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Complex microbial communities are an integral part of the
Earth’s ecosystem and of our bodies in health and disease.
In the last two decades, culture-independent approaches
have provided new insights into their structure and
function, with the exponentially decreasing cost of high-
throughput sequencing resulting in broadly available tools
for microbial surveys. However, the field remains far from
reaching a technological plateau, as both computational
techniques and nucleotide sequencing platforms for
microbial genomic and transcriptional content continue
to improve. Current microbiome analyses are thus
starting to adopt multiple and complementary meta’omic
approaches, leading to unprecedented opportunities to
comprehensively and accurately characterize microbial
communities and their interactions with their environ-
ments and hosts. This diversity of available assays, analysis
methods, and public data is in turn beginning to enable
microbiome-based predictive and modeling tools. We
thus review here the technological and computational
meta’omics approaches that are already available, those
that are under active development, their success in
biological discovery, and several outstanding challenges.
Molecular Systems Biology 9: 666; published online 14 May
2013; doi:10.1038/msb.2013.22
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Introduction

Microbes and their biochemical activities are an essential
component of virtually all ecosystems on earth, shaping
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environments ranging from deep marine sites to our own body.
For example, marine microbial communities are responsible
for half of the oxygen produced on our planet (Rocap et al,
2003), and the complex human microbiome complements us
with over 100 times more genes than those in our own genome
(Qin et al, 2010; The Human Microbiome Project Consortium,
2012b). Host-associated microbes and their biochemical
activity have been further linked to healthy and dysbiotic
phenotypes, including obesity (Backhed et al, 2004;
Turnbaugh et al, 2009a; Kau et al, 2011), Crohn’s disease
(Manichanh et al, 2006; Morgan et al, 2012), and type 2
diabetes (Qin et al, 2012). Such communities almost always
comprise complex mixtures of bacteria, viruses, archaea, and
micro-eukaryotes, all of which will be referred to here in
combination as microbes.

Although the ubiquity and complexity of microbial commu-
nities have been well studied for decades, advances in
high-throughput sequencing have provided new tools that
supplement culture-based approaches both in their molecular
detail and in their accessibility to a broad scientific community.
The first culture-independent approaches were based on low-
throughput sequencing of the bacterial 16S ribosomal rRNA
gene (Schmidt et al, 1991; Tringe and Hugenholtz, 2008), and
the popularity and effectiveness of 16S-based surveys grew
dramatically with increased throughput of sequencing meth-
ods. More recently, genome-wide sequencing approaches, such
as metagenomics and metatranscriptomics, have further
expanded the experimental tools available for studying the
microbiome. Such ‘meta’omic’ approaches expose the genes,
transcripts, and eventually proteins and metabolites from
thousands of microbes to analysis of biochemical function and
systems-level microbial interactions (Figure 1).

Metagenomic, metatranscriptomic, and other whole-
community functional assays provide new ways to study
complex ecosystems involving host organisms, biogeochem-
ical environments, pathogens, biochemistry and metabolism,
and the interactions among them (Figure 1). Interaction
modeling is particularly relevant for human health, and
current host-microbe-microbiome systems most often rely
on mouse models of the interplay of commensal microbes,
pathogens, and hosts. Examples include the ability of the
commensal microbiome to eradicate Citrobacter rodentium
infections (to which germ-free mice are susceptible (Kamada
et al, 2012)) and the development of inflammatory colitis and
colorectal cancer (Garrett et al, 2010). Pathogen interactions
are also well documented with respect to host metabolism
and invasion mechanisms (Giannakis et al, 2008; Croxen
and Finlay, 2009; Bidle and Vardi, 2011). Findings on
host-microbiome interactions with the immune system like-
wise include concrete host-based mechanisms by which
homeostasis is maintained (Ivanov et al, 2009; Hooper et al,
2012) and by which disease-associated dysbiosis develops
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Figure 1 Open biological questions in microbial community biology, and emerging technologies and models for their exploration. Microbial communities are complex
biological entities interacting with the environment, host organisms, and transient microbes. Predictive models for most of the interactions within these ecosystems are

currently rare, but several studies have begun to provide key insights.

(Turnbaugh et al, 2010; Kau et al, 2011; Morgan et al, 2012).
Conversely, the mechanisms of action by which whole-
microbial communities are linked to complex disease, such
as carcinogenesis (Kostic et al, 2012) or metabolic phenotypes
(Li et al, 2008), are still preliminary and without clear causal
directionality. This is also true of the host-microbiome
epidemiology, such as initial colonization early in life
(Dominguez-Bello et al, 2010; Koenig et al, 2011; Yatsunenko
et al, 2012) and the acquisition of virulence and/or drug
resistance (Chen and Novick, 2009). In particular, for these
emerging areas integrative meta’omic approaches and
advanced computational tools are key for a system-level
understanding of relevant biomedical and environmental
processes, and here we describe current techniques, recent
advances, and outstanding challenges.

Meta’omic sequencing for microbiome studies

A meta’omic study typically aims to identify a panel of
microbial organisms, genes, variants, pathways, or metabolic
functions characterizing the microbial community populating
an uncultured sample. Metagenomics as a term can refer
loosely to the field as a whole and to the specific sequencing of
whole-community DNA, and it is naturally complemented by
metatranscriptomics (cDNA sequencing) and functional tech-
nologies, such as metaproteomics and community metabolo-
mics (Wilmes and Bond, 2006; Turnbaugh and Gordon, 2008;
Gilbert and Hughes, 2011). Metagenomic and metatranscrip-
tomic approaches in particular assess the genomic composi-
tion and diversity within and across microbial communities by
means of culture-independent sequencing technologies,
including targeted rRNA gene sequencing (16S in bacteria,
18S in eukaryotes, and internal transcribed spacer, typically in
fungi (Dollive et al, 2012)) and whole-metagenome shotgun
(WMS) sequencing.

WMS sequencing is based on extracting DNA or RNA from
the community in its entirety, followed by library construction
and short-read sequencing of the entire mixture of genomes or
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transcripts. The resulting millions of short random DNA/
cDNA fragments can then be assembled (often only partially)
or used individually as markers for specific organisms and
metabolic functions. Compared with rRNA amplicon sequen-
cing, shotgun meta’omics typically provides insight into
functionality of microbes and their biological processes,
including horizontal gene transfer, sequence variants and
evolutionary variability, and genome plasticity. It allows
organisms to be identified with increased taxonomic
resolution (Tyson et al, 2004; Qin et al, 2010), as the whole
genomes of organisms in the community are available for
characterization rather than the more limited single 16S/18S
molecular clock. The 16S sequencing, of course, remains a
more efficient approach to assess the overall phylogeny and
diversity of a community, especially when the assayed
environment contains a large fraction of uncharacterized
microbes. The benefits of WMS sequencing come at the
expense of greater cost per sample, although this continues to
decrease every year, and of more complex bioinformatic
analytical processes (Table I).

The Illumina platform is currently preferred for meta’omic
sequencing, and is also supplanting the Roche 454 platform
widely used in microbial community analysis for rRNA gene
surveys (Bartram et al, 2011; Caporaso et al, 2012). Emerging
platforms that have not yet become widely used for microbial
community studies, such as Ion Torrent and PacBio, are not
discussed in this review. Illumina technologies now produce
shorter reads than most alternatives, typically 100 bases for
HiSeq and 150 for MiSeq (Qin et al, 2010; Mason et al, 2012;
The Human Microbiome Project Consortium, 2012a). These
can be contrasted to Roche 454 sequencing technology’s
~500nt-1knt reads, which come at the cost of lower
throughput and much higher cost per base and read. In both
cases, the associated chemistries change rapidly, and short
read lengths only infrequently influence meta’omic analyses
for assembly-free and marker-based profiling. A recent study
(Luo et al, 2012) provides a thorough comparison of Illumina
versus Roche 454 for metagenomics by sequencing the same
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Table I Current computational methods for meta’omic analysis
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Method Description Reference

Assembly
Genovo Generative probabilistic model of reads (Laserson et al, 2011)
Kkhmer Probabilistic de Bruijn graphs (Pell et al, 2012)
Meta-IDBA De Bruijn graph multiple alignments (Peng et al, 2011)
metAMOS A Modular Open-Source Assembler component for metagenomes (Treangen et al, 2011a)
MetaVelvet De Brujin graph coverage and connectivity (Namiki et al, 2012)
MOCAT Assembly and gene prediction toolkit (Kultima et al, 2012)
SOAPdenovo Single-genome assembler commonly tuned for metagenomes (Li et al, 2010)
MetaORFA Gene-targeted assembly approach (Ye and Tang, 2009)

Taxonomic profiling

Amphora, Amphora2
CARMA3
ClaMS
DiScRIBinATE
INDUS
MARTA
MetaCluster
MetaPhlAn
MetaPhyler
MTR

NBC

PaPaRa

PhyloPythia
Phymm, PhymmBL

RAIphy

RITA
SOrt-ITEMS

SPHINX
TACOA
Treephyler

Functional profiling
HUMANDN
metaSHARK
PRMT

RAMMCAP

Interaction networks
SparCC
CCREPE

Single-cell sequencing
IDBA-UD
SmashCell

Simulators
GemSIM
MetaSim

Statistical tests
Metastats
LefSe
ShotgunFunctionalizeR
SourceTracker

General toolkit

CAMERA

IMG/M

MEGAN
METAREP
MG-RAST
SmashCommunity
STAMP

VAMPS

Automated pipeline for Phylogenomic Analysis

Taxonomic classification of metagenomic shotgun sequences

Classifier for Metagenomic Sequences

Distance Score Ratio for Improved Binning and Taxonomic Estimation

Composition-based approach for rapid and accurate taxonomic classification of metagenomic sequences
Suite of Java-based tools for assigning taxonomic status to DNA sequences

Binning algorithm for high-throughput sequencing reads

Profiles the composition of microbial communities from metagenomic shotgun sequencing data
Taxonomic classifier for metagenomic shotgun reads using phylogenetic marker reference genes
Taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks
Naive Bayes Classification tool for taxonomic assignment

Aligning short reads to reference alignments and trees

Accurate phylogenetic classification of variable-length DNA fragments

Classification system designed for metagenomics experiments that assigns taxonomic labels to short DNA
reads

Phylogenetic classification of metagenomics samples using iterative refinement of relative abundance index
profiles

Classifying short genomic fragments from novel lineages using composition and homology

Sequence orthology-based approach for improved taxonomic estimation of metagenomic sequences

Algorithm for taxonomic binning of metagenomic sequences
Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach
Fast taxonomic profiling of metagenomes

Determines the presence/absence and abundance of microbial pathways in meta’omic data

A web platform for interactive exploration of metabolic networks

Predicted Relative Metabolomic Turnover: determining metabolic turnover from a coastal marine
metagenomic dataset

Rapid analysis of Multiple Metagenomes with Clustering and Annotation Pipeline

Estimates correlation values from compositional data for network inference
Predicts microbial relationships within and between microbial habitats for network inference

Assembler for single-cell or metagenomic sequencing with uneven depths
Software framework for the analysis of single-cell amplified genome sequences

Error-model based simulator of next-generation sequencing data
A sequencing simulator for genomics and metagenomics

Statistical analysis software for comparing metagenomic samples

Nonparametric test for biomarker discovery in proportional microbial community data
A statistical test based on a Poisson model for metagenomic functional comparisons

A Bayesian approach to identify and quantify contaminants in a given community

Dashboard for environmental metagenomic and genomic data, metadata, and comparative analysis tools
Integrated metagenome data management and comparative analysis system

Software for metagenomic, metatranscriptomic, metaproteomic, and rRNA analysis

Online storage and analysis environment for meta’omic data

Storage, quality control, annotation and comparison of meta’omic samples.

Stand-alone annotation and analysis pipeline suitable for meta’omic data

Comparative meta’omics software package

Visualization and analysis of microbial population structure

(Wu and Scott, 2012)
(Gerlach and Stoye, 2011)
(Pati et al, 2011)

(Ghosh et al, 2010)
(Mohammed et al, 2011a)
(Horton et al, 2010)
(Wang et al, 2012)
(Segata et al, 2012)

(Liu et al, 2011)

(Gori et al, 2011)

(Rosen et al, 2011)
(Berger and Stamatakis,
2011)

(Patil et al, 2012)

(Brady and Salzberg, 2011)

(Nalbantoglu et al, 2011)

(Parks et al, 2011)
(Monzoorul Haque et al,
2009)

(Mohammed et al, 2011b)
(Diaz et al, 2009)
(Schreiber et al, 2010)

(Abubucker et al, 2012)
(Hyland et al, 2006)
(Larsen et al, 2011)

(Li, 2009)

(Friedman and Alm, 2012)
(Faust et al, 2012)

(Peng et al, 2012)
(Harrington et al, 2010)

(McElroy et al, 2012)
(Richter et al, 2008)

(White et al, 2009)
(Segata et al, 2011)
(Kristiansson et al, 2009)
(Knights et al, 2011)

(Seshadri et al, 2007)
(Markowitz et al, 2012b)
(Huson et al, 2007)
(Goll et al, 2010)

(Meyer et al, 2008)
(Arumugam et al, 2010)
(Parks and Beiko, 2010)
(Huse et al, 2008)

Common steps needed for metagenome and metatranscriptome interpretation include assembly, taxonomic profiling, functional profiling, ecological interaction
network construction, single-cell sequencing, synthetic data simulators, and downstream statistical tests.

community DNA sample with each platform. The authors
found that both platforms agreed on over 90% of the
assembled contigs and 89 % of the unassembled reads, as well
as on the estimated gene and genome abundance in the
sample. Illumina sequence quality was additionally less

© 2013 EMBO and Macmillan Publishers Limited

affected than that of 454 when comparing frameshift errors
in technical replicates. They concluded that both technologies
are reliable for quantitatively assessing diversity within
natural communities, although the [llumina platform provides
higher coverage and lower cost than Roche 454.
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Assembly-based microbial community analysis

Metagenomic sequencing, if performed at a sufficiently high
coverage, can in some cases allow reconstruction of complete
genomes of organisms in a community (Culley et al, 2006;
Hess et al, 2011; Narasingarao et al, 2012). In practice, the
high complexity of many typical communities leads to
chimeras and unresolvable ambiguities in scaffold reconstruc-
tion due to conserved DNA regions, organismal variability, and
horizontal gene transfer (Pignatelli and Moya, 2011; Mende
et al, 2012). Despite these theoretical limitations, even early
work with single-genome assembly approaches like SOAPde-
novo has resulted in good, although sometimes fragmentary,
reconstruction of highly abundant microbes from metage-
nomics (Qin et al, 2010; The Human Microbiome Project
Consortium, 2012a).

However, recent years have seen an explosion of metagen-
ome-specific assemblers, which use strategies to tease apart
sequencing artifacts from true biological ambiguity within
communities. Only a subset of these includes MetaVelvet
(Namiki et al, 2012), khmer (Pell et al, 2012), metAMOS
(Treangen et al, 2011b), Meta-IDBA (Peng et al, 2011), and
MetaORFA (Ye and Tang, 2009). Metagenomic assemblers
generally adapt graph-based reconstruction approaches to
account for variability in genome copy number and an
increase in unresolvable ambiguities caused by sequences
conserved in multiple genomes. These are thus powerful and
promising tools to study low-to-medium complexity micro-
biomes, or abundant organisms in novel complex commu-
nities, without relying on previously sequenced isolates. One
such successful report isolated a marine archaeal genome
and its symbionts from oceanic oxygen minimum zones
(Narasingarao et al, 2012).

Whole-genome assembly from metagenomes is impossible
in most cases, and such assemblers instead aim to provide the
largest reliable and useful contigs achievable from their input
sequence reads (Figure 2). Although having access to the
synteny of microbial genes within communities is invaluable
to unravel their complete genomic features, it is rare that the
quality of whole genomes isolated from metagenomes

10e-2
.. . .
10e-3 - ,.°° LI
' _ o - .
10e-4 | «* o ;?s' °
[ ] L[]

10e-5 o .

10e-6

10e-7 1

Assembly size at 4 Mbp/total size

approaches that of cultured isolates, and particular care
should be devoted to avoiding (partially) chimeric genomes.
For relatively well-characterized environments, however,
accurate microbial community profiles can be obtained even
for complex communities by exploiting the ever-increasing
collection of sequenced microbes.

Community profiling using prior genomic
knowledge

Identifying the organisms populating a microbial community
and their proportions (relative abundances) is the typical
primary objective of amplicon sequencing investigations (e.g.,
16S rRNA gene surveys). Metagenomic shotgun sequencing
can provide comparable information, often at better resolu-
tion, either by de novo binning of microbial sequences (using
intrinsic sequence properties) or by identifying them using
information from sequenced microbial genome databases
(extrinsic information, Figure 3). Similarly, these profiling
tasks can be performed for metagenomes by attempting to
classify every individual read, by assembly and binning of
entire contigs, or by profiling summary information (e.g.,
k-mer profiles) for the entire community in aggregate.

All of these approaches rely in some way on reference
genome catalogs. Although those sequenced for microbial
organisms are biased towards model organisms and patho-
gens, large-scale efforts like the Human Microbiome Project
(Nelson et al, 2010; Fodor et al, 2012)) and the Genomic
Encyclopedia of Bacteria and Archaea (Wu et al, 2009) are
systematically filling the gaps in the sequenced portion of
the phylogeny. Such efforts take advantage of a variety of
innovative isolation approaches, including culture-indepen-
dent techniques, host monocolonization (Sczesnak et al,
2011), single-cell sequencing (Pamp et al, 2012), and, modulo
the limitations above, metagenomic assembly. Consequently,
a reference set of microbial genomes on the order of 5000
finished or high-quality sequences are now available
(Markowitz et al, 2012a), describing more than 2000 species,
and these numbers are quickly increasing. Comparing
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Figure2 Community diversity and metagenome depth interact to influence assembly quality. Five hundred and twenty-two metagenomic assemblies from the Human
Microbiome Project (HMP) are shown here to demonstrate the complex interaction of underlying microbial a-diversity (x axis, diversity within a sample measured as
species richness) and assembly quality (y axis). The latter was measured as the size of the smallest contig such that the cumulative length of longer contigs exceeds
4 Mbp, normalized by the total sequenced microbial nucleotide count (The Human Microbiome Project Consortium, 2012a). Communities from each of the seven
available body sites are highlighted in different colors, with each point’s area proportional to the total input nucleotides for assembly. Microbial composition, metagenome
depth, and assembly approach (not shown) all interact to greatly influence the resulting assembly quality.
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Intrinsic versus extrinsic metagenomic analysis can minimally, partially, or completely rely on prior knowledge from sequenced reference genomes. Methods

that do not rely on any reference sequence information typically perform a sequence-based clustering of meta’omic reads, resulting in unlabeled clusters of sequences
that can later be assigned to taxonomic or functional classes (analogous to Operational Taxonomic Unit clustering for 16S sequences). Available genomes can
alternatively be used more extensively as references for short-read mapping, typically incurring an expense of high computational cost and possible ambiguous

assignments for reads from nonunique regions. Intermediate approaches typically

rely on a combination of pre-processing extrinsic reference genome information (e.g.,

to train a composition-based classifier) and intrinsic information (e.g., reads’ nucleotide composition) to improve the discrimination power and focus the subsequent

mapping operation to the most discriminative sequence-based markers.

metagenomes with this compendium of reference genomes
thus provides a variety of ways to ease the task of community
profiling by providing additional taxonomic and phylogenetic
information.

Intrinsic binning approaches for community profiling
(Figure 3, leftmost panels) typically train a taxonomic (or
phylogenetic) classifier from reference genomes and then use
this sequence-free classifier to bin new meta’omic reads. These
have included statistical approaches, such as Support Vector
Machines with structured output (PhyloPythiaS (Patil et al,
2012)), interpolated Markov models (Phymm (Brady and
Salzberg, 2011)), naive Bayesian classifiers (Rosen et al, 2011)),
and Self Organizing Maps (TaxSOM (Weber et al, 2010)), or
integration of intrinsic and homology-based extrinsic assign-
ments (PhymmBL (Brady and Salzberg, 2011), RITA (Parks
et al, 2011)). An even more reference-independent approach is
possible by using only composition-based clustering (e.g.,
TETRA (Teeling et al, 2004)), which can then be paired with
further downstream analysis. For environments with insuffi-
cient genomic prior information, sequence-based (intrinsic) or
hybrid approaches perform substantially better than the
homology-based ones, but they typically require very long
running times due to the large sizes of both metagenomic data
and the reference sequence repositories.

© 2013 EMBO and Macmillan Publishers Limited

Extrinsic or homology-based classification (Figure 3, right-
most panels) instead relies directly on comparisons of
metagenomic sequences with reference sequences in order to
identify taxonomic or phylogenetic origin. Several alternatives
to whole-genome searches have been developed, relying on
the extraction of only the most informative features from
reference genomes to reduce the complexity of mapping
operations. Extracting only the 16S rRNA genes for profiling
from a metagenome is an extreme example of this approach,
and expanding such universal markers to include additional
highly conserved genes further improves generalizability and
phylogenetic resolution. AMPHORA (Wu and Scott, 2012)
adopts 31 such markers (mainly ribosomal proteins as
identified by Ciccarelli et al (2006), whereas MetaPhyler (Liu
et al, 2011) and AMPHORA2 (Wu and Scott, 2012) complement
these bacterial markers with additional archaeal genes. Even
different strains within the same microbial species can be
discriminated by supplementing this approach with more
diverse gene sets; MetaPhlAn (Segata et al, 2012) adopts such a
strategy by pre-identifying unique clade-specific marker genes
as species-specific name tags. This provides hundreds of
markers for most species, increasing robustness and permit-
ting more precise organismal abundance estimation. By using
such targeted data, all of these marker-based approaches can

Molecular Systems Biology 2013 5
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achieve computational run times orders of magnitude faster
than using full genomes as mapping targets for metagenomes.

The most extrinsic methods for binning and community
profiling instead use whole-genome searches of metagenomic
sequences against the entire catalog of reference genomes.
This can be performed with varying levels of sensitivity by
using homology search (e.g., BLASTN (Altschul et al, 1997))
or mapping (e.g., BowTie2 (Langmead and Salzberg, 2012), or
BWA (Li and Durbin, 2010)). However, such results can be
highly ambiguous and difficult to interpret because of
evolutionarily conserved or horizontally transferred
sequences. These are taxonomically aspecific and, when relied
on for profiling, cause inconsistencies such as long tails of
false-positive organisms. Computational modeling of this
mapping permits to correct most profiling issues and provide
accurate taxonomic characterization of the metagenomic
reads; phylogenetic approaches typically rely on assigning
reads to the lowest common ancestor of the taxa with hits
(MEGAN (Huson et al, 2007)) or other parsimonious evolu-
tionary principles (PaPaRa (Berger and Stamatakis, 2011)). Of
course, such complete genome lookups provide further utility
beyond organismal profiling, such as information on indivi-
dual microbial sequence variants and on the gene and pathway
repertoires of a community.

Gene function annotation and metabolic
reconstruction

Microbial communities can be seen not only as groups of
individual microbes, but also as collections of biochemical
functions affecting and responding to an environment or host
organism. Metagenomics can thus also identify the genes and
pathways carried by a microbial community, and metatran-
scriptomics can profile their expressed function. Just as several
alternatives for microbial profiling are described above, two
broad classes of functional community profiling depend either
on genes identified within longer assembled contigs or on
assembly-free read-based approaches. Assembly-based meth-
ods are sensitive to the challenges outlined above, such as a
bias towards higher-abundance community members or
sequences that are easy to assemble. Assembly-free functional
inference, by mapping sequences to annotated reference
genomes or functional databases, can be more sensitive
(including a greater proportion of reads or microbes) but less
specific in its functional identifications.

Assembly-based metagenome annotation can be performed
by adapting pipelines for annotation of single microbial
genomes. Metagenomic contigs are thus scanned for identify-
ing protein-coding genes (CDSs), as well as CRISPR repeats,
noncoding RNAs, and tRNA. Functional characterization
can then be performed assigning full CDSs (rather than
single-sequencing reads) to functional categories by means
of orthology relations with sequences in well-characterized
functional databases, such as NCBI nr (Pruitt et al, 2012), the
KEGG Orthology (Kanehisa and Goto, 2000), and COGs
(Tatusov et al, 1997), or by identifying specific PFAM (Punta
et al, 2012) or SMART (Schultz et al, 1998) peptide domains
within CDSs. Broader biological functions are then built on
these low-level functional annotations (Mitra et al, 2011) using
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hierarchical ontologies that group functionally related proteins
as in KEGG (Kanehisa and Goto, 2000), MetaCyc (Caspi et al,
2012), and SEED (Overbeek et al, 2005). Integrated pipeline are
also available (Meyer et al, 2008; Markowitz et al, 2012b) to
automate these bioinformatic tasks.

Functional profiling using reference information can be based
either on reference genome read mapping (at the nucleotide
level) or on translated protein database searches. For the former,
reads mapped to reference genomes as discussed above can
then be sent through an additional second mapping from loci to
annotated functions. For the latter, functional databases of
diverse protein families as listed above can be leveraged to
identify function by translated homology search. Like reference
genomes, these databases are generally also enriched for
functional information from model organisms and pathogens.
Thus, the greater the enrichment of such organisms in a
community, the more characterized functional annotations are
likely to be retrieved. Examples of pipelines, including
functional annotation by translated mapping, include MG-RAST
(Meyer et al, 2008), MEGAN (Huson et al, 2007), and HUMAnN
(Abubucker et al, 2012). Each of these methods typically
includes some combination of additional quality control and
interference steps subsequent to homology search, such as
selection of pathways by maximum parsimony, taxonomic
limitation, or statistical smoothing (Abubucker et al, 2012).

It is important to note that whole-community functional
profiling is not yet a mature area, and neither gene annotations
within reference genomes nor those in protein databases are
well tuned to whole-community metabolism. For example,
MetaCyc (Caspi et al, 2012) and SEED (Overbeek et al, 2005)
both have ongoing efforts to develop microbiome-specific
functional annotations, and gene family catalogs, such as
eggNOG (Powell et al, 2012), are intended to eventually better
represent uncultured communities. Leveraging these func-
tional annotations after they are profiled will likewise require
further improvements, both in more nuanced function identi-
fications (e.g., ‘glycosyltransferase’ as opposed to ‘carbohy-
drate processing’) and in the identification of gene products’
localization upon translation (e.g., secretion or compartmen-
talization). Finally, algorithms for nucleotide search (Li and
Durbin, 2010; Langmead and Salzberg, 2012) have outpaced
those needed for translated mapping (i.e., BLASTX (Altschul
et al, 1997) and USEARCH (Edgar, 2010)), and bioinformatic
advances will further improve the translated search.

Microbial ecosystem interaction and association
networks

Knowledge of the microbes and gene products within
communities is an important step toward understanding
their ecology, environmental responses, and interorganismal
interactions (DeLong and Pace, 2001). Microbial communities
are shaped by the same highly diverse coexistence patterns
that occur in other ecologies. These include interspecies and
intercellular relationships of a range of symbiotic interaction
types: win-win (mutualism), lose-lose (competition), win-
lose (parasitism, predation), win-zero (commensalism), or
zero-lose (amensalism). These are based on processes such as
microbial organisms exchanging or competing for nutrients,
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and they have long been studied by nonsequence-based
approaches (Konopka, 2009). Detecting such microbial inter-
actions in communities and identifying their mechanisms is a
daunting bioinformatic challenge. Even the best meta’omic
profiles contain substantial measurement error and, more
importantly, represent compositional data that cause extreme
biases when analyzed using most correlation or co-occurrence
measures (Lovell et al, 2010; Pawlowsky-Glahn and Buccianti,
2011). To date, several similarity measures have been used for
determining co-occurring or co-excluding microbial relation-
ships, including Pearson’s or Spearman’s correlation (Qin
etal, 2010), hypergeometric overlap tests for species presence/
absence data (Chaffron et al, 2010), and mutual information.
The behavior of these measures in sparse, compositional
microbial abundance data is unlikely to be appropriate in most
biological settings.

To assess meta’omic profiles more accurately, recent
association approaches have been developed specifically for
intermicrobe co-occurrence and co-exclusion detection in
microbial communities. For example, Faust et al (2012)
combined similarity measures with a composition-sensitive,
nonparametric statistical test to predict microbial relationships
within and between body sites in the human microbiome.
SparCC (Friedman and Alm, 2012) is another novel approach
that quantifies the composition-free component of Pearson’s
correlation values from microbial relative abundances.
Lozupone et al (2012) used the Bray-Curtis distance, only
partially sensitive to compositions, as a co-occurrence measure
for network inference to identify genomic and metabolic
features in human gut symbionts. Association of microbial
variation and covariation with environmental parameters (e.g.,
host biogeography, temperature, pH, etc. (Raes et al, 2011)) is a
distinct task for which employing the correct statistical
methodology can be challenging. It remains an area of active
research, with current options including categorical nonpara-
metric biomarker discovery (White et al, 2009; Parks and
Beiko, 2010; Segata et al, 2011) and appropriately transformed
regression models (Chen et al, 2012).

All of these current approaches, however, identify only the
descriptive covariation of multiple microbes; they characterize
neither the mechanisms of nor the regulatory ramifications of
such variation. There is thus a pressing need for multi-
organism metabolic models to explain such interactions
(Klitgord and Segre, 2010; Bucci et al., 2012) and for a
systems-level understanding of their effect on microbial
signaling and growth (Zengler and Palsson, 2012). Both will
rely on better gene function annotations as mentioned above,
particularly on improved catalogs of intermicrobial small
molecule and peptide signaling mechanisms. Careful experi-
mental validation, including both in vitro culture and in vivo
dynamics, will be needed to ensure the correctness of these
challenging models; some studies of the latter with respect to
natural long-term dynamics (McCarren et al, 2010; Gajer et al,
2012; Zhao et al, 2012) and short-term perturbations
(Dethlefsen and Relman, 2011; Ubeda et al, 2013) have already
begun. Such interactions must, of course, also account for the
host in host-associated communities, where host-microbe
interactions can comprise both direct protein interactions and
metabolic (i.e., nutrient) interdependencies (Kinross et al,
2011). In particular, with respect to adaptive and innate

© 2013 EMBO and Macmillan Publishers Limited

Computational meta’omics
N Segata et a/

immunity, examples such as segmented filamentous bacteria
emphasize the importance of complex interaction of microbes
with host development. The presence of this organism is
sufficient to drive drastic changes in gut physiology and T-cell
differentiation in mice (Ivanov et al, 2009; Atarashi et al, 2011),
but neither its nor other microbes’ roles in human cell
signaling or development have yet been well explored.

Unraveling community expression patterns with
metatranscriptomics

Most current meta’omic tools and studies focus on metage-
nomic DNA sequencing, but metatranscriptomics is becoming
increasingly practical as a window into the regulation and
dynamics of microbial community transcription. Similar to
metagenomics, studies of microbial community gene expression
emerged from marine research (Frias-Lopez et al, 2008; Shi et al,
2009; Gilbert and Hughes, 2011). These revealed not only gene-
and taxon-specific expression patterns but also gene categories
undetected in previous DNA-based surveys (Frias-Lopez et al,
2008) and nonprotein-coding small RNAs in naturally occurring
microbial communities (Shi et al, 2009). Few studies have so far
analyzed microbial gene expression in host-associated commu-
nities, as this can present greater technical challenges in
isolating a sufficient quantity of microbial (rather than host)
transcript. Recent investigations have included the murine
intestine (Turnbaugh et al, 2009b), the healthy human gut
(Gosalbes et al, 2011; McNulty et al, 2011), the microbiota of
monozygotic twins (Turnbaugh et al, 2010), and the airways of
cystic fibrosis patients (Lim et al, 2012). These studies profiled
whole-community ¢cDNAs and compared them with metage-
nomic DNA, a critical step in metatranscriptomic interpretation.
Unlike single-organism genomes, both the transcript copy
number and genomic copy number can easily change in
microbial communities, rendering this normalization an impor-
tant computational step (Shi et al, 2011).

The major challenge faced in metatranscriptomics is the
isolation of microbial mRNA, which usually makes up only a
small percentage of total microbial RNA and an even smaller
proportion of total RNA if host nucleotides are present.
Eukaryotic genes and genomes are sufficiently large as to
rapidly swamp smaller microbial transcripts, and even in
nonhost-associated communities over 90% of microbial
transcripts are typically ribosomal rRNA. The difficulty of
isolating prokaryotic mRNA is further compounded by its lack
of the 3’-end poly (A) tail that marks eukaryotic mRNA
(Gosalbes et al, 2011). High-quality commercial rRNA
depletion Kkits are available (such as Ribo-Zero, RiboMinus,
and QIAGEN GeneRead), but even removal of the majority of
such sequences can leave substantial ‘wasted’ sequencing reads
that must be computationally depleted post hoc. Likewise,
although physical depletion of host sequences is an area of
active technology development, computational postprocessing
(e.g., by mapping to host genomes) remains the most practical
current approach in whole-community analysis.

Meta’omics with single-cell resolution

Single-cell sequencing provides an alternative approach to
accessing novel information about uncultured microbes
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(Lasken, 2012). Although it currently incurs high costs per
sample and per depth of sequencing relative to metagenomics,
it can cleanly circumvent both host sequence contamination
and the difficulty of metagenomic assembly. Single-cell
isolation can sequence low-abundance organisms at higher
resolution than metagenomic approaches as well, with a
corresponding tradeoff in its breath of profiling for more
diverse communities. This provides high resolution for
individual organisms as well, allowing a subset of the exact
strains present in a sample to be readily identified. This
provides a starting point for tasks that can be challenging in the
WMS data, such as detecting strain variability across time or
subjects. Goodman et al (2011) showed that the human fecal
microbiota consists largely of taxa and predicted functions that
are represented in its readily cultured members by combining
high-throughput anaerobic culturing techniques with gnoto-
biotic animal husbandry and metagenomics. Their study also
revealed that thousands of isolates from a single donor can be
clonally archived and taxonomically mapped in multi-well
format to create personalized microbiota collections.

Current single-cell approaches first isolate single microbial
cells by sorting them, lyse them separately, amplify and label
them separately, and sequence the resulting pool. The
subsequent analysis of single-cell sequence data thus relies
much more heavily than do meta’omics on assembly, but
fortunately in a less-challenging setting. IDBA-UD (Peng et al,
2012) and SmashCell (Harrington et al, 2010) provide some of
the first software environments for assembling and annotating
such data, and commercial technologies such as RainDance
(Lexington, MA) and microfluidics platforms are emerging to
isolate single microbial cells with high quality. Recent
applications in microbial communities have ranged from
environmental samples like seawater (Woyke et al, 2009;
Mason et al, 2012) and soil (Kvist et al, 2007) to hosts such as
insects (Woyke et al, 2010), mice (Pamp et al, 2012), and
humans (Marcy et al, 2007). Recently, elegant combinations of
both single-cell genomics and metagenomics have begun to
emerge, e.g., in the sequencing of a novel, low-salinity
ammonia-oxidizing archaeon from an enrichment culture
(Blainey et al, 2011). Such a combinatorial approach may
continue to prove very useful, as the single-cell perspective on
novel organism-specific sequences tends to complement
whole-metagenome and metatranscriptome overviews of
diverse communities.

Models of microbiome evolution and coevolution

Meta’omics provides an important tool for studying evolution
within microbial communities, which can occur on two very
different time scales. Over the course of days, weeks, or the
years of a host’s lifetime, microbial genome plasticity allows
remarkably rapid acquisitions of novel mutations and laterally
transferred genes. Over the course of millennia, however, the
overall structure of host-associated communities, their phylo-
genetic composition, and their microbial pan-genomes can
evolve more slowly in tandem with their hosts’ physiology and
immune systems (Lefébure and Stanhope, 2007).

Our current understanding of short-term microbial coevolu-
tion arises mainly from the study of human pathogens, which
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are subject to the enormous evolutionary pressures of immune
evasion and treatments such as antibiotics. Such pressures
affect the entire microbial communities, of course, and not
only single pathogens but, before meta’omic sequencing, this
was also difficult to quantify. Both single-nucleotide poly-
morphisms and lateral gene transfer/recombination have
recently been shown to arise in vivo (Croucher et al, 2011;
Lieberman et al, 2011), with evidence suggesting the latter is
particularly frequent among microbes that stably inhabit
shared communities (McDaniel et al, 2010; Smillie et al,
2011). The distribution of antibiotic resistance throughout a
community is of particular interest in this respect as a public
health concern, as convergent evolution of resistance poly-
morphisms (Croucher et al, 2011) and transient lateral transfer
from less proximal environments (Hehemann et al, 2010;
Forsberg et al, 2012) have both been observed for this
phenotype and for other evolutionary pressures.

Over macro-evolutionary time scales, host-associated
microbiomes in particular have developed exquisite sym-
bioses with both plant and animal hosts. For example, some of
the earliest evidence of microbial symbiosis focused on the
role of rhizobia in legume root development and nitrogen
acquisition (Hakoyama et al, 2009). In vertebrates, the
Hawaiian bobtail squid has emerged as a remarkable system
demonstrating selective microbial adaptation. The light organ
of this squid is sterile at hatching, but is subsequently selective
for a finely tuned Vibrio bacterial population that provides it
with bioluminescence that enables the squid to avoid
predation (McFall-Ngai, 2008; McFall-Ngai et al, 2011).
Potential genomic impacts of long-term host-symbiont rela-
tionships are described in symbiont-insect codiversification,
many of which have been approximated of upwards of 180
millions years old (Moran et al, 1993). Conversely, intracel-
lular microbial symbionts can exhibit dramatically, and often
unusually, reduced genomes owing to close integration with
their hosts (Moran et al, 2008). Less-understood mutualism
occurs in the human gut, which is one example of a wide range
of microbiome configurations that have evolved to leverage
diverse mammalian guts and diets (Ley et al, 2008; Muegge
et al, 2011). Characterizing the coevolution of quickly evolving
complex microbial communities with relatively slowly evol-
ving eukaryotic hosts remains a challenging and largely
unexplored field.

Predictive bioinformatic models and model
microbial communities

One of the ultimate goals of microbial community
systems biology is to develop predictive models of the
whole-community response to changing stimuli, be it their
temperature or pH in the environment, or dietary components
in a host gut. Such models may be mechanistic, relying on joint
metabolic networks as discussed above, or a descriptive
systems biology of microbial physiological ‘rules’ may emerge
as a simpler alternative. No unifying approach yet exists,
although meta’omic data have provided training input for
several first attempts. An artificial neural network-based
approach was used to predict ocean-water bacterial commu-
nity as a function of the marine environment, for which
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microbial enzyme activity to predict environmental ocean
metabolites (Larsen et al, 2011). Joint metabolic predictions

biological validation is challenging (Southward et al, 2005;
Larsen et al, 2012). A related methodology, Predicted Relative
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Figure 4 A typical current computational meta’omic pipeline to analyze and contrast microbial communities. After collecting microbiome samples, community DNA or RNA
is extracted and sequenced, generating WMS samples (i.e., metagenomes) generally consisting of several million short reads each. This example uses 20 WMS samples
from the oral cavity (10 from the buccal mucosa, and 10 from the tongue dorsum (The Human Microbiome Project Consortium, 2012b)). Complementary methods
reconstruct the taxonomic characteristics (left) and metabolic potential (right) of the microbial communities. MetaPhlAn (Segata et al, 2012) is one of many alternatives to
detect and quantify microbial clades with species-level resolution (see Section 3), whereas HUMANN (Abubucker et al, 2012) quantitatively characterizes genes, pathways,
and metabolic modules from each community (see Section 4). Differentially abundant clades or pathways can then be identified and assessed by tools such as LEfSe
(Segata et al, 2011) and represented graphically (e.g., here by GraPhlAn, http:/huttenhower.sph.harvard.edu/graphlan). The step-by-step computational pipeline used to
produce the analyses reported here is included as a tutorial in Supplementary Information and can also be downloaded from https:/bitoucket.org/nsegata/metaphlan/wiki/
MetaPhlAn_Pipelines_Tutorial. See Table | for alterative computational approaches to each of these currently common steps in meta’omic analysis.
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interactions (Klitgord and Segre, 2010), but in all of these cases
biological testing and evaluation has remained a bottleneck. In
the absence of extensive functional data for validation, such as
metatranscriptomic, metabolic, or proteomic measurements,
predictive modeling remains speculative.

Given the complexity of most ‘wild’ microbial communities,
one of the most promising approaches for such validation has
been in the construction of model microbial communities.
These have been successful both entirely in vitro, by scaling up
the ex vivo coculture of multiple organisms, and when
associated with hosts in vivo. Many studies have grown
human-derived microbial communities in chemostats (Marsh
et al, 1983; McBain and MacFarlane, 2001), with one of the
most complex being the Simulator of the Human Intestinal
Microbial Ecosystem model, a five-stage multi-chamber
chemostat, simulating human digestion (stomach, small
intestine, and large intestine) as exposed to foods or
pharmaceuticals (Molly et al, 1993). Recent clinical translation
of in vitro communities has demonstrated success as a
treatment for chronic C. difficile (Petrof et al, 2013). In vivo,
the Altered Schaedler Flora (ASF) is a synthetic community
transferrable to gnotobiotic mice that has been in use as an
experimental system for years (Dewhirst et al, 1999). The eight-
microbe ASF and similar models are enjoying a resurgence as a
simpler alternative to hundred-organism natural communities
in which to mechanistically assess microbe-microbe and host-
microbe molecular interactions. An end-to-end demonstration
of this concept was carried out in the Gordon lab, using a
gnotobiotic mouse model colonized with a custom synthetic
microbial community, followed by systematic dietary perturba-
tions to train and then validate predictive models of the
community’s response (Faith et al, 2011).

Conclusions and outlook

Although technologies and analyses are constantly improving,
WMS sequencing is currently reaching maturity in the sense
that validated, standardized experimental and bioinformatic
procedures are available to answer typical biological questions
of interest (Figure 4 and tutorial in Supplementary
Information). These include assessment of the taxonomic
and phylogenetic composition of microbial communities at a
level of resolution beyond that of individual marker genes, as
well as quantification of biomolecular features, including gene
families, pathways, metabolism, and functional modules.
Statistical methods for biomarker discovery and, in some
cases, phenotype prediction can then be performed (Table I).
Other meta’omic approaches, such as metatranscriptomics,
metaproteomics, and metabolomics, are still under rapid
development, with neither experimental nor computational
pipelines yet attaining a comparable degree of standardization.
These will be crucial to effectively investigate microbial
community transcriptional regulation, metabolites dynamics,
and protein signaling.

An exciting next step in microbial community systems
biology will be the opportunity to integrate and meta-analyze
multiple data sets. This is already starting to be the case with
large 16S and, gradually, metagenomic data sets defining
healthy human microbial baselines (Qin et al, 2010;
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Yatsunenko et al, 2012; The Human Microbiome Project
Consortium, 2012b). Just as with early efforts at microarray
and genome-wide association study meta-analysis, systematic
differences between diverse projects’ platforms and protocols
induce strong technical differences between data sets, but
these are gradually being overcome (Bittner et al, 2010; Su
et al, 2011). However, the integration of complementary data
types within the same study, such as joint community
metatranscriptomes, metaproteomes (Verberkmoes et al,
2009; Li et al, 2011), and metametabolomes (Jansson et al,
2009), will provide an even richer picture of dynamic
microbial systems (Kau et al, 2011). The patterns of tandem
host biomolecular activities, or of host or microbial epigenetics
(e.g., histone modifications and methylation patterns), remain
almost completely unexplored at the whole-community level.

The degree to which microbial community activity and
structure is dynamic over time has perhaps been under-
appreciated, and an additional component necessary for
whole-community modeling will be the combination of
longitudinal surveys (Koenig et al, 2011; Patil et al, 2011) with
systematic perturbation experiments. Early microarray studies
involved both time courses in response to chemical stimuli and
systematic genetic knockouts in model organisms (Gasch et al,
2000; Hughes et al, 2000). Few such experiments have been
pursued in microbial communities, and indeed the concept of a
community ‘knock-out’ or ‘knock-in’ is not yet well explored.
Synthetic communities offer a particularly promising avenue
for systematically adding or removing organisms, or (in
genetically tractable systems) adding or removing single
microbial genes. In combination with innovative computa-
tional models, meta’omics in such environments and in vivo
will continue to improve our understanding of microbial
community systems biology.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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