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Abstract

This thesis studies certain aspects of the global properties, including geometric and

arithmetic, of the moduli spaces of complex structures of some special Calabi-Yau threefolds

(B-model), and of the corresponding topological string partition functions defined from

them which are closely related to the generating functions of Gromov-Witten invariants of

their mirror Calabi-Yau threefolds (A-model) by the mirror symmetry conjecture.

For the mirror families (B-model) of the one-parameter families (A-model) of KP2 , KdPn , n =

5, 6, 7, 8 with varying Kähler structures, the bases are the moduli spaces of complex struc-

tures of the corresponding mirror Calabi-Yaus. We identify them with certain modular

curves by studying the Picard-Fuchs systems and periods of the corresponding mirror

families. In particular, the singular points on the moduli spaces correspond to the cusps

and elliptic points on the modular curves.

We take the BCOV holomorphic anomaly equations with boundary conditions as the

defining equations for the topological string partition functions. Using polynomial recursion

and the above identification, we interpret the boundary conditions as regularity conditions

for modular forms and express the equations purely in terms of the language of mod-

ular form theory. This turns the problem of solving the equations into a combinatorial

problem. We also solve for the first few topological string partition functions genus by

genus recursively in terms of almost-holomorphic modular forms. Assuming the validity

of mirror symmetry conjecture, we prove a version of integrality for the Gromov-Witten
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invariants of the original non-compact Calabi-Yau threefolds (A-model) as a consequence of

the modularity of the partition functions.

Motivated by the results for the aforementioned non-compact Calabi-Yaus, we construct

triples of differential rings on the moduli spaces of complex structures for some one-

parameter families of compact Calabi-Yau threefolds (B-model), e.g., the quintic mirror

family, in a systematic way. These rings are defined from the Picard-Fuchs equations and

special Kähler geometry on the moduli spaces. They share structures similar to the triples

of rings of modular forms, quasi-modular forms and almost-holomorphic modular forms

defined on modular curves. Moreover, the topological string partition functions are Laurent

polynomials in the generators of the differential rings.
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Introduction

Calabi-Yau (CY) manifolds have very rich structures and have been intensively studied in

mathematics and physics since they were introduced. The studies of CYs have inspired a

lot of new subjects, especially those related to mirror symmetry and string theory. For nice

reviews on the history and developments of mirror symmetry and its applications, see e.g.,

Greene (1996); Witten (1988); Cox and Katz (2000); Klemm (2003); Hori et al. (2003); Mariño

(2006); Alim (2012) .

One of the most interesting problems is to "count" the number of holomorphic curves

inside a given CY 3-fold X̌. These numbers are formulated rigorously as the Gromov-Witten

invariants, which are defined as certain integrals over the moduli spaces of stable maps

into the target space X̌. The study of Gromov-Witten invariants attracts a lot of attention

and is closely related to the studies of quantum cohomology, Donaldson-Thomas invariants,

integrable systems, quasi-modular forms, variation of Hodge structures, wall-crossing

phenomena, etc.

For some special CYs like hypersurfaces and complete intersections in toric varieties,

the Gromov-Witten invariants can be computed by using the localization technique in

Kontsevich (1994), topological vertex in Aganagic:2003db, etc. However, for more general

CYs, directly computing these invariants is a difficult problem in mathematics, partially due

to the fact that the moduli space of stable maps into the CY X̌ is very complicated. For a

detailed review on this subject, see Cox and Katz (2000); Hori et al. (2003) and references

therein.



0.1 Counting curves via mirror symmetry

The mirror symmetry conjecture provides a way to bypass this difficulty. Given a smooth CY

3-fold X̌, one puts it in a family of CY 3-folds p̌ : X̌ ! M̌ by varying its complexified Kähler

structure while fixing the complex structure, where M̌ is the moduli space of complexified

Kähler structures1 of X̌ whose dimension is h1,1(X̌). The generating function of genus g

Gromov-Witten invariants gives a function defined on the moduli space

F̌g(ť) = Â
b2H2(X̌,Z)

hewig,b , (1)

where

w =
h1,1(X̌)

Â
i=1

ťi
wi , hwi1 wi2 · · ·wikig,b =

k

’
j=1

ev⇤
ij

wij \ [Mg,k(X̌, b)]vir .

Here

• {wi}h1,1(X̌)
i=1 are the generators for the Kähler cone in the moduli space M̌ of Kähler

structure of X̌;

• ť = {ťi}h1,1(X̌)
i=1 are local coordinates on the moduli space M̌ centered around the

so-called large volume limit given by ťi = •, 8i;

• [Mg,k(X̌, b)]vir is the virtual fundamental class of the moduli space Mg,k(X̌, b) of

stable maps of genus g and class b.

• evij , j = 1, 2, · · · k are the evaluation maps: Mg,k(X̌, b) ! X̌.

An alternative way to write the above generating function Fg(ť) in which the Gromov-Witten

invariants appear more naturally is the following

F̌g(ť) = Â
b2H2(X̌,Z)

Ng,b(X̌)e2pi
R

b

w . (2)

Note that in this formula Ng,b(X̌) is independent of ť but only depends on X̌, this results

from the fact that the Gromov-Witten invariants are deformation invariant, see e.g., McDuff

1Throughout the thesis, we shall simply call it Kähler structure by abuse of language.
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and Salamon (1994); Ruan and Tian (1995).

The mirror symmetry conjecture predicts that for the CY 3-fold family (A model)

p̌ : X̌ ! M̌, there exists another family (B model) of CY 3-folds p : X ! M satisfying the

following properties.

Mirror symmetry conjecture

• The moduli space M̌ of Kähler structures of X̌ is identified with the moduli space

M of complex structures of X. This implies in particular that h1,1(X̌) = dimM̌ =

dimM = h2,1(X).

• There exist distinguished coordinates ť = {ťi}h1,1(X̌)
i=1 on M̌ and t = {ti}h2,1(X)

i=1 on M,

called canonical coordinates in Bershadsky et al. (1994), so that the map ť = t gives

the identification M̌ ⇠= M. This map is called the mirror map. In practice, one first

matches some distinguished singular points on the moduli spaces, e.g., the large

volume limit on M̌ and the large complex structure limit on M, then one identifies

neighborhoods of these singular points by matching the Kähler normal coordinates

(see Section 3.3.1) on the moduli spaces.

• For each genus g, there is a function Fg(t) defined on the moduli space M so that

under the mirror map, it is identical to F̌g(ť).

• Moreover, topological string theory implies that the more natural objects one should

be looking at on both sides are some non-holomorphic objects F̌ (g)(ť, ¯̌t) and F (g)(t, t̄)

which are again identical under the mirror map. These quantities are called topological

string partition functions. The "holomorphic limit" (see Section 3.3.1) of the normalized

partition functions give rise to the quantities F̌g(ť) and Fg(t), respectively.

Remark. The holomorphic limit, firstly defined in Bershadsky et al. (1993, 1994), is a very

important concept in higher genus mirror symmetry and will be used frequently in this

thesis, so we would like to mention this concept here, the full details could be found in

Section 3.3.1.
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Roughly speaking, the holomorphic limit of a non-holomorphic function f (z, z̄) defined

on a complex manifold M parametrized by z is obtained as follows. First, one thinks of

the coordinates (z, z̄) as independent coordinates in a formal neighborhood of the diagonal

D : M ! M ⇥ M, where M is the complex manifold equipped with the complex structure

opposite to that on M. It can be proved that under the diagonal map D, M is real inside

M ⇥ M. Hence any analytic function in (z, z̄) on M can be analytically continued to an

analytic function on M ⇥ M. On the diagonal, z̄ is the honest complex conjugate of z, but

away from the diagonal they are independent. Then the holomorphic limit of f based at the

point z⇤, denoted by limz̄=z̄⇤ hereafter in this thesis, is obtained by taking the degree zero

part of the Laurent series expansion of the function f (z, z̄) with respect to z̄ and centered at

z̄⇤.

To illustrate this, we discuss an example f (z, z̄) = z + z̄. The holomorphic limit of f at

the base point z⇤ = 0 is computed as follows

f (z, z̄) = z + 1 · (z̄ � 0), lim
z̄=0

f = z ,

while the holomorphic limit at z⇤ = 1 is computed to be

f (z, z̄) = (z + 1) + 1 · (z̄ � 1), lim
z̄=1

f = z + 1 .

Two trivial observations are in order. First, the holomorphic limit of a non-holomorphic

function based at any point is a holomorphic (more precisely, meromorphic) function, as

the name suggests. Second, in general, holomorphic limits of the same non-holomorphic

function, but based at different points, are not related by analytic continuation.

Finding the functions F (g)(t, t̄) is sometimes much easier than computing the generating

functions F̌g(ť) since the former satisfy some recursive differential equations called holo-

morphic anomaly equations in Bershadsky et al. (1993, 1994), as will be reviewed in Section

0.2 below. These differential equations and the corresponding boundary conditions were

4



derived from physics, but can be formulated purely in terms of mathematical language2.

The general idea of counting curves via mirror symmetry is as follows (see Figure 1

below). First one takes the BCOV holomorphic anomaly equations with boundary conditions

as the defining equations for the topological string partition functions F (g)(t, t̄). Then one

tries to solve for them from the equations. After that one normalizes them and takes the

holomorphic limit at the large complex structure limit on M to get Fg(t). Finally one uses

the mirror map ť = t which matches the large volume limit on M̌ with the large complex

structure limit to obtain F̌g(ť), and then to extract the Gromov-Witten invariants Ng,b(X̌)

from Eq. (2).

In this way, via mirror symmetry, counting curves in the CY 3-fold X̌ is translated into

solving differential equations on the moduli space M of its mirror manifold X.

0.2 Holomorphic anomaly equations and polynomial recursion

The mirror map matching the large volume limit on M̌ with the large complex structure

limit on M has been well understood in the literature. The difficult part in the above

procedure in counting curves via mirror symmetry is to solve for the topological string

partition functions from the BCOV holomorphic anomaly equations. In this section, we

shall review these equations, and explain the polynomial recursion technique which was

developed in Yamaguchi and Yau (2004); Alim and Länge (2007) to solve the equations.

Special Kähler geometry on deformation space

Consider a family p : X ! M of CY 3-folds over a variety M parametrized by the complex

coordinate system z = {zi}dimM
i=1 . For a generic z 2 M, the fiber Xz is a smooth CY 3-fold.

We also assume that dimM = h1(Xz, TXz) for a generic Xz, where TXz is the holomorphic

tangent bundle of Xz. In the following, we shall use the notation X to denote a generic fiber

Xz in the family without specifying the point z.

2See Li (2011); Costello and Li (2012) for recent developments on rigorously defining the topological string
partition functions and BCOV holomorphic anomaly equations.
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Mirror Symmetry

A-model
(symplectic geometry)

B-model
(complex geometry)

X̌ X

p̌ : X̌ ! M̌ p : X ! M

M̌ M

ť mirror mapoo // t

F̌g(ť) Gromov-Witten
qq Fg(t)

F̌ (g)(ť, ¯̌t)

normalization
holomorphic limit

OO

BCOV holomorphic anomaly equations
-- F (g)(t, t̄)

normalization
holomorphic limit

OO

Figure 1: Big picture of counting curves via mirror symmetry

In many examples discussed in this thesis, the smooth CY 3-fold X is toric in nature, and

the variety M will be the moduli space of complex structures of X which can be constructed

torically.

The variation of complex structures on X can be studied by looking at the periods P of

the family according to the general theory of variation of Hodge structures, see Griffiths

and Schmid (1975); Carlson et al. (2003); Voisin (2002, 2007). They are defined to be the

integrals
R

C Wz, where C 2 H3(Xz, Z) and W = {Wz} is a holomorphic section of the Hodge

line bundle L = R0
p⇤W3

X |M on M. They satisfy a differential equation system LCY P = 0

called the Picard-Fuchs system which is induced from the Gauss-Manin connection on the

Hodge bundle H = R3
p⇤C ⌦OM = R3

p⇤W•
X |M. The base M of the family is equipped

6



with the Weil-Petersson metric whose Kähler potential K is determined from

e�K(z,z̄) = i
Z

Xz

Wz ^ Wz . (3)

The metric Gi ‚̄ = ∂̄

‚̄

∂iK is the Hodge metric induced from the Hermitian metric h(W, W) =

i3 R
X W ^ W on the Hodge line bundle L. This metric is called a special Kähler metric,

see Strominger (1990); Freed (1999). Among its other properties, it satisfies the following

“special geometry relation”

�R k
i ‚̄ l = ∂

‚̄

Gk
il = d

k
l Gi ‚̄ + d

k
i Gl ‚̄ � CilmCmk

‚̄

, i, ‚̄, k, l = 1, 2, · · ·dimM , (4)

where

Cijk(z) = �
Z

Xz

Wz ^ ∂i∂j∂kWz (5)

is the so-called Yukawa coupling and

Cmk
‚̄

= e2KGkk̄Gmm̄C
‚̄k̄m̄ . (6)

Note that by definition Cijk 2 G(M, Sym3T⇤M⌦ L2) and it is symmetric with respect to

the sub-indices i, j, k. Integrating Eq. (5), one then gets the “integrated special geometry

relation”

Gk
ij = d

k
j Ki + d

k
i Kj � CijmSmk + sk

ij , (7)

where Smk is defined to be a solution to

∂n̄Smk = Cmk
n̄ , (8)

and sk
ij could be any holomorphic quantity. There is a natural covariant derivative D acting

on sections of the Hodge bundle

H = R3
p⇤C ⌦OM = L� L⌦ TM� L⌦ TM� L . (9)

It is induced from the Chern connection associated to the Weil-Petersson metric and the

connection on L induced by the Hermitian metric h. See Strominger (1990); Bershadsky et al.

(1994); Freed (1999); Hosono (2008) for details on this.
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Among the singular points on the moduli space M, there is a distinguished point called

the large complex structure limit. It is mirror to the large volume limit on the mirror side (A

side) and is usually a maximally unipotent monodromy point. It plays the following special

role in genus zero mirror symmetry initiated by Candelas et al. (1991). Assume the large

complex structure limit is given by z = 0. Near this point, the solutions to the Picard-Fuchs

system LCY P = 0 could be obtained by the Frobenius method and have the following form

(X0, Xa, Pa, P0) = X0(1, ta, ∂ta F(t), 2F � ta
∂ta F(t)), a = 1, 2 · · ·dimM , (10)

where near z = 0,

X0(z) ⇠ 1 +O(z) , (11)

ta ⇠ 1
2pi

log za + regular functions . (12)

The functions t = {ta}dimM
a=1 give local coordinates on the punctured moduli space M� {z =

0}. They are in fact the canonical coordinates based at the large complex structure limit, see

Section 3.3.1 for details. The existence of the holomorphic function F(t), called prepotential,

and the above particular form in Eq. (10) for the periods result from the special Kähler

geometry on M. The same form for the periods also holds elsewhere on the moduli space.

The normalized (so that after normalization it gives a section of L0) Yukawa coupling in

the t coordinates is then given by

Ctatbtc = ∂

3
tatbtc F =

1
(X0)2 Czizjzk

∂zi

∂ta
∂zj

∂tb
∂zk

∂tc 2 G(M, Sym3T⇤M⌦ L0) . (13)

Genus zero mirror symmetry predicts that under the mirror map ť = t, one has

Ctatbtc = kabc +
•

Â
b2H2(X̌,Z)

dadbdcN0,dadbdc e
2pidata

, (14)

where kabc = wa [wb [wc are the classical triple intersection numbers of the mirror manifold

X̌ of X, da =
R

b

wa, and N0,dadbdc is the same as the quantity N0,b in Eq. (2). This prediction

has been checked for many CY 3-fold families and matches the results obtained by directly

computing N0,b using techniques from the A-side (e.g., the localization technique in Givental
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(1997); Lian et al. (1997)).

Holomorphic anomaly equations with boundary conditions and polynomial re-

cursion

The genus g topological string partition function F (g) as defined in Bershadsky et al. (1993,

1994) is a (smooth) section of the line bundle L2�2g over M, it is shown to satisfy the

following holomorphic anomaly equation:

∂̄ı̄∂jF (1) =
1
2

CjklC
kl
ı̄ + (1 � c

24
)Gjı̄ , (15)

∂̄ı̄F (g) =
1
2

Cjk
ı̄

 
g�1

Â
r=1

DjF (r)DkF (g�r) + DjDkF (g�1)

!
, g � 2 , (16)

where c is the Euler characteristic of the mirror manifold X̌ of the CY 3-fold X. It turns out

that any higher genus F (g) can be determined recursively from these up to addition by a

holomorphic function, as we shall discuss now.

Recursion in terms of propagators and polynomial structure A solution of these recursion

equations is given in terms of Feynman rules in Bershadsky et al. (1994). The propagators

Sij, Si, S for these Feynman rules are defined by the following:

∂ı̄Sij = Cij
ı̄ , ∂ı̄Sj = Giı̄Sij, ∂ı̄S = Giı̄Si. (17)

By definition, the propagators S, Si and Sij are sections of the bundles L�2 ⌦ SymmTM

with m = 0, 1, 2, respectively. The vertices of the Feynman rules are given by the functions

F (g)
i1···in

= Di1 · · · DinF (g).

Integrating the genus one holomorphic anomaly equation Eq. (15) and using the inte-

grated special geometry relation Eq. (7), we get

∂ı̄∂jF (1) = ∂̄ı̄

✓
�1

2
∂j log det G + (

h2,1(X) + 3
2

� c

24
)Kj

◆
. (18)

In Yamaguchi and Yau (2004); Alim and Länge (2007) it was shown, using Eq. (18) and again

Eq. (7), that the holomorphic anomaly equations in Eq. (16) for g � 2 can be put into the

9



following form

∂̄ı̄F (g) = ∂̄ı̄P (g) , (19)

where P (g) is a polynomial of the generators Sij, Si, S, Ki with the coefficients being holomor-

phic quantities which might have poles. The proof relies on the fact that these generators

form a differential ring. More precisely, the derivatives of the generators are given by Alim

and Länge (2007) as follows:

DiSjk = d

j
i S

k + d

k
i Sj � CimnSmjSnk + hjk

i ,

DiSj = �CimnSmSjn + 2d

j
i S + hjk

i Kk + hj
i ,

DiS = �1
2

CimnSmSn +
1
2

hmn
i KmKn + hm

i Km + hi ,

DiKj = �KiKj + CijmSmnKn � CijmSm + hij , (20)

where hjk
i , hj

i , hi, hij are holomorphic quantities. The generators Sij, Si, S can be solved from

Eq. (17) or determined from Eq. (20), up to addition by holomorphic quantities3. In fact, a

set of solutions whose holomorphic limits are vanishing was explicitly given by Alim et al.

(2010); Hosono (2008) in terms of geometric quantities. Hence Eq. (20) does not actually give

a differential ring due to the existence of these holomorphic quantities and their derivatives.

To make it a genuine ring, one needs to include all of the derivatives of these holomorphic

functions, see Hosono (2008).

In Yamaguchi and Yau (2004); Alim et al. (2013), for some one-parameter CY 3-fold

families these holomorphic functions and their derivatives are packaged together by making

use of the special Kähler geometry on the moduli space, and are essentially Laurent

polynomials of the Yukawa couplings in Eq. (5). Then one gets a differential ring with

finitely many generators, including the non-holomorphic generators Sij, Si, S, Ki and the

holomorphic Yukawa couplings. We shall discuss their further properties in more details in

Chapter 3.

3Some of the holomorphic quantities hjk
i , hj

i , hi, hij can not be uniquely determined since the above equations
Eq. (20) are derived by integrating some equations, see Alim and Länge (2007); Alim et al. (2010) for the analysis
of the degrees of freedom of their choices.
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Now we justify the structure in Eq. (19) by induction, following Alim and Länge (2007).

First for genus one case we have already had Eq. (18). Plugging in the integrated special

geometry relation Eq. (7), we obtain

∂ı̄∂jF (1) = ∂ı̄

✓
1
2

CjklSkl + (1 � c

24
)Kj

◆
. (21)

Now note that the non-holomorphicity of the topological string partition functions only

comes from the non-holomorphic generators and thus the anti-holomorphic derivative

on the left-hand side of the holomorphic anomaly equation Eq. (16) can be replaced by

derivatives with respect to these generators. Furthermore, one can make a change of

generators following Alim and Länge (2007)

S̃ij = Sij,

S̃i = Si � SijKj,

S̃ = S � SiKi +
1
2

SijKiKj,

K̃i = Ki . (22)

The differential ring structure among these new non-holomorphic generators follows from

Eq. (20) easily. Replacing the ∂̄ı̄ derivative in Eq. (16) by derivatives with respect to the new

non-holomorphic generators, then using Eq. (21) and the definitions Eq. (17), one gets, see

Alim and Länge (2007),

∂̄ı̄F (g) = Cjk
ı̄

 
∂F (g)

∂Sjk � 1
2

∂F (g)

∂S̃k K̃j �
1
2

∂F (g)

∂S̃j K̃k +
1
2

∂F (g)

∂S̃
K̃jK̃k

!
+ Gı̄j

∂F (g)

∂K̃j

=
1
2

Cjk
ı̄

 
g�1

Â
r=1

DjF (r)DkF (g�r) + DjDkF (g�1)

!
. (23)
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Assuming the independence of Cjk
ı̄ and Gı̄j, then one gets two sets of equations:

∂F (g)

∂Sjk � 1
2

∂F (g)

∂S̃k K̃j �
1
2

∂F (g)

∂S̃j K̃k +
1
2

∂F (g)

∂S̃
K̃jK̃k

=
g�1

Â
r=1

DjF (r)DkF (g�r) + DjDkF (g�1) , (24)

∂F (g)

∂K̃j
= 0 . (25)

Eq. (19) then follows from the above two equations and Eq. (20).

The polynomial structure given in Eq. (19) also allows to determine the non-holomorphic

part P (g) of F (g) genus by genus recursively from Eq. (24) as polynomials of the new

non-holomorphic generators S̃ij, S̃i, S̃, K̃i or equivalently the odd ones:

P (g) = P (g)(Sij, Si, S, Ki) . (26)

Moreover, the coefficients of the monomials in these non-holomorphic generators are explicit

Laurent polynomials in the holomorphic generators, with the coefficients of the monomials

in the non-holomorphic and holomorphic generators being universal constants. These

constants come from the Feynman diagram interpretation in Bershadsky et al. (1994), or

equivalently, the combinatorics from recursion. They are independent of the geometry

under consideration. For example, in Bershadsky et al. (1994), it is worked out that for any

geometry the highest power of Sij in the genus two partition function always takes the form

1
8 CijpCqmnSijSpqSmn + 1

12 CipmCjqnSijSpqSmn + · · · .

Holomorphic ambiguities and boundary conditions In the above discussions only the local

geometric properties of the moduli space M are used.

According to Eq. (19), F (g) is only determined up to addition by a holomorphic function

f (g) called holomorphic ambiguity:

F (g) = P g(Sij, Si, S, Ki) + f (g) . (27)

Boundary conditions on the (global) moduli space are needed to fix the holomorphic

12



ambiguity f (g). What are commonly used are the asymptotic behaviors of F (g) near the

singular points on the moduli space M. There are basically three types of singularities, as

summarized in Table 1. One must be reminded that in practice to identify these singularities

Table 1: Types of singularities on moduli space

type characteristic property mirror
large complex structure limit maximally unipotent monodromy large volume limit

conifold point vanishing cycle ⇤
orbifold point finite monodromy ⇤

is more involved than by simply looking at the characteristic properties. Another thing one

needs to pay particular attention to is that in some special examples, the conifold point

and the orbifold point really stand for geometries like conifold CY and CYs with extra

symmetries in the moduli space, respectively, but in general there is no good reason that

these points must lie in the geometric phase.

The boundary conditions of F (g) at the large complex structure limit and at the conifold

point M, see Bershadsky et al. (1993, 1994); Ghoshal and Vafa (1995); Antoniadis et al. (1995);

Huang and Klemm (2007); Huang et al. (2009), are described as follows. These conditions are

satisfied by the normalized holomorphic limits of F (g) based at the corresponding points.

More precisely, the boundary condition at the large complex structure limit (LCSL) is given

by

lim
LCSL

1
(X0)2�2·1F

(1) = � 1
24

ti
Z

X̌
c2(TX̌)wi +O(e2pit) ,

lim
LCSL

1
(X0)2�2g F

(g) = (�1)g c(X̌)
2

|B2gB2g�2|
2g(2g � 2)(2g � 2)!

+O(e2pit), g � 2 , (28)

where B2g, B2g�2 are the Bernoulli numbers and t = {ti}h2,1(X)
i=1 are the ratios of periods near

the large complex structure limit as defined in Eq. (10). The boundary condition at the

13



conifold locus (CON) determined by Dj(z) = 0, j = 1, 2 · · ·m, is given by

lim
CON

1
(X0

CON)
2�2·1F

(1) = � 1
12

log tj
c + regular ,

lim
CON

1
(X0

CON)
2�2g F

(g) =
cg�1B2g

2g(2g � 2)(tj
c)2g�2

+ regular for some c, g � 2 , (29)

where again B2g is the Bernoulli number, m is the number of components for the discriminant,

and X0
CON, Xj,vanishing

CON , tj
c = Xj,vanishing

CON /X0
CON are the regular non-vanishing period, regular

vanishing period, normalized vanishing period near the conifold locus Dj = 0, respectively.

In the literature Eq. (29) is called the gap condition due to the fact that the sub-leading

singular terms in between are vanishing.

The holomorphic ambiguity f (g) can then be fixed (at least in principle) by making the

ansatz

f (g)(z) =
m

Â
j=1

h(g)
j (z)

D2g�2
j

, (30)

where h(g)
j (z) is a polynomial in z of degree  (2g � 2)deg Dj, and then applying the above

boundary conditions to F (g) = P (g) + f (g).

Challenges This approach works well for some non-compact and compact CY 3-folds, see

e.g., Bershadsky et al. (1993, 1994); Marino and Moore (1999); Katz et al. (1999); Klemm

and Zaslow (1999); Klemm et al. (2005); Yamaguchi and Yau (2004); Klemm and Marino

(2008); Huang et al. (2009); Aganagic et al. (2008); Huang and Klemm (2007); Alim and Länge

(2007); Grimm et al. (2007); Alim et al. (2010); Haghighat et al. (2008); Haghighat and Klemm

(2010); Sakai (2011); Alim and Scheidegger (2012); Alim (2012); Klemm et al. (2012). The

Gromov-Witten invariants obtained this way via mirror symmetry match the results from

computations on the A side. But there exist some challenges in this approach.

1. The global mathematical (e.g., analytical) properties of the generators which involve

derivatives of the periods and ratios of periods are not clearly understood, so it is not

convenient to study further the global properties of the functions F (g) and Fg using

the expressions one gets from this approach. In particular, it is not clear how the
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functions Fg converge and whether the functions Fg have any symmetry or modularity.

2. It is not clear how to analytically continue non-holomorphic quantities and how the

different holomorphic limits based at different points of the functions F (g) are related.

This gives rise to difficulties in applying the boundary conditions4. This is illustrated

in Figure 2 below.

⇥LCSL

limLCSL F (g)

F (g)

⇥conifold

limCON F (g)

F (g)

^orbifold

non-holomorphic completion

SS

holomorphic limit

◆◆

analytic continuation //

holomorphic limit

↵↵
? //

Figure 2: Applying boundary conditions using analytic continuation

3. Despite the fact it might fail for some CYs, the ansatz made in Eq. (30) is not rigorously

justified.

4In practice, to find the holomorphic limit of F g, what one usually do is to compute the holomorphic limit
of propagators from Eq. (17) or Eq. (20) and then use the polynomial structure. This then requires a good
understanding of the canonical coordinates near the singular points at which we want to apply boundary
conditions to F g. In the literature, the holomorphic limit of the geometric quantities at the conifold point
are computed by using the statement that the vanishing period serves as the canonical coordinate. To really
compute the Kähler potential and thus determine the canonical coordinate require a suitable choice for the
basis of the periods so that they become integrals with respect to symplectic homology basis, this was done
numerically by analytic continuation from such a choice at the large complex structure limit in e.g., Huang et al.
(2009).

It is not clear to the author how to see that the vanishing period must be a canonical coordinate basing on first
principles instead of using numerical computations, but it appears that the argument in Appendix 3 in Huang
et al. (2009) which explains that the holomorphic limit of the propagators are independent of the choice for
the section W of L is relevant in understanding this. See also Hosono and Lian (1996); Freed (1999); Kapranov
(1999) for related discussions.
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0.3 Arithmetic properties of moduli spaces and of partition func-

tions

Modularity of topological string partition functions

To resolve the challenges mentioned above, we studied in the joint work Alim et al. (2013)

the arithmetic properties of the moduli space M which help explore the global properties

like modularity of the topological string partition functions. Right now we can only deal

with some special families of one-parameter non-compact CY 3-folds with M ⇠= P1. The

main idea is sketched in the following and will be elaborated in Chapter 2:

1. We identify the moduli space M with a certain modular curve XG = G\H⇤ by study-

ing their variations of Hodge structures (simply, periods), where H⇤ = H [ P1(Q).

Then we express the geometric quantities (metric tensors, connections, curvatures,

derivatives of periods, Yukawa couplings, etc.) in terms of generators of the ring of

almost-holomorphic modular forms. Moreover, the polynomial part P (g), and thus

the full F (g) can be shown to be an almost-holomorphic modular form of weight 0.

This allows to rewrite the holomorphic anomaly equations in terms of the language of

modular form theory.

2. The large complex structure limit and conifold point on the moduli space M are

identified with cusps on the modular curve XG, which are in turn related by the Fricke

involution (a.k.a. Atkin-Lehner involution). At the cusps, taking the holomorphic

limit is equivalent to taking the "constant term map" for almost-holomorphic modular

forms in Kaneko and Zagier (1995) which sends an almost-holomorphic modular

form to a quasi-modular form, while the non-holomorphic completion becomes the

modular completion which takes a quasi-modular form to an almost-holomorphic

modular form. Fricke involution then relates the topological string partition functions

and their holomorphic limits at the two singular points on M. This is illustrated in

Figure 3.
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⇥LCSL

limLCSL F (g)

quasi-modular

almost-holomorphic
modular
F (g)

⇥conifold

limCON F (g)

quasi-modular

almost-holomorphic
modular
F (g)

^orbifold

modular completion

QQ

constant term map

✓✓

oo
Fricke involution

//

constant term map

��

oo Fricke involution //

Figure 3: Applying boundary conditions using modularity

3. The holomorphic ambiguity f (g), as a modular function on the modular curve, must

be a rational function in the generators of the ring of modular forms. The boundary

conditions for F (g) determines the form that f (g) can take, which then gives a natural

ansatz for f (g).

We want to point out that similar works using modularity to solve for F g existed

in the literature, e.g., Mohri (2002); Huang and Klemm (2007); Aganagic et al. (2008);

Hosono (2008); Haghighat et al. (2008). Our work differ from the previous works in

that we study the arithmetic structures of the moduli space more closely by working out

explicitly the identification between the moduli space and the modular curve, and by finding

the Fricke involution which exchanges cusps to relate boundary conditions at the large

complex structure limit and at the conifold point. This allows us to understand the

BCOV holomorphic anomaly equations and the boundary conditions in terms of modular

form theory and turns the problem of solving the holomorphic anomaly equations into a

combinatorial problem (see Section 2.4 and Appendix B).

We proved in the joint work Alim et al. (2013) that

Theorem 0.1. Consider the mirror families of the one-parameter families of Calabi-Yau threefolds

KP2 , KdPn , n = 5, 6, 7, 8, respectively.
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1. For each mirror family p : X ! M, the moduli space M is a modular curve XG = G\H⇤,

where the modular group G is G0(3), G0(4), G0(3), G0(2), G(1)⇤, respectively.

2. For each family, the solutions to the holomorphic anomaly equations with the boundary

conditions, if they exist, are almost-holomorphic modular forms of weight zero with respect to

the corresponding modular group.

Basing on the techniques developed in the joint work Alim et al. (2013), I shall prove the

following result in this thesis.

Theorem 0.2. For the mirror family p : X ! M of the KP2 family, for any genus g, the solution

to the holomorphic anomaly equation with boundary conditions exists and is unique. In particular, it

is an almost-holomorphic modular form of weight zero with respect to the modular group G0(3).

This family, as one of the simplest families of non-compact CY 3-folds, was intensively

studied in the literature, see e.g., Chiang et al. (1999); Klemm and Zaslow (1999); Aganagic

et al. (2008); Haghighat et al. (2008); Alim et al. (2010). In particular, in Aganagic et al. (2008),

some arithmetic aspects of the moduli space M were studied by looking at the monodromy

group of the family p : X ! M and the first few partition functions were obtained.

My work differs from the previous works in that after making identification between the

moduli space and the modular curve, I used the Fricke involution on the modular curve to

analyze the boundary conditions for the holomorphic anomaly equations, which makes the

computations easier and the rigorous proofs for the existence and uniqueness possible.

Furthermore, in Alim et al. (2013) we solved for the first few partition functions for

the mirror CY 3-folds of KP2 , KdPn , n = 5, 6, 7, 8 genus by genus recursively and explicitly

expressed them in terms of the generators of the rings of almost-holomorphic modular

forms for the corresponding modular groups, see also Chapter 2. Using the mirror sym-

metry conjecture, we then got the generating functions of the Gromov-Witten invariants of

KP2 , KdPn , n = 5, 6, 7, 8 in terms of quasi-modular forms. They paralleled closely the known

results in the literature e.g., Dijkgraaf (1995); Kaneko and Zagier (1995); Li (2011, 2012);

Milanov and Ruan (2011) for elliptic curves and Mohri (2002) for other geometries. These
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results were checked to produce correct Gromov-Witten invariants up to degree 10 which

could be found in e.g., Klemm and Zaslow (1999); Katz et al. (1999).

As an easy consequence of the modularity and mirror symmetry, we shall prove in this

thesis the following integrality result about the Gromov-Witten invariants {Ng,d}•
d=1.

Corollary 0.3. Assume mirror symmetry conjecture is valid for the mirror families p : X ! M

in Theorem 0.1. Then for each family, for any genus g, there exists a number Cg 2 Z so that

CgNg,d 2 Z, 8 d � 1.

Before we proceed, we now discuss briefly the KP2 example to summarize the various

layers of structures on the moduli space M we have mentioned so far. In this case, the

moduli space satisfies M ⇠= P1. There are three singular points on the moduli space,

corresponding to the large complex structure limit, conifold, orbifold, respectively. We

choose the complex coordinate a on M suitably so that a = 0, 1, • gives the above three

points. As shall be shown in Chapter 2, the modular curve is XG = G\H⇤ with G = G0(3).

The local geometric, global geometric and arithmetic structures on the moduli space M are

displayed in Table 2 and illustrated graphically in Figure 4.

Table 2: Layers of structures on moduli space

space role singularities application
T⇤M

tangent space
deformation space

local geometric a = 0, · · ·
genus 0

mirror symmetry
M

complex
analytic space

moduli variety
global geometric a = 0, 1, • solving for F (g)

XG0(3)

arithmetic locally
symmetric variety

modular variety
arithmetic

a =Hauptmodul
[t] = [i•], [0], [exp 2pi

3 ] modularity of F (g)

Differential rings constructed from special Kähler geometry on moduli spaces

In the above approach in understanding the modularity of topological string partition

functions, the first step is to identify the moduli space with certain modular variety. For

the special non-compact examples mentioned above, we used two properties: 1. the period
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⇥

X0(3)

Figure 4: Illustration of structures on moduli space

domain (after quotient) is a modular curve; 2. the period map gives an isomorphism from

the moduli space to the (quotient of) period domain. Neither of this is true for more general

CYs, see e.g., Griffiths and Schmid (1975); Carlson et al. (2003); Debarre (2012) and references

therein. The first is because in general the period domain is not a Hermitian symmetric

domain (non-classical case). The second is because a global Torelli type theorem is lacking5.

In fact, for general CY 3-folds the moduli spaces of complex structures are known not to be

any arithmetic locally symmetric variety, so the classic modular form theory does not apply

directly.

The lessons we learned from studying the aforementioned non-compact CYs tell us

that there is a dictionary between the geometric quantities Sij, Si, S, Ki and the modular

objects when the moduli space is known to be a modular curve. This is the origin that

the differential ring Eq. (20) closes under the covariant derivative D, since the ring of the

geometric quantities Sij, Si, S, Ki is essentially identical to the ring of almost-holomorphic

modular forms in this case. For more general cases, although we are lacking a ring of almost-

holomorphic modular forms attached to the moduli space, the ring of geometric quantities

Sij, Si, S, Ki can always be defined without using or relying on the existence of the arithmetic

5See Usui (2008) for a recent result on generic Torelli for the mirror quintic family which belongs to the
non-classical case.
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structure of the moduli space. This inspires us to study the differential ring generated by

Sij, Si, S, Ki. We hope that understanding the global, or even more, automorphic properties

of this ring will help understand the properties of the topological string partition functions

and thus of the Gromov-Witten invariants of the mirror CYs, or even the arithmetic of the

CY manifolds themselves.

In the joint work Alim et al. (2013), we studied such differential rings, called special

polynomial rings, for some one-parameter families of CY 3-folds. We showed that the rings

have gradings playing the role of modular weights and that the partition functions are

Laurent polynomials of the generators of the differential rings.

In Zhou (2013), I developed a systematic way to construct triples of graded rings

(R, eR, bR) defined on the deformation spaces for some particular one-parameter families of

CY 3-folds. This work was based on the joint work Alim et al. (2013). It also followed closely

the lines of thoughts in Ceresole et al. (1993a,b); Kaneko and Zagier (1995); Aganagic et al.

(2008); Yamaguchi and Yau (2004); Alim and Länge (2007); Hosono (2008). The new addition

to the previous works is that the rings are constructed from the Picard-Fuchs system of the

CY 3-fold families and the Weil-Petersson geometry on the moduli spaces in such a way

that the analogue between these rings and the rings of modular objects is more explicit.

This work will be explained in Section 3 of the thesis. The main results are as follows.

Theorem 0.4. For some special one-parameter families p : X ! M of Calabi-Yau threefolds, e.g.,

the quintic mirror family, there exist graded rings (R, eR, bR) satisfying the following properties.

1. The rings are generated by the periods solved from the Picard-Fuchs equation, the connections of

the Weil-Petersson metric on M, the connections on the Hodge line bundle L = R0
p⇤W3

M|X ,

and their derivatives.

2. The rings are bi–graded by (k, m). There exist differential operators D, D̂ such that ( eR, D),

( bR, D̂) become graded differential rings. Taking derivatives D, D̂ will not change the grading

m and increases the grading k by 2.

3. For the families in Theorem 0.1, the rings R, eR coincide with the rings of modular forms and
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quasi-modular forms for the corresponding modular groups. The grading k coincides with the

modular weight.

Moreover, a parallelism between the triples (R, eR, bR) defined on the moduli space

M and the triple (M⇤(G), eM⇤(G), bM⇤(G) defined on the modular curve XG is made: the

same way that they are constructed, the similarity between the set of operations (non-

holomorphic completion and modular completion; holomorphic limit and “constant term

map” Kaneko and Zagier (1995)). These are illustrated in Figure 5 below. They provide

evidences that indeed the graded rings (R, eR, bR) are analogues6 of the rings of modular

objects (M⇤(G), eM⇤(G), bM⇤(G)).

b
∂

t

� bM(G)

constant term map

✏✏

bR  D̂

holomorphic limit

✏✏
∂

t

� eM(G)

modular completion

SS

eR  D

non-holomorphic completion

SS

M(G)

∂

t

OO

R

D

OO

pG : EG ! XG p : X ! M

Figure 5: Analogues between rings defined from special Kähler geometry and rings of modular objects

The structure of this thesis is as follows.

In Chapter 1, we shall review some preliminaries on modular curves and modular

6The topological string partition functions are polynomials in these generators. Due to the interpretation of
topological string partition functions as generating functions of Gromov-Witten invariants and the polynomial
structure, these generators themselves may contain some enumerative information. To some extent, physics
(topological string theory) predicts the existence of a theory of modular forms which may or may not be related
to the one discussed here. See also Hosono (2008); Movasati (2011) for related works.
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forms. In particular, we shall work out the full details about the generators for the rings

of almost-holomorphic modular forms for the modular groups G0(N) with N = 1⇤, 2, 3, 4

whose forms suit our purpose in studying the modularity of topological string partition

functions. We shall also discuss the Fricke involution acting on the modular curves and on

the rings of almost-holomorphic modular forms.

In Chapter 2, we study the arithmetic of the moduli spaces of complex structures for the

mirror families p : X ! M of the one-parameter CY 3-fold families KP2 , KdPn , n = 5, 6, 7, 8.

We identify the moduli spaces with modular curves, and then apply the modular form

theory to solve the BCOV holomorphic anomaly equations. We shall prove the main

theorems and corollary outlined earlier in this section.

In Chapter 3, we shall construct the triples of differential rings on the moduli space of

certain CY 3-fold families, and study the analogues between these triples and the triples of

rings of modular forms, quasi-modular forms and almost-holomorphic modular forms.

We conclude with some discussions in Chapter 4.
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Chapter 1

Preliminaries on modular forms1

We shall briefly review some basic concepts about modular curves, modular forms and

quasi-modular forms, which will be relevant in subsequent chapters, in Section 1.1 and

Section 1.2 of this chapter. More details can be found in Diamond and Shurman (2005);

Zagier (2008) and the references therein. We then give the full details for the generators of the

rings of almost-holomorphic modular forms for the Hecke subgroups G0(N), N = 1⇤, 2, 3, 4

in Section 1.3. In Section 1.4 we highlight an involution, the Fricke involution, which acts

on the modular curves and thus on modular forms and exchanges their expansions at two

different cusps.

1.1 Modular groups and modular curves

The generators and relations for the group SL(2, Z) are given by the following:

T =

0

B@
1 1

0 1

1

CA , S =

0

B@
0 �1

1 0

1

CA , S2 = �I , (ST)3 = �I . (1.1)

1This chapter is based on the joint work Alim et al. (2013) with Murad Alim, Emanuel Scheidegger and
Shing-Tung Yau, and my paper Zhou (2013) which grew out of the discussions with the authors of Alim et al.
(2013).



We will consider in the following the genus zero congruence subgroups called Hecke

subgroups of G(1) = PSL(2, Z) = SL(2, Z)/{±I}

G0(N) =

8
><

>:

0

B@
a b

c d

1

CA

�������
c ⌘ 0 mod N

9
>=

>;
< G(1) (1.2)

with N = 2, 3, 4. A further subgroup that we will consider in the sequel is the unique normal

subgroup in G(1) of index 2 which is often denoted by G0(1)⇤, it will be discussed in more

detail in Section 1.3.2 and Section 2.2.1. By abuse of notation, we write N = 1⇤ when listing

it together with the other groups G0(N), N = 2, 3, 4.

The group SL(2, Z) acts on the upper half plane H = {t 2 C| Imt > 0} by fractional

linear transformations:

t 7! gt =
at + b
ct + d

for g =

0

B@
a b

c d

1

CA 2 SL(2, Z) .

The quotient space Y0(N) = G0(N)\H is a non-compact orbifold with certain punctures

corresponding to the cusps and orbifold points corresponding to the elliptic points under

the action of the group G0(N). By filling the punctures, one then gets a compact orbifold

X0(N) = Y0(N) = G0(N)\H⇤ where H⇤ = H [ {i•} [ Q. The orbifold X0(N) can be

equipped with the structure of a Riemann surface. The signature for the group G0(N)

and the two orbifolds Y0(N), X0(N) could be represented by {p, µ; n2, n3, n•}, where p is

the genus of X0(N), µ is the index of G0(N) in G(1), and ni are the numbers of G0(N)-

equivalent elliptic points or parabolic points of order i. The signatures for the groups G0(N),

N = 1⇤, 2, 3, 4 are listed in Table 1.1 (see e.g., Rankin (1977)). The fundamental domains for

Table 1.1: Signatures for the groups G0(N), N = 1⇤, 2, 3, 4

N n2 n3 n• µ p
1⇤ 0 1 2 2 0
2 1 0 2 3 0
3 0 1 2 4 0
4 0 0 3 6 0
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these groups are depicted in Figure 1.1.

Figure 1.1: Fundamental domains for G0(N), N = 1⇤, 2, 3, 4, respectively.
The empty and full circles stand for cusps and elliptic points, respectively.

The space X0(N) is called a modular curve and is the moduli space of pairs (E, C),

where E is an elliptic curve and C is a cyclic subgroup of order N of the group of the

N–torsion points EN ⇠= Z/NZ � Z/NZ. It classifies each cyclic N-isogeny f : E ! E/C

up to isomorphism, see for example Husemöller (2004); Diamond and Shurman (2005).

Similarly, we can define the modular curve XG = G\H⇤ associated to a general subgroup

G of finite index in G(1). We refer the reader to Diamond and Shurman (2005) for more

details on this.
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For a large class of non-compact CY 3-folds, the relevant geometry of the mirror mani-

folds are captured by the so-called mirror curves, see Hori and Vafa (2000). In what follows

we shall only consider the cases where the mirror curves are elliptic curves. These already

include many interesting examples such as the mirrors of the canonical bundle of P2 and

the canonical bundles of the del Pezzo surfaces dPn, n = 5, 6, 7, 8 discussed in this thesis.

See for instance Lerche et al. (1997); Chiang et al. (1999); Katz et al. (1999); Mohri (2002) for

more examples.

As we shall discuss in greater detail later in Section 2.2.1, for the one-parameter families

of canonical bundle of P2 and the canonical bundles of the del Pezzo surfaces dPn, n = 5, 6, 7,

the bases of the corresponding families of mirror curves are the modular curves X0(N) with

N = 3, 4, 3, 2, respectively. The canonical bundle of dP8 is exceptional in the sense the base

of the corresponding mirror curve family is not a modular curve of the form X0(N). It is

given by G0(1)⇤\H⇤, where G0(1)⇤ is the subgroup of G(1) mentioned earlier. This base is

a copy of P1 parametrized by a particularly chosen coordinate function z, and is a 2 : 1

cover of the j–plane P1 realized by the map j(z) = 1/z(1 � 432z). In the following we shall

denote the base of this family of elliptic curves by X0(1⇤). See Lian and Yau (1996a); Klemm

et al. (1996); Maier (2009) for more discussions on this group and the corresponding elliptic

curve family.

1.2 Modular forms, quasi-modular forms and almost-holomorphic

modular forms

We proceed by recalling some basic concepts in modular form theory following Diamond

and Shurman (2005). In the following, we shall use the notation G for a general congruence

subgroup of finite index in G(1). In particular, we can take G to be the modular group G0(N)

described above and discuss the modular form theory associated to it.
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Modular functions

A meromorphic modular function with respect to the a subgroup G of finite index in G(1) is

a meromorphic function f : XG ! P1. Consider the restriction of f to YG = G\H. Since the

restriction is meromorphic, the function f can be lifted to a meromorphic function f on H.

Then one gets a function f : H ! P1 such that

(i) f (gt) = f (t), 8g 2 G .

(ii) f is meromorphic on H.

(iii) f is “meromorphic at the cusps" in the sense that the function

f |
g

: t 7! f (gt) (1.3)

is meromorphic at t = i• for any g 2 G(1).

The third condition requires more explanation. For any cusp class2 [r] 2 G\H⇤with respect

to the modular group G, one chooses a representative r 2 Q [ {i•}. Then it is easy to see

that one can find an element g⇤ 2 G(1) so that g⇤ : i• 7! r. The above condition means that

the function defined by t 7! f � g⇤ (t) is meromorphic near t = i• and that the function f

is declared to be “meromorphic at the cusp [r]" if this condition is satisfied.

To summarize, a meromorphic modular function with respect to the modular group

is a meromorphic function f : H ! P1 satisfying the above properties on modularity,

meromorphicity, and growth condition at the cusps.

Modular forms

Similarly, we can define a (meromorphic) modular form of weight k with respect to the

group G to be a (meromorphic) function f : H ! P1 satisfying the following conditions:

(i) f (gt) = j
g

(t)k f (t), 8g 2 G , where j is called the automorphy factor and is defined

by

2We use the notation [t] to denote the equivalence class of t 2 H⇤ under the group action of G on H⇤.
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j : G ⇥H ! C,

0

B@g =

0

B@
a b

c d

1

CA , t

1

CA 7! j
g

(t) := (ct + d) .

(ii) f is meromorphic on H.

(iii) f is “meromorphic at the cusps" in the sense that the function

f |
g

: t 7! j
g

(t)�k f (gt) (1.4)

is meromorphic at t = i• for any g 2 G(1).

We will need to be able to take roots of modular forms. For this purpose one introduces

a function v : G ! C, called multiplier system of weight k for G, such that |v(g)| = 1 and

v(g1g2) = w(g1, g2)v(g1)v(g2). Here, w(g1, g2) are numbers in {±1} making v(g)(ct + d)

into an automorphy factor. Replacing the automorphy factor by j
g

(t) = v(g)(ct + d) in

Eq. (1.4), one defines modular forms with respect to a multiplier system, see for example

Rankin (1977) for details.

Note that the first condition above can be more conveniently rephrased in terms of the

slash operator |
g

: f 7! f |
g

in Eq. (1.3) to be

f |
g

= f , 8g 2 G . (1.5)

The space of holomorphic modular forms for G forms a graded ring and is denote by

M⇤(G).

We now also review the definitions of quasi-modular forms and almost-holomorphic

modular forms following Kaneko and Zagier (1995); Zagier (2008).

Quasi-modular forms

A (meromorphic) quasi-modular form of weight k with respect to the group G is a (mero-

morphic) function f : H ! P1 satisfying the following conditions:

29



(i) There exist meromorphic functions fi, i = 0, 1, 2, 3, . . . , k � 1 such that

f (gt) = j
g

(t)k f (t) +
k�1

Â
i=0

ck�i j
g

(t)i fi(t) , 8g =

0

B@
a b

c d

1

CA 2 G . (1.6)

(ii) f is meromorphic on H.

(iii) f is “meromorphic at the cusps" in the sense that the function

f |
g

: t 7! j
g

(t)�k f (gt) (1.7)

is meromorphic at t = i• for any g 2 G(1).

The space of quasi-modular forms for G forms a graded differential ring and is denote by

eM⇤(G).

Almost-holomorphic modular forms

An almost-holomorphic modular form of weight k with respect to the group G is a smooth

function f (t, t̄) defined on H satisfying the following conditions:

(i) f (gt, gt) = j
g

(t)k f (t, t̄), 8g 2 G.

(ii) f is smooth on H.

(iii) For any g 2 G(1), the function

f |
g

: (t, t̄) 7! j
g

(t)�k f (gt, gt) (1.8)

grows at most polynomially in 1
Imt

as 1
Imt

! 0.

The space of almost-holomorphic modular forms for G forms a graded differential ring

and is denote by bM⇤(G).

An almost-holomorphic modular form has the following structure, see Kaneko and

Zagier (1995),

f (t, t̄) =
[k/2]

Â
m=0

fm(t)Ym, Y =
1

Imt

, (1.9)
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where fm(t), m = 0, 1, 2, · · · [k/2] are meromorphic functions on H.

As shown in Kaneko and Zagier (1995), one has the ring isomorphism eM⇤(G) = M⇤(G)⌦

C[E2], where E2 is the Eisenstein series defined by

E2(t) = 1 � 24
•

Â
k=1

s1(d)qd, q = e2pit, s1(d) = Â
k: k|d

k.

Moreover, there is a ring isomorphism bM⇤(G) ! eM⇤(G) defined by f (t, t̄) 7! f0(t), where

f0 is the function fm in Eq. (1.9) with m = 0. If one regards Y as a formal variable, then

this is the “constant term map" obtained by taking the limit Y = 1
Imt

! 0 (which could be

induced from t̄ ! •, by thinking of t̄ as a complex coordinate independent of t). The

inverse map takes a quasi-modular form to an almost-holomorphic modular form. We shall

call this map “modular completion" in this thesis.

1.3 Rings of quasi-modular forms and almost-holomorphic mod-

ular forms

In this section, we shall show the explicit computations of the rings of quasi-modular

forms and almost-holomorphic modular forms for the modular groups G0(N), N = 1⇤, 2, 3, 4.

Before introducing these we recall the familiar case for the full modular group G(1) .

1.3.1 Rings for the full modular group G(1)

Take the group G to be the full modular group G(1) = PSL(2, Z). Then M⇤(G(1)) = C[E4, E6],

where E4, E6 are the familiar Eisenstein series defined by

E4(t) = 1 + 240
•

Â
d=1

s3(d)qd, q = e2pit, s3(d) = Â
k: k|d

k3 ,

E6(t) = 1 � 504
•

Â
d=1

s3(d)qd, q = e2pit, s5(d) = Â
k: k|d

k5 .
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The Eisenstein series E2 is a quasi-modular form for G(1) since it transforms according to

E2(
at + b
ct + d

) = (ct + d)2E2(t) +
12

2pi
c(ct + d), 8 t 2 H, 8

0

B@
a b

c d

1

CA 2 G(1) .

Recall that

1
Im at+b

ct+d
= (ct + d)2 1

Imt

� 2ic(ct + d), 8 t 2 H, 8

0

B@
a b

c d

1

CA 2 G(1) .

we know the modular completion of the quasi-modular form E2(t) is

cE2(t, t̄) = E2(t)�
3

pImt

. (1.10)

It transforms according to

cE2(gt, gt) = (ct + d)2cE2(t, t̄), 8g =

0

B@
a b

c d

1

CA 2 G(1) .

Then M⇤(G(1)) = C[E4, E6], eM⇤(G(1)) = C[E2, E4, E6], bM⇤(G(1)) = C[cE2, E4, E6]. Hence the

non-holomorphicity of generators is closely related to almost-holomorphic modularity. This

will be a key property for later discussions. Moreover, the latter two rings carry differential

ring structures given by

∂

t

E2 =
1
12

(E2
2 � E4), ∂

t

E4 =
1
3
(E2E4 � E6), ∂

t

E6 =
1
2
(E2E6 � E2

4) , (1.11)

b
∂

t

bE2 =
1
12

(bE2
2 � E4), b∂t

E4 =
1
3
(bE2E4 � E6), b∂t

E6 =
1
2
(bE2E6 � E2

4) , (1.12)

where ∂

t

:= 1
2pi

∂

∂t

: eMk(G(1)) ! eMk+2(G(1)) and b
∂

t

= ∂

t

+ k
12 · �3

pImt

: bMk(G(1)) !
bMk+2(G(1)). Eq. (1.11) in the above is known as the Ramanujan identities and Eq. (1.12) is

easily derived from Eq. (1.11) and the definition of bE2 in Eq. (1.10).

1.3.2 Rings for the Hecke subgroups G0(N), N = 1⇤, 2, 3, 4.

We now consider the genus zero modular curves X0(N) with N = 1⇤, 2, 3, 4 and discuss

the corresponding rings of quasi-modular forms and almost-holomorphic modular forms.
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The explicit generators for these rings in terms of h or q or Eisenstein series are known

in the literature (see for instance Maier (2009, 2011) for a collection of results), but for our

later purpose in applying them to study topological string partition functions, we shall

reconstruct them below from geometric quantities, following the discussion in Maier (2009).

The relevant data giving the ring of quasi-modular forms as well as the modular

parameter t are captured by the periods w0 and w1 of the corresponding families of elliptic

curves described in the following, see Lian and Yau (1996a); Klemm et al. (1996); Mohri (2002);

Maier (2009, 2011). The families of elliptic curves are given by pG0(N) : EG0(N) ! X0(N) =

G0(N)\H⇤ with N = 1⇤, 2, 3, 4, where EG0(N) is the elliptic modular surface described in

Kodaira (1963); Shioda (1972) by

EG0(N) := (G0(N)o Z2)\ (H⇤ ⇥ C) , (1.13)
0

B@g =

0

B@
a b

c d

1

CA , (m, n)

1

CA : (t, z) 7!
✓

at + b
at + d

,
z + mt + n

ct + d

◆
, 8 g 2 G0(N) .

The explicit equations, j–invariants and Picard-Fuchs operators of these families could be

found in e.g., Lian and Yau (1996a); Klemm et al. (1996). In the following we shall only

display the Picard-Fuchs operators

Lelliptic = q

2 � a(q +
1
r
)(q + 1 � 1

r
), q = a

∂

∂a

, (1.14)

where r = 6, 4, 3, 2 for N = 1⇤, 2, 3, 4, respectively. The parameter a is the complex coordinate

on the space M in which the Picard-Fuchs equation takes the above particular form.

Thinking of the base space M as the genus zero modular curve X0(N), it is then a modular

function (called Hauptmodul) for the modular group G0(N). Each of these Picard-Fuchs

equations has three regular singularities located at a = 0, 1, • on the corresponding modular

curve. They correspond to the cusp classes [i•], [0] and (or) the elliptic point according to

Table 1.1. Moreover, the parameter a on M is such that the set {a = 0, 1} coincides with the

set of cusp classes {[t] = [i•], [0]}. This can be seen by looking at the indicial equations of

the Picard-Fuchs equations which tell the types of singularities.
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For the Picard-Fuchs equation Eq. (1.14), we define

b := 1 � a (1.15)

and choose a basis of solutions to be

w0(a) = 2F1(
1
r

, 1 � 1
r

, 1; a), w1(a) =
ip
N

2F1(
1
r

, 1 � 1
r

, 1; b) , (1.16)

then one has

t(a) =
w1(a)
w0(a)

=
ip
N

2F1(
1
r , 1 � 1

r , 1; b)

2F1(
1
r , 1 � 1

r , 1; a)
, (1.17)

where 2F1(
1
r , 1 � 1

r , 1; a) is a Gauss hypergeometric function (see Erdélyi et al. (1981)).

Using the above basis of solutions and analytic continuation of hypergeometric functions

(see Erdélyi et al. (1981)), one can easily verify that the monodromies are given by, see e.g.,

Mohri et al. (2001); Mohri (2002)

M0 =

0

B@
1 1

0 1

1

CA = T , M1 =

0

B@
1 0

�N 1

1

CA = �STNS, M• = M1M0 , (1.18)

respectively, where S and T are the standard generators for SL(2, Z) in Eq. (1.1). Hence the

monodromy group is G0(N) if N 6= 1, and coincides with the modular group. For N = 1,

the monodromy group is G(1). However, the base is the modular curve X0(1⇤) = G(1⇤)\H⇤,

see Section 2.2.1 for details.

One then defines a triple following Borwein and Borwein (1991); Berndt et al. (1995);

Maier (2009),

A(a) = w0(a), B(a) = (1 � a)
1
r A(a), C(a) = a

1
r A(a) . (1.19)

These functions A, B, C are possibly multi-valued on the modular curve X0(N) and have

divisors as follows

divA =
1
r
(a = •), divB =

1
r
(a = 1), divC =

1
r
(a = 0) . (1.20)

This fact is the key in Alim et al. (2013) in analyzing the singularities of the topological string
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partition functions as solutions to the holomorphic anomaly equations, as we shall see later

in Chapter 2.

Remark 1.1. In the following, by abuse of notation we shall use interchangeably the notation

A(t) to denote the function A(a(t)) and thus A(a) = A(t(a)), where t(a) is defined as in

Eq. (1.17) and a(t) is the Hauptmodul.

Note that the quantities A, B, C satisfy the equation Ar = Br + Cr and that a = Cr/Ar.

We now define further the quantity3

E = ∂

t

log CrBr, ∂

t

:=
1

2pi
∂

∂t

. (1.21)

It turns out that the ring generated by A, B, C, E is closed under the derivative ∂

t

.

Theorem 1.2. For each of the elliptic curve families pG0(N) : EG0(N) ! X0(N), N = 1⇤, 2, 3, 4 with

r = 6, 4, 3, 2 respectively, the following identities hold:

∂

t

A =
1
2r

A(E +
Cr � Br

Ar A2) ,

∂

t

B =
1
2r

B(E � A2) ,

∂

t

C =
1
2r

C(E + A2) ,

∂

t

E =
1
2r
(E2 � A4) . (1.22)

Proof. These identities follow from Eqs. (1.27), (1.28), (1.29) below.

The ring generated by A, B, C, E has an obvious grading denoted by k below: the gradings

assigned to A, B, C, E are 1, 1, 1, 2, taking the derivative ∂

t

will increase the grading by 2.

Similar to Eq. (1.12) in the full modular group case, one gets the following

Theorem 1.3. For each of the elliptic curve families pG0(N) : EG0(N) ! X0(N), N = 1⇤, 2, 3, 4

with r = 6, 4, 3, 2 respectively, defining bE = E + r
6

�3
pImt

and b∂
t

= ∂

t

+ k
12

�3
pImt

, then the following

3Throughout this thesis, we shall take ∂

t

:= 1
2pi

∂

∂t

as defined here.
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identities hold:

b
∂

t

A =
1
2r

A(bE +
Cr � Br

Ar A2) ,

b
∂

t

B =
1
2r

B(bE � A2) ,

b
∂

t

C =
1
2r

C(bE + A2) ,

b
∂

t

bE =
1
2r
(bE2 � A4) . (1.23)

Proof. Assume that the desired non-holomorphic quantity bE is given by bE = E + DE with

DE = l

�3
pImt

for some constant l. Then it is easy to see with b
∂

t

= ∂

t

+ k
2r DE, the first three

identities follow from Theorem 1.2. Solving for the constant l from the last identity, we

then get l = r
6 . Thus the conclusion follows.

Remark 1.4. The results in Theorem 1.2 were known a few decades ago in the literature,

see e.g., Maier (2011)for a review. In fact, for each of these cases, one can find the q or

h-expressions of the quantities A, B, C, E and prove the formulas by checking the q or h-

expressions. The relations between these generators and the Eisenstein series E2, E4, E6 are

also known, see e.g., Maier (2009), Maier (2011), Alim et al. (2013) for a collection of these

results. One could then, for example, use the Eisenstein series expression of E to obtain the

almost-holomorphic modular form bE = E + DE, with

DE =
2

N + 1
�3

pImt

, N = 1⇤, 2, 3, DE =
1
3

�3
pImt

, N = 4 . (1.24)

These agree with the above choices DE = r
6

�3
pImt

. But this method could not be generalized

to CY 3-fold families.

For later use, we shall display the h-expansions of A, B, C here (again N = 1⇤ case is

exceptional) in Table 1.2. From these expressions one can get in particular the h-expansion

of the Hauptmodul a = Cr/Ar. Moreover, the choice for the Hauptmodul a satisfies the

property that a([i•]) = 0, a([0]) = 1, while the rest of the branch point on the modular

curve, as shown in Table 1.1, gives a = •. This is summarized in Table 1.3. We leave the

other expressions of the functions A, B, C, E to Appendix A. More details on the arithmetic

36



Table 1.2: h-expansions of A, B, C for G0(N), N = 1⇤, 2, 3, 4

N A B C E

1⇤ E4(t)
1
4 ( E4(t)

3
2 +E6(t)
2 )

1
6 ( E4(t)

3
2 �E6(t)
2 )

1
6

E2(t)+NE2(Nt)
N+1

2 (26
h(2t)24+h(t)24)

1
4

h(t)2
h(2t)2

h(t)4

h(2t)2 2
3
2

h(2t)4

h(t)2
E2(t)+NE2(Nt)

N+1

3 (33
h(3t)12+h(t)12)

1
3

h(t)h(3t)
h(t)3

h(3t) 3 h(3t)3

h(t)
E2(t)+NE2(Nt)

N+1

4 (24
h(4t)8+h(t)8)

1
2

h(2t)2 = h(2t)10

h(t)4
h(4t)4

h(t)4

h(2t)2 22 h(4t)4

h(2t)2
E2(t)�2E2(2t)+4E2(4t)

3

Table 1.3: The values of the Hauptmodul a at the branch points for G0(N), N = 1⇤, 2, 3, 4,
where ⇤ depends on the modular group.

[t] [i•] [0] ⇤
a 0 1 •

aspects can be found in Zagier (2008); Maier (2009, 2011).

Remark 1.5. Strictly speaking, the ring generated by A, B, C, E above does not form a

differential ring due to the negative powers in Eq. (1.22). However, it is easy to see that by

choosing suitable powers of these generators one can indeed get a ring. For example, in the

r = 6, 4, 3, 2 cases, one can choose A4, B6 � C6, E; A2, B4, E; A, B3, E and A, B2, E, respectively.

The ring generated by A, B, C, E is not exactly4 the ring of quasi-modular forms for

G0(N). For example, in the case N = 3, the ring of quasi-modular forms with the non-trivial

Dirichlet character c�3 is eM⇤(G0(3), c�3) = C[A, B3, E] ⇠= C[A, F = C3 � B3, E], where

c�3(d) =
��3

d
�

is the Legendre symbol. The corresponding differential structure is given by

∂

t

A =
1
2
(EA + F) ,

∂

t

F =
1
2
(EF + A5) ,

∂

t

E =
1
6
(E2 � A4) .

One also has eM⇤(G0(2)) = C[A2, B4, E], eM⇤(G0(4), c�4) = C[A, B2, E], etc. See e.g., Mohri

et al. (2001); Mohri (2002); Maier (2009, 2011) for details.

4The author would like to thank Professor Don Zagier for discussions on these.
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However, in all of the discussions in this thesis we shall not use directly the transforma-

tions in the corresponding modular group G0(N), but use only the differential equations they

satisfy. Moreover, in the applications to the studies of the holomorphic anomaly equations

and the topological string partition functions, eventually only elements in the above rings of

quasi-modular forms (r = 6 case is exceptional) will be involved, see Alim et al. (2013).

For the reasons mentioned above, by abuse of language, we shall call the following rings

C[A±1, B±1, C±1], C[A±1, B±1, C±1, E] and C[A±1, B±1, C±1, Ê] to be the rings of modular

forms, quasi-modular forms, almost-holomorphic modular forms for G0(N), and denote

them by M⇤(G0(N)), eM⇤(G0(N)), bM⇤(G0(N)) respectively. We shall also call the gradings

"modular weights" which could be negative.

Since later we shall need to generalize the construction to some CY 3-fold families

using the Picard-Fuchs systems, we shall reproduce below the details in constructing the

graded differential rings ( eM⇤(G0(N)), ∂

t

) using properties of the Picard-Fuchs equations

from Eq. (1.14).

We start from the following observation.

Proposition 1.6. For each of the elliptic curve families pG0(N) : EG0(N) ! X0(N), N = 1⇤, 2, 3, 4,

one has ∂

t

a = abA2, where as before b = 1 � a, ∂

t

= 1
2pi

∂

∂t

.

Proof. For ease of notation, first we write the Picard-Fuchs operator in Eq. (1.14) as

Lelliptic = q

2 � a(q + c1)(q + c2), with c1 =
1
r

, c2 = 1 � 1
r

, (1.25)

and define

L̃elliptic :=
�
(q + q log w0)

2 � a(q + q log w0 + c1)(q + q log w0 + c2)
�

,

Then we have

w0 L̃elliptic
P
w0

= Lelliptic P = 0 for a period P .

In particular, we have L̃ 1 = 0, L̃elliptic t = 0 . Subtracting L̃elliptic 1 from L̃elliptic t, we then
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get

bq

2
t + (2bq log w0 � a(c1 + c2)) qt = 0 .

That is,

q log(w2
0 qt)� (c1 + c2)

a

b

= q log(w2
0 qt) + (c1 + c2)q log b = 0 .

Solving this first order differential equation for w

2
0 qt, we obtain

qt =
c

b

c1+c2
w

2
0
=

c
bw

2
0

.

for some constant c. By looking at the leading terms in a of both sides as a ! 0, we can

then find that c = 1
2pi . Hence ∂

t

a = abA2 as claimed.

In what follows, we shall call the modular function a the algebraic modulus for the

modular curve, while t the transcendental modulus for the modular curve. The above

formula then gives a differential equation relating the algebraic and transcendental moduli.

Recall the definitions of B, C which implies that a

b

= Cr

Br , we then get

Corollary 1.7. For each of the elliptic curve families pG0(N) : EG0(N) ! X0(N), N = 1⇤, 2, 3, 4, the

following is true:

A2 =
∂

t

a

ab

= ∂

t

log
a

b

= ∂

t

log
Cr

Br . (1.26)

Using the definition E = ∂

t

log CrBr in Eq. (1.21), we have

∂

t

B =
1
2r

B(E � A2), ∂

t

C =
1
2r

C(E + A2) . (1.27)

From Ar = Br + Cr, we can easily get

∂

t

A =
1
2r

A(E +
Cr � Br

Ar A2) . (1.28)

Using the Picard-Fuchs equation Eq. (1.25) satisfied by A:

b(qA)2 � (c1 + c2)aqA � c1c2aA = 0 ,
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we obtain

∂

2
t

log A = (∂
t

log A)2 + (c1 + c2 � 1)abA2
∂

t

log A + c1c2abA4 .

This second order differential equation of A will become a first order differential equation

of E since Eq. (1.28) says that E = 2r∂

t

log A � (a � b)A2, one then gets

∂

t

E =
1
2r

E2 + (2c1c2rab � 1
2r
(a � b)2 � 2ab)A4 =

1
2r

E2 � 1
2r
(a + b)2A4 =

1
2r
(E2 � A4) .

(1.29)

1.4 Fricke involution

Each of the modular curves X0(N) with N = 1⇤, 2, 3, 4, as a covering of the j–plane G(1)\H⇤,

has three branch points. According to Table 1.1, they are two distinguished cusps given

by [i•] = [1/N] and [0] = [1/1]. The third branch point is a cubic elliptic point, quadratic

elliptic point, cubic elliptic point and a cusp for N = 1⇤, 2, 3, 4, respectively. The Fricke

involution (a.k.a. Atkin-Lehner involution) is defined by

WN : t 7! � 1
Nt

. (1.30)

It exchanges these two cusps and fixes the third branch point, see Figure 1.2 for an example.

Recall that the modular curve X0(N) is the moduli space of enhanced elliptic curves

(E, C), where C is an order N subgroup of the N-torsion group EN ⇠= Z/NZ � Z/NZ.

Using this interpretation and the association that

H ! {isomorphism classes of(E, C)}

t 7!
✓

C/(Z � Zt), h 1
N
i
◆�

,

the Fricke involution acts by sending (E, C) to (E/C, EN/C).

From the explicit expression of the Hauptmodul a which follows from Table 1.2, it turns
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Figure 1.2: Fricke involution on the fundamental domain for G0(4)

out that, see e.g., Maier (2009), the Fricke involution maps the Hauptmodul

a(t) to b(t) := a(� 1
Nt

) = 1 � a(t) . (1.31)

Note that this is consistent with Eq. (1.17) in the sense that

t(a) 7! t(b) =
ip
N

2F1(
1
r , 1 � 1

r , 1; 1 � b)

2F1(
1
r , 1 � 1

r , 1; b)
=

ip
N

2F1(
1
r , 1 � 1

r , 1; a)

2F1(
1
r , 1 � 1

r , 1; 1 � a)
= � 1

Nt(a)
. (1.32)

The Fricke involution acts on the ring of quasi-modular forms according to

A(� 1
Nt

) =

p
N
i

t A(t) ,

B(� 1
Nt

) =

p
N
i

t C(t) ,

C(� 1
Nt

) =

p
N
i

tB(t) ,

E(� 1
Nt

) = Nt

2E(t) +
12

2pi
2Nt

N + 1
, N = 1⇤, 2, 3 ,

E(� 1
Nt

) = Nt

2E(t) +
12

2pi
2Nt

6
, N = 4 .

(1.33)

For all cases N = 1⇤, 2, 3, 4, the non-holomorphic completion bE(t, t̄) transforms according
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⇥ ⇥ ^

dd

Fricke involution

::

Figure 1.3: Fricke involution on the family of elliptic curves

to:

bE(� 1
Nt

, (� 1
Nt

)) = Nt

2 bE(t, t̄) . (1.34)

The above transformations have a nicer form by making use of the slash operator |
g

as

follows 5. Take the following representative for WN :

WN =
1p
N

0

B@
0 1

�N 0

1

CA 2 SL(2, R) , (1.35)

and define the slash operator on an almost-holomorphic modular form f by

f |WN = (
p

Nt)�k f (WNt, WNt) , (1.36)

then we get W2
N = �I and

A|WN = iA, B|WN = iC, C|WN = iB, Ê|WN = Ê . (1.37)

Through out this thesis, we shall use both the Fricke involution Eqs. (1.33), (1.34)

computationally and Eq. (1.37) conceptually.

5The author wants to thank Professor Don Zagier for suggesting this, which will be important later when
translating the BCOV holomorphic anomaly equations with boundary conditions purely in terms of the language
of modular form theory.
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Besides the mathematical consequences, the Fricke involution also has an interpretation

as a duality in physics, as explained in the joint work Alim et al. (2013) and shall be

mentioned briefly in Section 2.6 in the next chapter.
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Chapter 2

Topological string partition functions

for some non-compact CY geometries

in terms of modular forms1

In this chapter, we consider the mirror families (B model) p : X ! M of the one-parameter

families (A model) of the CY 3-folds KP2 , KdPn , n = 5, 6, 7, 8. We shall study the connec-

tions between the family p : X ! M of CY 3-folds and the family of elliptic curves

pG0(N) : EG0(N) ! X0(N), as described in Eq. (1.13). By comparing their periods, we shall

identify the moduli space M with the modular curve X0(N), and singular points on M

with the cusp classes and elliptic points on X0(N). After that we express the geometric quan-

tities (e.g., connections, non-holomorphic generators Sij, Si, S, Ki and holomorphic Yukawa

couplings) defined on the moduli space M in terms of almost-holomorphic modular forms

defined on X0(N). Combining with the polynomial recursion, we can then determine

the non-holomorphic part P (g) in F (g) = P (g) + f (g). Then we use the Fricke involution

to analyze the boundary conditions and to fix the holomorphic ambiguity f (g). Finally

we conclude with some interesting observations and consequences of the structure of the

1Based on the joint work Alim et al. (2013) with Murad Alim, Emanuel Scheidegger and Shing-Tung Yau.



topological string partition functions F (g) as almost-holomorphic modular forms.

The structure of this chapter is as follows. In Section 2.1 we shall review the geometries of

the non-compact CY 3-folds that we shall consider. In Section 2.2 we make the identification

between the moduli spaces and modular curves and discuss the Fricke involution on the

singular points. We apply the results in Section 2.2 to solve for the first few topological

string partition functions genus by genus recursively in Section 2.3. Then in Section 2.4 we

use the Fricke involution to interpret the boundary conditions as regularity conditions for

almost-holomorphic modular forms and to rewrite the holomorphic anomaly equations

purely in terms of the language of modular form theory. After that in Section 2.5 we

prove a version of integrality result for Gromov-Witten invariants of the geometries under

consideration. We mention the interpretation of Fricke involution as a physics duality in

Seiberg-Witten theory in Section 2.6. We conclude this chapter with some discussions and

questions for future directions in Section 2.7.

2.1 Non-compact CY 3-fold geometries

The non-compact geometries we shall consider have all been studied before using different

methods.

We start with a detailed discussion of KP2 which denotes the canonical bundle O(�3) !

P2 of P2, and its mirror. Higher genus topological string partition functions on this model

have been studied in a number of works using different techniques, see for example Klemm

and Zaslow (1999); Katz et al. (1999). The use of a different set of quasi-modular forms for

this example was considered in Aganagic et al. (2008). The generators of Alim and Länge

(2007), as reviewed in Eq. (20) in the Introduction, were used in Haghighat et al. (2008); Alim

et al. (2010) for higher genus computations. Our new addition to these previous discussions

consists of the explicit identification of the ring of quasi-modular forms of G0(3) which is

adapted to this specific moduli space as well as its translation to the ring of generators

Sij, Si, S, Ki in Alim and Länge (2007). Furthermore, this example serves as a testing ground
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for the duality of topological partition functions which turns out to exchange the large

complex structure and the conifold loci.

The other non-compact geometries we consider are canonical bundles KdPn of del Pezzo

surfaces dPn, n = 5, 6, 7, 8 and their mirrors. These were considered in the physical context

of non-critical string theories. For the purpose of our work, see Lerche et al. (1997) and

references therein. Higher genus computations using the holomorphic anomaly equations

and enumerative information from the A-model for these geometries were considered in

Katz et al. (1999).

Now we shall review the details on the geometries of these non-compact CY 3-folds.

The A-model geometries are KP2 and KdPn , n = 5, 6, 7, 8, where dPn is the del Pezzo surface

obtained from blowing up P2 at n points2. We take the Kähler structures of the non-compact

CY 3-folds KP2 , KdPn , n = 5, 6, 7, 8 to be the ones induced by �KB, where B = P2, dPn, n =

5, 6, 7, 8 are the corresponding surfaces. Taking dP6 for example, it is obtained from P2 by

blowing up 6 points (and thus is not toric), one has

�KdP6 = �KP2 �
6

Â
i=1

Ei ,

where the Eis, i = 1, 2 · · · 6 are the exceptional curve classes. Since �KdP6 is ample, one can

use the linear system to embed dP6 into a projective space

|� KdP6 | : dP6 ! PȞ0(dP6,�KdP6) ,

as a degree 3 hypersurface in P3. The class �KdP6 is then induced by the hyperplane class

of P3 by pulling it back using the embeding.

The mirror CY families (B-model) are families of non-compact CY 3-folds. The explicit

equations and Picard-Fuchs equations of these families are given in Lerche et al. (1997);

Chiang et al. (1999) and will be discussed soon in the following.

2The sub-index n stands for the number of points in P2 which are blown up to create dPn. The degree of
this surface is 9 � n.
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By abuse of language, in the following, sometimes we shall call the mirror CY families

local P2 and local dPn, n = 5, 6, 7, 8 if no confusion arises.

2.1.1 Local P2

Now we shall discuss the mirror CY 3-fold family p : X ! M of the KP2 family, constructed

in e.g., Chiang et al. (1999); Hori and Vafa (2000). We refer the interested readers to Lerche

et al. (1997); Alim et al. (2013) and references therein for the detailed discussions on other

families. For each z on M, the fiber Xz of the non-compact CY 3-fold family is itself a conic

fibration given by, see Hori and Vafa (2000),

Xz : uv � H(x, y; z) = 0, (u, v, x, y) 2 C2 ⇥ (C⇤)2 ,

where H(x, y; z) = y2 � (x+ 1)y� 27zx3. The degeneration locus of this conic fibration is the

elliptic curve Ez : H(x, y; z) = 0. It is called the mirror curve in the literature since the whole

mirror CY 3-fold geometry can be constructed from knowing only the information of this

curve. Then as z moves in M, one gets the Hori-Vafa mirror curve family pHV : EHV ! M.

· ·⇥
H=0

x,y

ZZ

u

Figure 2.1: Mirror CY 3-fold as a conic fibration

Remark 2.1. Another way to construct the mirror in the literature is to use the toric duality

Batyrev (1994). One considers Candelas et al. (1994b); Chiang et al. (1999) an elliptic fibration

Y̌ over P2. The compact CY 3-fold Y̌ can be regarded as a complete intersection in a toric
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variety whose mirror is a compact CY 3-fold Y. The moduli space of Kähler structures of Y̌

is of dimension two: roughly speaking they correspond to the Kähler classes induced from

the Poincare dual of the base P2 and of the surface ruled over the hyperplane section in

the base P2. Denote these two classes by wH, wL respectively. Then a generic Kähler class

is given by w = t1wH + t2wL. In the limit t1 ! • (called large fiber limit in Chiang et al.

(1999)), the compact geometry Y̌ becomes effectively X̌ = KP2 . One can also work out the

same limit in the geometry Y, then one gets that the degeneration locus is in fact the Hesse

cubic curve

x3
1 + x3

2 + x3
3 � z�

1
3 x1x2x3 = 0, j(z) =

(1 + 216z)3

z(1 � 27z)3 . (2.1)

Again as a moves in M, one gets an elliptic curve family pHesse : EHesse ! M. It turns out

that this elliptic curve family is 3-isogenous to Hori-Vafa mirror curve family pHV : EHV !

M, see e.g., Husemöller (2004) for details. In particular, they have the same Picard-Fuchs

equations. For our later purposes, the Hori-Vafa mirror curve family pHV : EHV ! M will

work perfectly.

2.1.2 Local del Pezzos

The non-compact CY 3-fold families mirror to KdPn , n = 5, 6, 7, 8 families are given in e.g.,

Lerche et al. (1997); Chiang et al. (1999) as follows:

n = 5 : P4[�1, 1, 1, 1, 1, 1][2, 2] : x�2 + z2
1 + z2

2 + z2
3 � z�

1
r xz3z4z5 = 0 ,

z2
3 + z2

4 � z�
1
r z1z2 = 0 ,

n = 6 : P4[�1, 1, 1, 1, 1][6] : x�3 + y3 + w3 + z3
1 + z3

2 � z�
1
r xyz1z2w = 0 ,

n = 7 : P4[�1, 2, 1, 1, 1][6] : x�4 + y2 + w4 + z4
1 + z4

2 � z�
1
r xyz1z2w = 0 ,

n = 8 : P4[�1, 3, 2, 1, 1][6] : x�6 + y2 + w3 + z6
1 + z6

2 � z�
1
r xyz1z2w = 0 , (2.2)

where the numbers r are given by 2, 3, 4, 6 for n = 5, 6, 7, 8, respectively.
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2.2 Moduli spaces as modular curves

For the non-compact geometries mentioned above, there are two ways to identify the moduli

spaces with modular curves. One can look at the equations of the geometries, and then

seek for the arithmetic properties of the bases of the families; or one could study the Hodge-

theoretic aspects by looking at how the periods of the varieties vary. We shall only mention

the former very briefly since in general it requires a lot of knowledge on the (equations

for) families, and shall emphasize the latter since it is more convenient for computational

purposes and requires less on the detailed information on the explicit equations for the

families.

2.2.1 Geometric correspondence

For the local P2 family, we have seen in the previous section that the moduli space M is on

the one hand the base of the non-compact CY 3-fold family, and is on the other hand the

base of the elliptic curve families pHV : EHV ! M and pHesse : EHesse ! M. However, it

is a standard fact from Eq. (1.13) that the base of the Hesse cubic curve family Eq. (2.1) is

exactly X0(3) ⇠= G0(3)\H⇤. Therefore, we must have M ⇠= X0(3).

Similarly, for the local del Pezzo geometries KdPn , n = 5, 6, 7, 8, the corresponding

equations for the elliptic curve families (called elliptic curves of En type, n = 5, 6, 7, 8

respectively), are obtained from the equations for the CY 3-folds by getting rid of the �1, 1

entries and the corresponding monomials in Eq. (2.2). The j-invariants, as well as the

Picard-Fuchs operators are summarized here, see Lian and Yau (1996a); Lerche et al. (1997);

Klemm et al. (1996); Chiang et al. (1999) for more details. In the following, q = z ∂

∂z .

E5 :

8
><

>:

x2
1 + x2

3 � z� 1
4 x2x4 = 0

x2
2 + x2

4 � z� 1
4 x1x3 = 0

j(z) =
(1 + 224z + 256z2)3

z(1 � 16z)4 , Lelliptic = q

2 � 4z(2q + 1)2.

(2.3)

The base of this family of elliptic curves is the modular curve X0(4). It has three singular

points: two cusp classes [i•], [0] corresponding to z = 0, 1/16 respectively; and the cusp
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class [1/2] corresponding to z = •.

E6 : x3
1 + x3

2 + x3
3 � z�

1
3 x1x2x3 = 0 , j(z) =

(1 + 216z)3

z(1 � 27z)3 , Lelliptic = q

2 � 3z(3q + 1)(3q + 2) .

(2.4)

The base of this family of elliptic curves is the modular curve X0(3). It has three singular

points: two cusp classes [i•], [0] corresponding to z = 0, 1/27 respectively; and the cubic

elliptic point [r] corresponding to z = •, where r = exp(2pi/3).

E7 : x4
1 + x4

2 + x2
3 � z�

1
4 x1x2x3 = 0 , j(z) =

(1 + 192z)3

z(1 � 64z)3 , Lelliptic = q

2 � 4z(4q + 1)(4q + 3) .

(2.5)

The base of this family of elliptic curves is the modular curve X0(2). It has three singular

points: two cusp classes [i•], [0] corresponding to z = 0, 1/64 respectively; and the quadratic

elliptic point [(i � 1)/2] = ST([i]) corresponding to z = •.

E8 : x6
1 + x3

2 + x2
3 � z�

1
6 x1x2x3 = 0 , j(z) =

1
z(1 � 432z)

, Lelliptic = q

2 � 12z(6q + 1)(6q + 5) .

(2.6)

The base of this family of elliptic curves is the curve X0(1⇤). It has three singular points:

two cusp classes [i•], [0] corresponding to z = 0, 1/432 respectively; and the cubic elliptic

point [r] corresponding to z = •.

The relations between the Picard-Fuchs operators of the above elliptic curves of En type

and the elliptic curve families in Eq. (1.14) are related by a = kNz according to Table 2.1.

Table 2.1: Arithmetic numbers in the Picard-Fuchs equations of elliptic curves of En type, n = 5, 6, 7, 8.

n 5 6 7 8
N 4 3 2 1⇤

r 2 3 4 6
kN 16 27 64 432

Note that in the above we did not claim that the corresponding elliptic curves families
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are isomorphic, and we don’t need that since all we concern is essentially that the bases of

these elliptic curve families are the same modular curve and that the Picard-Fuchs equations

take the same particular form.

2.2.2 Hodge-theoretic correspondence

Now we study the periods of the CY 3-fold families. As we shall see, we will get the same

identifications as above. Moreover, we can also figure out the exact relations between the

periods of the CY 3-folds and the periods for the corresponding elliptic curves that attached

to them Hodge-theoretically (which are the same as the mirror curves as they should be).

Direct computation shows that, see Lerche et al. (1997); Chiang et al. (1999), in all cases

above, the Picard-Fuchs operators have the following form:

LCY = Lelliptic � q =

✓
q

2 � a(q +
1
r
)(q + 1 � 1

r
)

◆
� q, q = a

∂

∂a

, a = kNz , (2.7)

where the operators Lelliptic are exactly the same as the ones for the elliptic curve families in

Eq. (1.14) and kN are the same numbers in Table 2.1.

This immediately tells that the moduli spaces are the modular curves X0(N) since the

variation of the periods for the CY 3-fold families can be fully captured by the variation

of the periods for the elliptic curve families with Picard-Fuchs operator being Lelliptic. In

fact, the periods of CY 3-folds are related to integrals on the curves over certain chains by

integration along the non-compact direction in the conic fibrations, related works can be

found in e.g., Lerche et al. (1997); Hosono (2004).

2.2.3 Singular points on the moduli spaces

The singularities for the CY 3-fold families a = 0, 1, • are worked out to be the so-called

large complex structure limit, conifold point and orbifold point, see Lerche et al. (1997);

Chiang et al. (1999). Therefore, according to Table 1.3, we can get the types of singularities

on the moduli spaces as shown in Table 2.2.

According to the above identification M ⇠= X0(N), we can see that since the Fricke
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Table 2.2: Types of singularities on M ⇠= X0(N) for N = 1⇤, 2, 3, 4,
where ⇤ depends on the modular group.

Type a [t]

large complex structure limit 0 [i•]

conifold point 1 [0]
orbifold point • ⇤

involution exchanges the two cusps [i•] and [0], it will then exchange the large complex

structure limit with the conifold point. This will be very useful later in applying the

boundary conditions to solve the BCOV holomorphic anomaly equations.

2.2.4 Periods for the CY 3-fold families

We now consider the periods of the CY 3-folds near the large complex structure limit a = 0.

The solutions to the Picard-Fuchs equations could be obtained using the Frobenius method

and are given by Meijer-G functions, see Erdélyi et al. (1981); Diaconescu and Gomis (2000).

According to the structure Eq. (10) for the periods in special Kähler geometry, the solutions

to LCYP = 0 are given by

X0 = 1, t ⇠ 1
2pi

log a +O(a0), Ft (2.8)

for some holomorphic function F. The quantity t, defined to be the ratio of the two periods

above, will be called special coordinate hereafter and play a key role in the whole discussion

(see Section 2.3.1 and Section 3.3.1 below).

Since LCY = Lelliptic � q, we know the derivatives of these periods must be periods of the

corresponding elliptic curves we have found geometrically or Hodge-theoretically earlier.

Hence we can choose the basis suitably so that3

qt =
1

2pi
w0, k

�1
qFt =

1
2pi

w1 =
1

2pi
tw0 (2.9)

are the periods of the elliptic curve given in Eq. (1.16), respectively, where k is the classical

3For simplification, in the following we shall sometimes ignore the 2pi factors, so then, for example, qt = w0.
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triple intersection of X̌. It is � 1
3 for X̌ = KP2 ad n � 9 for KdPn , n = 5, 6, 7, 8. Then

t =
w1

w0
=

k

�1
qFt

qt
= k

�1Ftt . (2.10)

This definition was motivated in Aganagic et al. (2008) to establish the modularity for

non-compact CY 3-folds and is very important in understanding the arithmetic properties

of special Kähler geometry and topological string partition functions, as we shall see later.

2.3 Solving BCOV holomorphic anomaly equations genus by genus

recursively

Now we are ready to apply the results on modular forms and Fricke involution in Chapter

1 to solve for the topological string partition functions. First we shall express the geometric

quantities, including Yukawa couplings, propagators, etc., in terms of almost-holomorphic

modular forms. This then gives the non-holomorphic part P (g) in F (g) = P (g) + f (g). Then

we use the Fricke involution to analyze the boundary conditions and to fix f (g).

In this section, we shall work out the full details for the genus two case for KP2 . The

other cases are similar to this and will be discussed briefly. We shall also give the proofs of

Theorem 0.1 and Theorem 0.2 sketched in the Introduction part, which are inspired by the

computations for the genus two case.

2.3.1 Local P2

Genus 0

It is known that (see Chiang et al. (1999), and also Proposition 3.6 and Remark 3.7) the

Yukawa coupling C
aaa

, as defined in Eq. (5), is given by

C
aaa

=
k

a

3(1 � a)
, (2.11)
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where k = � 1
3 is again the classical triple intersection number for KP2 . Note that X0 = 1, it

follows that

Cttt =
1

(X0)2
k

a

3(1 � a)
(

∂a

∂t
)3 =

k

(qt)3(1 � a)
. (2.12)

Recall from Eq. (2.9) and Eq. (1.19) that qt = w0 = A, 1 � a = b = Br

Ar with r = 3, we can get

from Table 1.2 that

Cttt =
k

B3 = �1
3

h(3t)3

h(t)9 (2.13)

is a modular form of weight �3 with respect to the modular group G0(3).

Dictionary between propagators and almost-holomorphic modular forms

Holomorphic limits of metric and connections

The Kähler potential of the Weil-Petersson metric is determined from Eq. (3) and Eq. (10)

and is given by

e�K = iX0X0
⇣

2F(t)� 2F(t) + (ta � t̄a)(Fa + Fa)
⌘

, (2.14)

where according to mirror symmetry and Eq. (2) the prepotential F(t) has the form

F(t) =
kabc
3!

tatbtc + Q(t) + Â
d

N0,dedt , (2.15)

with Q(t) being a quadratic polynomial of t = {ta}. Following Ferrara and Louis (1992);

Bershadsky et al. (1994), rewriting the above equation as

e�K(z,z̄) = X0X̄0e�K(t,t̄), e�K(t,t̄) = i
⇣

2F(t)� 2F(t) + (ta � t̄a)(Fa + Fa)
⌘

, (2.16)

one then gets

Kzi = �∂zi log X0 + Kta
∂ta

∂zi , Gzk

zizj =
∂zk

∂ta
∂

∂zi
∂ta

∂zj +
∂zk

∂tc Gtc

tatb
∂ta

∂zj
∂tb

∂zj , (2.17)

where Gtc

tatb is computed in the metric given by the new Kähler potential K(t, t̄). Then at the

large complex structure limit z⇤ = 0, one can show that the special coordinates t = {ta} are
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the canonical coordinates (see Section 3.3.1) satisfying

∂tI Kta |z̄=z̄⇤ = 0, ∂tI Gtc

tatb |z̄=z̄⇤ = 0, 8I s.t. |I| � 0 . (2.18)

This then implies that one has the following holomorphic limits at the large complex

structure limit:

lim
LCSL

Kzi = �∂zi log X0, lim
LCSL

Gzk

zizj =
∂zk

∂ta
∂

∂zi
∂ta

∂zj . (2.19)

The above discussions apply to general families of compact or non-compact CY 3-folds.

In the current non-compact one-modulus case, we get

lim
LCSL

K
a

= 0, lim
LCSL

Ga

aa

=
∂a

∂t
∂

∂a

∂t
∂a

= ∂

a

log ∂

a

t . (2.20)

It turns out that the above results in the local coordinate x = ln a defined on the puncture

moduli space M� {a = 0} are cleanest:

Cxxx =
k

1 � a

(2.21)

lim
LCSL

Kx = 0, lim
LCSL

Gx
xx = q log A . (2.22)

Solving for holomorphic limit of propagators from special geometry relation

In this case, the integrated special geometry relation Eq. (7) gives

Gx
xx = 2Kx � CxxxSxx + sx

xx .

Taking the holomorphic limit at the large complex structure limit, one gets

lim
LCSL

Gx
xx = 2 lim

LCSL
Kx � Cxxx lim

LCSL
Sxx + sx

xx .

This implies that

lim
LCSL

Sxx = C�1
xxx(2 · 0 � lim

LCSL
Gx

xx + sx
xx) .

From Proposition 1.6 and Eq. (1.2) we get

lim
LCSL

Gx
xx = q log A = qt ∂

t

log A =
1

bA2
1
2r
(E +

Cr � Br

Ar A2) .
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Taking the choice sx
xx = 1

2r
Cr�Br

Ar = 1
6

C3�B3

A3 , then we obtain

lim
LCSL

Sxx = � 1
2rk

E
A2 = �1

2
E
A2 . (2.23)

The holomorphic limits of Sx, S at the large complex structure limit can be easily solved

from Eq. (20) that they satisfy, and the solutions are not unique as mentioned before in

Introduction. In particular, we can take the following choice as in Alim and Länge (2007);

Alim et al. (2010):

lim
LCSL

Sx = lim
LCSL

S = 0 . (2.24)

With this particular choice, the holomorphic functions hx
x, hx, hxx are identically zero, while

hxx
x is determined from the first line in Eq. (20):

DxSxx = 2Sx � CxxxSxxSx + hxx
x .

Again taking the holomorphic limit at the large complex structure limit, we get

hxx
x = lim

LCSL
hxx

x = � 1
12

A3

B3 . (2.25)

Recovering non-holomorphic propagators from modularity

So far we have computed the holomorphic limits of the generators Sxx, Sx, S, Kx at the

large complex structure limit a = 0, they turn out to be quasi-modular forms. The non-

holomorphic counterpart should reduce to them in the holomorphic limit, which is given by

t̄ = i• according to Eq. (2.8).

We observe that near the large complex structure limit, we actually have

t ⇠ t =
1

2pi
log a + regular

according to Eq. (2.10). Then the holomorphic limit is the same as 1
Imt

! 0, that is, the

"constant term map" in Kaneko and Zagier (1995) in modular form theory. This suggests that

the non-holomorphic quantities can be obtained from the inverse of the constant term map,

that is, the modular completion of their holomorphic limits. Note that the non-holomorphic
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completion does not have to be identical to the modular completion. However, for many

purposes, eventually we only care about the holomorphic limits (e.g., in extracting the

Gromov-Witten invariants under the mirror map). Therefore, we can safely assume that

near the large complex structure limit, taking the holomorphic limit of geometric quantities

is equivalent to taking the constant term map of almost-holomorphic modular forms, while

taking the non-holomorphic completion is equivalent to taking the modular completion

from quasi-modular forms to almost-holomorphic modular forms, as illustrated in Figure 3

in Introduction.

Therefore, from Eqs. (2.21), (2.23), (2.24), we get

Sxx =
1
2

Ê
A2 , Sx = S = 0, Kx = 0 . (2.26)

Moreover, the non-holomorphic completions of the holomorphic function Cxxx and holo-

morphic ambiguities (e.g., sx
xx, hxx

x ) should be themselves. This is consistent with the fact

that they are honest modular forms rather than quasi-modular forms, that is, they do not

change upon modular completion.

Genus 1

From Eq. (18) in Introduction, we get

∂jF (1) = �1
2

∂j log det G + (
h2,1(X) + 3

2
� c

24
)Kj + ∂j log | f (1)|2 (2.27)

for some holomorphic function f (1). Using Eq. (2.21), we then get for the current one-

modulus case, near the large complex structure limit,

lim
LCSL

∂

a

log det G = ∂

a

log
1
a

qt = ∂

a

log(
1
a

A) = �1 + regular . (2.28)

Applying the boundary conditions Eqs. (28), (29) to this case, we obtain ∂

a

f (1) = ∂

a

log a

b(1�

a)a with b + 1
2 = � c2(X̌)

24 , a = � 1
12 . Therefore, the holomorphic limit of ∂xF (1) is given by

lim
LCSL

∂xF (1) = �1
2

∂x log qt + 0 + ∂x log a

b+ 1
2 (1 � a)a . (2.29)
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Since for X̌ = KP2 , c2(X̌) = 2, we are led to

lim
LCSL

∂xF (1) = �1
2

∂x log qt � 1
12

∂x log a(1 � a) =
1
2
� 1

12
EA
B3 . (2.30)

Note that this quantity is regular at the orbifold point a = • where A vanishes and B, C, E

are regular according to Eq. (1.20). This is the key property later in making use of the

regularity condition at the orbifold to prove the existence and uniqueness theorems of the

solutions to the BCOV holomorphic anomaly equations.

Note that only the first derivative of F (1) is physical, that is, when extracting the genus

one Gromov-Witten invariants, one would have to consider the genus one stable maps with

one marked point. The corresponding generating function is given by

lim
LCSL

∂tF (1) = ∂tx lim
LCSL

∂xF (1) =
1
A
(

1
2
� 1

12
EA
B3 ) ,

lim
LCSL

∂

t

F (1) = �1
2

∂

t

log h(t)h(3t) = � 1
12

E .

Up to addition by an anti-holomorphic function, we have from Eq. (2.29) and Table 1.2 that

lim
LCSL

F (1) = �1
2

log qt � 1
12

log a(1 � a) = � 1
12

log B3C3 = �1
2

log h(t)h(3t) .

It follows that their non-holomorphic completions are given by

F (1) = �1
2

log
p

Imth(t)h(t)
p

Im3th(3t)h(3t) ,

∂

t

F (1) = � 1
12

Ê .

These agree with the existing results in the literature, e.g., Mohri et al. (2001); Mohri (2002);

Aganagic et al. (2008); Haghighat et al. (2008).
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Higher genus

Polynomial part

With the above choices for the generators Sxx, Sx, S, Kx, polynomial recursion tells that the

non-holomorphic part P (2) in Eq. (26) is given by the following polynomial

P (2) =
5

24
(Cxxx)

2(Sxx)3 � 3
8

Cxxxsx
xx(S

xx)2 +
1
8
(∂xCxxx)(Sxx)2 +

1
4

Cxxxhxx
x Sxx . (2.31)

Plugging in the corresponding quantities, we then get

P (2) =
1

1728
Ê(6A4 � 9A2Ê + 5Ê2)

B6 . (2.32)

Ansatz for holomorphic ambiguity

Now the holomorphic ambiguity f (2) is a meromorphic function on M ⇠= X0(3), it must

be a rational function of the Hauptmodul, that is, it is a modular function of weight zero.

Therefore, it is given by a ratio of two modular forms of the same weight. We know from the

boundary conditions that F (2) can only be singular at the singularities a = 0, 1, •. Moreover,

at the large complex structure limit a = 0 and at the orbifold point a = •, the holomorphic

limits are conjecturally equivalent to the generating functions of Gromov-Witten invariants

and of orbifold Gromov-Witten invariants of the mirror manifold, respectively. Hence it is

regular at the two singular points a = 0, • on the moduli space. Therefore, the denominator

can only involve the generator B according to the structure for the divisors in Eq. (1.20).

We shall show later that the gap condition at the conifold point tells that it must be

B6. Of course it could be smaller, but one can always multiply both the numerator and

denominator by certain powers of B so that the denominator is B6.

We must point out that regularity at the orbifold is a very strong condition, and it is no

longer true for local del Pezzos, as we shall see in the next section.

It follows then that the ambiguity f (2) has the form

f (2) =
1

1728
c0A6 + c1A3B3 + c2B6

B6 . (2.33)
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Boundary condition at LCSL

We now apply the boundary conditions to solve for the constants c0, c1, c2.

The condition at the large complex structure in Eq. (28) tells that

lim
a=0

lim
LCSL

F (2) = (�1)2 c

2
|B4B2|

4 · 2 · 2!
. (2.34)

For the current case4, c = c(KP2) = 3. From the expressions of A, B, C in terms of

hypergeometric series in Eq. (1.19) or the h-function expansions in Table 1.2 we know

that lim
a=0 A = 1, lim

a=0 B = 1, lim
a=0 limLCSL Ê = lim

a=0 E = 1. This then gives a linear

relation among c0, c1, c2:

1
123 (2 + c0 + c1 + c2) = (�1)2 c

2
|B4B2|

4 · 2 · 2!
= � c

23 · 5 · 122 . (2.35)

Vanishing period for gap condition

Now we shall apply the gap condition at the conifold point in Eq. (29). Note that the

vanishing period tc(b) can be easily solve as the vanishing period of LCY written in the

b = 1 � a coordinate and has the following form as a series

tc(b) = b +O(b

2) . (2.36)

We can then invert this series to get

b(tc) = tc +O(t2
c) . (2.37)

A different normalization of tc(b) will correspond to a different c in the gap condition in

Eq. (29).

4In fact, the number c is irrelevant in extracting the Gromow-Witten invariants using mirror symmetry.
Hence in this thesis we sometimes do not plug in the value for c in the results for topological string partition
functions.
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Fricke involution

Since we have written down the full non-holomorphic quantity F (2) = P (2) + f (2), we

need to find its holomorphic limit based at the conifold point b = 0. In principle, one

needs to find the (b, b̄) expression of the non-holomorphic quantity F (2) centered near

(b, b̄) = (0, 0). It is difficult to do this by analytic continuation in the (a, ā) space, starting

from its expression near (a, ā) = (0, 0). We proceed by making use of the Fricke involution

on the modular forms in Eqs. (1.33), (1.34) which imply that

A(a) =
ip
Nt

A(b) ,

B(a) = (1 � a)
1
r A(a) =

ip
Nt

b

1
r A(b) =

ip
Nt

C(b) ,

C(a) = a

1
r A(a) =

ip
Nt

(1 � b)
1
r A(b) =

ip
Nt

B(b) ,

Ê(a, ā) = �(
ip
Nt

)2Ê(b, b̄) , (2.38)

where as before, a = a(t), b = b(t) = 1 � a(t), t = t(a) = w1(a)
w0(a)

, A(a) = A(a(t)) = A(t)

and similarly for other quantities.

Plugging this into the formula F (2), we then get

F (2) = P (2) + f (2)

=
1

1728
Ê(a, ā)(6A(a)4 � 9A(a)2Ê(a, ā) + 5Ê(a, ā)2)

B(a)6

+
1

1728
c1A(a)6 + c2A(a)3B(a)3 + c3B(a)6

B(a)6

=
1

1728
�Ê(b, b̄)(6A(b)4 � 9A(b)2Ê(b, b̄) + 5Ê(b, b̄)2)

C(b)6

+
1

1728
c0A(b)6 + c1A(b)3C(b)3 + c2C(b)6

C(b)6 .

The last equality in the above follows from the fact F (2) has modular weight 0 so that the

ip
Nt

factors are canceled out.

Remark 2.2. The holomorphic limit of the quantity Ê(b, b̄) is worked out as follows. Recall

that the conifold point b = 0 corresponding to t(a) = 0 or equivalently t(b) = � 1
Nt(a) = i•.
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Then from Eq. (1.21) and Eq. (1.6), we obtain

lim
b̄=0

Ê(b, b̄)

= lim
b̄=0

✓
E(b) +

1
2

�3
pImt(b)

◆
= lim

t(b)=i•

✓
E(b) +

1
2

�3
pImt(b)

◆

= E(b) = ∂

t(b) log Cr(b)Br(b)

= ∂

t(b)b ∂

b

log Cr(b)Br(b) ,

= abA2(b) ∂

b

log Cr(b)Br(b) .

This then tells that b expansion of the holomorphic limit E(b) at the conifold point.

This can alternatively be derived in the t coordinate as follows. Denote tD = WNt =

� 1
3t

, then

Ê(t, t̄) = ∂

t

log Cr(t)Br(t) +
1
2

�3
pImt

,

= ∂

t

tD ∂

tD log(
p

NtD

i
)2rCr(tD)Br(tD) +

1
2

�3
pImt

,

=
1

Nt

2

✓
∂

tD log Cr(tD)Br(tD) + 2r∂

tD log tD + Nt

2 1
2

�3
pImt

◆
,

=
1

Nt

2

✓
∂

tD log Cr(tD)Br(tD) +
1
2

�3
pImtD

◆
.

Comparing with the desired transformation

Ê(t, t̄) =
1

Nt

2

✓
E(tD) +

1
2

�3
pImtD

◆
,

we get

E(tD) = ∂

tD log Cr(tD)Br(tD) = ∂

t(b)b ∂

b

log Cr(b)Br(b) (2.39)

as above. This implies in particular

E(b) = (�
p

3t)2E(a) +
1
2

12
2pi

(�
p

3)(�
p

3t) , (2.40)

as it should be as a quasi-modular form which transforms according to Eq. (1.33). We

can also see that between the two different forms written in the t coordinate and the

Hauptmodul, i.e., a coordinate, the former is more symmetric than the latter. Moreover,
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the latter also tells the analytic continuation of E(a) on M which is parametrized by the

complex coordinate a. This is not easily accessed without using modularity.

Solving for the ambiguity

Recall from Eq. (1.20) that divC(a) = 1
3 (a = 0), we know divC(b) = 1

3 (b = 0). On the

other hand, from Eq. (2.37) we know that the gap condition implies div limCON F (2) =

(�2)div(tc) = (�2)div(b). It follows then the exponent of B in the denominator of f (2)

must be 2/ 1
3 = 6.

Now we plug in all of the series expansions for A(b), C(b), E(b) into limCON F (2) and

use the series expansion Eq. (2.37), we get

lim
CON

F (2) =
�20 + c0

1728t2
c

+
14 + 11c0 + 9c1

15552tc
+ regular . (2.41)

The gap condition, with c = 3 fixed by other means5, then gives two additional equations

involving only c0, c1:

�20 + c0

1728
= c

B4

(2 · 2)(2 · 2 � 2)
= � c

240
= � 1

80
, (2.42)

14 + 11c0 + 9c1

15552
= 0 . (2.43)

Solving the linear equations Eqs. (2.35), (2.42), we obtain

c0 = �8
5

, c1 =
2
5

, c2 =
�8 � 3c

10
= �17

10
. (2.44)

Therefore, we have obtained F (2) in terms of almost-holomorphic modular forms:

F (2) = P (2) + f (2) (2.45)

=
1

1728
Ê(6A4 � 9A2Ê + 5Ê2)

B6 +
1

1728
� 8

5 A6 + 2
5 A3B3 � 17

10 B6

B6 . (2.46)

Similarly, one can solve for the other higher genus ones recursively. But the computation

5For example, this can be determined by using one further condition at the LCSL like genus 2 degree 1
Gromov-Witten invariant. Once it has been fixed, one can use it for higher genus computations in Eq. (29)
without any other additional conditions.
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gets unmanageable very quickly. For example, using Mathematica, we get for genus three

F (3)

=

�
�2532A10 + 3444A7B3 � 1140A4B6 + 48AB9� Ê

1244160B12

+

�
3516A8 � 3708A5B3 + 732A2B6� Ê2

1244160B12

+

�
�2645A6 + 1900A3B3 � 120B6� Ê3

1244160B12

+

�
1200A4 � 420AB3� Ê4

1244160B12 � 25A2Ê5

82944B12 +
5Ê6

82944B12

+
5359A12 � 8864A9B3 + 4160A6B6 � 496A3B9 + 2(8 � 3c)B12

8709120B12 .

2.3.2 Proofs of Theorem 0.1 and Theorem 0.2

Before we proceed to the discussions of local del Pezzos, we now make a pause and prove

Theorem 0.1 and Theorem 0.2 basing on the ideas presented above. Both of them follow

easily from the arithmetic structure of the moduli spaces as modular curves. The statements

of the theorems are recalled below and followed by proofs.

Theorem 2.3. Consider the mirror families of the one-parameter families of Calabi-Yau threefolds

KP2 , KdPn , n = 5, 6, 7, 8, respectively.

(i) For each mirror family p : X ! M, the deformation space M is a modular curve XG = G\H⇤,

where the modular group G is G0(3), G0(4), G0(3), G0(2), G(1)⇤, respectively.

(ii) For each family, the solutions to the holomorphic anomaly equations with the boundary

conditions, if they exist, are almost-holomorphic modular forms of weight zero with respect to

the corresponding modular group.

Proof. The first part follows from the identification of the moduli spaces with modular

curves we made in Section 2.2.

Polynomial recursion in Eq. (26) says that the non-holomorphic part P (g) of F (g) = P (g) +

f (g) is a polynomial of the non-holomorphic generator Sxx and holomorphic generators
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Cxxx, sx
xx, hxx

x , and their derivatives.6 The holomorphic ambiguity f (g) if a rational function

of the Hauptmodul, hence it is a modular function. Since all of the geometric quantities

involved are almost-holomorphic modular forms, F (g), if it exists as a solution to the BCOV

holomorphic anomaly equation, itself must be an almost-holomorphic modular form with

respect to the corresponding modular group which depends on the geometry. This proves

the second part of the theorem.

Theorem 0.2 follows from the use of Fricke involution in applying the gap condition in

Eq. (29).

Theorem 2.4. For the mirror family p : X ! M of the KP2 family, for any genus g, the solution

to the holomorphic anomaly equation with boundary conditions exists and is unique. In particular, it

is an almost-holomorphic modular form of weight zero with respect to the modular group G0(3).

Proof. We only need to show that the following set of boundary conditions

• leading-term contribution of limLCSL F (g) in Eq. (28),

• gap condition for limCON F (g) in Eq. (29),

• regularity of F (g) at the orbifold point

give exactly the desired conditions7: if there are fewer conditions, then the unknowns is

under-determined; if there are more, the system is over-determined and one needs to check

consistency of the boundary conditions.

The proof is based on the computations for the g = 2 case.

First, by induction, we can easily see that P (g) has the following structure: the non-

holomorphic part is a rational function in the generators A, B3, Ê whose denominator is

6In fact, as mentioned in Introduction and shall be proved in Chapter 3, for this case one can choose a
minimal set of non-holomorphic and holomorphic generators so that the derivatives of the generators are also
(Laurent) polynomials of these generators.

7This is explained to the author by Professor Don Zagier. The author thanks him for his very helpful and
inspiring discussions on this and for encouraging me to put the results on mathematically firm ground. The
author also thanks his colleague Teng Fei for discussions on extracting the existence and uniqueness theorems
from the computations.
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(B3)2g�2. 8

That F (g) is singular only at the conifold tells that the denominator of F (g) can only be of

the form Bng for some integer ng. Now we use the facts on the divisor of B and the asymptotic

behavior of the vanishing period tc near the conifold point to determine the exponent in

the denominator. Recall divB = 1
3 (b = 0) and tc(b) = b +O(b

2), according to the gap

condition which says that F (g) ⇠ 1
t2g�2
c

+O(t0
c), we then get ng = (2g � 2)/ 1

3 = 6g � 6.

It follows then that the numerator must be a modular form of weight 6g � 6 in the

ring of modular forms M⇤(G0(3), c�3) = C[A, B3]. The dimension is given by (6g �

6)/3 = 2g � 2. Hence the numerator must be a polynomial in A3, B3 and have the form

Â2g�2
k=0 ck(A3)2g�2�k(B3)k, where c0, c1, c2, · · · c2g�2 are under-determined constants.

Using the asymptotic behavior A3, B3 ⇠ 1 +O(a) we know the condition at the large

complex structure limit in Eq. (28) gives a linear equation

c0 + c1 + c2 + · · · c2g�2 = some constant determined from Eq. (28) . (2.47)

Now we use the the Fricke involution as in Eq. (2.38), then we have near the conifold

point b = 0

ck(A3)2g�2�k(B3)k

(B3)2g�2 ⇠ 1

t2g�2�k
c

+ sub-leading terms, k = 0, 1, 2, · · · 2g � 2 . (2.48)

By comparing the leading terms in the gap condition, we get an equation

c0 = some constant .

This then determines c0. By comparing the next sub-leading terms, we get an equation for

c2,

(some number)c0 + c1 = some constant .

This then determines c1. Proceeding like this, one can then determine c0, c1, c2, · · · c2g�3. We

finally use the condition given in Eq. (2.47) to fix c2g�2.

8For example, the leading term with highest power in Sxx = Ê/2A2 is proportional to (Cxxx)2g�2(Sxx)3g�3 =
(k2g�2/23g�3)(Ê3g�3/(B3)2g�2).
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Hence according to the structure in Eq. (2.48), the coefficient matrix for the equations

of c0, c1, c2, · · · , c2g�2 is a (2g � 2 + 1)⇥ (2g � 2 + 1) lower triangular matrix with diagonal

entries being 1s. This is why the solution (c0, c1, c2, · · · , c2g�2) to the linear equations from

the boundary conditions exists and is unique.

2.3.3 Local del Pezzos

Using the identification of the moduli spaces with modular curves in Section 2.2, the same

strategy as above can determine the topological string genus by genus in terms of almost-

holomorphic modular forms. In the following, we shall only display the results and omit

the details.

The topological invariants for the corresponding A-model non-compact CY 3-folds can

be found in Lerche et al. (1997); Chiang et al. (1999)

k = n � 9 , c2 = �12 + 2(9 � n) , c3 = c = �2h(En) , h(En) = 8, 12, 18, 30 .

The following numbers in Table 2.1 will also be used a lot throughout the discussion

n = 5, 6, 7, 8; N = 4, 3, 2, 1; r = 2, 3, 4, 6 . (2.49)

Genus 0

As the local P2 case, for local dPn we have

C
aaa

=
k

a

3(1 � a)
, Cxxx =

k

(1 � a)
, Cttt =

k

(qt)3(1 � a)
= k

Ar�3

Br .

The quantity Cttt is a modular form of weight �3 since qt = A has modular weight 1,

and 1 � a = b = Br

Ar is a modular function.
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Genus 1

Near the large complex structure limit a = 0, the holomorphic limit of genus one partition

function is given by

lim
LCSL

F (1) = �1
2

log qt + log(1 � a)a
a

b+ 1
2 . (2.50)

The universal constant a is given by a = � 1
12 , while b + 1

2 = � c2
24 . Plugging in these

numbers, we get

lim
LCSL

F (1) = �1
2

log A + log
⇣

B� r
12 C� rc2

24 /A� r
12�

rc2
24

⌘
,

lim
LCSL

∂

t

F (1) = � 1
4r

E +
1
2

A2
✓

1
12

� c2

24
� (

1
12

+
c2

24
)(Cr � Br)A�r

◆
.

Now we will consider the singular behavior of the quantity F(1)
orb which is defined to be

the analytic continuation of limLCSL F (1) to the orbifold point a = •. In each case above,

according to Eq. (1.20) we have that near the orbifold point,

qt = w0 ⇠ a

� 1
r (1 +O(a� 1

r )) . (2.51)

Hence

F(1)
orb ⇠ � 1

12
log(a� 1

r )6(1 +O(a� 1
r ))(1 � a)a

c2
2 ⇠ � 1

12
log a

� 6
r +1+ c2

2 . (2.52)

Changing to the local coordinate y = a

� 1
r near the orbifold point, we then have

F(1)
orb ⇠ � 1

12
log y

6�r(1+ c2
2 ) = � 1

12
log y

h(En) . (2.53)

The numbers h(En) = 6 � r(1 + c2
2 ) for n = 5, 6, 7, 8 cases are given by 8, 12, 18, 30, respec-

tively, they are the dual Coxeter numbers of the Lie algebra En, see Chiang et al. (1999);

Lerche et al. (1997). Due to the singular behavior of the genus one partition function, the

higher genus ones will also be singular from recursion. This higher genus singularity also

appears in the ambiguities determined in Katz et al. (1999).
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Propagators in terms of almost-holomorphic modular forms

We make the following choices of non-holomorphic generators and ambiguity in the inte-

grated special geometry relation Eq. (7) :

Sx = S = Kx = 0 ,

sx
xx =

1
2r

a � b

b

.

With these choices, one has

Sxx = � 1
2rk

E
A2 =

1
2rN

E
A2 ,

hxx
x =

1
(2r)2

kb

.

One can also choose other ambiguities sx
xx which give different Sxx and hxx

x . For example, tak-

ing sx
xx = 2∂x log b

a
a

b+ 1
2 = 2q log b

� 1
12

a

� c2
24 , we then have limLCSL Sxx = 2C�1

xxx limLCSL ∂xF (1).

This is singular at the orbifold for local de Pezzos and regular for local P2, as mentioned

above.

Boundary conditions

As the initial condition in solving the BCOV holomorphic anomaly equations, the singularity

at the orbifold of the (derivative of) genus one topological string partition will a priori bring

singularities to higher genus partition functions.

This is in contrast to the local P2 case in which 6 � r(1 + c2
2 ) = 0 and the genus one

partition function is not singular at the orbifold point. Note that local P2 and local dP6 have

the same modular groups, the same choice for the propagators and almost the same Yukawa

couplings, but different genus one partition functions which result in completely different

higher genus partition functions with different singular behaviors.

Since at this moment the precisely singular behavior of F (g) is not fully understood, the

boundary condition at the orbifold point is not clear to us. Therefore, we need to solve for

the topological string partition functions from the following boundary conditions:
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• leading term (degree 0) contribution of limLCSL F (g), and possibly higher degree

contributions

• gap condition for limCON F (g),

For example, for local dP6, the same procedure as in the local P2 case tells that the

denominator for F (g) is A3g�3B6g�6. Hence the number of under-determined coefficients

is at least 3g � 3 + 1 (the ambiguity f (2) might be more singular) as the dimension of the

vector space of weight (9g � 9) modular forms is 3g � 3. For the other geometries, by

induction, one can show similarly that the number of under-determined coefficients is at

least 3g � 3 + 1.

The gap condition gives 2g � 2 linear equations on the coefficients, combing the leading

term of limLCSL F (g), one has in total 2g � 2 + 1 linear equations.

In practice, for lower genus partition functions, one can get other conditions from the

information on lower degree Gromov-Witten invariants. This could be provided from direct

computation from the A-side, or (partially) from the Castelnuovo’s bound (see Huang et al.

(2009)). However, it is not clear how many lower degree contributions to the generating

function of Gromov-Witten invariants limLCSL F (g) would give linear independent equa-

tions among the under-determined constants when combined with the known 2g � 2 + 1

conditions. This presents a difficulty in proving a similar result to Theorem 0.2 for the local

del Pezzos.

Genus 2

Using the boundary condition at the large complex structure limit and the gap condition

at the conifold with c = �1/k, as well as the Castelnuovo’s bound, we can solve for the

following genus two topological string partition functions:

• Local dP5:

� A6+70A4B2+228B6+8A2B4(�3+2c)
92160A2B4 +

(9A4�468A2B2+1440B4)E
165888A2B4 +

(�27A2�594B2)E2

165888A2B4 + 5E3

6144A2B4
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• Local dP6:

� 16A6�4A3B3+B6(488+27c)
155520B6 +

(6A7�24A4B3+96AB6)E
15552A3B6 +

(�9A5�24A2B3)E2

15552A3B6 + 5E3

15552B6

• Local dP7:

�133A8+302A4B4�4B8(501+16c)
368640B8 +

(549A10�972A6B4+4860A2B8)E
663552A4B8 +

(�459A8�810A4B4)E2

663552A4B8 + 5A2E3

24576B8

• Local dP8:

�299A12+634A6B6�36B12(60+c)
207360B12 +

(75A16�60A10B6+420A4B12)E
41472A6B12 +

(�33A14�42A8B6)E2

41472A6B12 + 5A6E3

41472B12

Due to the limit of space, we shall not include the lengthy expressions for the genus 3

results here. They could be found in the joint work Alim et al. (2013).

As a consistency check, we have checked by Mathematica that all of the quasi-modular

functions we have obtained for local P2 and local dPn, n = 5, 6, 7, 8 reproduce the integral

Gopakumar-Vafa invariants (up to degree 10) listed in the literature, e.g., Katz et al. (1999).

2.4 Holomorphic anomaly equations in terms of modular form

theory language

In the previous section, we used the Fricke involution computationally. Essentially we

used Eq. (2.38) to obtain the analytic continuation from the large complex structure limit to

the conifold point in the (a, ā) space of the non-holomorphic topological string partition

functions. It is realized by the action of Fricke involution on the almost-holomorphic

modular forms.

In this section we now try to understand it more conceptually. We shall interpret the

gap condition as a certain regularity condition at the cusp in the language of modular form

theory. Using this we can turn the problem of solving the BCOV holomorphic anomaly

equations with boundary conditions into a combinatorial problem.
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First we digest a little bit on the condition “meromorphic at the cusps" in the definition

of meromorphic modular forms in Section 1.2. A modular function is "meromorphic at the

cusp [0]" means that first we choose

g⇤ = S =

0

B@
0 �1

1 0

1

CA 2 SL(2, Z)

to map the infinity cusp [t] = [i•] to the cusp [t] = [0], then we require the function

f |
g⇤ : t 7! f (g⇤t) (2.54)

to be meromorphic near the cusp t = i•. The nicest case is that the function f |
g⇤ is a

function of q
t

= exp 2pit, so that there exists some function f̂ with f |
g⇤(t) = f̂ (q

t

). Then

the meromorphicity condition becomes a condition on the q
t

expression of f̂ .

As an analogue, the gap condition at the cusp [t] = [0] for G0(N), N = 1⇤, 2, 3, 4

discussed above, means the following. First, one chooses a transformation sending i• to 0,

which turns out not to be an element in SL(2, Z) but the Fricke involution

WN =
1p
N

0

B@
0 1

�N 0

1

CA 2 SL(2, R)

so that limLCSL F (g)|WN satisfies the gap condition

lim
LCSL

F (g)|WN =
cg�1B2g

2g(2g � 2)(t⇤c )2g�2 +O((t⇤c )
0) ,

where t⇤c is the Fricke involution of the vanishing period tc defined near the conifold. This

function is obtained as follows. Recall that tc(b) = b +O(b

2) satisfies the property that

qtc = a∂

a

tc is a period of the elliptic curve since it is a solution to Lelliptic. Therefore, it is a

linear combination of the two periods of the elliptic curve family:

qtc = aw0 + bw1 for some constants a, b . (2.55)
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The asymptotic behaviors of the above functions near b = 0 are given by:

tc = b +O(b

2) .

w0 ⇠ log b + regular ,

w1 =
ip
N
(1 +O(b)) .

This tells that

qtc = �
p

N
i

w1 = � 2F1(
1
r

, 1 � 1
r

, 1; b) . (2.56)

Recall Eq. (1.6), we then know that tc is determined from

∂

t

tc = bA2 ·�
p

N
i

w1 = �
p

Nt

i
bA3, tc|t=0 = 0 . (2.57)

Applying Fricke involution to the above equation and the boundary condition, we then get

∂

t

t⇤c = aA3 =
Cr

Ar�3 , t⇤c |t=i• = 0 . (2.58)

This then allows us to rephrase the BCOV holomorphic anomaly equation purely in terms

of the language of modular form theory. 9

In the following, we shall only discuss the local P2 case. As before, taking Sxx =

1
2

Ê
A2 , Sx = S = Kx = 0, and using the fact that Gx

xx = 1
2rb

Ê
A2 +

a�b

2rb

, ∂x = 1
∂

t

x ∂

t

= 1
bA2 ∂

t

, we

can see that Eq. (24)

∂SxxF (g) =
1
2

 
g�1

Â
r=1

∂xF (r)
∂xF (g�r) + (∂x � Gx

xx)∂xF (g�1)

!

now becomes

∂ÊF (g) =
1
4

1
B6

 
g�1

Â
r=1

∂

t

F (r)
∂

t

F (g�r) + ∂

2
t

F (g�1) � 3
2r
(Ê � A2)∂

t

F (g�1)

!
.

9See for example Hosono et al. (1999); Mohri (2002); Hosono (2002); Sakai (2011, 2013) for related works in
different directions.
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The boundary conditions in Eqs. (28), (29) become

lim
t̄=i•

F (g) = (�1)g c

2
|B2gB2g�2|

2g(2g � 2)(2g � 2)!
+O(q1

t

) ,

lim
t̄=i•

F (g)|WN =
cg�1B2g

2g(2g � 2)(t⇤c )2g�2 +O(q0
t

) ,

where r = 3, c = 3, c = 3.

To make full use of polynomial structure, we consider the quantity Fg := B6g�6F (g). It

is then an almost-holomorphic modular form of weight 6g � 6 and satisfies

∂ÊFg =
1
4

g�1

Â
r=1

(∂
t

+ (1 � r))Fr(∂t

+ 1 � (g � r))Fg�r

+
1
4
�
∂

t

+ (2 � g)(Ê � A2)
�2 Fg�1 �

1
8
�
∂

t

+ (2 � g)(Ê � A2)
�
Fg�1 .

Combining with the derivatives of almost-holomorphic modular forms in Eq. (1.23) and the

boundary conditions explained above, solving for the weight 6g � 6 almost-holomorphic

anomaly equations Fg then becomes a combinatorial problem. More details can be found in

Appendix B.

2.5 Integrality of Gromov-Witten invariants10

Assuming that mirror symmetry conjecture is true, we can prove the integrality result for

the Gromov-Witten variants for the non-compact CY geometries (A-model) mentioned in

Corollary 0.3 in Introduction, by using the modularity of the topological string partition

functions.

Corollary 2.5. Assume the mirror symmetry conjecture is valid for the families in Theorem 0.1.

Then for each family, for any genus g, there exists a number Cg 2 Z so that CgNg,d 2 Z, 8d � 1.

In the following we shall present the proof for the local P2 case, the proofs for other

cases are almost identical to this one.

10The author thanks Professor Chiu-Chu Melissa Liu for discussions on this.
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For the genus zero part, the Yukawa coupling has the form11

2pi
∂t

∂t
= �3 · Cttt = �3(�1

3
+

•

Â
d=1

n0,dd3qd
t

1 � qd
t
) , qt = exp t .

Integrating this equation, and using the asymptotic behaviors of t and t as t 7! �•, we

then get, see Mohri et al. (2001); Stienstra (2005),

q
t

= exp 2pit = (�qt)’(1 � qd
t )

3d2n0,d . (2.59)

The integrality for n0,d for toric Calabi-Yau 3-folds is proved in Peng (2007), this implies that

the qt expansion of q
t

is integral, that is,

q
t

2 �qt(1 + Z[[qt]]) . (2.60)

Now the holomorphic limit of the (normalized) topological sting partition function F (g)

solved from the BCOV holomorphic anomaly equations, denoted by Fg below, are rational

functions in the generators in the ring of quasi-modular forms bM⇤(G0(3), c�3) = Q[A, B3, E]

for G0(3). From polynomial recursion we can see that

Fg 2 1
Cg

Z[[A, B3, B�3, E]] , (2.61)

where the constant Cg is an integer depending on the genus g and the geometry of the CY

3-fold family. This constant is usually very big, it results from the universal coefficients in

the polynomial recursion (see e.g., Eq. (2.31)) and the boundary conditions (see e.g., Eq.

(2.34)). For example, for the present case,

C2 = 17280, C3 = 8709120, · · ·

The explicit expressions of the quasi-modular forms A, B3, B�3, E in terms of q or h or

Eisenstein series are known to be integral, see Appendix A. That is, we have

A, B3, B�3, E 2 Z[[q
t

]]) . (2.62)

11Note that here the normalization t = log(�z) + · · · is taken, where z = 0 gives the large complex structure
limit on the moduli space, see e.g., Diaconescu and Gomis (2000), Mohri et al. (2001).
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Now the proof of Corollary 2.5 follows easily from the above observations.

Proof. Combining Eqs. (2.60), (2.62), (2.61), we obtain

CgFg 2 Z[[qt]] . (2.63)

On the other hand, by the mirror symmetry conjecture, one has from Eq. (2) that

Fg =
•

Â
d=0

Ng,dqd
t , (2.64)

where Ng,d, d = 0, 1, 2 · · · are the genus g degree d Gromov-Witten invariants of the CY

3-fold X̌ = KP2 . From Eq. (2.63) and Eq. ( 2.64) it follows immediately that

CgNg,d 2 Z, d = 0, 1, 2 · · ·

There is a conjecture about the integrality of the so-called Gopakumar-Vafa invariants

ng,d defined in Gopakumar and Vafa (1998a,b), which are related to the Gromov-Witten

invariants Ng,d by a multiple-cover formula, see Aspinwall and Morrison (1993); Manin

(1995); Voisin (1996); Katz et al. (1999). For example, at genus 0 and 1, one has

N0,d = Â
k|d

n0,d/k
k3 , N1,d = Â

k|d

1
k
(

1
12

n0,d/k + n1,d/k) .

However, the integrality of CgNg,d does not follow from these multiple-cover formulas and

the conjectural integrality of Gopakumar-Vafa invariants. Therefore Corollary 2.5 is not

completely trivial.

Remark 2.6. In the above proof, we used the interpretation of Cttt as the generating function

of genus 0 Gopakumar-Vafa invariants (instanton numbers) when written in qt expansion:

2pi
∂t

∂t
= �3Cttt = �3(k +

•

Â
d=1

n0,dd3qd
t

1 � qd
t
) .

It leads to some interesting arithmetic properties of quantities when written in the q
t

76



coordinate. For example, recall that

Cttt =
k

B3 = �1
3

h(3t)3

h(t)9 , (2.65)

then we have the following nice expressions:

2pi
∂t

∂t
=

1
B3 =

h(3t)3

h(t)9 ,

1
2pi

∂t
∂t

= B3 =
h(t)9

h(3t)3 = 1 � 9 Â
n�1

c�3(n)
n2qn

t

1 � qn
t

.

Therefore, integrating the above equation, one gets the following expression of the local

coordinate qt ⇠ a + regular(a) on the moduli space which essentially gives the mirror map

qt = (�q
t

)’(1 � qn
t

)9nc�3(n) .

It is related to the Mahler measure discussed in e.g., Mohri et al. (2001); Stienstra (2005).

2.6 Seiberg-Witten curve family and physics interpretation of Fricke

involution

In this section, we shall consider the Legendre curve family and the Jacobi curve family. The

bases of these curve families are isogenous modular curves. The former is X(2) = G(2)\H⇤,

while the latter is X0(4) = G0(4)\H⇤. We shall show that in this case the Fricke involution

gives the Seiberg-Witten S-duality in Seiberg and Witten (1994).

2.6.1 Legendre family and Jacobi family

First we shall review the basic properties of the two elliptic curve families which are used in

Seiberg and Witten (1994) to model the 4d N = 2 supersymmetric gauge theory with SU(2)

gauge group.

The Legendre family is given by

y2 = x(x � 1)(x � l), j(l) = 28 (l
2 � l + 1)3

l

2(l � 1)2 . (2.66)
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It is the elliptic modular surface in Eq. (1.13) associated to the modular group G(2) given by

pG(2) : EG(2) ! X(2) = G(2)\H⇤. The Picard-Fuchs operator attached to this elliptic curve

family is the hypergeometric operator

l(1 � l)∂2
l

+ (1 � 2l)∂
l

� 1
4

. (2.67)

Some of the special values including the cusps are summarized in the following table

Table 2.3: Special values of the Hauptmodul for G(2)

t 0, 1, i• 2 [0] [i] [r] = [exp 2pi
3 ]

l 1, •, 0 �1, 1
2 , 2 r, r

2

j • 1728 0

The group of Deck transformation is given by PSL(2, Z)/G(2) and is identified with

Perm(3) according to the exact sequence

0 ! G(2) ! PSL(2, Z) ! Perm(3) ! 0 . (2.68)

More precisely, this group is generated by the elements whose images in Perm(3) are

identified according to the following

h1i = l, h0, 1i = 1 � l, h0, •i = 1/l, h0, 1, •i = 1/(1 � l), h0, •, 1i = (1 � l)/l , (2.69)

where the function f (l) on the right hand side means the transformation l 7! f (l). For

example, the transformation t 7! � 1
t

2 PSL(2, Z)/G(2) exchanges 0, • and fixes 1,�1,2 [1],

hence according to the above table, the corresponding Deck transformation on l is

l(� 1
t

) = 1 � l(t) . (2.70)

Similarly, l(1 � 1
t

) = 1 � 1
l(t) . Note that the two elements t 7! � 1

t

, t 7! 1 � 1
t

generates

PSL(2, Z) and thus the corresponding cosets generates the Deck group. In particular, the

S-transformation induces the transformation l ! 1� l on the Hauptmodul for the modular

curve X(2).
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Now we proceed to the Jacobi family, it is different form the elliptic curve family in

Eq. (1.13) associated to the modular group G0(4). But the base of this family could be

identified with the modular curve X0(4). More precisely, the equation of the family and the

corresponding j-invariant is given by

y2 = (1 � x2)(1 � aJ x2), j(aJ) = 24 (a
2
J + 14aJ + 1)3

aJ(1 � aJ)4 . (2.71)

In fact, the j-invariants: aJ 7! j(aJ) and a4 7! j(a4) are based on the same function, where

a4 is the Hauptmodul for the modular curve X0(4) we defined in Section 1.2.

Remark 2.7. Note that this does not imply that aJ = a4. They could be related by Deck

transformation. Even if they are chosen so that a4(t) = aJ(t), one can not say that the

elliptic modular surface is isomorphic to the Jacobi model, since that j � f = j, where f is

the base change, does not imply that the two families are isomorphic.12 Another way to see

that is to note that the Picard-Fuchs equation associated to this family is not the same as

the one for the E5 family in Eq. (2.2), which is same as that for the elliptic curve family in

Eq. (1.13) associated to the modular group G0(4).

The bases of the Legendre model and Jacobi model are the two modular curves X(2)

and X0(4) parametrized by the corresponding Hauptmodul l, a4, as discussed in Klemm

et al. (1995). The corresponding modular groups are isomorphic, in fact, they are conjugate

to each other:

G0(4) ! G(2) : t 7! 2t. (2.72)

The Hauptmoduln are related by

a4(t) = l(2t). (2.73)

In terms of the elliptic modulus k, one has

a4(t) = k

2(t) =
q

4
2

q

4
3
(2t), l(t) =

4k

1 + k

2 (t) =
q

4
2

q

4
3
(t). (2.74)

Denote by t2, t4 the natural transcendental coordinates for the modular curves G(2), G0(4),

12See the constant j–invariant family which is not trivial in Miranda (1989).
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respectively. Then we know from Eq. (2.72) that t2 = 2t4. Therefore, the S-transformation

on X(2) t2 7! � 1
t2

which gives l(� 1
t2
) = 1 � l(t2) is realized as

t4 7! � 1
4t4

. (2.75)

This is exactly the Fricke involution (4-isogeny) on the modular curve X0(4):

a4(�
1

4t4
) = l(� 2

4t4
) = l(� 1

t2
) = 1 � l(t2) = 1 � a4(t4). (2.76)

The two periods of the Legendre model are given by the solutions to the hypergeometric

equations above

w0(t2) = 2F1(
1
2

,
1
2

, 1; l(t2)), w1(t2) = i 2F1(
1
2

,
1
2

, 1; 1 � l(t2)), t2 =
w1(t2)
w0(t2)

. (2.77)

On the other hand, the corresponding pull back of the Legendre model using P
a

! P
l

,

(defined locally according to the uniformization in terms of k, and is induced by t4 7! t2 =

2t4) gives another elliptic curve family. The above base change of the Legendre family has

the same Picard-Fuchs equation as the one attached to the E5 family and to the elliptic curve

family Eq. (1.13) associated to the modular group G0(4). By tautology, the periods for this

family are

w0(t4) = 2F1(
1
2

,
1
2

, 1; a(t4)), w1(t4) =
ip
4

2F1(
1
2

,
1
2

, 1; 1 � a(t4)), t4 =
w1(t4)
w0(t4)

. (2.78)

2.6.2 Seiberg-Witten curve family

We shall not discuss the physics details of Seiberg-Witten theory, but will only mention

the geometry and the arithmetic of the moduli spaces involved. For a review on the

physics story, see e.g., Lerche (1997); Klemm (1997); Donagi (1997). The Seiberg-Witten

curve family Seiberg and Witten (1994) was introduced as a geometric model to meet the

following properties (on monodromy, symmetries) required from physics (pure 4d N = 2
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supersymmetric Yang-Mills with gauge group G = SU(2))

u = L2, massless monopole, aD = 0, t = 0 , (2.79)

u = �L2, massless dyon, 2a � aD = 0 , (2.80)

u = •, n• = 2A, two cycles shrinking, not stable degeneration, t = i• , (2.81)

where u is the parameter of the base M of the desired elliptic curve family, called quantum

moduli space of vacua in Seiberg-Witten theory. The quantities a, aD are the integrals of

some meromorphic differential (Seiberg-Witten differential) over the homology cycles of the

elliptic curves and are called the Seiberg-Witten periods, while t = ∂aD
∂a gives the modular

parameter for the elliptic curve and is the coupling constant of the Seiberg-Witten theory.

Note that the coefficients 2,�1 in the vanishing integral 2a � aD at u = �L2, called charges

of the massless dyon in physics term, depend on the normalization of the homology cycles.

Legendre Family

The Seiberg-Witten curve family Seiberg and Witten (1994) psw,2 : Esw,2 ! M given by

Esw,2 : y2 = (x � L2)(x + L2)(x � u2), j(u2, L2) = 26 (3L4 + u2
2)

3

L4(u2
2 � L4)2 (2.82)

satisfies the desired properties above. This curve family is easily seen to be related to the

Legendre family. Now we identify the correct normalization and the relation between the

parameters u on M and l on X(2).

Naively, one has

l =
u2 + L2

2L2 . (2.83)

But this identity between u2, l is determined only up to Deck group transformation on l.

The one that gives the correct normalization values of t is

u2

L2 = �1 +
2
l

. (2.84)

This leads to the special values for the Hauptmodul l as shown in Table 2.4. The S-

transformation t 7! � 1
t

exchanges l 7! 1� l and thus exchanges u = L2, •, corresponding
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Table 2.4: Special values of the Legendre family as Seiberg-Witten curve family

t 0, 1, i• 2 [0] [i] [r]

l 1, •, 0 �1, 1
2 , 2 r, r

2

j • 1728 0
u L2,�L2, • ⇤ ⇤

to t = 0 and t = i•, this is exactly the S-duality in physics.

Jacobi Family

The Seiberg-Witten curve family in Seiberg and Witten (1994) psw,4 : Esw,4 ! M is given by

z +
L4

z
= 2(x2 � u4) , (2.85)

or equivalently

Esw,4 : y2 = (x2 � u4)
2 � L4, j(u4) = 26 (4u2

4 � 2L4)3

L8(u2
4 � L4)

. (2.86)

It also satisfies the desired properties above. This family is identical to the Jacobi family

with

aJ =
u4 ± L2

u4 ⌥ L2 , (2.87)

up to Deck transformation. According to l(t2) = 2L2

u2(t2)+L2 , one has

a(t4) =
2L2

u2(t2) + L2 . (2.88)

This leads to the following identification

u2(t2) = u4(t4), a4(t4) =
2L2

u2(t2) + L2 = 1 � aJ =
2L2

u4(t4) + L2 . (2.89)

Note that for the Seiberg-Witten curve family Esw,2 (Legendre family), the massless dyon

(2a � aD = 0) occurs at u2(t2) = �L2 where t2 =
∂u2 aD(u2)
∂u2 a(u2)

. However, for the Seiberg-Witten

curve family Esw,4 (Jacobi family), this point is given by u4(t4) = �L2 where t4 =
∂u4 aD(u4)
∂u4 a(u4)

.

Since t2(u2) = 2t4(u4) and the cusp on X0(4) is t4 = 1
2 , the corresponding t2 value on the
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modular curve X(2) is t2 = 2t4 = 1. This matches the result in Table 2.4.

2.7 Conclusions and discussions

In this chapter, we studied the arithmetic structures of the moduli spaces of certain special

CY 3-folds and the corresponding topological string partition functions. We discussed some

consequences of these arithmetic structures. We also mentioned the physics interpretations

of the Fricke involution as a duality in Seiberg-Witten theory.

The whole discussion relies heavily on the identification of the moduli spaces with

modular varieties. Right now we can only deal with those non-compact CY 3-fold families

whose mirror curves are the elliptic curves families of En, n = 5, 6, 7, 8 type. In particular, the

corresponding mirror curve needs to be of genus one13. For example, just as what we did to

solve the topological string partition functions for KP2 = KP2[1,1,1], the same idea works for

the non-compact geometries KWP2[1,1,2], KWP2[1,2,3] whose mirror curve family are the same

as the corresponding del Pezzos in Eq. (2.2), see e.g., Mohri et al. (2001) for related work.

If the mirror curve is not of genus one or the mirror elliptic curve family is not of

En, n = 5, 6, 7, 8 type, then we don’t know how to apply the ideas at this moment. For

example, for the resolved conifold O(�1) � O(�1) ! P1, the mirror curve has genus

zero (see Section 3.4 for more discussions on this family whose generating functions of

Gromov-Witten invariants have been known both in mathematics and physics a long time

ago), the procedure of using modularity to solve for F (g)s we used above does not seem

to apply. Another interesting case is that when the mirror curve has higher genus, for

example, for the toric CY varieties used to engineer 4d N = 2 SU(n) gauge theories in Katz

et al. (1997). Presumably, more complicated modular varieties and modular forms than the

classical ones (elliptic, Siegel, Hilbert) will appear on the mirror side, see e.g., Aganagic et al.

13A convenient way to figure out the genus of the mirror curve for a toric CY 3-fold is to think of it as the
thickening of the 1-skeleton of the toric diagram, see e.g., Bouchard and Sulkowski (2012), hence the genus is
the number of loops in the toric diagram.
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(2008) for related discussions on this.

It would be interesting to find more general examples of CY families, compact or non-

compact, which are parametrized by modular varieties, and try to use the chain of ideas

presented in this chapter to study the CY varieties themselves. Existing works about such

CYs and toplogical string partition functions for some of them could be found in e.g., the

following papers and references therein:

• CY 2-fold or 3-fold families that are related directly or indirectly to elliptic curves or

K3s: of Borcea-Voisin type Borcea (1992); Voisin (1993); Borcea (1997); Abe and Sato

(1997); Rohde (2009, 2010); Garbagnati and van Geemen (2010); Dillies (2012); Debarre

(2012); Garbagnati (2013); Cattaneo and Garbagnati (2013); by Kummer construction

Borcea (1992); Cynk and Hulek (2007); and some other constructions Yui (2001, 2003,

2004); Hulek and Verrill (2006); Meyer (2005); Hulek et al. (2006); Schimmrigk (2007);

Top and Yui (2007); Yui (2012); Debarre (2012), etc.

• Families of lattice polarized K3 surfaces: Beauville et al. (1985); Nagura and Sugiyama

(1995); Aspinwall and Morrison (1994); Dolgachev (1996); Clingher and Doran (2006);

Smith (2007); Whitcher (2009); Clingher and Doran (2012); Elkies and Kumar (2012),

etc.

• Families of K3 fibrations or K3 ⇥ T2/Z2: Ferrara et al. (1995); Kachru and Vafa (1995);

Marino and Moore (1999); Klemm et al. (2005); Klemm and Marino (2008); Grimm et al.

(2007); Haghighat and Klemm (2010), etc.

• Families of elliptic fibrations: Candelas et al. (1994a,b); Aganagic et al. (2008); Alim and

Scheidegger (2012); Klemm et al. (2012), etc.

• Other geometries: Ceresole et al. (1993a,b); Debarre (2012), etc.

Another potential application of the arithmetic structure on the moduli space would be

to solve the master anomaly equations, discussed in e.g., Bershadsky et al. (1994); Witten

(1993); Dijkgraaf et al. (2002); Verlinde (2004); Gunaydin et al. (2006), on the modular curve.
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These equations are satisfied by the quantity

Ztop(t, t̄) = exp

 
•

Â
g=0

l

2g�2F (g)(t, t̄)

!
, (2.90)

where l is the so-called topological string coupling constant, according to Bershadsky et al.

(1994). The advantage of considering this quantity is that the equations it satisfies, called the

master anomaly equations, consist of only two wave-like equations whose coefficients are

geometric quantities easily computed from the special Kähler geometry on the moduli space.

It seems that solving the master anomaly equations satisfied by Ztop(t, t̄) would be easier

than solving the holomorphic anomaly equations for {F (g)}•
g=0 genus by genus recursively,

since the general structure for the latter is yet not known.
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Chapter 3

Differential rings from special Kähler

geometry 1

3.1 Motivation and introduction

For the non-compact CY 3-fold families discussed in the previous chapter, to solve the holo-

morphic anomaly equations, we firstly identified the moduli spaces with modular curves,

and then expressed the geometric quantities, in particular the propagators, as modular

forms to figure out the non-holomorphic part. After that we used the Fricke involution to

deal with the boundary conditions which helped fix the holomorphic ambiguities.

A natural hope is to extend the above procedure to more general geometries, e.g., the

mirror quintic family 2. But the period domain is rarely a Hermitian symmetric domain and

thus the moduli space of (complex structures) of a CY 3-fold is not a modular variety, so the

above chain of ideas does not apply directly.

However, what has been used is essentially the knowledge on the singularities of the

1This chapter is based on the joint work Alim et al. (2013) with Murad Alim, Emanuel Scheidegger and
Shing-Tung Yau, and my paper Zhou (2013) which grew out of the discussions with the authors of Alim et al.
(2013).

2There are some studies in this direction, see e.g., Candelas et al. (1991); Ceresole et al. (1993a,b); Movasati
(2011); Doran et al. (2013).



generators which form the differential ring in Eq. (20) and on how to analytically continue

the non-holomorphic generators. There is a chance that this could be figured out without

relying on the existence of the identification between the moduli space and the modular

variety.

3.1.1 Local P2 revisited

Now we shall explain how this could be done by looking at the local P2 example. Recall

that the choice for the ambiguity sx
xx in the integrated special geometry relation Eq. (7) we

have made give rise to the non-holomorphic generator Sxx = Ê/2A2 which is an almost-

holomorphic modular form. Moreover, using the differential ring structure Eq. (1.3) for

the almost-holomorphic modular forms, we can deduce the holomorphic quantity hxx
x in

Eq. (20) which turns out to be a modular function. Knowing how the Fricke involution

acts on the generators A, B, C, Ê of the ring bM⇤(G0(3), c�3) of almost-holomorphic modular

forms tells how the non-holomorphic and holomorphic generators in Eq. (20) transform,

or equivalently their analytic continuations from the large complex structure limit to the

conifold point in the (a, ā) space.

In the following we shall discuss how to do this without using the generators A, B, C

and the Fricke involution on X0(3) and thus on bM⇤(G0(3), c�3) in the first place.

First, we define the holomorphic quantities A, B, C from periods as in Eq. (1.19), and the

quantity t in terms of special geometry quantity according to Eq. (2.10). We then determine

the holomorphic limit of the propagator Sxx from the integrated special geometry relation

Eq. (7) up to addition by the holomorphic ambiguity C�1
xxxsx

xx. More precisely, from Eq. (2.21),

we get

lim
LCSL

Gx
xx = ∂x log ∂xt = �Cxxx lim

LCSL
Sxx + sx

xx . (3.1)

where sx
xx is an arbitrary holomorphic function and is not tensorial as what happens to Gx

xx.

We also choose limLCSL Sx = limLCSL S = limLCSL Kx = 0 for the current non-compact CY 3-
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fold case. Proposition 1.6 then allows to compute tensor transformations from the coordinate

x = ln a to the special coordinate t defined near the large complex structure limit in Eq. (2.8),

which satisfies ∂xt = qt = A. In particular, we get limLCSL Stt = limLCSL Sxx( ∂t
∂x )

2.

In this set-up, we defined quantities from only the properties of the Picard-Fuchs equa-

tions LCY = Lelliptic � q for the CY 3-fold family p : X ! M, and did not use explicitly

the knowledge on the modular curve X0(3). But we have used the fact that the special

coordinate t is the canonical coordinate (see Section 3.3.1) near the large complex structure

limit, both to define the holomorphic limit and to derive the holomorphic limit of Gx
xx at the

this point using Eq. (2.19).

Now we consider the ring formed by the generators limLCSL Stt, qt, C�1
ttt = k

�1
∂

t

t =

k

�1
b(qt)3, where b = 1 � a. The differential ring structure Eq. (20) of the non-holomorphic

generators and Proposition 1.6 give rise to the following differential structure among the

holomorphic limits of the non-holomorphic and holomorphic generators,

∂

t

lim
LCSL

Stt = � lim
LCSL

Stt lim
LCSL

Stt � 1
12k

(qt)4 (3.2)

∂

t

qt = C�1
ttt q

2t = � lim
LCSL

Stt
qt + C�1

ttt sx
xx (3.3)

∂

t

C�1
ttt = �3C�1

ttt lim
LCSL

Stt + C�1
ttt (qt)2(∂x log C�1

xxx) + 3sx
xx , (3.4)

with ∂x log C�1
xxx = � a

b

. More precisely, the first equation above follows from the first

equation in Eq. (20); the second from the definition of the propagator Stt from the integrated

special geometry relation Eq. (7). The third one follows from the definition C�1
ttt = k

�1
b(qt)3,

Proposition 1.6 and the second equation above.

To make the ring closed, we need to add the holomorphic quantity ∂x log Cxxx = a

b

. Now

its derivative already lies in the ring of the above generators again according to Proposition

1.6:

∂

t

∂x log Cxxx = (∂x log Cxxx)(qt)2 .

Moreover, there is a natural weight associated to these quantities: the weight for tensors
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associated to x, t, t are given by 0, 1,�2, respectively.

Remark 3.1. This agrees with the known modular weight for G0(3). In fact, choosing sx
xx =

a�b

6b

in Eq. (2.21), we then have limLCSL Stt = 1
2 E, qt = A, C�1

ttt = k

�1B3, ∂x log Cxxx = C3

B3 , and

the differential ring structure Eq. (20) and Proposition 1.6 derived from special geometry on

the moduli space M is exactly equivalent to the differential ring structure in Theorem 1.2

for the quasi-modular forms for G0(3).

As explained in Introduction, polynomial recursion tells that the topological string

partition functions are Laurent polynomials of these generators of weight 0 due to the fact

that they are functions of x rather than tensors (of course the weight is not the same as the

degree, which is 2 � 2g due to the fact that F (g) is a section of the line bundle L2�2g).

The suitable coordinates that are needed in applying the boundary conditions at the large

complex structure limit and at the conifold point are given by a, b = 1 � a, respectively. As

we pointed out in Introduction, it is not easy to compute the non-holomorphic completions

from the holomorphic limits without using the explicit structures of the rings of quasi-

modular forms and almost-holomorphic modular forms. For example, from only the

expression of limLCSL Stt, one would not able to recover Stt and thus can not proceed to

obtain limCON Stt by taking the holomorphic limit of Stt at the conifold point.

We now use the transformation a $ b, to related limLCSL and limCON: roughly speaking

first we simply express all of the building blocks limLCSL Stt, qt, C�1
ttt , ∂x log Cxxx as functions

of a near the large complex structure limit a = 0; then we replace a by b to get the expansion

of the topological string partition functions in terms of b, that is, near the conifold point

b = 0. This then allows to apply the gap condition to the resulting b expansion.

More precisely, qt = A(a), C�1
ttt = k

�1
bA(a)3, ∂x log Cxxx = a

b

are easily seen to be map

to corresponding quantities A(b), k

�1
aA(b)3, b

a

, respectively. The action on limLCSL Stt is

more subtle, both because it is the holomorphic limit of a non-holomorphic function, and

because that it is determined up to addition of a holomorphic function as can be seen from

Eq. (3.1).
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To understand this we first carry our some computations using the known modularity.

The holomorphic limit of the integrated special geometry relation Eq. (3.1) reads

� E(a)
6bA2(a)

= �q

a

log A(a) +
a � b

6b

. (3.5)

Using the transformation law for the quasi-modular form E(b), we get

E(b)
6aA2(b)

= � E(a)
6aA2(a)

+
1
2

12
2pi

3t

�3t

2
1

6aA2(a)
. (3.6)

Plugging Eq. (3.5) into Eq. (3.6), we get

E(b)
6aA2(b)

= �q

b

log A(a) +
b � a

6a

+
1
2

12
2pi

(� 1
t

)
1

6aA2(a)
. (3.7)

We also know that from Proposition 1.6 that

q

b

log A(b) = q

b

log A(a)� 1
2pi

1
t

1
aA2(a)

. (3.8)

The two equations Eqs. (3.7), (3.8) above tell that

E(b)
6aA2(b)

= �q

b

log A(b) +
b � a

6a

. (3.9)

Comparing the above equation with Eq. (3.5) we can see that the duality should acts as 3

E(a) 7! �E(b). (3.10)

This is consistent with Eq. (2.38) that A2(b) = �Nt

2A2(a), Ê(b, b̄) = Nt

2Ê(a, ā).

In retrospect, the difference about the sign can be explained in the following way: the

integrated special geometry relation should not transform naively using a $ b since it

involves the first derivative, which carries the information of the Jacobian and thus picks a

sign under the transformation a ! b = 1 � a. So although both A2, E are quasi-modular

forms of weight 2, they transform under different laws.

To summarize, remembering that E comes from a relation defined using the first deriva-

3What this really means is that limLCSL Ê and � limCON Ê are based on the same function, but with different
arguments a, b respectively.
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tive helps identify the correct sign under the transformation.

This then provides a solution in how to analytically continue limLCSL Stt without knowing

modularity but by using the involution a $ b. One does not know in the first place

which choice of sx
xx would give rise to the quantity limLCSL Stt that transforms according

to limLCSL Stt(a) to � limCON Stt(b) without using modularity4. In other words, a different

choice for the modular function sx
xx than above would result in a combination of the quasi-

modular form E and a modular function which transform in different ways under the

involution. For example, by choosing the holomorphic ambiguity sx
xx so that Eq. (2.27)

becomes ∂xF (1) = 1
2 CxxxSxx, one can see by computations using the expressions in terms

of quasi-modular forms that the transformation lim limLCSL Sxx 7! � b

a

limCON Sxx is not

true. However, one can work out the transformation of the holomorphic quantity sx
xx (it

can be arbitrary, but one usually choose it to be a rational function) and the quantity

limLCSL Gx
xx = q log A, then the integrated special geometry relation Eq. (3.5) induces the

correct transformation on limLCSL Stt. Alternatively, one can use replace the generator

limLCSL Stt by the quantity limLCSL Gx
xx whose transformation law is easier.

Therefore, at least for the non-compact CY 3-fold examples discussed in Theorem 0.1,

from

• The differential ring structure of the generators in Eq. (20) and Proposition 1.6;

• The map5
a 7! b = 1� a exchanging the large complex structure limit and the conifold

point which serves as a "duality"6;

4In fact, using the known modularity, we have derived from Eq. (3.5) that the choice sx
xx = 1

2r
a�b

b

will do
the job.

5The root of this symmetry lies in the fact that the hypergeometric equation Eq. (1.14) written in b = 1 � a

coordinate takes the same form as the one written in a coordinate. Hence the analytic period A(a) near a = 0
would give rise to the analytic period A(b) near b = 0. This symmetry of the hypergeometric equation reflects
the special properties of the underlying elliptic curve family.

6In retrospect, what is essential is the fact that the topological string partition functions are modular
functions so that the t factors can be canceled under the Fricke involution which induces the transformation.
Otherwise one would have to deal with the extra t factors which makes the transformation on generators
difficult to access in terms of the algebraic coordinates a, b.
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• The transformation law for the generators of the differential ring,

one can then solve the holomorphic anomaly equations without knowing the arithmetic of

the moduli spaces.

Remark 3.2. Now we can compare the difference between the holomorphic limit of F (g) at

the conifold and the analytic continuation from its holomorphic limit at the large complex

structure limit. This should be compare to the discussion in Remark 2.2 and goes back to

the second item mentioned at the end of Section 0.2.

It suffices to figure out how the building blocks, i.e., the generators, transform. Assuming

modularity, we know the analytic continuation of E(a) is given by

E(a) = (�
p

3tD)
2E(b) +

1
2

12
2pi

(�
p

3)(�
p

3tD), tD = WNt . (3.11)

Without using modularity, we will get the same equation, but now t (and similarly tD)

is now defined to be the ratio satisfying
p

N
i t = A(b)

A(a) with N being an unknown constant.

Recall that the multiplication by
p

N
i t factors will be canceled out due to the fact that F (g)

has weight zero, we shall get

E(a) 7! �E(b)� 1
2

12
2pi

1
tD

, tD = � 1
Nt

. (3.12)

While the correct result given by the Fricke involution should be (again forgetting the
p

N
i t

factors)

E(a) = ( lim
LCSL

Ê)(a) = �( lim
CON

Ê)(b) = �E(b) . (3.13)

Hence they are the same only after modulo the terms involving t .

3.1.2 Constructing differential rings on moduli spaces

Experiences from dealing with the non-compact CY 3-folds suggest that studying the

properties of the rings (R, eR, bR) might be useful in solving the holomorphic anomaly

equations for more general CY 3-fold families, as explained in the previous section. This is

the motivation of this work.
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In this chapter, for certain one-parameter CY 3-fold family p : X ! M, we shall define

a triple of graded rings (R, eR, bR). The analogue of the modular variable t is constructed

according to Eq. (2.10) using the special Kähler geometry on the base M, and the periods

are solved from the Picard-Fuchs equation of the CY 3-fold family. This triple share similar

structures and operations with the triple (M⇤(G), eM⇤(G), bM⇤(G)) defined for the elliptic

curve family pG : EG ! XG. In particular, they have gradings which play the role of modular

weights.

For the one-parameter families of non-compact CY 3-folds with an elliptic curve sitting

inside each fiber as discussed in Chapter 2, the base M of each CY 3-fold family p : X ! M

has been identified with a modular curve in Section 2.2. The triple of rings (R, eR, bR) we

shall define are closely related to the known graded rings (M⇤(G), eM⇤(G), bM⇤(G)) of modular

objects.

Remark 3.3. The above idea of deriving/constructing modular forms from geometric quanti-

ties arising from Picard-Fuchs equations is not new. Given a genus zero subgroup G of finite

index of the full modular group G(1) = PSL(2, Z), the generators of the ring of modular

forms for G could be obtained starting from some q or h-functions or Eisenstein series.

Alternatively, one could parameterize the modular curve XG = G\H⇤ by a Hauptmodul a

(generator of the rational functional field of the modular curve), and consider the periods

which are solutions to the Picard-Fuchs equation attached to the elliptic modular surface

Eq. (1.13) pG : EG ! XG constructed from the modular group G. Knowing the relation

between the Hauptmodul a and the normalized period t of the elliptic curve family, one

could then obtain the graded differential ring of quasi-modular forms eM⇤(G) by taking

successive derivatives of the periods with respect to t. This ring eM⇤(G) includes the ring

of modular forms M⇤(G) and contains further elements which are not modular but quasi-

modular in the sense of Kaneko and Zagier (1995). The quasi-modular forms in eM⇤(G)

could be completed to modular forms by adding some non-holomorphic parts. Then one

gets the graded differential ring of almost-holomorphic modular forms bM⇤(G). See Chapter

1, Kaneko and Zagier (1995); Zagier (2008) and references therein for details about the
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construction.

The structure of this chapter is as follows. In Section 3.2, first we recall briefly the

construction of the graded rings M⇤(G), eM⇤(G), bM⇤(G) for the elliptic curve families in

Eq. (1.13) from their Picard-Fuchs equations in Eq. (1.14). Then we construct by analogy

the graded rings R, eR for certain one-parameter CY 3-fold families p : X ! M. In Section

3.3, we consider these rings using the properties of the special Kähler geometry on the

deformation space M. We make use of the canonical coordinates and holomorphic limit to

lift the ring eR to a non-holomorphic ring bR, by relating them to the ring constructed by

Yamaguchi and Yau (2004). The main results of this chapter are summarized in Section 3.3.5.

Some of their applications in solving the BCOV holomorphic anomaly equations are also

discussed in Section 3.3. We conclude with some discussions and questions in Section 3.4.

3.2 Differential rings from Picard-Fuchs equations

In this section, we shall explain how to obtain differential rings from the Picard-Fuchs

equations for certain special one-parameter CY 3-fold families.

We recall that in the construction of the rings for quasi-modular forms and almost-

holomorphic modular forms for the modular groups G0(N) in Section 1.3, the key property

we used is the formula in Proposition 1.6 which could be thought of as a differential

equation satisfied by the normalized period of the elliptic curves. As we shall see, for an

one-parameter CY 3-fold family p : X ! M, the normalized period, that is, the special

coordinate t, does not satisfy an analogous relation. However, the parameter t on M

satisfying a similar identity (see Proposition 3.8 below). To get the identity, one needs to

make use of the properties of Yukawa couplings in different coordinates.

3.2.1 Yukawa couplings

In the following, we shall explain how to derive Proposition 1.6 by computing the Yukawa

couplings for the purpose of later generalization.
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Proposition 3.4. The Yukawa coupling in the transcendental modulus t, defined by C
t

=
R

W ^

∂

t

W, satisfies C
t

= 1.

That is, there is no “quantum correction” added to the classical intersection number

k = 1, see Lian and Yau (1995, 1996a,b); Hosono (2008).

Proof. Take the local parameter of the (punctured) moduli space near the point a = 0 to be t.

At the base point t⇤, the fiber of the family pG0(N) : EG0(N) ! X0(N) is the torus T
t⇤ = C/L

t⇤ ,

where L
t⇤ = Z � Zt⇤. We take the holomorphic top form on T

t⇤ to be dz
t⇤ which descends

from C. For any t near the base point t⇤, the diffeomorphism sending T
t⇤ to T

t

is given

by z
t

= t�t̄⇤
t⇤�t̄⇤

z
t⇤ +

t⇤�t

t⇤�t̄⇤
z̄

t⇤ . From this, one can then see that ∂

t

W
t

|
t⇤ =

1
t⇤�t̄⇤

(dz
t⇤ � dz̄

t⇤) .

It follows then that C
t⇤ =

R
T

t⇤
i

2Imt⇤
dz

t⇤ ^ dz̄
t⇤ = 1 .

One can also compute the Yukawa coupling in the algebraic modulus a as follows.

Proposition 3.5. The Yukawa coupling in the algebraic modulus a, defined by C
a

=
R

W ^ ∂

a

W ,

satisfies C
a

= 1
ab

.

Proof. Recall that the Picard-Fuchs equation Eq. (1.25) tells that when integrated over cycles,

one has q

2W = (c1 + c2) a

b

qW + c1c2
a

b

W. Now we have

q(aC
a

) = q

Z
W ^ qW =

Z
qW ^ qW +

Z
W ^ q

2W

= 0 +
Z

W ^
✓
(c1 + c2)

a

b

qW + c1c2
a

b

W
◆

= 0 + (c1 + c2)
a

b

Z
W ^ qW + 0

= (c1 + c2)
a

b

(aC
a

) =
a

b

(aC
a

) .

Solving aC
a

from this equation, we get aC
a

= c
b

from some constant c. We then fix this c by

looking at the behaviors of both sides near a = 0. This gives c = 1. Hence the conclusion

follows.

Having computed the Yukawa coupling in two different coordinates t and a in Propo-

sition 3.4 and Proposition 3.5, we can then derive the equation ∂

t

a = (C
a

)�1
w

2
0 given in
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Proposition 1.6 between the transcendental modulus t and the algebraic modulus a, from

the following relation

C
t

=
1

2pi
1

w

2
0

∂a

∂t

C
a

. (3.14)

3.2.2 Picard-Fuchs equations for CY 3-fold families

Motivated by the discussions on elliptic curve families, we shall work out similar rings R, eR

living on the deformation spaces of CY 3-folds with given Picard-Fuchs equations. As before

we limit ourselves to the case dimM = 1. We shall start by computing the Yukawa couplings

in different coordinates, then we derive an equation analogous to Proposition 1.6 between

the complex coordinate a and a suitably chosen coordinate t on the deformation space

M. After that we construct a ring out of special Kähler geometry quantities (connections,

Yukawa couplings, etc.).

The Picard-Fuchs equations we are interested in are the ones in Eq. (2.7) for non-compact

CY 3-fold families

LCY = Lelliptic � q =

✓
q

2 � a(q +
1
r
)(q + 1 � 1

r
)

◆
� q, q = a

∂

∂a

, a = kNz , (3.15)

We shall also study in detail the Picard-Fuchs equation for the compact CY 3-fold family

which is given by the quintic mirror family in Candelas et al. (1991), with Picard-Fuchs

equation

LCY = q

4 � a(q +
1
5
)(q +

2
5
)(q +

3
5
)(q +

4
5
) , (3.16)

where a is related to the parameters z, y in Candelas et al. (1991) by a = 55z = y

�5.

For all of the Picard-Fuchs equations in Eqs. (3.15), (3.16), they have three regular singu-

larities located at a = 0, 1, • on the base M, corresponding to the large complex structure

limit, conifold point, orbifold point, respectively.

In the following we shall first consider slightly more general Picard-Fuchs equations

before we specialize to the Picard-Fuchs Eqs. (3.15) (3.16) mentioned above.

Suppose the Picard-Fuchs operator for the family p : X ! M of CY 3-folds is of the
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form

LCY = q

4 � a

4

’
i=1

(q + ci) = (1 � a)q4 � a(s1q

3 + s2q

2 + s3q + s4) , (3.17)

where q = a

∂

∂a

and sis are the symmetric polynomials of the constants c1, c2, c3, c4. For the

quintic mirror family case, one has (c1, c2, c3, c4) = (1/5, 2/5, 3/5, 4/5) and thus s1 = 2. As

before, we shall denote b = 1 � a.

The Yukawa coupling in the t coordinate is then given by Cttt = Fttt = k +O(qt) with

qt = e2pit according to mirror symmetry. In the complex coordinate a, we have

Proposition 3.6. The Yukawa coupling, defined by C
aaa

= �
R

W ^ ∂

3
a

W, is given by C
aaa

= k

a

3
b

.

Proof. First due to Griffiths transversality, we have a

3C
aaa

= �
R

W ^ q

3W. By integration by

parts and Griffiths transversality, it follows that

q(a3C
aaa

) = �
Z

qW ^ q

3W �
Z

W ^ q

4W

= �
✓

q

Z
qW ^ q

2W �
Z

q

2W ^ q

2W
◆
�
Z

W ^ (s1
a

b

q

3W + · · · )

= �q

✓
q

Z
W ^ q

3W �
Z

W ^ q

3W
◆
� 0 + s1

a

b

(a3C
aaa

)

= �q(a3C
aaa

) + s1
a

b

(a3C
aaa

) .

Solving a

3C
aaa

from this equation, we then get C
aaa

= c
a

3
b

. Using the fact that

1
(X0)2 C

aaa

(
∂a

∂t
)3 = Cttt = k +O(q) , (3.18)

we know c = k. Hence the assertion follows.

Remark 3.7. The Yukawa couplings for the non-compact CY 3-fold families discussed above

also have the same form. Intuitively, the is because non-compact geometries can be regarded

as certain limits of corresponding compact CY geometries whose Yukawa couplings take

the above form.

Now that we have computed the Yukawa coupling in the special coordinate t and

complex coordinate a, we shall find the analogue of Proposition 1.6. According to the
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definition7of t in Eq. (2.10), near a = 0 we have t(a) ⇠ 1
2pi log a +O(a0). Therefore, from

1
(X0)2 C

aaa

(
∂a

∂t
)3 = Cttt = 2pik

∂t

∂t
= 2pik

∂t

∂a

∂a

∂t
. (3.19)

we obtain the following assertion.

Proposition 3.8.

∂

t

a = a · k(a3C
aaa

)�1 · (X0
qt)2 = ab(X0

qt)2, ∂

t

=
1

2pi
∂

∂t

. (3.20)

Note that the only places in which we have used the special Kähler geometry are in

the definition Eq. (2.10) of t in terms of Ftt and the limit of Eq. (3.18) as a goes to 0. But

we could have defined t as the quantity satisfying the equation 1
(X0)2 C

aaa

( ∂a

∂t )
3 = 2pik ∂t

∂t

and the condition lim
a!0 2pi ∂t

∂t = 1 without referring to the prepotential F(t) and Yukawa

coupling Cttt, thus only the Picard-Fuchs equation and no special Kähler geometry is needed.

We shall now take Proposition 3.8 as the starting point to construct the analogue of the

ring of quasi-modular forms. Motivated by the discussions of elliptic curve families, we

define the following triple

A = X0
qt, B = (1 � a)

1
r A, C = a

1
r A ,

where r is some under-determined constant and does not show up in the final form of the

ring bR we shall consider later. Similarly we define

E = ∂

t

log CrBr = ∂

t

log abA2r = (a � b)A2 + ∂

t

log A2r . (3.21)

Now thanks to Proposition 3.8, we get

A2 =
∂

t

a

ab

= ∂

t

log
a

b

= ∂

t

log
Cr

Br . (3.22)

We also have the following relations among these generators following from the definitions

7From now on, to simplify notations, we shall take t ⇠ log a +O(a0), hence t = 1
2pi k

�1Ftt.
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of A, B, C, E and Eq. (3.22),

∂

t

B =
1
2r

B(E � A2), ∂

t

C =
1
2r

C(E + A2) . (3.23)

To get a closed ring, we need to prove A satisfies a differential equation with coefficients

being holomorphic functions of a, b. Define

A0 = X0, A00 = qt , (3.24)

and denote R = C[A0±1, A00±1, B±1, C±1]. It turns out after adding ∂

i
t

A0, ∂

i
t

A00, i = 1, 2, 3,

the ring will close under the derivative ∂

t

. Note that the generator E is already included

according to Eq. (3.21).

Proposition 3.9. The ring eR generated by ∂

i
t

A0, i = 0, 1, 2, 3; ∂

j
t

A00, j = 0, 1, 2 and B, C, B�1, C�1,

is closed under the derivative ∂

t

.

Proof. The Picard-Fuchs equation tells that if one defines

L̃CY = (q + q log X0)4 � a

4

’
i=1

(q + q log X0 + ci) ,

then X0L̃CY
P
X0 = LCY P = 0 for a period P . In particular, one has LCY X0 = 0 and

L̃CY
X1

X0 = L̃CY t = 0. The first equation LCY X0 = 0 tells that q

4X0 could be expressed

as a polynomial of q

iX0, i = 0, 1, 2, 3 with coefficients being rational functions of a, b.

Using the relation q = b

�1(X0
qt)�2

∂

t

following from Proposition 3.8, we know that ∂

4
t

X0

is a polynomial in ∂

i
t

X0, 0, i = 1, 2, 3; ∂

j
t

qt, j = 0, 1, 2, 3 and B, C, B�1, C�1. Similarly, by

considering the second equation L̃CY t = 0, one sees that q

3
qt and thus ∂

3
t

qt is also contained

in the ring as claimed.

Remark 3.10. Note that when taking the derivative ∂

t

, negative powers of generators will

appear. But as mentioned in Remark 1.5, to avoid them one only needs to choose a suitable

set of generators carefully. In fact, in the final form of the graded ring bR we shall consider

below, we are going to make a specific choice of generators so that no negative powers will

appear in the derivatives of the generators.
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From Proposition 3.8 one can easily see that in fact the subring generated by ∂

i
t

A0, i =

0, 1, 2, 3; ∂

j
t

A00, j = 0, 1, 2; a

±, b

± is also closed under ∂

t

. We shall denote this differential

subring by ( eRsub, ∂

t

) in which the constant r does not show up.

Rings for non-compact CY 3-fold families

Now we consider the non-compact CY 3-fold families whose Picard-Fuchs equations Eq. (2.7)

reduce to some third order differential equations of the form Lelliptic � q.

One has X0 = 1 and thus A = qt = w0; moreover, the parameter t = 1
2pi k

�1Ftt =

1
2pi k

�1 qFt
qt is equal to w1

w0
, where w0, w1 are the periods of Lelliptic given in Eq. (1.16). Thus

the parameter t is the transcendental modulus of the elliptic curve sitting inside the

CY 3-fold and lies on the upper half plane H. Therefore, in these cases, one has R ⇠=

C[A±1, B±1, C±1] = M⇤(G0(N)), eR ⇠= C[A±1, B±1, C±1, E] = eM⇤(G0(N)).

Gradings

There are two natural gradings, denoted by (k, m), on the ring eR. The grading m indicates

that the element is a section of Lm and will be called the degree. Recall that X0 is a period

of the form
R

C W and C
aaa

= �
R

X W ^ ∂

3
a

W, where W is a section of the Hodge line bun-

dle L ! M, we can easily figure out the degree of the generators. The second grading,

called the weight k, is motivated by the studies of elliptic curve families and non-compact

CY 3-folds discussed above, in which t is really parametrizing the upper half plane H.

We then defines the degrees and weights for the quantities X0, qt, B, C, a, (a3C
aaa

) to be

(1, 0), (0, 1), (1, 1), (1, 1), (0, 0), (0, 2) respectively. Taking the derivative ∂

t

with respect to

t will not change the degree, but raise the weight by 2. Then we have the decomposition

R = �(k,m)Rk,m. Similarly, there is a such decomposition for the graded differential ring

( eR, ∂

t

).

The above discussions suggests that the rings R = C[(X0)±1, (qt)±1, B±1, C±1], eR =

R⌦ C[∂i
t

X0, i = 1, 2, 3; ∂

j
t

qt, j = 1, 2], defined on the deformation space M, are the ana-
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logues of M⇤(G), eM⇤(G) defined on the modular curve XG, and the weight k plays the role

of modular weight. The generators ∂

i
t

X0, i = 1, 2, 3; ∂

j
t

qt, j = 1, 2 should be considered as

the analogue of quasi-modular forms. We shall give more evidences for this later.

As explained earlier, one can get a smaller differential ring eRsub. It turns out that using

special Kähler geometry of the deformation space M, one may further reduce the number

of generators in eR�R. For example, for the quintic mirror family case considered below,

the sequence ∂

i
t

qt, i = 0, 1, 2 could be reduced to ∂

i
t

qt, i = 0, 1 as discussed in Lian and Yau

(1996a); Hosono and Lian (1996); Yamaguchi and Yau (2004). This is proved using the fact

that t is the canonical coordinate on the deformation space M (more than just being the

ratio of two periods), which we now turn to finally.

3.3 Differential rings from special Kähler geometry

In this section, we shall use properties of the special Kähler geometry on M to reduce the

number of generators in eR, and more importantly to define bR as the “non-holomorphic

completion" of eR.

We first start by reviewing some basic properties about the canonical coordinates and

the notion of holomorphic limit which will be important later. The discussions on these

concepts apply to multi-parameter CY 3-fold families.

3.3.1 Canonical coordinates and holomorphic limits

On a Kähler manifold M, according to Bershadsky et al. (1994), the canonical coordinates

t = {ti}i=1,2,···dim M around the base point p are defined to be the holomorphic coordinates

such that

∂tI Ki|p = 0 = ∂tI Gk
ij|p, 8 i, j, k = 1, 2 · · ·dimM , (3.25)

where I is a multi-index and ∂tI = ∂ti1 ∂ti2 · · · ∂tim , m = |I| � 0. Note that the first equation

is only a condition on the choice of the Kähler potential which transforms under the rule
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K 7! K + f + f̄ , where f is purely holomorphic.

These coordinates are studied elsewhere in different contexts, for example Kapranov

(1999); Higashijima and Nitta (2001); Higashijima et al. (2002); Gerasimov and Shatashvili

(2004). They are the normal coordinates for the Kähler geometry and can be constructed

using the holomorphic exponential map as in Kapranov (1999).

Exponential map and Gaussian normal coordinates

Now we shall recall some basic facts from Riemannian geometry. Given a Riemannian

manifold M with the metric Gij, the Gaussian normal coordinates base at the point p 2 M

could be obtained in two ways: either as a coordinate system centered around p such

that Sym(∂IGk
ij)|p = 0 , |I| � 0, where Sym(∂IGk

ij) means the symmetrization of ∂IGk
ij with

respect to the sub-indices I [ {i, j}; or as linear coordinates on the tangent vector space

Tp M defined by the exponential map expp : Tp M ! M. Using the second view point,

we get the following description: suppose a point q in a small neighborhood of p on

M is on the geodesic g(s) = expp(sv), where |v| = 1, and s is the arc-length parameter.

Assume q = expp(sv) for some s and fix a coordinate system x = {xi} near p on M, then

the Gaussian normal coordinates x = {x

i} of q = expp(sv) are related to the coordinates

x = {xi} by using the equations for the geodesic:

xi(expp(sv)) = xi(p) + sx

i �
•

Â
N=2

1
N!

Gi
N |psN

x

N , (3.26)

where Gi
N := rN�{i1,i2}Gi

i1i2 are computed in x = {xi} coordinates, and N is a multi-index

as before.

Holomorphic exponential map and canonical coordinates on Kähler manifolds

Now assume M is a Kähler manifold whose Kähler potential is K(z, z̄), where z =

{zi}i=1,2···dim M is a complex coordinate system. Suppose the base point p is taken to

be (z⇤, z̄⇤). From the second equation in Eq. (3.25), one can solve for t , see Higashijima and

Nitta (2001); Higashijima et al. (2002); Gerasimov and Shatashvili (2004), and get the the
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holomorphic analogue of Eq. (3.26):

ti(z; z⇤, z̄⇤) = Ki ‚̄(z⇤, z̄⇤; z⇤, z̄⇤)(K ‚̄

(z, z̄⇤; z⇤, z̄⇤)� K
‚̄

(z⇤, z̄⇤; z⇤, z̄⇤)) , (3.27)

where a function f defined near the base point (z⇤, z̄⇤) is denoted by f (z, z̄; z⇤, z̄⇤). The

holomorphic function f (z, z̄⇤; z⇤, z̄⇤) means the degree zero part in the Laurent expansion

of the function f (z, z̄; z⇤, z̄⇤) in z̄ centered at z̄⇤, where one thinks of (z, z̄) as independent

coordinates. This will be explained in Remark 3.11 below using holomorphic exponential

map.

The canonical coordinates can not be defined in terms of geodesics in the Riemannian

geometry since the exponential map is in general not holomorphic. However, there is a nice

construction of holomorphic exponential map which gives rise to these canonical coordinates,

see Kapranov (1999). To define the holomorphic exponential map, we first regard the

complex manifold M as a Riemannian manifold and thus get the map expR
p : TR

p M ! M.

This also defines the Gaussian normal coordinates x. Thinking of TR
p M as a complex vector

space equipped with the complex structure induced by the complex structure on M, then

in general the map expR
p : (x, x̄) 7! (z(x, x̄), z̄(x, x̄)) is not holomorphic. Now with the

assumption that the metric Gi ‚̄(z, z̄) is analytic in z, z̄, we can analytically continue the map

expR
p to the corresponding complexifications TC

p M, MC = M ⇥ M, where M is the complex

manifold with opposite complex structure as M.

The coordinates on the complexifications TC
p M, MC = M ⇥ M are given by (x, h) and

(z, w) respectively, they are the analytic continuation of the coordinates (x, x̄), (z, z̄) from

TR
p M ,! TC

p M, D : M ,! MC = M ⇥ M respectively, where D : M ! M ⇥ M, p 7! (p, p̄) is

the diagonal embedding. Here the underlying point of p̄ is really the same as p, but we

have used the barred notation to indicated that it is a point on the complex manifold M.

Since the Christoffel symbols Gk
ij(z, z̄) are analytic in (z, z̄), we know that the map

expC
p : (x, h) 7! (z(x, h), w(x, h)) is analytic, that is, holomorphic in (x, h). Moreover, the

map expC
p defines a local bi-holomorphism from a small neighborhood around the point

0 inside TC
p M to a small neighborhood of the point (p, p̄) inside MC. One claims that
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expC
p |T1,0 M gives a holomorphic map T1,0

p M ! M and is a local bi-holomorphism from a

small neighborhood of 0 2 Tp M to a small neighborhood of p 2 M. To show that it maps

T1,0
p M to M, we only need to show that w � expC

p |T1,0
p M = w( p̄), that is, w(x, h)|

h=0 = w( p̄).

Recall that z̄ and thus w satisfies the equation for the geodesic equation

d2

ds2 z̄k + Gk̄
ī j̄

dz̄ī

ds
dz̄j̄

ds
= 0,

dz̄k̄

ds
(0) = x̄

k̄ = 0, z̄(0) = z̄( p̄) .

It is easy to see that w(s) = w( p̄) is one and thus the unique solution to the differential

equation. Therefore, w � expC
p (x, h = 0) = w( p̄) as desired. Since z(x, h) is holomorphic in

both x, h, we know z(x, h = 0) is holomorphic in x. The same reasoning for the exponential

map expR
p shows that it is locally a bi-holomorphism.

Hence one gets a holomorphic exponential map exphol
p := expC

p |T1,0
p M : T1,0

p M ! M. We

now denote the coordinate x on T1,0
p M by t, this is then the canonical coordinates desired

since the equation satisfied by t which is similar to Eq. (3.26) implies the second equation in

Eq. (3.25). This can be checked by direct computations.

The exponential maps expR
p and exphol

p are contrasted as follows:

expR
p = expC

p |TR
p M = expC

p |
T1,0

p M�T1,0
p M

,

exphol
p = expC

p |T1,0
p M = expC

p |j(T1,0
p M)=T1,0

p M�{0} .

where T1,0
p M � T1,0

p M means the image of the map T1,0
p M ! T1,0

p M � T0,1
p M, v 7! (v, v⇤),

where v⇤ is the complex conjugate of v; and j(T1,0
p M) is the image of the map j : T1,0

p M 7!

T1,0
p M � T0,1

p M, v 7! (v, 0).

Holomorphic limit

The holomorphic limit of any function f (z, z̄) based at z⇤ is defined as follows. First one

analytically continues the map f to a map defined on MC. Using the fact that expC
p is a local

diffeomorphism from TC
p M to MC, we get f̂ = f � expC

p : TC
p M ! C. The holomorphic limit

of f (z, z̄) is given by f̂ � j : T1,0
p M ! TC

p M ! C.

From now on, to maintain consistency with the notations used in the literature, we shall

104



use (z, z̄), (t, t̄) for (z, w), (x, h) when considering holomorphic limits, if no confusion arises.

In the following, sometimes we shall drop the notations z⇤, z̄⇤ for the base point if it is clear

from the context.

Remark 3.11. In the canonical coordinates t on the Kähler manifold M, the holomorphic

limit is described by f � exphol
z⇤ = f̂ |j(T1,0

z⇤ M) : T1,0
z⇤ M ⇥ {0} ! C, t 7! f � exphol

z⇤ (t). In terms of

an arbitrary local coordinate system z on M, taking the holomorphic limit of the function

f (z, z̄) at the base point z⇤ is the same as keeping the degree zero part of the Laurent

expansion of f (z, z̄) with respect to z̄, where the center of the Laurent expansion is z̄⇤. That

is, it is the evaluation map evz̄⇤ : f (•, •) 7! f (•, z̄⇤). This is the limit that is used in the study

of topological string theory in Bershadsky et al. (1993, 1994).

One thing that needs to be taken extra care of is the holomorphic limit of det G appearing

in computing the topological string partition functions. One has Gziz̄ ‚̄

= Gtat̄b̄
∂ta

∂zi
∂t̄b̄

∂z̄ ‚̄

, i, ‚̄, a, b̄ =

1, 2, · · ·dim M and log det Gziz̄ ‚̄

= log det Gtat̄b̄ + log det ∂ta

∂zi + log det ∂t̄b̄

∂z̄ ‚̄

. Since only the holo-

morphic derivative of log det Gziz̄ ‚̄

will appear in the topological string partition functions

(and also in the ring bR we shall construct below), the purely anti-holomorphic term can be

ignored. Moreover, from Eq. (3.25) one can see that log det Gtat̄b̄(t, t̄) = log det Gtat̄b̄(t⇤, t̄⇤) is

independent of t. Therefore, when computing log det Gziz̄ ‚̄

one can effectively exclude the

purely anti-holomorphic term and the term log det Gtat̄b̄(t, t̄), then one only needs to take

the holomorphic limit of the term log det ∂ta

∂zi . This could also be seen from Eq. (3.27), which

implies that
∂ti

∂zk (z, z̄⇤) = Ki ‚̄(z⇤, z̄⇤)Kk ‚̄

(z, z̄⇤) . (3.28)

Therefore, in the coordinate system z, the holomorphic limit of the metric Gk ‚̄

, denoted by

lim Gk ‚̄

, is given by

lim Gk ‚̄

(z, z̄) = Gk ‚̄

(z, z̄⇤) =
∂ti

∂zk (z)Gi ‚̄(z⇤, z̄⇤) . (3.29)
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Variation of the holomorphic exponential map and canonical coordinates

The holomorphic exponential map exphol
p does not depend holomorphically on the base

point z⇤, see Kapranov (1999). The canonical coordinates thus also have non-holomorphic

dependence, as we shall also see below in some examples. This is due to the fact that the

space T1,0
z⇤ M changes non-holomorphically when z⇤ moves in M: that is, ∂

∂z̄⇤ pJz⇤ 6= 0 , where

pJz⇤ =
1
2 (id � i Jz⇤) is the projection from TC

z⇤ M to T1,0
z⇤ M. For a more precise discussion on

this, see Kapranov (1999).

Take M to be the base M of the Calabi-Yau threefold family p : X ! M and think of

T1,0
z⇤ M as a Lagrangian in TC

z⇤M, this then fits in the frame work of geometric quantization

and is related to the base-point independence of the total free energy Ztop = Â•
g=0 l

2g�2F (g)

of the topological string theory for the family, as studied in Witten (1993). The background

(base-point) independence of Z tells that it satisfies some wave-like equations on M arising

from geometric quantization. These equations are shown in Witten (1993) to be equivalent to

the master anomaly equations for Z in Bershadsky et al. (1994) which are identical to the set

of holomorphic anomaly equations for the topological string partition functions {F (g)}•
g=0.

3.3.2 Examples of canonical coordinates

In this section we shall compute the canonical coordinates for some Kähler manifolds.

Example 3.12 (Fubini-Study metric). Consider the Fubini-Study metric defined on P1

wFS =
i
2

1
(1 + |z|2)2 dz ^ dz̄ ,

with Kähler potential K = ln(1 + |z|2). It follows then

Kz =
z̄

(1 + |z|2) , Kzz̄ =
1

(1 + |z|2)2 , ∂

N
z Kz̄ =

(�1)N+1N!z̄N�1

(1 + |z|2)N+1 , N � 1 .

At the point p represented by z⇤ = 0, we can see that ∂

N
z K|p = 0 = ∂

N
z Kzz̄|p, N � 1. Hence z

is the canonical coordinate based at z⇤ = 0. To find the canonical coordinate at a generic
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point p represented by z⇤, we apply Eq. (3.27) and get

t(z; z⇤, z̄⇤) = (1 + |z⇤|2)2
✓

z
(1 + zz̄⇤)

� z⇤
(1 + z⇤ z̄⇤)

◆
.

In particular, at z⇤ = 0, this coincides with z. The non-holomorphic dependence on the base

point can be easily seen from this formula.

Example 3.13 (Poincare metric). Consider the SL(2, Z) invariant metric

w =
i
2

K
tt̄

dt ^ dt̄ =
1
y2 dx ^ dy

on the Poincare upper half plane H, where e�K = t�t̄

i , t = x + iy. Straightforward

computations show that

K
t̄

=
1

t � t̄

, K
tt̄

= � 1
(t � t̄)2 .

It follows that the canonical coordinate based at p given by t⇤ is

t(t; t⇤, t̄⇤) = �(t⇤ � t̄⇤)
2
✓

1
t � t̄⇤

� 1
t⇤ � t̄⇤

◆

In particular, if one takes the base point t⇤ = i•, then the canonical coordinate t coincides

with the complex coordinate on H from the embedding H ,! C.

Example 3.14 (Weil-Petersson metric for elliptic curve family). Taking the elliptic curves

parametrized by H. As in the proof of Proposition 3.4, one takes the holomorphic top form

W
t

= dz
t

on T
t

. Using the diffeomorphism from the fiber T
t

to the fiber T
t⇤

z
t

=
t � t̄⇤
t⇤ � t̄⇤

z
t⇤ +

t⇤ � t

t⇤ � t̄⇤
z̄

t⇤ ,

one can compute the Kähler potential for the Weil-Peterson metric from

e�K(t,t̄;t⇤,t̄⇤) = i
Z

T
t

W
t

^ W
t

=
t � t̄

i
.

This is then the Poincare metric on the upper half plane considered in the above example.

Example 3.15. Suppose on the Kähler manifold M there exists complex coordinates z = {zi}
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and a holomorphic function F(z), so that the Kähler form is given by

w =

p
�1
2

Imtij dzi ^ dz̄j =
p
�1∂∂̄K ,

where K = 1
2 Im(wiz̄i), wi(z) = ∂zi F(z), tij(z) = ∂zi ∂zj F(z). The canonical coordinates are

then given by

ti(z; z⇤, z̄⇤) =
1

tij(z⇤)� t̄ij(z̄⇤)
(wj(z; z⇤, z̄⇤)� wj(z⇤; z⇤, z̄⇤)� t̄jk(z̄⇤)(zk � zk

⇤)) .

Manifolds satisfying these properties are studied in detail in Freed (1999).

3.3.3 Special Kähler metric on deformation spaces

Now we take M to be the base of the family p : X ! M of CY 3-folds. Assume that

dimM = h(= h2,1(X)).

Fixing a section W of the the Hodge line bundle L ! M and choosing a symplectic

basis {AI , BJ}I,J=0,1,···h for H3(X, Z), then the periods are given by Eq. (10):

(
Z

A0
W,
Z

Aa
W,
Z

Ba
W,
Z

B0

W) = (X0, Xa,Fa,F0) = X0(1, ta, Fta , 2F � taFta) ,

where a = 1, 2, · · · h and F (XI) is a homogeneous holomorphic function of X of degree 2,

see Strominger (1990); Bershadsky et al. (1994). Here the function F is defined by (X0)�2F

and the sub-indices mean derivatives with respect to corresponding coordinates. Using

the fact that the prepotential F(t) has the form F(t) = kabc
3! tatbtc + Q(t) + Âd Ndedt, where

Q(t) is a quadratic polynomial of t = {ta}, it can be shown that the special coordinates

{ta(z; z⇤, z̄⇤)}h
a=1 defined near the large complex structure limit z⇤ = 0 are the canonical

coordinates based at z⇤ by checking that Eq. (3.25) is satisfied, see Bershadsky et al. (1994)

for details. As discussed in Eq. (2.19) in Section 2.3.1, one has the following holomorphic

limits:

lim
LCSL

Kzi = �∂zi log X0, lim
LCSL

Gzk

zizj =
∂zk

∂ta
∂

∂zi
∂ta

∂zj . (3.30)

In the remaining of this work we will only consider the holomorphic limit based at the

large complex structure z⇤ = 0 which is given by t̄ = i•, and simply denote this limit by
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lim without specifying the base point. This limit is interesting since it is in this particular

limit that the topological string partition functions on a CY 3-fold X are identical (under the

mirror map) to the generating functions of Gromov-Witten invariants of its mirror manifold

X̌, as explained in Introduction.

3.3.4 Ring of Yamaguchi-Yau and the construction of the triple

In this section, we shall construct the ring bR. We shall review the construction of a ring

in Yamaguchi and Yau (2004) for the quintic mirror family. The purpose is to reduce the

number of generators for the algebra eR defined above and also find its non-holomorphic

completion bR.

The construction of Yamaguchi-Yau says that the anti-holomorphic dependence of the

normalized topological string partition functions F(g) = (X0)2g�2F (g) is encoded in the

generators

q

i log e�K, i = 1, 2, 3, q log det G ,

while the coefficients are polynomials of

q log a

3C
aaa

= q log
k

b

=
a

b

.

More precisely, according to the Picard-Fuchs equation Eq. (3.16) and the definition Eq. (3),

one has

LCY e�K =

 
q

4 � a

4

’
i=1

(q + ci)

!
e�K = 0 , (3.31)

where ci = i/5, i = 1, 2, 3, 4. This then implies that q

4e�K is a polynomial of q

ie�K, i = 1, 2, 3

and a

b

. The special geometry relation Eq. (4) implies that

∂

a

∂̄

ā

Ga

aa

= ∂

a

G
aā

� ∂

a

(e2KGaāGaāC
āāā

) . (3.32)

It follows then

∂̄

ā

{(∂
a

Ga

aa

+ (Ga

aa

)2 � 2Ga

aa

∂

a

K

�4∂

a

K
a

+ 2(∂
a

K)2 + (∂
a

log C
aaa

)(2∂

a

K � Ga

aa

)} = 0 .
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Hence we know

∂

a

Ga

aa

+ (Ga

aa

)2 � 2Ga

aa

∂

a

K

�4∂

a

K
a

+ 2(∂
a

K)2 + (∂
a

log C
aaa

)(2∂

a

K � Ga

aa

) = f
a

for some holomorphic quantity f
a

. Taking the holomorphic limit of the left hand side,

according to Eq. (3.30), we get

∂

2
a

log
∂t
∂a

+ (∂
a

log
∂t
∂a

)2 + 2∂

a

log
∂t
∂a

∂

a

log X0 + 4∂

a

∂

a

log X0

+2(∂
a

log X0)2 + (∂
a

log C
aaa

)(�2∂

a

∂

a

log X0 � ∂

a

log
∂t
∂a

) = f
a

.

The holomorphic quantity was fixed in Lian and Yau (1996a); Yamaguchi and Yau (2004)

(see also Hosono (2008)) to be 1� 12
5 a

a

2
b

.

One can also replace the coordinate a in Eq. (3.32) by x = ln a defined locally on the

punctured deformation space, then we get

q

2 log Gxx̄ + (q log Gxx̄)
2 � 2q log Gxx̄qK

�4q

2K + 2(qK)2 + (q log Cxxx)(2qK � q log Gxx̄) = fx , (3.33)

where q = ∂x = a

∂

∂a

, Cxxx = a

3C
aaa

= k

b

, q log Cxxx = a

b

and fx is another holomorphic

quantity. Now we take the holomorphic limit of the above identity and get

q

2 log qt + (q log qt)2 + 2q log qt q log X0

4q

2 log X0 + 2(q log X0)2 + (q log Cxxx)(�2q log X0 � q log qt) = fx , (3.34)

with

fx =
2
5

a

b

.

Note that fx is not a tensor. Therefore, as shown in Yamaguchi and Yau (2004), one gets the

following Yamaguchi-Yau ring

RYY = C[qi log e�K, i = 1, 2, 3; Gx
xx = q log Gxx̄, q log Cxxx =

a

b

] . (3.35)

110



Note that

qq log Cxxx = q

a

b

=
a

b

2 = q log Cxxx(q log Cxxx + 1) , (3.36)

then the ring RYY is closed under taking the derivative q. The generators of this ring

(RYY, q) are essentially Kx, Kxx, Kxx, Gx
xx, q log Cxxx.

However, it is not convenient to directly interpret this as the analogue of the ring of

almost-holomorphic modular forms. For this reason, we connect this ring (RYY, q) to

( eR, ∂

t

).

Due to Eq. (3.34), and the relation between the derivatives q and ∂

t

given by q =

b

�1(X0
qt)�2

∂

t

which follows from Proposition 3.8, we know that the set of generators

for eR could be reduced to ∂

i
t

X0, i = 0, 1, 2, 3; ∂

j
t

qt, j = 0, 1; B±, C±. Recall that R =

C[(X0)±1, (qt)±1, B±1, C±1], then one can see that

eR = C[∂i
t

log X0, i = 1, 2, 3; ∂

j
t

log qt, j = 1; a, b]⌦R .

Recall Eq. (2.17), we get the following

q log e�K(x,x̄) = q log(X0X̄0e�K(t,t̄)) = q log X0 + q log e�K(t,t̄)

q log Gxx̄ = q log(qt q̄t Gtt̄) = q log qt + q log Gtt̄ .

their holomorphic limits are

lim q log e�K(x,x̄) = q log X0, lim q log Gx,x̄ = q log qt ,

Therefore, the holomorphic limit of the ring RYY is given by

limRYY = C[qi log X0, i = 1, 2, 3; q log qt,
a

b

= q log Cxxx] (3.37)

That is, the generators q

i log X0, i = 1, 2, 3; q log qt in eR0,0 are equivalent to the holomorphic

limits of the non-holomorphic generators in RYY. It follows then that

eR = limRYY ⌦R . (3.38)
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This motivates us to define the non-holomorphic completion bR of eR as

bR = RYY ⌦R . (3.39)

Moreover, F(g) 2 RYY ✓ bR0,0, where RYY and bR0,0 are only differed by the holomorphic

generators of degree and weight zero.

3.3.5 Summary of results

In summary, in Section 3.2 we have constructed ( eR, ∂

t

) as a graded differential ring which

is an analogue of the ring of quasi-modular forms. In this section we then used special

Kähler geometry to refine the structure of the generators for the ring and to get

R = C[(X0)±1, (qt)±1, B±1, C±1] ,

eR = R⌦ C[∂i
t

log X0, i = 1, 2, 3; ∂

t

log qt] ,

bR = R⌦ C[∂i
t

log e�K, i = 1, 2, 3; ∂

t

log det Gxx̄] .

Recall the structure of the graded rings (M⇤(G), eM⇤(G), bM⇤(G)) defined for pG : EG ! XG

∂

t

: M⇤(G) ! eM⇤(G) ,

“modular completion" : eM⇤(G) ! bM⇤(G) ✓ eM⇤(G)[Y], Y =
1
12

�3
pImt

,

“constant term map" Y ! 0 : bM⇤(G) ! eM⇤(G) ,

∂

t

: eMk(G) ! eMk+2(G) ,

b
∂

t

= ∂

t

+ kY : bMk(G) ! bMk+2(G) .

From Eq. (2.17), we know

∂

t

log e�K(x,x̄) = ∂

t

log(X0X̄0e�K(t,t̄)) = ∂

t

log X0 + ∂

t

log e�K(t,t̄) (3.40)

∂

t

log Gxx̄ = ∂

t

log(qt q̄t Gtt̄) = ∂

t

log qt + ∂

t

log Gtt̄ . (3.41)
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Define Y1 = ∂

t

log Gtt̄, Y2 = �∂

t

log e�K(t,t̄), then we have the following analogue between

(R, eR, bR) defined for p : X ! M and (M⇤(G), eM⇤(G), bM⇤(G)) defined for pG : EG ! XG:

∂

t

: R ! eR ,

“non-holomorphic completion" : eR ! bR ✓ eR[Y1, Y2]

“holomorphic limit" Y1, Y2 ! 0 : bR ! eR ,

D
t

= ∂

t

+ k∂

t

log qt + m(∂
t

log X0) : eRk,m(G) ! eRk+2,m(G) ,

cD
t

= ∂

t

+ k∂

t

log Gxx̄ + m(�∂

t

log e�K) : bRk,m ! bRk+2,m .

where the operators D
t

, bD
t

come from the covariant derivative ∂x + kGx
xx + mKx on sections

of Sym⌦kTM⌦ Lm.

The above construction for (R, eR, bR) could also be formally applied to the elliptic

curve families in Eq. (1.14), see Hosono (2008). The Weil-Petersson metric is determined

from e�K(a,ā) = iw0w0(t � t̄) = iw0w0e�K(t,t̄). The quantities Y1, Y2 are now computed

to be �2
12

�3
pIm t

and �1
12

�3
pIm t

, respectively. The triple (R, eR, bR) coincides with the triple

(M⇤(G), eM⇤(G), bM⇤(G)), as well as the maps among the members in the triple.

For the non-compact CY 3-fold families in Eq. (3.15), one has X0 = 1 and qt = A. The

rings (R, eR) coincide with (M⇤(G), eM⇤(G)), as mentioned earlier in this chapter. But the

explicit forms for Y1, Y2 are not easy to compute in these cases8.

It is easy to see that one should be able to apply the same construction for the quintic

mirror family to construct triples (R, eR, bR) for other one-parameter CY 3-fold families

whose Picard-Fuchs equation takes the form in Eq. (3.17) with Â4
i=1 ci = 2. The only thing

that needs to be checked is that the holomorphic quantity fx in Eq. (3.34) is contained in

C[B±1, C±1]. In fact, for many CY families it is rational, see Lian and Yau (1996a); Hosono

and Lian (1996); Yamaguchi and Yau (2004).9 We shall not discuss the details in this work.

8This is because the Picard-Fuchs equation for a non-compact CY 3-fold family has only three periods, and
the Kähler potential of the Weil-Petersson metric cannot be computed directly as for the compact cases. One
needs to compactify Chiang et al. (1999) the non-compact CY 3-fold to a compact CY geometry, and then do
computations there, after that one takes the decompactification limit of corresponding quantities carefully.

9The author thanks Professor Shinobu Hosono for email correspondences and telling him the references on
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3.3.6 Special geometry polynomial rings and their applications

Most of the generators in bR obtained from the elements in RYY have weight zero. In Alim

et al. (2013), a set of the non-holomorphic, positive weight generators for bR are chosen

so that no negative powers of the generators appear upon taking the derivative bD. The

particular form of the ring bR is termed the special polynomial ring in Alim et al. (2013). For

completeness, in the following we shall review the construction of the generators therein.

First notice that the set of generators in bR could be chosen to be X0D̂i log e�K, i = 1, 2, 3;

qt D̂ log det Gxx̄. This is equivalent to the set of generators Sxx, Sx, S, Kx in Eq. (20). The

reason is as follows. From the integrated special geometry relation Eq. (7)

Gx
xx = 2Kx � CxxxSxx + sx

xx (3.42)

we know that up to multiplication and addition by Kx and holomorphic quantities, Sxx

is essentially Gx
xx = q log det Gxx̄. The first or last equation in Eq. (20) tells that Sx is

essentially ∂xKx, and the second tells that S is ∂

2
xKx. Moreover, the derivatives of the genera-

tors in RYY coincide with the covariant derivatives for the generators Sxx, Sx, S, Kx in Eq. (20).

Now a nice set of generators for the special geometry polynomial ring bR can be chosen

as follows. First one makes the following change of generators in Eq. (22) following Alim

and Länge (2007)

S̃tt = Stt, S̃t = St � SttKt, S̃ = S � StKt +
1
2

SttKtKt, K̃t = Kt .

Then as in Eq. (2.10) one defines t = 1
2pi k

�1
∂tFt which gives ∂t

∂t = 1
2pi k

�1Cttt. After that one

forms the following quantities on the deformation space M:

K0 = kC�1
ttt (qt)�3 , G1 = qt , K2 = kC�1

ttt K̃t ,

T2 = S̃tt , T4 = C�1
ttt S̃t , T6 = C�2

ttt S̃ ,

where the propagators S̃tt, S̃t, S̃ are normalized by suitable powers of X0 so that they are

this.
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sections of L0. That is, they have degree zero. The weights of these generators are the

sub-indices they carry. It follows that the derivatives of the generators of bR given in Eq. (20)

now become, see Alim et al. (2013),

∂

t

K0 = �2K0 K2 � K2
0 G2

1 (h̃
a

aaa

+ 3(sa

aa

+ 1)) ,

∂

t

G1 = 2G1 K2 � kG1 T2 + K0G3
1(s

a

aa

+ 1) ,

∂

t

K2 = 3K2
2 � 3kK2 T2 � k

2T4 + K2
0 G4

1k
aa

� K0 G2
1 K2 h̃a

aaa

,

∂

t

T2 = 2K2 T2 � kT2
2 + 2kT4 + k

�1K2
0G4

1 h̃a

aa

,

∂

t

T4 = 4K2T4 � 3kT2 T4 + 2kT6 � K0 G2
1 T4h̃a

aaa

� k

�1K2
0 G4

1 T2k
aa

+ k

�2K3
0 G6

1 h̃
aa

,

∂

t

T6 = 6K2 T6 � 6kT2 T6 +
k

2
T2

4 � k

�1K2
0 G4

1 T4 k
aa

+ k

�3K4
0 G8

1 h̃
a

� 2 K0 G2
1 T6h̃a

aaa

,

(3.43)

where ∂

t

= 1
2pi

∂

∂t

. The quantities h̃a

aaa

, sa

aa

, k
aa

, h̃a

aaa

, h̃a

aa

, h̃
aa

, h̃
a

are some holomorphic quan-

tities. It turns out that they are polynomials of an additional generator C0 = q log Cxxx = a

b

with

∂

t

C0 = C0(C0 + 1)G2
1 . (3.44)

These explicit polynomials for the quintic mirror family case could be found in Alim et al.

(2013) and are omitted here.

The generators can be used to simplify the holomorphic anomaly equations as follows.

As mentioned earlier in the previous section, one has F(g) := (X0)2g�2F (g) 2 RYY ✓ bR0,0.

The holomorphic anomaly equations then become, see Alim et al. (2013),

∂F(g)

∂T2
� 1

k

∂F(g)

∂T4
K2 +

1
k

2
∂F(g)

∂T6
K2

2 =
1
2

g�1

Â
r=1

∂tF(g�r)
∂t F(r) +

1
2

∂

2
t F(g�1) ,

∂F(g)

∂K2
= 0 ,

where ∂t = (X0)�2(C0 + 1)(qt)�3
∂

t

.

Example 3.16. Consider the local P2 example. As mentioned earlier in Section 3.2, we have

that M ⇠= X0(3), eR ⇠= eM⇤(G0(3)) = C[A±1, B±1, C±1, E]. In this case one can consistently

choose the generators so that T4 = T6 = K2 = 0, T2 = Ê
2 with ∂t = k

�1Cttt∂t

= B�3
∂

t

. Then

the holomorphic anomaly equations simplify greatly. In particular, the equation for the
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holomorphic limit of F(g) = (X0)2g�2F (g) at the large complex structure limit, denoted by

Fg 2 eR0,0 ✓ C[A±1, B±1, C±1, E], becomes the one in Section 2.4

∂EFg =
1

4B6

 
g�1

Â
r=1

∂

t

Fg�r∂

t

Fr �
E � A2

2
∂

t

Fg�1 + ∂

t

∂

t

Fg�1

!
.

It would be interesting to apply the transformation a 7! b = 1 � a according to the rules

mentioned in Section 3.1 to the quintic mirror family case and see whether it would give a

duality on topological string partition functions.

3.4 Conclusions and discussions

We constructed the graded rings (R, eR, bR) on the deformation space M from the periods

of the Picard-Fuchs equation and special Kähler geometry on the deformation space. A

parallelism between these rings and the rings M⇤(G), eM(G), bM(G) was made: the way they

were constructed; the relations among the members of the triple of rings. We further showed

that in some special cases the rings (R, eR) are equivalent to the rings of modular quantities

(M⇤(G), eM(G)). These give some evidences that indeed the graded rings (R, eR, bR) are

analogues of the rings of modular objects M⇤(G), eM(G), bM(G). These relations, as well as the

non-holomorphic and holomorphic generators, are summarized in Figure 5 in Introduction

and the following table.

Table 3.1: Generators of the ring for compact and non-compact CY 3-fold geometries,
where for non-compact geometries special choices for ambiguities are made.

compact
geometries

non-compact
geometries

Local P2

and local dPn, n = 5, 6, 7, 8

non-holomorphic

Sxx ⇠ Gx
xx Sxx ⇠ Gx

xx Sxx = 1
2

Ê(t)
A2(t)

Sx ⇠ Kxx limLCSL Sx = 0 limLCSL Sx = 0
S ⇠ Kxxx limLCSL S = 0 limLCSL S = 0

Kx limLCSL Kx = 0 limLCSL Kx = 0

holomorphic
A0 = X0 A0 = X0 = 1 A0 = X0 = 1

A00 = qt, B, C A00 = qt, B, C A00 = A(t), B(t), C(t)

We also discussed some of their applications in solving the holomorphic anomaly equa-
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tions.

In the above construction of the triple of graded rings (R, eR, bR), the parameter t =

1
2pi k

�1Ftt defined in Eq. (2.10) on the deformation space M was introduced to match the

known modularity in the non-compact examples, see Aganagic et al. (2008). There are a

number of interesting questions raised in Alim et al. (2013) about this quantity t which we

would like to address here and wish to pursue in the future.

Variation of Hodge structures

For the family p : X ! M of non-compact CY 3-folds discussed in Chapter 2, the parameter

t is exactly the transcendental modulus for elliptic curve E
a

sitting inside the CY 3-fold

X
a

. It is the normalized period for the elliptic curve and lies on the upper half plane. This

results from the fact that the vector space of the periods (1, t, Ft) of X
a

is closed under the

monodromy, and upon taking derivatives these periods become (0, w0, w1), where the latter

two are the two periods of E
a

. In other words, while the three periods (1, t, Ft) characterizes

the variation of complex structure of the CY 3-fold, the quantities (qt, qFt) characterizes the

variation of complex structure of the elliptic curve sitting inside it.

However, for a general one-parameter compact CY 3-fold family, e.g., the quintic mirror

family, the vector space of periods (X0, X0t, X0Ft) is not invariant under the monodromy

group. It is not clear what the geometric meaning or Hodge-theoretic meaning of t =

1
2pi k

�1Ftt is.

Enumerative content of t

10

For the particular non-compact geometries in Eq. (2.7), the Fgs solved in e.g., Alim et al.

(2013) from the holomorphic anomaly equations are explicit quasi-modular functions in

t (see also Aganagic et al. (2008) for related work). Whether the q
t

expansions of the

10The author thanks Murad Alim, Yaim Cooper and Shing-Tung Yau for discussions on this.

117



topological string partition functions have any enumerative content and how the qt and q
t

expansions are related beg an explanation.

Recall that the mirror symmetry conjecture predicts for the CY 3-fold family p : X ! M,

the holomorphic limit Fg = lim(X0)2g�2F (g) at the large complex structure limit is identical

to the generating function of genus g Gromov-Witten invariants of X̌, that is, because of the

interpretation of Eq. (2), we have

Fg(t) =
•

Â
d=0

NGW
g,d qd

t , qt = et , (3.45)

where NGW
g,d denotes the genus g degree d Gromov-Witten invariants of the mirror manifold

X̌. In particular, the prepotential F(t) is given by

F(t) =
k

3!
t3 +

•

Â
d=1

NGW
g=0,dqd

t ,

then t = 1
2pi k

�1Ftt is the function determined from

2pit = t + k

�1
•

Â
d=1

NGW
g,d d2qd

t , qt = et . (3.46)

As discussed in Section 2.5, this implies that

q
t

= exp 2pit = (�qt)(1 +O(qt)) . (3.47)

It is natural to expect that there should be an enumerative problem associated to t in the

sense

Fg(t) =
•

Â
d=0

Nhyp
g,d qd

t

, (3.48)

where like the Gromov-Witten invariants NGW
g,d , the numbers Nhyp

g,d may hypothetically count

certain kind of invariants. Comparing the Eq. (3.48) with Eq. (3.45), we can then find the

“multiple-cover formula" relating NGW
g,d and Nhyp

g,d according to Eq. (3.47).

We don’t have answers to any of these questions, and shall only display some examples

below.

Example 3.17 (Resolved conifold). Consider the resolved conifold which is the total space of
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OP1(�1)�OP1(�1) ! P1 and is a non-compact CY 3-fold. The Picard-Fuchs operator of

the mirror CY family is given by, see e.g., Forbes and Jinzenji (2005) and references therein,

LCY = q(
a

1 � a

)�1
q

2 . (3.49)

Near the large complex structure limit given by a = 0, a basis of the periods could be chosen

to be

X0 = 1, t = ln(�a), Ft ⇠ (ln(�a))2 +O(a0) . (3.50)

Therefore near a = 0, one has t = ln a and thus qt = a. Moreover, the genus zero

Gromov-Witten invariants are, see Aspinwall and Morrison (1993); Manin (1995); Voisin

(1996),

NGW
0,d =

1
d3 , (3.51)

and the prepotential is

F(t) =
k

3!
t3 +

•

Â
d=1

NGW
0,d qd

t =
k

3!
t3 +

•

Â
d=1

1
d3 qd

t =
k

3!
t3 + Li3(qt) . (3.52)

This implies in particular that

Cttt = k +
•

Â
d=1

qd
t = k +

qt

1 � qt
. (3.53)

The function t then satisfies

2pit = k

�1Ftt = t + k

�1
•

Â
d=0

1
d

qd
t = t � k

�1 ln(1 � qt) . (3.54)

Note that k can not be determined by studying the periods and is ambiguous. Consideration

in physics in Vafa (2001) tells that a natural choice is k = 1. In the following, we shall take

this choice.

Remark 3.18. From Eq. (3.54) one can see that t is itself the generating function of the

sequence of numbers 1
d = d2NGW

0,d , d = 1, 2, · · · . These numbers appear in the study of the

stable-quotient invariants defined in Marian et al. (2011) with

d2NGW
0,d =

Z

[Q0,2(P1,d)]vir
e(Ob) [ ev⇤1 H [ ev⇤2 H , (3.55)
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where Ob is the obstruction bundle in the construction of stable-quotient invariants, and the

two insertions which give rise to ev⇤1 H [ ev⇤2 H are required for the stability in genus 0.

For higher genus partition functions, it is well known that, see Faber and Pandharipande

(1999),

NGW
g,d = d2g�3NGW

g,1 =
|B2g|

2g(2g � 2)!
d2g�3, (3.56)

Fg =
|B2g|

2g(2g � 2)!
Li3�2g(qt) in particular, F1 = � 1

12
log(1 � qt) . (3.57)

To extract the numbers Nhyp
g,d associated to t, we make use of Eq. (3.54) which gives rise to

2pit = t � ln(1 � qt), q
t

=
qt

1 � qt
, qt =

q
t

1 + q
t

.

Now from Eq. (3.53), one gets

Cttt = kt +
qt

1 � qt
= k ln

q
t

1 + q
t

+ q
t

= 2pikt + q
t

� k

•

Â
k=1

(�1)kqk
t

. (3.58)

It follows that

Nhyp
0,d = k, d = 0, Nhyp

0,d = 1 + k, d = 1, Nhyp
0,d = (�1)d+1

k, d � 2 .

For the generating function ∂tF1, we get

∂tF1 =
1
12

qt

1 � qt
=

1
12

q
t

. (3.59)

This then tells that

Nhyp
1,d =

1
12

, d = 1, Nhyp
1,d = 0, d � 2 .

For higher genus partition functions, we have

•

Â
d=1

Nhyp
g,d qd

t

=
|B2g|

2g(2g � 2)!
Li3�2g(qt

(1 + q
t

)�1) =
|B2g|

2g(2g � 2)!
q

2g�3
qt q

t

. (3.60)

Since qqt := qt
∂

∂qt
= (1 + q

t

)qq
t

, one can then find Nhyp
g,d by direct computations. For any
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g � 2, the first few invariants with d = 1, 2, 3 · · · are listed as follows:

Nhyp
g,d : 1, �2 + 42�g, 6 � 3 ⇤ 25�2g + 2 ⇤ 92�g ,

�24 + 3 ⇤ 29�4g � 8 ⇤ 35�2g + 9 ⇤ 43�g,

120
⇣

1 � 28�4g � 25�2g + 53�2g + 2 ⇤ 92�g
⌘
· · ·
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Chapter 4

Conclusions and future directions

This thesis studied the arithmetic aspects of the moduli spaces of some CY 3-folds and some

of their applications.

In this first part of the thesis, we considered the CY 3-fold families KP2 , KdPn , n = 5, 6, 7, 8

whose mirror curve families are the elliptic curve families of En type. We then used the roles

of the moduli spaces of the mirror CY 3-folds as the bases of the corresponding elliptic curve

families and concluded that they are modular curves. Under the identification, the singular

points on the moduli space of CY 3-folds become the cusps and elliptic points. Moreover,

the Fricke involution exchanges the two cusp classes and fixes the rest of branch point on

the modular curve. From the perspective of CY 3-folds, it exchanges the large complex

structure limit with the conifold point. This then allows to analyze the boundary conditions

in the BCOV holomorphic anomaly equation and use some elementary properties of the

modular form theory to solve for the topological string partition functions genus by genus

recursively. We then proved an integrality result of the Gromov-Witten invariants of the CY

3-folds under the assumption that mirror symmetry conjecture holds true in these cases.

We also mentioned the physics interpretation of the Fricke involution as the Seiberg-Witten

S-duality in Seiberg-Witten theory.

In the second part of the thesis, we constructed some differential rings from the Picard-

Fuchs equation and the special Kähler geometry on the deformation spaces for some



one-parameter CY 3-fold families. There rings enjoy very similar properties to those of the

rings of quasi modular forms and almost-holomorphic modular forms defined for elliptic

curve families parametrized by modular curves.

The main difficulties in understanding the arithmetic properties of the moduli spaces

of more general CY 3-folds suited for our purposes lie in the following: 1. global Torelli

type theorems for more general CY 3-folds are lacking (see e.g., Carlson et al. (2003); Voisin

(2002, 2007); Debarre (2012) and references therein), which in some sense makes it difficult

to transform the properties obtained via studying variation of (mixed) Hodge structures

to global properties of the moduli spaces of CY 3-folds; 2. some analytic aspects of the

geometric quantities constructed from the periods for the CY 3-folds and the connections of

the Weil-Petersson metric on the special Kähler manifolds are not yet fully understood. For

example, it is not clear what the zeros and poles of the periods are on the (image under the

period map of) the moduli space.

We hope to study more general CY 3-folds than studied in this thesis (e.g., elliptic

fibrations) and apply the ideas to solve for the corresponding topological string partition

functions in the future. It would also be interesting to apply some physics ingredients to

construct and study automorphic forms defined the moduli spaces, this might shed some

light in understanding the geometry and arithmetic of the CY 3-folds themselves.
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Appendix A

Modular forms

We summarize the modular forms that appear in this thesis.

A.1 q, h and Eisenstein

We define1
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The following labels are given to the q-functions:
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1In the literature the choice for q is a matter of convention, in this thesis we take q = exp 2pit.



We define the following q-constants:

q2(t) = q2(0, t), q3(t) = q3(0, t), q4(t) = q2(0, t) . (A.6)

We also use the other version of the q-constants following Zagier (2008)

qF(t) = q2(0, 2t), q(t) = q3(0, 2t), qM(t) = q2(0, 2t) . (A.7)

One can associate to any lattice L a theta function,

QL(t) = Â
x2L

e2pi· 1
2 ||x||2t, (A.8)

see Zagier (2008) and references therein for details on this.

The h-function is defined by

h(t) = q
1
24
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’
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It transforms according to

h(t + 1) = e
ip
12

h(t), h
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r
t

i
h(t) . (A.10)

The Eisenstein series are defined by

Ek(t) = 1 � 2k
Bk

•

Â
n=1

nk�1qn

1 � qn , (A.11)

where Bk denotes the k-th Bernoulli number. Ek is a modular form of weight k for k > 2 and

even. The discriminant form and the j–invariant are given by

D(t) =
1
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�
E4(t)

3 � E6(t)
2� = h(t)24, j(t) = 1728

E4(t)3

E4(t)3 � E6(t)2 . (A.12)

The following equalities are used a lot throughout our discussions
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where again by ∂
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The following identities are useful

q
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A.2 Modular forms for G0(N), N = 1⇤, 2, 3, 4.

In the following we give the q-expansions, see e.g., Mohri (2002); Zagier (2008); Maier (2009,

2011), for the generators of the ring of modular forms and their relations to the Eisenstein

series for the groups G0(N), with N = 1⇤, 2, 3, 4:
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C(t) = 2�
1
2
q

2
2(t) = 2

1
2
q2(2t)q3(2t) . (A.18)

135



N = 3 :

A(t) = Â
(m,n)2Z2

qm2�mn+n2
= QA2(t) = q2(2t)q2(6t) + q3(2t)q3(6t), (A.19)

B(t) = Â
(m,n)2Z2

e2pi m�n
3 qm2+mn+n2

= 1 � 9
•

Â
n=1

c�3(n)
n2qn

1 � qn , (A.20)

C(t) = Â
(m,n)2Z2

qm2+mn+n2+m+n =
1
2
(A(

t

3
)� A(t)) , (A.21)

= J

2

64
0

0

3

75 (0, t) J

2

64
1/3

0

3

75 (0, 3t) + J

2

64
2/3

0

3

75 (0, t) + J

2

64
1/6

0

3

75 (0, 3t) . (A.22)

N = 4 : A(t) = QA1�A1(t) = q

2
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2
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2
2(2t) . (A.23)

The generators for the N = 4 case should be compared to the ring of even weight modular

forms with respect to the principal congruence group G(2), which is generated by any two

of q

4
3(t), q

4
2(t), q

4
4(t) since q

4
3(t) = q

4
2(t) + q

4
4(t). Note that the group G(2) is isomorphic

to G0(4). There are also some nice relations among these generators and the ordinary

Eisenstein series E4, E6:

N = 2 : B4 + 4C4 = E4 , A2(B4 � 8C4) = E6 . (A.24)

N = 3 : A4 + 8AC3 = E4 , A6 � 20A3C3 � 8C6 = E6 . (A.25)

N = 4 : B4 + 16B2C2 + 16C4 = E4 , B6 � 30B4C2 � 96B2C4 � 64C6 = E6 . (A.26)

We also have

A2(t) = ∂

t

log
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B(t)r =
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Appendix B

Holomorphic anomaly equations for

local P2 in terms of modular form

theory language

Notation and convention:

• ∂

t

= 1
2pi

∂

∂t

= q ∂

∂q , q = exp 2pit,

• F(g) = limLCSL F (g), Fg = B6g�6F(g),

• Bernoulli numbers: B2 = 1/6, B3 = 0, B4 = �1/30, B5 = 0, B6 = 1/42...

The ring of quasi-modular forms for G0(3) is

eM⇤(G0(3), c�3) = C[A, B3, E] ⇠= C[A, F = C3 � B3, E] .

The differential ring structure is
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t
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The Fricke involution WN = 1p
N

0

B@
0 1

�N 0

1

CA 2 SL(2, R) acts by

A|WN = iA, F|WN = iF, E|WN := E ,

where strictly speaking, one only has Ê|WN := Ê. But for computational purposes in which

one only cares about holomorphic limits eventually, one could pretend as if E|WN = E, as

explained in Chapter 3.

Holomorphic anomaly equations for F(g) and Fg are

∂EF(g) =
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The boundary conditions are

F(g) = (�1)g c

2
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F(g)|WN =
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)2g�2 + (C3)2g�2O(q0) ,

where the precise value c = c(KP2) = 3 is not very important in the whole computations,

in particular it does not affect the Gromov-Witten invariants that we extract from mirror

symmetry. The quantity t⇤c is defined by

∂

t

t⇤c (q) = C3(t), tc(q)|q=0 = 0 .
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The q-series expansions of the related modular quantities are as follows:

A(t) = q2(2t)q2(6t) + q3(2t)q3(6t) = Â
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+27q6 + 50q7 + 51q8 + 81q9 + 72q10

+120q11 + 117q12 + 170q13 + 150q14 + 216q15

+205q16 + 288q17 + 243q18 + 362q19 + 312q20 + · · · ) ,

E(t) =
3E2(3t) + E2(t)

4
= 1 � 6q � 18q2 � 42q3 � 42q4 � 36q5

�126q6 � 48q7 � 90q8 � 150q9 � 108q10

�72q11 � 294q12 � 84q13 � 144q14 � 252q15

�186q16 � 108q17 � 450q18 � 120q19 � 252q20 + · · · ,

t⇤c (q) = 27(q +
3
2

q2 + 3q3 +
13
4

q4 +
24
5

q5

+
9
2

q6 +
50
7

q7 +
51
8

q8 + 9q9 +
36
5

q10

+
120q11

11
+

39
4

q12 +
170
13

q13 +
75
7

q14 +
72
5

q15

+
205
16

q16 +
288
17

q17 +
27
2

q18 +
362
19

q19 +
78
5

q20 + · · · ) .
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The first few results for the topological string partition functions are shown as follows:

F(1) = �1
2

log h(q)h(q3), ∂

t

F(1) = � 1
12

E ,

F(2) =
E(5E2 � 9EA2 + 6A4)

1728B6 +
� 8

5 A6 + 2
5 A3B3 + �8�3c

10 B6

1728B6 ,

F(3) =
5359A12 � 8864A9B3 + 4160A6B6 � 496A3B9 + 2(8 � 3c)B12

8709120B12

+

�
�2532A10 + 3444A7B3 � 1140A4B6 + 48AB9� E

1244160B12

+

�
3516A8 � 3708A5B3 + 732A2B6� E2

1244160B12

+

�
�2645A6 + 1900A3B3 � 120B6� E3

1244160B12

+

�
1200A4 � 420AB3� E4

1244160B12 � 25A2E5

82944B12 +
5E6

82944B12 .

F1 = �1
2

log h(q)h(q3),

∂

t

F1 = � 1
12

E ,

17280F2 = 50E3 � 90A2E2 + 60A4E � 14A6 � 2A3F ,

8709120F3 = 525E6 � 2625A2E5 + (6930A4 + 1470AF)E4

�(12075A6 + 6230A3F + 210F2)E3

+(12915A8 + 10416A5F + 1281A2F2)E2

�(7623A10 + 8190A7F + 1869A4F2 + 42AF3)E

+1905A12 + 2538A9F + 854A6F2 + 62A3F3 .

The gap conditions are checked as follows:

F(2)|WN = � 1
58320q2 +

1
19440q � 1

19440 +
37q

29160 �
19q2

4860 +
q3

240 �
17q4

5832 +
7q5

243 + · · · ,

32�1·� 1
30

4·2 ( 1
(t⇤c )2 = � 1

58320q2 +
1

19440q � 1
77760 �

7q
58320 +

241q2

1555200 +
q3

518400 �
14977q4

130636800 +
227q5

21772800 + · · · ,

F2|WN = 1
80 +

3q
80 +

3q2

20 � 57q3

80 � 21q4

10 � 411q5

40 + · · · ,

(�3)1 � 1
30

4·2 (
C3

t⇤c
)2 = 1

80 +
3q
80 +

39q2

320 + 21q3

160 + 1617q4

6400 + 453q5

6400 + · · ·
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F(3)|WN = 1
59521392q4 � 1

9920232q3 +
1

5668704q2 +
19

119042784q � 103
132269760 �

49q
2834352 + · · · ,

33�1 1
42

6·4
1

(t⇤c )4 = 1
59521392q4 � 1

9920232q3 +
1

5668704q2 +
19

119042784q � 529
529079040 +

43q
39680928 + · · · ,

F3|WN = 1
112 +

3q
56 +

57q2

224 + 159q3

224 + 4233q4

2240 � 2991q5

560 � 450q6

7 + · · · ,

(�3)2
1
42

6·4 (
C3

t⇤c
)4 = 1

112 +
3q
56 +

57q2

224 + 159q3

224 + 15879q4

8960 + 6747q5

2240 + 70209q6

12544 + · · ·
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