Advanced assessment of cardiac morphology and prediction of gene carriage by CMR in hypertrophic cardiomyopathy - the HCMNet/UCL collaboration

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Published Version doi:10.1186/1532-429X-16-S1-O30

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406812

Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Advanced assessment of cardiac morphology and prediction of gene carriage by CMR in hypertrophic cardiomyopathy - the HCMNet/UCL collaboration

Gaby Captur1,2*, Timothy J Mohun2, Gherardo Finocchiaro3, Robert Wilson2, Jonathan Levine3, Lauren Conner3, Luis Lopes4,10, Vimal Patel4,10, Daniel Sado1, Chunming Li5, Paul Bassett6, Anna S Herrey1, Maite T Tome Esteban1,10, William J McKenna4,8, Christine E Seidman7,11, Vivek Muthurangu8,4, David Bluemke9, Carolyn Y Ho3, Perry M Elliott4,10, James Moon1,4

Background
Myocardial architectural abnormalities, have been identified in hypertrophic cardiomyopathy (HCM) gene mutation carriers without hypertrophy (G+LVH-). Some of these changes may be related to the underlying mutation, but whether they can predict gene carriage in relatives of HCM probands is unknown. Cardiac trabeculae may be prominent in overt HCM, suggesting they could form part of this constellation of abnormalities but previous techniques have not permitted more detailed study. We developed a fractal method for quantitation of trabeculae, tracked their development in embryonic mice and applied it to humans imaged by CMR. We hypothesize that fractal analysis may detect abnormal trabeculae in HCM mutation carriers before development of LVH and that a combination of cardiac architectural abnormalities could be used to predict gene carriage in HCM.

Methods
TRABECULAE IN MOUSE EMBRYONIC DEVELOPMENT-63 Murine hearts were examined from the time of ventricular septation (E14.5) till just before birth (E18.5). Trabeculae were charted by fractal analysis of high-resolution episcopic microscopy images using a box-counting method. HUMAN MORPHOLOGY-74 G+LVH- sarcomere mutation carriers (29 ± 13 yr[SD]) (51%M) were identified in 12 US-centers (HCMNet|n = 35) and UCL (n = 39). Subjects underwent CMR and fractal analysis. Results were compared with 111 overt HCM patients (G+LVH+|n = 71; G-LVH+|n = 40) and 136 matched controls (36 ± 16 yr[63%M]). We analyzed a single-center (UCL) G+LVH- case-control cohort to identify factors associated with gene carriage, evaluating anterior mitral valve leaflets (AMVL), wall thickness, clefts, trabeculae and other variables. We validated identified associations in the multi-center HCMNet cohort, and combined significant parameters into a model for predicting genetic carriage.

Results
In mice a fractal atlas of trabecular development showed decreasing complexity across the basal LV (E14.5-18.5;p < 0.0001) while complexity in the mid/apical LV rose again just before birth (E17.5-18.5;p < 0.0001|Figure 1). Contrasting the UCL case-control populations 5 differences were found and borne out in the validation cohort. Across the combined HCMNet/UCL cohort these were: 1) longer AMVL (22 ± 3 vs 20 ± 3 mm|p < 0.0001), 2) increased maximal-apical trabecular complexity (1.242 ± 0.07 vs 1.196 ± 0.05|p < 0.0001), 3) increased maximal-septal systolic wall thickness (13 ± 3 vs 12 ± 2 mm|p = 0.02), 4) lower indexed-end-systolic LV volume

© 2014 Captur et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
(23 ± 6 vs 26 ± 7 mls/m²|p = 0.005), and 5) presence of clefts (35 vs 7%|p < 0.0001). Conditional logistic regression provided a model containing these parameters, which predicted gene carriage with a high level of accuracy (78%; Figure 2).

Conclusions

Fractal analysis applied to microscopy or CMR permits robust trabecular quantification. Trabecular complexity is increased in HCM gene mutation carriers even in the absence of LVH. Myocardial architectural abnormalities
are an early phenotype of sarcomere mutations; a pentad of cardiac architectural abnormalities by CMR exhibits potential for predicting genetic carriage in HCM.

Funding

Dr Captur is funded by the University College London, UK (Graduate Research Scholarship) and by the European Union (Science and Technology Research Grant). Her work on HCMNet in Bethesda (NIH) and Boston (BWH) was funded by the UCL Charlotte and Yule Bogue Research Fellowship. Murine HREM experiments are funded by the The Wellcome Trust (National Institute of Medical Research UK, Tim Mohun Group).

Authors’ details

1Cardiac MRI Unit, The Heart Hospital, London, UK. 2Department of Developmental Biology, MRC National Institutes for Medical Research, Mill Hill, UK. 3Cardiovascular Genetics Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA. 4Institute of Cardiovascular Science, University College London, London, UK. 5Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 6Biostatistics Joint Research Office, University College London, London, UK. 7Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 8UCL Centre for Cardiovascular Imaging and Great Ormond Street Hospital for Children, Great Ormond Street Hospital for Children, London, UK. 9Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, Maryland, USA. 10The Inherited Cardiovascular Disease Unit, The Heart Hospital, London, UK. 11Howard Hughes Medical Institute and the Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA.

Published: 16 January 2014