA).  α-Tubulin shown as loading control. (C) Average CM-H2DCFDA fluorescence in day 
0 brown preadipocytes after quantification with flow cytometry. ***, P < 0.001 by Student’s t 
test. 
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transport and scavenging of ROS (28). Importantly, this decrease in ROS defense coincided with 

oxidative damage, as evidenced by increased lipid peroxidation end products (as observed by 

immunoblotting for malondialdehyde) in E18.5 D2KO BAT (Figure 2.7B). These data indicate 

that the absence of D2 modifies the developing BAT transcriptome, limiting defenses against 

ROS accumulation and oxidative stress. 

 To confirm that these changes in gene expression were leading to accumulation of ROS, 

we incubated in vitro differentiated D2KO brown adipocytes with the ROS sensitive dye CM-

H2DCFDA to quantify signal intensity. Indeed, day 10 D2KO brown adipocytes exhibited higher 

levels of ROS (Figure 2.8). Elevated ROS levels were observed even in D2KO preadipocytes at 

day 0, a time at which differences based solely on decreased fat cell number could be avoided. 

Notably, ROS levels in D2KO preadipocytes are already 12.5% higher than WT, suggesting that 

defects in gene expression are present at early stages of differentiation (Figure 2.7C). In fact, 

microarray analysis of these preadipocytes identified decreases in genes involved in ROS 

metabolic processes (Tabe 2.2), which was determined by GeneMAPP2 evaluation to be one of 

the most significantly altered biological pathways in D2KO brown preadipocytes (Z scores >10, 

P < 0.05; Table 2.2). Collectively, these patterns of altered gene expression indicate that D2KO 

preadipocytes are at higher risk of developing oxidative stress due to ROS accumulation. 

 Next, we looked for potential metabolic perturbations downstream of oxidative stress. 

Specifically, we examined insulin signaling via the PI3K/Akt pathway in D2KO brown 

preadipocytes, because oxidative stress has been reported to trigger insulin resistance in 

adipocytes (29). Remarkably, insulin signaling, as determined by an active phosphorylated form 

of Akt (Ser473), was much lower in D2KO preadipocytes, when exposed to varying levels of 

insulin (Figure 2.9, A and B). A link between D2 activity and insulin signaling was confirmed by  
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Figure 2.8. Elevated ROS levels in day 10 D2KO brown adipocyte cultures. ROS levels in 
day 10 differentiated WT and D2KO brown adipocyte cultures were determined by CM-
H2DCFDA fluorescence using confocal microscopy. ***, P < 0.001, as measured by Student’s t 
test. 
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Table 2.2. Altered expression of oxygen and ROS metabolic pathways in day 0 D2KO 
brown preadipocyte cultures. 
 

Gene! WT D2KO 
D2KO/WT 

Ratio P value 

Scd2: stearoyl-Coenzyme A desaturase 2 
!

2926.46! 2336.21! -1.25! 0.023!

Scd1: stearoyl-Coenzyme A desaturase 1 
!

889.52! 568.11! -1.57! 0.046!

Sod3: superoxide dismutase 3, 
extracellular! 1078.11! 789.61! -1.37! 0.018!

Gpx3: glutathione peroxidase 3 
!

10533.44! 9247.7! -1.14! 0.028!

 
Gene list was generated by use of the dCHIP microarray analysis and GeneMAPP programs, 
using only genes that had greater than 1.05 fold difference, a P call of > 20%, and were 
statistically significant. These conditions yielded a false discovery rate (FDR) of 7.9%. 
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Figure 2.9. ROS causes decreased insulin signaling. (A–B) WT and D2KO day 0 brown 
preadipocytes were serum starved for 20 hours, treated for 5 min with varying doses of insulin, 
and levels of pAkt (Ser473), total Akt, and α-Tubulin determined by immunoblotting. (C–D) 
Immunoblotting of pAkt (S473) and α-Tubulin in vehicle-treated WT and D2KO preadipocytes, 
as well as WT preadipocytes treated with rT3 since differentiation. Images are from different 
regions of same gel. (E) Immunoblot analysis of day 0 serum starved WT and D2KO brown 
preadipocytes for phospho-IRS1 (S307) and α-Tubulin. (F) Immunoblot of phosphorylated IκBα 
in extracts from day 2 WT and D2KO brown preadipocytes. (G–H) Treatment with the anti-
oxidant ascorbic acid restores phosporylation of pAkt (S473) in D2KO brown preadipocytes to 
WT levels. (I) Analysis of WT and D2KO preadipocytes differentiated with adipogenic cocktail, 
as described in text. Fractional number of brown adipocytes quantified by immunocytochemistry 
as previously described. Values are mean ± SEM of 2–4 data points. (B, D, and H) 
Quantification of Akt (Ser473) phosphorylation by normalization to α-Tubulin levels and total 
signal on each Western blot. Values are mean ± SEM of 3–5 data points. *, P < 0.05 by 
Student’s t test (B and H). **, P < 0.01 by one-way ANOVA with Newman-Keuls Multiple 
Comparison (D). 
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chemically inactivating D2 with rT3 in WT preadipocytes, which produced similar defects in Akt 

phosphorylation (Figure 2.9, C and D). Oxidative stress can induce insulin resistance through 

inhibitory phosphorylation of IRS1 by IKK (30, 31). Thus, increased IRS1 Ser307 

phosphorylation in D2KO preadipocytes (Figure 2.9E) without changing expression of key 

insulin signaling components (Figure 2.10, A and B) suggests that oxidative stress leads to the 

decreased insulin signaling. This is corroborated by increased IκBα phosphorylation (Figure 

2.9F), which is a downstream effector of IKK and consistent with NFκB activation upon cellular 

stress. Finally, we treated WT and D2KO cells with the anti-oxidant ascorbic acid, which 

rescued insulin signaling in the D2KO to WT levels, indicating that elevated levels of ROS lead 

to decreased insulin signaling in these cells (Figure 2.9, G and H). 

 Supplemental insulin (3 nM) is the predominant force driving adipogenesis in our in vitro 

model, so we hypothesized that the defective differentiation phenotype that is observed in the 

D2KO cells could be due to disruption of insulin signaling. In fact, this is confirmed by 

experiments in which differentiation was carried out in the absence of supplemental insulin, but 

rather with an adipogenic cocktail (IBMX, dexamethasone, and indomethacin) for two days. In 

this setting, differences in the relative number of mature brown adipocytes between WT and 

D2KO cells were dissipated (Figure 2.9I). These findings suggest that other stimuli present 

during BAT development may bypass a more severe defect in brown adipogenesis, such as the 

differentiation phenomenon that is observed when insulin alone is pushing the conversion of 

preadipocytes to brown adipocytes. 
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Figure 2.10. Insulin signaling components unchanged in D2KO brown preadipocytes. (A) 
Expression of insulin signaling genes in D2KO brown preadipocytes. Relative mRNA levels as 
quantified by qRT-PCR for the major indicated insulin signaling components at day 0 of the 
differentiation process. All entries were normalized to the respective WT value. Values are mean 
± SEM of at least 4 data points. ***, P < 0.001 as compared to WT value by Student’s t test. (B) 
Protein levels of insulin signaling genes in D2KO brown preadipocytes. Immunoblotting of 
insulin signaling components whose expression was different in D2KO brown preadipocytes 
according to qRT-PCR in A, as well as the insulin receptor β. No difference in protein levels was 
observed.  
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DISCUSSION 

 The present study demonstrates that impaired BAT thermogenesis in the D2KO mouse 

stems from an embryologic defect due to a role played by D2-generated T3 in enhancing the 

expression of BAT-selective genes. Notably, these changes in gene expression are observed in 

utero, without a thermogenic challenge, which highlights the relevance of D2 and its ability to 

amplify thyroid hormone signaling in a developmental setting. As BAT develops, coordinated 

changes in deiodinase expression (Dio2 induction and Dio3 suppression) enhance thyroid 

hormone signaling (Figure 2.1, C–F), which can be linked to peak T3 concentration in 

developing BAT (32). A similar mechanism has been shown in other developing tissues, 

including the coordinated expression of D2 and D3 at a critical period of cochlear development 

in mammals, where absence of either deiodinase leads to inappropriate exposure to T3 and 

results in deafness (10, 33, 34). Our data indicate that this deiodinase-based mechanism plays a 

hitherto under-appreciated role in the developing BAT. 

 The process of brown adipocyte differentiation involves molecular pathways that are 

common to both white and brown adipocyte lineages and pathways that are BAT-specific, 

including transcriptional changes that confer its thermogenic function (35). It is well established 

that thyroid hormone plays a role in adipogenesis per se. T3 is frequently used in adipogenic 

cocktails and is absolutely required for terminal differentiation, possibly through regulation of 

PPARγ (36, 37). What is remarkable and evidenced by our data are that the deiodinases, by 

increasing thyroid hormone signaling, can affect BAT development without changing the 

extracellular levels of thyroid hormone. The inactivation of a single component of this 

mechanism (i.e. D2) results in embryonic BAT with decreased expression of key thermogenic 

genes, without gross impairments in the adipogenic process (Figure 2.3, B–D). Only with in vitro 
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differentiated D2KO brown preadipocytes do we find defective differentiation, suggesting the 

existence of potent in vivo compensatory mechanisms. The key aspect here is that D2 is 

necessary for coordinating the expression of genes that contribute to the identity of BAT in vivo, 

and, thus, plays a role in its thermogenic capacity. In fact, when fetal D2 activity is blocked by 

iopanoic acid treatment of pregnant mothers, newborn rats show a blunted response to thermal 

stress upon birth (17). 

 Given that T3-TR modifies gene expression, we show that brown preadipocytes exposed 

to T3 have increased expression of UCP1, Dio2, and PGC-1α, transcripts found to be decreased 

in D2KO embryonic BAT (Figure 2.3, D and E). In a variety of settings, UCP1, Dio2, and PGC-

1α have been shown to be T3-responsive genes (2, 11, 38, 39) and have been independently 

linked to BAT function. Additionally, PGC-1α is a partner of PPARγ and TRβ in coactivating 

the UCP1 promoter (40) and is necessary for the increased expression of UCP1 and Dio2 after 

stimulation with a cyclic AMP agonist (41). The novelty of our findings is that the expression of 

these three genes is interconnected during BAT development, with D2 generating T3 that will 

further enhance its own production and induce PGC-1α and UCP1 in a positive feedback loop 

(Figure. 2.11). Notably, brown adipocytes deficient in PGC-1α exhibit a relatively normal 

transcriptome with defects lying primarily in thermogenic activation by cAMP (41). This is a 

milder phenotype than that of D2KO cells, emphasizing a predominant role for D2 in BAT 

development. 

 Embryonic BAT lacking D2-generated T3 is more susceptible to oxidative damage, 

which results from uncontrolled oxidative stress by a decrease in anti-ROS defenses (Figure 2.7, 

A and B). However, acute T3-responsiveness was not found in the subset of ROS-detoxifying 

genes perturbed in the D2KO BAT (data not shown). PGC-1α has been shown to be a critical  
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Figure 2.11. Proposed model of positive feedback involving Dio2, PGC-1α , and UCP1 
expression during BAT development. Schematic representation of the proposed role of D2 and 
D2-generated T3 in the development of brown adipocytes. D3, which decreases thyroid hormone 
signaling, is highest in the undeveloped brown preadipocyte. As the brown preadipocyte 
matures, D2, by enhancing thyroid hormone signaling, increases expression of PGC-1α , which 
coactivates TR, leading to enhanced UCP1 expression. Notably, Dio2 is also upregulated by 
increased T3-signaling. These changes provide the mature brown adipocyte with its thermogenic 
function and also limit oxidative stress. If oxidative stress goes unchecked, then insulin signaling 
and adipogenesis may be altered. 
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regulator of ROS detoxification through induction of ROS-scavenging enzymes (42). Thus, D2 

could play a role upstream of PGC-1α, where D2 generating T3 induces PGC-1α, turning on an 

anti-ROS gene program. While it is not possible yet to conclude whether oxidative damage in 

D2KO E18.5 BAT contributes toward decreased insulin signaling in vivo, our in vitro D2KO 

brown preadipocyte data strongly suggest that under the appropriate conditions ROS leads to 

decreased insulin signaling and impaired differentiation. It is interesting to speculate that such 

mechanisms could also play a role in other settings in which Dio2 and PGC-1α are highly 

expressed, such as the brain. 

 Our analysis of the mechanisms underlying impaired thermogenic function of D2KO 

BAT has led us to the identification of a critical deiodinase-mediated pathway in BAT 

development. This explains the hypothermic and obesity phenotype observed in adult D2KO 

mice. It is clear that D2 acts on an important aspect of brown adipocyte biology (i.e. BAT 

identity) but other pathways might also be involved (i.e. protection from oxidative damage). 

Here we identified a developmental relationship between D2-generated T3, UCP1, and PGC-1α 

in the absence of a thermogenic stimulus (Figure 2.11). Uncovering this connection illustrates 

how such a pathway is critical for maintenance of energy homeostasis in adulthood. 
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ABSTRACT 

Objective: Thyroid hormone accelerates energy expenditure; thus, hypothyroidism is 

intuitively associated with obesity. However, studies failed to establish such a connection. In 

brown adipose tissue (BAT), thyroid hormone activation via type 2 deiodinase (D2) is necessary 

for adaptive thermogenesis, such that mice lacking D2 (D2KO) exhibit an impaired thermogenic 

response to cold. Here we investigate whether the impaired thermogenesis of D2KO mice 

increases their susceptibility to obesity when placed on a high-fat diet. 

Research design and methods: To test this, D2KO mice were admitted to a 

comprehensive monitoring system acclimatized to room temperature (22°C) or thermoneutrality 

(30°C) and kept either on chow or high-fat diet for 60 days.  

Results: At 22°C, D2KO mice preferentially oxidize fat, have a similar sensitivity to diet-

induced obesity, and are supertolerant to glucose. However, when thermal stress is eliminated at 

thermoneutrality (30°C), an opposite phenotype is encountered, one that includes obesity, 

glucose intolerance, and exacerbated hepatic steatosis. We suggest that a compensatory increase 

in BAT sympathetic activation of the D2KO mice masks metabolic repercussions that they 

would otherwise exhibit. 

Conclusions: Thus, upon minimization of thermal stress, high-fat feeding reveals the 

defective capacity of D2KO mice for diet-induced thermogenesis, provoking a paradigm shift in 

the understanding of the role of the thyroid hormone in metabolism. 
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INTRODUCTION 

Obesity results as the consequence of a positive energy balance, where energy intake is 

greater than energy expended. One of the key molecules in this balance is thyroid hormone, 

which potently accelerates the resting energy expenditure (1, 2). The adaptive (cold-induced) 

energy expenditure is controlled by the sympathetic nervous system and is also accelerated by 

thyroid hormone. In response to cold exposure, the sympathetic nervous system stimulates brown 

adipose tissue (BAT) and activates uncoupling protein 1 (UCP1) (3), which is transcriptionally 

upregulated by thyroid hormone (4). In addition, the sympathetic nervous system also stimulates 

the cAMP-inducible type 2 deiodinase (D2) that amplifies thyroid hormone signaling in BAT by 

locally converting the prohormone T4 to the active form of thyroid hormone, T3 (5). Disruption 

of this pathway, as in mice with targeted inactivation of D2 [D2 knockout (D2KO) mice], leads 

to impaired BAT thermogenesis and hypothermia during cold exposure (6, 7). 

Sympathetic activity to BAT is also augmented by high-fat feeding (8), leading to diet-

induced thermogenesis, but the role played by thyroid hormone in this process is largely unclear. 

Although there is an intuitive assumption that hypothyroid individuals/animals tend to be obese, 

the compilation of a vast array of data from individuals transitioning from hypo- to 

hyperthyroidism and vice versa exhibits only minor changes in body composition (9-11). In fact, 

we have reported earlier that hypothyroid rats living at room temperature placed on a high-fat 

diet do not accumulate more fat than euthyroid controls (12), questioning a role for thyroid 

hormone in this pathway. 

However, it is conceivable that compensatory mechanisms activated during 

hypothyroidism may obscure the relevance (if any) of thyroid hormone on diet-induced 

thermogenesis. In this case, such mechanisms are likely to stem from the sympathetic nervous 
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system, given that sympathetic activity fluctuates in an opposite direction as thyroid hormone 

signaling (13-15). In fact, the BAT-specific decrease in thyroid hormone signaling seen in the 

D2KO mouse is sufficient to trigger a compensatory increase in BAT sympathetic activity during 

cold exposure, upregulating a series of T3-responsive metabolic parameters in the tissue, 

including UCP1 mRNA levels (7). 

Here, we report that even at room temperature there is a chronic increase in BAT 

sympathetic activity. We suggest that this activity compensates for the decreased thyroid 

hormone signaling, thus masking profound metabolic alterations in D2KO mice. If reared at 

22°C, D2KO mice have increased tolerance to glucose and gain the same weight as controls on a 

high-fat diet. However, when the increase in BAT sympathetic activity is minimized by rearing 

animals at 30°C, D2KO mice develop intolerance to glucose and become more susceptible to 

diet-induced obesity. Remarkably, a consistent feature of the D2KO mice, independent of 

ambient temperature, is liver steatosis, which becomes most severe under high-fat feeding after 

acclimatization to thermoneutrality. Thus, these results provoke a paradigm shift in the 

understanding of the role of the thyroid hormone in metabolism, uncovering a hitherto 

unrecognized function for thyroid hormone in prevention of obesity and its metabolic 

complications. 

 

MATERIALS AND METHODS 

Animals 

All studies were performed under a protocol approved by the local Institutional Animal 

Care and Use Committee. C57BL/6J and D2KO (7) mice approximately 3 months old were used 

from our established colonies, kept at room temperature (22°C) or at thermoneutrality (30°C; 
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Columbus Instruments, Columbus, OH), with a 12-hour dark/light cycle starting at 0600 hours, 

and housed in standard plastic cages with four male mice per cage. Animals were kept on 

standard chow diet (3.5 kcal/g; 28.8% protein, 58.5% carbohydrate, 12.7% fat) (5010 LabDiet 

laboratory autoclavable rodent diet; PMI Nutrition, Richmond, IN) or a high-fat diet (4.5 kcal/g; 

15.3% protein, 42.7% carbohydrate, 42% fat) (TD 95121; Harlan Teklad, Indianapolis, IN) as 

indicated. Twenty-four-hour caloric intake was measured at the indicated times using the 

Oxymax Feed Scale device (Columbus Instruments). At the appropriate times, animals were 

killed with carbon dioxide. Tissue samples were obtained and immediately snap-frozen for 

further analyses. 

 

Body composition 

Lean body mass (LBM) and fat mass were determined by dual-energy X-ray 

absorptiometry (DEXA; Lunar Pixi, Janesville, WI). For the procedure, mice were anesthetized 

with ketamine-xylazine (200 mg/kg and 7–20 mg/kg) before imaging. 

 

Indirect calorimetry 

Oxygen consumption (VO2) and respiratory exchange ratio (RER) were continuously 

measured using the Oxymax System 4.93 (C.L.A.M.S.; Columbus Instruments). The animals 

were placed in the C.L.A.M.S. with free access to food and water, allowing them to acclimatize 

in individual metabolic cages for 48 hours before any measurements. Subsequently, 24-hour 

metabolic profiles were generated in successive 14-min cycles. VO2 was expressed as milliliters 

per kilogram LBM per minute. Studies were performed at 30°C or 22°C for the indicated times. 

The sensor was calibrated against a standard gas mix containing defined quantities of O2 and 
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CO2. All analyses for VO2 and RQ were made considering the area under the curve (i.e. VO2 vs. 

time; respiratory quotient [RQ] vs. time) for each individual animal. 

 

Glucose tolerance test 

Tolerance to a glucose load was studied in overnight fasted live mice following 

intraperitoneal injection of 1 g/kg glucose. Blood samples were obtained from the tail vein and 

measured with Glucometer Elite (Bayer Tarrytown, NY) at different time points. 

 

mRNA analysis 

Total RNA was extracted using the RNeasy kit (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions, quantified with a Nano-Drop spectrophotometer and 2.5 µg reverse-

transcribed into cDNA by using a high capacity cDNA reverse transcription kit (Applied 

Biosystems, Foster City, CA). Genes of interest were measured by quantitative RT-PCR (Bio-

Rad iCycler iQ Real-Time PCR Detection System; Bio-Rad Laboratories Hercules, CA) using 

the iQ SYBR Green Supermix (Bio-Rad Laboratories) with the following conditions: 15 min at 

94°C (Hot Start), 30–50 sec at 94°C, 30–50 sec at 55–60°C, and 45–60 sec at 72°C for 40 cycles. 

A final extension at 72°C for 5 min was performed as well as the melting curve protocol to 

verify the specificity of the amplicon generation. Standard curves consisting of four to five 

points of serial dilution of mixed experimental and control groups cDNA were prepared for each 

assay. Cyclophilin A was used as a housekeeping internal control gene. The coefficient of 

correlation (r2) was >0.98 for all standard curves, and the amplification efficiency varied 

between 80 and 110%. Results are expressed as ratios of test mRNA to Cyclophilin A mRNA. 
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Interscapular BAT norepinephrine turnover 

Interscapular BAT (IBAT) norepinephrine (NE) turnover was measured in mice 

acclimatized at 22°C or at 30°C. Mice were anesthetized with urethane (1.2 g/kg i.p.) and given 

300 mg/kg α-methyl parathyrosine (α-MT) to block NE synthesis as described (7). Mice were 

killed at 0, 1, 2, 3, or 4 hours after the  α-MT injection, and the IBAT was processed for NE 

measurement by radioimmunoassay (Alpco Diagnostics, Windham, NH). 

 

Biochemical analyses 

Immediately after mice were killed, liver fragments were obtained and fixed in 4% 

paraformaldehyde in 0.1 mL PBS for 24 hours at 4°C, frozen, sectioned, stained with Oil Red O, 

and counterstained with Meyer’s hematoxylin. Frozen liver fragments (~200 mg) were 

homogenized, and lipids were extracted using chloroform/methanol (2:1) and 0.05% sulfuric 

acid as described (16). An aliquot of the organic phase was collected and mixed with chloroform 

containing 1% Triton X-100, dried under nitrogen stream, and resuspended in water. 

Triglycerides were determined using a commercially available kit (Sigma-Aldrich, St. Louis, 

MO). 

 

Statistical analysis 

All data were analyzed using Prism software (GraphPad Software, Inc., San Diego, CA) 

and are expressed as means ± SE. One-way ANOVA was used to compare more than two groups, 

followed by the Newman-Keuls multiple comparison test to detect differences between groups. 

The Student’s t test was used to compare the differences between two groups. P < 0.05 was used 

to reject the null hypothesis.  
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RESULTS 

D2KO mouse metabolic profile depends on ambient temperature 

Under the mild thermal stress conditions of room temperature (22°C) and on a chow diet 

(12.7% fat), D2KO mice have similar caloric intake (Figure 3.1A) and percent composition of 

lean and fat masses as age-matched wildtype (WT) controls (Figure 3.2A). Even after 2 weeks of 

acclimatization at 30°C, percent body composition remains unchanged in chow-fed D2KO and 

WT mice (Figure 3.2A). 

 We next analyzed parameters of energy homeostasis using indirect calorimetry. At 22°C, 

despite having a similar rate of oxygen consumption (VO2; Figure 3.2B), D2KO mice had a 

relatively higher percentage of fatty acid oxidation compared with WT, as reflected by a 

significantly lower respiratory exchange ratio (RQ; Figure 3.2C). These findings led us to 

analyze the BAT NE turnover rate as an index of sympathetic stimulation of this tissue. 

Remarkably, although WT controls had a NE turnover rate of about 9.5 ± 0.6%/hour, D2KO 

animals maintained a rate of ~15 ± 1.1%/hour (Figure 3.2D; P < 0.01). 

Thus, to examine whether this difference in sympathetic activity depends on ambient 

temperature, D2KO and WT mice were acclimatized at 30°C. In this setting, the BAT NE 

turnover rate was reduced in both groups to ~5%/hour, with no differences between WT and 

D2KO mice (Figure 3.2D). This was paralleled by a decrease in VO2 as compared with the rates 

at 22°C, with D2KO mice maintaining similar values as WT mice (Figure 3.2B). Of interest, 

thermoneutrality dissipated the differences in RQ between WT and D2KO mice (Figure 3.2C), 

with RQ increasing significantly from 22°C values in both groups of mice (∼0.9). In addition, at 

30°C, no differences in food consumption between D2KO and WT mice were noted (Figure 3.1). 
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Figure 3.1. Caloric intake in WT and D2KO. (A) Caloric intake in WT and D2KO mice 
acclimatized at the indicated ambient temperature. (B) Caloric intake in WT and D2KO at day 1 
and at day 60 of feeding with high-fat diet acclimatized to 22°C. (C) Same as B, except that the 
acclimatization temperature is 30°C. Entries are mean ± SEM of 3 animals. 
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Figure 3.2. Effect of ambient temperature on body composition, indirect calorimetry, and 
NE turnover of D2KO mice. (A) Body composition as measured by DEXA in WT and D2KO 
mice acclimatized at the indicated ambient temperatures; body weights were as follows: D2KO, 
21.55 ± 0.46 and WT, 25.4 ± 0.6 g at 22°C; D2KO, 22.4 ± 0.45 and WT, 23.9 ± 0.6 g at 30°C. 
(B) Same as in A, except that what is shown is VO2. (C) Same as in B, except that what is shown 
is RQ. (D) Interscapular BAT NE turnover at the indicated time points. All animals were kept on 
chow diet. Measurements were made during the light cycle. Entries are means ± SE of four to 
five animals; a is P < 0.01 vs. animals of the same genotype. NS, not significant.  
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D2KO mice have similar weight gain on high-fat diet at room temperature 

To test the sensitivity of D2KO mice to diet-induced obesity, groups of age-matched WT 

and D2KO mice maintained at 22°C were placed on a high-fat diet (42% fat). No major 

differences were found between WT and D2KO mice (Figure 3.3). After 60 days of ad libitum 

high-fat diet feeding, both groups experienced a similar increase in body fat (from about 20–

33%; P < 0.01) as reflected in the body composition analyses (Figure 3.2A vs. Figure 3.3A). 

After 60 days, there was a minimal decrease in VO2 in both groups (Figure 3.3B), with RQ 

remaining slightly lower in D2KO animals (Figure 3.3C; P < 0.05). Despite similar caloric 

intake in both groups (Figure 3.1B), D2KO mice gained slightly less body weight as compared 

with WT (30 vs. 37%), although differences did not reach statistical significance (Figure 3.3D; P 

= 0.2). 

 

Thermoneutrality reveals sensitivity to diet-induced obesity in D2KO mice 

To test the hypothesis that the increased metabolism at 22°C overrules the effect of 

hypothyroidism, we next repeated the 60-day feeding period with high-fat diet in WT and D2KO 

mice that were maintained at 30°C. This time, major differences were indeed found between WT 

and D2KO mice (Figure 3.4). After 60 days of ad libitum high-fat diet feeding, D2KO animals 

experienced a much greater increase in body fat (~20–45%; P < 0.01) compared with WT 

animals (~20–35%; P < 0.01) as reflected in the body composition analyses (Figure 3.2A vs. 

Figure 3.4A). There was a small but significant increase in VO2 in both groups (Figure 3.4B), but, 

most importantly, the difference in RQ was dissipated on the very day 1 of high-fat feeding 

(Figure 3.4C). Although no differences in caloric intake were observed between D2KO and WT 

animals under these conditions (Figure 3.1C), D2KO mice had a 66% increase in body weight,  
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Figure 3.3. Effect of high-fat feeding at room temperature on body composition and 
indirect calorimetry. D2KO and WT mice were fed with high-fat diet for 8 weeks and kept at 
22°C (A–D). (A) Body composition as measured by DEXA in WT and D2KO mice at the end of 
the experiment; body weights were D2KO, 26.9 ± 2.68 and WT, 36.3 ± 2.5 g. (B) VO2 was 
measured at day 1 and day 60 in WT and D2KO, after the animals started on the high-fat feeding. 
(C) Same as B, except that what is shown is RQ. (D) Body weight gain in WT and D2KO mice. 
Entries are means ± SE of four to five animals; a is P < 0.05 vs. animals of the same genotype.  
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Figure 3.4. Effect of high-fat feeding at thermoneutrality on body composition and indirect 
calorimetry. D2KO and WT mice were acclimatized at 30°C for 2 weeks and subsequently fed 
with high-fat diet for 8 weeks while at 30°C (A–F). (A) Body composition as measured by 
DEXA in WT and D2KO mice at the end of the experiment; body weights were D2KO, 41.6 ± 
1.23 and WT, 39.45 ± 1.8 g. (B) VO2 was measured at day 1 and day 60 in WT and D2KO. (C) 
Same as B, except that what is shown is RQ. (D) Body weight gain in WT and D2KO mice. At 
day 1 body weights were D2KO, 25.5 ± 0.57 and WT, 28.43 ± 1.12 g. (E) Image of  
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Figure 3.4 (Continued). representative WT and D2KO mice at the end of the experiment. (F) 
UCP1/Cyclophilin A mRNA levels in the BAT at the end of the experiment. Entries are means ± 
SE of four to five animals; *P < 0.01 vs. WT.  
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which was nearly twice that of the 37% increase seen in WT mice (Figure 3.4D; P < 0.01). The 

increased susceptibility of the D2KO mouse to obesity at 30°C could also be noted upon visual 

inspection (Figure 3.4E). That the increased fat gain was attributable to defective diet-induced 

thermogenesis was supported by a ∼80% lower UCP1 expression in the BAT of D2KO mice 

(Figure 3.4F). 

 

D2KO exhibit liver steatosis and glucose intolerance 

Histological and biochemical liver analysis revealed increased triglyceride deposits in 

D2KO mice that were kept on a chow diet at 22°C (∼30%; Table 3.1; Figure 3.5, A and E). 

Acclimatization to 30°C did not significantly change fat deposition in liver of both groups of 

animals (Table 3.1; Figure 3.5, B and F), and the differences between WT and D2KO were 

minimized (∼22%; P = 0.06; Table 3.1; Figure 3.5, B and F). High-fat feeding for 60 days 

increased fat deposition in the WT liver by ∼3.7-fold at 22°C and ∼5.0-fold at 30°C (Table 3.1; 

Figure 3.5, C and D). In the D2KO livers, the increase in fat content reached ∼3.6-fold at 22°C 

and, remarkably, 10-fold at 30°C (Table 3.1 and Figure 3.5, G and H). Although the differences 

of liver triglyceride content between WT and D2KO animals kept on a high-fat diet remained 

relatively stable at 22°C (∼28%; Table 3.1 and Figure 3.5, C and D), moving the animals to 30°C 

dramatically increased this difference to ∼2.7-fold (Table 3.1 and Figure 3.5, D and H). 

The more extensive fat deposition in the liver of D2KO animals and its sensitivity to 

acclimatization temperature suggested that lipolysis and/or the level of serum fatty acids 

(nonesterified fatty acids [NEFA]) was playing a role. However, regardless of the diet, NEFA 

serum levels were not different between WT and D2KO animals at 22°C (Table 3.1). Of note, 

high-fat feeding did increase NEFA levels in both groups (Table 3.1). 
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Table 3.1. Liver triglycerides content (mg/g) and serum NEFA levels (mEq/L) in WT and 
D2KO mice kept on chow or high-fat diet: effect of environment temperature. 
 

 LIVER TRIGLYCERIDES  SERUM NEFA 

 Chow diet  High-fat Diet  Chow diet  High-fat Diet 

 22°C 30°C  22°C 30°C  22°C 30°C  22°C 30°C 

Genotype           

WT 25±0.7 47±2.3  93±2b 126±42c  0.62±0.06 0.3±0.05b  0.9±0.06b 0.66±0.12g 

D2KO 33±0.9* 58±4.7a  119±5**e 339±92*d,f  0.49±0.06 0.6±0.13*  0.9±0.05h 0.99±0.04*i 

 
All values in the table are means ± SEM of four to five animals. *P < 0.05; **P < 0.005; aP = 
0.057 vs. WT on the same temperature and diet; bP < 0.05 vs. 22°C on chow diet; cP < 0.01 vs. 
30°C on chow diet; dP < 0.001 vs. 22°C on high-fat diet; eP < 0.001 vs. 22°C on chow diet; fP < 
0.001 vs. 30°C on high-fat diet; gP < 0.05 vs. 30°C on chow diet; hP < 0.01 vs. 22°C on chow 
diet; iP < 0.01 vs. 30°C on chow diet by one-way ANOVA.!!
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Figure 3.5. Effect of acclimatization temperature and/or diet on lipid deposition in the liver. 
Oil Red O staining of liver sections obtained from D2KO and WT fed with chow or high-fat diet 
(HFD) for 8 weeks, acclimatized to 22°C or 30°C, as indicated (A–H) is shown. (A and B) 
D2KO and WT fed with chow diet, acclimatized to 22°C. (C and D) Same as A and B, except 
acclimatization was at 30°C. (E and F) D2KO and WT fed with high-fat diet for 8 weeks, 
acclimatized to 22°C. (G and H) Same as E and F, except acclimatization was at 30°C. Scale bar 
is 50 µm.   



111 

In addition, only WT animals experienced decreased NEFA serum levels when maintained at 

30°C, which also does not correlate with our findings of fat deposition in the liver (Table 3.1). 

Thus, it does not seem that differences in serum NEFA levels contribute to liver steatosis in the 

D2KO animals. 

Remarkably, the D2KO animals acclimatized at 22°C are substantially more tolerant to a 

glucose load than WT (Figure 3.6A). Acclimatization to 30°C dissipated this difference in 

glucose handling (Figure 3.6B), suggesting that chronic sympathetic BAT stimulation observed 

in D2KO mice at 22°C could make the animals more tolerant to glucose. This is supported by 

studies in rats, where cold exposure enhanced disposal of circulating glucose as a result of BAT 

activation (17). It is noteworthy that during high-fat feeding at 22°C, there were no differences 

between D2KO and WT animals in terms of glucose tolerance (Figure 3.6C). During 

acclimatization at 30°C, feeding with a high-fat diet promoted glucose intolerance in D2KO mice, 

which were less capable of disposing of a glucose load (Figure 3.6D). 
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Figure 3.6. Effect of temperature and/or diet on glucose tolerance. Blood glucose 
concentrations at the indicated time points following intraperitoneal injection of 1 g/kg glucose 
in D2KO and WT animals fed with chow or high-fat diet, acclimatized to 22°C or 30°C, as 
indicated are shown. (A) D2KO and WT fed with chow diet, acclimatized to 22°C. (B) Same as 
A, except acclimatization was at 30°C. (C) D2KO and WT fed with high-fat diet for 8 weeks, 
acclimatized to 22°C. (D) Same as C, except acclimatization was at 30°C. Entries are means ± 
SE of four to five animals; *P < 0.01 vs. WT.  
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DISCUSSION 

Thyroid hormone and the sympathetic nervous system share a number of common target 

systems, including cellular pathways involved in metabolic control (1). BAT capitalizes on the 

synergistic relationship between the sympathetic and thyroid hormone systems for activation of 

adaptive thermogenesis. BAT expresses D2, which itself is a cAMP-responsive gene, increasing 

local T3 concentration four- to fivefold during sympathetic stimulation without significant 

alteration of systemic T3 levels (18); the end result being upregulation of T3-dependent genes 

such as UCP1, which is both cAMP- and T3-sensitive (5, 19). Here, we show that when D2-

mediated T3 production is prevented, as with the D2KO mouse, there is a compensatory increase 

in BAT sympathetic activity to offset the tissue-level hypothyroidism (Figure 3.2D). We suggest 

that this compensatory sympathetic response neutralizes much of the phenotype that D2KO mice 

would otherwise exhibit as a result of the disruption in thyroid hormone signaling (Figures 3.2 

and 3.3). At 22°C, the D2KO mouse preferentially oxidizes fat (Figure 3.2C), has a similar 

sensitivity to diet-induced obesity (Figure 3.3), and is supertolerant to a glucose load (Figure 

3.6A). However, by eliminating thermal stress and rearing these animals at thermoneutrality 

(30°C), an opposite phenotype is encountered, one that includes obesity (Figure 3.4) and glucose 

intolerance (Figure 3.6D). These results define a critical role played by D2 in adaptive 

thermogenesis, revealing a novel aspect of the thyroid-adrenergic synergism. 

Uncoupling substrate oxidation from ATP synthesis is an important pathway for 

maintaining body temperature when small mammals are exposed to cold. Given recruitment of 

BAT and increased adrenergic responsiveness in mice fed a cafeteria diet (20), a similar pathway 

may be harnessed to activate BAT and dissipate excess calories as a form of diet-induced 

thermogenesis. In fact, activation of the adrenergic system has been used to counteract obesity 
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(21). However, similar to our present findings, studies performed with high-fat feeding of 

UCP1−/− mice, which were expected to become obese, yielded drastically different phenotypes 

that were dependent on whether ambient temperature prevented or promoted thermal stress. 

Although UCP1−/− mice reared at 30°C are prone to diet-induced obesity, under 

subthermoneutral temperatures, UCP1−/− mice are lean with elevated D2 in inguinal fat (22, 23). 

It has been suggested that in the absence of the UCP1 pathway, alternative mechanisms are 

triggered to maintain body temperature, such as an increase in thyroid hormone signaling. 

Consequently, when both UCP1 and a thyroid hormone-responsive mechanism, glycerol 

phosphate cycling, are inactivated, mice accumulate even less fat mass at 22°C (24). Our current 

findings support and confirm this notion of the importance of thyroid hormone (and its activation 

by D2) as an efficient means for maintenance of thermal homeostasis, where compromising the 

action of thyroid hormone leads to obesity only when without a thermal challenge. 

So far, the link between thyroid hormone and body weight has been anecdotal. Although 

patients and lay individuals almost immediately associate hypothyroidism with obesity, the 

incidence of hypothyroidism in obese individuals is not increased, and changes in body 

composition during the transition from severe hypothyroidism to mild thyrotoxicosis are meager 

(9-11). Given our data, the mild apparent impact of thyroid dysfunction on metabolism is likely 

the result of the effectiveness of the sympathetic-mediated compensatory mechanisms, whereby 

an inverse relationship exists between T3 and sympathetic signaling. By inactivating the 

sympathetic system through acclimatization to 30°C, we could better appreciate the importance 

for thyroid hormone activation on metabolic control, i.e. weight gain, tolerance to glucose load, 

and liver steatosis (Figure 3.4). Thus, if this hypothesis proves to be correct, it is likely that a 

failure to trigger these strong compensatory mechanisms would result in symptoms and signs 
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that would be more in line with our intuitive reasoning and prove clinically relevant. This is 

particularly pertinent given the finding of substantial amounts of functional BAT in adult 

humans (25). 

Liver steatosis is a novel aspect of the D2KO phenotype (Figure 3.5), which could be 

explained by increased NEFA uptake, impaired  β-oxidation, and/or decreased secretion of 

VLDL. The lower RQ in the D2KO suggests that increased NEFA is a contributing factor, but no 

correlation could be found in the WT or D2KO animals between NEFA levels and liver steatosis 

(Table 3.1). Thyroid hormone is known to induce peroxisome proliferator–activated receptor 

(PPAR) (26) and β-oxidation in the liver (27) and, in BAT, D2 is a downstream target of FGF21 

through a PPAR-mediated mechanism (28). In addition, liver delivers triglycerides to peripheral 

tissues by production of VLDL, of which apolipoprotein B, which is positively regulated by 

thyroid hormone (in HepG2 cells), is a major component (29). Given that serum T3 levels are 

normal in the D2KO mouse (30), it is conceivable that the D2 pathway is locally controlling 

thyroid hormone activation in liver and loss of which is directly contributing to the liver 

phenotype in the D2KO mouse. Although liver is known as a D1-expressing tissue, we have 

found measurable liver D2 activity and mRNA that are induced many fold and play a role in the 

double LXR KO mouse phenotype (31). It is noteworthy that hypoxia, a known inducer of the 

type 3 deiodinase (D3), which inactivates thyroid hormone and creates local hypothyroidism, 

aggravates liver steatosis and inhibits PPAR expression (32). Thus, it is conceivable that an 

active D2 pathway in liver upregulates genes involved in fatty acid economy. In addition, given 

the wealth of information about cross-talk between the sympathetic nervous system and the liver 

(33), it is also conceivable that brain D2 plays an indirect metabolic role in the liver via its 

expression in the medial basal hypothalamus and/or other brain regions. 
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Although it can be debated whether diet-induced thermogenesis exists and whether it 

exists outside of UCP1 and BAT, undoubtedly, adrenergic signaling plays a key role in the 

development of or protection from obesity upon disruption of thyroid hormone signaling. It is 

possible that variations in adrenergic signaling and not BAT itself could explain the energy 

balance in D2KO mice. Increased susceptibility to obesity at 30°C may be because of decreased 

adrenergic signaling and not the role of D2 in diet-induced thermogenesis per se, as has been 

suggested for UCP1−/− mice (34). It also has been recently suggested that diet-induced 

thermogenesis takes place in tissues other than BAT, such as muscle (35). D2 is highly expressed 

in BAT, and, thus, it is logical to assume that the present results are directly related to the action 

of D2 in this tissue. However, we have not looked directly at oxygen consumption of BAT, so 

diet-induced thermogenesis could stem from elsewhere. D2 is expressed in a number of other 

tissues, including skeletal muscle (36), and the contribution of D2 in these tissues to metabolic 

control remains to be elucidated. Finally, it could be argued that it is the mere fact that the D2KO 

mice are at 22°C (and thus have an increased metabolism) that hides the true phenotype 

observable at 30°C. In this case, there would be no compensatory mechanisms, i.e. the increased 

metabolism at 22°C would simply override any other effects. 
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ABSTRACT 

Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via 

its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in 

the regulation of FoxO1 transcriptional activity are the modifying/de-modifying enzymes that 

lead to posttranslational modification. Here, we demonstrate the functional interaction and 

regulation of FoxO1 by USP7, a deubiquitinating enzyme. We show that USP7-mediated mono-

deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through 

decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in 

primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and 

elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the 

fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, 

resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on 

hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the 

intimate regulation of deubiquitination and glucose metabolic control with important implication 

in diseases such as diabetes.  

 

INTRODUCTION 

Glucose homeostasis is maintained by action of the opposing pancreatic hormones, 

glucagon and insulin. Glucagon serves, in part, to induce hepatic gluconeogenesis, the de novo 

synthesis of glucose from non-carbohydrate precursors, during states of nutrient deprivation. 

During feeding, insulin curtails the rise in blood glucose by increasing glucose uptake in 

peripheral tissues and suppressing gluconeogenesis in the liver. However, in diabetic individuals 

with insulin resistance, the liver functions as in the fasted state and inappropriately activates 



125 

gluconeogenesis (1). Anti-diabetic drugs, such as the widely prescribed metformin, are believed 

to lower blood glucose primarily through repression of hepatic gluconeogenesis (2). 

 Both insulin and glucagon lead to rapid changes in signaling pathways that converge on 

the transcriptional regulation of the rate-limiting enzymes in gluconeogenesis, glucose-6-

phosphatase (G6Pc; G6Pase) and phosphoenolpyruvate carboxykinase (Pck1; PEPCK). 

Glucagon release in the fasted state initiates the gluconeogenic gene program via induction of the 

cAMP/protein kinase A (PKA) pathway and activation of transcription factors, such as cAMP-

responsive element (CRE)-binding protein (CREB), hepatic nuclear factor 4α (HNF4α), and 

forkhead box O1 (FoxO1) (3-6). As an additional level of regulation, coactivators peroxisome 

proliferator-activated receptor-γ coactivator 1 α (PGC-1α) and cAMP-regulated transcriptional 

coactivator (CRTC2) interact with and potentiate the transcriptional activity of these 

gluconeogenic transcription factors (3, 7, 8). In opposition, insulin suppresses hepatic 

gluconeogenesis primarily through its activation of phosphatidylinositol 3-kinase (PI3K) and Akt 

pathways, leading to negative regulation of PGC-1α and FoxO1 (9-11).  

 FoxO1, a member of the FoxO subfamily of forkhead winged/helix transcription factors, 

is critical for the insulin-mediated suppression of gluconeogenesis (12, 13). FoxO1 interacts with 

an insulin responsive element (IRE) on the promoter region(s) of G6Pc and Pck1 (14-17). Insulin 

signaling results in suppression of FoxO1 transcriptional activity through Akt-dependent 

phosphorylation of FoxO1 on specific conserved residues (T24, S256, and S319 in human 

FoxO1) (15, 18). Once phosphorylated, FoxO1 associates with 14-3-3 proteins, leading to 

cytoplasmic sequestration (19), followed by ubiquitination and degradation (20, 21). Consistent 

with the suppressive effect of insulin on FoxO1 activity, insulin resistance in diabetes leads to 

hyperactivation of FoxO1 with consequent elevation of FoxO1 target genes (5). Mice lacking 
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hepatic FoxO1 display reduced gluconeogenic gene expression, increased glucose tolerance, and 

reduced hepatic glucose production (13). Moreover, inhibition of hepatic FoxO1 has been shown 

to ameliorate fasting hyperglycemia in several diabetic animal models (5, 12, 22). Thus, the rapid 

repression of FoxO1, and subsequent decrease in gluconeogenic gene expression, is a key 

component of glucose homeostasis and may provide a strategy for intervention in the 

management of insulin-resistant diabetes. 

 FoxO family members govern a variety of cellular processes—some unique and some 

overlapping—and exhibit considerable levels of regulation. In general, FoxO activity is regulated 

by post-translational modifications that affect subcellular localization, protein stability, and DNA 

binding. These include phosphorylation, acetylation, methylation, glycosylation, and 

ubiquitination [reviewed in (23)]. Some of these modifications and the responsible 

kinases/enzymes are shared among family members, but the extent to which they have been 

characterized is by no means exhaustive. Thus, a better grasp on the effectors and their mode of 

regulation has the potential to reveal fresh alternatives for controlling FoxO1 activity.  

 Ubiquitination, the covalent addition of ubiquitin moieties to a target protein, can lead to 

decreased stability (through ubiquitin-targeted proteasomal degradation) or alteration of 

localization and/or activity of the modified protein. And the process of ubiquitin modification 

can be reversed by the action of deubiquitinating enzymes (24). Recently, the deubiquitinating 

enzyme USP7 has been identified in the negative regulation of FoxO3/4 transcriptional activity. 

Monoubiquitination of FoxO3/4 results in re-localization to the nucleus, which is counteracted 

by USP7-induced deubiquitination (25).  

 USP7, also known as HAUSP (herpesvirus-associated ubiquitin-specific protease), 

belongs to the ubiquitin-specific proteases family of deubiquitinating enzymes and contains a 
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characteristic cysteine motif in its catalytic domain (26). USP7 is most notable for its complex 

role in regulating stability of the p53 tumor suppressor, where it directly binds to and 

deubiquitinates both p53 and Mdm2, the E3 ubiquitin ligase responsible for p53 destabilization 

(27, 28). In fact, USP7 regulates several tumor suppressors, and a role for inhibition of USP7 in 

cancer is an active area of study (29). Indeed, FoxO proteins are considered tumor suppressors 

(30), making the interaction of USP7 with FoxO3/4 highly attractive to cancer research. 

However, it is unknown whether USP7 controls the action of FoxO proteins in other biological 

areas, namely, glucose metabolism. 

 Although the effect of polyubiquitination and ubiquitin-targeted proteasomal degradation 

of FoxO1 is well-appreciated, a role for monoubiquitination of FoxO1 per se has not been 

examined. We hypothesized that a similar interaction with USP7 might exist for FoxO1, which 

led us to interrogate a mechanistic link between USP7 and FoxO1 metabolic function. Here, we 

expand the list of USP7 targets to include FoxO1, showing that USP7 deubiquitinates 

monoubiquitinated FoxO1 to affect its association with the G6Pc and Pck1 promoters. We 

demonstrate that knockdown of USP7 elevates gluconeogenic genes, whereas overexpression of 

USP7 leads to suppression of gluconeogenesis in cell culture and in the whole animal. Notably, 

we determine a requirement of FoxO1 activity for USP7’s effects on gluconeogenic gene 

expression. Taken together, our findings reveal USP7 activation as a powerful inhibitor of 

FoxO1 activity and a potential therapeutic route in the amelioration of hyperglycemia associated 

with insulin-resistant malignancies. 

  



128 

MATERIALS AND METHODS 

DNA constructs and adenoviruses 

The pcDNA3 Flag-FoxO1, 3X IRS luciferase, and myristoylated Akt reporter constructs 

have previously been described (31). Myc-tagged USP7 was a gift from Dr. Pier Pandolfi, and 

pCl-neo Flag-tagged USP7 was provided by Dr. Bert Vogelstein via Addgene plasmid 16655 

(32). pRK5 HA-Ubiquitin (Ub) wildtype and lysine-less KO (Addgene plasmids 17608 and 

17603, respectively) were provided by Dr. Ted Dawson (33). A Flag-tagged non-insulin-

sensitive FoxO1 mutant (pcDNA3 Flag-FoxO1 T24A/S256A/S319A; Addgene plasmid 13508) 

was provided by Dr. Kunliang Guan (31). Plasmids carrying cDNAs encoding FoxO1-GFP 

fusion proteins were gifts from Dr. Alexander Banks and have previously been described (34). 

Point mutant generation of USP7 C223S was conducted by PCR-based mutagenesis. Short-

hairpin RNA (shRNA) constructs targeting USP7 (with 100% sequence complementarity to both 

human and mouse) were generated in a pLKO.1 backbone with the following target sequences: 

shUSP7#1, 5′-TGTATCTATTGACTGCCCTTT-3′; and shUSP7#2, 5′-GGCAACCTTTCAGT-

TCACTGT-3′. 

 Adenoviruses were generated with the pAd-Track/pAd-Easy system unless otherwise 

noted. Flag-USP7 adenoviruses were subcloned from pCl-neo Flag-USP7 constructs and express 

USP7 under a CMV promoter. Adenoviruses expressing shRNAs were subcloned from pLKO.1 

vectors and are driven by a U6 promoter. A non-targeting control shRNA adenovirus containing 

a scrambled sequence (SCR) has previously been described (35). Adenoviruses encoding FoxO1 

shRNA and corresponding control shRNA were gifts from Dr. Alexander Banks and were 

generated as previously described (36). All adenoviruses were amplified in HEK293A cells, 

purified by CsCl gradient centrifugation, and dialyzed in buffer containing 10 mM Tris (pH 8.0), 
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2 mM MgCl2, and 4% glycerol. Adenoviral titer was determined by serial dilution/infection of 

HEK293A cells and quantifying the number of fluorescing cells. 

 

Cell culture and treatment 

HEK293A cells were maintained in DMEM containing 10% FBS and 

penicillin/streptomycin. Transfections were performed with Lipofectamine 2000 transfection 

reagent (Invitrogen, Life Technologies) according to the manufacturer’s recommendations. 

Where indicated, HEK293A cells were rinsed with PBS and switched to DMEM lacking serum. 

Live-cell visualization of FoxO1-GFP localization was imaged by fluorescence microscopy on a 

Leica DMI6000B microscope (Leica Microsystems). Images were processed in Adobe 

Photoshop CS4 software to increase brightness for publication; consistent threshold settings were 

maintained across images. 

 Mouse primary hepatocytes were isolated from male C57BL/6 mice by perfusion with 

liver digest medium (Gibco, Life Technologies; pH 7.4) followed by 70 µm filtration exclusion 

and Percoll (Sigma) gradient centrifugation. Cells were seeded in DMEM containing 10% FBS, 

2 mM sodium pyruvate, 1 µM dexamethasone, 0.1 µM insulin, and penicillin/streptomycin. 

After cell attachment, medium was replaced with DMEM supplemented with 0.2% BSA, 2 mM 

sodium pyruvate, 0.1 µM dexamethasone, 1 nM insulin, and penicillin/streptomycin 

(maintenance medium). Adenovirus infections were performed the following day for 4 hours 

with 3.5×106 infectious particles per 4×105 cells. Fresh maintenance medium was replenished 

daily. Cells were harvested 48 hours post-infection. Where indicated, cells were serum-starved in 

DMEM containing 0.2% BSA, 2 mM sodium pyruvate, and penicillin/streptomycin prior to 

stimulation with insulin (Sigma) and/or forskolin (Fisher). For measurement of glucose 
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production, cells were cultured for 3 hours in 0.2% BSA, phenol red-free, glucose-free DMEM. 

Amount of glucose in the medium was quantified using a colorimetric glucose assay 

(EnzyChrom, BioAssay Systems) and normalized to total protein amount in the whole-cell 

lysates. Assays were conducted with or without 20 mM sodium lactate and 2 mM sodium 

pyruvate, and glucose production in the absence of lactate/pyruvate subtracted from that 

produced in the presence of lactate/pyruvate.  

 

Transcriptional reporter assays 

HEK293A cells were transfected to a fixed amount of DNA as corrected with empty 

vector plasmid. Cells were harvested 24 hours post-transfection with 1X Passive Lysis Buffer 

(Promega). Firefly luciferase reporter was determined by addition of Luciferase Assay Substrate 

(Dual-Luciferase Reporter Assay System, Promega) and quantification of luminescence on a 

FLUOstar Omega plate reader (BMG Labtech). Of note, CMV-driven Renilla luciferase vector 

was co-transfected as an internal control; however, despite a range of experimental vector to 

control vector ratios tested, Renilla luciferase activity was sensitive to co-transfected plasmids 

(data not shown) and, thus, withheld from normalization. Data are presented as firefly luciferase 

reporter values alone and are representative of at least two independent experiments. 

 

Chromatin immunoprecipitation (ChIP) 

Primary hepatocytes stimulated for 1.5 hours with 10 µM forskolin or DMSO vehicle 

were fixed in 1% formaldehyde for 10 min at room temperature. Crosslinking was quenched by 

adding glycine to a final concentration of 125 mM and rinsing twice with cold PBS. Cells were 

collected in PBS containing protease inhibitors followed by mild lysis [10 mM HEPES (pH 7.9), 
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10 mM KCl, 1.5 mM MgCl2, 0.5% Igepal, 1 mM PMSF, and protease inhibitors] and 

centrifugation. The resulting nuclear pellets were resuspended in ChIP buffer [50 mM HEPES 

(pH 7.9), 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% NaDOC, 0.1% SDS, 1 mM 

PMSF, and protease inhibitors] and chromatin sheared by sonication with a Diagenode Biorupter 

for 3 cycles of 5 min (30 sec on, 30 sec off). Samples were clarified and chromatin 

immunoprecipitated overnight at 4°C with anti-FoxO1 (C29H4, Cell Signaling Technologies) or 

isotype rabbit IgG (Abcam). Immunecomplexes were recovered with Protein A magnetic beads 

(Dynabeads; Novex, Life Technologies) preblocked with salmon sperm DNA (Invitrogen, Life 

Technologies). Following extensive washes, immunoprecipitated DNA was then isolated with a 

Chelex 100-based DNA purification method described in (37). Input DNA was prepared from 

10% of respective chromatin prior to precipitation. Immunoprecipitated DNA and input DNA 

were analyzed by quantitative real-time PCR with primers specific for the G6Pc IRE (forward: 

5′-TGGCTTCAAGGACCAGGAAG-3′ and reverse: 5′-TGCAAACATGTTCAGGGTGA-3′), 

Pck1 IRE (forward: 5′-TGGCTCAGAGCTGAATTTCC-3′ and reverse: 5′-CCTGTTGCTGAT-

GCAAACTG-3′), and a control genomic region 17.9 kb upstream of Cycs (forward: 5′-GGCTC-

TCCTTGCAGTTTTTG-3′ and reverse: 5′-CCGACCTTTACATCGCCTAA-3′). Enrichment of 

specific promoter regions after immunoprecipitation was calculated as percent of input.  

 

Animal experiments and procedures 

Mouse experiments were performed with 10-week-old male C57BL/6 mice and 8-week-

old male BALB/c mice purchased from Taconic Farms and allowed at least one week of 

acclimation to our facilities. All mice were maintained on normal chow and housed under a 12-

hour light/12-hour dark cycle at 22°C. Mice were handled for three days prior to adenovirus 
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infection (1.5×109 infectious particles per mouse) by tail vein injection under isofluorane 

anesthesia. All analyses were performed four days after infection. For gene expression analysis, 

mice were sacrificed after the indicated fasting or refeeding duration; the livers were snap-frozen 

in liquid nitrogen and stored at -80°C until processing. Pyruvate tolerance tests were performed 

on animals fasted for 16 hours prior to intraperitoneal injection of 2 g/kg sodium pyruvate 

dissolved in sterile PBS. Glycemia was measured by tail bleed at the indicated times using a 

glucometer (Precision Xtra, Abbott Diabetes Care). All studies were performed according to 

protocols approved by Dana-Farber Cancer Institute’s Animal Care and Use Committee. 

 

Quantitative real-time PCR analysis 

Total RNA was extracted from cells or pulverized liver using TRIzol reagent (Ambion, 

Life Technologies), followed by cDNA preparation from 2 µg of total RNA with a High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) on a MJ Mini thermal cycler 

(Bio-Rad). cDNA products were quantified by real-time PCR using Power SYBR Green PCR 

Master Mix (Applied Biosystems) on a CFX384 Real-Time PCR System (Bio-Rad). Gene 

expression was determined by generation of a standard curve and normalized for the expression 

of 36B4. All primer sequences are available upon request. 

 

Western blotting 

Whole-cell extracts were prepared in RIPA buffer containing phosphatase inhibitors (1 

mM glycerol-2-phosphate, 5 mM NaF, and 1 mM Na orthovanadate), 1 mM PMSF, and protease 

inhibitors (Roche). Cytoplasmic and nuclear fractionation from cells and pulverized liver were 

performed as previously described with minor modifications (38). Briefly, cytoplasmic fractions 
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were obtained from a buffer A containing 10 mM HEPES (pH 7.9), 10 mM KCl, 1.5 mM MgCl2, 

0.5% Igepal, phosphatase inhibitors, 1 mM PMSF, and protease inhibitors. After washing with 

buffer A, nuclear pellets were resuspended in a buffer B containing 20 mM HEPES (pH 7.9), 

150 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 15% glycerol, 0.5% Igepal, 0.3% CHAPS, 

phosphatase inhibitors, 1 mM PMSF, and protease inhibitors. Protein concentration was 

determined by DC (detergent compatible) protein assay (Bio-Rad) and lysates separated by SDS-

PAGE, transferred to Immobilon-P transfer membranes (Millipore), and blotted according to 

manufacturer’s recommendations for the indicated antibodies. Antibodies for the detection of 

FoxO1, phospho-FoxO1 (Ser256), phospho-FoxO1 (Thr24), Akt, phospho-Akt (Thr308), 

phospho-Akt (Ser473), GSK3β, and phospho-GSK3β (Ser9) were from Cell Signaling 

Technologies. Anti-USP7 antibody was purchased from Bethyl Laboratories, Inc. Anti-HA, anti-

Myc, and anti-Flag peroxidase conjugates were from Sigma. Horse peroxidase-conjugated 

secondary antibodies were from Jackson ImmunoResearch. Anti-Lamin B1 (Abcam) and anti-β-

Tubulin (Millipore) were used as loading controls. 

 

Co-immunoprecipitations 

To assess the endogenous interaction of USP7 with FoxO1 from primary hepatocytes, 

nuclear extracts were prepared in RIPA buffer without SDS containing phosphatase inhibitors, 1 

mM PMSF, and protease inhibitors. Clarified lysates were precleared with 20 µL of a protein A 

sepharose (GE Healthcare Bio-Sciences) slurry prior to incubation with anti-FoxO1 or isotype 

rabbit IgG overnight at 4°C. The immunecomplexes were then precipitated by addition of 20 µL 

protein A sepharose slurry and incubation for 2 hours at 4°C. Co-immunoprecipitations (co-IPs) 

of epitope-tagged USP7 and FoxO1 were performed with clarified whole-cell extracts from 
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HEK293A cells resuspended in co-IP buffer [20 mM HEPES (pH 7.9), 125 mM NaCl, 1 mM 

EDTA, 0.1% Igepal, 0.3% CHAPS, phosphatase inhibitors, 1 mM PMSF, and protease 

inhibitors], where complexes were captured overnight by immunoprecipitation with anti-Flag 

agarose (Sigma). Immunoprecipitated proteins were washed four times with respective lysis 

buffer, eluted with 2X SDS sample buffer and boiling, and detected by immunoblotting after 

separation by SDS-PAGE. 

 

Deubiquitination assays 

For detection of FoxO1 deubiquitination in vivo, HEK293A cells transfected with the 

indicated plasmids were lysed in 1% SDS buffer containing 50 mM Tris (pH 7.5), 150 mM 

NaCl, 0.1% Triton X-100, phosphatase inhibitors, 1 mM PMSF, protease inhibitors, and 0.5 mM 

N-ethylmaleimide (NEM; Boston Biochem), boiled for 10 min, and sonicated. Lysates were 

immunoprecipitated with anti-Flag agarose after dilution to 0.1% SDS and clarification. 

Immunoprecipitates were washed with high salt buffer [50 mM Tris (pH 7.5), 250 mM NaCl, 1% 

Triton X-100, 1 mM EDTA, and inhibitors], eluted as above, and analyzed by SDS-PAGE. 

Following transfer, membranes were autoclaved prior to immunoblotting for ubiquitinated 

species. For in vitro deubiquitination assays, Flag-tagged FoxO1 and USP7 were anti-Flag 

affinity purified from HEK293A cells transfected with plasmids encoding the respective 

proteins. HA-tagged monoubiquitinated Flag-FoxO1 was immunoprecipitated as described 

above, and Flag-USP7 was immunoprecipitated from cells lysed in co-IP buffer. After extensive 

washing, immunoprecipitates were eluted in deubiquitination buffer [50 mM Tris (pH 7.5), 150 

mM NaCl, 0.001% Triton X-100, 1 mM EDTA, 10 mM DTT, 5% glycerol, and inhibitors] with 

200 µg/mL 3X Flag-peptide (Sigma). Purified USP7, wildtype or CS mutant, was added to 
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aliquots of purified monoubiquitinated FoxO1 and reactions incubated at 30°C for 1 hour. 

Reactions were terminated using 6X SDS sample buffer and analyzed by western blotting. 

 

Deubiquitinating enzyme activity analysis 

The effect of hormonal stimuli on USP7 activity was tested by using HA-tagged ubiquitin 

vinyl methyl ester (HA-UbVME; Enzo Life Sciences), a ubiquitin derivative that binds 

irreversibly to active deubiquitinating enzymes (39). Primary hepatocytes were isolated in co-IP 

buffer supplemented with 1 mM DTT, and 20 µg of lysate reacted with 0.1 µg of HA-UbVME 

for 1 hour at 30°C. Pretreatment of lysates with NEM, which is an inhibitor of deubiquitinating 

enzymes, for 20 min at 30°C was used as a negative control in parallel extracts. Reaction was 

stopped by addition of 6X SDS sample buffer and boiling. Samples were subjected to SDS-

PAGE analysis, where USP7 activity was assessed by detection of a shift in USP7 molecular 

mass by approximately 8 kDa, indicative of a stable complex with ubiquitin probe. To assess 

USP7 activity in nuclear and cytoplasmic fractions, the cytoplasmic fraction was isolated in 

absence of detergent and then subjected to buffer exchange using 10 kDa MWCO Amicon 

centrifual filters (Millipore) such that both nuclear and cytoplasmic proteins were resuspended in 

the aforementioned buffer. 

 

Statistical analysis 

Data were analyzed using Prism software (GraphPad Software, Inc) and are expressed as 

mean ± SEM. Two-tailed Student’s t tests and one-way ANOVA with Newman-Keuls Multiple 

Comparison test were used to compare means between groups as indicated; P < 0.05 was 

considered significant. 
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RESULTS 

USP7 interacts with and deubiquitinates monoubiquitinated FoxO1 

It has been reported that USP7 targets FoxO family members FoxO3 and FoxO4, where 

deubiquitination of monoubiquitinated FoxO3/4 leads to nuclear exclusion and decreased activity 

(25). However, FoxO1 as a USP7 substrate and the effect of monoubiquitination on FoxO1 

activity have not been explored. To assess whether FoxO1 is also targeted by USP7, we first 

determined whether USP7 interacts with FoxO1. Immunoprecipitation of FoxO1 from the 

nuclear fraction of cultured mouse hepatocytes showed binding of endogenous USP7 to FoxO1 

(Figure 4.1A). For further mechanistic analysis, we verified this interaction in an amenable 

transient expression system. HEK293A cells were co-transfected with Myc-tagged USP7 (Myc-

USP7) and Flag-tagged FoxO1 (Flag-FoxO1) followed by co-immunoprecipitation. As shown in 

Figure 4.1B, immunoprecipitation of Flag-FoxO1 clearly revealed Myc-USP7 bound to FoxO1. 

Notably, USP7 activity is not necessary for this interaction, as both wildtype and a catalytically 

inactive mutant of USP7 (C223S; CS) efficiently interacted with FoxO1.  

 Having established an interaction between USP7 and FoxO1, we next sought to 

determine whether USP7 deubiquitinates FoxO1. In evaluating the effects of USP7 on FoxO1 

ubiquitination, we utilized co-expression of HA-tagged ubiquitin for visualization of 

ubiquitinated FoxO1 species. Immunoprecipitation of Flag-FoxO1 under denaturing conditions 

revealed a pattern of ubiquitination that was decreased upon overexpression of USP7 (Figure 

4.1C). In contrast to this, the catalytically inactive USP7 CS actually enhanced the level of 

FoxO1 ubiquitination, which is likely a result of this mutant acting as a dominant-negative (27) 

(Figure 4.1C). Further, to assess whether the pattern of ubiquitinated bands in the 

immunnoprecipitate of Flag-FoxO1 reflects true monoubiquitination of FoxO1, we  



137 

 

 

 

Figure 4.1. FoxO1 is a substrate of USP7. (A) Endogenous USP7 and FoxO1 interact. Western 
blot analysis of immunoprecipitated FoxO1 from nuclear extracts of primary hepatocytes that 
were serum-starved overnight. (B) USP7 catalytic activity is not required for interaction with 
FoxO1. Western blot analysis of whole-cell extracts (input) or following co-immunoprecipitation 
with anti-Flag agarose (IP: Flag) of HEK293A cells transfected with Flag-FoxO1 and Myc-USP7 
constructs. (C) Wildtype USP7 deubiquitinates FoxO1. Western blot analysis of whole-cell 
extracts (input) or following immunoprecipitation with anti-Flag agarose (IP: Flag) of HEK293A 
cells transfected with indicated constructs. (D) FoxO1 is monoubiquitinated. Western blot 
analysis of whole-cell extracts (input) or following immunoprecipitation with anti-Flag agarose 
(IP: Flag) of HEK293A cells transfected with Flag-FoxO1 and HA-tagged wildtype ubiquitin or 
a lysine-less ubiquitin mutant (Ub KO). (E) USP7 deubiquitinates monoubiquitinated FoxO1 in 
vitro. Ubiquitinated FoxO1 (in the presence of HA-Ub KO) was affinity purified from HEK293A 
cells. Purified Flag-USP7 constructs were added and reactions incubated at 30°C for 1 hour prior 
to termination and analysis by SDS-PAGE.  



138 

co-transfected FoxO1 with a ubiquitin construct in which all seven lysine residues have been 

mutated to arginines (Ub KO). Given that this mutant ubiquitin cannot form polyubiquitin 

chains, the resulting similarity in pattern of FoxO1 ubiquitination in the presence of wildtype Ub 

and Ub KO suggests that the observed ubiquitination of FoxO1 is indeed monoubiquitination 

(Figure 4.1D). In order to confirm the direct deubiquitination of monoubiquitinated FoxO1 by 

USP7, we incubated affinity-purified monoubiquitinated FoxO1 with purified USP7 in an in 

vitro deubiquitination assay. Shown in Figure 4.1E, purified wildtype USP7, but not the USP7 

CS mutant, markedly reduced the levels of monoubiquitinated FoxO1 in this cell-free assay. 

Taken together, these results support the conclusion that USP7 directly deubiquitinates 

monoubiquitinated FoxO1.  

 

FoxO1 transcriptional activity is suppressed by USP7 

To investigate the functional consequence of FoxO1 as a USP7 target, we next analyzed 

the effect of USP7 on the transcriptional activity of FoxO1. Unlike polyubiquitination, which 

impedes FoxO activity by signaling FoxO proteins for proteasomal degradation, several studies 

have shown that monoubiquitination of FoxO4 increases its transcriptional activity (25, 40, 41). 

Thus, and similar to its reported function on FoxO3/4, we hypothesized that removal of 

monoubiquitin moieties from FoxO1 by USP7 would attenuate FoxO1 activity. Indeed, 

overexpression of wildtype USP7 suppressed FoxO1 activation on a FoxO1-responsive reporter 

construct, whereas USP7 CS led to an increase in activation (Figure 4.2A, top). Importantly, 

these effects on transcriptional activity were in absence of an effect on FoxO1 protein levels 

(Figure 4.2A, bottom).  
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Figure 4.2. USP7 affects FoxO1 transcriptional activity. (A) USP7 suppresses transcriptional 
activation of FoxO1 on the 3X IRS FoxO1 response element-luciferase reporter construct in 
HEK293A cells. Data presented as relative activity and shown as  ± SEM; n = 3. ***, P < 0.001 
by one-way ANOVA with Newman-Keuls Multiple Comparison test. Effect is noted in absence 
of changes on FoxO1 protein levels, as indicated by included western blot analysis of whole-cell 
extracts. (B) Constitutively active Akt (Myr Akt) suppresses FoxO1 transcriptional activity to a 
further degree than USP7 alone. Data presented as in (A). (C) USP7 suppresses transcriptional 
activation of a non-insulin-sensitive FoxO1 mutant (FoxO1 mut.). Cells were deprived of serum 
for 6 hours prior to harvest. Data presented as relative activity and shown as  ± SEM; n = 3. *, P 
< 0.05; **, P < 0.01; and ***, P < 0.001 by one-way ANOVA with Newman-Keuls Multiple 
Comparison test. (D) USP7 fails to affect FoxO1 nuclear/cytoplasmic localization. Fluorescence 
microscopy images showing typical nuclear and cytoplasmic localization of FoxO1-GFP. Cells 
were treated as in (C).  
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 Since insulin is known to inhibit FoxO1 activity through Akt-mediated phosphorylation 

and nuclear exclusion (14, 19, 42), we wanted to examine whether USP7 could be acting 

downstream of insulin. A constitutively active myristoylated Akt construct potently suppressed 

FoxO1 activity, which was to a greater degree than USP7 alone (Figure 4.2B). However, when 

we used a FoxO1 mutant that is resistant to Akt-mediated phosphorylation and suppression, we 

found that expression of wildtype USP7 was still capable of attenuating FoxO1 transcriptional 

activity (Figure 4.2C). Based on previous reports that USP7-mediated deubiquitination of 

FoxO3/4 results in its nuclear exclusion (25), we co-transfected USP7 with a GFP-fused FoxO1 

to test the effect of USP7 on FoxO1 localization. Under conditions identical to that where USP7 

overexpression decreased FoxO1 transcriptional activation, we failed to observe an appreciable 

change in FoxO1 localization. This was true of both wildtype FoxO1 and a non-insulin-sensitive 

mutant (Figure 4.2D and Figure 4.3). These data suggest that USP7-mediated deubiquitination of 

FoxO1 leads to a suppression of its transcriptional activity.  

 

USP7 suppresses gluconeogenesis in primary hepatocytes 

Given the effect of USP7 on FoxO1 transcriptional activity, we hypothesized that USP7 

might control FoxO1 activation of gluconeogenesis. To interrogate a link between USP7 and 

gluconeogenesis, we examined the effect of targeting USP7 with short hairpin RNA (shRNA) on 

gluconeogenic gene expression in primary culture of mouse hepatocytes. Primary hepatocytes 

were infected with adenoviruses expressing either a non-targeting scrambled control shRNA 

(shSCR) or one of two shRNA sequences against USP7 (designated shUSP7#1 and shUSP7#2) 

and treated with forskolin, a cAMP activator used to mimic the condition of fasting, alone or in 

combination with insulin (Figure 4.4A). These stimuli were chosen considering roles of FoxO1  
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Figure 4.3. USP7 fails to affect FoxO1 nuclear/cytoplasmic localization. Fluorescence 
microscopy images showing typical nuclear and cytoplasmic localization of FoxO1-GFP in 
HEK293A cells transfected with the indicated plasmids.  
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Figure 4.4. USP7 knockdown increases gluconeogenic gene expression and glucose 
production in primary hepatocytes. (A) Schematic of forskolin (FSK) and insulin (INS) 
treatment of primary hepatocytes. To mimic fasting conditions, cells were serum-starved in 0.2% 
BSA for 5 hours prior to a 1.5-hour incubation with 10 µM forskolin. To analyze the effect of 
insulin on suppression of gluconeogenic gene induction, cells were serum-starved for 4 hours 
prior to a 1-hour pretreatment with 100 nM insulin followed by a 1.5-hour incubation with both 
insulin and forskolin. (B) Insulin signaling in primary hepatocytes with USP7 knockdown. 
Western blot analysis of nuclear and cytosolic fractions from hepatocytes as treated in (A). (C) 
USP7 knockdown increases gluconeogenic gene expression upon forskolin treatment. Primary 
hepatocytes were infected with control (shSCR) or USP7 shRNA adenoviruses and subjected to 
the conditions presented in (A). mRNA levels are graphed relative to expression of 
unstimulated/serum-starved shSCR and presented as average ± SEM; n = 3. *, P < 0.05; and ***, 
P < 0.001 by one-way ANOVA with Newman-Keuls Multiple Comparison test. Data are 
representative of at least two independent experiments. (D) USP7 knockdown increases glucose 
levels in medium after overnight forskolin treatment. Glucose in medium of primary hepatocytes 
treated overnight with 10 µM forskolin was measured 3 hours after culturing in glucose-free 
medium supplemented with pyruvate and lactate. Presented as average ± SEM; n = 3. **, P < 
0.01 by one-way ANOVA with Newman-Keuls Multiple Comparison test.  



143 

in both the cAMP induction of gluconeogenic genes and the insulin-mediated inhibition of 

cAMP-induced gluconeogenesis (9, 10, 13, 43). Adenoviral-mediated expression of shUSP7 

sequences resulted in dramatic reduction of USP7 protein levels without altering FoxO1 amount 

or localization (Figure 4.4B). Supporting a role for USP7 on expression of FoxO1-target genes, 

knockdown of USP7 potentiated the forskolin response of G6Pc and Pck1 (Figure 4.4C). These 

effects on gene expression corresponded with efficiency of knockdown, with increased 

knockdown of USP7 having the most pronounced increase on gene expression (Figure 4.4, B and 

C). Pretreatment with insulin prior to and during the forskolin treatment suppressed expression of 

G6pc and Pck1 to a similar extent in both control and shUSP7 cells (Figure 4.4C). Importantly, 

the knockdown of USP7 did not lead to a general activation of the cAMP/PKA pathway, as the 

cAMP-inducible gene Nurr77 exhibited a similar pattern of expression in shUSP7 and shSCR 

cells upon forskolin treatment (Figure 4.5A). To evaluate the physiological outcome coinciding 

with these effects on gene expression, hepatic glucose production was measured from primary 

hepatocytes adenovirally-infected with shUSP7 and incubated with medium including lactate and 

pyruvate as gluconeogenic substrates. Consistent with the observed increase in gluconeogenic 

genes, USP7 knockdown enhanced forskolin-induced glucose production (Figure 4.4D).  

 In order to better assess the role of USP7 activity on gluconeogenesis, we performed 

complementary gain-of-function experiments in primary hepatocytes with adenoviruses 

expressing USP7. A modest increase of wildtype USP7 over endogenous levels caused a 

significant suppression of forskolin-induced increases in G6Pc and Pck1 expression (Figure 4.6, 

A and B). This was in contrast to overexpression of the catalytically inactive USP7 CS, which 

had a tendency to potentiate gluconeogenic gene expression (Figure 4.6B). Again, these changes 

in gene expression were in absence of a global alteration of cAMP-responsiveness, as observed  
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Figure 4.5. USP7 manipulation does not lead to general activation of cAMP-responsiveness. 
(A) USP7 knockdown and (B) USP7 overexpression were performed with the indicated 
adenoviruses and primary hepatocytes subjected to the conditions presented in Figure 4.4A. 
mRNA levels are graphed relative to expression of unstimulated/serum-starved GFP and 
presented as average ± SEM; n = 3. Nurr77 expression was not statistically significant per 
treatment by one-way ANOVA with Newman-Keuls Multiple Comparison test. Data are 
representative of at least 2 independent experiments.  
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Figure 4.6. USP7 overexpression suppresses gluconeogenic gene expression in primary 
hepatocytes. (A) USP7 does not alter insulin signaling in primary hepatocytes. Western blot 
analysis of whole-cell extracts from primary hepatocytes infected with control (GFP), USP7 
wildtype, or USP7 catalytically-inactive mutant (CS) adenoviruses and subjected to the 
conditions presented in Figure 4.4A. (B) Wildtype USP7 suppresses gluconeogenic gene 
expression upon forskolin treatment. Hepatocytes were treated as in (A). mRNA levels are 
graphed relative to expression of unstimulated/serum-starved GFP and presented as average ± 
SEM; n = 3. *, P < 0.05; **, P < 0.01; and ***, P < 0.001 by one-way ANOVA with Newman-
Keuls Multiple Comparison test. Data are representative of at least two independent experiments.  
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by similar forskolin-induced Nurr77 expression (Figure 4.5B). USP7 overexpression did not 

affect insulin activation of the PI3K/Akt pathway, nor did it alter the ability of insulin to 

suppress gluconeogenic genes (Figure 4.6, A and B). Furthermore, USP7 had no effect on total 

protein levels of FoxO1 (Figure 4.6A). These effects on gluconeogenic genes corroborated the 

results noted for transient expression of USP7 on FoxO1 transcriptional activation.  

 

USP7 suppresses gluconeogenesis in mouse liver 

We next sought to confirm whether these effects of USP7 could be recapitulated in vivo 

by altering hepatic USP7 levels. Tail vein delivery of adenoviral USP7 constructs resulted in 

significant increases in USP7 protein in the livers of C57BL/6 mice (Figure 4.7A). Given that 

liver-specific FoxO1 knockout mice exhibit hypoglycemia only after a prolonged fast (13), we 

decided to observe the effect of USP7 on mice that had been similarly fasted. Indeed, coincident 

with a role for USP7 in suppression of gluconeogenesis, mice receiving tail vein injection of 

wildtype USP7, and not the catalytically inactive USP7 CS, exhibited decreased expression of 

hepatic gluconeogenic genes after prolonged fasting (Figure 4.7B). Of note, nuclear FoxO1 

levels were variable but not affected by treatment (Figure 4.7A). Also, suppression of 

gluconeogenic genes was not due to a disruption of insulin signaling in the livers of these 

animals, as the phosphorylation status of key targets in the insulin/PI3K/Akt pathway was 

unaffected by USP7 overexpression (Figure 4.7A).  

 Next, to determine the physiological consequence of USP7 perturbation in mouse liver, 

we performed pyruvate tolerance tests on mice with hepatic overexpression of GFP, wildtype 

USP7, or USP7 CS. In accordance with the change in gluconeogenic genes, overexpression of 

wildtype USP7 led to a decreased conversion of pyruvate to glucose after pyruvate challenge,  
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Figure 4.7. USP7 overexpression in C57BL/6 mouse liver suppresses gluconeogenesis. (A) 
Insulin signaling remains relatively unchanged in livers of mice overexpressing USP7. Western 
blot analysis of nuclear and cytosolic fractions from livers of 48-hour fasted mice. (B) Hepatic 
overexpression of wildtype USP7 suppresses gluconeogenic genes. Liver mRNA levels from 
mice in (A) are graphed relative to expression of GFP and presented as average ± SEM; n = 6-7. 
*, P < 0.05; **, P < 0.01; and ***, P < 0.001 by one-way ANOVA with Newman-Keuls 
Multiple Comparison test. (C) USP7 overexpression improves pyruvate tolerance. 
Intraperitoneal (IP) pyruvate tolerance test from mice infected with GFP, wildtype USP7, or 
USP7 CS adenoviruses. Mice were fasted overnight prior to injection of 2 g/kg sodium pyruvate. 
Data are presented as change in glycemia following pyruvate injection and are from two 
independent experiments. Presented as average ± SEM. n = 9-19. *, P < 0.05 GFP vs. USP7; and 
#, P < 0.05 USP7 vs. USP7 CS by one-way ANOVA with Newman-Keuls Multiple Comparison 
test per time point.  
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indicating suppressed hepatic gluconeogenesis in these animals (Figure 4.7C). Notably, 

overexpression of the USP7 CS mutant did not alter pyruvate tolerance, highlighting the 

importance of USP7 catalytic activity in regulation of glucose homeostasis. In aggregate, these 

data support a suppressive effect of hepatic USP7 on gluconeogenesis. 

 

Effect of USP7 on gluconeogenesis is dependent on FoxO1 activity 

To determine a requirement of endogenous FoxO1 for USP7’s effect on gluconeogenesis, 

we performed double knockdown experiments with shUSP7 adenovirus and an shRNA 

adenovirus targeting FoxO1 (shFoxO1). As previously reported (13), shFoxO1 dramatically 

reduced FoxO1 levels, with a concordant reduction of gluconeogenic genes (Figure 4.8, A and 

B). Importantly, knockdown of FoxO1 abolished the increase in gluconeogenic gene expression 

observed by both shUSP7 adenoviruses (Figure 4.8B). These results indicate that USP7 depends 

on the presence of FoxO1 in order to affect gluconeogenic gene expression. 

 This then begged the question: what controls USP7 activity on FoxO1? Neither 

stimulation of primary hepatocytes with forskolin nor insulin, conditions where FoxO1 is active 

and inactive, respectively, produced significant change in USP7 protein levels (Figure 4.9A). 

Also, USP7 protein and mRNA levels remained constant in livers of fasted and refed mice 

(Figure 4.9, B and C). In addition, assessment of USP7 activity in whole-cell, nuclear, and 

cytoplasmic lysates of primary hepatocytes failed to recognize an appreciable effect of hormonal 

stimulation on catalytic activity (Figure 4.9, D and E). Thus, stimuli that dramatically affect 

FoxO1 transcriptional activation do not appear to alter USP7 levels or activity. In summation, 

these results suggest that USP7 modulation of FoxO1 transcriptional activity occurs subsequent 

to nuclear FoxO1 availability.  
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Figure 4.8. USP7’s effect on gluconeogenic gene expression is dependent on FoxO1. (A) 
Efficient knockdown of FoxO1 protein upon double knockdown with USP7. Western blot 
analysis of whole-cell extracts from primary hepatocytes infected with the indicated 
adenoviruses (in the absence of shFoxO1, cells received co-infection with corresponding control 
shRNA adenovirus) and serum-starved in 0.2% BSA for 3 hours prior to a 1.5-hour incubation 
with 10 µM forskolin. (B) Knockdown of FoxO1 abolishes the effect of USP7 knockdown on 
gluconeogenic gene expression. mRNA levels are graphed relative to expression of 
unstimulated/serum-starved control shSCR and presented as average ± SEM; n = 3. *, P < 0.05; 
and ***, P < 0.001 by one-way ANOVA with Newman-Keuls Multiple Comparison test. Data 
are representative of at least two independent experiments. 
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Figure 4.9. USP7 levels and activity are unchanged by fasting/feeding stimuli. (A) Levels of 
nuclear USP7 are unchanged by hormonal stimulation. Primary hepatocytes were serum-starved 
in 0.2% BSA prior to treatment with 10 µM forskolin (FSK) or 100 nM insulin (INS) for the 
indicated durations. (B) USP7 mRNA levels in mouse liver are relatively unchanged during 
fasting/feeding. BALB/c mice were subjected to a 17-hour fast, after which food was   
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Figure 4.9 (Continued). reintroduced and mice sacrificed 3, 6, 9, and 12 hours after initiation of 
feeding. To control for effects that are predominantly circadian, one group (12-h Fast) was 
allowed normal overnight feeding but then subjected to a 12-hour fast in parallel with the 12-
hour refeeding group. Liver mRNA levels are graphed relative to expression of the overnight 17-
hour fast and presented as average ± SEM; n=3. (C) USP7 protein is not regulated by 
fasting/feeding in mouse liver. Western blot analysis of nuclear and cytosolic extracts from liver 
isolated from mice in (B). Analysis performed on two mice per time point. (D–E) Hormonal 
stimulants fail to affect USP7 activity. Primary hepatocytes were serum-starved prior to 
treatment with 10 µM forskolin or 100 nM insulin for the indicated durations. Extracts were 
incubated with deubiquitinating enzyme activity probe (HA-UbVME), followed by western blot 
analysis with anti-USP7 antibody. Active USP7 is indicated by a shift in USP7 molecular weight 
(~8 kDa) and denoted by an arrow. An asterisk indicates unlabeled (inactive) USP7. In (D), 
whole-cell extracts were analyzed; bottom panel shows samples run in parallel that received pre-
incubation with NEM as a control for the assay. Treatments are shown in triplicate. In (E), the 
activity of nuclear versus cytoplasmic extracts was analyzed.  
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USP7 modulates FoxO1 occupancy on promoters of gluconeogenic genes 

We had originally hypothesized that USP7-mediated deubiquitination of FoxO1 would 

lead to nuclear exclusion, as indicated for the mechanism in its interaction with FoxO3/4 (25). 

However, we have not seen such an effect with transient overexpression of USP7 and FoxO1 in 

HEK293A cells (Figure 4.3), and have failed to detect a significant change in the level of 

endogenous nuclear FoxO1 upon USP7 knockdown (Figure 4.4B) or overexpression (Figure 

4.7A). Since USP7 did not alter the nuclear/cytoplasmic localization of FoxO1, we examined the 

ability of USP7 to modulate the association of FoxO1 with gluconeogenic promoters. Using 

primers that specifically span the IRE(s) of G6Pc and Pck1 (Figure 4.10A), we performed 

chromatin immunoprecipitation (ChIP) of FoxO1 from primary hepatocytes infected with shSCR 

or shUSP7 and stimulated with forskolin. Compared to unstimulated cells, forskolin treatment 

resulted in increased ChIP of endogenous FoxO1 with G6Pc and Pck1 promoters (Figure 4.10B). 

Knockdown of USP7 further potentiated the forskolin-induced FoxO1 occupancy at these 

promoters (Figure 4.10B). Notably, this increase in FoxO1 promoter binding by USP7 

knockdown occurred irrespective of unaltered nuclear FoxO1 levels (Figure 4.11A). And 

consistent with elevated gluconeogenic gene expression, histone H3 acetylation at Lys9 

(H3K9Ac), a marker of increased transcriptional activity recently shown to be elevated over 

G6Pc and Pck1 in livers of fasting and diabetic animals (44), was found to be significantly 

higher on the G6Pc promoter upon USP7 knockdown (Figure 4.11B).  
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Figure 4.10. USP7 alters FoxO1 occupancy at gluconeogenic gene promoters. (A–B) ChIP-
qPCR analysis reveals increased association of FoxO1 with G6Pc and Pck1 promoters at IRE 
regions upon USP7 knockdown. Schematic in (A) indicates primers used for amplification of 
FoxO1 binding sites (black boxes in promoters of G6Pc and Pck1) and a control region (Cycs). 
In (B), cells were infected with the indicated adenoviruses and treated with 10 µM forskolin for 
1.5 hours prior to harvest and ChIP assay of FoxO1. Results graphed as average ± SEM; n = 3. *, 
P < 0.05 by one-way ANOVA with Newman-Keuls Multiple Comparison test. Data are 
representative of at least two independent experiments. (C) Model illustrating novel role for 
USP7 in deubiquitination and suppression of FoxO1 activity. Transcriptionally active FoxO1 is 
presented in yellow, and inactive forms of FoxO1 are presented in shades of green. Fasting-
induced glucagon stimulus through cAMP/PKA activates FoxO1 transcription of gluconeogenic 
genes G6Pc and Pck1. Monoubiquitination of FoxO1, through an as-of-yet unidentified E3 
ligase, promotes FoxO1 activity through enhanced occupancy over binding sites (IRE) on G6Pc 
and Pck1 promoters. During feeding, insulin suppresses hepatic gluconeogenesis through the 
PI3K/Akt-mediated phosphorylation and nuclear exclusion of FoxO1. Our results presented here 
suggest that USP7 acts as a break on nuclear FoxO1 through deubiquitination to suppress its 
association with promoters of gluconeogenic genes.  
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Figure 4.11. FoxO1 targets show increased H3K9Ac despite steady levels of nuclear FoxO1 
upon USP7 knockdown. (A) Nuclear FoxO1 is unchanged in primary hepatocyte lysates from 
USP7 knockdown. Western blot analysis of nuclear lysate used for ChIP analysis in Figure 
4.10B. (B) H3K9Ac is increased over gluconeogenic genes with knockdown of USP7. Cells 
were infected with the indicated adenoviruses and treated with 10 µM forskolin for 1.5 hours 
prior to harvest and ChIP with anti-histone H3K9Ac antibody (Abcam) followed by qPCR. 
Results graphed as average ± SEM; n = 3. *, P < 0.05 by one-way ANOVA with Newman-Keuls 
Multiple Comparison test. 
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DISCUSSION 

Our studies expand the role of the USP7 deubiquitinating enzyme to FoxO1 modulation 

and regulation of glucose homeostasis. The findings presented here suggest that FoxO1 

transcriptional activity is controlled by USP7-mediated deubiquitination. FoxO1-target genes 

were increased upon USP7 knockdown and conversely suppressed with overexpression of 

wildtype USP7. These changes in gene expression led to altered hepatic glucose output as 

assessed in cells and mouse liver. Importantly, the effect of USP7 on gluconeogenic genes 

required activity of FoxO1. In light of these data, we propose a model where deubiquitination of 

FoxO1 by USP7 leads to decreased occupancy of FoxO1 at promoters of gluconeogenic genes, 

thereby suppressing gluconeogenesis (Figure 4.10C). 

 Previous studies have looked at the effect of stress-induced monoubiquitination of FoxO 

proteins, having found that monoubiquitination promotes FoxO-dependent transcription. 

However, these studies focused on FoxO4 in the cell cycle (25, 40, 41). The present data support 

this model of monoubiquitination-induced increase in FoxO transactivation and broaden its 

biologic effects to the area of hepatic glucose metabolism. Our findings, in combination with 

others, suggest a common regulatory mechanism for USP7 and the family of FoxO proteins. 

However, contrary to its reported mechanism for FoxO3/4 (25), we found that USP7 suppresses 

FoxO1 activity in absence of an effect on its nuclear/cytoplasmic localization.  

 Altered FoxO1 transactivation despite unchanged nuclear accumulation is not an unusual 

concept, as FoxO proteins may exhibit reduced activity by mechanisms that do not depend on 

cellular redistribution. For example, insulin is still able to inhibit a mutant of FoxO1 that is 

rendered constitutively nuclear by mutation in the nuclear export signal (45). In addition, 

phosphorylation of FoxO1 residue S256 alters its in vitro binding activity by introducing a 
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negative charge that interferes with basic residues in the DNA-binding domain of FoxO1 (46). 

This disruption of FoxO1 affinity for target chromatin has also been seen with acetylation, where 

acetylated FoxO1 has attenuated ability to bind DNA (47). Since we observed increased FoxO1 

binding to gene promoters upon USP7 knockdown—when monoubiquitination of FoxO1 is 

presumably elevated—the presence of ubiquitin moieties might facilitate FoxO1 association with 

chromatin. Related to this, a recent report has implicated a role for USP7 in the dissociation of 

minichomosome maintenance (MCM) complex from chromatin at the end of S-phase (48), 

which the authors suggest might occur subsequent to mono-deubiquitination of MCM. Thus, the 

ability of monoubiquitination to alter FoxO1 recruitment to DNA deserves further exploration. 

 An intriguing study by Nardini et al. has shown that monoubiquitination of the 

transcription factor NF-Y is necessary for active transcription of target genes by mimicking and, 

thus, facilitating monoubiquitination of histone H2B at Lys120, an epigenetic mark associated 

with transcriptional activation (49). This is important to our current findings given work 

originally done in flies that revealed a role for USP7 in epigenetic silencing through 

deubiquitination of H2B (50). Although it is disputed whether USP7 deubiquitinates H2B in 

mammalian cells, USP7 has also been shown to deubiquitinate and stabilize Polycomb repressive 

complex 1 (PRC1), which confers gene repression by H2A monoubiquitination (51). Taken 

together, it is interesting to speculate a function for monoubiquitination of FoxO1 in the 

activation of permissible histone marks and—coordinately—mono-deubiquitination of FoxO1 by 

USP7 in transcriptional silencing.  

 The binding of cofactors to transcription factors can also facilitate a transcriptionally-

favorable chromatin environment. Thus, a third possibility exists where USP7 might modulate 

FoxO1 activity by affecting the association of FoxO1 with coregulators, such as CREB binding 
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protein (CBP) and its related protein p300 (CBP/p300) or PGC-1α. The binding of histone 

acetyltransferases CBP/p300 to FoxO proteins is essential for the transactivation of target gene 

promoters (52-54). This is true also of PGC-1α, which coactivates FoxO1 on gluconeogenic 

promoters in an insulin-sensitive fashion (10). Whether USP7-mediated deubiquitination of 

FoxO1 inhibits these interactions, or whether monoubiquitinated FoxO1 enhances them, is 

unknown. 

 In some cases, the same lysine residues are alternately acetylated or ubiquitinated. Of 

note, the specific lysines that are acetylated in FoxO1 are not the ones that get polyubiquitinated 

(55). Interestingly, the effect of deubiquitination on FoxO1 as reported here is the opposite of 

that observed by deacetylation of FoxO1, where deacetylation increases FoxO1 transcriptional 

activity (56, 57). Does monoubiquitination antagonize acetylation—or vice versa? Van der Horst 

and colleagues reported a reduction of FoxO4 monoubiquitination with mutation of lysine 

residues Lys199 and Lys211, which are sites of acetylation that are conserved among FoxOs 

(25). These findings might indicate overlapping and alternately monoubiquitinated/acetylated 

FoxO residues. However, this mutant did not exhibit altered transcriptional activity, and the 

authors did not address its function in the presence of USP7, questioning whether these residues 

are true targets for USP7-mediated deubiquitination. Nevertheless, the extent that 

monoubiquitination affects other posttranslational modifications, and where it falls in the 

hierarchy for eliciting functional change, requires future attention. 

 Our findings of unaltered USP7 protein and activity upon fasting and feeding stimuli 

have led us to propose a model whereby USP7 suppresses FoxO1 transactivation mainly under 

fasting conditions, when FoxO1 is predominantly nuclear. Given that insulin/Akt overrode 

effects shown by USP7 loss- and gain-of-function experiments, a role for USP7 action on FoxO1 
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during feeding cannot be concluded. More specifically, our data indicate that nuclear FoxO1 is 

requisite for USP7 function. Although a physiological role for USP7-mediated suppression of 

gluconeogenesis during fasting might seem counterintuitive, it is not unprecedented. In fact, a 

negative feedback pathway has been suggested where FoxO amplification of insulin/growth 

factor signaling limits prolonged FoxO activation [reviewed in (58)]. Our data suggest that USP7 

is active regardless of hormonal stimulus, thus, acting as a constitutively accessible break on 

nuclear FoxO1. However, it is reasonable to surmise that the specific activity of USP7 on FoxO1 

(as opposed to its enzymatic activity, as assessed by our assays) is subject to hormonal control. 

USP7 activity can be altered through interactions with different binding partners and through 

posttranslational modification (50, 59-61); future studies will be required to determine whether 

USP7-mediated deubiquitination of FoxO1 can be controlled at either of these levels. All 

together, the results presented here reveal USP7 as an additional node for fine-tuning FoxO1 

activity, and suggest that activation of USP7 could be useful in alleviating states of excess 

hepatic glucose production. 

 Recently, Lee et al. reported that overexpression of USP7 in mouse liver decreased blood 

glucose by increasing hepatic levels of PPARγ (62). This conclusion is complicated by the fact 

that PPARγ levels are extremely low in non-obese liver (63), which questions the physiological 

relevance of a hepatic USP7-PPARγ interaction. In addition, although the authors suggested that 

elevated PPARγ led to the decreased glycemia upon USP7 overexpression, a causal role in 

glucose homeostasis was not fully explored. Given our current findings, it is likely that USP7-

mediated inactivation of FoxO1 and suppression of hepatic gluconeogenesis contributed to their 

observed phenotype.  
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 FoxO1 function is also of critical importance for other metabolic tissues, such as skeletal 

muscle and adipose tissue. Mice overexpressing FoxO1 in skeletal muscle exhibit muscle 

atrophy and impaired glycemic control (64), whereas inhibition of FoxO transcriptional activity 

prevents muscle loss (65). In adipose tissue, expression of a dominant negative FoxO1 leads to 

increased energy expenditure and improved glucose tolerance (66). Thus, under both scenarios, 

suppression of FoxO1 would be a favorable approach to improve metabolic imbalance. Whether 

USP7 can inhibit FoxO1 function in muscle and/or adipose tissue will be addressed in future 

studies. Of note, a functional interaction between USP7 and Tip60 has been reported to be 

required for 3T3-L1 adipocyte differentiation (67), further supporting a role for USP7 targets in 

the maintenance of energy/nutrient homeostasis. 

 The human genome encodes approximately 100 deubiquitinating enzymes, which 

counteract several hundred ubiquitin ligases, suggesting that ubiquitination and its reversal are 

subject to considerable specialization and specificity. Because of their high specificity, 

deubiquitinating enzymes are attractive targets for drug development (24). Our data suggest that 

USP7 may be important for the regulation of FoxO1 transcriptional activity during 

fasting/refeeding, making USP7 an excellent candidate for translational applications. The 

identification here of a deubiquitinase involved in glucose metabolism could provide a potent 

target for clinical intervention of not only hepatic glucose output in the context of diabetes, but 

also for broader therapeutic pathways in the treatment of obesity and other metabolic disorders. 
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Mammals preserve energy balance through complex homeostatic mechanisms that 

integrate endocrine and neural signals with metabolic gene programs across multiple organ 

systems. The central theme of this body of work concerns understanding key pathways at the 

intersection of hormonal and transcriptional control that aid in the maintenance of energy 

homeostasis. This work portrays two distinct pathways—one for thyroid hormone and one for 

insulin signaling. 

 

Thyroid hormone signaling: D2 in adaptive thermogenesis 

In Chapters 2 and 3, we explored the role of type 2 deiodinase (D2) in brown fat 

development and function. D2 is an enzyme that activates the prohormone thyroxine (T4) to the 

biologically active form of thyroid hormone, 3,5,3!-triiodothyronine (T3), in individual cells and 

has previously been recognized for its crucial role in amplification of thyroid hormone signaling 

in brown adipose tissue (BAT) during the acute thermogenic response to cold (1, 2). By 

analyzing BAT development in mice with inactivation of the D2 pathway (D2KO), we 

demonstrate in Chapter 2 that BAT D2 is necessary for coordinating the expression of key genes 

that contribute to the proper development and identity of BAT. Absence of D2-generated T3 

results in defective differentiation of brown preadipocytes in vitro, which can be linked to 

oxidative stress and impaired insulin signaling. Chapter 3, we found that D2KO mice are more 

susceptible to high-fat diet-induced obesity, glucose intolerance, and hepatic steatosis. 

Importantly, this phenotype is only realized when the thermal stress of room temperature is 

eliminated by rearing mice at thermoneutrality. These findings highlight the importance of D2-

generated T3 in BAT development, where it plays a crucial role in providing the mature brown 
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adipocyte with the molecular signature required for adaptive thermogenesis and protection from 

obesity. 

 

Therapeutic potential for targeting D2 in obesity 

Given the recent discovery of BAT in adult humans (3-5), targeting pathways to activate 

this tissue could provide a physiological model to increase energy expenditure and correct the 

overabundance of stored energy in obese individuals. Thyroid hormone has long been 

appreciated as one of the known activators of brown fat in rodents, and recent reports suggest 

that hyperthyroidism in humans also leads to increased BAT activity (6, 7). However, given its 

pleiotropic effects, general administration of T3 would be an ill-advised approach to activate 

adaptive thermogenesis in BAT. Previous efforts to do so have resulted in adverse effects, 

including tachycardia, muscle wasting, and bone loss (8). Because the TR isoform TRβ 

positively regulates UCP1 expression, there have been several attempts to reap the therapeutic 

benefits of selective TRβ agonism, and preliminary results with TRβ-selective agonists in rodent 

models suggest this could be an effective approach to harness the positive effects of thyroid 

hormone on brown fat activation and weight loss (9-11).  

Yet another alternative to selectively increase T3 in BAT would be to target D2 

enzymatic activity, which could locally amplify thyroid hormone signaling in BAT and thus 

avoid systemic side effects. Indeed, our results showing an obesity-prone D2KO mouse suggest 

that D2 normally functions to protect from obesity. That D2 might play a similar protective 

function in humans is suggested by a common sequence polymorphism in the Dio2 gene, which 

is strongly associated with insulin resistance and type 2 diabetes (12, 13). Several small 

molecules have been reported to increase D2 activity, such as kaempferol (14), chemical 
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chaperones (15), and bile acids (16), lending support to the tractability of D2 activation and its 

therapeutic appeal as an anti-obesity target. Activating D2 in human BAT could be effective at 

inducing adaptive thermogenesis, but it will also require that there is sufficient BAT mass to do 

so. 

 In Chapter 2, we discovered a role for D2 in proper brown fat development and 

adipogenesis, which suggests that activation of D2 could be a potential therapeutic target for the 

differentiation of brown preadipocytes and the expansion of human brown fat mass. However, 

our studies looked at the classical interscapular BAT depot of rodents, and the current 

understanding of adult human UCP1-positive fat cells in the neck/thoracic region is that they 

share more characteristics with rodent beige adipocytes than brown adipocytes (17, 18). Since 

beige and brown adipocytes develop from distinct cell lineages (18), it will be important to 

determine if D2 also plays a role in beige fat function and development. In addition, it was 

recently shown that human preadipocytes derived from mesenteric and subcutaneous white fat 

depots express D2 (19). D2 is not normally found in white adipose tissue (20), but “ectopic” D2 

expression in white fat depots has been found in rodent models with resistance to diet-induced 

obesity (21). It is interesting to speculate that these preadipocytes actually represent a population 

of beige cells that could be selectively recruited and activated by a D2-targeted approach. 

Notably, Dio2 expression has also been reported in both the interscapular BAT of human 

newborns and the supraclavicular fat of adult humans (3, 22). The fact that human fat—albeit 

brown or beige—expresses D2 supports a D2-targeted approach in the recruitment and 

development of brown/beige preadipocytes when developing new therapies to counter obesity. 
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Insulin signaling: USP7 in glucose metabolic control 

In Chapter 4, we found the deubiquitinating enzyme USP7 to be a novel regulator of 

FoxO1 transcriptional activity. Through in vitro and in vivo studies, we provided data to suggest 

a model where USP7-mediated removal of monoubiquitin moieties from FoxO1 leads to 

decreased association of FoxO1 with target gluconeogenic gene promoters, thereby suppressing 

gluconeogenesis. Notably, this work not only expands the role of USP7 to glucose metabolic 

control, but it also reveals that monoubiquitination and its reversal is an important 

posttranslational modification controlling FoxO1 activity. The pivotal role of FoxO1 in linking 

insulin action to suppression of gluconeogenic genes means that manipulating the 

monoubiquitinated status of FoxO1 may offer alternatives to decrease hepatic glucose output 

during states of insulin resistance. 

 

Therapeutic potential for targeting FoxO1 monoubiquitination in diabetes 

Hyperglycemia is a hallmark of diabetes and predominately caused by an elevation of 

hepatic gluconeogenesis (23). Our data in Chapter 4 suggest that activation of USP7 may lead to 

a reduction in gluconeogenesis, which could prove therapeutically useful in the management of 

diabetes. This statement is best generalized from our findings with adenoviral-mediated 

overexpression of USP7 in mouse liver, which we found to produce a significant—yet modest—

reduction in gluconeogenic gene expression and conversion of pyruvate to glucose. These 

relatively minor changes are expected given that even the liver-specific FoxO1 knockout mouse 

exhibits what has been called a “mild phenotype” and requires prolonged fasting to detect a 

decrease in blood glucose (24). Moreover, the effects of FoxO1 on gluconeogenesis are best 

appreciated in states of insulin resistance, when defective insulin action results in nuclear 
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accumulation and increased activity of FoxO1 (25, 26). Therefore, we anticipate that under a 

context of hyper-activated FoxO1, such as mice with genetically- or diet-induced diabetes, 

overexpression of USP7 should have a more profound suppressive effect on FoxO1-target genes 

and reduction of blood glucose. These studies could also provide a better indication of the 

clinical utility for a USP7-targeted approach in the treatment of diabetes. Similarly, future 

investigations could be aided by generation of liver-specific USP7 knockout mice, which, in 

accordance with our primary hepatocyte data, should become hyperglycemic as a result of 

increased FoxO1 occupancy at promoters of gluconeogenic genes. Although activation of USP7 

by suppressing FoxO1 activity may provide a beneficial blood glucose lowering effect in the 

diabetic individual, the fact that USP7 has other targets should be heavily considered. 

 Currently, there are generous efforts aimed at designing USP7 inhibitors for the treatment 

of cancer (27). But would inhibition of USP7—in the context of a cancer therapeutic—lead to 

detrimental elevation of hepatic glucose production by activating FoxO1? Considering our 

findings that USP7 knockdown does not alter the ability for insulin to suppress gluconeogenic 

targets, the insulin-sensitive individual should not experience hyperglycemia on a USP7 inhibitor 

drug regimen. For example, hepatic overexpression of FoxO1, despite elevating gluconeogenic 

genes, does not increase fasting glucose because of a compensatory increase of serum insulin 

(26). Therefore, as long as insulin signaling is intact, then activity of FoxO1 will be kept in 

check; however, this may not occur for diabetic individuals with insulin resistance. Under this 

scenario, our data suggest that inhibition of USP7 could exacerbate elevated gluconeogenesis 

and further increase hyperglycemia. Because diabetics are at an increased risk for several cancers 

(28), this contraindication could be a potential obstacle for a substantial number of cancer 

patients receiving anti-USP7 therapy. Although this adverse effect may not preclude use per se 
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in the diabetic cancer patient, it would necessitate judicious blood glucose monitoring because 

levels could be difficult to control. Results from liver-specific deletion of USP7 on a diabetic 

background should be informative in this regard. 

As stated above, upregulation of USP7 would be favorable in the treatment of diabetes. 

One potential caveat for this therapy is its connection to cancer. An example of particular 

importance is the report of increased USP7 levels in a hepatocellular carcinoma cell line (29), 

which suggests that an attempt to activate hepatic USP7 in the context of an anti-diabetes 

therapeutic could have oncogenic effects. Although this does not indicate causality, USP7 is in 

fact overexpressed in several tumor types (30, 31). Thus, USP7 itself as a therapeutic target 

should be carefully considered, but targeting the deubiquitination of FoxO1 could still be a 

viable option. 

Targeting the E3 ubiquitin ligase responsible for monoubiquitination of FoxO1 is an 

attractive therapeutic alternative that could avoid the potential drawbacks of a USP7-targeted 

approach. In this regard, one would expect that inhibition of such an E3 ligase would decrease 

monoubiquitination of FoxO1, thereby suppressing its activity and decreasing gluconeogenesis. 

One potential candidate for the E3 ligase is MDM2, which has been shown to induce 

monoubiquitination and increase transcriptional activity of FoxO4 (32). However, this is 

contrary to other reports implicating MDM2 as an E3 ligase that catalyzes polyubiquitination and 

degradation of FoxO proteins (33, 34). This suggests that there is possibly a different E3 ligase 

responsible for FoxO1 monoubiquitination. To determine the particular E3 ligase involved, we 

could take a mass spectrometry (MS/MS) approach to identify high-confidence candidate 

interactors with FoxO1 (35). Importantly, we would want to enrich the system for an E3 ligase 

that activates FoxO1 rather than degrade it, and this experiment would best be performed with 
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FoxO1 immunoprecipitates from hepatocytes isolated from insulin-resistant mouse livers. Once 

identified and validated, small molecules that inhibit the E3 ligase activity or its interaction with 

FoxO1 could be designed with therapeutic intentions. Therefore, a better understanding of other 

players in the pathway of FoxO1 monoubiquitination could offer alternative approaches to 

control FoxO1 activity and could provide therapeutic benefit for states of insulin resistance. 

When glucose availability or uptake is reduced, the liver aids in maintenance of energy 

homeostasis through production of ketone bodies. During prolonged starvation, for example, 

fatty acids mobilized from adipose tissue are converted in the liver to ketone bodies, which 

replace glucose as the predominant fuel source for the brain. Under this setting, conservation of 

protein is necessary for the preservation of vital functions (36). The resulting protection from 

protein catabolism decreases the supply of gluconeogenic substrates, reducing hepatic glucose 

synthesis, and the availability of ketone bodies as a fat-derived metabolic fuel promotes survival 

(37-39). Conversely, high levels of ketones can have deleterious effects. In diabetes, ketogenesis 

increases in response to the body’s perceived glucose-deficiency. The consequent elevation of 

acidic ketone bodies decreases blood pH, which can lead to the potentially life-threatening 

complication of diabetic ketoacidosis (40). Whether hepatic USP7 plays a role in ketogenesis and 

lipid homeostasis under either of these contexts remains to be determined.  

 

Closing remarks 

Although presented as distinct sections, thyroid hormone and insulin signaling pathways 

are part of a vast interconnected network responsible for the maintenance of organismal 

homeostasis. When forced out of equilibrium, as with obesity or insulin resistance, knowledge of 

these pathways may provide key targets for reestablishing a healthy energy balance.  
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