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Mean Reversion in Housing Markets

Abstract

Booms in house prices are usually followed by busts. This pattern is called “mean reversion.”

Mean reversion in housing markets has historically coincided with economic recessions

across the world. Chapter 1 establishes mean reversion in U.S. data, and attempts to explain

it using the dynamics of wages in cities. Chapter 2 takes a different approach. It models

mean reversion resulting from speculation and uncertainty. This model explains why strong

mean reversion in prices occurs in cities where it is easy to build houses, a phenomenon

that Chapter 1 cannot explain. Chapter 3 takes the spirit of Chapter 2 and applies it to the

optimal design of the income tax.

iii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Housing Dynamics: An Urban Approach 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A Dynamic Model of Housing Prices . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Housing Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Housing Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Estimating the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Matching the Data and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 The Impact of Information on the Predictions of the Model . . . . . . 22
1.4.2 Volatility and Serial Correlation in House Prices . . . . . . . . . . . . . 24
1.4.3 Volatility and Serial Correlation in Construction . . . . . . . . . . . . . 28

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Arrested Development: Theory and Evidence of Supply-Side Speculation in the
Housing Market 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Stylized Facts of the U.S. Housing Boom and Bust . . . . . . . . . . . . . . . . 38

2.2.1 The Cross-Section of Cities . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 The Central Importance of Land Prices . . . . . . . . . . . . . . . . . . 41
2.2.3 Land Market Speculation by Homebuilders . . . . . . . . . . . . . . . 42

2.3 A Housing Market with Homeowners and Developers . . . . . . . . . . . . . 46
2.4 Supply-Side Speculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Land Speculation and Dispersed Homeownership . . . . . . . . . . . 53
2.4.2 Belief Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 The Cross-Section of City Experiences During the Boom . . . . . . . . . . . . 58

iv



2.6 Variation in House Price Booms Within Cities . . . . . . . . . . . . . . . . . . 65
2.6.1 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.2 Structure Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Taxation and the Allocation of Talent 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.2 A simple case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.1 Income distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Externality shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.1 Allocation of talent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.2 Labor supply elasticity debate . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.3 Debates on taxation outside neoclassical economics . . . . . . . . . . . 100
3.4.4 Closely related literature . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.5 Structural Model with General Ability . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5.2 Optimal tax rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.5.3 Quantitative importance of elasticities vs. externalities . . . . . . . . . 111
3.5.4 Quantitative welfare gains . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.5.5 Effects of the Reagan tax reforms . . . . . . . . . . . . . . . . . . . . . . 115

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References 120

Appendix A Appendix to Chapter 1 129
A.1 Estimation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.1.1 Sequential Two-Step GMM Estimator . . . . . . . . . . . . . . . . . . . 129
A.1.2 Moment Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.1.3 Stochastic Processes Predicted by the Model . . . . . . . . . . . . . . . 132

A.2 Definitions of Trend Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.3.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.3.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3.3 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

v



A.3.4 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3.5 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Calculation of Volatilities in Table 1.1 . . . . . . . . . . . . . . . . . . . . . . . 140
A.5 BEA Income Data Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix B Appendix to Chapter 2 144
B.1 Micro-foundation of owner-occupancy utility . . . . . . . . . . . . . . . . . . . 144
B.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.2.1 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.2.2 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.2.3 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.2.4 Proof of Implication 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.2.5 Proof of Implication 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.2.6 Proof of Implication 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.3 Construction equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Appendix C Appendix to Chapter 3 153
C.1 Alternative Finance Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.2 Externality Share Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C.2.1 Law and Computers/Engineering . . . . . . . . . . . . . . . . . . . . . 156
C.2.2 Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.2.3 Academia/Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
C.2.4 Consulting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.2.5 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.2.6 Arts/Entertainment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.3 General Ability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
C.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
C.5 Solving for the optimal tax function . . . . . . . . . . . . . . . . . . . . . . . . 170
C.6 Alternative Elasticity Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.7 Allocation of Talent in the General Ability Model . . . . . . . . . . . . . . . . 174
C.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

vi



List of Tables

1.1 Relative Volatility of Terms in House Price Equation . . . . . . . . . . . . . . 15
1.2 Estimated Demand and Supply Parameters HMDA Income Data, 1990- 2004 20
1.3 Sensitivity of Predictions to Different Information Structures . . . . . . . . . 24
1.4 Volatility and Serial Correlation in House Prices and Construction: HMDA

Income Data, 1990-2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Sources of externality estimates from the economics literature . . . . . . . . . 89
3.2 Externality profiles in each of four calibrations . . . . . . . . . . . . . . . . . . 91
3.3 Welfare Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4 Reallocation of Talent from Reagan Tax Reforms . . . . . . . . . . . . . . . . . 116

A.1 Estimated Demand and Supply Parameters: BEA Income Data, 1980-2003 . . 142
A.2 Volatility and Serial Correlation in House Prices and Construction: BEA

Income Data, 1980-2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.1 Real net income in finance over time . . . . . . . . . . . . . . . . . . . . . . . . 167
C.2 Welfare Gains Under Alternate Elasticity Value . . . . . . . . . . . . . . . . . 173

vii



List of Figures

1.1 Real House Price Appreciation in the 1980s and 1990s . . . . . . . . . . . . . 3
1.2 Housing Unit Growth in the 1980s and 1990s . . . . . . . . . . . . . . . . . . . 4
1.3 Simulated One-Time Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Long-Run Development Constraints in Las Vegas . . . . . . . . . . . . . . . . 36
2.2 The U.S. Housing Boom and Bust Across Cities . . . . . . . . . . . . . . . . . 39
2.3 Input Price and House Price Increases Across Cities, 2000-2006 . . . . . . . . 43
2.4 Supply-Side Speculation Among U.S. Public Homebuilders, 2001-2010 . . . . 45
2.5 Model Simulations For Different Cities . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Income distributions fitted to IRS and Harvard data in 9 industries . . . . . . 86
3.2 Baseline and alternative income calibrations in Finance . . . . . . . . . . . . . 87
3.3 The allocation of talent condition on income level . . . . . . . . . . . . . . . . 88
3.4 Social Product in Different Professions . . . . . . . . . . . . . . . . . . . . . . . 93
3.5 ATEM and MTEM marginal tax rates . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 Reference Income Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.7 Optimal Tax Rates in Structural Model . . . . . . . . . . . . . . . . . . . . . . 109
3.8 Horserace between elasticities and externalities . . . . . . . . . . . . . . . . . 116

C.1 Income Distributions Under Alternative Finance Calibrations . . . . . . . . . 154
C.2 ATEM and MTEM Policies Under Alternate Finance Calibration . . . . . . . 155
C.3 “Horserace” Under Alternate Finance Calibration . . . . . . . . . . . . . . . . 155
C.4 Optimal Tax Rates Under Different Elasticity Calculation . . . . . . . . . . . . 172
C.5 Allocation of talent by ability quantile under laissez-faire . . . . . . . . . . . . 175
C.6 Allocation of Talent in Different Regimes . . . . . . . . . . . . . . . . . . . . . 175
C.7 Reallocation of Talent from Reagan Tax Reforms . . . . . . . . . . . . . . . . . 176

viii



Acknowledgments

I thank my coauthors Ed Glaeser, Joe Gyourko, Ben Lockwood, Eduardo Morales, Glen

Weyl, and Eric Zwick for writing this dissertation with me. My committee—Professors John

Campbell, Ed Glaeser, David Laibson, and Andrei Shleifer—provided invaluable guidance,

advice, and support for which I am grateful. Several other faculty gave helpful feedback on

this work: Professors Raj Chetty, Claudia Goldin (who provided data used in Chapter 3),

Robin Greenwood, Sam Hanson, Alp Simsek, Adi Sunderam, and Jeremy Stein. Finally, I

acknowledge financial support from the NSF Graduate Research Fellowship Program, the

Bradley Foundation, the Alfred P. Sloan foundation, and the Becker Friedman Institute at

the University of Chicago.

ix



Chapter 1

Housing Dynamics: An Urban

Approach1

1.1 Introduction

Can the dynamics of housing markets be explained by a dynamic, rational expectations

version of the standard urban real estate models of Alonso (1964), Rosen (1979), and Roback

(1982)? In this tradition, housing prices reflect a spatial equilibrium, where prices are

determined by local wages and amenities so that local heterogeneity is natural. Our model

extends the Alonso-Rosen-Roback framework by focusing on high frequency price dynamics

and by incorporating endogenous housing supply.

An urban approach can potentially help address the fact that most variation in housing

price changes is local, not national. Less than eight percent of the variation in price levels

and barely more than one-quarter of the variation in price changes across cities can be

accounted for by national, year-specific fixed effects. Clearly, there is much local variation

that cannot be accounted for by common macroeconomic variables such as interest rates or

national income.

We focus not on the most recent boom and bust, which was extraordinary in many

1This chapter is co-authored with Edward L. Glaeser, Joseph Gyourko, and Eduardo Morales.
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dimensions, but rather on long-term stylized facts about housing markets. One such fact is

that price changes are predictable (Case and Shiller, 1989; Cutler et al., 1991). Depending

upon the market and specific time period being examined, a $1 increase in real constant

quality house prices in one year is associated with a 60-80 cent increase the next year.

However, a $1 increase in local market prices over the past five years is associated with

strong mean reversion over the next five year period. This raises the question of whether

the high frequency momentum and low frequency mean reversion of price changes can be

reconciled with a rational market.

Another outstanding feature of housing markets is that the strong mean reversion in

price appreciation and strong persistence in housing unit growth across decades shown

in Figures 1.1 and 1.2 is at odds with simple demand-driven models in which prices and

quantities move symmetrically. This raises the question of what else is needed to generate

this pattern.

Third, price changes and construction levels are quite volatile in many markets. The

range of standard deviations of three-year real changes in our sample of metropolitan area

average house prices runs from about $6,500 in sunbelt markets to over $30,000 in coastal

markets. New construction within markets also can be volatile, with its standard deviation

much higher in the sunbelt region. Can this volatility be the result of real shocks to housing

markets or must it reflect bubbles or animal spirits?

Section 2 presents our model and its implications. Naturally, the urban approach

predicts that housing markets are local, not national, in nature. Predictable housing

price changes also are shown to be compatible with a no-arbitrage rational expectations

equilibrium. Mean reversion over the medium and longer term results if construction does

not respond immediately to shocks and if local income shocks themselves mean revert. High

frequency positive serial correlation of housing prices results if there is enough positive

serial correlation of labor demand or amenity shocks. Conceptually, a dynamic rational

expectations urban model is at least consistent with the outstanding features of housing

markets, at least as they existed prior to the financial crisis.
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Figure 1.1: Real House Price Appreciation in the 1980s and 1990s

However, our calibration exercises yield both successes and failures in trying to match

key moments of the data. We are able to capture the extensive heterogeneity across different

types of markets, especially in our contrast of coastal markets with high inelastic supply

sides with interior markets with very elastic supplies of homes. Different shocks to the

varying local income processes interact with very different supply side conditions to generate

materially different housing market dynamics.

The model also does a reasonably good job of generating high variation in house price

changes based on innovations in our proxy for local incomes, although we cannot match the

extremely high volatility in house prices in the most variable coastal markets. The model

also does a tolerably good job of matching the volatility of new construction, generating

wide divergences across markets based on underlying supply elasticities. However, the

model again cannot match the most volatile construction markets which are off the coasts.
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Figure 1.2: Housing Unit Growth in the 1980s and 1990s

With respect to the serial correlations of quantities and prices, the model gets the pattern,

but not the magnitude, of the strong high-frequency persistence in construction. Our model

correctly captures the weakening of that persistence over longer horizons, but still cannot

replicate the mean reversion that is evident in the data over five-year periods. The model

fails utterly at explaining the very strong, high frequency positive serial correlation in price

changes. It does a better job at predicting mean reversion over longer five-year horizons,

but still cannot precisely match the magnitude of that pattern, especially in coastal markets.

This suggests that the most important puzzle for housing economists to explain, apart

from the most recent cycle, is the strong persistence in high frequency price changes from

one year to the next. Persistence itself is not enough to reject a rational expectations model,

but the mismatch between the data and model at annual frequencies indicates that Case
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and Shiller (1989)’s conclusion regarding inefficiency could be right. Other issues deserving

closer examination include whether there really is excess volatility in coastal markets and

the nature of serial correlation in construction over longer time horizons.

1.2 A Dynamic Model of Housing Prices

1.2.1 Housing Supply

Homebuilders are risk neutral firms that operate in a competitive market. Suppressing a

subscript for individual markets for ease of exposition, the marginal cost to this industry of

constructing a house at time t is given by

C + c0t + c1 It + c2Nt,

where It is the amount of construction and Nt is the housing stock at time t. The c0 term

allows unit costs to trend over time. When c1 > 0, the supply curve at time t is upward-

sloping. The coefficient c2 allows unit costs to depend on the city size, reflecting community

opposition to development as density levels increase. We assume that c1 > c2 so that present

construction has a larger effect on costs through the first effect. The supply parameters c0,

c1, and c2 can vary across metropolitan areas.

Housing is completely durable, and new supply is constrained to be non- negative:

It ≥ 0.

Homebuilders also face a time to build. Housing constructed at time t cannot be sold until

time t + 1. Homebuilders also bear the costs of time t construction at time t + 1. Perfect

competition and risk-neutrality deliver the following supply condition:

E(Ht+1) = C + c0t + c1 It + c2Nt (1.1)

when It > 0, where Ht+1 is the house price at time t + 1. In equilibrium, the expected sales

price of a house equals the marginal cost when homebuilders construct new houses.
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1.2.2 Housing Demand

Each person consumes exactly one unit of housing, so that Nt equals both the housing stock

and the population. Consumer utility depends linearly on consumption and city-specific

amenities:

U(Consumptiont, Amenitiest) = Consumptiont + Amenitiest.

Consumers are identical and face a city-specific labor demand curve of

Wagest = Wt − αW Nt

at time t. Amenities also depend linearly on the population:

Amenitiest = At − αANt.

Consumers must own a house to access the city’s labor market and amenities. We exclude

rental contracts from the model to focus on the owner-occupancy market. Consumers are

risk-neutral and can borrow and lend at an interest rate r. Their indirect utility is therefore

Vt = Wt + At − (αW + αA)Nt −
(

Ht −
E(Ht+1)

1 + r

)
. (1.2)

To pin down this utility level, we turn to the cross-metropolitan area spatial equilibrium

concept introduced by Rosen (1979) and Roback (1982). Consumers are indifferent across

cities at all points in time. This indifference condition is a particularly strong version

of the standard spatial equilibrium assumption that assumes away moving costs. There

is a “reservation” city where housing is completely elastic: c0 = c1 = c2 = 0, so that

housing prices always equal C.2 Wages and amenities do not depend on the reservation

city population: αW = αA = 0. If we let Vt equal Wt + At for the reservation city, then the

2While it is possible that prices will deviate around this value because of temporary over- or under-building,
we simplify and assume that the price of a house always equals C.
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reservation utility level that holds in this city as well as in all cities is

Vt = Vt −
rC

1 + r
. (1.3)

The existence of the reservation city makes our calculations considerably easier, and there

are places within the United States, especially in the growing areas of the sunbelt, that are

marked by elastic labor demand and housing supply Glaeser et al. (2005).3

Putting together equations (1.2) and (1.3) gives the following housing demand equation:

Ht −
E(Ht+1)

1 + r
− rC

1 + r
= Wt + At − (αW + αA)Nt −Vt. (1.4)

For our estimation, we assume the following functional form:

Wt + At −Vt = x + qt + xt,

where xt is a stochastic term that follows an ARMA(1,1) process:

xt = δxt−1 + εt + θεt−1,

with 0 < δ < 1 and the εt independently and identically distributed with mean 0 and finite

variance σ2. The x term is a city fixed effect and q is a city-specific drift term. We also define

α ≡ αW + αA

to be the slope of the housing demand curve, and we assume that α > 0.

1.2.3 Equilibrium

The supply equation (1.1) and the demand equation (1.4) jointly determine equilibrium

prices, housing stock, and investment. To obtain a unique solution to our model, we impose

a transversality condition

lim
j→∞

Et(Ht+j)

(1 + r)j = 0 (1.5)

3Van Nieuwerburgh and Weill (2010) present a similar model in their exploration of long run changes in the
distribution of income.
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for all t. The transversality condition limits the possible role of housing bubbles in accounting

for housing dynamics. While we do not discount the possible explanatory power of bubbles,

our focus here allows us to learn what aspects of housing dynamics can already be explained

by a model in which prices equal the discounted sum of current and future expected rents.

The following lemma shows that price, housing stock, and investment converge towards

“trend” levels of these variables when the transversality condition is satisfied.

Lemma 1. When equation (1.5) is satisfied, there exist unique price, stock, and investment functions

Ĥt, N̂t, and Ît such that

lim
j→∞

Et(Ht+j)− Ĥt+j = lim
j→∞

Et(Nt+j)− N̂t+j = lim
j→∞

Et(It+j)− Ît+j = 0

for any Ht, Nt, and It that satisfy the supply and demand equations. Ĥt and N̂t are linear in t and Ît

is constant.

We call Ĥt, N̂t, and Ît trend prices, population, and investment. Closed-form expressions

for these trend variables as well as a proof of the lemma appear in the technical appendix.

If xt = 0 for all t and Nt = N̂t for some initial period, then the steady state quantities

would fully describe the equilibrium.4 Secular trends in housing prices come from the trend

in housing demand as long as c2 > 0, or the trend in construction costs as long as α > 0. If

c2 = 0, so that construction costs don’t increase with total city size, then trends in wages or

amenities will impact city size but not housing prices. If α = 0 and city size doesn’t decrease

wages or amenities, then trends in construction costs will impact city size but not prices.

Lemma 2 then describes housing prices and investment when there are shocks to demand

and when Nt 6= N̂t. The proof is in the technical appendix.

Lemma 2. At time t, housing prices equal

Ht = Ĥt + xt +
Et(xt+1)

φ− δ
− α(1 + r)

1 + r− φ
(Nt − N̂t)

4In this case, the assumption that there is always some construction requires that q(1 + r) > rc0.
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and investment equals

It = Î +
1 + r

c1

Et(xt+1)

φ− δ
− (1− φ)(Nt − N̂t)

where φ > 1 > φ > 0 are parameters that depend on α, c1, c2, and r.5

This lemma describes the movement of housing prices and construction around their

trend levels. A temporary shock, ε, will increase housing prices by (φ + θ)/(φ− δ) and

increase construction by (1+ r)(δ+ θ)/(c1(φ− δ)). Higher values of δ (i.e., more permanent

shocks) will make both of these effects stronger. Higher values of c1 mute the construction

response to shocks and increase the price response to a temporary shock (by reducing

the quantity response). These results provide the intuition that places which are quantity

constrained should have less construction volatility and more price volatility.

The following proposition provides implications about expected housing price changes.

Proposition 1. At time t, the expected home price change between time t and t + j is

Ĥt+j − Ĥt +
Et(xt+1)

φ− δ

(
1 + r

c1

δj−1((1− δ)c1 − c2)− φj−1((1− φ)c1 − c2)

φ− δ
− 1
)

−xt +

(
α(1 + r)
1 + r− φ

− φj−1((1− φ)c1 − c2)

)
(Nt − N̂t),

the expected change in the city housing stock between time t and time t + j is

j Î +
1 + r

c1(φ− δ)

φj − δj

φ− δ
Et(xt+1)− (1− φj)(Nt − N̂t),

and expected time t + j construction is

Î +
1 + r

c1(φ− δ)

(
δj−1(1− δ)− φj−1(1− φ)

φ− δ

)
Et(xt+1)− φj−1(1− φj)(Nt − N̂t).

Proposition 1 delivers the implication that a rational expectations model of housing

5The formulas for φ and φ are

φ =
(1 + r)(α + c1) + c1 − c2 +

√
((1 + r)(α + c1) + c1 − c2)2 − 4(1 + r)c1(c1 − c2)

2c1
;

φ =
(1 + r)(α + c1) + c1 − c2 −

√
((1 + r)(α + c1) + c1 − c2)2 − 4(1 + r)c1(c1 − c2)

2c1
.
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prices is fully compatible with predictability in housing prices. If utility flows in a city are

high today and expected to be low in the future, then housing prices will also be expected

to decline over time. Any predictability of wages and construction means that predictability

in housing price changes will result in our model.

The predictability of construction and prices comes in part from the convergence to

trend values. If xt = εt = 0 and initial population is above its trend level, then prices and

investment are expected to converge on their trend levels from above. If initial population is

below its trend level and xt = εt = 0, then price and population are expected to converge

to their trend levels from below. The rate of convergence is determined by r, α, c1, and c2.

Higher levels of c1 and c2 cause the rate of convergence to slow by reducing the extent that

new construction responds to changes in demand.

The impact of a one-time shock is explored in the next proposition.

Proposition 2. If Nt = N̂t, xt−1 = εt−1 = 0, c2 = 0, and εt > 0, then investment and housing

prices will initially be higher than steady state levels, but there exists a value j∗ such that for all

j > j∗, time t expected values of time t + j construction and housing prices will lie below steady state

levels. The situation is symmetric when εt < 0.

Proposition 2 highlights that this model not only delivers mean reversion, but overshoot-

ing. Figure 1.3 shows the response of population, construction and prices relative to their

steady state levels in response to a one time shock. Construction and prices immediately

shoot up, but both start to decline from that point. At first, population rises slowly over

time, but as the shock wears off, the heightened construction means that the city is too large

relative to its steady state level. Eventually, both construction and prices end up below their

steady state levels because there is too much housing in the city relative to its wages and

amenities. Places with positive shocks will experience mean reversion, with a quick boom

in prices and construction, followed by a bust.6

Finally, we turn to the puzzling empirical fact that there was strong mean reversion of

6Overshooting occurs here with no depreciation in the housing stock. The case with depreciation is
addressed in Glaeser and Gyourko (2005).
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Figure 1.3: Simulated One-Time Shock
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prices and strong positive serial correlation in population levels across the 1980s and 1990s.

We address this by looking at the one period covariance of price and population changes.

We focus on one period for simplicity, but we think of this proposition as relating to longer

time periods. Since mean reversion dominates over long time periods, we assume θ = 0 to

avoid the effects of serial correlation:

Proposition 3. If N0 = N̂0, θ = 0, x0 = ε0, cities differ only in their demand trends q and their

shock terms ε0, ε1, and ε2, and these terms are uncorrelated, then if δ > 1− φ, second period

population growth will always be positively correlated with first period population growth, while

second period price growth will be negatively correlated with first period population growth as long

11



as Var(q)
Var(εt)

is below a bound.

Proposition 3 tells us that, in the model, positive serial correlation of construction levels

is quite compatible with negative serial correlation of price changes. The proposition only

proves that the reversal occurs when persistence of shocks is high, but in the Technical

Appendix, we show that the persistence can occur when the process is less persistent. The

positive correlation of quantities is driven by the heterogeneous trends in demand across

urban areas. As long as the variance of these trends is high enough relative to the variance

of temporary shocks, there will be positive serial correlation in quantities, as in Figure 1.2.

Yet these long trends may have little impact on price changes, since the trends are

completely anticipated. As discussed above, when c2 is low, trends will have little impact

on steady state price growth, although these trends will determine the steady state price

level. Instead, price changes will be driven by the temporary shocks, and if these shocks

mean revert, then so will prices.

This suggests two requirements for the observed positive correlation of quantities and

negative correlation of prices: city-specific trends must differ significantly and the impact of

city size on construction costs must be small. Both conditions appear to occur in reality. The

extensive heterogeneity in city-specific trends is discussed and documented by Gyourko

et al. (2013) and Van Nieuwerburgh and Weill (2010). The literature on housing investment

suggests that the impact of city size on construction costs is quite small (Topel and Rosen,

1988; Gyourko and Saiz, 2006).

1.3 Estimating the Model

We now calibrate the model to see whether certain moments of the data are compatible with

our framework. We focus on movements in prices and construction intensity around steady

state levels. The aim of this exercise is to show how a model which posits that variation in

prices and construction levels is solely driven by exogenous shocks to both amenity levels

and the demand for labor can fit certain moments of the housing data. As we lack data on
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the short term fluctuations in the level of amenities, we will identify the parameters of the

stochastic process governing these shocks to housing demand only from wage data.7 This is

not to claim that there are no other shocks that will affect the volatility of both prices and

construction. There are, but our approach still provides some quantitative measure of how

misspecified our housing models would be if we were to ignore these additional shocks.

To generate predictions from the model, we need to calibrate eight parameters: (r, α,

w, δ, θ, σ, c1, c2). The parameters (δ, θ, σ) govern housing demand. Consistent with the

spirit of the calibration exercise described in the previous paragraph, we estimate these

parameters exclusively using wage data. Identifying the remaining five parameters using

only data on deviations of housing prices and construction of new houses from their steady

state levels turns out to be infeasible.8 Therefore, we borrow estimates of the real interest

rate, r, the slope of the inverse housing demand equation, α, and the slope of labor demand,

w, from other sources. Finally, we use data on housing prices and quantities to estimate the

parameters determining the housing supply, (c1, c2).

We assume that r equals 0.04. This value is higher than standard estimates of the real

interest rate because it is also meant to reflect other aspects of the cost of owning such as

taxes or maintenance expenses that roughly scale up with the cost of the house. Different

values of the real interest rate have little impact on our calibration, as long as it is assumed

to be constant.

The value of α reflects the impact that an increase in the housing stock will have on

the willingness to pay to live in a locale. If population was fixed, equation (2) would

imply that the derivative of steady state housing prices with respect to the number of

homes equals −(1 + r)α/r, which can be interpreted as the slope of the housing demand

curve. Typically, housing demand relationships are estimated as elasticities, so we must

7There can still be long run trends in amenities that differ across metropolitan areas, but these will not
impact the short term housing price and construction dynamics that are the focus of our simulations.

8As will be seen in the next Section, in order to identify the parameters of the model, we derive moment
conditions from the equation in Lemma 2. More moment conditions than parameters we have to identify are
derived. Nevertheless, when we try to simultaneously identify the five parameters (r, α, w, c1, c2), the resulting
objective function is relatively flat and identification is very weak.
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first convert elasticities into the comparable slope in levels and then multiply by r/(1 + r).

Many housing demand elasticity estimates are around one (or slightly below, in absolute

value; see, e.g. Polinsky and Ellwood (1979) or Saiz (2003)), and there is a wide range in the

literature, so we experiment with a range from 0 to 2. To transform the elasticity into slope

in levels, we multiply by an average ratio of price to population, and that produces a range

of estimates for (1 + r)α/r ranging from 0 to 3. Multiplying this range by r/(1 + r) yields a

range from 0 to 0.15. We use a parameter value of 0.1 in our estimation, which implies that

for every 10,000 extra homes sold the marginal purchaser likes living in the area $1,000 less

per year.

Lower values do not significantly change our estimates. Even with α = 0.1, most of

the variation in house prices comes from direct shocks to wages and not from variation in

congestion effects. Lemma 2 shows that we can decompose the variation in house prices

from trend as

Ht − Ĥt = xt +
Et(xt+1)

φ− δ︸ ︷︷ ︸
wage shocks

− α(1 + r)
1 + r− φ

(Nt − N̂t)︸ ︷︷ ︸
congestion effects

. (1.6)

Table 1.1 lists the volatility of each term using the parameters we estimate for each of the

three regions of the United States (calculation details are in the technical appendix). In all

three cases, wage shocks are much more important than variation in congestion effects. The

value of α is much more important in determining the steady- state (i.e. trend) size of the

city, but this steady-state is not our focus here.

The parameter α combines the impact that extra population has on wage levels with the

impact that extra population has on amenities, and we also must use a distinct estimate of

the connection between population and wage levels to correct our wage series for the change

in population. Given the absence of compelling evidence on the links between population

size and amenity levels, and the possibility that the link is actually positive (if access to other

people is a consumption amenity), we make the simplifying assumption that the impact of

population on amenities is zero, so that the value of α is the same as the value of αW . While

we do not literally believe this, assuming it has little impact on our estimates since it only
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serves to allow us to infer productivity changes from wage changes by correcting for the

changes in population. As year-to-year population changes are relatively modest, different

means of correcting for population changes have little impact on the inferred productivity

series.

In principle all eight parameters in our model could differ across each metropolitan

area, but data limitations make it impossible for us to precisely estimate distinct values

for each location. Instead, we assume the calibrated parameters (r, α, w) to be identical for

all metropolitan areas and we estimate different values of the parameters (δ, θ, σ, c1, c2)

for three different regions of the U.S.9 Our three regions are coastal, sunbelt and interior.

Metropolitan areas whose centroids are within 50 miles of the Atlantic or Pacific Oceans are

defined as coastal. Metropolitan areas more than 50 miles from either coast and which are

in the broad swath of southern and western states on the southern border of the country

running from Florida through Arizona are defined to be in the sunbelt region. The remainder

of our metropolitan areas are defined as being in the interior region of the country.

9Obtaining different estimates of (r, α, w) for each of these three areas is impossible, as the sources from
which we borrow those estimates do not provide such detail.

Table 1.1: Relative Volatility of Terms in House Price Equation

Coastal Sunbelt Interior

Wage Shocks 44,000 12,000 13,000

Congestion Effects 4,000 5,000 7,000

Notes: The house price equation is decomposed in equation (1.6). The volatilities are computed using the
estimates in Table 1.2. Details on the computation are provided in the technical appendix.
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1.3.1 Data

For our estimation exercise, we need data on housing prices, construction of new houses,

number of households potentially supplying labor, and income per household for a signifi-

cant number of metropolitan areas.

The housing price data is based on Federal Housing Finance Agency repeat sales indices.

Construction data are housing permits reported by the U.S. Census. To estimate annual

changes in the number of households, we impute the housing stock based on decadal

census estimates of the housing stock and annual permits data. Specifically, we estimate the

housing stock at time t + j to be

Ni
t +

∑
j−1
k=0 Permitsi

t+k

∑9
k=0 Permitsi

t+k

(
Ni

t+10 − Ni
t

)
,

where Ni
t and Ni

t+10 are the housing stocks measured during the two closest censuses in

metropolitan area i. Thus, the change in housing stock is partitioned across years based on

the observed permitting activity.

Our primary source of income data comes from the Home Mortgage Disclosure Act

(HMDA) files on reported income on mortgage applications. We observe all loan applicants,

not just successful buyers. The HMDA data extend back to 1990. Since HMDA is essentially

a 100 percent sample of everyone who sought a mortgage, the sample sizes are quite large

and we have data for every metropolitan area. Importantly, the HMDA data captures

household level income, which is the appropriate level given our model. The disadvantages

of using HMDA income data are a relatively short time series, the fact that we do not

observe those who searched but did not apply for a mortgage, and that the homebuying

decision is endogenous, which can create biases because the selected sample of people who

decide to apply for a loan can differ across markets or years.

An alternative data source on income is the Bureau of Economic Analysis (BEA) per

capita income measure. It is available beginning in 1980 and for all metropolitan areas.

However, it suffers from a number of drawbacks. First, it is at the individual, not household,

level as its name implies. Households, not individuals, purchase housing units. Hence, in
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our experimentation with this measure, we translate per capita incomes into household-

levels by multiplying by 2.63, which is the average number of people per housing unit

in our sample of areas in 1990. It also captures the incomes of many people who were

not potential buyers. The incomes earned by permanent renters or people who have been

immobile homeowners for many years may not have much to do with the advantage that

a location brings to the marginal purchaser. In addition, the incomes of renters are both

lower and less volatile than those of owners. Hence, the BEA series is likely to understate

the relevant volatility in local incomes, which is critical given our purposes.10

While we experimented with both income measures, we believe the advantages of the

HMDA series far outweighs its negatives. Hence, we report results using this series and

comment on findings with the BEA data where appropriate.

The sample used in the estimation has 21 sunbelt metropolitan areas, 32 coastal metropoli-

tan areas, and 60 interior ones. The data for housing prices, construction, number of

households, and borrower income spans the period 1990-2004.

1.3.2 Methodology

As indicated above, we estimate the parameters (δ, θ, σ, c1, c2) subject to particular values of

(r, α, w). We estimate these five parameters using a sequential two-step Generalized Method

of Moments estimator.11 Our two stage procedure estimates our parameters by first using

10Based on data from the New York City Housing and Vacancy Surveys (NYCHVS) from 1978-2002, the
income of recent homebuyers increases by $1.29 for every dollar increase in BEA-reported per capita income,
while that for renters only rises by $0.47. The NYCHVS only covers one city, but it highlights that the volatility
of BEA per capita income is lowered by its incorporation of renter income.

11The details of this estimation method are provided in the Appendix. Hansen (1982) proves consistency and
asymptotic normality for the standard two-step GMM estimator, in which all parameters are simultaneously
estimated. Newey (1984) expands these results and provides the correct formula for the asymptotic variance
of the two-step GMM estimator of a subvector of parameters, when the moments are a function of previous
GMM estimates of a different subvector of parameters. Finally, Newey and McFadden (1994) show that the
sequential GMM estimators belong to the more general family of extremum estimators. These results guarantee
that the sequential two-step GMM estimator we use is consistent, asymptotically normal and has the asymptotic
variances described in the Appendix. In principle, we could estimate all of our parameters simultaneously, using
information on wages, construction levels and housing prices, but, as indicated above, this would contradict
the spirit of the exercise we want to perform. If we were to use data on deviations of housing prices and
construction levels with respect to their steady state in order to identify the parameters (δ, θ, σ), then our
estimates of the stochastic process governing housing demand would capture not only the income process
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the population-corrected wage series to estimate the housing demand parameters and then

using housing price and construction series to identify the housing supply parameters.

More specifically, the parameters (δ, θ, σ) are estimated from an equilibrium equation in

the labor market using a two-step GMM estimator. Given these estimates, the parameters

(c1, c2) are estimated from the equilibrium equations for the housing market in Lemma 1

using again a two-step GMM estimator.

Description of Moments

The vector of moments used to estimate (δ, θ, σ) is based on the reduced form relationship

between productivity per worker and the equilibrium number of workers: W i
t = Ŵ i

t − αW Ni
t .

The assumption that xi
t works entirely through the wage process allows us to write: W i

t =

wi
0 + wa

1t + xi
t − αW Ni

t , which allows for a city-specific constant and a region-specific time

trend in labor demand.12 Using this expression for wages as well as the assumed value of w,

we define our productivity variable, which is wages normalized for changes in the number

of workers: W̃ i
t = W i

t + αW Ni
t . The resulting equation is: W̃ i

t = wi
0 + wa

1t + xi
t , where xi

t

follows an ARMA(1,1) process. The stochastic process for the shocks is therefore

xi
t = δxi

t−1 + εi
t + θεi

t−1,

with εi
t independently and identically distributed over time with

E[εi
t|xi

t, xi
t−1] = 0, and var[εi

t|xi
t, xi

t−1] = σ2
ε .

Using these two restrictions on ε and data on W̃ i
t , we identify the parameter vector (δ, θ, σ)

through a vector of moments

E[ f (W̃ i; (δ, θ, σ))] = 0.

(as the model indicates should be the case) but also the stochastic process governing any other unobservable
variable or shock that might affect the equilibrium in the housing market.

12We have tried to allow for city-specific time trends but, given the short length of the time series available
for estimation, this impedes the identification of the remaining parameters of the wage equation.
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The exact functional form of the moment function f (W̃ i; (δ, θ, σ)) is contained in the Ap-

pendix. This moment function is based on different moments of the one- period changes

in our productivity measure, ∆W̃, and relies on the ε shocks having mean zero, being

uncorrelated with lagged values of W̃ i, and having constant variance.13

Given the first stage estimates of the housing demand parameters, (δ̂, θ̂, σ̂2), we use the

equilibrium equations in Lemma 1 to build moment conditions that allow us to identify the

vector (c1, c2). Identification of these two parameters is performed through the vector of

moment conditions:

E[v(Hi, Ni, Ii; (c1, c2))] = 0.

The exact functional form of the moment function v(Hi, Ni, Ii; (c1, c2)) also is reported in

the Appendix. This moment function is based on different moments of the deviations

between the vector of housing prices, construction, and number of households and their

steady state levels, (H − Ĥ, I − Î, N − N̂). The moments defined by the moment function

v(Hi, Ni, Ii; (c1, c2)) rely on the ε shocks having mean zero, being uncorrelated with lagged

values of Ni, and having constant variance.

In order to build the sample analogues of

E[ f (W̃ i; (δ, θ, σ))] = 0,

E[v(Hi, Ni, Ii; (c1, c2))] = 0,

we use sample moment conditions that pool all the observations across metropolitan areas

and time periods which we assume share the same values of the parameter vector (δ, θ, σ, c1,

c2). Specifically, we build the sample analogue of the moment conditions aggregating across

metropolitan areas within regions and over our entire sample period. We pool observations

across metropolitan areas, instead of splitting them across different moment conditions, to

13As a robustness check, we have also estimated (δ, θ, σ) using a multiple-step estimation procedure. In the
first step, we use the Arellano-Bond estimator to obtain estimates of delta. Given this estimate of δ, we use
a Classical Minimum Distance estimator for θ based on the first and second order temporal autocorrelation.
Finally, using our estimates of (δ, θ), we estimate σ from the residual variance. The results are very similar to
the ones based on the simultaneous estimation of (δ, θ, σ) using the moment function f (W̃i; (δ, θ, σ)) and are
available upon request.
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increase our sample size. After all, GMM estimators have optimal statistical properties only

when the number of observations used in each moment condition goes to infinity, and the

standard errors of our GMM estimates are valid only asymptotically.

1.3.3 Estimation Results

Table 1.2 reports our estimated parameters. The estimates of the labor demand shocks

persistence parameter, δ, are 0.88 in the interior and coastal areas and 0.89 in the sunbelt.

While the similarity of these estimates is striking, they are still somewhat imprecise. We

cannot reject the possibility that income shocks follow a random walk (i.e., the persistence

parameter equals one) and we also cannot reject much more significant mean reversion.

Table 1.2: Estimated Demand and Supply Parameters
HMDA Income Data, 1990- 2004

Coastal Sunbelt Interior

Demand

δ 0.88 0.89 0.88
(0.11) (0.13) (0.10)

θ 0.82 0.13 0.20
(0.62) (0.13) (0.10)

σε $1,700 $1,300 $1,300
(500) (200) (100)

Supply

c1 10.62 1.47 3.16
(0.58) (0.14) (0.25)

c2 4.08 0.34 0.12
(0.77) (0.08) (0.11)

Notes: δ, θ, and σε are the autocorrelation parameter, moving average parameter and residual variance of
an ARMA(1,1) estimated for the component of wages that is not explained by a linear time trend and a
metropolitan area-specific constant. c1 denotes the derivative of expected future housing prices with respect
to current investment in housing construction; and c2 denote the derivative of the physical capital cost of
building a home with respect to the stock of houses. The standard errors for the demand parameters are efficient
two-step GMM standard errors. The ones for the supply parameters account for error coming from the demand
estimates.
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The estimates of the moving average parameter θ are statistically indistinguishable from

zero in the sunbelt and coastal regions. In the interior region, this moving average component

estimate is 0.2 and is marginally significantly different from zero. The productivity shock

estimates range from $1,300 in the sunbelt and interior to $1,700 on the coast. Our estimates

of the housing supply parameters reported in the bottom panel of Table 1.2 indicate a value

for c1 of 10.62 in the coastal region. This implies that a 1,000 unit increase in the number

of building permits in a given year raises the cost of supplying a home by $10,620. We

estimate a value of c2 in that region of 4.08, meaning that as the number of units in a

metropolitan area increases by 10,000 the cost of supplying a home increases by more than

$40,000. The estimates of c1 are much lower in the sunbelt and interior regions, at 1.47 and

3.16, respectively. In these two regions, the estimates of c2 are 0.34 and 0.12, respectively.

Housing supply does appear to be far more elastic in those regions.14

These latter findings can be compared with the housing supply estimates reported by

Topel and Rosen (1988), who use aggregate national data to estimate an elasticity of housing

supply with respect to price that is between 1 and 3. In our model, that supply elasticity

equals Ht/(c1 It). In 1990, average prices were about $130,000. Average construction levels

in a metropolitan area is approximately 8,350 units, as measured by building permits issued.

If we take the Topel and Rosen (1988) elasticity to be 3, then this implies a value of c1 of 5,

which lies in the middle of our estimates.

14As noted above, we generated separate estimates using BEA per capita income data in lieu of HMDA data.
This has the advantage of including years back to 1980, but we also suspect it might grossly underestimate
income volatility, which is critical for our purposes. In fact, estimates of the productivity shocks are much
lower, with the largest estimate of $1,200 for coastal region markets being smaller that that reported above for
sunbelt and interior markets using HMDA data. The moving average parameters are somewhat smaller across
all regions, but they are also imprecisely estimated, as was the case with the estimates based on HMDA. The
BEA data imply greater differences across regions in the demand shock persistence parameter, δ, with estimates
ranging from 0.73 in the interior (and we can reject that coefficient equals one at standard confidence levels) to
0.8 in coastal areas and 0.9 in the sunbelt region. Estimates of supply parameters using BEA per capita income
show a very similar pattern to those reported above, albeit with small point estimates. The coastal c1 is 6.1 and
its c2 is 1.9; those for the interior and sunbelt regions are much closer to zero. See the appendix for the analogue
to Table 1.4 based on using BEA per capita income in lieu of HMDA-based income.
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1.4 Matching the Data and Discussion

The model presented in Section 2 implies a particular stochastic process process for housing

prices and for the construction of new houses. If shocks are known as they occur, then it

is straightforward to show that our model implies the following ARMA(2,3) process for

housing prices, with the parameter vector restricted as outlined in the appendix:

∆Hi
t = ai

0 + a1∆Hi
t−1 + a2∆Hi

t−2 + b0εi
t + b1εi

t−1 + b2εi
t−2 + b3εi

t−3.

Analogously, the model implies the following ARMA(2,1) process for the construction of

new homes, with the parameter vector restricted as shown in the appendix:

Ii
t = di

0 + d1 Ii
t−1 + d2 Ii

t−2 + e0εi
t−1 + e1εi

t−2.

We then use these two ARMA processes, together with the estimated values of the

supply and demand parameters, to derive various predictions of the model over different

time horizons. Certain moments directly estimated from the data are compared to those

analytically derived. In doing so, we focus on a particular set of moments of these stochastic

processes: serial correlations and variances at the one, three and five year horizons. We do

not focus on any contemporaneous or lagged correlations between prices and quantities for

the reasons discussed next, even though much research in urban and real estate economics

uses results from regressions of high frequency prices (or price changes) on demand factors

such as income (or income changes).

1.4.1 The Impact of Information on the Predictions of the Model

The model discussed above assumes that shocks are observed as they occur, but we are far

from confident that they are not known ahead of time. And, the results of contemporaneous

correlations are sensitive to what one assumes about the underlying information structure

(i.e., whether information about the change in income becomes known ahead of time or

only contemporaneously with its public release). In contrast, autocorrelations of price and

construction series are much less sensitive to information timing as we now demonstrate by
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comparing the predictions of the model with our assumed information structure and the

predictions if shocks are known one period ahead of time.

For this exercise, we use parameter estimates from the coastal region: r = 0.04, α = 0.1,

c1 = 10.62, c2 = 4.08, θ = 0.82, δ = 0.88, and σ = $1, 700. The first column in Table 1.3

reports our model’s predictions for a number of variables presuming such contemporaneous

knowledge.15 The second column represents our model’s predictions when individuals

learn about the income shock one period before it actually impacts wages.

Advance knowledge slightly increases construction volatility and adds some momentum

to house price changes. Otherwise the autocorrelations are essentially unchanged. Therefore,

the predictions of our model for these moments are robust to a possible misspecification

of the information structure and a potential lag between the time the income shocks are

known to the agents and when they are made public.

In stark contrast, the impact of the information structure on the contemporaneous

correlation between changes in prices and changes in income is enormous. The bottom

panel of Table 1.3 shows that if knowledge is contemporaneous to the shock, then the

correlation of price and income changes over short horizons is 0.80. If individuals acquire

knowledge one year ahead, then the predicted correlation is only 0.08. The correlation is

only somewhat more stable at lower frequencies.

Because these correlations are so sensitive to small changes in the underlying information

conditions, we focus our analysis on the serial correlation properties and volatility of price

changes and construction activity.16

15For any j year interval, these predictions reflect the relationship between what happened between time t
and t− j and what happened between time t and t + j.

16Over longer horizons, a one-year shift in when information becomes known is less important, so it certainly
can make good sense to explore various longer-run relationships with price changes. Because our interest is in
higher frequency changes, we do not do that here.
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1.4.2 Volatility and Serial Correlation in House Prices

Table 1.4 documents how well the model matches the data by comparing the model’s

predictions of short- and long-run volatility and serial correlation in house price changes

Table 1.3: Sensitivity of Predictions to Different Information Structures

Contemporaneous Knowledge One
Horizon Knowledge Year Ahead

Serial Correlation of Construction

1 year 0.51 0.56
3 year 0.18 0.19
5 year -0.04 -0.03

Volatility of Construction (units)

1 year 1,800 2,000
3 year 4,300 4,800
5 year 6,000 6,700

Serial Correlation of House Price Changes

1 year -0.00 0.09
3 year -0.16 -0.10
5 year -0.24 -0.21

Volatility of House Price Changes ($)

1 year 18,000 17,000
3 year 30,000 31,000
5 year 37,000 39,000

Correlation of Income Changes
and House Price Changes

1 year 0.80 0.08
3 year 0.93 0.61
5 year 0.95 0.75

Notes: The parameter values estimated for the coastal region using HMDA wage data are assumed here:
δ = 0.88, θ = 0.82, σε = $1, 700, c1 = 10.62, and c2 = 4.08.
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and new construction with the actual moments from the data. Standard deviations and

serial correlation coefficients from the underlying data over this time period are reported in

columns adjacent to our model predictions.

Table 1.4: Volatility and Serial Correlation in House Prices and Construction: HMDA Income Data,
1990-2004

Coastal Sunbelt Interior
Horizon Model Data Model Data Model Data

Volatility of House Price Changes ($)

1 year 18,000 13,300 5,000 2,000 6,000 3,600
3 year 30,000 34,100 8,000 4,400 10,000 8,400
5 year 37,000 48,300 9,000 5,400 12,000 10,700

Serial Correlation of House Price Changes

1 year -0.00 0.84 -0.12 0.64 -0.07 0.73
3 year -0.16 0.32 -0.28 -0.09 -0.25 0.10
5 year -0.24 -0.80 -0.35 -0.73 -0.36 -0.72

Volatility of Construction (units)

1 year 1,800 1,900 3,600 5,300 2,000 1,600
3 year 4,200 4,600 9,000 12,000 5,700 3,800
5 year 5,900 6,300 12,000 15,500 8,600 5,000

Serial Correlation of Construction

1 year 0.50 0.75 0.56 0.82 0.72 0.74
3 year 0.17 0.18 0.25 0.23 0.47 0.25
5 year -0.04 -0.79 0.03 -0.60 0.25 -0.72

Notes: The moments computed from the data allows the mean of housing price changes and construction to
vary across metropolitan areas. The moments generated from the model use the estimates in Table 1.2.
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Volatility in House Prices

The model generally overpredicts price volatility except in the coastal region at 3- and 5-year

horizons. One explanation for this excess predicted volatility is that the HMDA data may

be overestimating the actual volatility in local labor demand. Predicted volatility is closer to

the data in both absolute and percentage terms over longer horizons in the interior regions.

Those differences are within $2,000. And, the model captures the sharply rising volatility in

price changes over longer horizons in coastal markets,17 but it never matches the very high

price volatility seen in those areas over 3- and 5-year horizons. Except in coastal markets,

there appears to be more than enough volatility in local income processes to account for

house price volatility.18

Serial Correlation in House Prices

Turning now to the model predictions about the serial correlation of house price changes

over 1, 3 and 5 year horizons reported in the second panel of Table 1.4 ,the model predicts

very modest autocorrelation of one- year price changes, ranging from zero in the coastal

region to -0.12 for the sunbelt region. Comparing these predictions with the actual data

reveals a glaring mismatch between the model and reality. In the real world, as Case and

Shiller (1989) documented long ago, there is strong positive serial correlation at one-year

frequencies. A one dollar increase in prices during one year is associated with between a 64

and 84 cent increase in prices during the next period, depending upon region.

There is no reasonable calibration of the model that can match the strong positive serial

correlation of prices at high frequencies. One possible explanation lies in the microfoun-

dations of the housing market. If there is a learning process at work, whereby people

17This is due to the higher underlying volatility in the local income process (σ is 30 percent higher in the
coastal metropolitan areas), as well as higher moving average component θ.

18The results are far different if the BEA income series is used. In that case, the model grossly underpredicts
price change variation, by 50%-75% or more. See the appendix for the analogue to Table 1.4 based on BEA per
capita income. Thus, if one disagrees with our conclusion that the HMDA-based income series is superior and
that per capita income better reflects reality, then local housing markets are far too volatile given their (income)
fundamentals.
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gradually infer the state of demand from prices, then this can generate serial correlation. An

alternative explanation is less rational: people see past price changes and infer future price

growth (as in Glaeser et al. (2008)). Neither idea is captured in our model. In our model,

individuals are fully rational and they know the parameters that govern the stochastic

process for housing prices and construction of new houses.

At three year periods, the model and the data continue to diverge. The model continues

to predict mean reversion in prices, with the implied serial correlation coefficient ranging

from -0.16 for the coastal region to -0.28 for the sunbelt region. The real data shows at least

mild positive serial correlation for all but the sunbelt region. Once again, price changes are

too positively correlated to match the model.

At 5-year time horizons, the model correctly predicts that price changes mean revert,

which is an important stylized fact about local housing markets. However, the point

estimates are well below the amount of mean reversion apparent in the data. This is one

case in which we are skeptical of the data because our procedures for detrending, which

involve subtracting the metro area means, probably induce some spurious mean reversion

given the limited fifteen year time series.

While part of the reason for the magnitude mismatch may be due to this factor, that

does not provide a complete explanation. If we lengthen the price change time series and

include the 1980s, computed mean reversion is lower, but is still higher than our estimates

in Table 1.4 . For example, the serial correlation in five year price changes falls from - 0.80 to

-0.57 in the coastal region. That still is more than double the -0.24 estimate yielded by our

model (Table 1.4). And, using BEA per capita income over the longer time period dating

back to 1980 does not yield a perfect (or close to perfect) match either.19 Hence, the model

should be viewed as successful in capturing the fact that there is mean reversion in price

changes over long horizons, but it fails to match the strength of that pattern.

19Similar patterns are evident in the other regions.
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1.4.3 Volatility and Serial Correlation in Construction

Volatility in Construction

The model matches the volatility of construction activity at all time horizons in the coastal

region quite well, and especially at high frequency (panel 3, Table 1.4 ). The match quality

is less good, but tolerable, in the sunbelt region. The model predicts much greater volatility

over longer horizons, but underpredicts volatility by one- quarter to one-third in this region.

We consistently overpredict construction quantity by at least 25% at each horizon in interior

markets.20

Serial Correlation in Construction

In stark contrast to the model’s complete failure to predict strong persistence in price

changes over one-year horizons, it always correctly predicts positive, high frequency serial

correlation in construction in all regions, with the match being very good for the interior

region. Our estimates are about one-third below what the actual data show for the coastal

and sunbelt regions, so complete success for the model cannot be claimed here. We do better

at 3-year horizons. Our model estimates correctly mimic the lower level of serial correlation

at this longer horizon in all regions. And, our point estimates are very close matches to the

data in the coastal and sunbelt regions.

However, the estimates over 5-year horizons do not match the data. As noted above,

we are skeptical of the value of creating such differences using only 15 years of data. If we

go back and include the 1980s, calculated mean reversion fall by about two-thirds in each

region (e.g., from -0.79 to -0.27 in the coastal region; from -0.60 to -0.20 in the sunbelt region;

and from -0.72 to -0.24 in the interior region). Thus, it certainly looks as if the short time

span over which we have higher quality income data is leading to an upwardly biased level

of mean reversion in construction for the model to match. That said, our model estimates

20As was the case for price change volatility, using per capita income from the BEA in lieu of household-level
income from HMDA leads us to dramatically underpredict construction volatility. To reiterate, if one believes
the BEA series more accurately reflects the true variation of local income processes, then housing markets are
far too volatile relative to their fundamentals.
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still do not match those lower levels of mean reversion.21

1.5 Conclusion

This paper presents a dynamic linear rational expectations model of housing markets based

on cross-city spatial equilibrium conditions. Its aim is to show how well a housing model

that focuses on income shocks may approximate certain features of the housing market.

The model predicts that housing markets will be largely local, which they are, and that

construction persistence is fully compatible with price mean-reversion. The model is also

consistent with price changes being predictable.

The model has notable successes and failures at fitting the real data. It generally captures

important differences across types of markets, especially coastal ones that have inelastic

supply sides to their housing markets. The model also does a decent job of accounting for

variation in price changes. An important implicit assumption underlying that conclusion

is that the HMDA series more accurately reflects the volatility of local income processes

than (say) the BEA’s per capita income measure. More in-depth research on this data issue

seems warranted given its importance in allowing the model to approximate market price

volatility. This conclusion also generally applies to the volatility of quantities as reflected in

construction permits.

That said, we still cannot precisely match the very high volatility of three- and five-year

price changes observed in the inelastically supplied coastal regions. Thus, it also would

be useful for future research to try to pin down whether there is excess volatility in those

markets.

The model does tolerably well at accounting for the strong positive serial correlation of

construction quantities from one year to the next. It also correctly captures the weakening of

this persistence over longer horizons, but fails to match the magnitude of the mean reversion

21This is the one case in which using the BEA data on income and the longer time series including the 1980s
leads to better matches. In this case, the model always predicts at least modest mean reversion in construction
over 5-year horizons, and the match quality is quite good for the interior region.
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in quantities over longer horizons especially. Some of the failure in matching the magnitude

of mean reversion in prices and quantities over longer horizons may be due to data error,

but that is not a complete explanation. This is another avenue for fruitful research.

The model fails utterly at explaining the strong, high frequency positive serial correlation

of price changes. It does a much better job of accounting for the mean reversion over longer,

five-year horizons, especially when one takes into account the likelihood our procedures

overstate true mean reversion over this longer time span.

This suggests that housing economists have one very big puzzle to explain, along with

some other issues. The major puzzle is the strong persistence in high frequency price

changes from one year to the next. This failure must be viewed as stark given that attempt

to match moments for a time period that does not include the recent extraordinary boom

and bust. Other matters that certainly merit closer scrutiny include the extremely high price

change volatility in coast markets over longer time horizons and the inability to match mean

reversion in construction over longer horizons. These empirical misses are significant, but it

remains true that a dynamic urban model can account for many of the important features

of housing markets. We see this model as a starting point for a larger agenda of research

on real estate dynamics that starts with a dynamic spatial equilibrium model. One natural

extension is to include interest rate volatility, and we have sketched such an approach in

an earlier version of this paper. A second extension is to relax the assumption of perfect

rationality for home-buyers, and perhaps builders as well.
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Chapter 2

Arrested Development: Theory and

Evidence of Supply-Side Speculation

in the Housing Market1

2.1 Introduction

How do prices aggregate information? We take up this question in a setting of particular

macroeconomic importance: housing markets. Housing is a key driver of the business

cycle (Leamer, 2007), and the causes of the financial crisis of 2008 and the Great Recession

originated in housing markets (Mian and Sufi, 2009, 2011). An enduring feature of these

markets is booms and busts in prices that coincide with widespread disagreement about

fundamentals (Shiller, 2005). This paper argues that these cycles are caused by how housing

markets aggregate beliefs.

Studying belief aggregation allows us to address some of the most puzzling aspects of

the U.S. housing boom that occurred between 2000 and 2006. According to the standard

model of housing markets, elastic housing supply prevents house price booms by allowing

1This chapter is co-authored with Eric Zwick.
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new construction to absorb rising demand.2 But the episode from 2000 to 2006 witnessed

several major anomalies, in which historically elastic cities experienced house price booms

despite continuing to build housing rapidly. And house prices rose more in many of

these cities—located in Arizona, Nevada, inland California, and Florida—than in cities

where it was difficult to build new housing. Further complicating the puzzle, house prices

remained flat in other elastic cities that were also rapidly building housing. Why was rapid

construction able to hold down house prices in some cities and not others?

We solve this puzzle by adding two ingredients to the standard model. The first is a

friction that makes owner-occupancy more efficient than renting. The second is disagreement

about long-run growth paths. In this framework the way housing markets aggregate beliefs

depends on a city’s land availability. Prices appear more optimistic when land is plentiful

and building houses is easy, reversing the standard model’s intuition for how land supply

influences prices. Crucially, optimism amplifies prices most when a city nears but has not

yet reached a long-run development constraint. This mechanism matches the data. The

anomalous cities are those that, as the boom began, found themselves in just this state of

“arrested development.”

We model a city of developers and residents with a fixed amount of land available for

development. Developers decide how many houses to build and how much land to buy.

Residents decide how much housing to consume and whether to buy or rent. They prefer

owning their houses over renting because of frictions in the rental market.3 Residents can

invest in the equity of developers, which provides exposure to land prices. Short-selling

land and housing is impossible, but residents can short-sell developer equity. Over time,

new residents arrive in the city, leading developers to build houses using their holdings of

undeveloped land. Because of this growth, the city gradually exhausts its land supply. What

today’s investors believe about future inflows determines the price of undeveloped land.

2See, for example, Glaeser et al. (2008), Gyourko (2009), and Saiz (2010).

3Such frictions include the effort spent monitoring tenants to prevent property damage (Henderson and
Ioannides, 1983), tax disadvantages (Poterba, 1984), and difficulty renting properties like single-family homes
that are designed for owners (Glaeser and Gyourko, 2007).
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House construction is instantaneous and developers bear a constant unit cost per house.

As a result, all variations in house prices are caused by movements in land prices and not

construction costs. Data from the U.S. boom support this feature of the model. Rapidly

rising land prices account for most of the house price increases across cities. In contrast,

construction costs remained relatively stable throughout the boom, and cost changes hardly

varied across cities. These aspects of the data distinguish our theory from those that stress

“time-to-build” factors such as input shortages or delivery lags (Mayer and Somerville, 2000;

Gao, 2014).

We study a demand shock that raises the current inflow of new residents and also

creates uncertainty about future inflows. Disagreement about long-run demand leads to

disagreement about future house prices. The most optimistic residents seek to speculate

through buying housing and through buying the equity of optimistic developers who are

buying land.

Our first result is that speculation is crowded out of the housing market and into the

land market. Consider an optimistic resident who wishes to speculate on future house

prices. Buying a house and renting it out is difficult because of the widespread preference

for owner-occupancy. And buying more housing for personal consumption is unappealing

because of diminishing marginal utility. Land however offers a pure, frictionless bet on real

estate. The optimistic resident chooses to invest in land through buying developer equity.

With data from the U.S. housing boom, we confirm several of the model’s predictions

about land speculation. In the model, developers run by optimistic CEOs use resident

financing to amass large land portfolios, buying land from less optimistic developers.

Consistent with this prediction, we find that supply-side speculation figures prominently

in the data. Between 2000 and 2006, the eight largest U.S. public homebuilders tripled

their land investments, an increase far exceeding their additional construction needs. Their

market equity then fell 74%, with most of the losses coming from write-downs on their land

portfolios. The model also predicts that short-selling of developer equity increases during a

boom because pessimistic residents disagree with the high valuations of the developer land
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portfolios. Matching this prediction, the short interest in homebuilder stocks rose from 2%

in 2001 to 12% in 2006. Rising short interest provides evidence of disagreement over the

value of homebuilder land portfolios and thus over future house prices.

Our second result concerns how house prices aggregate beliefs. Speculators are crowded

into the land market, while homeownership remains dispersed among residents of all beliefs.

Therefore, house prices reflect a weighted average of the optimistic belief of speculators

and the average owner-occupant belief. The weight on the optimistic belief equals the share

of the housing market on the margin that consists of the land market. Prices look most

optimistic where land is plentiful and building easy—that is, in cities where the short-run

elasticity of housing supply is large.

This optimism bias affects prices most when the city’s housing supply will become

inelastic soon. This observation, which constitutes our third result, explains why house

price booms occur in some elastic cities and not others. Consider a city in which the land

available for development is large relative to the city’s current size. Here, new construction

fully absorbs the demand shock now and in the foreseeable future, and so beliefs about

future house prices remain unchanged. The shock raises future price expectations only in

cities where construction will be difficult in the near future.

Speculation amplifies house price booms most in cities that exist in a state of arrested

development: they have ample land for construction today, but also face land barriers that

will restrict growth in the near future. This theoretical supply condition characterizes the

anomalous elastic cities during the U.S. housing boom. For instance, Las Vegas faces a

development boundary put in place by Congress in 1998 and depicted in Figure 2.1. During

the 2000-2006 housing boom, many investors believed the city would soon run out of

land.4 Likewise, Phoenix’s long-run development is constrained by Indian reservations and

4Las Vegas provides a particularly clear illustration of our model. The ample raw land available in the
short-run allowed Las Vegas to build more houses per capita than any other large city in the U.S during the
boom. At the same time, speculation in the land markets caused land prices to quadruple between 2000 and
2006, rising from $150,000 per acre to $650,000 per acre, and then lose those gains. This in turn led to a boom and
bust in house prices. The high price of $150,000 for desert land before the boom and after the bust demonstrates
the binding nature of the city’s long-run development constraint. A New York Times article published in 2007
cites investors who believed the remaining land would be fully developed by 2017 (McKinley and Palmer, 2007).
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National Forests that surround the metropolitan area (Land Advisors). In inland California,

much of the farmland around cities is protected by a state law that penalizes real estate

development on these parcels (Onsted, 2009).

When disagreement is strong enough, house prices increase more in these nearly de-

veloped cities than in a fully developed city. In the nearly developed cities, the extreme

optimistic beliefs of land speculators determine house prices, amplifying the house price

boom. Prices remain more stable in the fully developed city because they reflect the average

belief. This result explains the puzzling house price booms in elastic areas that motivate

this paper. Supply conditions in these places—elastic current supply, inelastic long-run

supply—lead disagreement to have the largest possible amplification effect on a house price

boom.

Our theory differs from several other explanations for the strong house price booms

that occurred in elastic areas between 2000 and 2006. One possibility is that these cities

experienced much larger demand shocks than the rest of the United States.5 Our analysis

assumes a constant demand shock across cities; the heterogeneity in city house prices

booms results entirely from differences in supply conditions. An additional possibility

is that uncertainty increased land values due to the embedded option to develop land

with different types of housing (Titman, 1983; Grenadier, 1996), and that this option value

increase was largest in cities with an intermediate amount of land. In our model, all housing

is identical, so this option does not exist. A final explanation is that developers hoarded

land to gain monopoly power, and the incentive to do so was strongest in cities about to

run out of land. This effect does not appear in our model because homebuilding is perfectly

The dramatic rise in land prices during the boom resulted from optimistic developers taking large positions
in the land market. In a striking example of supply-side speculation, a single land development fund, Focus
Property Group, outbid all other firms in every large parcel land auction between 2001 and 2005 conducted by
the federal government in Las Vegas, obtaining a 5% stake in the undeveloped land within the barrier.Focus
Property Group declared bankruptcy in 2009.

5For instance, the expansion of credit described by Mian and Sufi (2009) may have been largest in these
cities. Alternatively, historical increase in house prices in nearby areas may have spread to these cities, either
through behavioral contagion (DeFusco et al., 2013) or long-distance gentrification (Guerrieri et al., 2013).
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Figure 2.1: Long-Run Development Constraints in Las Vegas

51Regional Transportation Plan, 2013-2035

1980 1990

Figure 2-9: Las Vegas Valley Development: 1980-2030

20302008

Notes: This figure comes from Page 51 of the Regional Transportation Commission of Southern Nevada’s Regional
Transportation Plan 2009-2035 (RTCSNV). The first three pictures display the Las Vegas metropolitan area in 1980,
1990, and 2008. The final picture represents the Regional Transportation Commission’s forecast for 2030. The boundary is
the development barrier stipulated by the Southern Nevada Public Land Management Act. The shaded gray region denotes
developed land.
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competitive, as is the case empirically at the metro-area level.6 Unlike these stories, our

approach explores the cross-sectional implications of disagreement, an under-studied aspect

of housing cycles for which we provide direct evidence.

In addition to explaining the city-level cross-section, our model offers new predictions on

the cross-section of neighborhoods within a city. We allow some residents to prefer renting

over owner-occupancy, so that both rental and owner-occupied housing exist in equilibrium.

During periods of disagreement, optimistic speculators hold the rental housing, just as

they hold land. Prices appear more optimistic, and hence house price booms are larger, in

neighborhoods where a greater share of housing is rented. This prediction matches the data:

house prices increased more from 2000 to 2006 in neighborhoods where the share of rental

housing in 2000 was higher.

A long literature in macroeconomics and finance has studied how prices aggregate

information. When markets are complete and investors share a common prior, prices

usually are efficient and reflect the information of all market participants (Fama, 1970;

Grossman, 1976; Hellwig, 1980). Our paper sits among a body of work showing that

prices reflect only a limited and potentially biased subset of information when investors

persistently disagree with each other, and markets are incomplete. Many of these papers

focus on strategic considerations that arise in this setting, and the implications for asset

prices (Harrison and Kreps, 1978; Scheinkman and Xiong, 2003). A related literature, starting

with Miller (1977), demonstrates that prices can be biased even in the absence of strategic

considerations because optimists end up holding the asset.7 We show that this optimism

bias is strongest in housing markets when land is plentiful or when much of the housing

6Somerville (1999) demonstrates the high level of homebuilder competition at the metro-area level, although
he points out that construction is less competitive at the neighborhood level. Hoberg and Phillips (2010) argue
that price booms often occur in competitive industries because firms mistakenly believe they will obtain future
monopoly power.

7In these papers, all market participants are fundamental investors who ignore other investors’ beliefs
(Chen et al., 2002; Geanakoplos, 2009; Hong and Sraer, 2012; Simsek, 2013a,b). Pástor and Veronesi (2003, 2009)
also study environments in which investors care only about long-run fundamentals during booms and busts,
but their focus is on learning, and all investors agree as they are all identical. Piazzesi and Schneider (2009)
and Burnside et al. (2013) also apply models of disagreement to the housing market. Papers in which strategic
behavior matters include Abreu and Brunnermeier (2003), Allen et al. (2006), and Hong et al. (2006).
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stock is rented. In contrast, prices aggregate beliefs well in cities where the housing stock is

fixed and owner-occupied. In these areas, house prices reflect the average of all resident

beliefs, even though they are agreeing to disagree and short-selling housing is impossible.

The paper proceeds as follows. In Section 2.2, we document the puzzling aspects of the

cross-section of the U.S. housing boom, as well as the importance of supply-side speculation

in land markets. Section 2.3 models the housing market environment. Section 2.4 contains

our analysis of how house prices aggregate beliefs. In Section 2.5, we derive implications of

the model to explain the empirical cross-section of housing markets during the U.S. boom.

Section 2.6 contains new predictions on the cross-section of neighborhoods within a city,

and Section 2.7 concludes.

2.2 Stylized Facts of the U.S. Housing Boom and Bust

2.2.1 The Cross-Section of Cities

The Introduction mentions three puzzles about the cross-section of city experiences during

the boom. First, large house price booms occurred in elastic cities where new construction

historically had kept prices low. Second, the price booms in these elastic areas were as large,

if not larger, than those happening in inelastic cities at the same time. Finally, house prices

remained flat in other elastic cities that were also rapidly building housing.

We document these puzzles using city-level house price and construction data. House

price data come from the Federal Housing Finance Agency’s metropolitan statistical area

quarterly house price indices. We measure the housing stock in each city at an annual

frequency by interpolating the U.S. Census’s decadal housing stock estimates with its annual

housing permit figures. Throughout, we focus on the 115 metropolitan areas for which the

population in 2000 exceeds 500,000. The boom consists of the period between 2000 and 2006,

matching the convention in the literature to use 2006 as the end point (Mian et al., 2013).

Figure 2.2(a) plots construction and house price increases across cities during the boom.

The house price increases vary enormously across cities, ranging from 0% to 125% over this
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Figure 2.2: The U.S. Housing Boom and Bust Across Cities

a) Price Increases and Construction, 2000-2006
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Notes: Anomalous Cities include those in Arizona, Nevada, Florida, and inland California. Inelastic Cities are Boston,
Providence, New York, Philadelphia, and all cities on the west coast of the United States. We measure the housing stock
in each city at an annual frequency by interpolating the U.S. Census’s decadal housing stock estimates with its annual
housing permit figures. House price data come from the second quarter FHFA house price index deflated by the CPI-U. The
figure includes all metropolitan areas with populations over 500,000 in 2000 for which we have data. (a) The cumulative
price increase is the ratio of the house price in 2006 to the house price in 2000. The annual housing stock growth is the log
difference in the housing stock in 2006 and 2000 divided by six. (b), (c) Each series is an average over cities in a group
weighted by the city’s housing stock in 2000. Construction is annual permitting as a fraction of the housing stock. Prices
represent the cumulative returns from 1980 on the housing in each group.
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brief six-year period. The largest price increases occurred in two groups of cities. The first

group, which we call the Anomalous Cities, consists of Arizona, Nevada, Florida, and inland

California. The other large price booms happened in the Inelastic Cities, which comprise

Boston, Providence, New York, Philadelphia, and the west coast of the United States.

The history of construction and house prices in the Anomalous Cities before 2000

constitute the first puzzle. As shown in Figures 2.2(b) and 2.2(c), from 1980 to 2000 these

cities provided clear examples of elastic housing markets in which prices stay low through

rapid construction activity. Construction far outpaced the U.S. average while house prices

remained constant. The standard model of housing cycles would have predicted the surge

in U.S. housing demand between 2000 and 2006 to increase construction in these cities but

not to raise prices. Empirically, the shock did increase construction, as shown in Panel (b).

The puzzle is that house prices rapidly increased as well.

The second puzzle is that the price increases in the Anomalous Cities were as large as

those in the Inelastic Cities. The Inelastic Cities consist of markets where house prices rise

because regulation prohibits construction from absorbing higher demand. We document this

relationship in Panels (b) and (c) of Figure 2.2, which show that construction in these cities

was lower than the U.S. average before 2000 while house price growth greatly exceeded the

U.S. average. The standard housing cycle model would have predicted the Inelastic Cities

to lead the nation in house price growth in the boom after 2000. Although house prices

did sharply rise, the price increases in the Inelastic Cities were no larger than those in the

Anomalous Cities where the boom led to rapid construction.

The final puzzle is that some elastic cities built housing quickly during the boom but,

unlike the Anomalous Cities, experienced stable house prices. These cities appear in the

bottom-right corner of Figure 2.2(a), and are located in the southeastern United States (e.g.

Texas and North Carolina). Their construction during the boom quantitatively matches that

in the Anomalous Cities, but the price changes are significantly smaller. Why was rapid

construction able to hold down house prices in some cities and not others?

One response to these three puzzles is that the Anomalous Cities simply experienced
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much larger demand shocks than the rest of the nation during the boom. Although

differential demand shocks surely explain part of the cross-section, they cannot account for

all aspects of the Anomalous Cities just documented. These cities had been experiencing

abnormally large demand shocks for years before 2000. Figure 2.2(b) shows that they were

some of the fastest growing cities in the United States. Yet the surging demand to live in

these areas did not increase prices. The departure from this pattern after 2000 requires

a more nuanced theory than the hypothesis that housing demand increased particularly

strongly in the Anomalous cities during the boom.

2.2.2 The Central Importance of Land Prices

This paper argues that speculation in land markets explains the variation in the house

price boom across cities just documented. Our model demonstrates that land market

speculation amplifies house price increases by making prices look more optimistic, and that

this amplification is strongest in areas at the same level of development as the Anomalous

Cities. In our framework, all movements in house prices arise from changes in land prices

that reflect optimistic beliefs. Matching this premise, land price increases empirically account

for nearly all of the increase in house prices during the boom, as we now show.

Tracing house price increases to land prices distinguishes our argument from “time-to-

build” theories. According to the time-to-build hypothesis, house prices rise during a boom

because of a temporary failure of homebuilders to expand construction. This delivery lag

derives from obstacles erected by local regulators or from temporary shortages of inputs

such as drywall and skilled labor. Under this theory, the price of undeveloped land should

remain constant during the boom. Because land prices reflect the long-run, temporary

housing shortages have no effect on the price of undeveloped land. These shortages instead

raise construction costs and the shadow price of regulatory building permission.

To assess the importance of land prices, we gather data on land prices and construction

costs at the city level. Data on land prices come from the indices developed by Nichols

et al. (2010) using land parcel transaction data. They run hedonic regressions to control for
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parcel characteristics and then derive city-level indices from the coefficients on city-specific

time dummies. We measure construction costs using the R.S. Means construction cost

survey. This survey asks homebuilders in each city to report the marginal cost of building a

square foot of housing, including all labor and materials costs. Survey responses reflect real

differences across cities in construction costs. In 2000, the lowest cost is $54 per square foot

and the highest is $95; the mean is $67 per square foot and the standard deviation is $9.

Competition among homebuilders implies that, when construction is positive, house

prices must equal land prices plus construction costs: ph
t = pl

t + Kt. Log-differencing this

equation between 2000 and 2006 yields

∆ log ph = α∆ log pl + (1− α)∆ log K,

where ∆ denotes the difference between 2000 and 2006 and α is land’s share of house prices

in 2000. The factor that matters more should vary more closely with house prices across

cities. Because α and 1− α are less than 1, the critical factor should also rise more than

house prices do.

Figure 2.3 plots for each city the real growth in construction costs and land prices

between 2000 and 2006 against the corresponding growth in house prices. Construction

costs rose relatively little during this period, and growth in these costs does not vary in

relation to the size of house price increases. Land prices display the opposite pattern, rising

substantially during the boom and exhibiting a high correlation with house prices. Each

city’s land price increase also exceeds its house price increase. This evidence underscores

the central importance of land prices for understanding the cross-section of house price

booms.

2.2.3 Land Market Speculation by Homebuilders

The land price booms just documented were driven by speculation in land markets. The

term “speculation” refers to the process in which optimists buy up an asset that cannot

be shorted, biasing its price. Our model describes two implications of this behavior. First,
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Figure 2.3: Input Price and House Price Increases Across Cities, 2000-2006
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foot of an average quality home, deflated by the CPI-U. Gyourko and Saiz (2006) contains further information on the
survey. Land price changes come from the hedonic indices calculated in Nichols et al. (2010) using land parcel transactions,
and house prices come from the second quarter FHFA housing price index deflated by the CPI-U. The figure includes all
metropolitan areas with populations over 500,000 in 2000 for which we have data.
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the owners of the land during the boom increase their positions as they crowd out less

optimistic landowners. Second, when their beliefs are revealed to be more optimistic than

reality, optimists suffer capital losses. We document both of these features among a class

of landowners for whom rich data are publicly available: public homebuilders. We focus

on the eight largest firms and hand-collect landholding data from their annual financial

statements between 2001 and 2010.

Consistent with speculative behavior, these firms nearly tripled their landholdings

between 2001 and 2005, as shown in Figure 2.4(a). These land acquisitions far exceed

additional land needed for new construction. Annual home sales increased by 120,000

between 2001 and 2005, while landholdings increased by 1,100,000 lots. One lot can produce

one house, so landholdings rose more than nine times relative to home sales. In 2005, Pulte

changed the description of its business in its 10-K to say, “We consider land acquisition one

of our core competencies.” This language appeared until 2008, when it was replaced by,

“Homebuilding operations represent our core business.”

Having amassed large land portfolios, these firms subsequently suffered large capital

losses. Figure 2.4(b) documents the dramatic rise and fall in the total market equity of

these homebuilders between 2001 and 2010. Homebuilder stocks rose 430% and then fell

74% over this period. The majority of the losses borne by homebuilders arose from losses

on the land portfolios they accumulated from 2001 to 2005. In 2006, these firms began

reporting write-downs to their land portfolios. At $29 billion, the value of the land losses

between 2006 and 2010 accounts for 73% of the market equity losses over this time period.

The homebuilders bore the entirety of their land portfolio losses. Their land acquisitions

represented their beliefs about long-term land prices, as opposed to a no-downside bets

made with access to free credit.

Further evidence of homebuilder optimism comes from short-selling of their market

equity. If the homebuilders buying land are more optimistic than most investors, then other

investors should bet against them by shorting their stock. Figure 2.4(c) plots monthly short

interest ratios, defined as the ratio of shares currently sold short to total shares outstanding,
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Figure 2.4: Supply-Side Speculation Among U.S. Public Homebuilders, 2001-2010
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Notes: (a), (b) Data come from the 10-K filings of Centex, Pulte, Lennar, D.R. Horton, K.B. Homes, Toll Brothers,
Hovnanian, and Southern Pacific, the eight largest public U.S. homebuilders in 2001. “Lots Controlled” equals the sum of
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and 2010 among these homebuilders totals $29 billion. (c) Short interest is computed as the ratio of shares currently sold
short to total shares outstanding. Monthly data series for shares short come from COMPUSTAT and for shares outstanding
come from CRSP. Builder stocks are classified as those with NAICS code 236117.
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for homebuilder stocks and non-homebuilder stocks between 2001 and 2010. Throughout

the boom, short interest of homebuilder stock sharply increased, rising from 2% in 2001

to 12% in 2006. It further increased as homebuilders began to announce their land losses

in 2006. Rising short interest provides direct evidence of disagreement over the value of

homebuilder land portfolios and thus over future house prices.

2.3 A Housing Market with Homeowners and Developers

Housing Supply. The city we study has a fixed amount of space S. This space can either

be used for housing, or it remains as undeveloped land. The total housing stock in the city

at time t is Ht and the remaining undeveloped land is Lt, so S = Ht + Lt for all t.

A continuum of real estate developers invest in land and construct housing from the land

at a cost of K per unit of housing. The aggregate supply of new housing is ∆Ht. Construction

is instantaneous, and housing does not depreciate: Ht = ∆Ht + Ht−1. Construction is also

irreversible: ∆Ht ≥ 0. Both housing and land are continuous variables, and one unit of

housing requires one unit of land.

The developers rent out land on spot markets at a price of rl
t. Rental demand for

undeveloped land comes from firms, such as farms, that use the city’s land as an input.

These firms buy their inputs and sell their products on the global market. Therefore, their

aggregate demand for land depends only on rl
t and not on any other local market conditions.

This aggregate rental demand curve is Dl(rl
t), where Dl(·) is decreasing positive function

such that Dl(0) ≥ S.

The profit flow of a developer j at time t is

πj,t = rl
tLj,t + pl

t(Lj,t−1 − Lj,t)︸ ︷︷ ︸
development profit

+ (ph
t − pl

t − K)∆Hj,t︸ ︷︷ ︸
homebuilding profit

, (2.1)

where ph
t is the price of housing and pl

t is the price of land. The real estate development

industry faces no entry costs, so the industry is perfectly competitive. Because homebuilding

is instantaneous and does not depend on prior land investments, profits from this line of
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business must be zero due to perfect competition. We denote the aggregate homebuilding

profit by πhb
t = (ph

t − pl
t − K)∆Ht.

Each developer begins with a land endowment and issues equity to finance its land

investments. It maximizes its expected net present value of profits Ej ∑∞
t=0 βtπj,t. The

operator Ej reflects firm j’s expectation of future land prices. Firm-specific beliefs represent

the beliefs of the firm’s CEO, who owns equity, cannot be fired, and decides the firm’s

land investments. The number of each developer’s equity shares equals the amount of

land it holds, and each developer pays out its land rents as dividends. The market price of

developer equity therefore equals the market price pl
t of land.

Individual Housing Demand. A population of residents live in the city and hold its

housing. These residents receive direct utility from consuming housing. Lower-case

h denotes the flow consumption of housing, whereas upper-case H denotes the asset

holding. Flow utility from housing depends on whether housing is consumed through

owner-occupancy or under a rental contract. Residents also derive utility from non-local

consumption c. Each resident i maximizes the expected present value of utility, given by

Ei

∞

∑
t=0

βtui(ct, hown
t , hrent

t ),

where β is the common discount factor.

Flow utility ui(·, ·, ·) has three properties. First, it is separable and linear in non-real

estate consumption c. This quasi-linearity eliminates risk aversion and hedging motives.

Second, owner-occupied and rented housing are substitutes, and residents vary in which

type of contract they prefer and to what degree. Substitutability of owner-occupied and

rented housing fully sorts residents between the two types of contracts; no resident consumes

both types of housing simultaneously. Finally, residents face diminishing marginal utility

of owner-occupied housing. This property leads homeownership to be dispersed among

residents in equilibrium.
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The utility specification we adopt that features these three properties is

ui(c, hown, hrent) = c + v(aihown + hrent) (2.2)

where ai > 0 is resident i’s preference for owner-occupancy, and v(·) is an increasing,

concave function for which limh→0 v′(h) = ∞. The distribution of the owner-occupancy

preference parameter ai across residents is given by a continuously differentiable cumulative

distribution function Fa, which is stable over time. Owner-occupancy utility is unbounded:

dFa has full support on R+. The functional form of the owner-occupancy preference in (2.2)

results from a moral hazard problem we describe in the Appendix.

Resident Optimization. Residents hold three assets classes: bonds B, housing H, and

developer equity Q. Global capital markets external to the city determine the gross interest

rate on bonds, which is Rt = 1/β, where β is the common discount factor. Residents may

borrow or lend at this rate by buying or selling these bonds in unlimited quantities.

In contrast, housing and developer equity are traded within the city, and equilibrium

conditions determine their prices pl
t and ph

t . Homeowners earn income by renting out the

housing they own in excess of what they consume. The spot rental price for housing is rh
t ;

landlord revenue is therefore rh
t (Hi,t − hown

i,t − hrent
i,t ). Shorting housing is impossible, but

residents can short developer equity. Doing so is costly. Residents incur a convex cost ks(Q)

to short Q units of developer stock, where ks(0) = 0 and k′s, k′′s > 0. These costs reflect fees

paid to borrow stock, as well as time spent locating available stock (D’Avolio, 2002).

Short-sale constraints in the housing market result from a lack of asset interchangeability.

Although housing is homogeneous in the model, empirical housing markets involve large

variation in characteristics across houses. This variation in characteristics makes it essentially

impossible to cover a short. Unlike in the housing market, asset interchangeability holds in

the equity market, where all of a firm’s shares are equivalent.
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The Bellman equation representing the resident optimization problem is

V(Bi,t−1, Hi,t−1, Qi,t−1) = max
Bi,t,Hi,t,Qi,t

ci,t,hown
i,t ,hrent

i,t

ci,t + v(aihown
i,t + hrent

i,t )︸ ︷︷ ︸
flow utility

+ βEi,tV(Bi,t, Hi,t, Qi,t)︸ ︷︷ ︸
continuation value

, (2.3)

where the maximization is subject to the short-sale constraint

0 ≤ Hi,t,

the ownership constraint

hown
i,t ≤ Hi,t,

and the budget constraint

RtBi,t−1 − Bi,t︸ ︷︷ ︸
borrowing costs

+ ci,t︸︷︷︸
consumption

≤ ph
t (Hi,t−1 − Hi,t)︸ ︷︷ ︸

housing returns

+ rh
t (Hi,t − hown

i,t − hrent
i,t )︸ ︷︷ ︸

housing rental income

+ pl
t(Qi,t−1 −Qi,t)︸ ︷︷ ︸

equity returns

+ rl
tQi,t︸ ︷︷ ︸

dividends

− max(0, ks(−Qi,t))︸ ︷︷ ︸
shorting costs

.

Aggregate Demand and Beliefs. Aggregate demand to live in the city equals the number

of residents Nt. This aggregate demand consists of a shock and a trend:

log Nt︸ ︷︷ ︸
demand

= zt︸︷︷︸
shock

+ log Nt︸ ︷︷ ︸
trend

.

The trend component grows at a constant positive rate g: for all t > 0,

log Nt = g + log Nt−1.

The shocks zt have a common factor x. The dependence of the time-t shock on the common

factor x is µt, so that

zt = µtx.

Without loss of generality, µ0 = 1: the time 0 shock z0 equals the common factor x. We

denote µ = {µt}t≥0.

At time 0, residents observe the following information: the current and future values of
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trend demand Nt, the trend growth rate g, the current demand N0, the current shock z0,

and the common factor x of the future shocks. They do not observe µ, the data needed to

extrapolate the factor x to future shocks. Residents learn the true value of the entire vector

µ at time t = 1. The resolution of uncertainty at time t = 1 is common knowledge at t = 0.

Residents agree to disagree about the true value of µ. At time 0, resident i’s subjective

prior of µ is given by Fi, an integrable probability measure on the compact space M of all

possible values of µ. These priors vary across residents. The resulting subjective expected

value of each µt is µi,t =
∫

M µtdFi, and the vector of resident i’s subjective expected values

of each µt is µi = {µi,t}t≥0. The subjective expected value µi uniquely determines the prior

Fi. The distribution of µi itself across residents admits an integrable probability distribution

Fµ on M, which is independent from the distribution Fa of owner-occupancy preferences.

The CEOs of the development firms are city residents, so their beliefs are drawn from the

same distribution Fµ.

Resident disagreement reflects the unprecedented nature of the demand shock z. As

argued by Morris (1996), this heterogeneous prior assumption is most appropriate when

investors face an unprecedented situation in which they have not yet had a chance to collect

information and engage in rational updating. The events surrounding housing booms are

precisely these types of situations. Glaeser (2013) meticulously shows that in each of the

historical booms he analyzes, reasonable investors could agree to disagree about future real

estate prices. In the case of the U.S. housing boom between 2000 and 2006, we follow Mian

and Sufi (2009) in thinking of the shock as the arrival of new securitization technologies that

expanded credit to low-income borrowers. The initial shock to housing demand is x, and µ

represents the degree to which this expansion of credit in 2000-2006 persists after 2006.

Equilibrium. Equilibrium consists of time-series vectors of prices pL(µ), pH(µ), rl(µ),

rh(µ) and quantities L(µ), H(µ) that depend on the realized value of µ. These pricing and

quantity functions constitute an equilibrium when housing, land, and equity markets clear

while residents and developers maximize utility and profits:

Consider pricing functions ph(µ), pl(µ), rh(µ), rl(µ) and quantity functions H(µ), L(µ). Let
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H∗i,t, Q∗i,t, (h
own
i,t )∗, and (hrent

i,t )∗ be resident i’s solutions to the Bellman equation (2.3) given his

owner-occupancy preference ai, his beliefs µi, and these pricing functions. Let L∗j,t be developer j’s

land holdings that maximize expected net present value of profits in equation (2.1), given the pricing

functions; L∗t is the sum of these land holdings across developers. The pricing and quantity functions

constitute a recursive competitive equilibrium if at each time t:

1. The sum of undeveloped land and housing equals the city’s endowment of open space:

S = Lt(µ) + Ht(µ).

2. Flow demand for land equals investment demand from developers, which equals the resident

demand for their equity:

Lt(µ) = L∗t = Dl(rl
t(µ)) =

∫ ∞

0

∫
M

Q∗i,tdFµdFa.

3. Resident stock and flow demand for housing clear:

Ht(µ) = Nt(µ)
∫ ∞

0

∫
M

H∗i,tdFµdFa = Nt(µ)
∫ ∞

0

∫
M
((hown

i,t )∗ + (hrent
i,t )∗)dFµdFa.

4. Construction maximizes developer profits:

Ht(µ)− Ht−1(µ) ∈ arg max
∆Ht

πhb
t .

5. Developer profit from homebuilding is zero:

max
∆Ht

πhb
t = 0.

Elasticity of Housing Supply. The housing supply curve is the city’s open space S less

the rental demand for land Dl(rl
t). We denote the elasticity of this supply curve with respect

to housing rents rh
t by εS

t . The supply elasticity determines the construction response to the

shocks {zt}. It will also serve as a sufficient statistic for the extent to which land speculation

affects house prices. This section describes the supply elasticity εS
t along the city’s trend

growth path, which obtains when x = 0.
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The relationship between land rents rl
t and house rents rh

t allows us to calculate this

elasticity. Because trend growth g > 0, new residents perpetually arrive to the city, and

developers build new houses each period. Perpetual construction ties together land and

house prices. In particular, as developers must be indifferent between building today or

tomorrow, house rents equal land rents plus flow construction costs:

rh
t = rl

t + (1− β)K.

The supply of housing is open space net of flow land demand: S− Dl(rh
t − (1− β)K). The

elasticity of housing supply is thus εS
t ≡ −rh

t (Dl)′/(S− Dl). When the flow land demand

Dl features a constant elasticity εl , the elasticity of housing supply takes on the simple form

εS
t =

rh
t

rh
t − (1− β)K

(
S
Ht
− 1
)

εl , (2.4)

where Ht is the housing stock at time t. The arrival of new residents increases both rents rh
t

and the level of development Ht/S. The supply elasticity given in (2.4) unambiguously falls

(see Appendix for proof):

Lemma 3. Define housing supply to be the residual of the city’s open space S minus the flow

demand for land: S − Dl . The elasticity εS
t of housing supply with respect to housing rents rh

t

decreases with the level of city development Ht/S along the city’s trend growth path.

2.4 Supply-Side Speculation

At time 0, residents disagree about the future path of housing demand. Speculative trading

behavior results from this disagreement. This section describes how owner-occupancy

frictions crowd speculators out of owner-occupied housing and into rental housing and land.

Demand and supply elasticities determine how prices aggregate the beliefs owner-occupants

and of optimistic speculators holding rental housing and land.
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2.4.1 Land Speculation and Dispersed Homeownership

We first consider the developer decision to hold land at time 0. Developer j’s first-order

condition on its land-holding Lj,0 is

1/β︸︷︷︸
risk-free rate

≥ Ej pl
1/(pl

0 − rl
0)︸ ︷︷ ︸

expected land return

,

with equality if and only if Lj,0 > 0. A developer invests in land if and only if it expects land

to return the risk-free rate. At time 0, developers disagree about this expected return on

land because they disagree about the future path of housing demand. The developers that

expect the highest returns invest in land, while all other developers sell to these optimistic

firms and exit the market. We denote the optimistic belief of the developers who invest in

land by Ẽpl
1 ≡ maxµj E(pl

1 | µj).

Optimistic residents finance developer investments in land through purchasing their

equity. Less optimistic residents choose to short-sell developer stock. Developer stock allows

residents to hold land indirectly: its price is pl
0 and it pays a dividend of rl

0. Resident i holds

this equity only if he agrees with the land valuation of the optimistic developers, in which

case Ei pl
1 = Ẽpl

1. Otherwise, he shorts the equity, and his first-order condition is

k′s(−Q∗i,0) = β(Ẽpl
1 − Ei pl

1).

Disagreement increases the short interest in the equity of the developers holding the land.

Without disagreement, Ẽpl
1 = Ei pl

1 for all residents, so no one shorts.

Only the most optimistic residents hold housing as landlords. A resident is a landlord

if he owns more housing than he consumes through owner-occupancy: Hi > hown
i . The

first-order condition of the Bellman equation (2.3) with respect to Hi,0 when it is in excess of

hown
i,0 is

1/β︸︷︷︸
risk-free rate

≥ Ei ph
1/(ph

0 − rh
0)︸ ︷︷ ︸

expected housing return

, (2.5)

with equality if and only if Hi,0 > hown
i,0 . Only the most optimistic residents invest in

rental housing, just as only the most optimistic developers invest in land. Land and rental
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housing share this fundamental property. During periods of uncertainty, the most optimistic

investors are the sole holders of these asset classes.

Owner-occupancy utility crowds these optimistic investors out of owner-occupied hous-

ing, which remains dispersed among residents of all beliefs. The decision to own or rent

emerges from the first-order conditions of the Bellman equation (2.3) with respect to hown
i,0

and hrent
i,0 . We express these equations jointly as

v′(ai(hown
i,0 )∗ + (hrent

i,0 )∗)︸ ︷︷ ︸
marginal utility of housing

= min

a−1
i (ph

0 − βEi ph
1)︸ ︷︷ ︸

owning

, rh
0︸︷︷︸

renting

 . (2.6)

The left term in the parentheses denotes the expected flow price of marginal utility v′ from

owning a house; the right term denotes the flow price of renting. A resident owns when

the owner-occupancy price is less than the rental price. As long as the owner-occupancy

preference ai is large enough, resident i decides to own even if his belief Ei ph
1 is quite

pessimistic. Homeownership remains dispersed among residents of all beliefs.

We gain additional intuition about the own-rent margin by substituting (2.5) into (2.6).

We denote the most optimistic belief about future house prices, the one held by landlords

investing in rental housing, by Ẽph
1 ≡ maxµi E(ph

1 | µi). The decision to own rather than rent

reduces to

ai ≥ 1 +
β(Ẽph

1 − Ei ph
1)

rh
0

. (2.7)

Without disagreement, a resident owns exactly when he intrinsically prefers owning to

renting, so that ai ≥ 1. Disagreement sets the bar higher. Some pessimists for whom ai ≥ 1

choose to rent because they expect capital losses on owning a home. Other pessimists

continue to own because their owner-occupancy utility is high enough to offset the fear of

capital losses. Proposition 4 summarizes these results.

Proposition 4. Owner-occupancy utility crowds speculators out of the owner-occupied housing

market and into the land and rental markets. The most optimistic residents—those holding the highest

value of Ei ph
1—buy up all rental housing and finance optimistic developers who purchase all the land.

In contrast, owner-occupied housing remains dispersed among residents of all beliefs.
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Proposition 4 yields two corollaries that match stylized facts presented in Section 2.2.

The most optimistic developers buy up all the land. Unless they start out owning all the

land, these optimistic developers increase their land positions following the demand shock.

They hold this land as an investment rather than for immediate construction.

Implication 1. The developers who hold land at time 0 increase their aggregate land holdings at

time 0. They buy land in excess of their immediate construction needs.

This implication explains the land-buying activities of large public U.S. homebuilders

documented in Figure 2.4(a).

The second corollary concerns short-selling. Residents who disagree with the optimistic

valuations of developers short their equity.

Implication 2. Disagreement increases the short interest of developer equity at time 0.

Figure 2.4(c) documents the rising short interest in the stocks of U.S. public homebuilders

who were taking on large land positions during the boom. This short interest provides

direct evidence of disagreement during the boom.

2.4.2 Belief Aggregation

Prices aggregate the heterogeneous beliefs of residents and developers holding housing

and land. The real estate market consists of three components: land, rental housing, and

owner-occupied housing. The most optimistic residents hold the first two, while the third

remains dispersed among owner-occupants. House prices reflect a weighted average of the

optimistic belief and the average belief of all owner-occupants. The weight on the optimistic

belief is the share of the real estate market consisting of land and rental housing; the weight

on the average owner-occupant belief is owner-occupied housing’s share of the market.

To derive these results, we take a comparative static of the form ∂ph
0/∂x. The shock

z = µx scales with the common factor x. We differentiate with respect to x at x = 0 to

explore how prices change as the shocks, and hence the ensuing disagreement, increase.
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Our partial derivative holds current demand N0 constant to isolate the aggregation of future

beliefs.

We first use (2.5) to write ph
0 = rh

0 + βẼph
1. The shock increases the optimistic belief βẼph

1,

directly increasing prices. It also changes the market rent rh
0 . This rent is determined by the

intersection of housing supply and housing demand:

S− Dl
(

rh
0 − (1− β)K

)
︸ ︷︷ ︸

housing supply

= Dh
0(r

h
0)︸ ︷︷ ︸

housing demand

, (2.8)

where

Dh
0(r

h
0) = N0

∫
M

∫ 1+β(Ẽph
1−Ei ph

1)/rh
0

0
(v′)−1(rh

0)dFadFµ︸ ︷︷ ︸
rental housing

(2.9)

+ N0

∫
M

∫ ∞

1+β(Ẽph
1−Ei ph

1)/rh
0

a−1
i (v′)−1

(
a−1

i (rh
0 + β(Ẽph

1 − Ei ph
1))
)

dFadFµ︸ ︷︷ ︸
owner-occupied housing

.

The housing demand equation follows from (2.6) and (2.7). We determine the shock’s

effect on rents by totally differentiating (2.8) with respect to x at x = 0, keeping current

demand N0 constant. When the elasticity of housing demand εD is constant, the resulting

comparative static ∂ph
0/∂x adopts the simple form given in the following proposition, which

we prove in the Appendix.

Proposition 5. Consider the partial effect of the shock in which current demand N0 stays constant

but future house price expectations Ei ph
1 change. The change in house prices averages the changes in

the optimistic resident belief and the average belief:

∂ph
0

∂x
=

εS
0 + (1− χ)εD

εS
0 + εD

∂βẼph
1

∂x
+

χεD

εS
0 + εD

∂βEph
1

∂x
, (2.10)

where Ẽph
1 = maxi Ei ph

1 is the most optimistic belief, Eph
1 =

∫
M Ei ph

1dFµ is the average belief,

εS
0 is the elasticity of housing supply at time 0, εD is the elasticity of housing demand, and χ =∫ ∞
0 (hown

i,0 )∗dFa/H0 is the share of housing that is owner-occupied when x = 0.

The weight on the optimistic belief in Proposition 5 represents the share, on the margin,
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of the real estate market owned by speculators. The supply elasticity εS
0 represents land, and

(1− χ)εD represents rental housing. The remaining χεD represents owner-occupied housing

and is the weight on the average owner-occupant belief. The average owner-occupant belief

coincides with the unconditional average belief because at x = 0, beliefs and tenure choice

are independent.

Proposition 5 yields four corollaries on the difference in belief aggregation across cities

and neighborhoods. Prices look more optimistic when the weight (εS
0 +(1−χ)εD)/(εS

0 + εD)

is higher. This ratio is greater when the supply elasticity εS
0 is higher:

Implication 3. Prices look more optimistic when the housing supply elasticity is higher, i.e. in less

developed cities.

Disagreement reverses the common intuition relating housing supply elasticity and move-

ments in house prices. Elastic supply keeps prices low by allowing construction to respond

to demand shocks. But land constitutes a larger share of the real estate market when supply

is elastic. Speculators are drawn to the land markets, so elastic supply amplifies the role of

speculators in determining prices during periods of disagreement. When supply is perfectly

elastic, εS
0 = ∞ and prices reflect only the beliefs of these optimistic speculators:

Implication 4. When housing supply is perfectly elastic, house prices incorporate only the most

optimistic beliefs; they reflect the beliefs of developers and not of owner-occupants.

Recent research has measured owner-occupant beliefs about the future evolution of house

prices.8 In cities with elastic housing supply, such as the cities motivating this paper,

developer rather than owner-occupant beliefs determine prices. Data on the expectations of

homebuilders would supplement the research on owner-occupant beliefs to explain prices

in these elastic areas.

Prices aggregate beliefs much better when housing supply is perfectly inelastic (εS
0 = 0)

and all housing is owner-occupied (χ = 1). In this case, the price change depends only on

the average belief Eph
1:

8See Landvoigt (2011), Case et al. (2012), Burnside et al. (2013), Soo (2013), Suher (2013), and Cheng et al.
(2014).
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Implication 5. When the housing stock is fixed and all housing is owner-occupied, prices reflect the

average belief about long-run growth.

In many settings, such as when investor information equals a signal plus mean zero noise,

prices reflect all information when they incorporate the average private belief of all investors.

Owner-occupied housing markets with a fixed housing stock display this property, even

though short-selling is impossible and residents persistently disagree. These frictions fail to

bias prices because homeownership remains dispersed among residents of all beliefs, due to

the utility flows that residents derive from housing.

The weight (εS
0 + (1− χ)εD)/(εS

0 + εD) on optimistic beliefs is also higher when χ is

lower:

Implication 6. Prices look more optimistic when a greater share of housing is rented.

Speculators own a greater share of the real estate market when the rental share 1− χ is

higher. Prices bias towards optimistic beliefs in market segments where more of the housing

stock is rented.

2.5 The Cross-Section of City Experiences During the Boom

This section explains three puzzling aspects of the U.S. housing boom that occurred be-

tween 2000 and 2006. First, large house price booms occurred in elastic cities where new

construction historically had kept prices low. Second, the price booms in these elastic areas

were as large, if not larger, than those happening in inelastic cities at the same time. Finally,

house prices remained flat in other elastic cities that were also rapidly building housing.

To explain these cross-sectional facts, we derive a formula for the total effect of the shock

z on house prices. This formula expresses the house price boom as a function of the city’s

level of development when the shock occurs. Our analysis up to this point has explored the

partial effect of how prices aggregate beliefs Ei ph
1, without specifying how these beliefs are

formed. To derive the total effect of the shock, we express the changes in these beliefs in

terms of city characteristics and the exogenous demand process. Specifically, we calculate
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the partial derivative ∂ log ph
0/∂x holding all beliefs fixed at µi = µ, and then use Proposition

5 to derive the total effect of the shock x on house prices. As before, we evaluate derivatives

at x = 0.9

At time 0, each resident expects the shock zt to raise log-demand at time t by µtx. The

resulting expected change in rents rh
t depends on the elasticities of supply and demand at

time t:
∂ log E0rh

t
∂x

=
µt

εS
t + εD

.

This equation follows from price theory. When a demand curve shifts up, a good’s price

increases by the inverse of the total elasticity of supply and demand. The total effects of

the shocks {zt} on the current house price ph
0 follows from aggregating the above equation

across all time periods, using the relation p0 = E0 ∑∞
t=0 βtrh

t :

∂ log ph
0

∂x
=

µ

ε̃S + εD . (2.11)

The mean persistence of the shock is µ = ∑∞
t=0 µtβ

trh
t (ε

S
t + εD)−1/ ∑∞

t=0 βtrh
t (ε

S
t + εD)−1, and

ε̃S is the long-run supply elasticity given by the weighted harmonic mean of future supply

elasticities in the city:

ε̃S ≡ −εD +
∑∞

t=0 βtrh
t

∑∞
t=0 βtrh

t (ε
S
t + εD)−1

.

The higher this long-run supply elasticity, the smaller the shock’s impact on current house

prices, holding µ fixed.

We now put together the two channels through which the shock changes prices. Equation

(2.11) expresses the price change that results when µ is known, and (2.10) describes how

prices aggregate residents’ heterogeneous beliefs about µ. Proposition 6 states the total

effect d log ph
0/dx, which we formally calculate in the Appendix.

9Evaluating derivatives at x = 0 describes the model when construction occurs in each period. When x is
large enough and the shock z might mean-revert, a construction stop at t = 1 is possible and anticipated by
residents at t = 0. This feature of housing cycles, while important, distracts from our focus on housing booms
and how they vary across cities.
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Proposition 6. The total effect of the shock x on current house prices is

d log ph
0

dx
=

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃ +
χεD

εS
0 + εD

µ

)
︸ ︷︷ ︸

aggregate belief

1
ε̃S + εD︸ ︷︷ ︸

pass-through

, (2.12)

where εS
0 is the current elasticity of housing supply, ε̃S is the long-run supply elasticity, εD is

the elasticity of housing demand, χ is the share of housing that is owner-occupied, µ̃ is the mean

persistence of the most optimistic belief about µ, and µ is the mean persistence of the average belief.

The first puzzle (2.12) explains is how a city with perfeclty elastic housing supply can

experience a house price boom. Housing supply is perfectly elastic when εS
0 = ∞. In this

case, the house price boom is µ̃x/(ε̃S + εD). This price increase is positive as long as the

long-run supply elasticity ε̃S is not also infinite.

Implication 7. A house price boom occurs in a city where current housing supply is completely

elastic, construction costs are constant, and construction is instantaneous. Supply must be inelastic

in the future for such a price boom to occur.

In the Appendix, we prove that a limiting case exists in which εS
0 = ∞ while ε̃S < ∞.

A house price boom results from a shock to current demand accompanied by news of

future shocks. When supply is inelastic in the long-run, these future shocks raise future

rents, and prices rise today to reflect this fact. This price change occurs even if supply is

perfectly elastic today, because residents anticipate the near future in which supply will not

able to adjust as easily.

This supply condition—elastic short-run supply, inelastic long-run supply—occurs in

cities at an intermediate level of development. Figure 2.5(a) demonstrates the possible

combinations of short-run and long-run supply elasticities in a city. We plot the pass-

through 1/(εS + εD); a higher pass-through corresponds to a lower elasticity. Lightly

developed cities have highly elastic short-run and long-run supply, and heavily developed

cities have inelastic short-run and long-run supply. In the intermediate case, current supply

is elastic while long-run supply is inelastic, reflecting the near future of constrained supply.
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Figure 2.5: Model Simulations For Different Cities

a) Supply Elasticity
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c) Construction
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Notes: The parameters we use are µ̃ = 1, µ = 1, x = 0.06, g = 0.013, εD = 1, β = 0.936, and εl = 1. We hold the
amount of space S fixed and vary the initial trend demand N0. The x-axis reports annualized trend demand given by
log N0/g. (a) Short-run pass-through is 1/(εS

0 + εD); long-run pass-through is 1/(ε̃S + εD). We calculate the rent and
housing stock at each level of development using (B.1) in the Appendix, and then calculate the supply elasticities using
(2.4). (b) Each curve reports the derivative in (2.12) times x, which we calculate using the elasticities shown in panel (a).
The “without disagreement” counterfactual uses µ̃ = µ = 0.2 instead of µ̃ = 1 > µ = 0.2. (c) We plot the construction
equation (B.2) using the elasticities shown in panel (a), as well as rents at each stage of development from (B.1) and prices
at each development stage from p0 = ∑∞

t=0 βtrh
t , which we calculate at x = 0.
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As we discussed in the Introduction, this theoretical supply condition describes the

elastic markets that experienced large house price booms between 2000 and 2006. These

cities found themselves in a state of arrested development as the boom began in 2000.

Although ample land existed for current construction, long-run barriers constrain their

future growth.

The second puzzle (2.12) explains is why the price booms in these elastic cities were as

large as those happening in inelastic cities at the same time. Disagreement amplifies the

house price boom the most in exactly these nearly developed elastic cities. The amplification

effect of disagreement equals the extent to which optimists bias the price increase given

in (2.12). When owner-occupancy frictions are present (χ = 1), the difference between the

price boom under disagreement and under the counterfactual in which all residents hold

the average belief µ is
εS

0

εS
0 + εD

µ̃− µ

ε̃S + εD .

This amplification is largest in nearly developed elastic cities, where εS
0 is large and ε̃S is

small. Because this amplification increases in εS
0 and decreases in ε̃S, nearly developed

elastic cities provide the ideal condition for disagreement to amplify a house price boom.

Implication 8, which we prove in the Appendix, states this result formally.

Implication 8. Disagreement amplifies house price booms most in cities at an intermediate level

of development, as long as owner-occupancy frictions are large enough. Define ∆ to be difference

between the price boom given in (2.12) and the counterfactual in which all residents hold the average

belief µ. Then there exists χ∗ < 1 such that for χ∗ ≤ χ ≤ 1, ∆ is strictly largest at an intermediate

level of initial development N∗0 < ∞.

Figure 2.5(b) plots the house price boom given by (2.12) across different levels of city

development, for both the case of disagreement and the case in which all residents hold

the average belief. The amplification effect of disagreement is the difference between the

two curves. Optimistic speculators amplify the price boom the most in the intermediate city.

Highly elastic short-run supply facilitates speculation in land markets, biasing prices towards

their optimistic belief. This bias significantly increases house prices because housing supply
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is constrained in the near future. The optimism bias is smaller in the highly developed city.

As a result, price increases in intermediate cities are as large as the price boom in the highly

developed areas.

In fact, the price boom in some intermediate cities can exceed that in the highly developed

cities. The parameters we use in Figure 2.5(b) generate an example of this phenomenon.

This surprising result reverses the conclusion of standard models of housing cycles, in

which the most constrained areas always experience the largest price increases. This reversal

occurs as long as owner-occupancy frictions are high and the extent of disagreement is

sufficiently large:

Implication 9. If disagreement and owner-occupancy frictions are large enough, then the largest

house price boom occurs in a city at an intermediate level of development. There exists χ∗ < 1 and

δ > 0 such that for χ∗ ≤ χ ≤ 1 and µ̃− µ ≥ δ, the price boom d log ph
0/dx is strictly largest at an

intermediate level of development N∗0 < ∞.

Our model has succeeded in explaining the large house price booms in the elastic cities

without arguing that these cities experienced abnormally large housing demand shocks.

These markets experienced some of the largest house price booms in the country because of

their supply conditions, not in spite of them.

The final puzzle explained by (2.12) is why large house price booms occurred in some

elastic cities but not in others. Elastic cities are those for which εS
0 ≈ ∞. As shown in Figure

2.5(a), these cities differ in their long-run supply elasticity ε̃S. When ε̃S = ∞, the house

price boom d log ph
0/dx = 0. Prices remain flat because construction can freely respond to

demand shocks now and for the foreseeable future. House prices increase in elastic cities if

and only the development constraint will make construction difficult in the near future.

The elastic American cities which experienced stable house prices between 2000 and

2006 possess characteristics that lead long-run supply to be elastic. These cities, located in

Texas and other central American areas, are characterized by flat geography, a lack of future

regulation, and homogeneous sprawl (Glaeser and Kahn, 2004; Glaeser and Kohlhase, 2004;

Burchfield et al., 2006; Glaeser et al., 2008; Saiz, 2010). These conditions allow the cities to
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expand indefinitely, leading S to be infinite or very high. Unlimited land leads the elasticity

of supply to remain infinite forever, according to (2.4).

The level of house prices before the shock identifies the difference between the elastic

cities that can expand indefinitely and elastic cities that face constraints in the near future.

House prices increase with development. Therefore, the elastic cities nearing their develop-

ment constraints should have higher house prices before the shock than the other elastic

cities. The following implication summarizes these results.

Implication 10. Consider two cities that experience the same demand shock and in which current

housing supply is perfectly elastic (εS
0 = ∞). House prices rise more in the city in which the long-run

supply elasticity ε̃S is lower. Before the shock occurs, a greater share of the land in this city is already

developed, and the level of house prices is higher.

In practice, calculating a metro-area house price level is difficult because characteristics such

as construction costs vary widely within and across metro areas, although valiant attempts

have been made (Glaeser and Gyourko, 2005; Davis and Heathcote, 2007; Nichols et al.,

2010). With the appropriate data, we would be able to distinguish the low-developed from

the medium-developed cities.

We have used (2.12) to explain the large house price increases in certain elastic housing

markets in the U.S. between 2000 and 2006. An additional salient feature of these booms

is that they coincided with rapid construction. As we document in Section 2.2, these

cities experienced some of the most intense permitting activity in the nation during this

period. Our model captures this phenomenon. Figure 2.5(c) plots the construction response

to the shock in different cities. In cities where current housing supply is elastic , new

construction accommodates the shock. The elastic cities include both the lightly developed

and intermediate developed areas.
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2.6 Variation in House Price Booms Within Cities

The model also makes predictions on the variation in house price increases within a given

city. Optimistic speculators hold rental housing, just as they hold land. Prices appear more

optimistic, and hence house price booms are larger, in market segments where a greater

share of housing is rented.

This result emerges from (2.12). Recall that χ is the share of the housing stock that is

owner-occupied rather than rented when x = 0. It is a sufficient statistic for the distribution

Fa of owner-occupancy utility. When χ is larger, the price increase d log ph
0/dx is smaller:

∂

∂χ

d log ph
0

dx
= − εD

εS
0 + εD

µ̃− µ

ε̃S + εD < 0.

This derivative is negative because the optimistic belief µ̃ exceeds the average belief µ.

A city’s housing market consists of a number of market segments, which are subsets of

the housing market that attract distinct populations of residents. Because they attract distinct

populations, we can analyze them using (2.12), which was formulated at the city-level. All

else equal, housing submarkets in which χ is higher experience smaller house price booms:

Implication 11. Suppose market segments within a city differ only in χ, the relative share of renters

versus owner-occupants they attract: the shock x and the short-run and long-run supply elasticities

εS
0 and ε̃S are constant within a city. Then house price booms are smaller in market segments where

χ is larger.

2.6.1 Location

We first consider variation in χ across neighborhoods. Neighborhoods provide an example

of market segments because they differ in the amenities they offer. For instance, some

areas offer proximity to restaurants and nightlife; others are characterized by access to good

public schools. These amenities appeal differentially to different populations of residents.

Variation in amenities hence leads χ to vary across space. Neighborhoods whose amenities

appeal relatively more to owner-occupants (high a residents) than to renters (low a residents)
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are characterized by a higher value of χ.

Consistent with Implication 11, house prices increased more between 2000 and 2006 in

neighborhoods where χ was higher in 2000. We obtain ZIP-level data on χ from the U.S.

Census, which reports the share of occupied housing that is owner-occupied, as opposed

to rented, in each ZIP code in 2000. The fraction χ varies considerably within cities. Its

national mean is 0.71 and standard deviation is 0.17, while the R2 of regressing χ on city

fixed-effects is only 0.12. We calculate the real increase in house prices from 2000 to 2006

using Zillow.com’s ZIP-level house price indices. We regress this price increase on χ and

city fixed-effects, and find a negative and highly significant coefficient of -0.10 (0.026), where

the standard error is clustered at the city level.

However, this negative relationship between χ and price increases may not be causal.

Housing demand shocks in this boom were larger in neighborhoods with a lower value of χ.

The housing boom resulted from an expansion of credit to low-income households (Mian

and Sufi, 2009; Landvoigt et al., 2013), and ZIP-level income strongly covaries with χ.10

The appeal of χ is that it predicts price increases in any housing boom in which there is

disagreement about future fundamentals. In general, χ predicts price increases because it

is negatively correlated with speculation, not because it is correlated with demand shocks.

Empirical work can test Implication 11 by examining housing booms in which the shocks

are independent from χ.

2.6.2 Structure Type

The second approach to measuring χ is to exploit variation across different types of housing

structures. According to the U.S. Census, 87% of occupied detached single-family houses in

2000 were owner-occupied rather than rented. In contrast, only 14% of occupied multifamily

housing was owner-occupied. According to Implication 11, the enormous difference in χ

between these two types of housing causes a larger price boom in multifamily housing, all

10The IRS reports the median adjusted gross income at the ZIP level. We take out city-level means, and the
resulting correlation with χ is 0.40.
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else equal.

This result squares with accounts of heightened investment activity in multifamily

housing during the boom.11 For instance, a consortium of investors—including the Church

of England and California’s pension fund CalPERS—purchased Stuyvesant Town & Peter

Cooper Village, Manhattan’s largest apartment complex, for a record price of $5.4 billion in

2006. Their investment went into foreclosure in 2010 as the price of this complex sharply

fell (Segel et al., 2011). Multifamily housing attracts speculators because it is easier to rent

out than single-family housing. Optimistic speculators bid up multifamily house prices and

cause large price booms in this market segment during periods of uncertainty.

2.7 Conclusion

In this paper, we argue that speculation explains an important part of housing cycles.

Speculation amplifies house price booms by biasing prices toward optimistic valuations. We

document the central importance of land price increases for explaining the U.S. house price

boom between 2000 and 2006. These land price increases resulted from speculation directly

in the land market. Consistent with this theory, homebuilders significantly increased their

land investments during the boom and then suffered large capital losses during the bust.

Many investors disagreed with this optimistic behavior and short-sold homebuilder equity

as the homebuilders were purchasing land.

Our emphasis on speculation allows us to explain aspects of the boom that are at odds

with existing theories of house prices. Many of the largest price increases occurred in cities

that were able to build new houses quickly. This fact poses a problem for theories that stress

inelastic housing supply as the source of house price booms. But it sits well with our theory,

which instead emphasizes speculation. Undeveloped land facilitates speculation due to

rental frictions in the housing market. In our model, large price booms occur in elastic cities

facing a development barrier in the near future—cities in arrested development.

11Bayer et al. (2013) develop a method to identify speculators in the data. A relevant extension of their work
would be to look at the types of housing speculators invest in.
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Our approach also makes some new predictions. Price booms are larger in submarkets

within a city where a greater share of housing is rented. Although we presented some

evidence for this prediction, further empirical work is needed to test it more carefully.

In all, we have presented a different but complementary story of the sources of housing

cycles than the literature has offered. Our explanation explains several puzzles and suggests

new directions for empirical research.
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Chapter 3

Taxation and the Allocation of Talent1

If we don’t have an economy built on bubbles and financial speculation, our best and
brightest won’t all gravitate towards careers in banking and finance. Because if we
want an economy that’s built to last, we need more of those young people in science and
engineering. This country should not be known for bad debt and phony profits. We
should be known for creating and selling products all around the world...

- President Barack Obama, Speech at Osawatomie High School, December 6, 2011

3.1 Introduction

The allocation of talented individuals across professions varies widely across time and

space. For example, according to data collected by Goldin et al. (2013), more than twice as

many male Harvard alumni from the 1969-1972 cohorts pursued careers in both academia

and non-financial management as pursued careers in finance. Twenty years later, careers

in finance were fifty percent more common than in academia and comparable with those

in non-financial management. If private product is anywhere near social product, these

talented individuals constitute a large fraction of many societies’ human capital: in the

United States, for example, just under half of all income is generated by the top 10%

of income earners and nearly a fifth is generated by the top 1% (Atkinson et al., 2011).

1This chapter is co-authored with Benjamin B. Lockwood and E. Glen Weyl.
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Furthermore if, as Baumol (1990) and Murphy et al. (1991) argue, different professions have

different ratios of social to private product (viz. some have negative and others positive

externalities) then these differences in talent allocation across societies may have important

implications for aggregate welfare. Recent evidence strongly suggests that these externalities

not only exist but are large (Murphy and Topel, 2006; Chetty et al., 2013a,b; French, 2008;

Piketty et al., 2014). In this paper we argue that non-linear income taxation is a powerful tool

affecting the allocation of talent and therefore an important benefit of progressive taxation

is increasing aggregate income rather than simply redistributing it.

Our argument is that in selecting an industry, talented individuals face a trade-off

between pursuing a “calling” that offers them high non-pecuniary benefits and choosing a

career that offers better remuneration. Higher marginal tax rates between the income earned

in the lower-paying and higher-paying career make the latter relatively less attractive by

narrowing the material sacrifice associated with following passion and prestige. Further-

more, the large shifts of individuals across professions in response to relative wage changes,

as well as other evidence from the literature (Lavy and Abramitzky, Forthcoming), suggest

(Section 3.3) that the elasticity of such career switches across professions is much larger (1-6)

than the intensive elasticity of work within a profession. To the extent that, as suggested

by the evidence discussed above, better-paying professions are also more likely to generate

negative (less likely to generate positive) externalities, raising marginal tax rates thus has an

important pure efficiency benefit.

This framework contrasts with the classical approach pioneered by Vickrey (1945) and

Mirrlees (1971), in which labor supply elasticities are the central determinant of optimal tax

progressivity. In this respect our approach may be better suited to address contemporary

political debates over taxation, which focus more on whether the rich are job creators or

“robber barons” than on empirical elasticity estimates. Indeed, we show that externalities

calibrated to reflect the views of groups at opposite ends of this debate—the Tea Party and

Occupy Wall Street movement—generate optimal income tax schedules that resemble the

policies advocated by each group.
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In the interest of informing these debates, we turn to the economics literature for esti-

mates of industry-specific externalities. In fact the literature suggests that these externalities

are huge and hugely heterogeneous: for each dollar earned privately in research, Murphy

and Topel (2006)’s estimates suggest that at least $5 of positive spill-overs are generated

and possibly many more, while French (2008) and Philippon (2013)’s estimates of waste in

the financial sector suggest every dollar earned there is accompanied by a 60 cent negative

spill-over. As a result our baseline calibration suggests that the allocation of talent has an

enormous impact on social welfare and thus on optimal taxation:

• The reallocation of talent between the early 70’s and early 90’s in the Goldin et al.

data is sufficient to account for all of the increase in the top 5% income share from its

trough mid-century to its peak in 2007 or for almost half of the reduction in growth

between the 1948-1973 and the 1982-2007 periods.

• The Reagan (1980 to 1990) tax reforms led to a 3-4 percentage point reallocation

of talented individuals from academia, engineering and teaching to finance and

management. As a result, these reforms account for a fifth of the change in top incomes

in our data and reduce total income (inclusive of externalities) by three-quarters of a

percent. The reforms reduced social welfare by one to two percent.

• In a simple model with no intensive elasticity or redistributive motive, efficiency alone

justifies nearly confiscatory (80-90%) tax rates and subsidies of more than 100% for

joining the middle class, while in our richest calibration, which includes realistic

intensive margin elasticities and a redistributive motive, optimal top marginal rates

are 70-80%.

While some of these calibrated magnitudes strike us as implausibly large, they follow

from a conservative, if inevitably partial, reading of the literature and a simple but natural

model. Even if, as we suspect, future research shows that the existing literature overestimates

externalities and thus our magnitudes, our analysis emphasizes the importance of refining

such estimates and incorporating them into the analysis of optimal income taxation, to

71



which limited attention has been devoted in existing research. Because the externalities that

are our central parameters are so uncertain, we have developed an applet, written jointly

with Joshua Bosshardt (http://taxapplet.appspot.com), that allows the reader to input her

desired parameter values and reads off optimal tax rates for any given views she has about

externalities.

Income taxation is admittedly a blunt tool in addressing differences in externalities across

professions, as our results show in Subsection 3.5.4. In fact only 5-20% of the first-best welfare

gains possible under profession-specific taxation are possible under non-discriminatory

income taxation. Nevertheless we believe that analyzing the effects of non-discriminatory

income taxation is useful for policy for several reasons. First, occupations are easy to

conceal or misrepresent, so a tax code that directly rewards or penalizes specific professions

would be difficult to enforce, and externalities measurements would be difficult to update.

Under an income tax, however, agents have no incentive to misrepresent their profession,

and thus the continued measurement of externalities is incentive compatible. Second, the

political economy consequences of allowing profession-specific taxation could be dangerous,

unleashing a range of special interest lobbying and propaganda that is unlikely to lead to

an efficiency-enhancing equilibrium. Third, considerations of horizontal equity may make

differential taxation of different occupations ethically or politically unpalatable. Fourth,

profession-specific taxation is simply not on the public agenda, while income tax reform

is; thus, given the current second-best situation, we believe economists’ views of optimal

taxation should be influenced by their goals in allocating talent, not just their views about

redistribution. Many of these concerns are analogous to those that led Mirrlees (1971)

to focus attention on non-linear income taxation and assume that wages as such were

non-contractible even though they seem to be at least partially observable in practice.

Rothschild and Scheuer (2014a,b), and to a lesser extent Philippon (2010), employ

theoretical models to explore the effects of the economy on optimal income taxation; we

discuss the relationship between these papers more extensively in Subsection 3.4.4. Partly as

a result, our goal is not only to highlight the use of income taxation to address externalities
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created by professions, but additionally to provide a simple and rigorous framework that

addresses the quantitative relevance of such factors and contrast them with the classical

insurance-incentives trade-off on which most of the optimal tax literature is based.

Following this introduction, the paper is divided into five sections. Section 3.2 devel-

ops our ideas in a simple theoretical model that makes a strong (and likely unrealistic)

assumption about substitution patterns across professions which renders the formula for

optimal taxation particularly transparent. Section 3.3 uses data on income distributions and

findings from the economics literature about professions’ externalities to calibrate this model.

Section 3.4 discusses some of the implications of these results and their relationship to the

literature. Section 3.5 presents a structural model based on a more realistic assumption

about substitution patterns at the cost of imposing other assumptions that make the results

either more special or less transparent. We show in several ways that these more realistic

substitution patterns further strengthen our results from the simple case in Section 3.3 and

use the model to quantitatively evaluate the importance of our mechanism. Section 3.6

concludes. Details of our empirical procedures and less instructive proofs are in appendices

following the main text.

3.2 Theory

In this section we construct the simplest and most intuitive version of our theory by ruling

out any redistributive motive and considering the optimization of a non-linear income tax

to sort talent across professions to maximize aggregate income-equivalents in the spirit

of Kaldor (1939) and Hicks (1939). We consider a static model intended to capture the

long-term, steady-state choices of a population. Because career choices are very sticky, they

should be interpreted as being made once and for all, likely at an early stage of life. Thus

the “career-switching” we refer to is primarily an elasticity of changes in choices likely made

by college students, not changes mid-career for adults.
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3.2.1 General model

There are N professions, p = 1, . . . N and a mass 1 of talented individuals. Each individual i

is characterized by a 2N-dimensional vector θi = (wi, ψi), where wip represents the money

wage individual i would earn if she chose profession p and ψip represents a parameter

characterizing the non-pecuniary or psychic income she would receive from working in this

profession. These characteristics of individuals are distributed in the population according

to a non-atomic and differentiable distribution function f with full support on a convex and

open Θ ⊆ R2N
++. Each individual can choose how many hours to work, h, at a utility cost

φ
(
h; ψip

)
where ∂φ

∂h > 0 (work is costly), ∂2φ
∂h2 > 0 (the costs of work are convex) and ∂φ

∂ψ ≤ 0

(ψ shifts down the costs of working/up the non-pecuniary benefits of work). Wages are

assumed linear, so the individual i’s income in profession p given that she works h hours is

wiph. We do not constrain hours to lie in a finite range as we interpret hours more broadly

as effort and we do not assume φ need be positive (work may be enjoyable, on net, but the

marginal cost of hours is also positive).

The government must finance a net expenditure of I (which we typically assume to be 0)

through the use of a non-linear income tax under which an individual earning total income

y = wh, regardless of the profession in which she earns this wage, pays a total tax T(y).

Thus, just as in Mirrlees (1971), we effectively assume that neither wage nor profession

can be verified or that, as suggested by Diamond and Saez (2011), some horizontal equity

concern prevents greater discrimination.2 Each individual’s utility is just the sum of her

money and psychic incomes.

Each individual is assumed to have quasi-linear utility in money income and thus to

earn net utility

wph− T
(
wph

)
− φ

(
h; ψip

)
+ E

when she works h hours in profession p, where E is the net externalities she receives from

other individuals, as discussed below, which is uniform across the population and thus

2See our discussion in the introduction for a more detailed justification.

74



independent of her actions. Given the assumed convexity of φ, so long as T is also convex

(or not “too concave”—see Mirrlees and Saez (2001) for details) each individual has a unique

optimal h?p
(
wp, ψp

)
to work conditional on being in profession p and will only move h?p

locally in response to small marginal tax changes.3 We let u?
p
(
wp, ψp

)
be the value of utility

at this optimum. Sometimes we write h?p (θ), and similarly for u?
p, which is interpreted as

extracting the relevant components. Individual i chooses to work in the profession where her

after-tax income plus her psychic income is highest, at her optimal profession-conditional

hours level:

p? (θ) ≡ argmaxp∈1,...Nwph?p
(
wp, ψp

)
− T

(
wph?p

(
wp, ψp

))
− φ

(
h?p
(
wp, ψp

)
; ψp

)
.4 (3.1)

Each profession has an externality share, ep with the interpretation that an individual

i working in profession p and earning wage wip generates a net externality on the rest of

society, evenly distributed across individuals, of epwip for each hour she works. We thus

assume a linear technology here and assume away all general equilibrium effects on wages.

While this is consistent with the standard Mirrlees approach, it may cause interpretative

problems in industries with non-linear technologies as the ratio of marginal and average

products can be mistaken for externalities. While a model with non-linear technology would

be needed to disentangle such issues rigorously, we believe that our externality shares

should be identified with the share of marginal output in the industry that is external and

conjecture that this could be shown, at least in first-order conditions, in a broader model.5

3We do not constrain T to be convex and some of our optimal schedules have non-convex regions of T. In
these cases, when we allow the hours margin to be flexible, we make explicit our assumptions about hours
elasticities, which always rule out non-local movements. Given our focus on non-local income movements
driven by career switches we view this as a reasonable simplification. Such simplifications are standard in the
literature (Saez, 2001).

4When the best profession for an individual is not unique, the tie may be broken in any manner as our
assumptions on the distribution of wages and psychic incomes assure that the set of individuals facing such
indifferences is of measure 0.

5Under this view, it is important to distinguish between the marginal and average externalities of a profession.
For example, it may be that inframarginal members of a profession generate large positive externalities while
marginal individuals may have zero or negative externalities. Similarly it may be that a profession is governed
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The value E received by all individuals is thus the average value of ep?(θ)wp?(θ)h?p?(θ)(θ).

The planner seeks to maximize total income (money net of externalities and psychic income)

in her choice of the tax. In particular, she solves

max
T(·)

∫
Θ

[(
1 + ep?(θ)

)
wp?(θ)h

?
p?(θ) (θ)− φ

(
h?p?(θ) (θ) ; ψp?(θ)

)]
f (θ) ,

subject to the definition of h?p and p? above. To derive optimal taxes, we follow the intuitive

perturbation approach to the calculus of variations problem pioneered in economics by

Wilson (1993) and in optimal income taxation by Saez (2001). Suppose the planner raises

slightly the marginal tax rate at income y, returning the raised revenue uniformly to the

population so as to continue to satisfy her budget constraint and otherwise leaving fixed all

other parts of the tax system. The redistribution thus induced has no net social value, as

the planner seeks only to maximize total social wealth. Thus we can focus entirely on the

behavioral responses to the tax rise.

One component of this is the local, intensive elasticity through the number of hours

individuals choose to work. Given convexity of φ, so long as T is not too concave the optimal

choice of h will always move locally in response to small changes in the optimal tax rate. In

particular, if marginal taxes at income y, T′(y), rises we can trace the impact on the optimal

hours for an individual of type θ who is earning income y (because wp?(θ)h?p?(θ) (θ) = y),

assuming she stays in the same profession, by the implicit function theorem. The first-order

condition for h?p?(θ) is

wp?(θ)

[
1− T′

(
wp?(θ)h

?
p?(θ)

)]
= φ′

(
h?p?(θ); ψp?(θ)

)
. (3.2)

We can now determine the effect of increasing T′(y) by a small amount using the implicit

function theorem, letting εh
p (θ) be the (negative) intensive labor supply elasticity of h with

by a restrictive cartel (e.g. medicine and law) so that marginal entry into the profession mostly crowds others
out of the profession, even though overall the profession generates positive or negative externalities.
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respect to the post-tax wage w (1− T′):

−wp

(
1−

εh
p (θ) h?p (θ) T′′ (y)

1− T′ (y)

)
= −

εh
p (θ) h?p (θ) φ′′

(
h?p (θ) ; ψp

)
wp [1− T′ (y)]

=⇒

εh
p (θ) =

w2
p [1− T′ (y)]

h?p (θ)
[
φ′′
(

h?p (θ) ; ψp

)
+ w2

pT′′ (y)
] . (3.3)

On the other hand, the marginal social value created by an individual working an additional

hour is (
1 + ep?(θ)

)
wp?(θ) − φ′

(
h?p?(θ) (θ) ; ψp?(θ)

)
=
[
ep?(θ) + T′ (y)

]
wp?(θ),

where the equality follows by substituting in the first-order condition for hours, equation

(3.2). Intuitively, by the envelope theorem, the net social value created by an additional

hour of work is proportional to the private product (wage) multiplied by total externality

associated with wages earned, both through the tax externality and the direct externality e.

If marginal tax rates rise at y, an individual of type θ currently earning income y will

change her hours by
εh

p?(θ)(θ)h
?
p?(θ)(θ)

1−T′(y) and thus will change social welfare by[
ep?(θ) + T′ (y)

]
yεh

p?(θ) (θ)

1− T′ (y)
.

The set of all individuals earning income y is

Θ (y; T) ≡
{

θ ∈ Θ : wp?(θ)h
?
p?(θ) (θ) = y

}
.

Where it does not create ambiguity below, we drop the dependence on T. Applying the

multidimensional Leibniz rule of Veiga and Weyl (2013), the density (normalizing for the

representation in the type-space) of such consumers is

f (y) ≡
∫

S∈Θ(y)

f (θ (S))

− ∂φ
∂ψp?(θ(S))

(θ (S))
dS,

where S is a 2T − 1-dimensional parameterization of the set Θ(y). As short hand, we can

abbreviate this notation as
∫

Θ(y) f (θ) dθ. Under this notation, the total impact on welfare
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through these local changes is then

∫
Θ(y)

[
ep?(θ) + T′ (y)

]
εh

p?(θ) (θ)

1− T′ (y)
f (θ) dθ =

f (y)
([

E
[
ep?(θ)|Θ(y)

]
+ T′(y)

]
E
[
εh

p?(θ) (θ) |Θ(y)
]
+ Cov

(
ep?(θ), εh

p?(θ) (θ) |Θ(y)
))

1− T′(y)
,

where the expectation and covariance operators are defined as usual, conditional on the

relevant sets in the short-hand notation; see Veiga and Weyl (2013) for greater details.

The second component of the behavioral response follows a similar normative logic, but

is driven by changes in professions. In particular, let

∂Θ(y; T) ≡
{

θ ∈ Θ : ∃p, q ∈ 1, . . . N :
(

wph?p (θ) < y < wqh?q (θ)
)
∧
(

u?
p (θ) = u?

q (θ)
)}

be the set of y-career switching individuals who, under tax system T, are just indifferent

between two professions, one of which has an optimal (for that individual) income level

above and the other of which has an optimal income level below y. Let fS(y) ≡
∫

∂Θ(y) f (θ) dθ

be the density of such individuals. Raising T′(y) causes all of these individuals to switch

from profession q to profession p.6 How does this change social wealth created?

In profession q, the individual i generates social wealth
(
1 + eiq

)
wiqh?q (θi)−

φ
(

h?q (θi) , ψiq

)
while in profession p she generates social wealth

(
1 + eip

)
wiph?p (θi) −

φ
(

h?p (θi) , ψip

)
. From the fact that she is indifferent between the two professions, we know

that

wiph?p (θi)− T
(

wiph?p (θi)
)
− φ

(
h?p (θi) , ψip

)
=

wiqh?q (θi)− T
(

wiqh?q (θi)
)
− φ

(
h?q (θi) , ψiq

)
.

Thus the change in social wealth created by her switching professions is

(
1 + eip

)
wiph?p (θi)− φ

(
h?p (θi) , ψip

)
−
[(

1 + eiq
)

wiqh?q (θi)− φ
(

h?q (θi) , ψiq

)]
=

6Note we can ignore individuals who are triply indifferent between professions as they are of measure zero
even within the career switchers.
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eipwiph?p (θi) + T
(

wiph?p (θi)
)
− eiqwiqh?q (θi)− T

(
wiqh?q (θi)

)
≡ ∆T (θi) + ∆E (θi) ,

that is the change in the sum of her tax payments and externalities. This is exactly the dis-

crete, career-switching analog of the intensive margin change in hours. The total change in so-

cial wealth from an increase in the marginal tax rate at y is E [∆T (θ) + ∆E (θ) |∂Θ(y)] fS(y).

Socially optimal taxation calls for equating the sum of the intensive and career-switching

effects to 0:

Proposition 7. Assuming all movements in hours are local, optimal taxation requires that for all

y : fS(w) or f (y), E
[
εh

p? |Θ(y)
]
> 0,

([
E
[
ep? |Θ(y)

]
+ T′(y)

]
E
[
εh

p? |Θ(y)
]
+ Cov

(
ep? , εh

p? |Θ(y)
))

f (y)

1− T′(y)

+ E [∆T + ∆E|∂Θ(y)] fS(y) = 0.

While this intuitive result applies quite generally, it provides relatively little guidance on

how to map information about distribution of incomes and externality shares to optimal

tax rates in the absence of detailed information on which individuals are likeliest to switch

professions. To clarify the analysis further, we now consider additional assumptions that

may be added to yield an especially simple formula.

3.2.2 A simple case

The first such assumption is that there is no correlation between propensity to switch careers,

conditional on an income level, and the externalities generated by an individual earning that

income nor between the propensity to switch into a career and the externalities, conditional

on the income level switched into.

Assumption 1. For an individual in a switching set, ∂Θ(y) for some y, let p (θ) be the lower-paying

of the two professions she is indifferent between and q (θ) be the higher-paying of the two professions

she is indifferent between. For all y, y′

E
[
ep? |Θ(y)

]
= E

[
ep|∂Θ(y′), wph?p = y

]
= E

[
eq|∂Θ(y′), wqh?q = y

]
.
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That is, the average individual considering (in response to a marginal change in the tax rate at y′)

switching either down to a lower-paying profession or up to a higher-paying profession but currently

earning income y on average generates the same externality as the average individual earning that

income.

The second assumption is analogous, but for the intensive margin: elasticities are

uncorrelated with externalities, conditional on income.

Assumption 2. For every y,

Cov
(

ep?(θ), εh
p?(θ)|Θ(y)

)
= 0.

A simple example in which these assumptions would be satisfied is the case where those

exiting and entering any income level are chosen randomly and representatively from the

skilled professions at that income level. Alternatively, to illustrate that Assumptions 1 and 2

can be consistent with micro-foundations, consider the following more stylized example:

Example 1. Suppose that the equilibrium incomes of different professions have disjoint supports.7

Then at any income Assumptions 1 and 2 are automatically satisfied as the only individuals earning

any given income all have the same externality share. Conditions on primitives generating this would

be that all individuals find hours below a certain range to have no cost and above a certain range

to be infinitely expensive; call this range
[

h, h
]
. The range of incomes generated by individuals in

profession p are then
[
wph, hwp

]
where wp is the lowest value wp may take on and wp is the highest

value it may take on. If
[
wph, hwp

]
are disjoint for different p then so will income be.

Although the conditions in this example are not satisfied in the data presented in Section

3.3.1, which has overlap at many levels of the distribution, the example does show that the

assumptions can be satisfied and that they may be approximately satisfied if professions

are highly segregated by income. In Section 3.5 we provide stylized but natural alternative

models in which the results are even more extreme, in terms of the responsiveness of optimal

taxation to externality shares, than the results we derive in this section.

7We are grateful to Florian Scheuer for suggesting this example.
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Under Assumptions 1 and 2, optimal taxation takes a very simple form in both the case

of pure career-switching (εh
p?(θ) (θ) ≡ 0 ∀θ ∈ Θ) and in the case of pure intensive reactions

and no career switching ( fS(y) = 0∀y):

Proposition 8. Suppose that, for every tax policy T, Assumption 1 holds and that hours are rigid

(every individual must work an exogenous number of hours in each profession). Then

T?(y) = −E
[
ep? |Θ (y; T)

]
y + T0,

where T0 is a constant across income levels. That is, up to a lump sum transfer, average tax rates are

set at each income to offset the average externality created by individuals earning that income level.

This is true if the average externalities are defined at the current equilibrium or at the optimal policy,

as the average externalities at each income level remain the same in this case.

Alternatively suppose that, for every tax policy, Assumption 2 holds, careers are rigid and all

movement in hours is local. Then

T?′(y) = −E
[
ep? |Θ (y; T?)

]
.

That is, marginal tax rates at each income level are set to offset the average externality created by

individuals earning that income level given the optimal tax policy.

Intuitively, when there is pure career switching the average externality of each profession

must offset the average cost of each profession because when switching across professions

it is the average income rather than the marginal earnings that are relevant. On the other

hand, when making marginal decisions about work, it is marginal tax rates that are relevant

and thus marginal tax rates should be equated to the average externality at a given income

level. This intuition is formalized in the proof of this result in Appendix C.8. As we discuss

in the next section, the distinction between policies generated by these two regimes is fairly

small in many contexts.

Proof. See Appendix C.8.

We refer to the optimal policy under pure career-switching as “average tax externality
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matching” (ATEM) and the optimal policy under pure intensive hours choice “marginal

tax externality matching” (MTEM). To see the distinction between these policies, note that

under ATEM

T?′ = −E
[
ep? |Θ (y; T?)

]
− y

∂E
[
ep? |Θ (y; T)

]
∂y

. (3.4)

Suppose that externalities are becoming larger in absolute magnitude as income rises. Then

marginal tax rates are more extreme under ATEM than MTEM: if average income-conditional

externalities are negative and increasing in size with income and thus marginal tax rates are

positive under MTEM they will be even larger under ATEM. If average income-conditional

externalities are positive and increasing with income and thus marginal tax rates are negative

under MTEM they will be even more negative under ATEM.

Proposition 2 dramatically simplifies the data requirements for determining optimal

tax policy. However, it still presents two challenges. First, in the case when there are both

career-switching and intensive elasticities, optimal policy is a mix of these two extremes, the

mix depending on details of how large the two elasticities are over in the distribution of

income. Second, with no career switching, it is the average income-conditional externality at

the optimal policy rather than at the current equilibrium that is relevant to determine marginal

tax rates. This is harder to observe from available data for obvious reasons, though this

same challenge appears, and is treated as we do below, in much standard optimal tax work

(such as Saez (2001)).

3.3 Calibration

In what follows, we focus primarily on the case of ATEM because we believe that career-

switching elasticities are much larger than hours elasticities, at least for the most talented

individuals. For example while Saez et al. (2012) argue that elasticities of intensive margin

labor supply are very low (0 to 0.1 for high incomes), Goldin et al.’s evidence suggests

career-switching elasticities are much higher. The share of male Harvard alumni who

pursued a career in finance, for example, more than tripled from 5% in the 1969-72 cohort
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to 15.7% in 1989-92 cohort. Throughout all of the analysis that follows we restrict attention

within the Harvard data to males, though the IRS data does not distinguish by gender.

Suppose that there have been no changes in inherent preferences for different careers

(no labor supply shift) and thus that all of this change arises from shifts in relative wages.

Philippon and Reshef (2012) suggests that post-tax wages in the financial sector have

increased, from the 1980s to the late 1990s, by somewhere between 50% and 200% depending

on how one adjusts for education and expectations; see Appendix C.4 for details. Thus

elasticities are somewhere between 1 and 6. Given that these increased wages were likely

not fully anticipated and mostly accrued in the 1990s and 2000s and that finance’s share

of graduates appears, anecdotally, to have greatly increased further since the 89-92 cohort,

these elastidmay be underestimates. Even Keane and Rogerson (2012), who favor higher

hours elasticities, argue that longer-term elasticities (along dimensions like career choice),

are likely to be much larger than intensive hour elasticities. We also show that our results

are qualitatively robust to calibrating MTEM.

Computing ATEM and MTEM requires data on two things: income distributions for

different industries, and estimates of the externalities (positive or negative) created by each

industry. The first is relatively straightforward; in Section 3.3.1 we describe how we use data

from IRS tax returns and the salary distributions of Harvard graduates for this estimation.

To calibrate externalities, we adopt two approaches. First, we present estimates of

profession-specific externalities from the economics literature. Second, we include two

sets of externality assumptions intended to reflect the poles of contemporary debates over

income tax progressivity in the United States: the Tea Party and the Occupy Wall Street

movement, both to show the sensitivity of the optimal tax schedule to a range of externality

assumptions, and to demonstrate the usefulness of this model in formalizing observed

political debates.
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3.3.1 Income distributions

Due to the thick upper tail of the US income distribution, welfare and optimal taxes

depend critically on the allocation of talent among high-earning professions. We therefore

restrict out attention to 10 professions which account for nearly all of the top incomes and

occupational choices of talented individuals in the United States: law, finance, management,

medicine, academia/science, computers/engineering, sales, consulting, teaching (primary

and secondary), and arts/entertainment. As our data will show, 88% of the top 1% incomes

reported to the IRS come from these professions, and 93% of male students who graduated

Harvard College in 1990 work in these occupations in 2005.

We jointly estimate the income distribution within each profession and the share of

skilled workers in profession p (denoted Fp(·) and sp, respectively) using data from two

sources. First, we use results reported in Bakija et al. (2012), based on IRS tax returns, where

we observe the share of the top 1% and 0.1% of the population income distribution (i.e.,

with earnings greater than $295,000 and $1,246,000, respectively) employed in each of our

skilled professions (except Teaching, see below) in 2005. We denote these shares b1p and b2p

respectively, where p represents profession. Second, we use data from Goldin et al. (2013) to

construct the empirical CDF of earnings for the Harvard class of 1990 in each all 10 skilled

professions. Specifically, we observe a list of incomes yh
0 < yh

1 < ... < yh
m where yh

0 = 0 and

yh
m = ∞ and an m× 10 matrix (a)ip such that aip is the observed share of the Harvard cohort

in occupation p that is earning between yh
i−1 and yh

i .

Our parametric assumption is that incomes within each profession follow a Pareto-

lognormal distribution. This distribution resembles a lognormal distribution for low values

and a Pareto distribution for high values, and was introduced by Colombi (1990) to model

income distributions. Unlike other distributions, it does a good job matching both the top

tail and the central mass of the income distribution. The Pareto-lognormal distribution

is characterized by three parameters, which we estimate within each profession using

maximum likelihood as follows.

Because the IRS data from Bakija et al. represent the entire population (whereas the
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Harvard data in Goldin et al. represent a subset and we focus attention on males even

within this subset), we regard the former as more reliable. Yet because it contains only

two data points for each profession, that data is insufficient to calibrate the 3 parameters

of Pareto-lognormal distribution, so we select parameters to maximize the likelihood of

observing the Harvard data, conditional on matching the IRS data points exactly. Formally,

we use F(·; z) to denote the Pareto-lognormal distribution with 3-dimensional parameter z,

and zp to denote the true parameter vector characterizing the Pareto-lognormal in profession

p. We let sp denote the share of the skilled population employed in profession p. Thus we

select our parameter estimates (ẑp, ŝp) to solve

(ẑp, ŝp) = arg max
zp,sp

m

∑
i=1

aip log
(

F(yh
i ; zp)− F(yh

i−1; zp)
)

such that sp
(
1− F(295000; zp)

)
= 0.01b1p and sp

(
1− F(1246000; zp)

)
= 0.001b2p.

The IRS does not provide data on Teaching (instead lumping teaching in with govern-

ment). For teaching, we therefore estimate zteaching directly from the Harvard data:

ẑteaching = arg max
zteaching

m

∑
i=1

ai,teaching log
(

F(yh
i ; zteaching)− F(yh

i−1; zteaching)
)

.

We estimate the fraction steaching of talented individuals entering teaching by equating this

fraction to the fraction of Harvard graduates in teaching, which is stable across cohorts

(1970, 1980, and 1990 graduates) and is approximately 3%.

Figure 3.1 shows the IRS and Harvard data for each profession except finance, as well

as the fitted Pareto log-normal distribution. (Note that the IRS data points depend on

the shares ŝp, which are estimated jointly with the Pareto-lognormal parameters.) The fit

appears quite quite good.

In Finance, the IRS data and the Harvard data are in direct conflict; the Harvard data

shows a far richer upper tail of the income distribution than does the IRS data. This raises

some concern that our calibration may underestimate the representation of Finance at very

high incomes, a hypothesis consistent with the strong representation of finance that Kaplan

and Rauh (2010) find at high incomes. To account for this possibility, we also compute
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Figure 3.1: Income distributions fitted to IRS and Harvard data in 9 industries
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Figure 3.2: Baseline and alternative income calibrations in Finance
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results under an alternative calibration for Finance, based solely on the Harvard data; these

results are presented in full in Appendix C.1. The fit for both the baseline and alternative

calibrations in Finance is shown in Figure 3.2.

Figure 3.3 shows our estimated distributions of talented individuals across professions,

which is generated by normalizing the number of individuals at each income in each

profession by the total number of talented individuals at that income, for the baseline

and alternative calibrations. This distribution exhibits some salient and fairly intuitive

features. At low incomes, most talented individuals are in Arts/Entertainment. This is

resonant with the popular story of the “starving artist”. In, and only in, the lower middle

class does Teaching has a significant representation. In the heart of middle income ($25k

to $75k) the largest groups are Academia/Science and Computes/Engineering. In the

upper middle class ($75k to $200k) Sales has a strong representation. Law and Doctor have

significant representation among the the modestly wealthy (those earning roughly between

$200k and $500k). Most of the highest income groups (those earning above $500k) are in

Arts/Entertainment, Sales or, especially, Finance and Management.
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Figure 3.3: The allocation of talent condition on income level
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Notes: The representation of talented individuals in skilled professions conditional on different income levels
under the baseline calibration (left) and the alternative Finance calibration (right).
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Table 3.1: Sources of externality estimates from the economics literature

Primary Source Method

Law Murphy et al. (1991) Cross-country regression of
GDP on lawyers per capita

Finance French (2008) Aggregate fees for active vs.
passive investing

Management Gabaix and Landier (2008) (pro mgmt);
Piketty et al. (2014) (anti mgmt)

Calibrated model indicating
CEO pay captures managerial
skill and firm characteristics
(pro mgmt); Cross-country

evidence that CEO pay is lower
and covaries more with firm
performance when taxes are

higher (anti mgmt)
Doctor — —

Academia/ Murphy and Topel (2006) Willingness-to-pay for longevity
Science gains of medical research

Computers/ Murphy et al. (1991) Cross-country regression of
Engineering GDP on engineers per capita

Sales — —

Consulting Bloom et al. (2013)
Randomized experiment

measuring effect of consultants
on plant productivity

Arts/ — —
Entertainment

Teaching Chetty et al. (2013a,b) Future earnings of students of
higher value-added teachers

3.3.2 Externality shares

To calibrate the externalities of each of these professions we drew on the fairly limited

literature that tries to estimate economy-wide spill-overs from various sectors separately in

different areas of the economy. We now briefly discuss our calibrations for each profession;

details for selected calculations appear in Appendix C.2 and they are summarized in Table

3.1.

• Law: The only study we found of externalities from law was a cross-sectional ordinary-

least-squares regression by Murphy et al. (1991). They investigate the impact of the

allocation of talent on GDP growth rates rather on GDP levels. To be conservative and

fit within our static framework, we interpreted these as one-time effects on the level
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of output rather than impacts on growth rates. Attributing the effect they estimate

to externalities from the talented lawyers in our sample yields −.21 as an externality

share.

• Finance: French (2008) estimates the cost of resources expended to “beat the market”

and Bai et al. (2013) argue that the dramatic increase in such expenditures has not

made markets more informationally efficient. Viewing all of this waste as a negative

externality of our talented individuals yields an externality share of −.6. A very

similar estimate is obtained by assuming that all of the increase in the financial sector’s

share of GDP (Philippon, 2013) from its trough mid-century is waste.

• Management: There is sharp disagreement in the literature over the externalities

generated by managers. Gabaix and Landier (2008) and Edmans and Gabaix (2009)

argue that CEO compensation is largely efficient and few externalities exist as a result,

while Bertrand and Mullainathan (2001) and Malmendier and Tate (2009) argue for

significant overcompensation of top managers. Following the latter, Piketty et al. (2014)

find a −.6 externality share for CEOs. Because of this sharp disagreement, we consider

calibrations with both −.6 and 0 for the externality share of Management. We denote

these two calibrations by “anti mgmt” and “pro mgmt” respectively.

• Doctor: We could find no literature estimating the externality share of (non-research)

medicine and so set the externality to 0 to be conservative.

• Academia/Science: Murphy and Topel (2006) estimate that medical innovation alone

has generated a staggering $3.2 trillion gain in welfare each year from 1970-2000. Even

if this were the only benefit of academic research, it would translate into an externality

share of 48. Any direct use of such a number generates such a large positive externality

share that it swamps everything else in our analysis. By contrast Jaffe (1989) more

narrowly measures the spillover of academic research onto firm profits through excess

patents in firms near universities, which leads to a much smaller 2.6 value. We settled

on an intermediate value of 5 to be conservative.
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Table 3.2: Externality profiles in each of four calibrations

Literature Literature Tea Occupy
(pro mgmt) (anti mgmt) Party Wall Street

Law -.21 -.21 -.8 .3
Finance -.6 -.6 .2 -.8

Management 0 -.6 .3 -.6
Doctor 0 0 .1 .2

Academia/ 5 5 -.3 .6Science
Computers/ .75 .75 0 .1Engineering

Sales 0 0 -.2 -.9
Consulting 0 0 .3 -.2

Arts/ 0 0 -.5 .8Entertainment
Teaching .71 .71 .3 2

• Computers/Engineering: Here again we used the analysis of Murphy et al. (1991),

using the same methodology as in Law, and got a positive spill-over of .75.

• Sales: There is an extensive theoretical literature arguing that the welfare effects of

advertising can be positive or negative, depending on whether the advertising is

informative or persuasive in nature (Bagwell, 2007). The former theories imply that

advertising will tend to be under-supplied in most cases (Becker and Murphy, 1993),

while the latter theories suggest it will be over-supplied (Dixit and Norman, 1978). But

while there have been empirical efforts to quantify the welfare effects of advertising in

particular markets, such as pharmaceuticals (Rizzo, 1999) and subprime mortgages

(Gurun et al., 2013), we are not aware of any work attempting a comprehensive,

industry-wide estimate of spill-overs, and therefore as with Doctor we assessed the

externality share to be 0.

• Consulting: Bloom et al. (2013) conducted a field experiment to determine the causal

impact of management consulting on profits. They interpreted their results as consis-

tent with the view that consultants earn approximately their marginal product and

thus we assume no externality for Consulting.
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• Arts/Entertainment: While there is some evidence, and a number of good theoretical

arguments, that there are some positive spillovers from the arts, we were unable to

find any plausible basis for estimating the magnitude of these spillovers and they had

little impact on our results (they tended to make optimal taxes slightly higher and

more progressive). As a consequence, we assumed 0 to be conservative.

• Teaching: Chetty et al. (2013a,b) estimate the value to lifetime productivity brought by

teachers of varying quality. Clark et al. (2013) discuss the performance of “talented”

students as teachers, mostly through fellowship programs like Teach for America.

Assuming that average teachers are paid their marginal product and that all additional

value of high-quality teachers come through their impact on lifetime earnings, we can

calculate the marginal product of an average talented teacher and divide this by their

average earnings. This yields an externality share of .71.

In addition to our two literature-derived profiles of externality shares, we also want to

use our model to examine positively how views about the value of various professions’ ex-

ternalities can explain different views about taxation. To do so we followed two approaches.

First, through discussions with with an expert on the Tea Party, Vanessa Williamson (coau-

thor of The Tea Party and the Remaking of Republican Conservatism) and several members of the

Occupy Wall Street movement, we constructed externality profiles intended to represent the

views of each group. In the first case the numbers assigned reflect the enthusiasm in this

movement for private enterprise, skepticism of the contribution of cultural and intellectual

elites and hostility to lawyers. The second position represents fierce hostility to finance and

other aspects of private markets typically denigrated by the left, sympathy for legal and

cultural elites’ value and enthusiasm for education. All of these calibrations are represented

in Table 3.2 and in Figure 3.4, which shows what the per capita social product of various

industries (from talented individuals) are under different calibrations. The latter provides a

sense for the implications of these profiles for which sectors of the economy contribute most

to aggregate output.
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Figure 3.4: Social Product in Different Professions
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Our second approach was to make an applet available online at taxapplet.appspot.com

that allows readers to input their own views and receive a calibrated optimal tax policy

for these views. Once sufficient data have accumulated we will attempt to analyze these

patterns and their implications.

3.3.3 Results

Employing the results from Section 3.2.2, the optimal marginal tax rate at income y under

ATEM is

(T?)′(y) = −e(y)− ye′(y). (3.5)

and under MTEM is

(T?)′(y) = −
∑p sp fp(y)ep

∑p sp fp(y)
≡ −e(y). (3.6)

To correctly compute MTEM would require elasticities of labor supply at each income

because rises in marginal tax rates will compress downwards and falls in marginal tax rates

will stretch upwards the incomes earned by individuals with various average externalities.

While this would not change rate schedules ordinally, it would compress the MTEM schedule

across the income distribution. In the interest of comparability with ATEM, here we present

the limiting case as the intensive labor supply elasticity becomes small. In this case MTEM

can be computed analogously to ATEM by simply calculating the average externality at

each income level and matching this to the marginal tax rate. This may also be interpreted

as the direction rates should move locally beginning at current the income tax structure that

induces the current by-profession income distribution. We therefore focus on this limiting

case here and defer allowing a more serious consideration of labor supply elasticity until

the structural model in Section 3.5.

The ATEM and MTEM policies calculated in this manner under the externality shares in

Table 3.2 are shown in Figure 3.5. The first thing to note is that ATEM yields qualitatively

and often quantitatively similar results to MTEM except that 1) ATEM tends to be more

extreme in both directions than is MTEM for the reasons discussed above and 2) ATEM

“leads” MTEM in the sense that if MTEM rates are rising (falling) in income ATEM rises first.
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Figure 3.5: ATEM and MTEM marginal tax rates
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95



Recall that under our assumptions MTEM is also (up to an additive constant) equal to the

average tax rates under ATEM. The other properties depend critically on the assumptions

about externality shares employed, and thus the ATEM and MTEM policies, while looking

similar given an externality profile, look radically different under the various profiles

discussed above.

We begin by discussing the externality profiles from the literature. The resulting tax

schedules are effectively identical up until upper middle incomes of about $100k. Until that

point, both call for massive subsidies on reaching the middle class, as the middle class hosts

very positive externality professions such as Academia/Science, Computers/Engineering

and Teaching while neutral or negative professions (Arts/Entertainment and Management)

predominate below this. To undo these subsidies marginal rates are significantly positive

(up to 50-60%) in the upper middle income range ($50-150k). Above upper middle incomes

the two schedules diverge. If Management has significant negative externalities as in the

anti mgmt profile on the top right, these marginal rates of about 40% persist at high incomes,

as in the Occupy Wall Street profile. If Management has no externalities, as in the pro

mgmt profile on the top left, marginal rates decline to 0-5% at high incomes. Under the

alternative Finance calibration, in which Finance accounts for a much larger share of top

earners, marginal tax rates are close to 40% at the top even under the pro mgmt externality

profile (see Appendix C.1).

Now we consider the profiles that match public views as they have intuitive (perhaps

even predictable) consequences for optimal policy. First, consider the Tea Party profile.

Marginal rates are slightly negative under both MTEM and ATEM after about $200k. ATEM

marginal rates dip negative, to a maximum of about -.1, between $150k and $300k, but are

otherwise very close to zero. This is driven by the fact that we assume Tea Partiers perceive

positive externalities from business and finance which account for most of upper incomes

and that their presence at lower incomes is offset by the presence of academics and lawyers.

Second, consider the Occupy Wall Street profile. Under ATEM marginal rates are fairly

negative (ranging from 0 to -.6) for lower and middle class individuals. They then become
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and stay quite high, peaking around .5, for upper-middle and upper income individuals

earning above approximately $75k. MTEM is a less dramatic version of a similar story. Rates

are modestly negative until roughly $75k and then rise at a more moderate pace to level

out around .45 for incomes in the top .1%. This is driven overwhelmingly by the negative

externalities we assume Occupiers perceive managers and financiers.

3.4 Discussion

For clarity and brevity above we developed our theory with limited reference to external

concepts. However, our theory is closely related to, and has implications for, several other

literatures that we now discuss.

3.4.1 Allocation of talent

Baumol (1990) and Murphy et al. (1991) emphasize the importance of the allocation of talent

for long-run growth and provide arguments and data that are the basis of some of our

calibrations of externality shares. While a considerable literature builds on this analysis,

little work has discussed policy tools that might be used to improve the allocation of talent.

For example, Acemoglu (1995) discusses long-term cultural factors and the possibility of

multiple equilibria and path dependency, but does not highlight policy tools that may be

used to shift equilibria.

To get a rough sense of the importance of the allocation of talent that our taxes aim

to address, consider the Goldin et al. data. Using our pro mgmt externality shares,

we computed the (2005) income-weighted average externality share in the subset of the

Goldin et al. data (about 80-85% depending on cohorts) who pursued careers in one of

our professions.8 This average externality share fell from .31 to -.07 between the 1969-

8We only have average income data for this calculation in all professions for the later cohort. For the earlier
cohort we have only Academia/Science, Management, Finance, Doctor and Law. For all of these fields except
for Finance (where incomes were almost twice as high for the later cohort) incomes were very similar between
the two cohorts, which is unsurprising given that they were measured in the same year. As a result, for the
other professions that we did not have earlier-cohort earnings data we assumed the earlier cohort had the same
earnings as the later cohort.

97



1972 cohorts and the 1989-92 cohorts. Suppose that this shift took place for all of our

talented individuals, who capture about 43% of income.9 This shift would then imply a

.38 · .43 · 100 ≈ 16.3% of GDP shift in national income in some combination of reducing

aggregate production and increasing the private returns of those at the top. If all were the

latter (private returns rose and aggregate production stayed constant) this would account for

all of the increase in the share of national income earned by the top 5% between its trough

in the late 1960s and 1970s and its peak in 2008. If all were reduction in social product, it

would account for around a .69% reduction in GDP growth each year for 25 years, nearly

half of the 1.5 percentage point approximate reduction in US GDP growth between between

the period 1948-1973 and 1982-2007. Thus, even adopting the conservative stance of ignoring

the continuing shift of talent during the period 1992-2005, it is plausible that a large fraction

of increased inequality and decreased growth is attributable to shifts in the allocation of

talent. Of course not all of the reduction in aggregate product would necessarily have shown

up in GDP, as much was a reduction in academic research and innovation (such as medical

innovation) that is poorly-counted in GDP figures, as Murphy and Topel (2006) highlight.

Nonetheless, it seems plausible that the changes in the allocation of talent during this period

alone had large aggregate and distributive consequences for welfare, on the same order of

magnitude as the widely discussed shifts observed in aggregate statistics.

3.4.2 Labor supply elasticity debate

An important recent controversy in public finance concerns the elasticity of labor supply.

One literature, surveyed by Saez et al. (2012), highlights that the short-term elasticities of

labor supply and taxable income that can be measured through natural experiments are low

(on the order of .1− .5 for high income earners) and largely driven by welfare-irrelevant

evasion or inter-temporal substitution. A second literature, surveyed by Keane (2011) and

9It seems likely that that the shift among Harvard alumni was more extreme than in the rest of the
population. However, it also seems likely that the shift among these students was greater by the mid-2000’s
than it was by 1989-92, and greater from the mid-1950’s than it was since the late 60’s. Here we assume that
these two effects balance.
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Keane and Rogerson (2012), argues that this evidence is consistent with large long-term

elasticities of labor supply that would not appear in short-term estimates and that such large

long-term elasticities also help rationalize international data. The first literature concludes

that the deadweight loss from taxation is small due to low labor supply elasticities and

argues for highly redistributive tax policy; the second literature argues that taxes are highly

distortionary.

Our work offers a third view. On the one hand, our calibration of career-switching

elasticities is largely consistent with Keane and Rogerson arguments for high (perhaps even

higher than they claim) long-term labor-supply elasticities among talented and wealthy

individuals. On the other, it suggests that high long-term elasticities (interpreted as career-

switching elasticities) need not imply lower optimal marginal tax rates. In fact, they

may make optimal marginal rates higher over many ranges if high marginal rates are

implemented for efficiency rather than equity reasons.

Thus it emphasizes that the externalities of various professions, rather than the elasticities

of labor supply, may be the primary determinants of optimal income taxation. If external-

ities are small or more positive at higher incomes, given our calibrated career-switching

elasticities, optimal tax rates are likely to be low even with a standard redistributive motive

as we discuss further in Subsection 3.5.3. On the other hand, if externalities are large and

more negative at higher incomes, optimal tax rates on the wealthy are likely to be very high,

increasing in the long-term elasticity and not very sensitive to redistributive motives.

The relative empirical attention these two sets of parameters have received seems

disproportionately-weighted towards labor supply elasticities. Thousands of papers, a

few hundred of which are surveyed in the papers discussed above, have been devoted to

measuring the elasticity of labor supply and of taxable income more broadly. On the other

hand, the few papers we use to generate our literature-based externality profiles represent,

to our knowledge, the extent of research on industry-specific externalities. Our theory

suggests this topic deserves more attention in future research.
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3.4.3 Debates on taxation outside neoclassical economics

Public debate over tax policy rarely focuses on the parameters emphasized in optimal tax

theory (viz. the degree of inequality or the responsiveness of work to taxes). Instead, as

Mankiw (2010) notes, much rhetoric instead focuses on whether the rich “deserve” the

wealth they have accumulated. The left attempts to delegitimize the wealth of the rich

(claiming it is misbegotten or crooked) and of the right to hold the wealthy up as job creators

and entrepreneurs. Some simple public opinion data (Parker, 2012) is suggestive here. While

55% of Republicans believed the rich were more likely than others to be hardworking and

18% believed they were more likely to be honest, only 33% and 8% of Democrats agreed on

each count respectively. On the other hand only 42% of Republicans believe the rich are

more likely than others to be greedy, while 65% of Democrats do. According to a Quinnipiac

University poll (Brown, 2011), Republicans believe 59% to 28% that public sector workers

are overpaid while Democrats believe 38% to 31% that they are underpaid. A CNN poll

CNN/ORC (2011) found that while an equal number of Tea Party supporters had “a great

deal” or “some” confidence that Wall Street Bankers acted in the interests of the overall

economy as had no confidence at all, 73% of opponents of the Tea Party had no confidence

while only 13% had some or a great deal of confidence. Similarly while Tea Party supporters

only believe 58% to 40% that these bankers are overpaid and believe 50% to 47% that the

bankers are not dishonest, Tea Party opponents believe 89% to 10% that they are overpaid

and 75% to 23% that they are dishonest.

These opinion patterns are not new: in the nineteenth century reformers accused

the wealthy of being “robber barons” and Marx (1867) accused the wealthy not of being

unresponsive to tax rates but of being unproductive exploiters of the truly productive

working class. Literature on the political right, such as Rand (1957), provide hagiographic

representations of the social contributions of the wealthy rather than depictions of their

willingness to shirk if taxes rise. In fact that book is largely devoted to the unwillingness

of the rich to shirk even when they are nearly enslaved, a setting that would under the

Mirrlees theory be ripe for a high tax rate.

100



Our theory provides a natural, formal, quantitative language for these debates which fit

only unnaturally with the Mirrlees framework. In so doing, data can be brought more easily

to bear; disputes become questions of which professions exactly are claimed by different

sides to have different degrees of externalities and which professions in fact earn which

incomes. Such questions should be easier to settle empirically than are broad and vague

claims about the moral worth of different social groups. At the very least it suggests that

if economics wants to speak to these public debates it should focus more attention on the

extent and degree of these externalities.

3.4.4 Closely related literature

The work most closely related to ours is that of Philippon (2010), Rothschild and Scheuer

(2014a) and Rothschild and Scheuer (2014b).10 All three papers investigate public policies

aimed at reallocating talent. Philippon considers the use of taxation to affect the allocation

of talent between a financial and entrepreneurial sector in a model where financiers serve as

conduits for funding of research and entrepreneurship. By contrast, externalities are directly

imputed (rather than arising endogenously) in our framework and we consider many

professions simultaneously. Furthermore Philippon focuses on sector-specific instruments

rather than horizontally equitable policies.

Rothschild and Scheuer are closer to our work in this dimension, considering horizontally

equitable optimal tax policy. Our papers focus on different aspects and approaches to this

problem. In Rothschild and Scheuer (2014a) they restrict attention to two professions (one

with negative externalities and one with none), but in both papers allow for richer targeting

of externalities: in their model, rather than externalities accruing uniformly across the

population they may be targeted either at individuals within the “rent-seeking” sector or

towards individuals in the productive sector. In that paper, like Philippon, they emphasize

the perhaps counter-intuitive theoretical finding that it may be theoretically optimal for

10The original version of the paper that this draft was based on, “Psychic Income, Taxation and the Allocation
of Talent”, was written prior to the publication of the first paper and a draft of the second. However we have no
reason to believe the authors of either paper were aware of that work.
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policy to (implicitly or explicitly) subsidize the unproductive wealthy, in their case because

the negative externalities within the unproductive sector discourages further wasteful entry

into this sector. In Rothschild and Scheuer (2014b), they consider a far more general case

that nests our analysis as a special case and provide general formulae for optimal taxation,

as well as qualitative, directional results and uncalibrated empirical sufficient statistics in

some special cases that do not nest our model, such as a model with only one profession

generating an externality.

By contrast our emphasis is quantitative: our goal is to determine how the magnitude of

optimal taxes varies with assumptions about externalities, allowing for the many professions

that make up real-world top income distributions and for positive as well as negative exter-

nalities.11 Given the lack of empirical information we have on the targeting of externalities,

this requires us, among other restrictions, to either ignore the effects highlighted by Philip-

pon and Rothschild and Scheuer or to treat targeting as another subjective input. We chose

the former course because we believe that assuming externalities are born evenly across the

economy is a reasonable benchmark. For example, while it is true that arbitrage activity

may reduce the returns to some financiers, more high speed traders require other investors

to make greater investments to avoid being front-run, thereby hiring more financiers. The

legal profession hosts similar arms races. Most of the positive externalities of academic work

and teaching are born broadly by the public and not by any particular sector. Furthermore,

the dramatic rise of the financial sector in the United States over the last thirty years as

documented by Philippon and Reshef (2012), Goldin et al. (2013) and Philippon (2013) seems

to belie the equilibrating forces Philippon (2010), Rothschild and Scheuer emphasize. Thus

we adopt what Rothschild and Scheuer call the “naïvely Pigouvian” perspective that wages,

externalities and entry into professions are independent. An interesting extension of our

work and theirs would be to incorporate the targeting emphasized by their work into a

11As a result of these contrasting goals, we take a very different methodological approach to Rothschild and
Scheuer as well. For example, we use the taxation principle in the spirit of Saez (2001) rather than the revelation
principle of Mirrlees (1971). Similarly we make assumptions (about substitution patterns across professions)
that are convenient for calibration to the data we have available, rather than for illustrating possibilities.
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quantitative, calibrated framework such as ours.

3.5 Structural Model with General Ability

In Section 3.2 we developed an intuitive characterization of optimal implicit Pigouvian

taxation of income under a stark set of assumptions. In this section we discuss the robustness

of the results to adding realistic features to the model using a combination of analytical

and computational techniques. While our characterization is less clean in these cases,

our qualitative results are actually strengthened, and we are able to evaluate our analysis

quantitatively in greater depth.

The model in Subsections 3.2.2 and 3.3.3 assumes a strong form of orthogonality between

elasticities and externalities conditional on income level. One natural scenario in which

this would be violated (along the career-switching margin) is if each individual possesses a

general level of ability which determines her wage in all professions. In this case, individuals

systematically shift from professions with high average earnings to those with low average

earnings when taxes rise. For example, an academic making a million dollars a year—near

the top of the distribution in that industry—would earn far more in finance; she is just

exceptionally talented. A marginal tax rate increase at any point between these two salaries

would only reduce the relative attractiveness of finance (and a marginal tax rate increase

outside of this range would not change the relative attractiveness of the professions at all).

On the other hand, a financier earning a million dollars a year—much lower in the finance

salary distribution—is not so exceptionally talented, and would face a much lower income

in academia. Therefore a marginal tax rate increase between between these two salary levels

would render academia relatively more attractive—potentially inducing the financier to

become a professor. Intuitively, both individuals face the same ranking of wages in the

two professions, and thus marginal tax rates are likely to cause only switches down from

generally high-paying to generally low-paying professions, not the reverse.12

12The same scenario is also likely to imply differential intensive elasticities of hours supply conditional on
income. An academic making a million dollars a year is likely to be working many more effective hours than is
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While few simple analytical results may be obtained in general when we depart from this

story, under a stark simplification of the general ability model a natural result is possible. In

particular, suppose that ability is fully portable across careers in the sense that individuals

switch between the same quantile of an underlying “reference distribution” of profession-

conditional income when they switch, that there are exactly two professions and that

the profession-contingent income in these two are strictly ranked by first-order stochastic

dominance. Then marginal tax rates will always be more sensitive to externalities than those

given by ATEM in the sense that, starting at ATEM tax rates, there is a first-order welfare

gain from raising marginal tax rates at every point if the high-paying profession has more

negative externalities and a first-order gain from lowering them if the high-paying profession

has more positive externalities. We state and prove this result formally in Appendix C.3

and focus here on a computational structural model of many professions incorporating this

feature.

3.5.1 Calibration

To formalize the general ability idea, suppose that every individual i is endowed with a

uniformly distributed general ability ai ∈ [0, 1]. She also receives a vector of non-pecuniary

total costs of work in each profession φi forming a type θi = (ai, φi). Individual i earns

wage G−1
p (ai) in profession p, where Gp is a “reference distribution” of wages in profession

p. Additionally, in order to calibrate a full structural model we

1. Assume away or impose a uniform value from the literature for intensive elasticities,

2. Impose the common logistic functional form on non-pecuniary utilities,

an financier earning that salary both because her wage in finance is likely to be lower (and thus, to be earning
the same income, she must be working harder) and because her non-pecuniary cost of work is likely to be
lower. She is therefore likely to be pressing herself to the limit of her exertions and thus to be much less elastic
to an increase in her monetary compensation than is the financier. Thus one should expect individuals in a
high-paying profession to be more elastic, conditional on income, to compensation than are those earning the
same income in a generally low-paying profession. In a previous draft of the paper we had a formal result to
this effect. However, because our focus is not on the intensive margin we have omitted this result.
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3. Calibrate the free parameter of this distribution to the career-switching elasticity

estimated in Section 3.3 above,

4. Then jointly estimate the mean utilities of different professions and a non-parametric

reference income distribution to match the shares choosing professions and the profes-

sion specific income distributions as estimated in Section 3.3.1.

We then show, as suggested by the results above, that the results of our simple model in

Section 3.3.3 are generally strengthened in this more realistic setting. We now discuss these

steps; they are described in technical detail in Appendices C.3 and C.4.

Each individual is endowed with a fully-portable, general ability ai ∈ (0, 1) that would

entitle her to pecuniary income from that quantile of the reference income distribution in

each profession. Each profession has a mean non-pecuniary income and each individual

has, in addition to this an independently and identically distributed (across professions and

individuals) Type I Extreme Value component of her non-pecuniary income in each profes-

sion. The scale parameter of these idiosyncratic draws, β(ai), determines how responsive

individuals are to changes in the attractiveness of different professions. β(ai) is assumed to

be proportional to the mean income that an individual of ability ai would earn under, before

taxes, across all professions she might choose. This assumption loosely reflects the fact that

individuals who earn higher incomes are likely to put relatively more (dollar) value on the

non-pecuniary benefits of their professional choice, as otherwise we would systematically

conclude that high-ability individuals uniformly sort into the highest paying professions

while lower-ability individuals make more diverse choices. In any case we have checked that

our results are not quantitatively significantly sensitive to several alternative specifications

of β(ai), including it being constant.

To calibrate the β, we need a measure of mobility across professions in response to

relative income shocks. Intuitively, if β is large, allocation across professions is primarily

driven by individual idiosyncrasies and thus there will be little individual response to

changes in the relative wages of different professions and conversely if β is small. To

estimate β, we use the elasticity of individuals entering the finance profession in response
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to changes in relative wages discussed at the end of Subsection 3.2.2 above; see Appendix

C.4 for details. As a baseline we use the assumption that the migration of individuals into

finance between the 69-72 and 89-92 Harvard cohorts respectively was driven by a $150k

change in relative wages in 2005 dollars. This is sufficient to calculate the value of β as it is

a scalar. We then check robustness to using an increase of either $75k or $300k in Appendix

C.6. We show that our qualitative results are robust to this assumption, but the larger the

elasticity (i.e., the lower the assumed income change that induced the migration), the larger

are the welfare impacts and the importance of externalities.

Finally, we jointly recover the mean psychic income and reference income distributions

so as to exactly rationalize a discrete grid of the observed distribution of individuals across

professions and of income conditional on professions estimated in Subsection 3.3.1. We do

this using a numerical non-linear equation solver as described in Appendix C.4.

The resulting reference income distributions are shown in Figure 3.6. These indicate

the salary that an individual from a given quantile of the ability distribution would earn

in each profession, and correspond closely to intuition. Above median ability, Finance and

Management are essentially tied for the most lucrative career. Below median ability Doctors,

and at the very bottom Sales, do better. This corresponds to the common intuition that

being a doctor or “mad man” is a less risky career path than finance and management

are. Arts/Entertainment is the worst paying profession except at the top, where it is quite

lucrative, exhibiting the well-known superstar structure of that profession (Rosen, 1981).

Teaching and, to a lesser extent, Academia are also quite low-paying, while Law and Sales

are on the more lucrative side, with Law having greater inequality than Sales. Interestingly

Consulting is the most unequal profession, scoring near the top among the very able

but second to last at the bottom of the income distribution. Given that these results are

qualitatively similar to the equilibrium, observed income distributions of Subsection 3.3.1 to

which they are matched, we found in a previous draft very similar results if the empirical

distributions are simply used directly.
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Figure 3.6: Reference Income Distributions
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We also estimate the income distribution of the US working population outside of the

talented individuals considered above. We denote this group “unskilled”. Because we will

assume that the externality of this group is 0, its income distribution was not necessary to

compute the optimal tax schedule given by equations 3.5 and 3.6. We compute its population

share as the residual of the other shares, and we calibrate its Pareto-lognormal parameters

so that the total income distribution (across all professions) matches three moments: the

mean population income, and the 99th and 99.9th income quantiles.13

3.5.2 Optimal tax rates

This model obviously has many limitations: ability is fully portable, disallowing comparative

advantage which empirical evidence suggests is clearly important (Kirkebøen et al., 2014);

substitution patterns across professions obey the implausible independence of irrelevant

alternatives assumption; there are no intensive elasticities, etc. Perhaps worst of all, exactly

how these assumptions impact our results is far from transparent. A more realistic model of

any of these features would require much more detailed data than we have access to. Here

our goal is to provide an example model with more than two professions where under the

general ability assumption we obtain a result in the spirit of that demonstrated in general

in the simpler case: that optimal marginal rates tend to be more responsive to externality

profile assumptions than in our baseline ATEM analysis.

To do this, we searched computationally for optimal piecewise-constant marginal rates

with a zero marginal rate applying on income from $0 to $25k and optimal rates estimated

for $25k-$50k, $50k-$100k, $100k-200k, $200k-500k and $500k and above brackets.14 We

focused on these piecewise structures both because they are realistic and because they

13In principle, we could non-parametrically estimate the “unskilled” income distribution by subtracting the
estimated CDFs of the skilled occupations from the the IRS empirical distribution of income. The problem is
that “unskilled” is not constrained to look like a Pareto log-normal at the while the other occupations are. As a
result, “unskilled” picks up all the mass at the (above $10,000,000), which seems implausible. Thus we also
estimate “unskilled” as a Pareto log-normal.

14Given the minuscule share of skilled agents earning less than $25k, the marginal tax rate between $0 and
$25k is approximately collinear with the budget balancing demogrant and generating a multiplicity of optima;
we avoid this issue by constraining the lowest marginal tax rate to zero.
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Figure 3.7: Optimal Tax Rates in Structural Model
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significantly reduce the computational costs of searching for an optimum compared with

a fully non-linear setting given the absence of a closed-form expression for the optimum.

To avoid incentives for money burning we introduced a very small, uniform intensive

labor-supply elasticity of .01. Instead simply bounding rates between -100% and 100% yield

similar results, but ones that commonly hit the boundary.

These are pictured in Figure 3.7. The results are qualitatively similar to those we obtain

in Subsection 3.3.3, but with smaller subsidies to the middle class in the Literature and

Occupy Wall Street profiles, and more extreme marginal tax rates at high incomes. The Tea

Party profile in the bottom-left panel of Figure 3.7 as in Subsection 3.3.3 lead to negative

marginal rates (except on the lower middle class), but here they are much more negative

than before, reaching around -75% rather than -10% for the top bracket and being nearly

-50% starting as low as $100k.

Occupy Wall Street and both Literature profiles call for extremely progressive tax regimes.

Occupy, in the bottom-right panel, calls quite high marginal tax rates beginning at $50k at

around 40% and rising to near confiscatory levels at $100k and above.

The literature-based calibrations, in the top row are similar except being even more

confiscatory for the wealthy and supporting a subsidy for the middle class. However these

are modest compared to those called for under ATEM in Section 3.3.3, since such subsidies

are only useful in inducing employees in lower paying professions (which tend neutral

externalities, such as art) to switch to middle-class incomes. Since these potential switchers

do not create substantial negative externalities, and would not be terribly productive in

the positive-externality producing professions in the middle class, large subsidies are not

worth even the very small distortion under a labor supply elasticity of 0.01. This provides

suggestive evidence that the effects discussed analytically at the beginning of this section

above may be quantitatively important and thus that our main results from Subsection

3.3.3 may significantly understate how widely optimal marginal rates vary as a function of

externality shares, except in the case of marginal subsidies to join the middle class.
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3.5.3 Quantitative importance of elasticities vs. externalities

We now seek to compare the quantitative importance of externalities relative to the labor

supply elasticity, which has been the focus of the traditional optimal tax literature following

Mirrlees (1971). To do this, we introduce a redistributive motive and intensive margin

labor supply elasticity into our model. We select a particular baseline case: a labor supply

elasticity of 0.25 and zero externalities, then we ask which of two variations around this

baseline causes a greater change in the optimal tax code: varying the labor supply elasticity

across a reasonable range of estimates drawn from the extensive literature estimating that

parameter, or introducing our various externality profiles. Our results suggest externalities

are at least as important as are labor supply elasticities to optimal marginal tax rates, at

least given the current plausible range of uncertainty on these.

For these results, we begin with our computational model developed in the previous

subsection. To add a redistributive motive, we follow the strategy of Diamond (1998) by

placing different social marginal welfare weights on individuals while continuing to model

their utility as quasi-linear in income. Also following Diamond, we generate these marginal

social welfare weights based on their quasi-linear utility, assuming a constant relative risk-

aversion of .95 so the marginal social welfare weights are approximately the inverse of the

relevant income.15 To introduce an intensive-margin labor supply elasticity, we set φ to take

a power form with exponent that is homogeneous across individuals so that all individuals,

regardless of hours worked, have a constant labor supply elasticity as in Saez (2001).

We then run a “horserace” over the importance of labor supply elasticity as compared

to externalities in determining optimal taxes.16 To do this, we first take a baseline model

with log-utility-based redistributive preferences, a uniform intensive labor supply elasticity

of .25 (as seems roughly consistent with the literature as surveyed by Saez et al. (2012)),

our calibrated career-switching elasticities and no externalities. Rates below $25k are again

constrained to 0%. The results for optimal taxes in this calibration are pictured in the

15For computational reasons this is more convenient than a literally logarithmic, inverse-weights analysis.

16We are grateful to Matthew Weinzierl for suggesting this analysis.
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far upper right panel of Figure 3.8. A few features of this baseline are prominent. First,

marginal rates are moderately high throughout the income distribution, ranging from a bit

under 35% to 65%. However, marginal rates decline at the top of the income distribution,

despite the fact that our calibration shares with Saez (2001) Pareto tails on the income

distribution, which usually leads to monotonically increasing marginal rates at the top. The

reason is that career-switching becomes very important at high income levels and, when it

occurs, generates a discrete drop in tax revenues, unlike the intensive margin adjustments

considered by Saez. This is qualitatively consistent with the intuitions of Keane (2011) and

Keane and Rogerson (2012) discussed in Subsection 3.4.2. Veiga and Weyl (2013) show that,

in spite of Pareto tails to income distributions, if the fraction of current income individuals

can earn by an outside option (such as career switching) is affiliated (Milgrom and Weber,

1982) to income then optimal tax rates are regressive.

We then consider two ways of varying parameters about this baseline. First, in the left

collection of panels, we add to this model the externality views of our calibrations from

Subsection 3.3.2. The combination of redistributive preferences and a moderate intensive

labor supply elasticity significantly moderate the extremity of optimal tax rates across

calibrations. However, comparing the two extremes, the Tea Party and Occupy Wall Street,

optimal tax rates still differ quite dramatically. Rates under the Tea Party profile are

moderate and decline at the very top. Marginal rates run from approximately 40% on the

lower middle class up to nearly 60% on the wealthy but then fall back down to 50% on the

very wealthy. By contrast, desired taxes of the Occupy movement movement are highly

progressive up to the wealthy and plateau for the very wealthy. The optimal rates based

on the Literature profiles are quite similar to Occupy Wall Street, except that they are even

flatter at the very top under anti mgmt and decline slightly under pro mgmt. Under the

alternative finance calibration, marginal rates are monotonically increasing even for pro

mgmt (see Appendix C.1). The differences across profiles are even more striking in terms of

average tax rates, which are not shown here.

The second way we vary about the baseline model is by changing the intensive labor
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supply elasticity, between .1 and 1, a range that seems to span reasonable beliefs for the

intensive margin according to both Saez et al. (2012) and Keane (2011). At .1, rates are higher

(ranging from 50% to above 80%), but drop significantly at the top, falling from over 80% to

about 70% for the very wealthy. For an intensive elasticity of 1, rates for the middle class

are quite low (10%) and rise to around 40% at high incomes.

Which affects optimal tax rates rates more, a reasonable range of labor supply elasticities

or a plausible range of externality views given current public debates? While the average

rates move more with intensive labor supply elasticity than they do under the externality cal-

ibrations, the qualitative nonlinear structure of optimal taxes moves more with externalities

than with labor supply elasticities. In particular, marginal tax rates decline notably at the

top under Tea Party views and plateau under the Literature and Occupy Wall Street profiles,

while they decline moderately for each of the intensive labor supply elasticities. Therefore,

over reasonable ranges of public debate, externalities may have approximately as large an

impact on the level and perhaps an even larger impact on the structure of optimal taxes as

plausible views about labor supply elasticities. This reinforces our argument in Subsection

3.4.2 that these externalities merit much closer attention in empirical work relative to the

large literature devoted to labor supply elasticities.

3.5.4 Quantitative welfare gains

For our final computational exercise, we analyze the welfare gains from optimal policy as

compared to the laissez-faire regime with zero marginal tax rates everywhere under various

externality calibrations and compare these to the welfare gains that could be achieved if

profession-specific optimal taxation were possible. We consider this question under the

model of Subsection 3.5.2 above which features no intensive elasticity or redistributive

motive. In addition to reporting the impact on social welfare we also consider the impact on

aggregate pecuniary income (viz. GDP), which excludes changes in psychic income.

As with all other results, our results here, which appear in Table 3.3, differ markedly

depending on the externality profile used. Welfare gains relative to laissez-faire from the first-
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Table 3.3: Welfare Gains

Gains from 1st best in
Social Welfare (GDP)

Gains from
2nd best

Share of potential
from 2nd best

Literature (pro mgmt) 17% (32%) 1.5% (-.15%) 8.8% (-.45%)
Literature (anti mgmt) 21% (39%) 3.3% (1.8%) 16% (4.8%)

Tea Party 1.1% (4.3%) .56% (3.7%) 49% (85%)
Occupy Wall Street 4.1% (5.3%) 1.7% (-.071%) 42% (-1.3%)

Notes: Quantitative welfare gain, compared to laissez-faire (zero marginal tax rates everywhere) in our
baseline computational model from optimal non-linear taxation (2nd best) and optimal profession-specific
taxation under various calibrations.

best, profession-specific taxation optimum are largest under the profiles from the literature

as the externalities are most extreme there; they are smallest under the Tea Party’s views

because these have the smallest externalities. The first thing to note is that the numbers are

quite large. Gains from moving to the first-best are around 20% of social welfare and 30-40%

of GDP under the literature calibrations.

Furthermore, we have restricted this model so all gains come only from career switches,

which occur among the less than 4% of the population we label talented. The private

product of these individuals is 43% of GDP. Thus, under these views, the reallocation of

these individuals across professions induced by first-best, profession-specific taxation could

nearly double the output from these individuals. Theses gains are one to two orders of

magnitude larger than those accruing from capital taxation in a dynamic optimal income

taxation model according to the baseline calibration of Farhi and Werning (2012), a topic that

has attracted far greater attention in the literature than have the externalities we consider.

Gains under the Occupy views are still large, but more modest; they are fairly small

under the Tea Party views.

The fraction of the first-best gains from optimal, profession-specific taxation achieved

by the second-best optimal horizontally equitable non-linear tax is quite small under the

literature views. 9-16% of welfare gains are achieved and GDP actually falls under the

pro mgmt views because individuals migrate towards more rewarding careers at the cost
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of reduced output, even including externalities. Under the anti mgmt literature views,

GDP increases by about 2% in the second-best, which is about 5% of the GDP gains under

the first-best. These gains are a very low fraction of the first-best because there is so

much heterogeneity of externalities conditional on income for these externality profiles. In

Appendix C.7 we show that while under the first-best 95% of talented individuals go into

Academia/Science under the second-best they increase their presence in Academia/Science

only moderately (from 10.6% to 15.6%), while distributing themselves more uniformly

among less lucrative careers than under laissez-faire. For example, the not-especially-

productive field of Arts & Entertainment more than doubles in size under second-best

policy. Under Tea Party and Occupy Wall Street profiles, by contrast, there is a much-closer

alignment between income and externalities and thus a greater fraction (40-50%) of social

welfare gains from the first-best are achieved at the second-best.

3.5.5 Effects of the Reagan tax reforms

In the previous section we considered the impact of optimal (first- or second-best) tax

reforms relative to laissez-faire. These are abstract exercises in the sense that they do not

correspond to plausible ranges of policy reforms enacted or considered in the United States.

Therefore, in this section, we consider in the context of our model the impact of a policy

reform that actually occurred: the Reagan tax reforms that transformed the US income tax

system from 1980-1990.

To do so we use The Tax Foundation (2013)’s history of US federal income tax brackets.

While these are obviously an imperfect approximation to the full wedge faced by each

income, we believe they provide a reasonable sense of the change in these wedges over the

1980-1990 period. We compare results predicted by our model under these two tax regimes

along four dimensions: the allocation of talent, social welfare, GDP and top income shares.

First consider the impact of the reforms on the allocation of talent, as shown in Ta-

ble 3.4. In relative terms the largest impacts were to move talented individuals out of

Arts/Entertainment, Teaching, Consulting and Academia/Science into Finance and Man-
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Figure 3.8: Horserace between elasticities and externalities
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Notes: A “horserace” between the importance of labor supply elasticities and externalities in determining
optimal taxes. The left set of panels hold fixed redistributive motives at log-utility with an intensive labor
supply elasticity of .25 and our calibrated career-switching patters, but allow externalities to vary across
our calibrations. The right set of panels hold externalities fixed at 0 and other features fixed as in the other
calibrations, but allow the intensive margin of labor supply elasticity to vary from .1 to 1.

Table 3.4: Reallocation of Talent from Reagan Tax Reforms

Pre-Reagan Post-Reagan Absolute Change Relative Change
Law 6.6% 6.4% -.2% - 3.2%

Finance 5.1% 6.0% .9% 18%
Management 22% 25% 3.0% 14%

Doctor 16% 17% 1.4% 6.3%
Academia/Science 14% 12% -1.5% -11%

Computers/Engineering 12% 11% -.9% -3.2%
Sales 13% 13% -.2% -1.7%

Consulting 2.4% 2.0% -.4% -17%
Arts/Entertainment 3.9% 3.0% -.9% -23%

Teaching 5.8% 4.7% -1.1% -19%

Notes: Estimates from our baseline calibrated structural model of the effects of the Reagan tax reforms and the
allocation of talent.
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agement by 10-25% of the pre-reform magnitudes in these fields. In absolute terms the

largest reallocations were from Academia/Science and Teaching into Management, Doctor

and Finance.

Thus in our model the Reagan tax reforms significantly shift individuals from low-paying

towards high-paying occupations. Under our calibrations based on the literature, especially

the anti mgmt calibration, this causes a significant reduction in welfare. Under pro mgmt

welfare falls by .56% and GDP rises by .083% while under the anti mgmt calibration welfare

falls by 1.3% and GDP by .77%. In either case these “supply side” tax cuts leave GDP

essentially unchanged or lower it, compared to the results under the Tea Party calibration

where GDP rises by 2.1% as a result of the reforms.

Perhaps most interesting is the impact of the reforms on top income shares. As Hacker

and Pierson (2010) summarize, many economists have argued that, while the Reagan reforms

may have increased post-tax income inequality, it is unclear how they could have been

responsible for the large rises in pre-tax income inequality in the past 35 years documented

by Piketty and Saez (2003). Our analysis provides a clear mechanism for this: lower taxes

cause substitution between psychic and pecuniary income, leading both to an increase in

the earnings of the very talented and, at least under the calibrations from the literature, a

reduction in net positive spillovers to other income groups. Both factors tend to increase the

relative pecuniary income of the very wealthy.

To measure the size of this effect, we compute the increase in income share accruing

to the top 1% of the population in our model, before and after the Reagan reforms. We

compare this to the corresponding increase in income for skilled professions in Bakija

et al. (2012), which is broadly consistent with the patterns documented by Piketty and

Saez, though muted by the exclusion of capital gains and earnings in other professions.

According to Bakija et al, the share of total income received by members of our skilled

professions in the top 1% of the population income distribution rose 3.9 percentage points

from 1979 to 1993 and 1.4 more percentage points by 1998. In our model the Reagan reforms

cause a .8 percentage point rise in the same figure. Thus, according to our model, the
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Reagan reforms would account for 21% of the rise in the pre-tax share of the top 1% among

talented individuals from 1979 to 1993 and 15% of the rise through 1998. As with our other

quantitative findings, these results are far stronger (about 2-2.5 times as large) under our

alternative calibration of the share of talented individuals in Finance, based on fitting more

closely the Harvard data, as discussed in Appendix C.1.

3.6 Conclusion

This paper proposes an alternative framework for the optimal taxation of top incomes to the

standard redistributive theory of Vickrey (1945) and Mirrlees (1971). Income taxation acts as

an implicit Pigouvian tax that is used to reallocate talented individuals from professions

that cause negative externalities to those that cause positive externalities. Optimal tax rates

are highly sensitive to these externalities. If they are as large as our reading of the literature

suggests, the worsening allocation of talent in the United States is large enough to account

for all of the increase in inequality or nearly half of the fall in growth between the 1948-1973

period and the 1982-2007 period.

Our results and the assumptions driving them naturally suggest several directions for

future research.

First, we assumed that externalities are homogeneous within a profession. However, in

reality, externalities are highly heterogeneous within professions. As Mankiw and Whinston

(1986) emphasize, entrepreneurial firm formation may be excessively supplied if firms are

simply imitating the products of existing firms just as Hirshleifer (1971) emphasized that

high-speed trading is over-supplied, while Posner and Weyl (2013) show that long-term

price discovery of large bubbles is just as likely to be undersupplied as are innovative

breakthroughs. Thus many of the largest gains may come from reallocations within a

profession between productive and unproductive activities. Uniform income taxation is

unlikely to be a sufficient tool to achieve this reallocation. Mechanisms that do are an

exciting direction for future research.

Second, while the optimality of softening incentives to promote efficient allocation of
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labor is, to our knowledge, largely unexplored in optimal tax theory, it is widely under-

stood in corporate finance and agency theory.17 In particular, Holmström and Milgrom

(1991) argue that strong material incentives for one, observable dimension of work effort

may reduce effort along unobservable dimensions to the extent that effort along the two

dimensions is substitutable. Our theory is similar, except that the substitutability arises

from the (un-modeled and empirically calibrated) correlation between income levels and the

externalities of professions. This alternative micro-foundation of their model also acts as a

basis for calibrating it empirically in a taxation context; we are not aware of any analogous

calibration of the optimal contract schedule in the original agency context in which they

proposed their model.18 If the productivity, the private payoff from and the allocation of

time to tasks could be identified within firms, the theory could be applied with data on the

allocation of time to these tasks.19

Finally, we assumed that profession-specific taxation was, for a variety of reasons, infea-

sible. However we found that, under the calibrations from the literature, the overwhelming

majority of gains possible from first-best, profession-specific taxation could not be achieved

by non-discriminatory taxation. This suggests significant welfare could be gained through

more targeted instruments and that these merit further investigation. Some of these may

even be politically plausible, such as differential subsidies to different types of education,

sector-specific output taxation or grants to support work in certain sectors such as research

and development.

17A notable exception is the work of Piketty et al. (2014), who argue that taxation may reduce effort expended
bargaining for higher compensation. While we agree with the spirit of this result and are motivated by the
macroeconomic evidence the authors present, we believe that compensation bargaining has a small elasticity
compared to career choice and a career-based theory offers a more useful basis for calibration.

18Slade (1996) tests directional comparative statics of the Holmström and Milgrom model, but does not
structurally calibrate an optimal contract As far as we know the only other paper to exploit the equivalence of
agency and tax theory to link of quantitative optimal tax work to the largely theoretical agency literature is
Prendergast (2013), albeit in the more classical context of the Vickrey insurance-incentives trade-off.

19For example, a friend of one of the authors who works at an investment bank reports that, “I spend
one-third of my time creating profits for the firm, one-third of my time ensuring I get credit for those profits and
one-third of my time ensuring that I get paid for the profits I got credit for.” Whatever the actual proportions,
presumably optimal compensation structure is highly sensitive to these proportions.
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Appendix A

Appendix to Chapter 1

A.1 Estimation Details

A.1.1 Sequential Two-Step GMM Estimator

Let Zi
t denote a vector of observed variables that correspond to observation i at period t.

This vector may include lagged variables. Denote by ζ the vector of structural parameters

that we want to estimate. In our model, the parameter vector ζ corresponds to (δ, θ, σ, c1, c2).

Specifically, we use ξ to summarize the vector of wage-related housing demand parameters,

(δ, θ, σ), and γ to denote the vector of housing supply parameters (c1, c2).

We split the vector of moment functions provided by the model into a subvector that

depends only on the wage-related structural parameters ξ, f (Zi
t; ξ), and the remaining

subvector of moment functions that depends both on ξ and γ, v(Zi
t; ξ, γ). Therefore, using

the set of moment functions f (·), we can obtain GMM estimates of ξ that do not depend on

the value of γ, ξ̂SEQ. Using the vector of moment functions v(·) and our estimates of ξ, we

then estimate γ in our second step, γ̂SEQ. These estimates of γ will depend on the values

estimated for ξ in the first step.

We estimate ξ̂SEQ by minimizing the objective function:

Q̂2(ξ) =
[
(NT)−1

N

∑
i=1

T

∑
t=1

f (Zi
t; ξ)

]′
Ŵ f f

[
(NT)−1

N

∑
i=1

T

∑
t=1

f (Zi
t; ξ)

]
.
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The weighting matrix Ŵ f f is defined as

Ŵ f f =
[
(NT)−1

N

∑
i=1

T

∑
t=1

f (Zi
t; ξ̂1) · f (Zi

t; ξ̂1)
′
]−1

,

and ξ̂1 minimizes the first stage objective function

Q̂1(ξ) =
[
(NT)−1

N

∑
i=1

T

∑
t=1

f (Zi
t; ξ)

]′
I
[
(NT)−1

N

∑
i=1

T

∑
t=1

f (Zi
t; ξ)

]′
,

where I denotes the identity matrix. Given that this estimate ξ̂SEQ does not depend on the

value of γ, we compute its asymptotic variance as

Var(ξ̂SEQ) =
(

F̂′ξŴ−1
f f F̂ξ

)−1
,

where Ŵ f f is defined above and F̂ξ is

F̂ξ = (NT)−1
N

∑
i=1

T

∑
t=1

∂

∂ξ
f (Zi

t; ξ).

Using this initial estimate of ξ, we compute an estimate of γ by minimizing the following

objective function:

Q̂2(γ; ξ̂SEQ) =
[
(NT)−1

N

∑
i=1

T

∑
t=1

v(Zi
t; γ, ξ̂SEQ)

]′
Ŵvv(ξ̂

SEQ)
[
(NT)−1

N

∑
i=1

T

∑
t=1

v(Zi
t; γ, ξ̂SEQ)

]
,

where Ŵvv(ξ̂SEQ) is

Ŵvv(ξ̂
SEQ) =

[
(NT)−1

N

∑
i=1

T

∑
t=1

v(Zi
t; γ̂1, ξ̂SEQ) · v(Zi

t; γ̂1, ξ̂SEQ)′
]−1

and γ̂1 minimizes the first stage objective function

Q̂1(γ; ξ̂SEQ) =
[
(NT)−1

N

∑
i=1

T

∑
t=1

v(Zi
t; γ, ξ̂SEQ)

]′
I
[
(NT)−1

N

∑
i=1

T

∑
t=1

v(Zi
t; γ, ξ̂SEQ)

]′
.

The correct formula for the asymptotic variance of γ̂SEQ must account for the fact that its

distribution depends not only on the random vector {Zi
t; ∀i, t} but also on the additional

random vector ξ̂SEQ. Newey (1984) provides the correct formula for the asymptotic variance
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of the second step estimator:

Var(γ̂SEQ) =
[
V̂ ′γŴ−1

vv V̂γ

]−1
+ V̂−1

γ V̂ξ

[
F̂ξŴ−1

f f F̂′ξ
]−1

V̂ ′ξV̂−1′
γ − V̂−1

γ

[
V̂ξ F̂−1

ξ Ŵ f v+

Ŵv f F̂−1′
ξ V̂ ′ξ

]
V̂−1′

γ .

Following Newey and McFadden (1994), the sequential GMM estimators belong to

the more general family of extremum estimators. This guarantees that they are consistent,

asymptotically normal, and have the asymptotic variance described above.

A.1.2 Moment Conditions

Estimation of Housing Demand Parameters

The vectorial moment condition

E[ f (W̃ i; (δ, θ, σ))] = 0

is based on the following vector of moment functions:

f (W̃ i; (δ, θ, σ)) =



τi
t

τi
t W̃ i

t−s ∀s ≥ 3

(τi
t )

2 − (2θ2 − 2θ + 2)σ2
ε

τi
t τi

t−1 − (−θ2 + 2θ − 1)σ2
ε

τi
t τi

t−2 − (−θ)σ2
ε

,

with

τi
t = ∆W̃ i

t − δ∆W̃ i
t−1 − (1− δ)wa

1 = εi
t + (θ − 1)εi

t−1 − θεi
t−2,

and ∆W̃ i
t = W̃ i

t − W̃ i
t−1. Intuitively, one can think of the random variable τi

t as close to

(but not exactly) a double-difference of the productivity measure W̃. The moment function

f (W̃ i; (δ, θ, σ)) is based on the expectation, variance, and serial correlation of this double

difference, as well as its covariance with lagged values of the productivity measure W̃.
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Estimation of Housing Supply Parameters

The vectorial moment condition

E[v(W̃ i; (δ, θ, σ))] = 0

is based on the following vector of moment functions:

v(Hi, Ni, Ii; (c1, c2)) =



νi
t

νi
t N

i
t−s ∀s ≥ 1

κi
t

κi
tN

i
t−s ∀s ≥ 0

(νi
t)

2 −
[ (φ̄+θ̂)2

(φ̄−δ̂)2 + θ̂2]σ̂2
ε

(κi
t)

2 −
[ (1+r)2(δ̂+θ̂)2

(c1)2(φ̄−δ̂)2

]
σ2

ε

,

with

νi
t = ((Hi

t − Ĥi
t)− δ̂(Hi

t−1 − Ĥi
t−1) +

α(1 + r)
1 + r− φ

(
(Ni

t − N̂i
t)− δ̂(Ni

t−1 − N̂i
t−1)

)
,

κi
t = ((Ii

t − Îi
t)− δ̂(Ii

t−1 − Îi
t−1) + (1− φ)

(
(Ni

t − N̂i
t)− δ̂(Ni

t−1 − N̂i
t−1)

)
.

Intuitively, one can think of the random variables ν and κ as functions of the differences

between the current values of the observable variables (H, I, N) and their steady state

values, (Ĥ, Î, N̂). The moment function v(Hi, Ni, Ii; (c1, c2)) is based on the expectation

and variance of ν and κ, as well as their covariances with lagged values of the number of

households, N.

A.1.3 Stochastic Processes Predicted by the Model

If shocks are known as they occur, then our model implies the following ARMA(2,3) process

for housing prices

∆Hi
t = ai

0 + a1∆Hi
t−1 + a2∆Hi

t−2 + b0εi
t + b1εi

t−1 + b2εi
t−2 + b3εi

t−3,
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where ai
0 denotes a metropolitan area effect, and the parameter vector (a1, a2, b0, b1, b2, b3)

is restricted in the following way:

a1 = φ + δ,

a2 = −φδ,

b0 =
φ̄ + θ

φ̄− δ
,

b1 =
δ + r(δ + θ)− θ(δ + φ)− φ̄(1 + δ + φ)

φ̄− δ
,

b2 =
φφ̄− θ(1 + r + φ(φ̄− 1)) + δ(φ̄− 1− r + θ + θφ)

φ̄− δ
,

b3 = φθ.

The model also predicts an ARMA(2,1) process for the construction of new houses:

Ii
t = di

0 + d1 Ii
t−1 + d2 Ii

t−2 + e0εi
t−1 + e1εi

t−2,

where di
0 denotes a metropolitan area effect and the parameter vector (d1, d2, e1, e2) is

restricted in the following way:

d1 = φ + δ,

d2 = −φδ,

e0 =
(1 + r)(δ + θ)

c1(φ̄− δ)
,

e1 = − (1 + r)(δ + θ)

c1(φ̄− δ)
.

A.2 Definitions of Trend Variables

We write the housing demand equation as

Ht −
E(Ht+1)

1 + r
− rC

1 + r
= x + qt + xt − αNt

and the housing supply equation as

E(Ht+1) = C + c0t + c1 It + c2Nt.
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Our third equation is the relationship between city population and construction:

Nt+1 = Nt + It.

We define Ĥt, N̂t, and Ît to be the unique solutions to the non-stochastic elements of these

three equations, which are linear. They are the unique solutions to

Ĥt −
Ĥt+1

1 + r
− rC

1 + r
= x + qt− αN̂t

Ĥt+1 = C + c0t + c1 Ît + c2N̂t

N̂t+1 = N̂t + Ît

and are therefore given by

Ĥt =
c2

2(x + r(C + x)) + α(1 + r)(c2C− c0c1)

c2(rc2 + α(1 + r))
+

(1 + r)(αc0 + qc2)(c2
2 + α(1 + r)(c1 − c2))

c2(rc2 + α(1 + r))2 +

(1 + r)(αc0 + qc2)

rc2 + α(1 + r)
t;

N̂t =
rc0c1 + (1 + r)c2x
c2(rc2 + α(1 + r))

− (1 + r)(r(c1 − c2)− c2)(αc0 + qc2)

c2(rc2 + α(1 + r))2 +

q(1 + r)− rc0

rc2 + α(1 + r)
t;

Ît =
q(1 + r)− rc0

rc2 + α(1 + r)
.

A.3 Proofs

A.3.1 Proof of Lemma 1

Let h = H − Ĥ, n = N − N̂, and i = I − Î, where H, N, I constitute a solution to the key

equations. We must show that limj→∞ E(ht+j) = E(nt+j) = E(it+j) = 0. Note that because
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Ĥt is linear in t,

lim
j→∞

Ĥt+j

(1 + r)j = 0.

Therefore, the transversality condition on H guarantees that

lim
j→∞

E(ht+j)

(1 + r)j = 0.

The three key equations reduce to

ht −
E(ht+1)

1 + r
= xt − αnt

E(ht+1) = c1it + c2nt

nt+1 = nt + it.

Note that because E(xt+j) = δj−1E(xt+1), limj→∞ E(xt+j) = 0. We can therefore deduce from

the first key equation that

lim
j→∞

E(nt+j)

(1 + r)j = 0. (A.1)

By combining the three key equations, we obtain the following difference equation:

(1 + r)E(xt+1) = (1 + r)(c2 − c1)E(nt) + ((1 + r)(α + c1) + c1 − c2)E(nt+1)− c1E(nt+2)

= −c1(φL− I)(φL− I)E(nt+2).

Here L is the lag operator, I is the identity operator, and φ < φ are the two roots to the

characteristic equation

0 = −c1y2 + ((1 + r)(α + c1) + c1 − c2)y + (1 + r)(c2 − c1).

Because limj→∞ E(xt+j) = 0, one of the following two equations must hold:

lim
j→∞

(φL− I)E(nt+j) = 0

lim
j→∞

(φL− I)E(nt+j) = 0.
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We claim only the first holds. To prove this, we show that 0 < φ < 1 < 1 + r < φ. Recall

that α > 0 and c2 < c1. Note that

φ =
(1 + r)(α + c1) + c1 − c2 +

√
((1 + r)(α + c1) + c1 − c2)2 − 4(1 + r)c1(c1 − c2)

2c1

>
(1 + r)(α + c1) + c1 − c2 +

√
((1 + r)c1 + c1 − c2)2 − 4(1 + r)c1(c1 − c2)

2c1

=
(1 + r)(α + c1) + c1 − c2 + rc1 + c2

2c1

= 1 + r +
α(1 + r)

2c1

> 1 + r.

We also have

φ + φ =
(1 + r)(α + c1) + c1 − c2

c1
> 0

and

φφ = (1 + r)
(

1− c2

c1

)
∈ (0, 1 + r).

Therefore 0 < φ < 1. Because of equation (A.1) and the fact that φ > 1 + r, the limit

lim
j→∞

(φL− I)E(nt+j) = 0

cannot hold. Therefore,

lim
j→∞

(φL− I)E(nt+j) = 0

holds, and because 0 < φ < 1, this limit implies the limit limj→∞ E(nt+j) = 0. The equation

nt+1 = nt + it shows that limj→∞ E(it+j) = 0, and then the equation E(ht+1) = c1it + c2nt

shows that limj→∞ E(ht+j) = 0, concluding the proof.

A.3.2 Proof of Lemma 2

We can write the difference equation for E(nt+2) as

(1 + r)E(xt+1) = −c1(φL− I)(φI − L−1)LE(nt+2) = −c1(φL− I)(φI − L−1)nt+1
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where we have used the fact that nt+1 is known at time t. Because φ > 1 + r, the operator

φI − L−1 is invertible in the space of functions obeying the transversality condition. We can

therefore simplify the above equation to

(φL− I)nt+1 = −1 + r
c1

φ
−1
(I − φ

−1L−1)−1E(xt+1) = −
1 + r

c1(φ− δ)
E(xt+1).

Therefore

it = nt+1 − nt = −(φL− I)nt+1 − (1− φ)nt =
1 + r

c1(φ− δ)
E(xt+1)− (1− φ)nt,

which proves the second equation of the lemma. For the first equation of the lemma, note

that

ht = xt − αnt +
E(ht+1)

1 + r

= xt − αnt +
c1

1 + r
it +

c2

1 + r
nt

= xt +
E(xt+1)

φ− δ
+

(
c2 − (1− φ)c1

1 + r
− α

)
nt

= xt +
E(xt+1)

φ− δ
− α(1 + r)

1 + r− φ
nt.

The last equality comes verifying that the equality

c2 − (1− φ)c1

1 + r
− α = − α(1 + r)

1 + r− φ

follows from the polynomial defining φ.
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A.3.3 Proof of Proposition 1

We have

E(nt+j) = φjnt +
j−1

∑
k=0

φk(E(nt+j−k)− E(nt+j−k−1))

= φjnt +
1 + r

c1(φ− δ)

j−1

∑
k=0

φkE(xt+j−k)

= φjnt +
1 + r

c1(φ− δ)
E(xt+1)

j−1

∑
k=0

φkδj−1−k

= φjnt +
1 + r

c1(φ− δ)

φj − δj

φ− δ
E(xt+1).

Note that N̂t+j − N̂t = j Î. Therefore

E(Nt+j − Nt) = j Î +
1 + r

c1(φ− δ)

φj − δj

φ− δ
E(xt+1)− (1− φj)nt.

Next, we have

E(It+j) = E(Nt+j+1)− E(Nt+j)

= Î +
1 + r

c1(φ− δ)

(
δj(1− δ)− φj(1− φ)

φ− δ

)
E(xt+1)− φj(1− φ)nt.

Finally,

E(Ht+j − Ht) = Ĥt+j − Ĥt + E(ht+j)− ht

= Ĥt+j − Ĥt + c1E(it+j−1) + c2E(nt+j)− ht,

and substituting in the previous two results, as well as the formula from Lemma 2, gives

the desired equation.

A.3.4 Proof of Proposition 2

Given the hypotheses, we have xt = εt > 0 and E(xt+1) = δxt + θεt = (δ + θ)εt > 0. (The

proof is symmetric when εt < 0.) We also have nt = 0. Therefore, from Lemma 2, prices

and construction are both above trend levels at time t. Because c2 = 0, to show that prices

138



and construction fall below trend at t + j for large j, we must by Proposition 1 show that

δj(1− δ)− φj(1− φ)

φ− δ
= δj 1− δ− (1− φ)(φ/δ)j

φ− δ

is negative for large j. If φ > δ, then the numerator is negative for large j, while the

denominator is positive. The opposite occurs when φ < δ. In either case, the fraction is

negative for large j, which is what we wanted to show.

A.3.5 Proof of Proposition 3

From Lemma 2, we have

I0 = Î +
1 + r

c1(φ− δ)
δε0.

Therefore

N1 = N̂1 +
1 + r

c1(φ− δ)
δε0.

It follows again from Lemma 2 that

I1 = Î +
1 + r

c1(φ− δ)
δ(ε1 + δε0)− (1− φ)

1 + r
c1(φ− δ)

δε0.

Recall that

Î =
q(1 + r)− rc0

rc2 + α(1 + r)
.

Therefore

Cov(I0, I1) =

(
1 + r

rc2 + α(1 + r)

)2

Var(q) +
(

δ(1 + r)
c1(φ− δ)

)2

(δ + φ− 1)Var(ε0),

which is positive as long as

Var(q)
Var(ε0)

> (1− δ− φ)

(
δ(rc2 + α(1 + r))

c1(φ− δ)

)2

.

Because δ > 1− φ by assumption, this inequality must hold.

We now turn to price growth. From Lemma 2, we have

H0 = Ĥ0 +
φ

φ− δ
ε0.
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We also have

H1 = Ĥ0 +
φ

φ− δ
ε1 +

(
φ

φ− δ
− α(1 + r)

1 + r− φ

1 + r
c1(φ− δ)

)
δε0.

To obtain H2, we first note that

N2 = N1 + I1 = N̂2 +
δ(1 + r)

c1(φ− δ)
(ε1 + (δ + φ− 1)ε0).

Therefore

H2 = Ĥ2 +
φ

φ− δ
ε2 +

(
φ

φ− δ
− α(1 + r)

1 + r− φ

1 + r
c1(φ− δ)

)
δε1

+

(
δφ

φ− δ
− α(1 + r)

1 + r− φ

(1 + r)(φ + δ)

c1(φ− δ)

)
δε0.

Recall that

Ĥt+1 − Ĥt =
(1 + r)(αc0 + qc2)

rc2 + α(1 + r)
.

Much algebra produces

Cov(H2 − H1, H1 − H0) =

(
(1 + r)c2

rc2 + α(1 + r)

)2

Var(q)− Ω(
c1(φ− δ)

)2 Var(ε),

where Var(ε) is the common variance of ε0 and ε1, and Ω is given by

Ω =

(
α(1 + r)2δ

1 + r− φ
+ c1(1− δ)φ

)(
(1− δ− φ)α(1− r)2δ

1 + r− φ
+ c1(1− δ + δ2)φ

)
.

This expression is negative as long as

Var(q)
Var(ε)

< Ω
(

rc2 + α(1 + r)
(1 + r)c1c2(φ− δ)

)2

,

which is the bound mentioned in the proposition.

A.4 Calculation of Volatilities in Table 1.1

We showed above that

(φL− I)nt+1 = − 1 + r
c1(φ− δ)

E(xt+1).
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It follows from decomposing nt into a linear combination of the ε terms that

Std(nt) =
(1 + r)(θ + δ)

c1(φ− δ)

∞

∑
j=1

φj − δj

φ− δ
σε.

This expression allows us to compute the congestion externality volatility, as it is a constant

times this expression.

The other volatility is of a sum of xt and E(xt+1), which can be written as a sum of xt

and εt. The variance of x is obtained from taking the recursive equation

xt = δxt−1 + εt + θεt−1

and then computing the variance of both sides. The result is

σ2
x =

1 + 2δθ + θ2

1− δ2 σ2
ε .

The covariance of xt and εt is just σ2
ε . Therefore, we can readily compute the volatility of

the direct wage term, using the standard formula for the variance of a sum of correlated

variables.

A.5 BEA Income Data Tables
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Table A.1: Estimated Demand and Supply Parameters: BEA Income Data, 1980-2003

Coastal Sunbelt Interior

δ 0.80 0.90 0.73
(0.11) (0.08) (0.07)

θ 0.16 -0.01 -0.06
(0.13) (0.16) (0.13)

σε $1,200 $1,000 $800
(200) (100) (80)

Supply

c1 6.08 1.00 2.03
(1.21) (0.09) (0.35)

c2 1.88 0.20 0.48
(0.40) (0.03) (0.12)

Notes: δ, θ, and σε are the autocorrelation parameter, moving average parameter and residual variance of
an ARMA(1,1) estimated for the component of wages that is not explained by a linear time trend and a
metropolitan area-specific constant. c1 denotes the derivative of expected future housing prices with respect
to current investment in housing construction; and c2 denote the derivative of the physical capital cost of
building a home with respect to the stock of houses. The standard errors for the demand parameters are efficient
two-step GMM standard errors. The ones for the supply parameters account for error coming from the demand
estimates.
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Table A.2: Volatility and Serial Correlation in House Prices and Construction: BEA Income Data, 1980-2003

Coastal Sunbelt Interior
Horizon Model Data Model Data Model Data

Volatility of House Price Changes ($)

1 year 5,600 12,650 3,400 2,600 2,300 3,800
3 year 8,800 32,300 5,000 6,500 3,200 9,200
5 year 10,100 44,100 5,600 9,200 3,500 12,600

Serial Correlation of House Price Changes

1 year -0.09 0.75 -0.16 0.60 -0.20 0.66
3 year -0.27 0.09 -0.32 0.21 -0.37 0.17
5 year -0.36 -0.57 -0.39 -0.24 -0.45 -0.31

Volatility of Construction (units)

1 year 800 2,600 2,800 5,300 700 2,100
3 year 1,900 6,700 6,700 14,000 1,600 5,100
5 year 2,600 9,800 9,500 19,600 2,200 6,800

Serial Correlation of Construction

1 year 0.49 0.75 0.56 0.79 0.44 0.73
3 year 0.12 0.27 0.26 0.37 0.05 0.22
5 year -0.12 -0.27 -0.04 -0.20 -0.29 -0.24

Notes: The moments computed from the data allows the mean of housing price changes and construction to
vary across metropolitan areas. The moments generated from the model use the estimates in Table 1.2.
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Appendix B

Appendix to Chapter 2

B.1 Micro-foundation of owner-occupancy utility

We present a moral hazard framework in which ownership utility matches the specification

of (2.2). Our framework follows the spirit of Henderson and Ioannides (1983)’s treatment of

tenure choice, in which maintenance frictions lead some residents to own instead of rent.

Residents derive utility from the particular way their house is “customized”: e.g. the

color of the walls, the way the lawn is maintained, et cetera. The set of possible customiza-

tions is K. Resident i’s utility from housing is v(∑k∈K ai,khk), where ai,k > 0 is his preference

for k and hk is the quantity of housing customized that way. Individual customization

choices are not contractible, but the right to customize one’s house is. If a landlord retains

the customization rights, then the tenant cannot customize the house, and the null cus-

tomization k = 0 occurs for which ai,0 = 1 for all residents i. If the tenant holds these rights,

he may choose any k ∈ K \ {0}.

Moral hazard arises due to a doomsday customization k = d. This customization incurs

a cost η(hd) to the owner of the house. All residents prefer this customization to all others:

d = arg maxk∈K ai,k. However, the costs of d outweigh the benefits: for all i and h,

v(ai,dh) < η(h).
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The doomsday customization represents the proclivity of residents to damage a house when

they do not bear the costs of doing so.

This inequality prevents landlords from ever selling customization rights to tenants.

Suppose the landlord sells the rights. Then the tenant chooses his preferred customization,

without taking into account the resultant costs, which the landlord bears. The tenant there-

fore chooses k = d. Knowing this, the landlord demands at least η(h) for the customization

rights. But the most the tenant is willing to pay is v(ai,dh)− v(h), which is less than η(h).

Therefore they agree not to trade. The landlord keeps the rights, and k = 0. The utility from

renting is v(h) because ai,0 = 1.

An owner-occupant chooses the customization, but also bears the costs if he chooses k =

d. Let k(i) denote the solution to his optimization problem maxk∈K\{0} v(ai,kh)− η(h)1k=d.

Due to the costliness of the doomsday customization, the resident never chooses it: k(i) 6= d.

Indeed, if k′ is any other customization, then v(ai,k′h) > v(ai,dh)− η(h) due to the above

inequality. We define ai ≡ ai,k(i). The utility from owning is v(aih). This form corresponds

exactly to (2.2).

B.2 Proofs

B.2.1 Proof of Lemma 3

First we prove that construction occurs in each period. Construction occurs at time 0 because

the housing stock starts at 0, and the housing demand equation (2.9) is positive. For a

contradiction, let t1 > 0 denote the first period in which construction does not occur. Let

t2 > t1 denote the next time construction occurs (t2 may be infinite).

We now claim that rh
t > rh

t1−1 for t1 ≤ t < t2. Along the trend growth path, x = 0, so

no uncertainty exists and by (2.7), a resident rents if and only if ai < 1. Because Fa has full

support on R+, some residents must rent. Landlords hence exist in equilibrium, and their

arbitrage equation ph
t = rh

t + βph
t+1 holds. Aggregate housing demand resulting from the
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first-order condition (2.6) is

Dh
t (r

h
t ) = Nt

(∫ 1

0
(v′)−1(rh

t )dFa +
∫ ∞

1
(v′)−1(rh

t /ai)/aidFa

)
. (B.1)

By assumption, the housing stock and hence housing demand is the same for t1− 1 ≤ t < t2.

Equation (B.1) decreases in rh
t because v′′ < 0. Because x = 0 and g > 0, Nt increases with

t. The left side of (B.1) stays constant for t1 − 1 ≤ t < t2 while Nt increases. Therefore, rt

increases for t1 − 1 ≤ t < t2.

Because construction occurs at t1 − 1, we have ph
t1−1 = pl

t1−1 + K, which results from

zero homebuilder profits. Zero construction at t1 can only occur when ph
t1
≤ pl

t1
+ K, from

homebuilder profit maximization. The landlord and landowner arbitrage equations at

t1 − 1 deliver rh
t1−1 ≥ rl

t1−1 + (1− β)K. The quantity of undeveloped land stays constant for

t1 − 1 ≤ t < t2 and hence rl
t does as well, because firm land demand Dl does not change

over time. Therefore rh
t > rl

t + (1− β)K for t1 ≤ t < t2. Then

ph
t1
= ∑

t1≤t<t2

βt−t1rh
t + βt2−t1 ph

t2

> ∑
t1≤t<t2

βt−t1(rl
t + (1− β)K) + βt2−t1(pl

t2
+ K)

= pl
t + K,

which contradicts the zero construction inequality ph
t1
≤ pl

t + K. This contradiction proves

that construction occurs at all times t.

We now show that rents rh
t increase over time. Because construction occurs at all t,

ph
t = pl

t + K for all t. Undeveloped land must always exist because perpetual construction

occurs. Therefore, landowners are indifferent between holding land until tomorrow or

selling it, so pl
t = rl

t + βpl
t+1. Together with the landlord arbitrage equation, this equation

gives rh
t = ph

t − βph
t+1 = pl

t + K − β(pl
t+1 + K) = rl

t + (1 − β)K. Equilibrium rents are

determined by S− Dl(rh
t − (1− β)K) = Dh

t (r
h
t ), where housing demand comes from (B.1).

The left side increases in rh
t , whereas the right side deceases. Nt increases over time, which

shifts up Dh
t . Therefore rh

t increases as well.
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Finally, we can show directly that the supply elasticity decreases over time. The elasticity

by definition is

εS
t =

rh
t (Dl)′(rh

t − (1− β)K)
S− Dl(rh

t − (1− β)K)

=
rh

t

rh
t − (1− β)K

Dl(rh
t )

Dh
t (r

h
t )

rl
t(Dl)′(rl

t)

Dl(rl
t)

=
rh

t

rh
t − (1− β)K

(
S
Ht
− 1
)

εl ,

which coincides with (2.4). We have shown directly that Ht and rh
t increase over time.

Therefore, when εl is constant, εS
t decreases over time.

B.2.2 Proof of Proposition 5

We use (2.5) to write ph
0 = rh

0 + βẼph
1. Let ∂/∂x denote the partial derivative in which N0

stays constant. Then ∂ph
0/∂x = ∂rh

0/∂x + ∂βẼph
1/∂x. We calculate ∂rh

0/∂x by differentiating

(2.8) at x = 0. Let d(·) = (v′)−1(·), and let bi = 1+ β(Ẽph
1 − Ei ph

1)/rh
0 . Note that when x = 0,

bi = 1 for all i. Then

− (Dl)′
∂rh

0
∂x

= N0

∫
M

∫ 1

0
d′(rh

0)
∂rh

0
∂x

dFadFµ + N0

∫
M

d(rh
0)

∂bi

∂x
dFµ

+ N0

∫
M

∫ ∞

1
a−2

i d′(rh
0/ai)

(
∂rh

0
∂x

+
∂βẼph

1
∂x

− ∂βEi ph
1

∂x

)
dFadFµ − N0

∫
M

d(rh
0)

∂bi

∂x
dFµ.

The extensive margins terms for the rental and owner-occupied populations cancel. We

simplify this equation to

∂rh
0

∂x
= −

N0
∫

M

∫ ∞
1 a−2

i d′(r0/ai)
(

∂βẼph
1/∂x− ∂βEi ph

1/∂x
)

dFadFµ

(Dl)′ + N0
∫

M

∫ 1
0 d′(rh

0)dFadFµ + N0
∫

M

∫ ∞
1 a−2

i d′(rh
0/ai)dFadFµ

.

The proposition assumes a constant elasticity of housing demand εD. This property

occurs when individual demand d(·) displays the same constant elasticity. Indeed, from

(B.1), the elasticity of housing demand when x = 0 is

εD = −
∫ 1

0 rd′(r)dFa +
∫ ∞

1 ra−2
i d′(r/ai)dFa∫ 1

0 d(r)dFa +
∫ ∞

1 a−1
i d(r/ai)dFa

,

147



which holds when rd′(r)/d(r) = −εD for all r. We can therefore rewrite ∂rh
0/∂x as

∂rh
0

∂x
= −

εD N0
∫

M

∫ ∞
1 a−1

i d(rh
0/ai)

(
∂βẼph

1/∂x− ∂βEi ph
1/∂x

)
dFadFµ

rh
0(Dl)′ + εD N0

∫
M

∫ 1
0 d(rh

0)dFadFµ + εD N0
∫

M

∫ ∞
1 a−1

i d(rh
0/ai)dFadFµ

.

Because Fa and Fµ are independent, we can write

∫
M

∫ ∞

1
a−1

i d(rh
0/ai)Ei ph

1dFadFµ =
∫ ∞

1
a−1

i d(rh
0/ai)dFa

∫
M

Ei ph
1dFµ

=
∫ ∞

1
a−1

i d(rh
0/ai)dFaEph

1,

where Eph
1 ≡

∫
M Ei ph

1dFµ is the average belief about ph
1. Recall from (B.1) that (hrent

i,0 )∗ =

d(rh
0) if ai < 1 (and 0 otherwise) and (hown

i,0 )∗ = d(rh
0/ai)/ai if ai ≥ 1 (and 0 otherwise).

The share of housing that is owner-occupied is χ =
∫ ∞

1 a−1
i d(rh

0/ai)dFa/(
∫ 1

0 d(rh
0)dFa +∫ ∞

1 a−1
i d(rh

0/ai)dFa). We can therefore divide through the equation for ∂rh
0/∂x by the total

housing stock to get

∂rh
0

∂x
= −

εDχ
(

∂βẼph
1/∂x− ∂βEph

1/∂x
)

εS
0 + εD

.

Substituting into ∂ph
0/∂x = ∂rh

0/∂x + ∂βẼph
1/∂x yields (2.10) of the proposition.

B.2.3 Proof of Proposition 6

We will calculate the effect of the shock zt on rh
t by differentiating the equation S− Dl(rh

t −

(1− β)K) = Dh
t (r

h
t ) with respect to x at x = 0, where Dh

t (r
h
t ) is given by (B.1). This derivative

is valid if and only if this equilibrium condition holds for x around 0. The condition holds

as long as construction occurs at t. Our first task is thus proving the existence of an open

set I ∈ R such that 0 ∈ I and for x ∈ I, construction occurs for all t.

As in the proof of Lemma 3, we can prove that construction must occur at t1 if, conditional

on the absence of construction at t1, rt > rh
t1−1 for t1 ≤ t < t2 where t2 is the next time

construction occurs. The key step in that proof was that Nt increases with t. We define

an open set I1 containing 0 such that Nt still increases in t for x ∈ I1. Because M is

uniformly bounded, there exist µmin and µmax such that µmin ≤ µ′ ≤ µmax for all µ′ that

are coordinates of vectors in M. Recall that Nt+1/Nt = eg+(µt+1−µt)x. Because g > 0, the set
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I1 =
(
−g/(µmax − µmin), g/(µmax − µmin)

)
is open. For any x ∈ I1, Nt+1/Nt > 1. With this

result, the proof of this increasing rent condition matches verbatim the proof given in the

proof of Lemma 3 when t1 > 1. When t1 = 1, Dh
t1−1 is no longer given by (B.1) but instead

by (2.9).

The only new fact we must show therefore is that if construction fails to occur at t = 1,

then rh
0 < rh

1 . To do this, we first show that Ẽph
1 − Ei ph

1 = O(x) as x → 0 for all i. We

have ph
1 = ∑∞

t=1 βt−1rh
t . All residents agree on H0 and N0 because they are observable

at t = 0. Let t2 be the next time construction occurs given H0. Once it occurs it will

occur afterward forever due to the arguments in the proof of Lemma 3. In principle

residents could disagree about t2, but we will now show that for x small enough they

do not. While construction does not occur, rents are determined by H0 = NtDh
t (r

h
t ) and

S − H0 = Dl(rl
t). Because Nt increases over time, rh

t must as well. When construction

occurs next period but not today at t, ph
t < pl

t + K while ph
t+1 = pl

t+1 + K, so using the

landlord and landowner arbitrage equations defined in the proof of Lemma 3, we find

that (Dh
t )
−1(H0/Nt) < (Dl)−1(S− H0) + (1− β)K while construction fails to occur. The

first time construction does occur, t = t2, is defined as the lowest value of t for which this

inequality fails to hold. Because we are in discrete time, and because the relationships

Nt = N0egt+(µt−1)x and µmin ≤ µt ≤ µmax hold, there exists an open I2 3 0 such that when

x ∈ I2, t2 is the same for all realizations of µ ∈ M. For 1 ≤ t < t2, rh
t is the solution to

H0 = NtDh
t (r

h
t ), and for t ≥ t2, rh

t solves S− Dl(rh
t − (1− β)K) = NtDh

t (r
h
t ). In each case,

because Nt = N0egt+(µt−1)x, the resulting rh
t is a differentiable function of x for any value of

µt and is the same at x = 0 for any value of µt. Therefore, Ẽrh
t − Eirh

t = O(x) as x → 0 for

all i, and the same then holds for ph
1.

We now return to showing that if construction fails to occur at t = 1, then rh
0 < rh

1 .

Using (2.9), we write Dh
0(r

h
0) = N0 f0(rh

0), and using (B.1), we write Dh
1(r

h
1) = N1 f1(rh

1).

Without construction at t = 1, we have N0 f0(rh
0) = N1 f1(rh

1). Note from (2.9) and (B.1) that

f0 = f1 + O(x) as x → 0; this fact follows because Ẽph
1 − Ei ph

1 = O(x) as x → 0 for all i.

Using N1 = N0eg+(µ1−1)x, we can conclude that eg+(µ1−1)x f1(rh
1) = f1(rh

0) + O(x) as x → 0.
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Because eg+(µ1−1)x > 1 as x → 0 and f1 is decreasing, there exists an open I3 3 0 such that

for x ∈ I3, rh
1 > r0

1. This inequality is what we needed to show to prove that construction

occurs at time 1, which is all that remained to prove that construction always occurs. We set

I = I1 ∩ I2 ∩ I3.

All of that proved that for t > 0, the effect of the shock zt on rh
t results from differentiating

the equation S− Dl(rh
t − (1− β)K) = Dh

t (r
h
t ) with respect to x at x = 0. Doing so yields

−(Dl)′drh
t /dx = µtDh

t + (Dh
t )
′drh

t /dx, from which it follows that drh
t /dx = −µtDh

t /((Dl)′ +

(Dh
t )
′) = µtrh

t /(εS
t + εD). Similarly, the partial effect of the shock on current rents rh

0 , holding

beliefs constant and letting N0 change, is ∂rh
0/∂x = rh

0/(εS
0 + εD). Putting together this

partial effect with the one in Proposition 5 yields

dph
0

dx
=

rh
0

εS
0 + εD

+
∞

∑
t=1

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃t +
χεS

εS
0 + εS

µt

)
βtrh

t

εS
t + εS

,

where µ̃t is the most optimistic belief of µt and µt is the average belief of µt. Because all

residents agree that µ0 = 1, we may rewrite this expression as

dph
0

dx
=

∞

∑
t=0

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃t +
χεS

εS
0 + εS

µt

)
βtrh

t

εS
t + εS

.

The text defines the mean persistence of a persistence vector µ′ to be µ′ = ∑∞
t=0 µtβ

trh
t (ε

S
t +

εD)−1/ ∑∞
t=0 βtrh

t (ε
S
t + εD)−1. We use this definition, and divide through by p0 = ∑∞

i=0 βtrh
t ,

which holds at x = 0, to derive

d log ph
0

dx
=

(
∞

∑
t=0

βtrh
t

)−1 ∞

∑
t=0

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃ +
χεS

εS
0 + εS

µ

)
βtrh

t

εS
t + εS

=

(
εS

0 + (1− χ)εD

εS
0 + εD

µ̃ +
χεS

εS
0 + εS

µ

)
1

ε̃S + εD ,

where we have used the definition of the long-run supply elasticity ε̃S given in the text. This

equation for d log ph
0/dx matches (2.12) in Proposition 6.
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B.2.4 Proof of Implication 7

We demonstrate a limiting case in which εS
0 = ∞ while ε̃S < ∞. Let Dl(r) = br−εl

for

some constant b > 0. Consider the limit as b → 0. We know that rh
t ≥ (1− β)K because

rh
t = rl

t + (1− β)K and rl
t ≥ 0. Define N∗ to be the value of Nt that solves the equation

S = Dh
t ((1− β)K), where Dh

t is given by (B.1). For Nt < N∗, housing demand fails to exceed

available land at the minimum rent, and there is no demand for land in the limit, so the

market clearing rent must be rh
t = (1− β)K while Ht < S. By (2.4), εS

t = ∞ in this case. But

for Nt > N∗, demand exceeds supply at the minimum rent, so rh
t > (1− β)K and Ht > 0,

leading to a finite elasticity. Since Nt grows at a constant rate g, for any Nt < N∗ we have

εS
0 = ∞ but ε̃S < ∞.

B.2.5 Proof of Implication 8

Disagreement amplification ∆ equals

∆ =
εS

0 + (1− χ)εD

εS
0 + εD

µ̃− µ

ε̃S + εD .

We calculate this difference from subtracting from (2.12) the counterfactual in which we

substitute µ for µ̃. Define N∗0(χ) to be the value of development (which determines the

supply elasticities; see above) that maximizes ∆. When χ = 1, ∆ is 0 in the limits as N0 → 0

and N0 → ∞, because ε̃S = 0 in the first case and εS
0 = 0 in the second. But ∆ > 0 for χ = 1,

so 0 < N∗0(1) < ∞ by continuity. But N∗0(χ) is continuous in χ as long as it exists and is

finite, so there must exist χ∗ < 1 such that for χ∗ ≤ χ ≤ 1, N∗0(χ) exists and is finite.

B.2.6 Proof of Implication 9

When χ = 1, the limit as N0 → ∞ of d log ph
0/dx is µ/εD. For any 0 < N0 < ∞, we can

choose µ̃ to be large enough so that the price change given by (2.12) is larger than µ/εD,

because this price change becomes arbitrarily large with µ̃. By continuity, we can do the

same for some χ < 1.
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B.3 Construction equation

By the definition of supply elasticity, the change in the log housing stock is εS
0 d log rh

0/dx. The

total effect of the shock on rents combines the effect in the end of the proof of Proposition

5 and the direct effect of the shock on N0 derived in the proof of Proposition 6. It is

drh
0/dx = rh

0/(εS
0 + εD)− χεD(∂βẼph

1∂x − ∂βEph
1/∂x)/(εS

0 + εD). We substitute in for the

beliefs from the Proof of Proposition 6 and divide through by rh
0 , and then multiply by εS

0 to

get
d log H0

dx
=

εS
0

εS
0 + εD

(
1− χεD

ε̃S + εD ρ(µ̃− µ)

)
, (B.2)

where ρ ≡ ph
0/rh

0 is the price-rent ratio of the city before the shock at x = 0.
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Appendix C

Appendix to Chapter 3

C.1 Alternative Finance Calibration

The one profession for which our approach to estimation worked poorly was Finance

because of the large discrepancies between the Harvard and IRS data. In this appendix we

maintain the same estimates of shares in different professions of the previous appendix, but

fit the Finance-conditional distribution of income to fit only the Harvard data and disregard

the IRS data as a robustness check on our conclusions.

Figure C.1 shows the results of this alternative calibration. The left shows the conditional

profession distribution including the “Unskilled” category. An important thing to note is

that the fraction of individuals captured by our professions falls at lower incomes. For

example, at $250k we now only account for about 70%. However, it is now monotonically

increasing. The reason is that our alternative estimation lends Finance a much thicker upper

tail (as this is what fits the Harvard data) and thus shifts many financiers from modestly

wealthy income levels where there are a reasonable number of individuals in our original

estimation to very high incomes that were much thinner.

The effects of this change on the professional distribution conditional on being among

our professions is shown more clearly in the right panel of the figure. There we see that

the new estimation makes only a modest difference in depressing Finance’s share at the
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Figure C.1: Income Distributions Under Alternative Finance Calibrations
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Notes: Conditional profession distribution by income for skilled individuals with (left) and without (right) the
inclusion of “unskilled” professions under the alternative, Harvard-matching estimation of the Finance income
distribution.

“thicker” incomes below $1m. However, Finance’s share dramatically blows up at higher

incomes, coming to dominate incomes above about $2m overwhelmingly.

Figure C.2 shows the impact this has on ATEM and MTEM optimal taxes. The results

are very close to those in the text on which we focus qualitatively, except that now under

both literature calibration rates rise monotonically at higher incomes and there is a much

smaller difference between the pro mgmt calibration and the anti mgmt calibration. Rates at

very high incomes are somewhat higher under all calibrations other than Tea Party.

We omit the reference distributions by ability levels, as these are essentially the same

except that Finance is now more unequal and thus at very high incomes overtakes Man-

agement as the most lucrative occupation. Optimal marginal tax rates under our baseline

structural model (as in Subsection 3.5.2) also hardly change, except that pro mgmt comes

to resemble anti mgmt even more closely. More revealing is the difference in the impact

of externalities as compared to intensive margin labor supply elasticities on the structure

and level of optimal marginal tax rates, as in Subsection 3.5.3. This analysis is shown in

Figure C.3. Compared to Figure 3.8, our results here show that rates are much more clearly

154



Figure C.2: ATEM and MTEM Policies Under Alternate Finance Calibration
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Figure C.3: “Horserace” Under Alternate Finance Calibration
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progressive under all but the Tea Party calibrations and much more extremely regressive

under the Tea Party calibration. Overall levels of rates move only slightly, both for the

externality-varying calibrations and the elasticity-varying calibrations. However, now, under

the elasticity-varying calibrations the extent of regressivity is now more-or-less constant

across values of the elasticity. This alternative calibration thus makes even stronger our

claim that externalities have a stronger effect on the structure of optimal taxes than does the

intensive elasticity of labor supply.

Our results on quantitative welfare gains (as in Subsection 3.5.4) are quite similar, except

that they are somewhat (roughly 25%) larger, especially under the Occupy calibration. More

interesting is the impact of the new calibration on the effect of the Reagan tax reforms. All

impacts on the allocation of talent are in the same direction but a bit (10-20%) larger. The

impacts of the reforms on social welfare and GDP are more negative, and more consistent

between the two literature calibrations. However the largest change is on the impact of the

reforms on inequality. This doubles as a result of the new calibration, so that now the Reagan

reforms account for 42% of the 1979-1993 and 30% of the 1979-1997 change in the share of

income earned by talented individuals in the top 1%.

C.2 Externality Share Calibration

In this appendix we discuss in greater detail our strategy for calibrating the externality

shares of various professions based on the literature.

C.2.1 Law and Computers/Engineering

Murphy et al. (1991) calculate the direct spillovers of both lawyers and engineers using

cross-country regressions. We use their preferred estimates that are restricted to the 55

countries in which more than 10,000 students are in college. Their result is that a 1% point

increase in the share of students studying law lowers real per capita GDP growth rates by

0.078% points, and that a 1% point increase in the share of students studying engineering

increases real per capita GDP growth rates by 0.054% points.
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We convert these estimates to per-dollar externalities using our estimates of the income

distributions in law and engineering, as well as OECD data on the share of students studying

each field in the United States. We interpret the spillovers of these professions on GDP

growth as a one-time, static reduction (or improvement) to GDP. This interpretation is

consistent with our static model that does not consider economic growth.1 All of the

following data comes from 2005.

The OECD data tell us that 2.4% of students study law (51,000 out of 2,100,000). US GDP

in 2005 was $12.4 trillion. The total externality from lawyers is therefore

−0.078︸ ︷︷ ︸
MSV estimate

·0.024 · $12.4 trillion = −$23 billion.

To compute the externality share ep for law, we divide this figure by the aggregate

income for law. We focus just on the aggregate income of the “talented” individuals for

which we calibrated income distributions in Section 3.3.1. We attribute all of the spillovers

calculated by MSV to this group of lawyers. According to our calibrated income distribution,

the mean income of these lawyers is $337,000 and there are 325,000 of them. Their total

income is therefore $110 billion, and the per-dollar externality from law is then

eLaw = − $23 billion
$110 billion

= −0.21.

Analogous calculations yield our estimate for the externality share of engineering. The

OECD data tell us that 10.7% of students study engineering (230,000 out of 2,100,000). The

total externality from engineers is therefore

0.054︸ ︷︷ ︸
MSV estimate

·0.107 · $12.4 trillion = $72 billion.

We again attribute all of the spillovers calculated by MSV to the “talented” engineers whose

income distributions we estimated in Section 3.1. According to that distribution, the mean

1An alternate approach is to interpret the spillovers as permanent shocks to GDP, which affect welfare in
current and all future years. We would then compute the present value of these spillovers. This methodology is
more appropriate in many ways but our static model is ill-suited to analyze it.
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income of these engineers is $172,000 and there are 560,000 of them. Their total income is

therefore $96 billion, and the per-dollar externality from engineering is then

eEngineering =
$72 billion
$96 billion

= 0.75.

C.2.2 Management

The externality share for management largely determines top tax rates because management

is the most heavily represented occupation at top tax rates. Two strands in the literature

offer competing views on the externalities of management. We calculate optimal tax rates

using management externalities calibrated from each strand of the literature. Our paper

offers a framework for analyzing how the conclusions from that literature quantitatively

affect optimal tax rates.

The first half of the literature argues that executive compensation reflects a good deal

of rent seeking. According to this story, Chief Executive Officer (CEO) compensation

shifts resources from shareholders to managers in ways that do not actually reflect the

CEO’s marginal product. Papers that try to document such behavior include Bertrand and

Mullainathan (2001) and Malmendier and Tate (2009). Piketty et al. (2014) argue that 60% of

the CEO earnings elasticity with respect to taxes represents this rent seeking behavior. The

other 40% is genuine labor supply. This literature therefore gives the estimate

eManagement = −0.6.

The other half of the literature argues that the increases in CEO compensation over the

last 30 years are due not to rent seeking but to fundamental labor market factors, such as

increasing firm size (Gabaix and Landier, 2008). Furthermore, the compensation patterns

highlighted by the aforementioned papers as evidence of rent seeking can be rationalized

as efficient dynamic contracts. Edmans and Gabaix (2009) offer a survey of this literature.

The conclusion from this perspective is that CEO pay reflects the marginal product of these
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managers, and that therefore

eManagement = 0.

We assume all management has the same externality share as CEOs.

C.2.3 Academia/Science

We estimate that the aggregate income for talented workers in Academia and Science is

$67 billion ($107,000 per worker times 626,000 workers). Aggregate income is therefore $67

billion.2

Murphy and Topel (2006) estimate that the gains of medical research from 1970 to 2000

were $3.2 trillion annually. This spillover is likely the largest externality from academia and

science, but note that this estimate is still conservative in assuming no gains accrue from

any activity in academia other than medical research. The resulting externality share for all

of this occupation is then

eAcademia/Science =
$3.2 trillion
$67 billion

≈ 48.

An alternative benchmark for the value of scientific research is much narrower and

focuses only on the spillovers of universities to profits made by geographically proximate

firms, thus neglecting other profit and consumer welfare spillovers. This narrower measure

is studied by Jaffe (1989). His model allows university research to have a direct effect on

commercial patents as well as an indirect effect through influencing industrial R&D. His

preferred estimate is that the total elasticity of patents with respect to university research is

.6. The direct elasticity of industrial R&D on patents ins .94 and industrial R&D expenditures

are 6 times larger than university research expenditures. Therefore a marginal dollar in

university research is equivalent to 6·.6
.94 = 3.83 dollars spent on industrial R&D in terms of

resulting patents.

According to the National Science Foundation, $45 billion was spent on university R&D

2According to http://www.researchamerica.org/uploads/healthdollar12.pdf, total spending
on medical research was $80 billion in 2001. So the prior number is the right order of magnitude.
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in 2005. Using the estimate from Jaffe, we conclude that the total spillover from this activity

was $172.35 billion. Dividing this by our $67 billion of salary yields a much lower 2.6

externality share.

The largest difference between these measures is how broadly they attempt to measure

the spillovers from academic research. While we are more sympathetic to the Murphy and

Topel accounting, using 48 as the externality share of Academia/Science would cause every

other factor to be swamped by the need to get more individuals into this field. Perhaps this

is appropriate, but we felt that, given the smaller Jaffe numbers, a reasonable compromise

was to use 5, twice the Jaffe number but still an order of magnitude smaller than that from

Murphy and Topel.

C.2.4 Consulting

A body of work has demonstrated that better management practices increase firm produc-

tivity. We interpret the marginal product of consulting as teaching firms these management

practices. Some examples in which management practices increase productivity are in

adopting new technologies (Bloom et al., 2012), decreasing mortality in cardiac care centers

(Bloom et al., 2011; McConnell et al., 2013), and teaching and research output in universities

(McCormack et al., Forthcoming).

Given these wide-ranging examples where management quality increases productivity,

our prior is that consulting fully captures this marginal product with the fees they charge

for their services. Some direct evidence on the relationship between consulting fees and

increased productivity comes from Bloom et al. (2013). The authors randomly assign

consultants to plants in India. The market fees for the consultants’ time (which they did

not actually charge) was on average $300,000 per plant, and they increased the productivity

of each plant on average by $250,000. We interpret these numbers as in line with our prior

from the larger field of research that consultants’ fees match their marginal product, and

thus set

eConsulting = 0.
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C.2.5 Teaching

Chetty et al. (2013a,b) measure the extent to which higher quality elementary and middle

school teachers raise the eventual earnings of their students. Their main result is that a 1

standard deviation increase in teacher quality raises eventual student earnings by 1.34%.

We use their results to estimate the surplus social benefit of the entry of talented individuals

into the teaching profession.

Chetty et al. measure teacher quality with student test scores. For our purposes, we thus

need an estimate of the extent to which talented workers would raise student test scores.

Teach For America is a program in which college graduates from selective colleges teach for

one or two years. Clark et al. (2013) estimate that Teach For America teachers raise math

test scores by 0.07 standard deviations. They compare 136 Teach For America teachers to

teachers teaching in similar classrooms at the same schools.

Most of the teachers in the Clark et al. (2013) study are in middle schools, so we use

the middle school numbers from Chetty et al.. Chetty et al. (2013a) find that 1 standard

deviation in middle school math teaching quality corresponds to a 0.134 standard deviation

increase in student test scores (Table 2 of that paper). We conclude that talented workers

(represented here by TFA members) are 0.52 = 0.07/0.134 standard deviations of teacher

quality better than the average teacher.3

Chetty et al. (2013b) calculate that the present value of future earnings for a middle

school student is $468,000 in 2005 dollars.4 They also calculate that the average number of

students in a class is 28.2. The surplus social value of the entry of a talented worker into

teaching is

0.0134 · 0.52 · 28.2 · $468,000 = $92,000.

3We are assuming that the average treatment effect on student earnings of a teacher whose students have
higher test scores is the same for all teachers as it is for Teach For America teachers. It is possible that TFA
teachers raise test scores via a different channel then other teachers, in which case the treatment affect would
not be the same. Similar assumptions are made in extrapolation to earnings.

4They use a 5% discount rate and assume that earnings grow 2% annually.
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Our calibrated income distribution for “talented” teachers implies that the mean income

for such teachers is $83,000. According to Chetty et al. (2013b), the average income for

teachers is $50,000. We interpret this figure to represent the marginal social product of

the average teacher. The average teacher’s externality share is 0 under this assumption. A

talented teacher’s total social product is therefore $50,000 + $92,000 = $142,000, and the

resulting externality share is

eTeaching =
$142,000
$83,000

− 1 = 0.71.

C.2.6 Arts/Entertainment

Several quantitative studies (Florida and Mellander, 2010; Hellmanzik, 2010) and much

qualitative work (Jacobs, 1961) indicates that artists have important spillovers to the value

of property in urban areas. It seems plausible that cultural production has other positive

externalities such as social cohesion (Lazear, 1999) and un-captured consumer surplus in

a manner similar to technological innovations. However these effects have proven much

harder to measure (Hausman, 2012) and we saw no way to use those that have been done to

generate a number. Furthermore, unless this number is quite large it has little affect on our

results, except to somewhat dampen the subsidy on entering the middle class in Subsection

3.3.3, because so few individuals enter Arts/Entertainment. We thus reluctantly used a 0

externality share.

C.3 General Ability Model

First we discuss an analytical result for the case when N = 2 under the general ability

assumption, but without further restrictions on functional forms for distributions.

Proposition 9. Suppose that G1 first-order stochastically dominates G2. If e1 < e2 then beginning

from ATEM, there is a first-order welfare gain from raising the marginal tax rate at each wage level w

in the support of the wage distribution for which ∂Θ(w) includes individuals switching either from
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or to a wage level including individuals from both professions. On the other hand, if e1 > e2 then

beginning from ATEM, there is a strictly positive first-order welfare gain from lowering the marginal

tax rate at each wage level w in the support of the wage distribution for which ∂Θ(w) includes

individuals switching either from or to a wage level including individuals from both professions.

Proof. Suppose that T(w) = T0 − E
[
ep? |Θ(w)

]
w. Consider any w meeting the description

in the proposition statement. Partition ∂Θ(w) into two sets: ∂̃Θ(w) and ∂Θ(w) where

∂̃Θ(w) includes only types switching between wage levels at least one of which includes

a positive density of individuals of each profession and ∂Θ(w) includes only individuals

switching between wage levels occupied each by a sole profession. By assumption, ∂̃Θ(w)

is non-empty; let

λ(w) ≡

∫
∂̃Θ(w)

f (θ)dθ∫
∂̃Θ(w)

f (θ)dθ+
∫

∂Θ(w) f (θ)dθ
.

Then

E [∆T + ∆E|∂Θ(w)] = λ(w)E
[

T
(
wip
)
+ eipwip − T

(
wiq
)
− eiqwiq|∂̃Θ(w)

]
+

[1− λ(w)] E
[

T
(
wip
)
+ eipwip − T

(
wiq
)
− eiqwiq|∂Θ(w)

]
.

Note that the second term is 0 by the argument in the proof of Proposition 8. On the first

term, note the for any type in ∂̃Θ(w) we have

T
(
wip
)
+ eipwip − T

(
wiq
)
− eiqwiq =

−E
[
ep? |Θ

(
wip
)]

wip + eipwip + E
[
eq? |Θ

(
wiq
)]

wiq − eiqwiq < (>)0

if e1 < (>)e2 as p = 1 and q = 2 always because no individual has a higher income in

profession 2 than 1 by the general income assumption and first-order stochastic dominance.

While this result does not directly imply that marginal rates are higher (lower) at every

point when the high-paying profession has more negative (positive) externalities than would

be the case under Proposition 8, they are strongly suggestive in this direction. Furthermore

the result applies only when there are two professions. Thus to verify whether in a realistic
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model with many professions externalities do end up making a greater impact on optimal

tax rates than under ATEM requires an empirical calibration.

In particular, we adapt our general model to a logit discrete choice framework to

describe agents’ career selection conditional on ability level. There are N professions,

indexed p = 1, . . . , N, and a unit mass of individuals, indexed by i. Each individual i is

characterized by general ability ai ∈ (0, 1) and a vector of psychic incomes across professions,

ψi =
{

ψip
}N

p=1. Each profession has wage “reference distribution” Gp(·) mapping ability

to marginal product. Utility is quasilinear in consumption and psychic income, and the

marginal utility of consumption is normalized to one. In our basic model, labor supply is

fixed at one, so that i’s income in profession p, denoted yip, is simply Gp(ai). The retention

function R(·) maps pretax income to consumption.

Psychic income consists of two components, a profession-specific mean (independent of

ability) ψ̂p, and an individual-specific residual εip. Individual i selects the profession p?(i)

that maximizes utility:

p?(i) = arg max
p

{
R(yip) + ψip

}
= arg max

p

{
R(Gp(ai)) + ψ̂p + εip

}
. (C.1)

(Under quasilinear utility, externalities imposed by other agents do not change the relative

attractiveness of professions and so can be ignored.) Let εip = ε̂ipβ(ai), where ε̂ip is iid

across professions, drawn from a standard Gumbel (extreme value) distribution, and β(ai)

scales ε̂ip so that it is expressible in dollars (and thus is additive in utility). Then Equation

C.1 can be written as

p?(i) = arg max
p

{
β(ai)

−1 (R(Gp(ai)) + ψ̂p
)
+ ε̂ip

}
. (C.2)

The logit model implies that the probability that i selects a particular profession p′ has a

closed form expression:
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Pr(p′ = p?(i)) =
exp

[
β(ai)

−1 (R(Gp′(ai)) + ψ̂p′
)]

∑N
p=1 exp

[
β(ai)−1

(
R(Gp(ai)) + ψ̂p

)] . (C.3)

Equivalently, this expression gives the share of agents with i’s ability level who select

profession p′. If psychic incomes ψ̂ =
{

ψ̂p
}N

p=1 and reference distributions Gp(·) are known,

we can calculate the share of agents at each ability level selecting each profession given

any counterfactual wages; in particular, we can calculate the counterfactual distribution of

professions given any tax function. The function β(a) controls the sensitivity of agents with

ability a to differences in incomes—higher β(a) indicates less willingness to switch careers

in the face of a given income spread.

C.4 Estimation

To estimate the model, we must estimate the function β(a), the vector ψ̂, and the reference

distributions Gp(·). To make this task tractable, we make a key parametric assumption:

we assume the standard deviation of utility from profession p across agents with ability

a, which is β(a)
√

π/6, is proportional to the average marginal product across professions

at that ability level.5 That is, β(a) = β ·E[Gp(a)], for some constant β. This assumption

implies that lower earners are more sensitive to income differences across professions than

high earners. In practice our results are not highly sensitive to this assumption—even using

a constant value for β(a) yields qualitatively similar results. We further assume that all

professions have positive support across the ability distribution, and that the reference

distributions Gp(·) have range (0, ∞) for all professions.

Estimating β

To estimate β, we assume the distribution of ability among Harvard graduates is sufficiently

narrow to be considered constant, denoted aH . We estimate β(aH) using data about Harvard

5The standard Gumbel distribution has a variance of π/6.
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graduates and changes in financial salaries, from which we can back out the value of the

constant β.

The derivative of (C.3) with respect to R(y f in(aH)), simplified, is

∂sp(aH)

∂R(y f in(aH))
= β(aH)

−1 (sp(aH)− sp(aH)
2) , (C.4)

implying that we can calculate β(aH) using three figures: the change in post-tax salaries in

finance, relative to other professions, over a given period (∂R(y f in(a))), the change in the

share of Harvard graduates entering finance over the same period (∂sp(aH)), and the mean

share of Harvard graduates entering finance during this period (sp(aH)).

According to Goldin et al. (2013), from 1970 to 1990, the share of male Harvard graduates

entering finance rose from 5% to 16%, so we use ∂R(y f in(a)) = 0.11 and sp(aH) = 0.105.

To compute ∂R(y f in(a)), we use Philippon and Reshef (2012) time series estimates of

finance wages. They present several data series, which control for education and alternate

occupational choice in different ways. We use the wage in finance relative to other industries

(their Figure 1) for our calculations—the approximate values are listed in the first column

of Table C.1 below. From Goldin et al. (2013), we know Harvard alumni in finance who

graduated in 1988–1992 had an annual salary in 2005 of approximately $615,000. Using

Philippon and Reshef’s figures as an approximation for the real change in financial salaries,

we compute real income in finance in the second column of Table C.1. In the following

columns we convert these real values to nominal values, and use NBER’s TAXSIM to

compute nominal post-tax income in each year, then convert back to real figures in the final

column.6 This allows us to explore how the salary premium in finance varied between 1970

and 1990. If graduates in those years looked to salaries at the time of graduation when

selecting careers, then they would have seen an increase from about $225,000 to $300,000,

suggesting a value for ∂R(y f in(a)) of $75,000.

If, on the other hand, graduates correctly predicted what salaries would be, say, 15 years

6This procedure is clearly imperfect, as we do not have figures for the absolute change in financial salaries,
which would be appropriate for computing tax burdens. We use a conservative estimate and a wide range for
robustness checks to ensure our results are not sensitive to this imperfection.
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Table C.1: Real net income in finance over time

P&R Fig 1 Real Income Nom. Income Tax Burden Nom. Consump Real Consump
1970 1.05 379,853 75,971 31,260 44,711 223,553
1980 1 361,765 151,941 67,824 84,117 200,279
1985 1.1 397,941 218,868 94,634 124,234 225,879

1990 1.2 434,118 290,859 87,763 203,096 303,128
2000 1.6 578,824 509,365 195,686 313,679 356,453
2005 1.7 615,000 615,000 214,808 400,192 400,192

after they entered finance, the increase would instead be $225,000 to $400,000, suggesting

∂R(y f in(a)) = $175, 000. Predicting wages only 10 years later would instead correspond

to an increase of approximately $150,000. We select a benchmark value for ∂R(y f in(a)) of

$150,000, and we perform robustness checks using both $75k and $300k (see Appendix C.6

below). Using Equation C.4, we compute corresponding values of β(aH), and dividing by

the mean salary among Harvard graduates across all professions ($189,000 in the benchmark

case of zero labor supply elasticity) we obtain the constant β.

Estimating psychic incomes ψ̂ and reference distributions Gp′(·)

Psychic incomes and reference distributions are solved jointly, using a computation that is

most easily understood using a simple example with N = 3 professions, {a, b, c}, and K = 2

discrete levels of income, {y`, yh}. In this simplified example, observable data would consist

of the population shares in each profession at each level of income, fa` fb` fc`

fah fbh fch

 , (C.5)

representing five degrees of freedom (since the shares must sum to 100%), or, in general,

NK − 1 degrees of freedom. Letting a be the reference profession, the vector of psychic

incomes in this case is ψ̂ = (ψb ψc). In general, this vector will have length K − 1. The

reference distributions Gp′(·) in this case are approximated by a 1× 3 matrix Ĝ = (ga gb gc),

where for example ga represents the ability percentile below which an an individual in

profession a earns y`, and above which an individual earns yh. More generally, given
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K discrete income levels, the matrix characterizing the reference distributions will be of

dimension (K − 1)× N, representing the K − 1 percentiles partitioning the ability space

into income levels within in each profession. Note that the total number of free parameters

between ψ̂ and Ĝ is (N− 1) + (K− 1)× N = NK− 1, matching the number of independent

points in the data.

The system can be solved by constructing a function s(ψ̂, Ĝ) to compute the shares f̂

that would arise for given values of ψ̂ and Ĝ, and then searching for the ψ̂ and Ĝ such that

these resulting shares match the data observed in (C.5). This function can be constructed

as follows. Place the elements of Ĝ in a vector in increasing order, thereby partitioning the

ability space into (K− 1)× N + 1 groups, each specifying a vector of salaries faced across

professions. For example, if a candidate Ĝ has gb < ga < gc, the vector
gb

ga

gc


partitions the ability distribution into four groups. Individuals with ability below gb face y`

in each profession. Individuals with ability between gb and ga would earn y` in professions

a and c, but yh in profession b, and so on. This vector can be used to construct a K × N

matrix in which element (m, n) represents the salary a member of group m = 1 . . . 4 would

earn in profession n: 

y` y` y`

y` yh y`

yh yh y`

yh yh yh


. (C.6)

This matrix, along with the candidate vector of psychic incomes ψ̂ and an assumed retention

function combine to characterize a matrix of utilities that an individual in each ability
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partition would realize from each profession, except for the idiosyncratic component εip:

u1a u1b u1c

u2a u2b u2c

u3a u3b u3c

u4a u4b u4c


=



R(y`) R(y`) + ψb R(y`) + ψc

R(y`) R(yh) + ψb R(y`) + ψc

R(yh) R(yh) + ψb R(y`) + ψc

R(yh) R(yh) + ψb R(yh) + ψc


. (C.7)

We have assumed that β(a′) is proportional to the average marginal product of an individual

with ability a′ across professions, so that, for example, β2 = β(y` + yh + y`)/3. We can thus

compute the logit shares of each partition that would select each profession. For example

the share of partition 2 selecting profession b is given by

s2b =
exp[(R(yh) + ψb)/β2]

exp[(R(y`))/β2] + exp[(R(yh) + ψb)/β2] + exp[(R(y`) + ψc)/β2]
.

The population share in partition 2 is ga− gb, so individuals in partition 2 selecting profession

b make up fraction s2b(ga − gb) of the total population. Since these individuals earn yh, as

specified in (C.6), they contribute to f̂bh. Members of partitions 3 and 4 also contribute to

f̂bh, therefore the total implied share of yh-earners in profession b is

f̂bh = s2b(ga − gb) + s3b(gc − ga) + s4b(1− gc).

The full matrix of implied f̂ shares is computed by weighting the logit shares arising

from (C.7) by the population fraction in each ability partition, then the resulting shares

are aggregated using the income levels in (C.6) as indices. To perform the numerical

computation, we designate Law as the reference profession, and we set K = 50. For

numerical simplicity, we use a flat tax approximating the US income tax for R(·) (results

are not sensitive to this assumption). We use the numerical solver Knitro (Byrd et al., 2006)

to solve the system, dropping one element of the shares matrix to account for the NK− 1

degrees of freedom. In practice we search over the spread between thresholds in each

profession, so that the search variables can be constrained to be nonnegative, and we impose

the linear inequality constraint that these spreads sum to less than one. We also provide the

solver with analytic gradients. Code for this optimization is available upon request.
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C.5 Solving for the optimal tax function

To find the optimal tax function, we must specify a social welfare function given the model

above. As described above, i’s utility is given by

max
p

{
R(Gp(ai)) + ψ̂p + ε̂ipβ(ai)

}
.

Therefore a utilitarian social planner will select R(·), or equivalently, T(·), to maximize the

expectation of this expression across all agents. To do this, it is sufficient to calculate the

expected utility of all agents with a given ability a′, across all professions:

Ei,p

[
max

p

{
R(Gp(ai)) + ψ̂p + ε̂ipβ(ai)

} ∣∣∣ai = a′
]
=

β(a′)Ei,p

[
max

p

{
β(a′)−1(R(Gp(a′)) + ψ̂p) + ε̂ip

}]
. (C.8)

We cannot estimate (C.8) directly, as we cannot observe ε̂ip. However given our estimated

model, we can calculate β(a′)−1(R(Gp(a′)) + ψ̂p) in a given profession, and by assumption

we know the distribution of ε̂ip. Williams (9) and Small and Rosen (1981) demonstrate that

the iid extreme value distribution of ε̂ip implies (C.8) is equal to

β(a′) ln

(
N

∑
p=1

exp
(

β(a′)−1(R(Gp(a′)) + ψ̂p)
))

+ C, (C.9)

where C is a constant. Since we are interested in the differences in (C.9) under different tax

functions, the constant C can be ignored.

Adding a redistributive motive

The above approach assumes all agents have the same marginal utility of consumption, and

thus it is sufficient to evaluate tax functions in dollar terms. To incorporate a redistributive

motive, we assume the marginal utility of consumption is lower for agents with higher
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ability (who have higher average utility). Equivalently, we will place a lower welfare weight

on consumption for high ability agents; we will use α(a) to denote the welfare weight

assigned to ability a. To preserve the structure of the logit discrete choice framework, we

continue to assume agents of each ability level have constant marginal utility of consumption.

Nevertheless, we will allow the planner’s welfare weights to depend on expected levels

for each ability at the optimum. Letting Ū(a) denote the average utility at ability a, we

use α(a) = Ū(a)−γ, so that γ ≥ 0 governs the curvature of the social welfare function,

with the special case γ = 0 corresponding to no redistributive taste, and γ = .95 taken to

approximate logarithmic preferences over agents’ utility (our baseline redistributive case).

We use this instead of logarithmic preferences (corresponding to γ = 1) as it makes little

substantive difference and speeds computational convergence.

Adding a labor-leisure choice

So far we have assumed labor supply is inelastic with respect to the tax rate; we now relax

that assumption. Whereas we previously assumed utility was given by R(yip) + ψip, we will

now suppose utility is given by

R(yip)−
h1/σ+1

1/σ + 1
+ ψip,

where the agent now selects the labor supply h that maximizes utility. Pre-tax earnings yip is

equal to the product of i’s supplied labor and i’s private marginal product in this profession,

wip. The optimal labor supply choice solves h1/σ = R′(y)wip = (1− τ)wip, where τ is the

marginal tax rate on earnings y. Optimal labor supply is equal to

hip = (wip(1− τ))σ

so σ is the elasticity of labor supply. We can use the equation to infer marginal product

wip from observed earnings yip. As previously noted, β(ai) is assumed to scale with the
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Figure C.4: Optimal Tax Rates Under Different Elasticity Calculation
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Notes: Computational optimal piece-wise-constant marginal tax rates under robustness check where the
increase in finance salaries is assumed to be $75,000 (left) or $300,000 (right).
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mean earnings of ability ai across professions—since we do not want this parameter to be

endogenous to the tax function, in the presence of a labor-leisure choice we assume β(ai)

scales with the earnings an agent with ability ai would earn given her labor choice in each

profession under a laissez-faire tax regime.

C.6 Alternative Elasticity Value

Table C.2: Welfare Gains Under Alternate Elasticity Value

Gains from 1st best in
Social Welfare (GDP)

Gains from
2nd best

Share of potential
from 2nd best

$75k increase
Literature (pro mgmt) 35% (47%) 2.7% (1.3%) 7.7% (2.8%)
Literature (anti mgmt) 40% (52%) 5.1% (3.8%) 12% (7.2%)

Tea Party 1.7% (4.6%) .97% (3.5%) 56% (76%)
Occupy Wall Street 7.8% (9.8%) 2.9% (.95%) 37% (9.6%)

$300k increase
Literature (pro mgmt) 5.5% (14%) .62% (-.61%) 11% (-4.3%)
Literature (anti mgmt) 7.3% (18%) 1.6% (.61%) 22% (3.4%)

Tea Party .58% (3.1%) .25% (2.4%) 44% (76%)
Occupy Wall Street 1.9% (2.6%) .88% (-.38%) 45% (-14%)

Notes: Quantitative welfare gain from non-linear income taxation (2nd best), compared to optimal profession-
specific taxation (first best), relative to laissez-faire tax regime, under robustness checks where the increase in
finance salaries is assumed to be either $75,000 or $300,000.

As discussed in Appendix Section C.4 above, there is ambiguity about the appropriate

value of β, driven by uncertainty regarding the accuracy of Harvard graduates’ predictions

about the salary premium that would exist in finance years after graduation. Therefore

we rerun our analysis under the assumption that expected finance salaries for Harvard

graduates increased by, alternatively, $75,000 or $300,000 between 1970 and 1990, rather

than our benchmark assumption of $150,000. Results of this robustness check have little

impact on our results other than the quantitive welfare gains and the quantitative (but not

qualitative) impact of the Reagan tax reforms. An example is shown in Figure C.4, which

gives the optimal tax rates analogous to the baseline scenario in Subsection 3.5.2 using
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for both alternatives. The pattern of tax rates remains similar, though higher switching

elasticities tend to magnify subsidies to the middle class under the Literature specifications

and make top marginal tax rates more extreme under all specifications.

The muted sensitivity of these patterns to large changes in the switching elasticity is

unsurprising, because optimal Pigouvian taxation is unaffected by the size of elasticities;

only the quantitative benefits of imposing such taxation are impacted. The new results

for the quantitative welfare gains are shown in Table C.2. The welfare gains from optimal

taxation under the high elasticity robustness check ($75k increase) are roughly twice as large

as our benchmark specification, while the gains under the low elasticity alternative are one

third to one half as large. Thus higher elasticity values essentially scale up the importance

of the results proportionally.

C.7 Allocation of Talent in the General Ability Model

In this appendix we discuss how talent is allocated under various regimes in our structural

model developed in Section 3.5. Figure C.5 shows the allocation of talent in the absence of

taxation. Sales and Academia/Science attract a large number of individuals at the bottom

of the ability distribution. A variety of professions are represented throughout the mid-

range of the income distribution. But at the top and especially the very top Finance and

Consulting are dominant and the “middle class” professions of Doctor, Academia/Science

and Computers/Engineering largely die off.

Matters are radically different under optimal taxation for the anti mgmt literature-based

calibration, as pictured in Figure C.6. Under the first-best (left panel) nearly everyone, except

at the very top of the ability distribution, is in Academia/Science. At the very top there is

somewhat more diversity, with a significant representation especially in Management and

Consulting, but still the bulk of talented individuals are allocated to Academia/Science.

This is striking, but is driven by the very large positive externalities of Academia/Science

the literature perceives. The large gains from the first-best allocation of talent discussed in

Subsection 3.5.4 are driven by this radical reallocation.
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Figure C.5: Allocation of talent by ability quantile under laissez-faire
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Figure C.6: Allocation of Talent in Different Regimes
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Notes: Shares of individuals of various ability levels allocated to different professions under first-best, profession-
specific taxation (left) and second-best, non-discriminatory taxation (right).
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Figure C.7: Reallocation of Talent from Reagan Tax Reforms
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Notes: Shares of individuals of various ability levels allocated to different professions under before (left) and
after (right) the Reagan tax reforms.

The reallocation of talent under the second-best (right panel) is much less targeted,

resulting both in a much smaller welfare gain (as discussed in Subsection 3.5.4) and a much

more event distribution of talent across professions as shown in the right panel of Figure C.6.

The distribution across professions at low incomes is largely unaffected, but throughout the

rest of the ability distribution there is a broad heterogeneity of occupational choice. “Middle

class” professions persist high up into the ability distribution, unlike under laissez-faire.

The contrast between the allocation of talent before and after the Reagan tax reforms,

shown in Figure C.7, is a smoother and less dramatic version of the contrast between the

laissez-faire and second-best allocations. The Reagan reforms cause Management and Finance

to expand at the expense of the middle class professions especially at high ability levels, but

not nearly as dramatically as under laissez-faire.

C.8 Proofs

Proof of Proposition 8. We begin by considering the case of pure career-switching and no

intensive elasticity. First, note that the adjustment of marginal tax rates at any level must
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leave average externalities at each income level constant as the average entrant and exiter

has the same externality as currently prevails at that income level. Second, note that the

proposed tax satisfies the necessary conditions of Proposition 7, given that there is no

intensive elasticity: for any y

E [∆T + ∆E|∂Θ(y)] = E
[

T
(

wph?p
)
+ epwph?p − T

(
wqh?q

)
− eqwqh?q |∂Θ(y)

]
,

which equals

E
[

E
[

T
(
y′′
)
+ epy′′ − T

(
y′
)
− eqy′|∂Θ(y), wqh?q = y′, wph?p = y′′

]∣∣∣ ∂Θ(y)
]

,

which itself equals

E
[

E
[
T0 − T0 − E

[
ep? |θ(y′′)

]
y′′ + E

[
ep? |θ(y′)

]
y′ + epy′′ − eqy′

|∂Θ(y), wqh?q = y′, wph?p = y′′
]∣∣∣ ∂Θ(y)

]
= 0.

Next note that any other continuous tax scheme must violate these conditions. Suppose,

to the contrary, that there is another scheme T̂ that obeys the conditions with T̂ 6= T. Then

either T̂ = T + k for some constant k or we can identify an open set Y ⊂ (y, y) such that

T̂(y)− T(y) > T̂(y′)− T(y′)∀y ∈ Y and y′ ∈ (y, y)\Y. We deal with each of these cases

separately:

1. T̂ = T + k: In this case, the allocation of every type to a profession is the same, but the

tax scheme is either infeasible (if k < 0) or burns money (k > 0).

2. T̂ differs substantively: To show that the conditions of Proposition 7 are violated it is

sufficient to show that any weighted sum of the conditions differs from 0. Because W

is open it can be written as a countable union of n (where n possibly equals ∞) open

intervals (y
1
, y1), (y2

, y2), . . .. Consider

n

∑
i=1

E
[
∆T + ∆E|∂Θ

(
y

i

)]
fS

(
y

i

)
− E [∆T + ∆E|∂Θ (yi)] fS (yi)

=
n

∑
i=1

∫
∂Θ(y

i)
[∆T (θ) + ∆E (θ)] f (θ) dθ−

∫
∂Θ(yi)

[∆T (θ) + ∆E (θ)] f (θ) dθ,
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which equals

n

∑
i=1

∫
∂Θ(y

i)\(∂Θ(y
i)∩∂Θ(yi))

[∆T (θ) + ∆E (θ)] f (θ) dθ

−
∫

∂Θ(yi)\(∂Θ(y
i)∩∂Θ(yi))

[∆T (θ) + ∆E (θ)] f (θ) dθ.

Now note that ∂Θ(y
i
) ∩ ∂Θ(yi) equals

{
θ ∈ Θ : ∃p, q ∈ 1, . . . N :

(
wph?p < y

i
< yi < wqh?q

)
∧(

wph?p − T
(

wph?p
)
+ φ

(
h?p; φp

)
= wqh?q − T

(
wqh?q

)
+ φ

(
h?q ; φq

))}
,

which we abbreviate by ∂Θyp<y
i
<yi<yq . On the other hand

∂Θ(y
i
)\
(

∂Θ(y
i
) ∩ ∂Θ(yi)

)
= ∂Θyp<y

i
<yq<yi

and

∂Θ(yi)\
(

∂Θ(y
i
) ∩ ∂Θ(yi)

)
= ∂Θy

i
<yp<yi<yq .

Thus all “switches” included are from incomes within Y to outside Y. Consider any

income in y ∈ (y
i
, yi) for some i (which is true for any y ∈ Y) and consider

E
[

T̂
(

wph?p
)
+ epwph?p − T̂(y)− eqy

∣∣∣wqh?q ∈ Y, θ ∈ ∂Θ
(

y
i

)
∪ ∂Θ (yi)

]
<

T
(

wph?p
)
− T(w) + E

[
epwph?p − eqy

∣∣∣wqh?q ∈ Y, θ ∈ ∂Θ
(

y
i

)
∪ ∂Θ (yi)

]
= 0,

where the inequality follows by the definition of Y and the equality by the fact that, as

above, changing the tax scheme does not change the externality properties of T as the

average externality is static as individuals switch careers. Thus

n

∑
i=1

E
[
∆T + ∆E|∂Θ

(
y

i

)]
fS

(
y

i

)
− E [∆T + ∆E|∂Θ (yi)] fS (yi) < 0

contradicting the necessary conditions and establishing sufficiency.

Second we consider the case of pure intensive margin elasticities. In this case Proposition

7 immediately implies, given that the absence of correlation between ep? and εh
p? implies the
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absence of covariance, that([
E
[
ep? |Θ(y)

]
+ T′(y)

]
E
[
εh

p? |Θ(y)
])

f (y)

1− T′(y)
= 0 =⇒ E

[
ep? |Θ(y)

]
= −T′(y),

as f (y), E
[
εh

p? |Θ(y)
]
> 0. This is also sufficient because hours decrease with taxes, estab-

lishing the necessary concavity.
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