Common variants associated with plasma triglycerides and risk for coronary artery disease

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1038/ng.2795</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406861</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Common variants associated with plasma triglycerides and risk for coronary artery disease

Abstract

Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids ($P < 5 \times 10^{-8}$ for each) to examine the role of triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are factors in determining CAD risk. Second, we consider loci with only a strong magnitude of association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.

Coronary artery disease (CAD) is one of the leading causes of death and infirmity worldwide. Plasma lipids such as cholesterol and triglycerides are associated with risk for CAD. Cholesterol is mostly carried in either low-density lipoproteins (LDL) or high-density lipoproteins (HDL) whereas triglycerides are mostly transported in very low-density lipoproteins (VLDL), chylomicrons, and remnants of their metabolism.

In observational epidemiologic studies, plasma concentrations of increased triglycerides, increased LDL cholesterol (LDL-C), and decreased HDL cholesterol (HDL-C) are associated with increased risk for CAD. However, it is difficult to establish causal inference from observational epidemiology, especially given the correlations among triglycerides, LDL-C, and HDL-C.

Single nucleotide polymorphisms (SNPs) can be used as instruments to test whether a biomarker causally relates to disease risk. Because genotypes are randomly assigned at meiosis and fixed throughout lifetime, a genetic association may overcome some limitations of observational epidemiology such as confounding and reverse causation. Using gene variants that exclusively affect a biomarker of interest (i.e., no pleiotropic effects on other factors), investigators have confirmed LDL-C as a causal risk factor for CAD and have cast doubt on whether HDL-C directly influences risk for CAD.

However, to date, it has been challenging to utilize a similar approach to define if plasma triglycerides reflect processes causal for CAD. In contrast to LDL-C and HDL-C, nearly all SNPs identified to date for plasma triglycerides have additional effects on other plasma
LDL-C or HDL-C16-18, violating the “no pleiotropy” assumption of instrumental variable analysis8,19.

Here, we utilize common variants and develop a statistical framework to dissect causal influences among a set of correlated biomarkers. As this approach requires a large set of SNPs where precise measurements of effect on triglycerides, LDL-C, HDL-C, and CAD risk are simultaneously available, we leveraged: 1) 185 common SNPs all representing independent loci that are associated with at least one lipid trait at genome-wide levels of significance; 2) estimates of effect of each SNP on plasma triglycerides, LDL-C, and HDL-C in a sample exceeding 180,000 individuals; and 3) estimates of effect of each SNP on CAD in a sample exceeding 86,000 individuals (22,233 cases and 64,762 controls).

We studied 185 SNPs at 157 one megabase pair intervals with association $P \textless 5 \times 10^{-8}$ for triglycerides, LDL-C, or HDL-C in a meta-analysis involving 188,578 genotyped individuals (see companion manuscript20). For each SNP, we obtained effect estimates for triglycerides ($\beta_{\text{TRIGLYCERIDES}}$), LDL-C ($\beta_{\text{LDL-C}}$), and HDL-C ($\beta_{\text{HDL-C}}$) (in standard deviation units and estimated using inverse normal transformed residuals of lipid levels after adjusting for covariates; see Supplementary Figure 1 for study design). We also estimated the effect of each SNP on CAD (β_{CAD}) from a recently published genome-wide association study (GWAS) involving 86,995 individuals (the CARDioGRAM study)21. For the 185 SNPs, effect sizes (β) and P-values for triglycerides, LDL-C, HDL-C, and CAD are shown in Supplementary Table 1.

We considered several analytic approaches to investigate whether plasma triglycerides reflect processes causal for CAD. First, we evaluated the direction and magnitude of $\beta_{\text{LDL-C}}$ and $\beta_{\text{TRIGLYCERIDES}}$ in combination, and then compared these to β_{CAD} (Figure 1 and Supplementary Figure 2). Second, to isolate the effect of triglycerides, from the 185 SNPs, we restricted analysis to loci that have moderate to strong effect on triglycerides (large $\beta_{\text{TRIGLYCERIDES}}$) but minimal effect on LDL-C (small $\beta_{\text{LDL-C}}$). Finally, across the 185 SNPs, we formally developed and applied a statistical framework to test if the effect size of a SNP on triglycerides is linearly related to its effect size on CAD, before and after accounting for the same SNP’s potential effect on plasma LDL-C and/or HDL-C.

For each of the 185 independent lipid SNPs, we evaluated joint patterns of associations for triglycerides and LDL-C by examining SNPs that have strong association to both triglycerides and LDL-C ($P \textless 5 \times 10^{-8}$ for each). Among these, we examined SNPs with the same direction and a similar magnitude of association for both lipid traits (within a factor of 5). We observed 11 loci with this pattern of association. Five loci confer risk for CAD ($P \textless 0.05$) and ten of the eleven loci show a direction of effect consistent between the lipid traits and CAD (Table 1). For example, the A allele at rs2954022 in the TRIB1 gene was associated strongly with lower triglycerides ($\beta_{\text{TRIGLYCERIDES}} = -0.078, P = 2 \times 10^{-124}$) and lower LDL-C ($\beta_{\text{LDL-C}} = -0.055, P = 4 \times 10^{-51}$) and showed the expected association with lower CAD risk ($\beta_{\text{CAD}} = -0.056, P = 6 \times 10^{-5}$).

Next, we identified SNPs that had strong association with both triglycerides and LDL-C ($P \textless 5 \times 10^{-8}$ for each) but had opposite directions for $\beta_{\text{TRIGLYCERIDES}}$ and $\beta_{\text{LDL-C}}$ (within a factor of 5, Table 2). Four SNPs displayed this pattern and none showed significant association with CAD (all $P \textgreater 0.05$). For example, the A allele at rs2255141 in the GPAM gene was associated with lower triglycerides ($\beta_{\text{TRIGLYCERIDES}} = -0.078, P = 2 \times 10^{-124}$) and higher LDL-C ($\beta_{\text{LDL-C}} = 0.030, P = 7 \times 10^{-14}$) but had no discernible effect on CAD risk ($\beta_{\text{CAD}} = -0.0076, P = 0.63$).
Secondly, we considered a subset of the 185 SNPs that have moderate to strong effects on triglycerides but minimal effect on LDL-C [n=44 SNPs, all SNPs have large $\beta_{\text{TRIGLYCERIDES}}$ (>0.01 or <-0.01) but small $\beta_{\text{LDL-C}}$ (between -0.01 and 0.01)]. In regression analysis, we confirmed that $\beta_{\text{LDL-C}}$ was not associated with β_{CAD} for this set of SNPs (P=0.68; see Supplementary Table 2). However, we observed a significant association of $\beta_{\text{TRIGLYCERIDES}}$ and β_{CAD} (P=3×10^{-5}; see Supplementary Table 3). These observations suggest that the direction and magnitude of effect of a SNP on both triglycerides and LDL-C impact risk for CAD.

To formally investigate whether the strength of a SNP’s association with triglycerides predicts CAD risk, we devised a statistical framework that controls for pleiotropic effects on secondary lipid traits. This approach is particularly important because SNP association signals with triglycerides, LDL-C, and/or HDL-C ($\beta_{\text{TRIGLYCERIDES}}, \beta_{\text{LDL-C}},$ and $\beta_{\text{HDL-C}}$) are correlated (Supplementary Figure 3 and Supplementary Table 4).

We tested the role of triglycerides on CAD by first calculating residuals of β_{CAD} after including as covariates $\beta_{\text{LDL-C}}$ and $\beta_{\text{HDL-C}}$ in our regression model (Supplementary Figure 1). We then tested the association of $\beta_{\text{TRIGLYCERIDES}}$ with β_{CAD} residuals. Similar models were created to assess the independent roles of LDL-C and HDL-C.

We observed that across the 185 SNPs, $\beta_{\text{LDL-C}}$ was strongly associated with β_{CAD}, after adjusting for either $\beta_{\text{TRIGLYCERIDES}}$ individually, $\beta_{\text{HDL-C}}$ individually, or both $\beta_{\text{TRIGLYCERIDES}}$ and $\beta_{\text{HDL-C}}$ (all $P < 1\times10^{-18}$, Table 3). The pattern for $\beta_{\text{HDL-C}}$ was different. Across the 185 SNPs, $\beta_{\text{HDL-C}}$ was associated with β_{CAD}, after adjusting for $\beta_{\text{LDL-C}}$ (P=0.005); however, this association was greatly attenuated after adjusting for $\beta_{\text{TRIGLYCERIDES}}$ individually (P=0.057) and rendered non-significant after accounting for both $\beta_{\text{TRIGLYCERIDES}}$ and $\beta_{\text{LDL-C}}$ (P=0.35, Table 3).

The results for triglycerides were similar to those observed for LDL-C. Across the 185 SNPs, $\beta_{\text{TRIGLYCERIDES}}$ was strongly associated with β_{CAD}, after adjusting for both $\beta_{\text{LDL-C}}$ and $\beta_{\text{HDL-C}}$ (P=1×10^{-9}, Table 3).

As an alternative to this approach using residuals, we also tested a single model with the outcome variable of β_{CAD} and predictor variables of $\beta_{\text{TRIGLYCERIDES}}, \beta_{\text{LDL-C}}$ and $\beta_{\text{HDL-C}}$ considered jointly (Supplementary Table 5). Results were similar with $\beta_{\text{TRIGLYCERIDES}}$ and $\beta_{\text{LDL-C}}$ showing association with β_{CAD} (P=2×10^{-10} and P=1×10^{-22}, respectively) but $\beta_{\text{HDL-C}}$ failing to show association (P=0.32).

In summary, we have demonstrated that: 1) SNPs with the same direction and a similar magnitude of association for both triglycerides and LDL-C tend to associate with CAD risk; 2) loci that have an exclusive effect on triglycerides are also associated with CAD; and 3) the strength of a SNP’s effect on triglycerides is correlated with the magnitude of its effect on CAD risk, even after accounting for the same SNP’s effect on LDL-C and/or HDL-C.

Using an analytical approach that accounts for the potential pleiotropic effects of a SNP on triglycerides, LDL-C, and/or HDL-C, we provide evidence that plasma triglycerides likely reflects processes causal for CAD. This finding based on 185 common SNPs is in line with recent reports of specific genes predominantly related to triglycerides also affecting risk for CAD. A promoter SNP in the APOA5 gene, a common SNP upstream of the TRIB1 gene, and a nonsense polymorphism at the APOC3 gene all predominantly associate with plasma triglycerides and each SNP has been convincingly related to clinical CAD or subclinical atherosclerosis.

Do et al. Nat Genet. Author manuscript; available in PMC 2014 May 01.
Our results raise several questions. First, if plasma triglycerides reflect causal processes, what are the specific mechanistic direct links to atherosclerosis? Triglycerides are carried in plasma mostly in VLDL, chylomicrons and remnants of their metabolism and as such, triglycerides capture several physiologic processes that may promote atherosclerosis. One potential link is post-prandial cholesterol metabolism. Plasma triglycerides are highly correlated with the amount of cholesterol in remnant lipoproteins (i.e., VLDL and chylomicron particles after interaction with lipoprotein lipase) and a variety of evidence ranging from the human Mendelian disorder of Type III hyperlipoproteinemia to experimental evidence in cell culture and animal models suggests that cholesterol-rich remnant particles have pro-atherogenic properties similar to LDL (reviewed in 26). Another process reflected by plasma triglycerides is the activity of lipoprotein lipase, a key enzyme that hydrolyzes triglycerides within triglyceride-rich lipoproteins. Higher enzymatic activity of lipoprotein lipase in the circulation leads to lower plasma triglycerides; a gain-of-function nonsense polymorphism in the \(LPL \) gene has been shown to not only reduce plasma triglyceride levels but also lower risk for CAD\(^{27}\).

Second, why are plasma triglycerides not significantly associated with CAD in observational epidemiologic studies when multiple risk factors are considered jointly to predict risk for future CAD\(^2\)? Multivariable models have known limitations for assessing the etiological relevance for a given exposure. For example, an exposure may be rendered non-significant after multivariable adjustment because of less precise measurement or greater biologic variability when compared with other factors. Plasma triglyceride measurements are more variable than other plasma lipids such as HDL-C\(^{26}\). Alternatively, downstream effects of an exposure may more completely capture the risk conferred. For example, body mass index does not predict CAD risk in the Framingham model after accounting for blood pressure and type 2 diabetes despite the accepted causal influence of weight on blood pressure and type 2 diabetes\(^{28}\). Our approach using SNPs as proxies overcomes these limitations of observational epidemiology.

Finally, what are the implications of these data for the development of drugs aimed at lowering plasma triglycerides with the hope of reducing CAD risk? Several recent randomized controlled trials have tested whether the lowering of plasma triglycerides with fish oils\(^{29}\) or with fibrates\(^{30-32}\) will decrease risk for CAD and in many cases, treatment did not reduce risk\(^{29,31,32}\). Possible explanations for failed trials are wrong study population, wrong mechanism of lowering triglycerides, insufficient degree of triglyceride-lowering, and limited statistical power.

Our study has several limitations. SNPs associated with triglycerides also relate to other lipid traits and thus, are not ideal instruments for Mendelian randomization analysis. Given that the plasma triglycerides measured in the blood is the end product of several metabolic processes, it is not surprising that triglyceride-related SNPs affect at least one other lipid trait. We have attempted to address this complexity through our statistical approach.

We are unable to distinguish if only specific mechanisms of altering triglycerides affect risk for CAD. Of note, there is strong evidence that at least three mechanisms that robustly influence triglycerides – loss of \(APOA5 \) function, loss of \(TRIB1 \) function, and gain of \(APOC3 \) function – increase risk for CAD.

In summary, we utilize common polymorphisms and employ a statistical framework to dissect causal influences among a set of correlated biomarkers. By applying this framework to a correlated set of plasma lipid measures and CAD risk, we suggest a causal role of triglyceride-rich lipoproteins in the development of CAD.
Online Methods

For the association of a given SNP with a plasma lipid trait, we obtained estimates of the effect size ($\beta_{\text{TRIGLYCERIDES}}$, $\beta_{\text{LDL-C}}$ and $\beta_{\text{HDL-C}}$) and strength of association (P-value) from a meta-analysis of association results from genome-wide and custom-array genotyping – the Global Lipids Genetics Consortium (GLGC) Metabochip study (described in companion manuscript, Willer et al.20). All effect sizes are in standard deviation units from inverse normal transformed residuals of lipids after adjusting for covariates. This analysis included up to 188,578 individuals from 60 studies. For the association of a given SNP with coronary artery disease (CAD), we obtained estimates of the effect size (β_{CAD}) and strength of association (P-value) from a published GWAS study for CAD, the CARDIoGRAM study21. This study included 22,233 cases and 63,762 controls.

We selected independent SNPs associated with plasma lipids using the following criteria. First, we restricted to SNPs with association with at least one of the three lipid traits (triglycerides, LDL-C or HDL-C) at a genome-wide significance level of $P<5\times10^{-8}$. For each lipid locus – defined as a region of the genome that has a cluster of associated SNPs within one megabase from each other – we selected the strongest associated SNP (‘lead’ SNP). For loci with multiple associated SNPs, we calculated pairwise linkage disequilibrium (LD) estimates (r^2) of these SNPs using whole genome sequencing data from 85 Utah residents with ancestry from northern and western Europe (CEU) samples from the 1000 Genomes project33, and selected a second SNP if there was very low LD ($r^2<0.05$) with the lead SNP. In total, we selected 185 SNPs that met these criteria. These criteria yield a conservative estimate of the number of independent lipid SNPs. A list of effect sizes and P-values for triglycerides, LDL-C, HDL-C and CAD for the 185 selected SNPs is shown in Supplementary Table 1.

To formally investigate whether the strength of a SNP’s association with triglycerides predicts CAD risk, we performed linear regression on the effect sizes of each SNP for triglycerides ($\beta_{\text{TRIGLYCERIDES}}$), LDL-C ($\beta_{\text{LDL-C}}$), HDL-C ($\beta_{\text{HDL-C}}$) as predictor variables, and the effect sizes of CAD (β_{CAD}) as the outcome variable. To control for pleiotropic effects, we first calculated the residuals of β_{CAD} after adjusting for covariates of $\beta_{\text{TRIGLYCERIDES}}$, $\beta_{\text{LDL-C}}$ and/or $\beta_{\text{HDL-C}}$. We then performed linear regression analysis in a second model on the effect size of the primary lipid trait ($\beta_{\text{TRIGLYCERIDES}}$, $\beta_{\text{LDL-C}}$ or $\beta_{\text{HDL-C}}$) with the residuals of β_{CAD}. For example, to test for the role of LDL-C on CAD, we first calculated residuals of β_{CAD} after including as covariates $\beta_{\text{TRIGLYCERIDES}}$ and $\beta_{\text{HDL-C}}$ in our regression model. In a second regression model, we then performed association of residual β_{CAD} with $\beta_{\text{LDL-C}}$. All possible combinations of linear regression analysis was performed between $\beta_{\text{TRIGLYCERIDES}}$, $\beta_{\text{LDL-C}}$ or $\beta_{\text{HDL-C}}$ on β_{CAD} (see Table 3).

As an alternative to this residuals approach, we also tested a single model where the outcome variable of β_{CAD} was tested with the predictor variables of $\beta_{\text{TRIGLYCERIDES}}$, $\beta_{\text{LDL-C}}$ and $\beta_{\text{HDL-C}}$ jointly considered (Supplementary Table 5). We also performed several sensitivity analyses to test for the effect of using different thresholds on $\beta_{\text{TRIGLYCERIDES}}$ and $\beta_{\text{LDL-C}}$ when highlighting loci with associations for both triglycerides and LDL-C (Supplementary Table 6, 7 and 8). We used thresholds that yielded the highest number of SNPs for each statistical analysis (factor threshold of 5 in Table 1 and Table 2, and β cutoff value of 0.01 in Supplementary Table 2 and 3). Furthermore, we assessed the effect of extreme influential outliers using Cook’s D statistic34 (Supplementary Figure 4 and Supplementary Table 9) on our conditional regression models (Table 3). A list of the number of SNPs included in each of the different analyses are shown in Supplementary Table 10.
Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Affiliations

1Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
2Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
3Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
4Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
5Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
6Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
7Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
8Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, United Kingdom
9Department of Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
10Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA
11Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Ave., Boston MA 02215, USA
12Harvard Medical School, Boston MA 02115, USA
13Service of Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland
14Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
15Division of Preventive Medicine and Health Services Research, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
16Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands

Nat Genet. Author manuscript; available in PMC 2014 May 01.
21 Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
22 Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
23 Cardiology, Department of Specialities of Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
24 Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
25 Estonian Genome Center of the University of Tartu, Tartu, Estonia
26 Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
27 Department of Genetics, Washington University School of Medicine, USA
28 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
29 Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, United Kingdom
30 Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
31 Hjelt Institute, Department of Public Health, University of Helsinki, Finland
32 Centre For Paediatric Epidemiology and Biostatistics/MRC Centre of Epidemiology for Child Health, University College of London Institute of Child Health, London, United Kingdom
33 Centre for Medical Systems Biology, Leiden, the Netherlands
34 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
35 Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
36 Genome Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
37 Clinical Pharmacology, NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London, London, UK
38 Biocenter Oulu, University of Oulu, Oulu, Finland
39 Institute of Health Sciences, University of Oulu, Finland
40 Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland
41 Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
42 Department of Internal Medicine II – Cardiology, University of Ulm Medical Centre, Ulm, Germany
43 Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 7-11, 68167 Mannheim, Germany
44 Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
45 MRC Epidemiology Unit, Institute of Metabolic Science, Box 285, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
46 Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
47 Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
48 Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
49 Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland
50 Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany
51 Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians University, Munich, Germany
52 Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University of Munich, Munich, Germany
53 Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands
54 Division of Endocrinology, Children’s Hospital Boston, Boston, Massachusetts 02115, USA
55 Division of Genetics, Program in Genomics, Children’s Hospital Boston, Boston, Massachusetts 02115, USA
56 Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, 09042, Italy
57 Center for Neurobehavioral Genetics, The Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
58 Genetic Epidemiology Group, Department of Epidemiology and

Nat Genet. Author manuscript; available in PMC 2014 May 01.
Public Health, UCL, London WC1E 6BT, United Kingdom 59Department of Clinical Sciences, Genetic & Molecular Epidemiology Unit, Lund University Diabetes Center, Scania University Hospital, Malmö, Sweden 60Department of Odontology, Umeå University, Umeå, Sweden 61Department of Public Health and Primary Care, Unit of Medicine, Umeå University, Umeå, Sweden 62Dipartimento di Scienze Biomediche, Universita di Sassari, 07100 SS, Italy 63Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden 64Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden 65Clinical Research Branch, National Institute Health, Baltimore, MD, USA 66deCODE Genetics/Amgen, 101 Reykjavik, Iceland 67Department of Genetics, University of Pennsylvania - School of Medicine, Philadelphia PA, 19104, USA 68Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - School of Medicine, Philadelphia PA, 19104, USA 69Human Genetics Center, University of Texas Health Science Center - School of Public Health, Houston, TX 77030, USA 70HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 71MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London, WC1B 5JU, United Kingdom 72Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom 73Ealing Hospital, Southall, Middlesex UB1 3HW, United Kingdom 74MRC/UVRU Uganda Research Unit on AIDs, Entebbe, Uganda 75University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Level 4, Institute of Metabolic Science Box 289 Addenbrooke’s Hospital Cambridge CB2 OQQ, UK 76Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 77Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA 78Department of Experimental Medicine, University of Milano Bicocca, Italy 79MedStar Health Research Institute, 6525 Belcrest Road, Suite 700, Hyattsville, MD 20782, USA 80Research Centre on Public Health, University of Milano Bicocca, Italy 81Department of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Str, Athens, Greece 82Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg 85764, Germany 83Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg 85764, Germany 84MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK 85The Laboratory in Mjodd, 108 Reykjavik, Iceland 86Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden 87Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA 88Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany 89Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LJ, United Kingdom 90Department of Public Health and Clinical Medicine, Nutritional research, Umeå University, Umeå, Sweden 91Department of Clinical Sciences/Obs Gyn, Oulu University Hospital, Oulu, Finland 92MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland, United Kingdom 93Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA 94Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany 95Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan 96Hannover Medical School, Hannover Medical School, Hannover 30625, Germany 97Department of Vascular Medicine, Academic Medical Center,

Nat Genet. Author manuscript; available in PMC 2014 May 01.
Amsterdam, The Netherlands Clinical Gerontology Unit, University of Cambridge, Cambridge, United Kingdom Kuopio Research Institute of Exercise Medicine, Kuopio, Finland Division of Endocrine and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, School of Medicine, National Yang-Ming University, Taipei, Taiwan Diabetes Prevention Unit, National Institute for Health and Welfare, 00271 Helsinki, Finland The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, USA The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, USA The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom Institute for Medical Informatics and Biometrics, University of Dresden, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany Laboratory of Genetics, National Institute on Aging, Baltimore, MD21224, USA Department of Clinical Pharmacology, University of Tampere School of Medicine, Tampere 33014, Finland Department of Internal Medicine, Päijät-Häme Central Hospital, Lahti, Finland Division of Cardiology, Helsinki University Central Hospital, Helsinki, Finland Department of Clinical Biochemistry, Landspitali University Hospital, 101 Reykjavik, Iceland Department of Medical Genetics, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland Genetic Epidemiology Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom Department of Statistical Sciences, University College of London, London, United Kingdom National Institute for Health and Welfare, Oulu, Finland Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Building 421, Translational Research Center, Philadelphia, PA 19104-5158, USA Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Building 421, Translational Research Center, Philadelphia, PA 19104-5158, USA Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands Department of Clinical Sciences/Clinical Chemistry, University of Oulu, Oulu, Finland National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria School of International Development, University of East Anglia, Norwich NR4 7TJ, United Kingdom University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland INSERM UMRS 937, Pierre and Marie Curie University, Paris, France Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands LifeLines Cohort Study, University of Groningen, University Medical Center Groningen, The Netherlands Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands Department of Biological Psychology, VU Univ, Amsterdam, The Netherlands Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA Department of Epidemiology and Public Health, EA 3430, University of
Strasbourg, Faculty of Medicine, Strasbourg, France 135Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA 136Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy 137Chemical Pathology, Department of Pathology, University of the West Indies, Mona, Kingston 7, Jamaica 138Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la Corniche 10, 1010 Lausanne, Switzerland 139Division of Endocrinology and Diabetes, Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany 140Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 141Department of Medicine III, University of Dresden, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany 142Ministry of Health, Victoria, Republic of Seychelles 143Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland 144Imperial College Healthcare NHS Trust, London, United Kingdom 145Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA 146Department of Medicine, University of California Los Angeles, Los Angeles, California, USA 147Department of Preventive Medicine and Epidemiology, Loyola University Medical School, Maywood, Illinois 60153, USA 148Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City, Philippines 149Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, France 150Department of Psychiatry, University of California, Los Angeles, USA 151Department of Clinical Sciences, Lund University, SE-20502, Malmö, Sweden 152Department of Medicine, Helsinki University Hospital, FI-00029 Helsinki, Finland 153Icelandic Heart Association, Kopavogur, Iceland 154Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden 155Laboratory of Epidemiology, Demography, and Biometry, National Institute on Ageing, Bethesda, MD, USA 156Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan 157Cardiovascular Genetics, BHF Laboratories, Institute Cardiovascular Science, University College London, London, United Kingdom 158Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA 159HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway 160Kaiser Permanente, Division of Research, Oakland, CA, USA 161Unit of Primary Care, Oulu University Hospital, Oulu, Finland 162Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland 163Department of Clinical Physiology, University of Tampere School of Medicine, Tampere 33014, Finland 164Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland 165Institute of Clinical Medicine, Department of Medicine, University of Oulu and Clinical Research Center, Oulu University Hospital, Oulu, Finland 166National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, London, United Kingdom 167Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Junior Way, Oakland, CA 94609, USA 168Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland 169Institute of Regional Health Services Research, University of Southern Denmark, Odense, Denmark 170Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark 171Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Finland 172Department of Medical Sciences, Uppsala University, Uppsala, Sweden 173Queensland Institute of Medical Research, Locked Bag 2000, Royal Brisbane Hospital, Queensland 4029, Australia 174Synlab Academy, Synlab Services GmbH, Gottlieb-Daimler-Straße 25, 68165 Mannheim, Germany
Acknowledgments

We thank the Global Lipids Genetics Consortium for early access to the association results of the Metabochip study. S.Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital (MGH), the Howard Goodman Fellowship from MGH, the Donovan Family Foundation, R01HL107816, and a grant from Fondation Leducq. R.D. is supported by a Banting Fellowship from the Canadian Institutes of Health Research. G.P. is supported by Award Number T32HL007208 from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health.

References

Sequence accession numbers

- **ANGPTL3** (NM_014495), **APOB** (NM_000384), **GCKR** (NM_001486), **TIMD4** (NM_138379), **HLA-B** (NM_005514), **TRIB1** (NM_025195), **ABCA1** (NM_005502), **APOA1** (NM_000039), **CETP** (NM_000078), **CILP2** (NM_153221), **MIR148A** (NR_029597), **GPAM** (NM_020918), **FADS1-2-3** (NM_013402-NM_004265-NM_021727), **APOE** (NM_000041), **APOA5** (NM_052968), **APOCH** (NM_000040)

Disclosures

CHS

Bruce Psaty serves on the DSBM of a clinical trial funded by the manufacturer (Zoll), and he serves on the Steering Committee of the Yale Open-Data Project funded by the Medtronic.

CoLaus

Peter Vollenweider received an unrestricted grant from GSK to build the CoLaus study

deCODE

Authors affiliated with deCODE Genetics/Amgen, a biotechnology company, are employees of deCODE Genetics/Amgen

GLACIER

Inês Barroso and spouse own stock in GlaxoSmithKline and Incyte Ltd.
S. Kathiresan serves on scientific advisory boards for Merck, Celera, American Genomics and Catabasis. He has received unrestricted research grants from Merck and Pfizer.

Author Contributions

R.D. carried out primary data analyses and prepared the supplementary information. R.D. and C.G. prepared figures and tables. C.W., E.M.S., S.Sebanti, G.R.A. contributed meta-analysis results. R.D., M.J.D, B.M.N., S.Kathiresan contributed to the design and conduct of the study. R.D., M.J.D, B.M.N., S.Kathiresan wrote the manuscript.

All authors contributed to the research and reviewed the manuscript.

Design, management and coordination of contributing cohorts

Genotyping of contributing cohorts

Nat Genet. Author manuscript; available in PMC 2014 May 01.
Phenotype definition of contributing cohorts

Primary analysis from contributing cohorts

C. Song, E.I.; (PROMIS) J.D., D.F.F., K. Stirrups; (Rotterdam Study) A.I.; (SardiNIA)
C. Sidore, J.L. Bragg-Gresham, S. Sanna; (SCARFSHEEP) R.J.S.; (SEYCHELLES) G.B.E.,
M. Bochud; (SUVIMAX) T.J.; (Swedish Twin Reg.) C. Song, E.I.; (TAICHI) D. Absher,
(TWINGENE) A. G., E. I.; (ULSAM) C. Song, E. I., S. G.; (WGHS) D. I. C.; (Whitehall II)
S. Shah
Figure 1. Effect of a single nucleotide polymorphism on triglycerides, low-density lipoprotein cholesterol, and risk for coronary artery disease
Black dots represent SNPs with CAD $P<0.001$; B. Red dots represent SNPs with $0.01 < CAD P < 0.001$; C. Grey dots represent CAD $P>0.10$). Loci strongly associated with CAD tend to have consistent directions for both triglycerides and LDL-C (bottom left and top right quadrants). In contrast to the grey points, the black and red points are concentrated in the bottom left and top right quadrants. Betas are in standard deviation units. SNPs with $-0.10 < \beta_{\text{LDL-C}} < 0.10$ and $-0.10 < \beta_{\text{TRIGLYCERIDES}} < 0.10$ are shown.
Table 1

SNPs with consistent direction of genetic effects on LDL-C and triglycerides and their subsequent relationship to risk for CAD.

<table>
<thead>
<tr>
<th>Locus</th>
<th>rs ID</th>
<th>A1</th>
<th>β_{LDL-C}</th>
<th>P</th>
<th>$\beta_{TRIGLYCERIDES}$</th>
<th>P</th>
<th>β_{CAD}</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGPTL3</td>
<td>rs4587594</td>
<td>A</td>
<td>-0.049</td>
<td>3×10^{-37}</td>
<td>-0.069</td>
<td>3×10^{-87}</td>
<td>0.017</td>
<td>0.26</td>
</tr>
<tr>
<td>APOB</td>
<td>rs1367117</td>
<td>A</td>
<td>0.12</td>
<td>2×10^{-196}</td>
<td>0.025</td>
<td>3×10^{-12}</td>
<td>0.035</td>
<td>0.02</td>
</tr>
<tr>
<td>GCKR</td>
<td>rs3817588</td>
<td>T</td>
<td>0.026</td>
<td>3×10^{-8}</td>
<td>0.067</td>
<td>7×10^{-58}</td>
<td>0.034</td>
<td>0.08</td>
</tr>
<tr>
<td>TIMD4</td>
<td>rs6882076</td>
<td>T</td>
<td>-0.046</td>
<td>5×10^{-33}</td>
<td>-0.029</td>
<td>1×10^{-16}</td>
<td>-0.021</td>
<td>0.15</td>
</tr>
<tr>
<td>HLA-B</td>
<td>rs2247056</td>
<td>T</td>
<td>-0.025</td>
<td>6×10^{-9}</td>
<td>-0.038</td>
<td>2×10^{-22}</td>
<td>-0.030</td>
<td>0.06</td>
</tr>
<tr>
<td>TRIB1</td>
<td>rs2980885</td>
<td>A</td>
<td>-0.031</td>
<td>4×10^{-12}</td>
<td>-0.058</td>
<td>5×10^{-45}</td>
<td>-0.041</td>
<td>0.02</td>
</tr>
<tr>
<td>TRIB1</td>
<td>rs2954022</td>
<td>A</td>
<td>-0.055</td>
<td>4×10^{-51}</td>
<td>-0.078</td>
<td>2×10^{-124}</td>
<td>-0.056</td>
<td>6×10^{-5}</td>
</tr>
<tr>
<td>ABCA1</td>
<td>rs1883025</td>
<td>T</td>
<td>-0.030</td>
<td>1×10^{-11}</td>
<td>-0.022</td>
<td>3×10^{-8}</td>
<td>-0.014</td>
<td>0.41</td>
</tr>
<tr>
<td>APOA1</td>
<td>rs10790162</td>
<td>A</td>
<td>0.076</td>
<td>3×10^{-26}</td>
<td>0.23</td>
<td>1×10^{-276}</td>
<td>0.13</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>CETP</td>
<td>rs9989419</td>
<td>A</td>
<td>0.028</td>
<td>8×10^{-13}</td>
<td>0.024</td>
<td>3×10^{-12}</td>
<td>0.010</td>
<td>0.61</td>
</tr>
<tr>
<td>CILP2</td>
<td>rs10401969</td>
<td>T</td>
<td>0.12</td>
<td>2×10^{-40}</td>
<td>0.12</td>
<td>3×10^{-76}</td>
<td>0.11</td>
<td>2×10^{-4}</td>
</tr>
</tbody>
</table>

Shown are SNPs that have strong association with both LDL-C and triglycerides ($P<5\times10^{-8}$ for each), have consistent direction of effect size for LDL-C and triglycerides, and have a ratio of magnitude of effect size of LDL-C to triglycerides within a factor of 5. Five loci confer risk for CAD ($P<0.05$) and ten of the eleven loci show consistent direction of effect size for both lipid traits with the effect size of CAD.

A1: All beta estimates were calculated with respect to this allele.
SNPs with opposite direction of genetic effects on LDL-C and triglycerides and their subsequent relationship to risk for CAD.

<table>
<thead>
<tr>
<th>Locus</th>
<th>rs ID</th>
<th>A1</th>
<th>β_{LDL-C}</th>
<th>P</th>
<th>$\beta_{TRIGLYCERIDES}$</th>
<th>P</th>
<th>β_{CAD}</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIR148A</td>
<td>rs4722551</td>
<td>T</td>
<td>-0.039</td>
<td>7×10^{-16}</td>
<td>0.027</td>
<td>2×10^{-9}</td>
<td>-0.033</td>
<td>0.23</td>
</tr>
<tr>
<td>GPAM</td>
<td>rs2255141</td>
<td>A</td>
<td>0.080</td>
<td>7×10^{-14}</td>
<td>-0.021</td>
<td>1×10^{-8}</td>
<td>-0.0076</td>
<td>0.63</td>
</tr>
<tr>
<td>FADS1-2-3</td>
<td>rs1535</td>
<td>A</td>
<td>0.053</td>
<td>3×10^{-43}</td>
<td>-0.046</td>
<td>1×10^{-40}</td>
<td>0.0019</td>
<td>0.90</td>
</tr>
<tr>
<td>APOE</td>
<td>rs7254892</td>
<td>A</td>
<td>-0.49</td>
<td>$8 \times 10^{-38.5}$</td>
<td>0.12</td>
<td>4×10^{-31}</td>
<td>-0.14</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Shown are SNPs that have strong association with both LDL-C and triglycerides ($P < 5 \times 10^{-8}$ for each), but have opposite direction of effect size for LDL-C and triglycerides, and have a ratio of magnitude of effect size of LDL-C to triglycerides within a factor of 5. Four SNPs displayed this pattern and none showed significant association with CAD (all $P > 0.05$).

A1: All beta estimates were calculated with respect to this allele.
Table 3

Association of the strength of a SNP's effect on plasma lipids with its strength of effect on CAD risk.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Predictor</th>
<th>Covariate</th>
<th>Beta</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>βCAD</td>
<td>βLDL-C</td>
<td>-</td>
<td>0.41</td>
<td>0.039</td>
<td>4×10^{-20}</td>
</tr>
<tr>
<td>βCAD</td>
<td>βLDL-C</td>
<td>βHDL-C</td>
<td>0.38</td>
<td>0.039</td>
<td>9×10^{-19}</td>
</tr>
<tr>
<td>βCAD</td>
<td>βLDL-C</td>
<td>βTRIGLYCERIDES</td>
<td>0.40</td>
<td>0.034</td>
<td>1×10^{-23}</td>
</tr>
<tr>
<td>βCAD</td>
<td>βLDL-C</td>
<td>βHDL-C, βTRIGLYCERIDES</td>
<td>0.38</td>
<td>0.034</td>
<td>2×10^{-22}</td>
</tr>
<tr>
<td>βCAD</td>
<td>βHDL-C</td>
<td>-</td>
<td>-0.18</td>
<td>0.052</td>
<td>0.0006</td>
</tr>
<tr>
<td>βCAD</td>
<td>βHDL-C</td>
<td>βLDL-C</td>
<td>-0.12</td>
<td>0.041</td>
<td>0.005</td>
</tr>
<tr>
<td>βCAD</td>
<td>βHDL-C</td>
<td>βTRIGLYCERIDES</td>
<td>-0.09</td>
<td>0.048</td>
<td>0.057</td>
</tr>
<tr>
<td>βCAD</td>
<td>βHDL-C</td>
<td>βLDL-C, βTRIGLYCERIDES</td>
<td>-0.04</td>
<td>0.037</td>
<td>0.35</td>
</tr>
<tr>
<td>βCAD</td>
<td>βTRIGLYCERIDES</td>
<td>-</td>
<td>0.44</td>
<td>0.074</td>
<td>2×10^{-8}</td>
</tr>
<tr>
<td>βCAD</td>
<td>βTRIGLYCERIDES</td>
<td>βLDL-C</td>
<td>0.42</td>
<td>0.057</td>
<td>5×10^{-12}</td>
</tr>
<tr>
<td>βCAD</td>
<td>βTRIGLYCERIDES</td>
<td>βHDL-C</td>
<td>0.36</td>
<td>0.074</td>
<td>3×10^{-6}</td>
</tr>
<tr>
<td>βCAD</td>
<td>βTRIGLYCERIDES</td>
<td>βLDL-C, βHDL-C</td>
<td>0.36</td>
<td>0.057</td>
<td>1×10^{-9}</td>
</tr>
</tbody>
</table>

Residuals for βCAD were calculated after adjustment of a SNP’s effect on the denoted lipid trait. A total of 185 SNPs identified from GWAS for LDL-C, HDL-C and triglycerides were included in regression analysis. βLDL-C, βHDL-C, and βTRIGLYCERIDES represent the effect sizes for a SNP on LDL-C, HDL-C and triglycerides in the GWAS meta-analysis for lipids. Regression was performed with the predictor variable of the effect size on lipid traits (β from predictor column) and the outcome variable of residual CAD effect size after adjusting for covariates. SE: standard error.