
Development, Calibration and Performance of an 
HIV Transmission Model Incorporating Natural 
History and Behavioral Patterns: Application in 
South Africa

Citation
McCormick, A. W., N. N. Abuelezam, E. R. Rhode, T. Hou, R. P. Walensky, P. P. Pei, J. E. Becker, 
et al. 2014. “Development, Calibration and Performance of an HIV Transmission Model 
Incorporating Natural History and Behavioral Patterns: Application in South Africa.” PLoS ONE 9 
(5): e98272. doi:10.1371/journal.pone.0098272. http://dx.doi.org/10.1371/journal.pone.0098272.

Published Version
doi:10.1371/journal.pone.0098272

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406583

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406583
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Development,%20Calibration%20and%20Performance%20of%20an%20HIV%20Transmission%20Model%20Incorporating%20Natural%20History%20and%20Behavioral%20Patterns:%20Application%20in%20South%20Africa&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=cd6a7b70ca9965a693d76c246aa2b9a5&department
https://dash.harvard.edu/pages/accessibility


Development, Calibration and Performance of an HIV
Transmission Model Incorporating Natural History and
Behavioral Patterns: Application in South Africa
Alethea W. McCormick1*., Nadia N. Abuelezam1., Erin R. Rhode2, Taige Hou2, Rochelle P. Walensky2,3,4,

Pamela P. Pei2, Jessica E. Becker2, Madeline A. DiLorenzo2, Elena Losina5,6, Kenneth A. Freedberg2,4,7,

Marc Lipsitch1,8", George R. Seage III1"

1 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 2 Divisions of General Medicine and Infectious Disease

and the Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 3 Division of Infectious Diseases, Brigham

and Women’s Hospital, Boston, Massachusetts, United States of America, 4 Center for AIDS Research, Harvard University, Boston, Massachusetts, United States of America,

5 Departments of Biostatistics and Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States of America, 6 Department of Orthopedic

Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 7 Department of Health Policy and Management, Harvard School of Public

Health, Boston, Massachusetts, United States of America, 8 Center for Communicable Disease Dynamics and Department of Immunology and Infectious Diseases, Harvard

School of Public Health, Boston, Massachusetts, United States of America

Abstract

Understanding HIV transmission dynamics is critical to estimating the potential population-wide impact of HIV prevention
and treatment interventions. We developed an individual-based simulation model of the heterosexual HIV epidemic in
South Africa and linked it to the previously published Cost-Effectiveness of Preventing AIDS Complications (CEPAC)
International Model, which simulates the natural history and treatment of HIV. In this new model, the CEPAC Dynamic
Model (CDM), the probability of HIV transmission per sexual encounter between short-term, long-term and commercial sex
worker partners depends upon the HIV RNA and disease stage of the infected partner, condom use, and the circumcision
status of the uninfected male partner. We included behavioral, demographic and biological values in the CDM and
calibrated to HIV prevalence in South Africa pre-antiretroviral therapy. Using a multi-step fitting procedure based on
Bayesian melding methodology, we performed 264,225 simulations of the HIV epidemic in South Africa and identified 3,750
parameter sets that created an epidemic and had behavioral characteristics representative of a South African population
pre-ART. Of these parameter sets, 564 contributed 90% of the likelihood weight to the fit, and closely reproduced the
UNAIDS HIV prevalence curve in South Africa from 1990–2002. The calibration was sensitive to changes in the rate of
formation of short-duration partnerships and to the partnership acquisition rate among high-risk individuals, both of which
impacted concurrency. Runs that closely fit to historical HIV prevalence reflect diverse ranges for individual parameter
values and predict a wide range of possible steady-state prevalence in the absence of interventions, illustrating the value of
the calibration procedure and utility of the model for evaluating interventions. This model, which includes detailed
behavioral patterns and HIV natural history, closely fits HIV prevalence estimates.
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Introduction

South Africa (SA) carries the heaviest burden of HIV disease in

the world, with 6.1 million people infected and HIV prevalence of

17.9 among adults aged 15–49 [1]. Heterosexual transmission of

HIV is the leading cause of new HIV infections among adults [2].

Simulation models can capture key features of HIV transmission

within a population using explicit assumptions about the timing of

infectiousness and the extent and distribution of sexual behavior

within the population. Such models can and have been used to

assess the likely impact of treatment and prevention interventions

[3,4].

HIV transmission dynamics, and the potential effect of

interventions on them, are driven by the natural history of

infection [5–7], heterogeneity in sexual behavior, assortativity of

selecting sexual partners, and partnership concurrency [8–14].

Although a number of ongoing community-based randomized

trials are assessing the impact of changing some of these factors on

HIV incidence and prevalence, HIV simulation models provide an

additional method to explore these questions in an effective and
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timely manner [3,4]. Models also allow investigators to examine

the impact of adjusting multiple interventions at once. Combining

the natural history of HIV dynamics and human behavior results

in complex models, and few systematic efforts have incorporated

both aspects into a single transmission model [15–22]. Models

incorporating these simultaneous processes, along with large

changes in infectiousness during HIV progression in an individual,

may give substantially different results from models that average

over or ignore heterogeneities in sexual behavior and infectivity

[6,23,24], in part because for HIV, changes in individual

infectiousness and epidemic growth both occur over a period of

several years.

For these reasons, we developed a single individual-based

simulation model of HIV transmission dynamics, the CEPAC

(Cost-Effectiveness of Preventing AIDS Complications) Dynamic

Model (hereafter called the CDM), which links to a previously

published disease model (CEPAC) and includes detailed sexual

mixing among heterosexuals. This model was calibrated, using a

fitting procedure based on a Bayesian Melding approach [25–29].

Methods

Model overview
The CDM is a stochastic, agent-based model designed to

simulate sexual transmission of HIV in a population. The agents in

the CDM are males or females who become sexually-active and

then form and dissolve sexual partnerships at rates dependent on

their sexual risk behavior (high- or low-risk) and commercial sex

worker (CSW) status. Individuals who become HIV-infected

during a sexual act with an HIV-infected partner progress through

stages of HIV infection via the CEPAC International Model

(hereafter called the Disease Model) [30–35], potentially trans-

mitting HIV to his/her partners and eventually dying of HIV

infection or other causes (Figure 1). The CDM captures the key

features of sexual mixing and human behavior that impact HIV

transmission, and links with the Disease Model to incorporate HIV

natural history (CD4 count, HIV RNA, development of oppor-

tunistic infections (OIs)), and mortality of HIV-infected and HIV-

uninfected individuals. The programming platform and compu-

tational performance of the CDM is outlined in Text S1.

The Disease Model is a state-transition model of HIV natural

history, which has been described elsewhere in detail [31–33,35].

In brief, disease progression in the Disease Model is characterized

as a sequence of monthly transitions from one ‘‘health state’’ to

another (Figure 1). Health states are defined as follows: primary

infection is the first three months post-infection, chronic infection

immediately follows primary infection and continues until the

individual’s CD4 count drops below 50/mm3; late-stage infection

occurs when the individual’s CD4 drops below 50/mm3. HIV

RNA is stochastically assigned by the disease model and

determines the monthly decline in CD4 count, which in turn

leads to increased risks of OIs and HIV-related mortality [36,37].

The basic partnership selection framework of the CDM is that

males choose females for various types of partnerships based on

the difference between both partners’ ages, current relationship

status, and behavioral risk (high- or low-risk) (Tables 1 and S1). In

the CDM, the probability that any act between an HIV-infected

and uninfected partner results in transmission depends on the

disease stage if the infectious partner is in primary or late-stage

infection and on HIV RNA if in chronic, condom use in that

sexual act, the protective efficacy of condoms, the circumcision

status of the uninfected male partner, and the protective efficacy of

circumcision (Text S2 and Table S1).

We modeled sexual acts using four types of partnerships: 1) A

steady partnership (similar to a marriage), defined as a main

partnership of long duration (Table S1) formed between a

sexually-active, single male and a sexually-active, single, non-

CSW female; 2) A regular partnership, defined as an ongoing

partnership of shorter duration (less than the duration of a steady

partnership, Table S1) formed between a sexually-active male and

a sexually-active, non-CSW female; 3) A casual partnership,

defined as one sexual act by a sexually-active male and sexually-

active, non-CSW female; and 4) A CSW partnership, defined as

one sexual act between a sexually-active male and CSW female

assumed to involve payment or exchange of goods or services for

sexual acts.

Dynamic Model Steps
Model initialization. We used the CDM to generate an

initial population, one individual at a time, using specified values

for population size, proportion male, proportion of males

circumcised, age of sexual debut, and proportion of females who

are CSW. The initial population was divided into nine age strata

based on user-specified proportions of the population in each age

range. Individuals younger than the user-defined age of first sex for

the CDM were classified as non-sexually-active. With fixed sex-

and CSW status-specific probabilities, sexually-active individuals

were assigned to be high-risk; otherwise they were low-risk. A

complete list of the CDM parameters used to describe population

characteristics, sexual partnership characteristics, partnership

selection, and probability of transmission is provided in Tables 1

and S1. In the CDM, each sexually-active male has a mean

partner acquisition rate for each partnership type. We allowed the

monthly mean partner acquisition rates for steady, regular and

casual partnerships to differ for high-risk males compared to low-

risk males by a high-risk multiplier, a parameter multiplied by

each of the four low-risk partner acquisition rates. Similarly, we

applied a CSW multiplier for high-risk compared to low-risk males

to the partner acquisition rate for CSW partnerships.

We ran the CDM for an initialization period of 50 years

(roughly 5 times the duration of a steady partnership in the model)

in the absence of HIV prior to time 0, so that the steady and

regular partnerships form and dissolve over the average lifespan of

individuals in the model, allowing for the distribution of these

Figure 1. General health states. When HIV-uninfected individuals (blue) in the CDM acquire HIV (red) the health state values are gathered from
the Disease Model. Individuals can die during any of the states depicted.
doi:10.1371/journal.pone.0098272.g001
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partnerships to approach equilibrium. The formation of these

partnerships is described below (see Partnership updates). After the

50-year initialization period, hereafter referred to as time 0, the

CDM is seeded with HIV-infected individuals with a specified age,

gender, and CSW status (Table S1). The Disease Model assigns

these individuals an initial CD4 and HIV RNA.

Births. Each month, after deaths are tallied in the model, the

CDM generates births based on the population size and the

average birthrates for SA from 1985–2002 [38].

Monthly updates for individuals. Every month, the model

increases each individual’s age by one month. When an individual

reaches the age of sexual debut, age 17 (Table S1) [39–41], he/she

moves into the sexually-active, single pool and is classified as low-

or high-risk based on the gender- and CSW status-specific

probabilities used in initialization (Table 1). Individuals remain

in their assigned HIV-risk group or CSW for their lifetime. Newly

sexually-active males draw a monthly mean partner acquisition

rate for each of the four partnership types based on their risk

group (see Model initialization). All newly sexually-active females

have a defined probability of becoming a CSW.

The health status of prevalent HIV-infected individuals in the

CDM is updated every month with data gathered from the Disease

Model. Similarly, newly HIV-infected individuals acquire their

health status from the Disease Model beginning at the time of

infection. Death of HIV-infected and uninfected individuals

depends on age, gender and the probability of AIDS- and non-

AIDS-related causes of death [37,42–44]. Upon death, the

individual is removed from the active dynamic population and

the individual’s sexual partnerships end.

Partnership Updates. Partnerships are updated every

month allowing new partnerships to be formed and ongoing

partnerships to continue or dissolve, depending on the duration of

the given partnership type (Table S1). For each male, the number

of sexual acts and probability of condom use that month is

updated for each partnership type (Table S1).

For each partnership formed, the male selects a female partner

based on her partnership (single or non-single) and CSW status

applying the user-defined partner selection weights associated with

each partnership type (Table S1). Eligible age categories for the

female partners are based on the user-defined average age

difference for that partnership type. For steady, regular and casual

partnerships, once the age category has been selected, the male

selects the risk group (high or low) from which his partner is

drawn, based on the value of assortativeness (assort) parameter. A

male selects his partner randomly from his own risk group with a

probability of assort, and randomly from either risk group with a

probability of 1-assort. All females in the selected partnership

status, risk group, and age category have an equal probability of

being chosen by the male. The female selected by the male forms a

partnership of a defined type with that male. If a steady or regular

partnership is formed, the duration of that partnership is drawn

from a specified range for that partnership type (Table S1). If a

steady partnership is formed, the partnership status for each

partner is changed to non-single and the individuals cannot form

any other steady partnerships until the given steady partnership

has ended. The CDM tracks the type and number of partnerships

each individual forms each month.

Table 1. Prior ranges and posterior weighted means for model parameters varied in calibration of a dynamic model of HIV
transmission in South Africa.

Parameter Description
Prior Range for Fitting
Procedure Sources for Priors

Posterior Weighted
Mean

Ratio of Variance of Priors to
Variance of Posteriors

Chance of a female becoming a
CSW/Proportion CSW at baseline

0.01–0.04 [91] 0.021 1.00

Proportion of males in the HR group 0.07–0.4 [92–96] 0.21 1.29

Proportion of non-CSW females in the HR group 0.01–0.30 [91,94,96–99] 0.16 1.05

Monthly steady partnership acquisition
rate for low-risk males

0.002–0.008 * 0.004 2.31

Monthly regular partnership acquisition
rate for low-risk males

0.0001–0.10 ** 0.056 1.07

Monthly casual partnership acquisition
rate for low-risk males

0.0001–0.15 [100–103] 0.058 1.95

Number of acts per month per regular
partnership***

4–11 [65,66,99,104] 7.46 1.00

Monthly CSW partnership acquisition
rate for low-risk males

0.0001–0.10 **** 0.045 1.71

High-risk multiplier 1–10 MA 5.11 1.09

High-risk Multiplier CSW 30–100 MA 72.17 1.00

Partner acquisition multiplier while in steady
partnership for low-risk males

0–1 MA 0.39 1.03

Assortativeness parameter for steady,
regular and casual partnerships

0.2–0.8 MA 0.51 1.02

* Calculations based on the proportion HR male, the proportion SA male in a steady partnership, the duration of a steady partnership, and the HR multiplier.
** Calculations based on the range of the partner acquisition multiplier while in steady partnership for low-risk males, the proportion in a regular partnership and the HR
multiplier.
***This parameter follows a discrete uniform distribution.
**** Calculations based on proportion CSW, proportion of males who seek a CSW, proportion HR males who seek a CSW and number of acts per CSW.
HR: high-risk group, LR: low-risk group, CSW: commercial sex worker, SA: sexually-active, and MA: modeling assumption MA.
doi:10.1371/journal.pone.0098272.t001
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The CDM allows males to engage in multiple partnerships

within a given month. However, males in steady partnerships may

have a decrease in their partner acquisition rates for forming other

partnerships, determined by a partner acquisition multiplier

(Table 1). We also allow females in the CDM to engage in

multiple partnerships within a month by using the partnership

selection weights (Table S1). These weights define the probability

that a male will select a single or non-single female to form a

steady, regular or casual partnership. For example, these weights

dictate that a male who is to form a regular partnership has a

higher chance of selecting a single female than of selecting a non-

single female. Also, in general, females in a steady partnership

have a decreased probability of being selected compared to single

females, and males can only select a CSW to engage in a CSW

partnership. To reflect the decrease in sexual activity as individuals

age, the partnership acquisition rates and sexual acts are adjusted

by a yearly age discounting factor, starting at the age of 50 (Table

S1).

In the model, once all males have formed all new partnerships

for the given month, all sexual acts between partners occur for that

month and the model determines whether HIV transmission has

occurred for each sexual act within each partnership (Text S2). For

each incident HIV infection, the initial HIV RNA and CD4 count

is obtained from the Disease Model using distributions for incident

cases. After all of the monthly transmission outcomes have been

determined, partnerships that have reached the end of their

duration, including any casual or CSW partnerships that were

formed in the same month, are ended. Upon dissolution of a

steady partnership, the individuals’ partnership status changes

back to single.

Internal validity of the Dynamic Model
Internal validation of the CDM was performed in a three step

process to evaluate the model’s structure and performance. First,

we evaluated the internal validity of the CDM by examining

randomly selected detailed reports or traces, which provide

monthly information on each partnership formed, the number of

acts per partnership, the health status and demographic charac-

teristics of the individual, and the number of new transmissions for

HIV-infected individuals.

Second, the HIV transmission dynamics were validated by

assessing the number of exposures that led to infections, stratified

by the HIV RNA of the infector. This was done by tallying the

number of unprotected sexual acts between an infected individual

and their uninfected partner (exposures) and the number of

infections, both stratified by the HIV RNA of the infector. We

were most interested in understanding the rate of transmission for

primary stage, late stage, very low viral load (HIV RNA,

500 copies/ml) and chronic infection with HIV RNA.

100,000 copies/ml.

Third, we examined the influence of each parameter to

determine if it had the expected impact on various model outputs,

such as the number of partners formed in a month, number of new

infections in a month, number of deaths, etc. We conducted

extreme sensitivity analyses to confirm consistent model behavior.

For example, we set the probability of transmission to 0 for all

HIV RNA strata and examined the model output to ensure that

no HIV transmission had taken place. We then set the probability

of transmission to 1 and confirmed that the model output showed

that all sexual acts between discordant partners resulted in HIV

transmission.

Choice of parameter values and ranges for a model of
South Africa

The parameter values related to disease progression for the

South African HIV epidemic have been published previously

[31,45]. For incident HIV cases, we reviewed the literature and

found the CD4 count of HIV-uninfected individuals ranged from

503 to 2051 cells/mm3 [46–62], consistent with the mean CD4

count of 890 cells/mm3 found by Phair [61] and 884 cells/mm3

used by Granich [46,63]. We chose to use the value of 884 cells/

mm3 as the initial CD4 count of incident HIV cases in the CDM

based on additional sensitivity analyses that analyzed the impact of

this parameter on life expectancy (See Text S3). The HIV RNA is

.100,000 copies/ml for the first three months post-infection. The

CD4 decline and distribution of HIV RNA after the first three

months is outlined in Table S2. Monthly mortality probabilities

are dependent on sex, age, the presence of acute and history of

OIs, and CD4 count [37,64]. Thus, the model includes both AIDS

and non-AIDS related causes of death.

Demographic and behavioral parameters representative of the

pre-antiretroviral therapy (ART) HIV epidemic in South Africa

starting in 1990 were obtained from the literature (Tables 1 and

S1). The data gathered for the input parameter values were

selected based on the study design, sample size and year the study

was performed. Sixty-four of the 76 behavioral parameters of the

model were given fixed values; these mainly represent selected

demographic parameters and the HIV RNA-dependent probabil-

ity of transmission including the initial age distribution across the

nine age strata and the initial number of incident HIV cases

stratified by age and gender (Table S1). The probability of

transmission per act was fixed at values ranging 0.0001 to 0.0023

for different ranges of HIV RNA during chronic infection, with

unique probabilities for primary (0.0082) and late-stage infection

(0.0036) (Table S1) [65–68].

After a complete literature search was conducted to gather the

most robust estimates for the behavioral parameters, there were 12

parameters in the model for which there were no or few direct

measurements in the literature (Table 1). Therefore, the values for

these 12 remaining parameters were varied across simulations in

the calibration exercises (see Dynamic Model Calibration below).

These parameters included, but are not limited to, the proportions

of individuals in different risk groups, partner acquisition rates in

each risk group for all partnership types, and the assortativeness of

mixing.

Dynamic Model Calibration
In brief, the CDM transforms the input, consisting of multiple

behavioral, disease-related, and demographic input parameters

(Tables 1, S1, and S2), into the output, HIV prevalence over a

given time period. We used a Bayesian Melding-like procedure

[25–28,69] to take prior information on the input parameters and

simulated behavioral properties of the population, then use priors

on the behavioral and epidemiologic outputs to exclude parameter

sets and combined it with a measure of how well the model output

(HIV prevalence) of each particular parameter value combination

fit annual estimates of HIV prevalence produced by UNAIDS

(Table S3) [1]. We began from a broad, multivariate uniform

distribution of values for 12 behavioral and demographic

parameters, which governed the sexual network formed by the

entire male and female sexually-active population (Table 1). While

many of the partnership formation rates and the proportions of

high- and low-risk individuals are not well-constrained by available

data, there are better data available for values of composite

quantities that depend on them, such as the proportion of adults of

Development and Calibration of a Dynamic HIV Model
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each sex who are in various types of partnerships (Table S4).

Therefore, we performed a three-step calibration procedure.

We began the calibration procedure producing a total of

264,225 parameter sets by randomly selecting values for each of

the 12 parameters from their respective prior uniform distributions

(Table 1). We ran the CDM once for each of the 264,225 different

input parameter sets, which consisted of both fixed and randomly

selected parameters. We then subjected the CDM output from

each parameter set to three phases of calibration (Text S4). During

Phase 1, we assigned likelihood weights of zero to parameter sets

for which the estimated sexual partnership prevalence and sexual

acts fell outside the pre-specified limits (Text S4.1 Phase 1, Table

S4). Formally, this is equivalent to having a multivariate uniform

prior on the composite quantities, as these limits reflected prior

information on behavioral quantities that are determined by

complex interactions of the partnership formation and dissolution

parameters that we specified in prior distributions (Table 1). The

Bayesian melding-like approach provides a rigorous framework for

reconciling the prior on the parameters with the prior on

composites of them, treating them as two sources of information

about the parameter values.

During Phase 2 of the calibration procedure, we assessed the

goodness of fit of the modeled HIV prevalence to annual

prevalence estimates from UNAIDS for the parameter sets that

remained with nonzero weight after Phase 1 (Text S4.2 Phase 2,

Table S3). We assigned each parameter set a weight proportional

to the pseudo-likelihood (Text S.4.3) that the parameter values

could produce the pre-ART HIV prevalence curve defined by the

UNAIDS estimates of HIV prevalence in South Africa [1,25–

28,70]. Parameter sets that failed to generate an epidemic, failed to

reach a prevalence ,0.005 after 38 years, were given zero weights

(0.005 was the prevalence in 1990 from the UNAIDS data).

During Phase 3 of the calibration procedure, we filtered the

parameter sets further to ensure face validity by conformance to

specified stratum-specific HIV incidence and prevalence, and

CSW behavioral parameters (Table S5) at the end of the

simulation (2002) (Text S4.3 Phase 3). Parameter sets failing this

phase had their weights set to zero. This calibration method was a

principled way to assign weights to combinations of parameter

values so that they are individually consistent with measurements

in the literature and that in combination produce modeled HIV

prevalence consistent with existing data. This method conceptually

combines random sampling methodologies (e.g. Latin Hypercube

sampling), focused on model inputs [71], with curve-fitting and

likelihood methodologies that focus on identifying parameter

values that produce well-fitting outputs [29,72–74].

Post-Calibration Analyses
To assess the impact of the 12 parameters varied in the analysis

on the HIV prevalence in each year from 1990–2002, we

calculated partial rank correlation coefficients (PRCC) for all 12

parameters with the predicted HIV prevalence at each year (Text

S5) [71]. Additionally, we generated two-dimensional heat plots

showing the location of high-weighted vs. low-weighted parameter

sets across each of the 132 ordered pairs of parameters (12*11), to

visually identify pairwise correlations between values of parame-

ters that produced well-fitting runs (Text S6). Histogram plots of

the weighted posterior distributions for the 12 parameters were

created to determine how the calibration restrictions influenced

the parameter sets that passed the calibration checks (Text S.6). To

provide a measure of how informative the calibration procedure

was for narrowing the prior ranges, we compared the posterior

means for each of the 12 parameters to its respective prior mean

and calculated the ratio between the variance of its prior

distribution and the variance of its posterior distribution.

Results

Model Validation Results
We examined randomly selected traces of individuals to

evaluate the internal consistency of the CDM. All the individuals

evaluated formed partnerships, had sexual acts, had updated

health status, aged, and died as defined and governed by the inputs

and design of the CDM. Figure 2 illustrates a trace of a high-risk

(Figure 2A) and low-risk (Figure 2B) male from just prior to

infection until death. These traces provide detail on all sexual

partnerships and potential transmissions due to partnerships with

the selected male using the best-fitting parameter set (see below).

The plot of the high-risk male (Figure 2A), shows the

partnerships that individual had each month from roughly one

year prior to infection until his death at age 37 (8.4 years after

infection). Throughout the course of his entire life, this male

formed 335 CSW, 17 casual, 65 regular and 3 steady partnerships.

A regular partner infected this male (represented by a large purple

star) when he was 29 years of age. After infection (vertical red line),

this male infected two regular partners during his acute infection,

two regular partners during chronic infection and one steady and

one regular partner during late-stage infection (represented by the

purple symbols). This male’s behavior is consistent with model

input parameters and the literature for high-risk males (Table 1).

The plot of the low-risk male (Figure 2B) shows this male’s

partnerships from roughly one year prior to infection by a steady

partner at 32 years of age until death at the age of 41, after being

infected with HIV for 9 years. This male did not infect any

partners after his own infection. Throughout the course of his

entire life, he formed 3 CSW, 4 casual, 10 regular and 1 steady

partnerships.

To further examine the connection between the disease stage

and HIV RNA strata and the probability of transmission per

sexual act, we examined model output to determine the

percentage of acts that resulted in transmission to an uninfected

partner. These percentages were stratified by the HIV RNA

bucket or disease status (primary or late-stage infection) of the HIV

infected partner. A total of 0.76% of all sexual acts with an HIV-

infected partner in primary stage resulted in infection, 0.24% of

acts with an HIV-infected partner who had an HIV RNA .

100,000 copies/ml in chronic stage infection resulted in infection,

and 0.36% of acts with an HIV-infected partner with late-stage

infection resulted in infection. Only 0.01% of acts with an HIV-

infected individual with HIV RNA,500 copies/ml resulted in

transmission to an uninfected partner. These numbers closely

approximate the transmission probabilities designated in the

model input, as expected (Table S1).

Calibration results
Of the original randomly selected 264,225 parameter sets,

32,769 runs (12.4%) passed Phase 1, 29,544 parameter sets

(11.2%) passed Phase 2, and 3,750 parameter sets (1.4%) passed

Phase 3 calibration (Figure S1). Likelihood weights ranging from

near 0 to 0.006 were assigned to each of the 3,750 simulations

based on its predicted HIV prevalence’s pseudo-likelihood of fit to

the UNAIDS HIV prevalence in South Africa from 1990–2002

[1,70]. The parameter sets that contributed to the top 90% of the

likelihood weight were selected from these 3,750 simulations.

These 564 runs closely follow the prevalence values from 1990–

2002 from South Africa (Figure 3) [1,70] and then take various

trajectories after 2002. A cumulative distribution of the weights
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assigned to all parameter sets is presented in Figure S2; the curve

with sigma = 1 corresponds to the analyses described here in the

main text.

The posterior distributions for the 12 variables varied in the

fitting procedures are summarized in Table 1. The posterior mean

value for most parameters was close to its respective prior mean.

While the posterior variance was reduced for all parameters, the

ratio between the variance of the prior and the variance of the

posterior for the partnership acquisition rates and the proportion

of the population defined to be high risk were the largest,

Figure 2. Trace plot of a selected high-risk and low-risk male. In this figure, each month is represented on the horizontal axis with multiple
partners per month plotted vertically. Partnership types are represented as follows: & for steady partnerships,N for regular partnerships, m for casual
partnerships, and X for CSW partnership. A blue symbol represents an HIV-uninfected female partner, a purple symbol a female partner that becomes
HIV-infected that month and a red symbol a female partner who is previously HIV-infected. The duration of steady and regular partnerships are
represented by a line; if that partner acquires HIV during the partnership, the time of HIV acquisition is represented by a purple symbol and a change
in color of the line from green to red. The stage of HIV disease is depicted by the graph fill color, with green representing HIV-uninfected, purple
primary infection, red chronic infection and yellow late-stage infection. This male depicted in Panel A is a typical high-risk male and in Panel B a
typical low-risk male.
doi:10.1371/journal.pone.0098272.g002
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indicating the strongest constraints imposed by the fit to data

(Table 1). This indicates that these parameter values were most

constrained by this fitting procedure relative to their prior

distributions.

Despite substantial noise in the PRCC values prior to 1994, the

CSW acquisition rate and the CSW multiplier showed a positive

correlation with HIV prevalence at the beginning of the epidemic

(Figure 4). After 1994, parameters that influence short-term

(regular) partnerships (regular partnership acquisition rate, high-

risk multiplier, number of acts per regular partnership per month,

and proportion of males in the high-risk group) correlated strongly

and positively with HIV prevalence. The pairwise heat plots

(Figure S4) show that well-fitting values for each of these 4

parameters are negatively correlated with well-fitting values for the

remaining influential parameters, reflecting their importance in

determining prevalence and therefore fit to UNAIDS data. The

PRCC values calculated for the proportion of the population with

greater than 2 partnerships in the last month of 1990 (an estimate

of concurrency) showed that having multiple partners positively

influences the HIV prevalence for the years after 1994 (Figure S5).

We also plotted the weighted average HIV prevalence curves over

time stratified by age and gender (Figure S6) to confirm that our

model is able to capture the difference in prevalence expected in

males and females of different ages.

Discussion

Understanding the dynamics of HIV transmission in South

Africa is critical to determining the potential effect of interventions

on the epidemic. This report provides a detailed description of the

CEPAC Dynamic Model, which generates HIV prevalence trends

over time in South Africa, based on a detailed model of the natural

history of HIV infection (CEPAC). The CDM accounts for

changing transmissibility over the course of HIV infection. It also

incorporates sexual mixing that, while necessarily simplified from

reality, incorporates known features of sexual behavior, such as

heterogeneous individuals who differ in their propensity to form

different types of partnerships with different durations, stochastic

variation across sexual acts, the use of condoms, and possible

assortativeness in partner choice. The availability of a detailed

HIV infection natural history model for each infected individual,

together with these forms of heterogeneity, necessitated the

development of a stochastic, agent-based model. Models that

include such details are parameter-rich, and the parameter values

often are not directly measured in epidemiological and behavioral

studies. To address these challenges, we used a Bayesian-melding-

like procedure to allow for a principled way for combining prior

information on demographic and behavioral parameters - both

elementary quantities (e.g. rates of partnership formation) in the

model, and restrictions on the composites of these quantities (e.g.

prevalence of various partnership types at equilibrium before the

appearance of HIV) - with HIV prevalence data in South Africa

from 1990 to 2002 [1,70].

This calibration approach incorporates prior distributions on

model inputs, and estimates posterior distributions based on the fit

of model outputs to prevalence data (Phase 2 calibration, Figure 3)

and has many similarities with the Bayesian melding methodology

described by others [25–28,69], in that it also incorporated

restrictions on certain behavioral properties of the population that

were composite functions of the input parameters (Phase 1

calibration, Table S4), and on stratum-specific incidence and

prevalence at the end of the model run, year 2002 (Phase 3

calibration, Table S5). We also noted in preliminary analyses that

due to seeding of the epidemic with varying numbers of HIV-

infected individuals, there was considerable stochastic variation in

when the epidemic ‘‘took off’’, even for a fixed parameter set, but

once the epidemic exceeded a certain prevalence, repeated runs

with the same parameter set gave very similar prevalence curves.

Figure 3. HIV epidemic curves from the fitting procedures. This graph depicts that HIV epidemic curves generated by the CDM, from the
parameter sets that contribute the top 90% of the likelihood weight, closely represent the HIV prevalence in South Africa from 1990–2002 (large black
stars, Table S3) [1,70]. The estimated ranges for the South African prevalence from 1990–2002 for the UNAIDS data were plotted using small black
stars.
doi:10.1371/journal.pone.0098272.g003
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Similar phenomena have been observed previously in stochastic

transmission models [75] and are essentially a reflection of the law

of large numbers. For this reason, we did not specify a time in the

model corresponding to a particular year a priori. Rather, in the

Phase 2 calibration step, we ‘‘slid’’ the model outputs along the

UNAIDS prevalence curve to identify the model year correspond-

ing to 1990 that gave the best fit of the data to the entire

prevalence curve. Because the UNAIDS estimates contain only

high and low estimates for annual prevalence, we were forced to

make assumptions to translate prevalence values in the model into

pseudo-likelihood weights. Despite these elaborations, each step of

the approach we took was guided by the concepts of Bayesian

melding.

With a complex, highly parameterized model of this sort, it is

possible that very good fits to the data can be obtained with a

variety of different sets of parameter values. Moreover, two

parameter sets giving indistinguishable fits to the data may imply

quite different trajectories for the epidemic in years after the

period used to fit the model, and may imply very different impacts

of proposed interventions, such as treatment or prevention

Figure 4. Partial rank correlation coefficients of varied parameters and HIV prevalence over time. This illustrates the relationship of each
of the varied parameters with the main outcome of interest, HIV prevalence in the sexually-active population from 1990–2002. The partial rank
correlation coefficient (PRCC), calculated from all runs passing the first phase of calibration, is plotted for each year between1990 and 2002. (LR: Low-
risk; HR- High-risk; CSW- Commercial Sex Worker).
doi:10.1371/journal.pone.0098272.g004
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interventions. Indeed, in our model, the top fitting parameter sets

produce long-term dynamics that are variable in their trajectory

after 2002, in the counterfactual situation of no antiretroviral

therapy introduction (Figure 3). This suggests that the effort

involved in calibration of a complex model should pay off in the

ability to consider alternative hypotheses (i.e. alternative param-

eter sets) for how the epidemic reached its state in 2002, which

may have different implications for the effectiveness and cost-

effectiveness of different interventions post-2002. In future work,

we will use the weights from these simulations to provide weighted

estimates of intervention effects, reflecting these alternative

possibilities for the behavioral and demographic parameters

underlying the observed epidemic.

In this calibration study, we were able to assess the effects of

particular parameters on the dynamics of the epidemic in a time-

specific way [76]. The HIV prevalence prior to 1994 is most

highly correlated with dynamics related to CSW partnerships. As

the epidemic matures, the impact of CSW behavior becomes less

important to the increase in prevalence than the parameters that

influence short-term partnership dynamics. In the later part of the

epidemic, regular partnership acquisition for low-risk males, the

high-risk multiplier, the number of sexual acts per regular

partnership per month, and the proportion of males who are in

the high-risk group all have a positive association with HIV

prevalence. Since these parameters influence the levels of number

of individuals having more than one partnership in a single month

in the CDM, it appears that multiple partnerships in a month,

which is a proxy for concurrency, may be important to the

transmission and spread of HIV in South Africa. As noted, the

PRCC between the parameters and prevalence also indicate that a

small core group of high-risk females and CSW is necessary to

create early epidemic growth in our model. The smaller the group

of high-risk individuals or CSWs, the higher the prevalence,

indicating concurrency is essential to increasing prevalence in our

model dynamics. This can also be seen in the PRCC relating more

than one partnership in a single month and HIV prevalence over

time (Figure S5).

This newly developed CDM includes extensive detail on sexual

behavior, HIV infectivity, and HIV disease progression. A number

of mathematical models have been developed that incorporate the

potential effects of HIV prevention interventions in resource-

limited settings [15–17,63,77–85]. While each of these models has

its own strengths, the CDM builds on their foundation by

simultaneously including important biological and behavioral

characteristics of HIV transmission. The CDM’s link to the

Disease model provides a unique opportunity to provide detailed

and extensive cost-effectiveness estimates for a number of

interventions. Additionally, the test-and-treat pathway in the

Disease Model would allow for a thorough examination of the

HIV testing cascade and understanding the effects of behavior on

this cascade for future analyses [86].

There are several limitations to the model. The CDM does not

include the transmission of other sexually transmitted infections

and their potential impact on HIV transmission. This may cause

the CDM to underestimate the transmission of HIV in a

population. However, the per-act transmission rates in the model

were derived from cohorts that include patients co-infected with

other sexually transmitted infections. In the CDM, CSWs only

form CSW partnerships and therefore cannot have steady, regular

or casual partnerships. Also, the CDM does not account for in-

and-out-migration, which would allow for HIV-infected individ-

uals to enter or exit the population. Migration could also allow

heterogeneous mixing beyond the risk group stratification. In

addition, the behavioral inputs are not varied over time. It is likely

that over the thirteen-year horizon of the CDM model simulation

there have been changes in sexual behaviors in South Africa.

Finally, the CDM does not include mother-to-child transmission,

so new births are assumed to be HIV-uninfected. Given the time

frame covered by this current calibration (1990–2002), the limited

access to ART among perinatally infected children in South Africa

[87], and their short survival, perinatally-infected children will

have a limited impact on the projections. However, as access to

ART increases among these children, both their survival [88,89]

and sexual initiation [90] will need to be incorporated into the

CDM.

Further, the analysis of complex individual-based simulation

models is difficult within reasonable computing constraints and

memory restrictions. For example, we are not able to guarantee

that we spanned the entire parameter space in our random

generation of parameter sets. We attempted to minimize the

possibility of important dynamics outside of the parameter ranges

used through extensive sensitivity analyses and mock calibrations.

Many of our methods of summarizing relevant output are also

limited. For example, the correlation plots represent the correla-

tion between only two parameters at one time and not all 12.

Therefore, while the noted correlations between two parameters

have been observed, there may be other correlations that depend

on 3- or more-way combinations of parameters that are not readily

visualized in these plots. Finally, we limited the number of outputs

collected from the model due to memory and computational run-

time constraints.

Despite these limitations, the CDM incorporates many of the

details found in previously published models into a single model

for use in cost-effectiveness analyses [63,84]. This model will be

extended into the post-ART years of the HIV epidemic in South

Africa; with this capability, the effect of both behavioral and

treatment interventions can be assessed. Combined with rigorous

literature and other data searches and a multi-step calibration

procedure that incorporates information on both the behavior and

biology of HIV transmission, the CDM stands as one of the most

detailed models in the HIV transmission literature.
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Table S5 Summary of the Phase 3 Calibration bounds.
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Figure S1 Cascade of parameter sets through the three
stages of calibration. Beginning with 264,225 randomly

chosen parameter sets, each parameter set was run through the

model and exposed to three sets of restrictions to determine the

runs that were most realistic in terms of sexual behavior and HIV

prevalence predictions. A total of 3,750 runs passed all calibration

restrictions and will be used in all future model analyses.

(PDF)

Figure S2 Cumulative runs vs. cumulative weight for
runs passing the calibration procedure. This histogram

depicts the cumulative distributions of weights (for a variety of

sigma values) assigned to the 3,750 runs that passed the calibration

procedure. The curve with sigma = 1 corresponds to the analyses

described in the main text. The cut off (sigma = 1) for the 564 runs

contributing to the top 90% of the weight is denoted by a red line.

As noted from the figure, as sigma increases the number of runs

that contribute to the top 90% of the weight to fit increases and the

variance in the weights increases as well.

(PDF)

Figure S3 Posterior distributions for each parameter
varied in the calibration procedure. Each histogram (A–L)

represents the posterior distribution for each of the parameters

varied in the calibration procedure with each of the bars

representing the summed weight of the runs in that parameter

value bin. The panels are as follows: A. Assortativity (Assort); B.

Number of sexual acts per regular partnership per month

(RegActs); C. Chance of a female becoming a CSW (Chan-

ceCSW); D. Proportion of males in HR group (PropHRMale); E.

Proportion of non-CSW females in HR group (PropHRFemale);

F. Partnership acquisition rate multiplier (EpsilonLR); G. HR

multiplier (HRMult); H. CSW multiplier (CSWMult); I. Monthly

acquisition rate for steady partnerships for LR males (AqRateSt-

dyLR); J. Monthly acquisition rate for regular partnerships for LR

males (AqRateRegLR); K. Monthly acquisition rate for casual

partnerships for LR males (AqRateCasLR); and L. Monthly

acquisition rate for CSW partnerships for LR males (AqRa-

teCSWLR).

(PDF)

Figure S4 Two-dimensional plots of model fit. On each

plot two CDM input parameters are varied, one on the x-axis and

the other on the y-axis. A point was generated for each

combination of the two parameter values that were part of one

of the 3,750 parameter sets created in the fitting procedures. The

color of each of these points represents the weight contribution for

the plotted CDM model simulation with red representing

parameter sets that contribute the top 90% of the weight and

cyan representing parameter sets that contribute the bottom 10%

of the weight. The plots represent the correlation between every

parameter varied in the fitting procedures. The figure abbrevia-

tions are as follows: high-risk multiplier (HRMult), the CSW-risk

multiplier (CSWmult), assortativeness parameter (Assort), propor-

tion of males in the high-risk group (PropHRMale), proportion of

females in the high-risk group (PropHRFemale), partner acquisi-

tion rate multiplier while in steady partnership (EpsilonLR),

monthly partner acquisition rate for a steady partnership among

low-risk males (AqRateStdyLR), monthly partner acquisition rate

for a regular partnership among low-risk males (AqRateRegLR),

monthly partner acquisition rate for a casual partnership among

low-risk males (AqRateCasLR), monthly partner acquisition rate

for a CSW encounter among low-risk males (AqRateCSWLR),

chance of a female becoming a CSW (P(CSWF)), and number of

acts per regular partnership per month among low and high-risk

males (RegActs). The panels are as follows: A. The correlation

between the monthly partner acquisition rate for a regular

partnership among low-risk males (AqRateRegLR) and the 12

varied parameters; B. The correlation between the high-risk

multiplier (HRMult) and the 12 varied parameters; C. The

correlation between the proportion of males in the high-risk group

(PropHRMale) and the 12 varied parameters; and D, The

correlation between the number of acts per regular partnership

per month among low and high-risk males (RegActs) and the 12

varied parameters. We have added random jitter around each

discrete value for RegActs so that one can see points on the plot.

(PDF)

Figure S5 Partial rank correlation coefficients of con-
currency in 1990 and HIV prevalence over time. This

graph illustrates the relationship between the proportion of the

population with greater than 2 partnerships in the last month of

1990 and the main outcome of interest, HIV prevalence in the

sexually active population from 1990–2002. The partial rank

correlation coefficient (PRCC) is plotted for each year between

1990–2002. The PRCC summarizes the impact of concurrency on

the HIV prevalence in that year. A positive PRCC indicates that

the HIV prevalence is positively correlated with concurrency (and

inversely so for a negative PRCC). Despite a great deal of noise in

the years prior to 1994, concurrency (defined as having 2 or more

partners in the last month of 1990) positively influences the HIV

prevalence for years after 1994.

(TIFF)

Figure S6 The CDM predicted HIV prevalence in South
Africa from 1990–2002 stratified by age and gender.
These graphs depict the weighted average of the HIV epidemic

curves generated by the CDM, from the parameter sets that

contribute the top 90% of the likelihood weight, stratified by

gender and age. The panels are as follows: A. Depicts the weighted

average HIV prevalence for males and females; B. Depicts the

weighted average HIV prevalence for males stratified by the 8 age

buckets modeled in the CDM; C. Depicts the weighted average

HIV prevalence for females stratified by the 8 age buckets

modeled in the CDM.

(PDF)
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