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Abstract

Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical
research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a
structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive
and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior
predictive performance over existing methods. We experimentally validate selected high-confidence predictions in
the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs.
Coev2Net can be downloaded at http://struct2net.csail.mit.edu.

Background
Protein-protein interactions (PPIs) play a critical role in all
cellular processes, ranging from cellular division to apop-
tosis. Elucidating and analyzing PPIs is thus essential to
understanding the underlying mechanisms in biology.
Indeed, this has been a major focus of research in recent
years, providing a wealth of experimental data about pro-
tein associations [1-9]. Current PPI networks have been
constructed using a number of techniques, such as yeast-
two-hybrid (Y2H), co-immunopurification or coaffinity
purification, followed by mass spectroscopy and curation
of published low-throughput experiments [10-16]. Despite
this tremendous push, the current coverage of PPIs is still
rather poor (for example, < 10% of interactions in
humans) [17]. Additionally, despite considerable improve-
ments in high-throughput (HTP) techniques, they are still
prone to spurious errors and systematic biases, yielding a
significant number of false-positives and false-negatives
[18-21]. This limitation impedes our ability to assess the
true quality and coverage of the ‘interactome’ [22-24].

Akin to sequencing of the human genome, complete
high-confidence descriptions of PPIs is a fundamental step
towards human interactome mapping [22,25]. Also pre-
sent are the challenging issues of data quality and size esti-
mation, as encountered in the human genome project
[23,24,26]. However, unlike the challenges faced previously
with sequencing, we still do not understand the rules of
association of protein molecules, and are unable to distin-
guish between biophysical interactions, true biological
interactions and false-positives [20]. Further unresolved
questions as to the proportion of experimental artifacts in
the current interactomes are coming to light as a conse-
quence of the low degree of overlap between data curated
from multiple HTP (as well as low-throughput) studies
[27].
Several attempts have been made to characterize the

quality of the interactions obtained from HTP experiments
[7,23,24,28-31]. Experimental methods aim to limit false
discovery by performing multiple iterations of the screen,
which are time-consuming and expensive [29]. Secondary
data, such as co-expression, co-localization, ontology cor-
relation, topological features and orthology information
are often used to further improve confidence in predicted
interactions [32,33]. In addition to non-trivial correlations
between these features (that is, co-expression need not
imply interaction), these data are not complete for all
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proteins. Furthermore, as more and more genomes are
sequenced, only a fraction of proteins will have additional
data to complement any experimental HTP study. Techni-
ques developed from integrating interactions observed in
common across multiple secondary experimental assays of
an initial network are laborious, expensive and time-con-
suming. Moreover, as suggested by Venkatesan et al. [22]
and Cusick et al. [27], the low overlaps achieved across
different datasets highlight the differences in sampling and
biases in experimental techniques rather than pinpoint the
true interactions. Further, in many experimental methods,
the confidence of observations is evaluated for that specific
technique - they are seldom generalizable. Thus, cost-
effective and high-confident strategies are clearly required
to complete the human interactome.
Recently, a number of algorithms have been developed

to predict protein interactions by integrating complemen-
tary data such as sequence features and structural features
[12,34-42]. Also recently, computational approaches to
PPI prediction using structural information have been
gaining much attention due to the rapid growth of the
Protein Data Bank (PDB) [32,35,43-65]. An important
advantage of structure-based approaches is their ability to
identify the putative interface, thereby providing more
information than any other HTP method. The common
strategy of structure-based methods is to find a best-fit
template complex structure for the two query sequences;
the prediction is then based on the similarity of the two
proteins to the template complex. Threading-based
approaches extend coverage further ‘into the twilight
zone’, making accurate predictions even when there is low
sequence similarity (typically < 40%) between the query
proteins and the best-fit template complex [32,49,66].
However, to the best of our knowledge, there have been
no studies that integrate HTP techniques with PPI predic-
tion algorithms to quantitatively address both false-nega-
tive and false-positive issues.

In this paper, we introduce a general framework to pre-
dict, assess and boost confidence in individual interac-
tions inferred from a HTP experiment. Our contribution
is three-fold: 1) we develop a novel computational algo-
rithm to quantitatively predict interactions, given just the
protein sequences; 2) we show how the algorithm can be
used in a general framework to quantify confidence in
observed interactions; and 3) we demonstrate the utility
of our structure-based framework in providing biologi-
cally significant additional information about binding
sites, which is not provided by any other HTP method
(either computational or experimental). We first validate
our method on a high-confidence network in the recently
investigated human mitogen-activated protein kinase
(MAPK) interactome [67,68]. We experimentally validate
predicted high-confidence interactions for the MAPK
interactome using a complementary assay and show that
the concordance between prediction and experimental
validation is as good as the overlaps achieved in previous
protocols involving multiple secondary assays [25].
Finally, we show that the interfaces predicted by our
algorithm are enriched for functionally important sites in
the context of signaling networks; and utilize this infor-
mation to hypothesize a novel regulatory mechanism
involving crosstalk between the insulin and stress-
response pathways via interactions between MAPK6,
YWHAZ and FOXO3 proteins.

Results
The Coev2Net framework for quantifying confidence in
protein interactions
We developed Coev2Net (Figure 1), a framework for
assessing confidence in protein interactions. To quantify
confidence in an interactome, we incorporate high-
confidence data sources, namely low-throughput inter-
actions and structural information. The framework gives
a confidence score for each interaction, along with a

Figure 1 Framework for assessing confidence in a HTP PPI screen. Coev2Net, trained on a high-quality PPI network, is able to assign
structure-based confidence scores for HTP PPI networks. Each node represents a protein and each edge the putative interaction between the
two proteins. The thickness of an edge describes structure-based confidences of putative PPIs.
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predicted model of the binding interface for the proteins
(Figure 1).
Inputs to the framework are a high-confidence network

(usually much smaller than the HTP screen) and the inter-
actions identified from the HTP experiment for which one
wishes to quantify confidence. For every pair of interaction
in the HTP screen, Coev2Net provides a score to assess
their likelihood of being co-evolved from interacting
homologous sequences (see Materials and methods). To
do this, Coev2Net first predicts a likely interface model for
the two proteins, by threading [69] the sequences onto the
best-fit template complex in our library. It then computes
the likelihood of co-evolution of the two proteins (that is,
of the predicted interface) with respect to a probabilistic
graphical model (PGM) induced by the aligned interfaces
of artificial homologous sequences (Figure 2; Materials
and methods; Additional file 1). By generating artificial
sequences, we enrich the interfacial sequence/structure
profiles for those protein-pairs with sparse interacting-
sequence profiles and thus improve protein interface scor-
ing accuracy. Note that this enrichment is carried out for
all protein pairs, irrespective of the information content in
their individual sequence profiles. These PGM scores are

then input into a classifier trained on a small high-confi-
dence network to compute a score between 0 and 1, repre-
senting the confidence of our method in that interaction
(Figure 1). High-scoring interactions can then be investi-
gated further using a secondary experimental assay or
taken as true positives for subsequent analyses. Addition-
ally, since Coev2Net is a structure-based algorithm, it also
produces as output a putative interface for the interacting
pair (Figure 2). This information can be analyzed to design
site-directed experiments to further characterize the speci-
ficity of the interaction.

Benchmarking Coev2Net
SCOPPI
We first benchmark Coev2Net on SCOPPI [70], a protein
complex database. The database is divided into interacting
family pairs for which multiple complexes have been
solved. Rigorous cross-validation tests on the database indi-
cate that Coev2Net achieves high accuracies, thereby vali-
dating our approach of modeling interface co-evolution as
a high-dimensional sampling problem (Figure S3 in Addi-
tional file 1). For the cross-validation tests, we considered
only those family pairs in SCOPPI that have at least three

Figure 2 Flowchart of Coev2Net. Left: Markov chain Monte Carlo (MCMC) sampling to generate synthetic homologous sequences for each
complex template. Right: 1) for given query protein pairs, the best template (from the structural library) is identified by protein threading; 2)
structural and sequence features are extracted from the interfacial alignment and residue correlations scored with respect to the profile PGM;
and 3) a classifier gives the probability of interaction for the query protein pair.
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non-redundant (sequence id < 50%) complexes. We ran-
domly selected one as the test complex and used the other
complexes within our Coev2Net protocol to simulate inter-
acting homologs and construct the PGM (Figure 2). We
additionally compared Coev2Net’s performance on the
SCOPPI dataset to another structure-based method,
PRISM [45]. PRISM first identifies similar templates to two
query structures by structural alignment. The final predic-
tion is based upon the energy of complex formation calcu-
lated by docking these two predicted interfaces. We find
that Coev2Net’s performance, measured in terms of sensi-
tivity and specificity, is much better than PRISM’s on this
dataset (Figure S3 in Additional file 1).
Furthermore, Coev2Net also performs well on SCOPPI

family pairs not having more than two non-redundant
complexes, indicating Coev2Net’s ability to deal with
limitations of both structural and sequence training data
(Figure S3 in Additional file 1).

MAPK interactome validation
To test the framework’s ability to predict interactions for
which there is often no structural data available and to
assign confidence values to interactions, we re-trained
Coev2Net on a high-quality human MAPK PPI network
[67] and tested it on another high-quality MAPK network
[68] (Figure 3a-c). Oddly, these two MAPK networks are
almost disjoint with only 6 overlapping interactions out
of 4,904 total interactions (Figure 3a). In the Bandyopad-
hyay set [67], we could make predictions for 461 interac-
tions, in the Vinayagam set [68], 1,025 interactions, and
in the negatome (PDB-negative set, see Datasets in Addi-
tional File 1), 330 non-interactors. To check for known
complexes in the two MAPK networks, for each interac-
tion, we ran BLAST against the entire PDB to identify
homologous complexes. We were able to find only 22
pairs for which a solved homologous complex exists in
the PDB (we used an E-value cutoff of 1e-40). On the
other hand, our threading-based approach can make pre-
dictions for approximately 1,500 interactions in the
MAPK networks, indicating that our method extends
predictions to those pairs for which a clear homologous
complex does not exist. The Bandyopadhyay set was
further divided into a ‘core’ set of interactions (640), of
which we could make predictions for 173 pairs. The defi-
nitions for core set and non-core set were taken as in the
original citation [67]. This core set of interactions con-
tains high-confidence interactions that are conserved in
yeast [67].
To test the accuracy of Coev2Net’s predictions, we first

validated our method via five-fold cross-validation on the
high-confidence core set of interactions in the Bandy-
opadhyay set (Figure 3c). In addition, to assess the contri-
bution of co-evolutionary profiles for PPI predictions, we

compared the performance of our method to Struct2Net
and a ‘baseline’ classifier that is trained on just the thread-
ing-based features (no inter-protein features). Note that all
methods are evaluated on the same dataset (the core set).
Figure 3c clearly shows that Coev2Net accurately predicts
interactions even when only a distant homologous com-
plex is available and thus fills the existing gap in structure-
based methods for PPI prediction. In addition, Figure 3c
also shows that including long-distance correlations as in
Coev2Net aids in PPI prediction as compared to other
threading-based methods.
We trained our final classifier on the entire Bandyopad-

hyay core data set, and predicted interactions in the
Vinayagam dataset. For the predictions made for the lat-
ter dataset, we found that the experimentally validated
coverage of our method (approximately 55% with a confi-
dence-score cutoff of 0.6) is significantly higher than that
reported by other prediction methods based on conserva-
tion, genomic data, gene ontology annotation and litera-
ture extractions (approximately 14% to approximately
28%) [29], although each method was evaluated on a dif-
ferent network. Here, coverage is defined as the percen-
tage of total predicted interactions for which we make a
positive prediction and that were validated experimen-
tally in the Y2H screen (571 predicted positive out of
1,025 in the Vinayagam dataset). The cutoff of 0.6 was
chosen since it corresponds to the maximum specificity
and sensitivity of the logistic-regression classifier on the
Bandyopadhyay core dataset.
Moreover, our predicted confidence scores are highly

correlated with the experimental observation frequencies
of Y2H screens on this network (Vinayagam dataset). To
assess significance, we divided our predictions into high
confidence and low confidence based on the probability
cutoff of 0.6. To categorize interactions as true positive
or true negative in the Y2H screens, we assumed the cut-
offs employed in Schwartz et al. (for a false discovery rate
< 5%, true positive interactions should be observed at
least twice when tested with < 5 independent assays, and
at least three times when tested with more assays) [29].
We then populated a 2 × 2 contingency table to test for
association between our predicted label (interacting or
non-interacting) and experimentally predicted label. We
find that the predicted interactions correlate (P-value
< 0.01, Fisher’s test) with those deemed likely true posi-
tives from an experimental standpoint. Encouragingly,
the percentage of our framework’s predicted true positive
interactions that are confirmed positive (from an ex-
perimental standpoint) in the Vinayagam dataset is
roughly 52% (294 true positive, 571 predicted positive, a
two-fold increase compared to previous methods on Y2H
retesting of computational predictions [29]. Alternatively,
training Coev2Net on the high confidence network in the
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Vinayagam dataset and testing it on the Bandyopadhyay
core network yields similar results. By predicting only a
fraction of interactions with high confidence, Coev2Net
enables us to focus on only the most likely interactions,
enabling a more accurate understanding of the biology
(Figure 3b).

Experimental validation of predictions
The confidence scores given by our framework can be
used to design additional experiments to enhance the
quality of the initial interactome. We tested 19 randomly

chosen high confidence interactions (confidence score
> 0.6) using a complementary assay (LUMIER) [71]. Each
pair, along with a control, was tested at least three times
using the LUMIER assay. To confirm an interaction, the
average result (that is, fold change in luciferase intensity
[RLU] as measured in a TECAN Infinite M200 lumines-
cence plate reader) across the repeats had to be greater
than 1.5 times the control. Of the 19 interactions, 14
exhibited luciferase intensity greater than 1.5 times the
control (Figure 3d). Additionally, if the repeat experiments
were too variable to confidently assess the interaction (as

Figure 3 MAPK interactome analysis and validation. (a) Overlap of the Vinayagam (blue) and Bandyopadhyay (red) datasets (left). The study
by Bandyopadhyay et al. reveals 2,269 interactions with 641 ‘core’ interactions supported by multiple lines of evidence, whereas the Vinayagam
dataset has 2,626 interactions connecting 1,126 proteins. Differences in the two experimental techniques are highlighted by the fact that only
170 nodes and 6 interactions overlap in the two sets. (b) Coev2Net predicted high-confidence network is shown on the right. Edge colors
correspond to the dataset they come from. MAPK6 has the highest degree, and its label is shown explicitly. (c) Comparisons of performance on
MAPK network for Coev2Net and Struct2Net (iWRAP+DBLRAP) [32,49,66] in terms of sensitivity and specificity. Coev2Net performs much better
than previous methods on this dataset (core network of Bandyopadhyay et al.), and its performance is robust with respect to the randomness in
MCMC sampling. The classifier (Figure 2) is trained and tested via five-fold cross-validation on the core network. The MCMC procedure is
repeated five times to assess robustness of the predictions and the corresponding error bars are indicated. ‘Baseline’ method represents a logistic
regression classifier with just the alignment features and no PPI (inter-protein) features. (d) Experimental validation of predicted high-confidence
interactions using LUMIER assay. Typically a fold increase of 1.5 is considered as a true positive.
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measured using a z-score), the interaction pair was dis-
carded. The z-score is calculated as:

zLUMIER =
RLU − RLUcontrol

σRLU

Eight out of the 19 interactions were discarded in this
way as they registered a z-score of less than 1.5 and were
deemed too variable. For additional experimental details
we refer the readers to a more comprehensive interactome
mapping analysis in [72]. Notably, 10 out of the remaining
11 were confirmed as true interactions, that is, registering
average intensity above 1.5 times the control. Overlaps
achieved by our method compare favorably with previous
approaches, such as Braun et al. [25], in which an initial
positive reference set was re-tested experimentally using a
LUMIER assay (Table 1). Furthermore, we evaluated the
sequence identities between the interacting sequences
and the templates used for predicting their interaction
(Table 1; Additional file 1. Interestingly, we find that all of
them have a medium to low average sequence identity (15
to 30%), indicating that Coev2Net yields accurate predic-
tions even in the ‘twilight zone’ of sequence identities,
where traditional homology methods usually fail. For exam-
ple, IBIS [73], another homology/structure-based method,
can detect only two pairs from the ten detected by Coev2-
Net and experimentally validated by the LUMIER assay.

Abundance of missense SNPs at predicted interfaces
In addition to the confidence scores, Coev2Net also pro-
vides a putative interface for the interaction. These inter-
faces can yield novel mechanistic insights into the PPI and
provide hypotheses about disease-associated mutations
that occur at the interface. Missense SNPs occurring at
the interface can potentially disrupt the interaction
between the proteins, leading to abnormal functioning of
the cell. We analyzed the predicted interfaces for existence
of PolyPhen2 annotated missense mutations in dbSNP
(build 131) [74]. PolyPhen2 classifies a SNP as ‘benign’,
‘probably damaging’, ‘possibly damaging’ or ‘unknown’
based on various features, including conservation score,
monomeric structure score (when available) and physico-
chemical properties [75,76]. It does not, however, account

for SNPs occurring in potential interacting regions. Inter-
estingly, SNPs annotated as damaging by PolyPhen2 are
preferentially observed at the interface compared to non-
interfaces (P = 0.0075, Fisher’s exact test; Figure 4a).
Furthermore, if we take into account the number of inter-
face and non-interface sites, we find that the predicted
interfaces are enriched for damaging SNPs compared to
the rest of the protein (P < 7e-8, Fisher exact test). The
same analysis with SNPs classified as benign by PolyPhen2
does not show up as highly significant (P = 0.06). We
further analyzed the distribution of the SNPs in terms of
their density at the interface and non-interface. Here
again, we find that damaging SNPs are preferentially
located on the interface. We find that the average density
of damaging SNPs at the predicted interfaces is signifi-
cantly higher than their density at non-interface positions
(Figure 4b; P < 1e-10, Mann-Whitney test), a bias also
observed by Wang et al. recently [63]. For benign SNPs,
the average density at the interface is lower than that at
non-interfaces (Figure 4b; P < 1e-10, Mann-Whitney test).
These analyses show that there is an evolutionary pressure
to admit only benign SNPs at the interface, since any
potentially damaging SNP will hinder the interaction.
To investigate the structural distribution of annotated

mutations, we analyzed somatic mutations characterized in
cancer to see if there is any preference for their location on
the protein. We analyzed annotated mutations in the cod-
ing region deposited in the Cosmic database for their pre-
dicted location [77]. We only considered mutations that
are annotated as either synonymous or missense. Interest-
ingly, for these mutations we find that missense mutations
are more prevalent, on average, at the PPI interface than
synonymous mutations (P < 10e-20, Mann-Whitney test;
Figure 4c). This suggests that these mutations might be
responsible for disruption of PPIs and the aberrant mole-
cular signaling associated with cancer.
Finally, we looked at the predicted locations for some of

the un-annotated mutations in kinases (from the MoKCa
database [78]). As an example, we considered the BRAF
protein as it contained the highest number of annotated
mutations in the database. Coev2Net predicts an interac-
tion between BRAF and PAK2, using the template structure

Table 1 Comparison of overlaps achieved by Braun et al. and our method when some of the initial Y2H interaction
pairs are re-tested using LUMIER assay

Yeast strains implementation Number validated (LUMIER) Y2H PPIs Percentage overlap

Y strain 2 m 1 reporter 1 mM_3-AT (Braun et al.) 19 33 57

Y strain 2 m 2 reporters 1 mM_3-AT (Braun et al.) 13 22 59

Y strain CEN 1 reporter 1 mM_3-AT (Braun et al.) 17 23 74

MaV CEN 2 reporters 20 mM_3-AT (Braun et al.) 9 14 64

Our prediction 14 19 74

Our predictiona 10 11 91
aThese pairs have LUMIER assay z-scores > 1.5.
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1G3N (chains E and F). Figure 5a shows the predicted
interface for this interaction, with the annotated (magenta)
and un-annotated (dark blue) mutations indicated. The
presence of these mutations at the interface of the interact-
ing proteins gives us an added insight into the investigation
of such variations. Further study using this information can
provide mechanistic details about how such mutations dis-
rupt normal cellular signaling.

Novel potential cross-talk regulatory mechanism
Phosphorylation sites have been observed to be enriched
at interfaces in solved structures [79]. This observation
has mechanistic implications as the PPI can be used as
an additional regulatory mechanism for phosphorylation,
or the interaction could be a precursor to phosphoryla-
tion. An example for such a mechanism is found in the

signaling protein YWHAZ [80]. Its phosphorylation is
regulated by its dimerization, which buries the phospho-
sites on YWHAZ [81]. Our predictions revealed an
interesting observation that suggests similar regulatory
mechanisms in the MAPK interactome. Coev2Net pre-
dicts an interaction between MAPK6 and YWHAZ.
Both are important signaling proteins, with much
known about YWHAZ, including the experimental
observation that MAPK8 regulates phosphorylation at
S184 [82]. Relatively less is known about MAPK6’s func-
tion and its substrates [83]. However, it is known that
S189 is a phospho-site regulated by PAK1, PAK2 and
PAK3 [84-86]. Interestingly, we found that the phos-
phorylation sites for both MAPK6 (S189) and YWHAZ
(S184) lie within the predicted interface for the interac-
tion (Figure 5b). This structural observation could imply

Figure 4 Predicted interfaces are enriched for SNPs in the Coev2Net predicted high-confidence MAPK network. (a) Relative distribution
of PolyPhen annotated mutations at the interface and non-interface. (b) SNP (PolyPhen annotated) prevalence at the interface and non-
interface. (c) Somatic mutations characterized as ‘missense’ preferentially fall on the interface (bottom). The white circles represent corresponding
means. Error bars represent the 75% to 25% data range.
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that the interaction regulates downstream activities of
MAPK6 and YWHAZ by controlling their phosphoryla-
tion. The most likely mechanism is that MAPK6 phos-
phorylates YWHAZ, thereby preventing its dimerization
and regulating downstream activities of YWHAZ. Addi-
tionally, Coev2Net also predicts an interaction between
MAPK6 and FOXO3. From a signaling context, these
observations suggest a possible mechanism of crosstalk
between the MAPK and insulin pathways. Analysis and
validation of such a hypothesis is, however, beyond the
scope of the present study.

Discussion
We have proposed a novel structure-based computa-
tional approach to identify PPIs on a genome-wide scale.
Using structural features, we have demonstrated that our
method can not only identify true-interactions better
than previous approaches, but also provide key biological
insights that are absent from HTP experiments.
While it has been shown previously for some families

that residues in and around the interface have correlated
evolutionary histories, extracting such robust correlation
signals for predictive purposes on a genome scale has
remained difficult due to limited known interacting
homologs. In the context of homology search for only
monomers, enriching a multiple sequence alignment
with artificial sequences has proven to be effective in the
case of limited homologs [87,88]. Utilizing a statistical
model for constructing evolutionarily correlated interact-
ing homologs for a given interacting pair of proteins, we

are able to simulate homologous sequences and predict
PPIs from correlations at the interface of these homologs.
The excellent performance of our method helps corrobo-
rate the hypothesis of residue-level correlations for a
wide variety of PPIs and provides an efficient way of
using these correlations for predictive purposes.
As more and more HTP data for mapping the interac-

tome are gathered, there would be a necessary demand for
automatic protocols to evaluate the data quality and esti-
mate the confidence in individual interactions. In particu-
lar, transient interactions have been notoriously difficult to
elucidate and validate. We have shown that confidence in
PPIs investigated through HTP techniques can be quanti-
fied and enhanced by our proposed complementary struc-
ture-based PPI prediction algorithm. Our PPI predictions
on recent HTP human MAPK interactomes and further
experimental validations have indicated the efficacy of our
predicted confidence scores. Moreover, since our frame-
work requires only the sequences of the two candidate
proteins, it can be used as a complementary feature to
other methods that rely on additional features [31,89].
Limited studies have been undertaken to link structural

features to genome-wide interactomes to gain a mechanis-
tic understanding of underlying biological processes. Our
threading-based approach enables us to extend coverage
of structure-based studies further than that possible by
homology models (see the ‘MAPK interactome validation’
section). As a result, the predicted structures are more
reliable and provide a sound basis for mechanistic hypoth-
eses. We provide an anecdotal example by analyzing the

Figure 5 Functional insights from predicted interface. (a) Predicted interface for the interaction between BRAF (light blue) and PAK2 (red
surface). Cancer-associated mutations that are annotated are shown in magenta. In dark blue we indicate mutations that are predicted to be
associated with cancer but with no current annotations. The rest of the template structure is shown in gray. Mutations were taken from MoKCa
database [78]. (b) Predicted interface for the interaction between MAPK6 (yellow) and YWHAZ (cyan). Phosphorylation sites on the proteins are
indicated in red (S189 for MAPK6 and S184 for YWHAZ). The template used for the prediction was 1F5Q (chains A and B).
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distribution of annotated missense SNPs in our predicted
models. In agreement with a recent study [63], we show
that such mutations are enriched at the interfaces.
Furthermore, detailed analysis of phosphorylation sites
enables us to propose a crosstalk mechanism involving an
atypical kinase, MAPK6. Predictions made by our model
for the potential interactors of MAPK6 provide the basis
for further exploration of the role of this relatively less-
studied kinase.
Conventional homology-based methods such as inter-

Prets [44], IBIS [73] and PRISM [45] perform well when a
similar template is found in the PDB. Threading based-
methods provide predictions even when such conventional
methods cannot find a suitable template. Furthermore, as
we show in this paper, accuracy achieved by our thread-
ing-based method is the best amongst current structure-
based methods. Coev2Net acts as a complement to con-
ventional homology methods whenever a clear template
for prediction is not available and expands threading
methods by incorporating coevolution of protein inter-
faces. However, performance of threading-based techni-
ques has been shown to decline when the query sequences
are distantly related to the template (sequence identities
< 15 to 20%) [49,65]. While we currently use RAPTOR for
identifying the putative interface, we hope to further push
this limit by integrating new threading programs like RAP-
TORX [90] and iWRAP [49] into Coev2Net. While we
encode our interface profile as a spanning-tree based gra-
phical model, we believe this is a simplistic approximation
of the reality. More complicated graphs could potentially
be required for particular families of interacting proteins.
Finally, we note that transient interactions are notoriously
difficult to predict using structure-based interactions. Our
validation using a technique (LUMIER) that can detect
even transient interactions provides some confidence in
predictions of transient interactions by Coev2Net.

Materials and methods
Coev2Net algorithm
The Coev2Net algorithm can be roughly divided into three
distinct stages: 1) identification of the putative binding
interface; 2) evaluation of the compatibility of the interface
with an interface co-evolution-based model (see ‘Con-
struction of the interface profile through simulated
co-evolution’ below); and 3) evaluation of the confidence
score for the interaction.
Identification of the putative interface
The two query sequences are each threaded against a com-
plex template library to search for the best template. We
use a top-performing threader program ‘RAPTOR’ [69,90]
to look for the best template match. Given a set of poten-
tial template matches, the best match is selected based
on the z-score of the alignment. In order to evaluate the

putative interface implied by the alignment, we calculate its
compatibility with respect to the co-evolutionary profile for
that interface.
Evaluating the interface
The predicted interface is evaluated by computing the
log-likelihood of the interface residues with respect to
the interface profiles described below - a PGM for inter-
acting pairs (’positive’) and another graphical model
representing background correlations (’negative’). A high
log-likelihood with respect to the ‘positive’ PGM implies
that the protein sequences show co-evolution at the
interface, compatible with the model, and are hence likely
to interact.
Computing confidence score
Once we have the compatibility scores for the predicted
interface, we use these as features to predict our confi-
dence in the interaction. A logistic-regression classifier is
trained on a high-confidence network, and is used to pre-
dict our confidence score for the interaction, which is the
output of the classifier. Both alignment features (from
stage 1: Identification of interface) and interface features
(from stage 2: Evaluating the interface) are used as features
in the classifier. If p is the probability of interaction (or our
confidence score), then:

log
p

1 − p
= α + βT

1 X1 + βT
2 X2 + βiYi + βT

+ L+ + βT
−L−

where Xi are the alignment features for each protein in
the interacting pair (these include sequence scores, sec-
ondary structure scores and protein lengths); Yi is the size
of the interface; L+ is the log-likelihood score of the pre-
dicted interface with respect to the positive tree, and L-
the log-likelihood score of the predicted interface with
respect to the negative tree. The a, b1, b2, bi, b+ and b-
are coefficients of the classifier.

Construction of the interface profile through simulated
co-evolution
To construct an interface profile for a SCOPPI family,
which consists of a family of protein complexes; we exploit
the biological intuition that interacting proteins exhibit co-
evolution at the interface. This co-evolution has been
detected even in residues within 10 to 12 Ångströms at
the interface [62,64,91-94]. In Coev2Net, the interface pro-
file is a probabilistic graphical model (PGM), pre-com-
puted for each SCOPPI family, and encodes the most
significant pattern of interface correlations exhibited by
the interacting members of the SCOPPI family. This
model is computed by formulating interface co-evolution
as a high-dimensional sampling problem (see Additional
file 1 for further details). The three main steps in this
simulation are seeding the co-evolution, simulating co-
evolution for an interface and learning the PGM.
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Seeding the co-evolution
We start the simulation from known complexes within a
SCOPPI family. We first align the interfaces using a con-
tact map alignment program, CMAPi [95]. CMAPi
employs a contact map representation to efficiently align
multiple interfaces and thereby improves alignments as
compared to other sequence and structure-based techni-
ques. The simulation is performed on each aligned
interface.
Simulating co-evolution for an interface
For each pair of aligned seed sequences (full proteins
forming the complex), additional sequences are con-
structed via random mutations according to a probability
distribution (Figure S1 in Additional file 1) based on
paired positions within interfaces of complexes. To per-
form a mutation at a contact, we first randomly fix one
amino acid in the contact, and sample the contacting
amino acid from a distribution conditioned on the fixed
amino acid (see Figure S2 in Additional file 1 for a sche-
matic). The new contact thus has one amino acid as
before, and the contacting amino acid mutated according
to a conditional probability distribution. Each contact is
treated independently, with 5% of the interface contacts
mutated at each step. For non-contacting residues, muta-
tions are performed independently in the two proteins
according to the BLOSUM62 matrix. Again, 5% of the
non-contacting residues are mutated in one step. The
percentage of mutations to carry out in one step (that is,
5%) was chosen based on previous studies on simulated
evolution for remote homolog detection [96].
The new sequences are first aligned to the hidden

Markov models (HMMs) representing the corresponding
protein families, and the alignment scores computed. They
are then accepted or rejected in a stochastic manner,
based on their joint fitness score. The mutation and sto-
chastic selection of interacting sequences can be viewed as
a Markov chain Monte Carlo (MCMC) algorithm [97] for
a high-dimensional sampling problem - we rigorously
prove this correspondence in the supplemental methods
in Additional file 1.
Learning the PGM
Once we have sufficient sequences (that is, after the
MCMC converges), we encode the pairwise correlations
observed in these ‘interacting’ sequences using a PGM.
Our motivations for introducing a PGM are twofold: 1)
analogous to a sequence profile, a PGM is a ‘profile’
that can be used to score predicted interfaces; and 2)
to explicitly capture long-distance correlations (non-con-
tact-based) at or near the interface residues. We select
1,000 interacting sequences per training complex as our
interacting set (to avoid large sample-sample fluctuations,
we select close to 2,500 sequences for SCOPPI families
having only one training complex). To model the correla-
tions between residues of these interacting proteins, we

use the Sanghavi-Tan-Willsky algorithm [98] to construct
two trees - one for the simulated interacting proteins
(’positive’) and one for background correlations (’nega-
tive’). These two trees are our interface profiles for the
particular SCOPPI family and can be pre-computed before
making any predictions. We restricted ourselves to span-
ning trees for ease of learning and inference. In fact, other
inference methods, such as belief propagation, would work
on a loopy graph (that is, the loopy network of contacts at
the interface) but their behavior is not easy to control and
very sensitive to the initialization. Note that our profiles of
the interface residues are different from the HMM ones
since our interface profiles are purposely computed from
only interacting sequences; the HMM is constructed from
independent sequences that do not necessarily interact.

Evaluation of the classifiers
The individual methods were evaluated based on their
ability to correctly predict true-positives and true-nega-
tives. To do this, we plot receiver operator characteristic
(ROC) curves for each method. In our ROC curves, sensi-
tivity is defined as True-positives/(True-positives + False-
negatives) and specificity is defined as True-negatives/
(True-negatives + False-positives). For a high-confidence
true-positive and true-negative dataset, we perform
five-fold cross-validation (CV) tests for each method
(Coev2Net, Struct2Net and Baseline), and plot the average
sensitivities (at particular specificities) for these five runs.
For Coev2Net, we run the MCMC sampling 5 times, and
average the performance across these 25 curves (5 MCMC
× 5 CV). To compare against interPrets, we used a cutoff
on the z-score computed by the algorithm to classify
a prediction as positive or negative. Since there is no train-
ing required here, there was no need for a cross-validation.
For the computationally intensive IBIS [73], we compared
our predictions on the ten pairs validated using the
LUMIER assay.

Additional material

Additional file 1: Supplementary methods on the algorithm, results
on benchmarking and comparison with other methods.
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