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Abstract

Background: During plant and animal development, monolayer cell sheets display
a stereotyped distribution of polygonal cell shapes. In interphase cells these shapes
range from quadrilaterals to decagons, with a robust average of six sides per cell. In
contrast, the subset of cells in mitosis exhibits a distinct distribution with an average
of seven sides. It remains unclear whether this ‘mitotic shift’ reflects a causal
relationship between increased polygonal sidedness and increased division
likelihood, or alternatively, a passive effect of local proliferation on cell shape.

Methods: We use a combination of probabilistic analysis and mathematical modeling
to predict the geometry of mitotic polygonal cells in a proliferating cell layer. To test
these predictions experimentally, we use Flp-Out stochastic labeling in the Drosophila
wing disc to induce single cell clones, and confocal imaging to quantify the polygonal
topologies of these clones as a function of cellular age. For a more generic test in an
idealized cell layer, we model epithelial sheet proliferation in a finite element framework,
which yields a computationally robust, emergent prediction of the mitotic cell shape
distribution.

Results: Using both mathematical and experimental approaches, we show that
the mitotic shift derives primarily from passive, non-autonomous effects of mitoses
in neighboring cells on each cell’s geometry over the course of the cell cycle.
Computationally, we predict that interphase cells should passively gain sides over
time, such that cells at more advanced stages of the cell cycle will tend to have a
larger number of neighbors than those at earlier stages. Validating this prediction,
experimental analysis of randomly labeled epithelial cells in the Drosophila wing
disc demonstrates that labeled cells exhibit an age-dependent increase in polygonal
sidedness. Reinforcing these data, finite element simulations of epithelial sheet
proliferation demonstrate in a generic framework that passive side-gaining is sufficient
to generate a mitotic shift.

Conclusions: Taken together, our results strongly suggest that the mitotic shift reflects
a time-dependent accumulation of shared cellular interfaces over the course of the cell
cycle. These results uncover fundamental constraints on the relationship between cell
shape and cell division that should be general in adherent, polarized cell layers.

Keywords: Cell topology, Epithelial morphogenesis, Mathematical modeling, Mitosis,
Developmental biology
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Introduction
Cellular structures are ubiquitous in natural systems, from the crack patterns of

ceramic glazes and colloidal suspensions [1-4], to the bubble structures of a coarsening

foam [5-8], to the complex tissues of living organisms [9-13] (Figures 1A-B). The subset

of two-dimensional (planar) cellular structures constitutes an analytically tractable

paradigm for uncovering the fundamental geometrical and mathematical constraints

imposed by cell packing that govern cell shape in a contiguous tissue [5,14,15]. In a

biological context, combined with physical forces [16-18], these constraints illumin-

ate a non-genetic basis for biological form, and restrict the space of possible tissue
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Figure 1 Introduction to the mitotic shift. (A) The Drosophila wing imaginal disc. Neuroglian-GFP (green)
marks the septate junctions. (B) The Drosophila wing disc epithelium. The rounded cell (center) is undergoing
mitosis. (C) The mitotic shift in Drosophila (red) and Cucumis (green) [9,24]. The overall distribution of cellular
shapes has a hexagonal mean (red and green). By contrast, the mitotic cell shape distribution (red and
green) is shifted to have a heptagonal mean in both organisms. Hence, one distribution is approximately a
shifted version of the other. Sample sizes for both organisms are given under the heading “Sample sizes
for overall and mitotic cell shape distributions” in the Methods section. (D) Representative mitotic cells (as
detected based on cell rounding) in the Drosophila wing imaginal disc. Mitotic cells show an enrichment in
cell-cell contacts. Stars (black) mark neighboring cells; labeled cells’ polygonal topologies are designated
in black. (E-F) An overview of mitotically induced topological transformations during epithelial proliferation.
(E) An illustration of autonomous “side loss” during polygonal cell division. The octagonal cell (green) gives rise
to two hexagonal daughters (grey). On average, a mitotic N-sided cell will give rise to daughters having (N + 4)/
2 sides, making side loss a general trend except for rare polygonal cells in which N = 3 or N = 4. Note the
creation of a set of new tri-cellular junctions (red), which are formed at either end of the cleavage plane
(black), which is depicted as a dashed line. (F) Non-autonomous “side gaining” due to neighbor cell mitoses. In
this example, a pentagonal cell (blue), gains one neighbor to become a hexagonal cell (grey). In general, during
polygonal cell division, exactly two neighboring cells adjacent to the newly-formed tri-cellular junctions (red) will
effectively gain one neighbor each.
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architectures. Packing considerations impose powerful constraints on diverse fea-

tures of cellular geometry, including area [9,14], topological neighbor correlations

[15], distributions of the number of cellular neighbors [5,10,12,19], and the average

polygonal shape of a given cell (which is hexagonal [20]), among others [21]. Begin-

ning with D’Arcy Thompson and Frederic Lewis, it was appreciated in the early 20th

century that such constraints might influence or correlate with important biological

variables pertaining to the growth of tissues during development [9,22]. More recent

work has suggested that packing constraints are likely to be involved in the coordin-

ation between proliferative growth and morphogenesis, as these processes are intrin-

sically linked in growing cell layers [12,17,23-27].

In a network of adherent cellular polygons, cell shape emerges both from autono-

mous and from non-autonomous effects of cell division. Mitosis alters cell geometry

cell-autonomously by reducing the number of neighbors of a dividing cell (i.e., an

octagon may divide into a pair of hexagons, resulting in “side loss”; Figure 1E). Simultan-

eously, mitosis acts cell non-autonomously by generating new neighbor interfaces for

cells adjacent to the recent site of division, which results in “side gaining” (Figure 1F).

Numerous theoretical and simulation studies, in combination with live-imaging exper-

iments and clonal analysis in Drosophila, suggest that side gaining and side loss drive

epithelial cell shape emergence via cell division and cell sorting, with cell division

being the dominant influence [5,10,12,19,24,27,28].

Notably, despite the broad range of theoretically possible cell shape distributions

[29-31], cell layers in many plant and animal species nevertheless converge on a con-

served equilibrium distribution having approximately 25% pentagons, 45% hexagons,

and 20% heptagons [9,12,32]. The form of the distribution is likely constrained entropi-

cally [5]. Intriguingly, for both Drosophila (a representative animal model system) and

Cucumis (a representative plant model system), the form of the mitotic cell shape dis-

tribution is nearly identical to the overall distribution, with the critical difference being

that it is shifted by a single polygon class to have a heptagonal mean, in contrast to the

hexagonal mean characteristic of the overall distribution (shown in Figures 1C-D).

Hence, despite the independent evolutionary origins of plant and animal multicellu-

larity [33], it appears that both are governed by fundamentally similar topological

constraints.

Although the existence of the single-integer mitotic shift may imply a fundamental

correlation between polygon class and division likelihood in proliferating cell layers, its

cellular basis remains unclear. The chicken-egg nature of the problem centers on how

to interpret the shift in terms of the mitotic cell cycle. For instance, one possibility is

that increased cell sidedness promotes mitotic entry, although there is no functional

evidence to support this view [28,34]. An alternative interpretation is that over time,

interphase cells simply gain sides as a passive consequence of adjacent mitotic events

[5,12,24,32,35]. Under steady-state assumptions, for instance, a shifted (heptagonal)

mean and mitotic distribution can be predicted algebraically [5,35]. Hence, rather than

indicating active cell-cycle regulation, the mitotic shift could reflect an emergent inter-

action between cell packing and heterogeneous proliferation. Here, in order to resolve

this problem, we develop a novel mathematical framework to explicitly define the

implications of non-autonomous side gaining for the mitotic cell shape distribution

in cellular monolayers featuring tight cell adhesion and negligible rearrangements.
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Our computations predict that interphase cells should passively gain sides over time,

such that cells that are more advanced in the cell cycle will tend to have a larger

number of neighbors. This inference is borne out by experimental analysis of pro-

liferating Drosophila epithelial cells as well as by finite element simulations of pro-

liferating epithelia. We argue that the mitotic shift is likely to be a widespread

geometrical feature of adherent, proliferating cellular monolayers in plants and

animals.
Results
Defining the logical relationship between polygon class and mitotic entry

The existence of the mitotic shift implies that within cell sheets, the probability of

cell division F(N) must correlate with polygon class N. To show this, assume there

is no such correlation, meaning that all polygon classes undergo mitosis with the

same probability per unit time. Under these conditions, at steady-state, the fraction

of N-sided polygonal mitotic cells would be identical to the fraction of N-sided

polygonal cells overall (Additional file 1: Figure S1), contradicting the existence of

the nearly identical single integer mitotic shifts observed in plant and animal cell

layers [9,12,28]. Therefore, irrespective of the underlying mechanism, the mitotic

shift implies that division probability and hence cell cycle state correlates with

polygon class.

Similar reasoning leads to a second insight, which is that for tissues exhibiting a

mitotic shift, cells cannot have perfectly synchronized cycles. For the case of per-

fectly synchronized cell cycles, all cells in the cell layer would divide simultan-

eously at each round of division. To show that this synchronized scenario cannot

exist simultaneously with a mitotic shift, assume perfect mitotic synchrony in a

proliferating cell layer (ie, a situation in which all cells divide simultaneously).

Under these conditions, the distribution of mitotic and non-mitotic cells would be

identical at steady-state, contradicting the existence of the shift. As a consequence

of asynchronous proliferation, a time delay will necessarily exist between the divi-

sions of neighboring cells. As a result, the average interphase cell will tend to gain

additional cell-cell contacts from its apposed mitotic neighbors over the course of

the cell cycle. Based on this logic, the intuitive expectation is that within cell

sheets, asynchronous division will result in a positive correlation between polygon

class and cell cycle state. Indeed, empirical data from previous studies has sug-

gested that, on average, cells having more sides are more likely to undergo mitosis

(according to multiple metrics, including metaphase marker staining, cell round-

ing, and cytokinesis [12,24]).
A positive correlation between polygon class and cell cycle state is the default expectation,

and a trend across diverse organisms

In order to formalize the above reasoning, we can write the probability F(N) that an

N-sided cell will undergo mitosis per time step in terms of the following three quan-

tities: (1) the probability that a cell undergoing mitosis has N neighbors, P(N|D),

which is equivalently the polygonal cell shape distribution for dividing cells; (2) the

average fraction of cells in the epithelium undergoing mitosis, P(D); and (3) the
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probability P(N) that a randomly selected cell in the epithelium has N neighbors.

These quantities are related in the following manner:

F Nð Þ ¼ P N jDð ÞP Dð Þ
P Nð Þ ; ð1Þ

Assuming the case of a perfect integer mitotic shift (which is a close approximation

empirically), the mitotic cell shape distribution P(N|D) is equal to P(N-1). We find,

F Nð Þ ¼ P N−1ð ÞP Dð Þ
P Nð Þ ; ð2Þ

and hence,

P Nð Þ ¼ P Dð Þ
F Nð ÞP N−1ð Þ: ð3Þ

Equation (3) implies that the distribution P(N) achieves its maximum when the
function F(N) crosses the average division rate P(D) from below. The fact that P(N) is

uni-modal empirically indicates that F(N) crosses the value P(D) exactly once, mean-

ing that all values on the right side of the crossing point stay above P(D), and all

values on the left side of it stay below. Therefore, higher-order polygon classes tend

to have a greater division probability than lower-order polygon classes. The uni-

modal character of the shape distribution P(N) is observed in diverse plant and ani-

mal species (and also in simulations), suggesting that this reasoning may be general

[9,12,28-30,32,36]. Consistent with the above analysis, when F(N) is assumed to have

an exponential form (which is approximately true for the Drosophila wing disc epi-

thelium [24] and for the epidermis of Cucumis [19]), equation (3) implies that the

distribution of polygonal cell shapes has the following form (with parameters p1 and

p2; p2≈
1
p2:51

for 〈N〉 ≈ 6): P Nð Þ ¼ 1X∞
i¼4

p1
i−3
2ð Þ i−4ð Þ

p2
i−4ð Þ

� � p1 N−3
2ð Þ N−4ð Þ

p2
N−4ð Þ , which

is uni-modal.

While the above result confirms that higher order polygons are more likely to divide,

it does not show that division probability should increase with every individual polygon

class N, which would require the following condition based on equation (1):

P N þ 1ð Þ
P Nð Þ <

P Nð Þ
P N−1ð Þ ∀N : ð4Þ

Given that P(N) is uni-modal, equation (4) would constrain its overall shape. Specific-
ally, for values of N < 6, the fold change increase of P(N) must decline for each N, and

thus the fold-change is bounded from above. Conversely, for values of N > 6, the fold

change decrease of P(N) must rise for each N such that the fold-change is bounded

from below. While there is no theoretical basis for assuming this constraint applies to

all tissues, the relationship in equation (4) does hold in diverse organisms, including

Drosophila and Cucumis (see Table 1). Therefore, on an empirical basis, it looks to be a

general trend.



Table 1 Diverse organisms obey the constraint specified in equation (4)

Species name 5-sided:4-sided
ratio

6-sided:5-sided
ratio

7-sided:6-sided
ratio

8-sided:7-sided
ratio

9-sided:8-sided
ratio

Drosophila 9.469 1.639 0.440 0.158 0.044

Cucumis 12.550 1.888 0.473 0.134 0.033

Xenopus 7.625 1.479 0.424 0.272 0.154

Hydra 9.938 1.748 0.450 0.184 0.044

Allium 7.550 1.364 0.439 0.260 0.319

Euonymus 9.666 1.379 0.550 0.300 0.000

Dryopteris 6.500 1.635 0.482 0.244 0.400

Anacharis
(leaf, abaxial)

9.600 2.479 0.1681 0.350 0

Anacharis
(leaf, adaxial)

7.286 2.235 0.2281 0.077 0

Anacharis (bud) 5.364 1.525 0.444 0.000 Undefined

For each distribution, we computed the following five ratios of cell shape frequencies: (1) pentagonal to quadrilateral
frequencies, (2) hexagonal to pentagonal, (3) heptagonal to hexagonal, (4) octagonal to heptagonal, and (5) nonagonal
to octagonal frequencies. Equation (4) predicts that these ratios should decrease across each row. Note that diverse
organisms satisfy this condition, which corresponds to equation (4) in the text. Sample sizes for each organism are given
under the heading “Sample sizes and polygonal counts by organism” in the Methods section.
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Modeling the emergence of the mitotic shift in terms of cellular age

Building on the logic of the previous two sections, we next developed a mathematical

model for the mitotic shift. Previous studies have considered the emergence of poly-

gonal cell shape in proliferating epithelia, but none have formulated an analytical

approach to describe the side-gaining process as it relates to cell cycle state [5,10,19].

Here, based on a set of simple topological rules, we present a mathematical descrip-

tion for the side gaining process in proliferating epithelia. We first make the follow-

ing three assumptions, which increase analytical tractability but are not expected to

substantially alter our results:

(1) The distribution of neighboring cells surrounding dividing cells is approximately

the same as the overall polygonal distribution of cells, P(N), which is at steady-state.

This is approximately true empirically in the Drosophila wing disc [24].

(2) Cell rearrangement can be neglected for the case of a single round of division.

Multiple lines of evidence are consistent with this view [9,12,24], which simplifies

analytical treatment, although it is straightforward to simulate a scenario in which

rearrangements are present. Moreover, the results of the model can be directly

compared with clone experiments in Drosophila to test for any potential role of

rearrangement.

(3) For analysis (including mathematical summations), we assume that all cells in the

epithelium have between 4 and 9 sides, which is an empirical fact in both

Drosophila and Cucumis, save for very rare 10-sided cells, which have negligible

frequency.

We define the conditional probability Qw(m) that a dividing w-sided cell orients its

cleavage plane so as to cleave its common interface with an m-sided neighbor. The

computations below use the empirically measured values of a mean-field function

Q(m), which is an average of the function Qw(m) over all possible w values [24]. For
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comparison with a completely random cleavage plane, on average (denoted by angular

brackets), the system has a probability 2
wh i of cleaving a common interface with an arbi-

trarily selected m-sided neighbor of a mitotic cell.

The side-gaining process as a binary tree

The algorithm to compute the mitotic polygonal cell shape distribution is written

exclusively in terms of side-gaining events. Side-gaining is a direct consequence of

neighbor cell mitosis, wherein the mitotic neighbor cleaves its common interface

with the cell in question, thereby creating two edges where only one existed previ-

ously, and hence increasing the recipient cell’s polygon class by a single edge. Note

that side gaining only occurs when the mitotic neighbor’s cleavage plane orients in

a given cell’s direction; otherwise no such common interface is cleaved, and the

cell’s polygon class remains unchanged. Side gaining is therefore a binary event; for

each neighboring cell division, a cell either gains a single side or it does not.

For analysis, we assume that mitotic events occur stochastically. Using this ap-

proach, after k neighbor cell divisions, a polygonal cell can gain at minimum zero

sides (if none of the cleavage planes point in its direction), and at most k sides (if all

of the cleavage planes point in its direction). Side-gaining events are assumed to be

independent.

In order to approximately compute the subset of neighbors that divide in the orientation

of the cell in question, we consider the probability Q(m) that an m-sided cell gains a new

edge due to the mitosis of a neighboring cell. Q(m) negatively correlates with the polygon

class, m [24]. In terms of Q(m), we can compute the probability G(m,k,V) that an m-sided

cell gains k sides after V of its neighbor cells have divided (see Figures 2A-B). For example,

the probability G(m,0,V) that the m-sided cell gains zero sides after V divisions is the

following:

G m; 0;Vð Þ ¼ 1−Q mð Þð ÞV : ð5Þ

This is simply the probability of not gaining a side, 1-Q(m), V times in a row. The
opposite situation occurs when every neighbor cell division results in a side-gaining

event. For this case:

G m; k; kð Þ ¼
Yk−1
r¼0

Q mþ rð Þ; ð6Þ

where r is an index, and G(m,k,k) is the probability of gaining k sides after k divisions.

For instance, the probability that a hexagon gains two sides after two neighbor cell divi-

sions is just the probability Q(6) that a hexagon gains one side due to a neighboring

division to become a heptagon, times the probability Q(7) that the newly-formed hepta-

gon gains one side to become an octagon.

Visually, the function G(m,k,V) can be represented as a binary tree (Figure 2A-B).

Figure 2A illustrates how multiple stochastic trajectories can lead to the same eventual

side-gaining outcome. For instance, the chance that a hexagon gains zero, one, or two

sides after two neighboring divisions is illustrated graphically in Figure 2B. In order to

compute the chance of reaching a particular polygon class, the paths leading to that

potential outcome must be added together. For instance, there is only one path leading
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Figure 2 A binary tree representation of the side-gaining process. (A) The function G(m,n,V) represents
the probability that an m-sided cell gains n sides after V of its immediate neighbors have divided.
Side-gaining is a binary event which occurs when a neighboring cell’s cleavage plane impinges on a
common interface. For each neighboring division, either one or zero sides is gained. Q(m) is the probability
that an m-sided cell gains a side due to a single neighboring division. On the binary tree, horizontal paths
represent a failure to gain a side, which occurs with probability 1-Q(m). Elevated paths represent side-gaining
events. Note that to compute G(m,n,V), multiple paths representing different stochastic trajectories must be
summed. (B) A more concrete representation of the side-gaining process, which here depicts the
different cell shape trajectories for a hexagon, and its potential transitions to a heptagonal or octagonal
state due to side-gaining.
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to a hexagonal fate (Figure 2B, bottom line). By contrast, the heptagonal fate has two

paths impinging on it, which must be summed to determine the chance of the hexagon

transitioning to a heptagon.

Algebraically, the probability G(m,k,V) that an m-sided polygon gains k sides after

V neighbor cell divisions can be computed in terms of the following recursion

relation:

G m; k;Vð Þ ¼ G m; k;V−1ð Þ 1−Q mþ kð Þð Þ þ G m; k−1;V−1ð ÞQ mþ k−1ð Þ: ð7Þ

The recursion relation has two terms because there are two ways to reach G(m,k,V)
from the previous division step V-1. One way is to have gained k sides already after V-1

divisions, and then to gain no sides on the Vth division. This is equivalent to following

a horizontal path on the binary tree (Figure 2A). The other way is to have gained k-1

sides after V-1 divisions, and to gain the kth side on the Vth division. This corresponds

to taking one of the inclined paths on the binary tree. In this Markovian framework, it

is then straightforward to compute the likelihood of each possible trajectory for the

side-gaining dynamics of an m-sided cell.

The stochastic dynamics of neighbor division events

Having defined the likelihood with which an m-sided cell gains sides due to neigh-

boring division events, we next determined the expected number of dividing neigh-

bors Jm for a polygonal cell having m neighbors. In particular, we computed the

average number of neighbor cell divisions expected to occur prior to the division of

the central m-sided cell. For analysis, we modeled proliferation as a Poisson process.
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Under the Poisson model of neighbor division events, for a given time window L, the

probability density describing the number of times q that a neighboring k-cell will

divide is the following:

pk qð Þ ¼ e−λkL λkLð Þq
q!

ð8Þ

where λk is the rate parameter for a k-cell. For a given pair of neighboring cells, with

m and k sides, respectively, the probability that the k-cell will divide first is the following:

p k ¼ firstð Þ ¼ λk
λm þ λk

ð9Þ

When the k-cell divides first, we can set the time scale Lkm over which to compute the

number of divisions of the k-cell prior to the m-cell. That is:

Lkm ¼ 1
λm

ð10Þ

which is the average waiting time until the m-cell divides.

To summarize, when a k-sided cell neighbors an m-sided cell, for the subset of the

times when the k-sided cell is expected to divide first, the distribution of the number of

times q that the k-cell will divide is the following:

pmk qð Þ ¼
e−

λk
λm

� �
λk
λm

� �q

q!
ð11Þ

We can scale the above distribution by the probability that the k-cell divides first:
pmk;scaled qð Þ ¼ λk
λk þ λm

e−
λk
λm

� �
λk
λm

� �q

q!
ð12Þ

The distribution of Jm values is therefore the above expression summed over all of

the m neighbors, and averaging over the probability of each possible type of polygonal

neighbor. Hence, p(Jm) is a weighted sum of m independent and identically distributed

Poisson random variables, which reduces to the following:

p Jmð Þ ¼
X9
k¼4

P kð Þ λk
λk þ λm

e−m
λk
λm

� �
m λk

λm

� �q

q!
ð13Þ

The mean field estimate for the average value of Jm is the following:
Jmh i≈m
X9
k¼4

P kð Þ λk
λk þ λm

λk
λm

� 	
ð14Þ

As λk ∝ F(k), we can re-write equation (14) in the following manner:
Jmh i≈m
X9
k¼4

P kð Þ F kð Þ
F kð Þ þ F mð Þ

F kð Þ
F mð Þ

� 	
ð15Þ
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When F(k) is an exponential function with exponential constant “a”, this estimate

becomes the following:

Jmh i≈m
X9
k¼4

P kð Þ ea 2k−mð Þ

eak þ eam
ð15bÞ

We denote the fractional part of 〈Jm〉 as {〈Jm〉} and the floor and ceiling values as,

respectively, ⌊〈Jm〉⌋ and ⌈〈Jm〉⌉. We can estimate the value of P(N|D) to be the following:

P N jDð Þ ¼
Xn
m¼4

P mð Þ 1− Jmh if gð ÞG m; n−m; ⌊ Jmh ið Þ⌋þ Jmh if gð ÞG m; n−m; ⌈ Jmh i⌉ð Þ½ �

ð16Þ

For an alternative approach to compute P(N|D) that does not involve using mean-
field approximations, the following formula can be used, which requires first construct-

ing the distribution p(Jm):

P N jDð Þ ¼
X9
m¼4

X∞
Jm¼0

P mð Þp Jmð ÞG m; n−m; Jmð Þ ð17Þ

To construct p(Jm), we first generate all possible local neighborhoods that could sur-
round each m-sided central cell, and then compute the expected total number of div-

iding neighbors for each such neighborhood, which is rounded to a whole number for

purposes of substitution into G. The distribution p(Jm) can then be generated by

assigning probability mass to each such value of Jm using the multinomial distribution,

which gives the chance of observing that particular combination of neighboring cells.

Numerical evaluation of equation (17) agrees closely with a Monte Carlo computation

using 105 stochastically generated local neighborhoods for each m-sided polygonal

central cell (Additional file 2: Figure S2). We conclude that the weighted mean-field

approximation (equation 16) closely approximates the direct computation (equation 17;

see Addititional file 2: Figure S2), and provides an efficient method to compute the

distribution P(N|D).

Predictions of the model

The predicted form of the mitotic distribution P(N|D) depends on the choice of the

function F (see equation 15). Consistent with the analyses of the first two sections, past

studies of Drosophila and Cucumis monolayer cell sheets demonstrate that the function

F is monotone increasing [9,19,24]. Specifically, F is well fit by an exponential function

(based on Mathematica’s FindFit function; see references [19,24]). To test whether our

modeling framework is able to predict the form of the mitotic cell shape distribution in

a proliferating polygonal network, we compared our computational results with empir-

ical data from Drosophila and Cucumis. In each case, we assumed an exponential form

for the function F, and searched the parameter space of increasing, decreasing, and flat

F functions. To measure the distance between the empirical and the predicted form of

the mitotic cell shape distribution, we used the square of the l2-norm, (l2-norm)2. Strik-

ingly, for increasing F functions, the predicted mitotic distribution P(N|D) closely

matches the empirical distribution of mitotic cells (Figures 3B-B’; Additional file 2:

Figure S2). By contrast, and consistent with the mathematical analysis of the previous
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Figure 3 Computational predictions of the mitotic shift based on a stochastic model of the side-
gaining process. (A) Prediction of the mitotic cell shape distribution for the Drosophila wing disc
epithelium (empirical values shown in grey). In the absence of cleavage plane bias (blue), the computational
prediction is not quite as accurate as when the bias is included (red). Sample sizes for the empirical
Drosophila mitotic polygonal distribution are given under the heading “Sample sizes for overall and mitotic
cell shape distributions” in the Methods section. (A’) Prediction of the mitotic cell shape distribution in the
epidermis of Cucumis. Here, cleavage plane bias similarly improves the accuracy of the prediction. Sample
sizes for the empirical Cucumis mitotic polygonal distribution are given under the heading “Sample sizes for
overall and mitotic cell shape distributions” in the Methods section. (B) For the Drosophila prediction, a plot
of the (l2-norm)2 deviation from the empirical mitotic cell shape distribution as a function of the
relationship between division likelihood and polygon class. Here, division likelihood is assumed to increase
exponentially as a function of polygon class. The ordinate (exponential constant) gives the precise form of
the exponential. Note that positive values strongly outperform negative values. Hence, a model in which
division likelihood increases with polygon class is more consistent with the data than a model in which it
decreases or remains the same. (B’) For Cucumis, the results are nearly identical to those of Drosophila.
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sections, flat or decreasing F functions failed to match the data closely (Figures 3B-B’;

Additional file 2: Figure S2). We find that including cleavage plane bias, Q(m), improves

our estimate (compare blue and red bars, Figures 3A-B). These results, which are con-

sistent with more exhaustive modeling approaches, suggest that our analysis is accurate

for the case of Drosophila and Cucumis. Hence, in principle, a simple model of side

gaining can account for the mitotic shift in these organisms.

Passive side gaining drives an increase in polygonal sidedness in vivo

Given that the mitotic shift in Drosophila (and in other organisms) implies a positive

correlation between polygon class and cell cycle state, a natural question is whether this

relationship is actually causal. Indeed, it is currently debated whether the mitotic shift

merely reflects a time-dependent correlation of two independent processes (cell cycle

state and passive side-gaining due to neighboring divisions), or whether polygon class

may in some way participate in the active induction of cell division [28,34]. To test
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whether passive side gaining is sufficient to generate the mitotic shift, we directly

measured the polygon class in “aged” Drosophila wing disc cells that did not undergo

cell division during a twelve-hour time window, and compared this distribution to

that observed in cells that underwent a single mitotic event. We stochastically

labeled third-instar wing disc epithelial cells with GFP using the FLP-OUT system

[37], and permitted the marked cells to grow in vivo for 12 hours, the approximate

duration of the cell cycle in the wing disc [38-40]. We focused our analysis on two

sub-populations of mitotic clones: single cell clones (SCC’s; Figure 4A, i-vi) and two-

cell clones (TCC’s; Figure 4B, i-vi). SCC’s derive from cells that were GFP labeled

during Flp-Out induction, but did not undergo mitosis prior to imaging. To control

for the possibility that a subset of the SCC’s derived instead from cell sorting, we

discarded SCC’s within two cell diameters of each other (this is a conservative

approach, as separated cells are almost never observed at the boundaries of even very

large clones in this tissue). We quantified the polygonal topologies of the SCC’s using

confocal microscopy and a fluorescently labeled antibody against the septate

junction-associated protein Discs Large (Figure 4A-B). Previous studies in diverse

organisms have shown both experimentally and mathematically that the average

polygonal cell must have exactly six sides in a planar tissue (see Figure 4C; inter-

phase cells) [12,20,28,32,41]. By contrast, the population of SCC’s in our sample had

on average 6.66 sides 12 hours after clone induction (Figure 4D; single cell clones).

For comparison, the experimentally measured average polygonal topology of two

cell clones was 6.09 (p < 10−8 ; t-test2 in Matlab; Figure 4D). We conclude that

increased cellular age correlates with increased polygonal sidedness in vivo, thus

demonstrating that cells experience a net gain in their total number of cell-cell

contacts over time.

While SCC analysis is sufficient to detect a net gain in polygonal sidedness, it does

not reveal a complete integer shift analogous to the one seen in the mitotic shift

(compare Figures 4C and D). To address this discrepancy, we note that a positive

correlation exists between division probability and polygonal cell shape (see previous

sections). SCC analysis is therefore biased topologically, because it only considers

labeled cells that have not yet undergone mitosis, which tend to have fewer cell-cell

contacts (and were therefore, on average, at an earlier mitotic stage at the time of

clone induction). TCC analysis suffers the opposite bias; it only considers labeled

cells that have already divided, which show enrichment in cell-cell contacts. As-

suming that cell cycle times are roughly asynchronous at the population level, the

average pair of daughter cells in a TCC is expected to have divided at the

six-hour time point, which is the midpoint of the 12 hour experiment. As the average

mitotic cell has seven sides at mitosis, this means that on average, each of the daugh-

ter cells is expected to have had 5.5 sides at the six-hour time point. It is therefore

notable that the experimentally measured average polygonal topology of two cell

clones was 6.09 (Figure 4C). By this reasoning, daughter cells in TCC’s are expected

to have gained at least 0.59 sides in a six-hour period. Note this gain in sidedness is

approximately ½ of the theoretically expected value of 1 side per cell per cell cycle of

12 hours. Based on these findings, we postulate that side gaining is the primary topo-

logical transformation responsible for generating the mitotic shift in the Drosophila

wing disc.
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Figure 4 Statistical summary of the aged cell analysis based on Flp-out clone induction. (A-B)
Induction of Flp-Out clones in the Drosophila wing disc epithelium produces cell populations marked with
GFP (green). Discs Large (DLG; red) marks the septate junctions. (A) Sub-panels i-vi show examples of
single cell clones (SCC’s). White stars mark neighboring cells; the labeled cell’s polygonal topology is
designated in white. (B) Sub-panels i-vi show examples of two-cell clones (TCC’s). White stars mark
neighboring cells; labeled cells’ polygonal topologies are designated in white. (C) The average mitotic cell has
approximately seven sides [24], whereas the average non-mitotic cell has approximately six sides [12].
These differences are significant (p < 10−106; ttest2 in Matlab). Stars represent statistical significance.
Sample sizes for the empirical overall and mitotic distributions are given under the heading “Sample sizes for
overall and mitotic cell shape distributions” in the Methods section. (D) The average single-cell clone has
approximately 6.66 sides, whereas the average two-cell clone has approximately 6.09 sides. These
differences are significant (p < 10−8; ttest2 in Matlab). Stars represent statistical significance. Sample
sizes for the SCC and TCC distributions are given under the heading “Sample sizes for single cell clone
(SCC) analysis and two cell clone (TCC) analysis” in the Methods section. (E) The mitotic cell shape
distribution (black) is approximately an integer shift of the overall cell shape distribution (grey). (F) The
single cell clone (SCC) distribution (black) is shifted relative to the two-cell clone (TCC) distribution (grey). Panels
(E) and (F) display the same data as panels (C) and (D), respectively.
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Passive side gaining drives an increase in polygonal sidedness in silico

Taken together, our mathematical and experimental results suggest that the mitotic

shift is generated primarily due to the effects of side gaining over the course of the cell

cycle, with non-autonomous induction of cell division playing a minimal role, if any. In

order to test this hypothesis in a computational framework, we simulated epithelial

proliferation (Figure 5A-C) using a finite element model of epithelial morphogenesis,

which has been described previously [36]. Cells were chosen for division according to

an oldest-cell division rule with additive noise, which simulates a roughly uniform but

asynchronous cell cycle schedule. Divisions were implemented according to a longest-

axis division rule, consistent with empirical measurements [24]. Consistent with our

mathematical analysis from previous sections, this model produces a division likelihood

function F(N) which is well-fit by an exponential function (R2 coefficient = 0.9989).

Moreover, this approach exhibits a mitotic polygonal shape distribution that is shifted

relative to the overall distribution (Figure 5E; compare with Figure 5F). We conclude

that passive side-gaining over the course of the cell cycle is sufficient to account for

most of the upward shift in polygonal sidedness observed empirically in Drosophila and

in Cucumis.

Discussion
By combining mathematical and experimental approaches, we have shown that the

asynchrony of cell division plays a dominant role in generating the mitotic shift within
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Figure 5 A finite element model based on oldest cell divisions with noise can recapitulate most
features of the mitotic shift. (A) Initial conditions and model output. Cells are chosen for division as a
function of cellular age, with additive noise in the division ordering. The simulated tissue has toroidal
boundary conditions, and undergoes at least 1050 mitoses. (B) The simulated distribution of cellular shapes.
(C) The distribution of mitotic cells chosen for division. (D) Division likelihood as a function of polygon
class, here displayed relative to the likelihood that a nonagon divides (which is taken to be 1). Panel (D),
which is computed using Bayes rule, is well fit by an exponential function (the R2 coefficient is equal to
0.9989). (E) The simulated mitotic shift based on an oldest-cell division mechanism. (F) For comparison, the
mitotic shift in Drosophila and in Cucumis. Sample sizes for the empirical overall and mitotic distributions
are given under the heading “Sample sizes for overall and mitotic cell shape distributions” in the Methods
section.
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a proliferating monolayer epithelium. Based on a minimal set of assumptions, for a

given dependency between polygon class and division likelihood, we have developed an

analytical framework to derive the distribution of mitotic cell shapes. Our mathematical

analysis, experimental results, and finite element simulations together suggest that the

mitotic shift is a topological phenomenon that is primarily a consequence of the correl-

ation between autonomous cell cycle progression and non-autonomous side gaining.

Some systems may rely on additional, redundant, shape-dependent cell division induc-

tion mechanisms [28,34]. However, particularly in light of the fact that the mitotic shift

is manifest in independently evolved forms of multicellular life [33], the most parsimo-

nious conclusion is that such mechanisms are not required even if they cannot be com-

pletely ruled out.

To test for a subtle role of mechanical stress in generating the mitotic shift in the

Drosophila wing disc, advances in live imaging may eventually permit precise tracking

of both cellular age and of cellular geometry over time [24,42-44]. Even if a small geo-

metric influence could be detected, the divergent genetics and divergent mechanics of

plant epidermis and animal epithelia make it unlikely that such a mechanism would be

conserved across kingdoms. Hence, such a hypothesized influence would most likely be

a feature of a particular tissue, not a general explanation for the shift. The framework

developed here places strong quantitative limits on the possible contribution of cellular

geometry (or correlative mechanical stress), while simultaneously demonstrating the

dominance of the division process.

Looking forward, our results lead to several questions for future analysis. Perhaps the

most critical would be to ask how the frequency of cell-cell rearrangement impacts the

dynamics considered here, especially if there were topological biases in the rates of

different cell-cell movements. Previous studies in Drosophila wing discs have reported

variable rates of neighbor exchange events, ranging from negligibly low [12] to high

[45]. At one unlikely extreme, a very high degree of undirected neighbor exchange

events could essentially erase the mitotic shift and drive the tissue towards a hexagonal

topology. This is itself an argument against the existence of large-scale neighbor

exchanges in the developing wing imaginal disc. At the other extreme, a low degree of

neighbor exchange events, particularly if they favored particular topological transforma-

tions, could produce more subtle perturbations of the mitotic shift or the global distri-

bution of cell shapes. Since cell movements within epithelia are likely to play a key role

in different aspects of tissue morphogenesis, understanding their implications for both

the overall topology and the mitotic shift could be a key avenue for future studies.

Methods
Numerical computations

Numerical computations were performed in Mathematica 8.0 (Wolfram Research,

Inc.). For parameter fitting, Mathematica’s FindFit function was used. A full descrip-

tion of the methods for implementing finite-element based simulations of epithelial

proliferation (see Figure 5) and topological simulations of epithelial proliferation (see

Additional file 1: Figure S1) can be found elsewhere [24]. Simulation results presented

in Figure 5 are based on runs that were replicated in triplicate, with each run containing

at least 1050 cell divisions. Simulation results presented in Additional file 1: Figure S1

were also replicated in triplicate, with each run containing at least 80,000 cell divisions.
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Fly strains

To visualize the septate junctions (Figure 1), we used a neuroglian-gfp exon trap line,

which was described in a previous study (nrg-gfp; [46]).

GFP-expressing clones (Figure 4) were induced in flies of the following genotype:

yw hs-flp122; Actin5c> > Gal4,UAS-GFP/+ with a 30-minute heat shock at 37C

followed by a 12-hour recovery period prior to dissection.

Immunohistochemistry

Wing discs expressing marked clones (Figure 4) were stained with mouse anti-discs

large (1:1000 dilution, DSHB) to mark the septate junctions.

Wing Disc sample preparation and Imaging

Wing discs were dissected from wandering 3rd instar larvae in Ringers’ solution, fixed

in 4% paraformaldehyde in PBS, and mounted in 70% glycerol/PBS. Discs were imaged

on a Leica SP5 with a 63× glycerol objective.

Image processing procedures

Single cell clones (SCC’s) and two cell clones (TCC’s) were imaged in multiple focal

planes, and were displayed as two-color image stacks (one color for the Flp-Out GFP,

and one color for anti-discs large or neuroglian-GFP) in Leica’s LAS AF imaging soft-

ware for the SP5 confocal microscope. Analysis was performed by hand; cells having

ambiguous polygonal topology were not counted. To control for the possibility of cell

sorting, SCC’s and/or TCC’s were not considered for analysis unless they were sepa-

rated by at least two cell diameters within the tissue. In order to control for boundary

effects, cells located on tissue folds close to the anterior-posterior (AP) or dorsal-

ventral (DV) compartment boundaries were not counted. To prevent mis-identification

of SCC or TCC clones, we did not consider cells for scoring if the source of the GFP

signal was ambiguous (for example, if the GFP source overlapped with another bright

clone in a different focal plane).

For display (non-analytical) purposes, Figure 1D shows mitotic cells that have been

first inverted, and then subjected to a brightness threshold cutoff in Adobe Photoshop.

Sample sizes for single cell clone (SCC) analysis and two cell clone (TCC) analysis

Samples sizes used to compute each polygonal cell shape’s respective frequency for

single cell clones (SCC’s) and two cell clones (TCC’s) are as follows: Single cell clones,

(4, 1; 5, 7; 6, 32; 7, 44; 8, 15; 9, 0; 10, 0). Two cell clones, (4, 5; 5, 77; 6, 162; 7, 83; 8, 17;

9, 0; 10, 0).

Sample sizes and polygonal counts by organism

Sample sizes used to compute each polygonal cell shape’s respective frequency in

Drosophila [12], Xenopus [12], Hydra [12], and Cucumis [9], have been previously de-

scribed. For reference, these are as follows: Drosophila, (4, 64; 5, 606; 6, 993; 7, 437; 8,

69; 9,3). Xenopus, (3, 2; 4, 40; 5, 305; 6, 451; 7, 191; 8, 52; 9, 8; 10, 2), Hydra, (4, 16; 5,

159; 6, 278; 7, 125; 8, 23; 9, 1). Cucumis, (4, 20; 5, 251; 6, 474; 7, 224; 8, 30; 9, 1).

Aggregate sample sizes and polygonal frequencies for Allium, Euonymus, Dryopteris,

and Anacharis have been previously described [32]. For reference, these are as follows:
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Allium (n = 500 cells), (4, 0.040; 5, 0.302; 6, 0.412; 7, 0.181; 8, 0.047; 9, 0.015). Euon-

ymous (n = 200 cells), (4, 0.030; 5, 0.290; 6, 0.400; 7, 0.220; 8, 0.066; 9, 0). Dryopteris

(n = 200 cells), (4, 0.040; 5, 0.260; 6, 0.425; 7, 0.205; 8, 0.050; 9, 0.020). Anacharis (leaf,

abaxial, n = 200 cells), (4, 0.025; 5, 0.240; 6, 0.595; 7, 0.100; 8, 0.035; 9, 0). Anacharis

(leaf, adaxial, n = 200 cells), (4, 0.035; 5, 0.255; 6, 0.570; 7, 0.130; 8, 0.010; 9, 0). Ana-

charis (bud, n = 200 cells), (4, 0.055; 5, 0.295; 6, 0.450; 7, 0.200; 8, 0; 9, 0).
Sample sizes for overall and mitotic cell shape distributions

Sample sizes used to compute each polygonal cell shape’s respective frequency for rest-

ing and mitotic cells, respectively, in both Drosophila [12,24] and Cucumis [9], have

been described previously. For reference, these are as follows: Drosophila (overall cell

shape distribution), (4, 64; 5, 606; 6, 993; 7, 437; 8, 69; 9,3). Drosophila (mitotic cell

shape distribution), (4, 0; 5, 13; 6, 100; 7, 212; 8, 80; 9, 13; 10, 3). Cucumis (overall cell

shape distribution), (4, 20; 5, 251; 6, 474; 7, 224; 8, 30; 9, 1). Cucumis (mitotic cell shape

distribution), (4, 0; 5, 16; 6, 255; 7, 478; 8, 224; 9, 26; 10,1).

Additional files

Additional file 1: Figure S1. Computational support to show that the mitotic shift is absent when the
probability of mitotic entry is uncorrelated with polygon class. (A-B) Initial conditions and model output,
respectively. (C) Cell division is simulated as a two-step process. First, a new tri-cellular junction is inserted into
one of the dividing cell’s edges, with probability proportional to specified weights, which are either uniform
(all edges shared with neighboring polygons have equal weight) or exponentially biased (edges shared with
neighboring polygons have exponentially smaller weight as a function of the number of edges of that polygon). Here,
the exponential parameter is 2.7 (i.e., pentagons have 2.7 times as much weight as hexagons). The second step of the
algorithm decides the edge into which a second new tri-cellular junction will be inserted by sampling from a division
kernel matrix (see [24] for details). The final step of the algorithm is to connect the two new tri-cellular junctions to
form the cleavage plane. (D-F) When the division kernel matrix is maximally symmetric (octagons divide into pairs of
hexagons, etc.), and no cleavage plane bias is present, a random division timing model produces no mitotic shift. Colors
denote separate runs; error bars refer to the standard deviation in polygon frequency. Simulations proceed until the
population reaches at least 80,000 cells. A lack of a mitotic shift is also found in cases when the division kernel matrix is
symmetric but cleavage plane bias is present (G-I). The same result is also found in the absence (J-L) or presence (M-O)
of such bias when the division kernel is binomially distributed. These data are consistent with the interpretation that
the mitotic shift is absent when divisions are simulated as a Poisson process in which every cell is equally likely to divide
per time step.

Additional file 2: Figure S2. An overlay of three different approaches for computing the mitotic cell shape
distribution P(N|D) in the Drosophila wing disc. (A) For each approach, the function F is assumed to be exponential.
Results are compared in terms of the l-2 norm squared, as a function of the exponential constant in F. For the
Monte Carlo approximation (red), we have computed the expected number of neighbor cell divisions for a
stochastically generated set of 105 local neighborhoods for each class of central cell polygon. Using these
neighborhoods, we numerically constructed an approximate distribution of Jm values for each m. The total
number of expected neighbor cell divisions is rounded to a whole number for each local neighborhood,
which is a constraint imposed by the G function. For the exact numerical computation (black; see equation
(17)), for each class of central cell polygon, we computed the expected number of neighbor cell divisions for
every possible combination of neighbors, and used it to construct the distribution of Jm values based on the
probability of observing each neighborhood type, as given by the multinomial distribution. For each of the
possible neighborhood types, as required by the G function, we rounded the total number of expected neighbor cell
divisions to a whole number. For the mean field computation using linear weights (blue; see equation (16)), an average
of two evaluations of the G function are used (see equation 16), one using the truncated (floor) value for the
mean-field estimate of Jm, and the other using the ceiling (next greatest integer) for the mean field estimate of
Jm. All three methods give similar results, which strongly suggests that equation (16) is a good approximation for
the exact computation (equation 17).
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