A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n. (Annelida, Lumbricidae) - description based on morphological and molecular data

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.3897/zookeys.399.7273

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406906

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
A new earthworm species within a controversial genus: *Eiseniona gerardoi* sp. n. (Annelida, Lumbricidae) - description based on morphological and molecular data

Darío J. Díaz Cosín, Marta Novo, Rosa Fernández, Daniel Fernández Marchán, Mónica Gutiérrez

Abstract

The morphological and anatomical simplicity of soil dwelling animals, such as earthworms, has limited the establishment of a robust taxonomy making it sometimes subjective to authors’ criteria. Within this context, integrative approaches including molecular information are becoming more popular to solve the phylogenetic positioning of conflictive taxa. Here we present the description of a new lumbricid species from the region of Extremadura (Spain), *Eiseniona gerardoi* sp. n. The assignment to this genus is based on both a morphological and a phylogenetic study. The validity of the genus *Eiseniona*, one of the most controversial within Lumbricidae, is discussed. A synopsis of the differences between the type species and the west-European members of the genus is provided.
Keywords
Earthworms, lumbricids, *Eiseniona*, species description

Introduction

Earthworm fauna is still poorly known within vast areas of the Iberian Peninsula. The available data indicate the common presence of cosmopolitan species such as *Aporrectodea trapezoides* (Dugès, 1828) or *A. rosea* (Savigny, 1826). In contrast, other species show more restricted distributions but are locally abundant (Díaz Cosín et al. 1992, Rodríguez et al. 1997). The region of Extremadura is one of the best documented, thanks to the work by Sánchez et al. (1998, 1999). These authors found that *A. trapezoides* and *A. rosea* are the dominant species, while other species can be locally important in river sides and flooded areas, such as the species of the complex *Allolobophora molleri* Rosa, 1889 sensu Barros et al. (1992) that was placed in *Eophila* by Blakemore (2008).

An intensive earthworm sampling campaign was accomplished between 2009 and 2012 in the surroundings of Plasencia (North of Cáceres, Extremadura, Spain) within the European Project “BioBio, Biodiversity Indicators for European Farming Systems, Indicators for Biodiversity in Organic and Low Input Farming Systems”. The Spanish team within this project studied the potential use of soil fauna as bioindicators in *dehesas* (i.e., Mediterranean grazed open woodlands of *Quercus ilex* Linné and olive groves under different types of land management. Among the several thousands of earthworm specimens collected during this sampling campaign, nineteen individuals sampled close to El Bronco (Cáceres, Spain) are of special taxonomical interest as they represent a new species as described in the present study.

The taxonomical assignment to a genus level in earthworm lumbricid taxonomy is confusing and varies regarding the criteria used by the different authors. In addition, it lacks robustness because it is not necessarily based on phylogenetic relationships. The number of genera proposed for the family Lumbricidae varies from five when reviewed by Michaelsen (1900) (*Eiseniella, Eisenia, Helodrilus* –with four subgenera – *Octolasium* and *Lumbricus*) to 44 proposed by Blakemore (2008) or 45 considered by Qiu and Bouché (1998a), including 29 subgenera. Some of these genera are well-defined and characterized by consistent and stable characters. A good example is the genus *Lumbricus*, with a tanylobic prostomium, paired chaetae and reddish body colour. Unfortunately, this is not the case in the great majority of the other genera, as often overlapping or slightly variable characters are used to define them. Therefore, the proper assignment to the level of genus is challenging and sometimes even subjective, but should nevertheless comply with ICZN requirements to be consistent with its type-species.

Soil dwelling animals are subject to a series of limitations in their corporal design. This is reflected in earthworms that present a very simple body externally without many differential morphological characters. The position of clitellum and tubercula pubertatis, type of prostomium, pigmentation, chaetal arrangement, number and position of spermathecae, seminal vesicles, Morren’s glands, nephridia or typhosole are
A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n...

some of the most widely-used morphological characters in earthworm systematics. Nevertheless, these characters may probably have evolved as adaptations to a particular soil environment or independently in several phylogenetic lineages, therefore hindering establishment of a robust taxonomical system based on morphology. The solution to this taxonomical chaos would be the phylogenetic resolution of earthworms based on molecular and morphological studies. This would allow the generation of stable and robust phylogenies in which systematic classifications are properly defined. Unlike earthworms from the family Hormogastridae (e.g., Novo et al. 2011), only some attempts have been done to study the phylogenetic relationships of lumbricids (e.g., Briones et al. 2009). Nonetheless, these studies are limited because of incomplete sampling or limited number of genes sequenced. Fortunately, a multigene phylogeny of lumbricid earthworms represented by a high number of species and genera is about to be published (Pérez Losada et al., pers. comm.) and hopefully it will help to convert lumbricid systematics into a more stable system.

In the context of this controversial classification of genera in lumbricid earthworms, one of the most conflictive ones is Eiseniona (Omodeo, 1956). This genus was established by Omodeo (1956) and was accepted by some authors (Álvarez 1970; Qiu and Bouché 1998a, d; Omodeo and Rota 2004; Rota 2013) but rejected by others (Bouché 1972; Zicsi 1982; Easton 1983; Mrsic 1991 and Blakemore 2008). Most of the species included in Eiseniona are distributed in Italy, Greece and other countries of Central or Eastern Europe. Some examples of species described in Western Europe are E. paradoxa (Cognetti, 1904) and E. gavarnica (Cognetti, 1904) in France [both retained in genus Orodrilus Bouche, 1972 by Blakemore (2008)] and in the Iberian Peninsula Eiseniona olivirae (Rosa, 1894), Eiseniona carpetana (Álvarez, 1970) and Eiseniona albolineata Díaz Cosín et al., 1989 [the former retained in Allolobophora Eisen, 1874 and the latter two retained in genus Iberoscolex Qiu & Bouche, 1998 by Blakemore (2008)].

Despite the extended use of morphological and anatomical characters in earthworm taxonomy, during the last years the concept of integrative taxonomy as a tool to describe and delimit species has become more popular. This concept, consisting of a multidisciplinary approach including the morphological, molecular, ecological and geographical available data, has been applied to earthworms (e.g., Novo et al. 2012 for hormogastrids, Blakemore and Kupriyanova 2010, Blakemore 2010, Blakemore et al. 2010, Blakemore and Grygier 2011 and Blakemore 2012a for lumbricids) The implementation of molecular techniques has allowed presumption of a high cryptic diversity in earthworms completely unknown when based on traditional systematic methods (e.g. King et al. 2008, Novo et al. 2009, 2010, Dupont et al. 2011, Fernández et al. 2011), but see critique in Blakemore et al. (2010). In addition, molecular barcoding has become a widely used technique for taxonomical evaluation, allowing interesting discoveries such as the proposed separation of L. terrestris and L. herculeus (James et al., 2010), but see correction by Blakemore (2013).

In this context, this manuscript aims to describe a new lumbricid species (E. gerardoi sp. n.) based on morphological, molecular and ecological data.
Material and methods

Earthworm specimens and sampling points

Nineteen individuals were collected at four different but geographically-close sampling points nearby El Bronco (Cáceres, Extremadura, Spain). Soil was a sandy-loam on underlying slate (Figure 1); collectors G. Moreno, E. Juárez.

D4 Le1: 2 ex. (1 adult, 1 subadult) (40°12'42.76"N, 6°19'0.68"W). Altitude 430 m. Grazed dehesa with Quercus ilex. Mean precipitation 876 mm. Present plant species: Eleocharis palustris, Pulicaria paludosa. Other earthworm species: A. molleri 1 ex. (0.75 g).

D4 S1: 2 ex. (2 subadults) (40°12'41.51"N, 6°19'1.20"W). Altitude 430 m. Grazed dehesa with Quercus ilex. Mean precipitation 879 mm. Present plant species: Festuca ampla, Trifolium dubium. Other earthworm species: A. molleri 2 ex. (2.02 g), A. trapezoides 3 ex. (2.01 g).

D5 P2: 13 ex. (5 adults, 8 subadults) (40°13'38.80"N, 6°18'36.04"W). Altitude 428 m. Grazed dehesa with Quercus ilex. Mean precipitation 923 mm. Present plant species: Juncus bufonius, Conyza sp. Other earthworm species: A. molleri 6 ex. (5.32 g), A. rosea 4 ex (1.05 g), A. trapezoides 32 ex (18.91 g).

Molecular sequencing and analyses

The following molecular regions were amplified by the methods described in Novo et al. (2011): mitochondrial subunit I of cytochrome c oxidase (COI), 16S rRNA and tRNA Leu, Ala, and Ser (16S-tRNAs), two nuclear ribosomal genes (complete 18S and a portion of 28S) and two nuclear protein-encoding genes (histones H3 and H4).

In order to have an evaluation of the selection of species to include in the molecular analyses, M. Pérez-Losada and J. Domínguez (Universidad de Vigo) kindly compared the sequences of 16S and 28S rRNA from the specimens included in this study with an unpublished database that includes most lumbricid genera. This comparison provided the first evidence indicating that the new species was closely related to E. albolineata and E. oliveirae. As a second method, we collected some individuals belonging to E. albolineata and sequenced the mitochondrial gene COI. In addition, we retrieved from GenBank all available COI sequences from as many different lumbricid species as possible to date (Table 2), although many of these have their identities unconfirmed. We excluded from the analyses the sequenced
A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n...

75 genes in the public databases for which information is scarce and biased. Bayesian phylogenetic inference was then explored with the COI sequences as described in Fernández et al. (2012).

Uncorrected pairwise differences were calculated between these species with Arlequin 3.5 (Excoffier et al. 2005).

Data resources

The data underpinning the analysis reported in this paper are deposited in the Dryad Data Repository at doi: 10.5061/dryad.5k76c
Table 2. Taxa and specimens included in the molecular analysis. GenBank accession numbers are indicated. Species names were literally taken from GenBank. The correct name [after Blakemore (2008)], of the species marked with asterisk is, *Bimastos parvus*, *Allolobophoridae eiseni* and *Iberoscolex albolineatus*.

<table>
<thead>
<tr>
<th>Species</th>
<th>COI GeneBank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allolobophora chlorotica</td>
<td>GU013806</td>
</tr>
<tr>
<td>Aporrectodea longa</td>
<td>JN850544</td>
</tr>
<tr>
<td>Aporrectodea rosea</td>
<td>FJ214232</td>
</tr>
<tr>
<td>Aporrectodea trapezoides</td>
<td>JF313567</td>
</tr>
<tr>
<td>Aporrectodea tuberculata</td>
<td>JN869877</td>
</tr>
<tr>
<td>Bimastus parvus</td>
<td>EF077605</td>
</tr>
<tr>
<td>Dendrobaena attemsi</td>
<td>FJ214224</td>
</tr>
<tr>
<td>Dendrobona octaedra</td>
<td>GU013836</td>
</tr>
<tr>
<td>Dendrobaena veneta</td>
<td>FJ214233</td>
</tr>
<tr>
<td>Dendrodrilus rubidus</td>
<td>GU013839</td>
</tr>
<tr>
<td>Eisenia andrei</td>
<td>DQ914619</td>
</tr>
<tr>
<td>Eisenia eiseni</td>
<td>AY874488</td>
</tr>
<tr>
<td>Eisenia fetida</td>
<td>EF077596</td>
</tr>
<tr>
<td>*Eiseniona albolineata</td>
<td>KF746384</td>
</tr>
<tr>
<td>Helodrilus oculatus</td>
<td>FJ377757</td>
</tr>
<tr>
<td>Hormogaster eliae</td>
<td>EF653905</td>
</tr>
<tr>
<td>Lumbricus festivus</td>
<td>FJ937290</td>
</tr>
<tr>
<td>Lumbricus rubellus</td>
<td>GU206189</td>
</tr>
<tr>
<td>Lumbricus terrestris</td>
<td>JN869936</td>
</tr>
<tr>
<td>Octodrilus juvii</td>
<td>HE611693</td>
</tr>
<tr>
<td>Octolasion cyanem</td>
<td>JQ909144</td>
</tr>
<tr>
<td>Octolasion lacteum</td>
<td>DQ092909</td>
</tr>
</tbody>
</table>

Results

The specimen with voucher number UCMLT 60000 is the designated holotype. The paratypes bear the numbers UCMLT 60001 to 60018.

Morphological description

The specimens were sketched using an Olympus binocular microscope with digital camera, dissected, and described.

Taxonomic results

Phylum Annelida Lamarck, 1802
Subphylum Clitellata Michaelson, 1919
Class Oligochaeta Grube, 1850
Order Haplotaxida Michaelson, 1900
Family Lumbricidae Rafinesque-Schmaltz, 1815
Genus *Eiseniona* Omodeo, 1956

Type-species. *Allolobophora handlirschi* Rosa, 1897 by original designation.

Eiseniona gerardoi Díaz Cosín, sp. n.

http://zoobank.org/E14BF86D-EFF1-47E7-BE5B-6F59ACCDCD4B

http://species-id.net/wiki/Eiseniona_gerardoi

Material examined. *Holotype.* Adult (Catalog # UCMLT 60000), 40°13'38.80"N, 6°18'36.04"W (“spanish dehesa” mediterranean grazed open woodlands of *Quercus ilex*), near El Bronco (Cáceres, Spain), leg. G. Moreno, E. Juárez, April 2010.

Paratypes. 18 specimens (Catalog # UCMLT 60001 to 60018), leg G. Moreno, E. Juárez, April 2010.

Morphological description. *External morphology* (Figures 2, 3). Length of mature specimens: 21–40 mm, \bar{x}: 28 mm, SD: 5.6 mm, holotype: 31 mm. Diameter: clittellar \bar{x}: 2.5 mm, SD: 0.4 mm, holotype: 2.5 mm, postclitellar \bar{x}: 1.8 mm, SD: 0.2 mm, holotype: 1.7 mm. Body cylindrical in the anterior part, wider at clittellum and trapezoidal or rectangular in postclitellar region, with chaetae in the corners. Number of segments: 89 to 124, \bar{x}: 109.5, SD: 10.7, holotype: 117. Weight (fixed specimens): 38 to 64 mg, \bar{x}: 52 mg, SD: 13 mg, holotype 62 mg.

Colour: When alive, the anterior part is red-brownish showing noticeable antero-posterior and dorso-ventral gradients. Cream-coloured or whitish clittellum. After a long period within alcohol the red pigment is gradually lost and transformed into brown of different intensities (Figure 2).

Prostomium epilobic \pm 1/3. No longitudinal lines are noticeable in segments 1 and 2. First dorsal pore in (3/4) 4/5. Nephridial pores inconspicuous in a row slightly above b. Spermathecal pores at intersegments 9/10 and 10/11, at the level of chaetae cd (Figure 3).

Male pores as vertical grooves in the segment 15 between chaetae b and c showing small porophores with whitish areolae shape. Female pores in 14 slightly above b. Chaetae paired, interchaetal ratio at segment 40, aa: 16, ab: 1.4, bc: 7, cd: 1, dd: 24. Chaetae are simple with a wider base and a sharp and bent distal end. (Figure 4).

Clittellum white or cream-coloured, saddle-shaped extending over 22,23–29,30, in the holotype 1/n 22, 23–29. When well developed it invades the ventral area and the intersegmental lines are hard to distinguish. Tubercula pubertatis extended as a belt in 23-(27)28,29, in the holotype in 23–29. Occasionally they appear folded or wrinkled. No noticeable papillae are present in any of the specimens.

Internal anatomy. Slightly thickened anterior septa. Last pair of oesophageal hearts in 11. Morren’s glands with small diverticula in 10 and little lamellae in 11 and 12. Crop in 15,16, gizzard in (17)18,19. First section of the intestine is not dilated. Simple typhlosole pleated, which begins in 20, 21 and ends near the anus leaving only 10–15 atyphlosolate segments.
Figure 2. External view of the anterior part of the body of *E. Gerardoi*.

Figure 3. Schematic view of the external morphology of *E. Gerardoi*.

Figure 4. Chaetae ab from segment 40–41 (DIC Nomarski).
A new earthworm species within a controversial genus: *Eiseniona gerardoi* sp. n...

Fraying testes and iridescent and very large seminal funnels in 10 and 11. Three pairs of seminal vesicles in 9, 11 and 12. The last pair is very large pushing back the septum 12/13. Large ovaries and female funnels in 13, ovarian receptacles (ovisacs) in 14. Two pairs of very large and iridescent spermathecae in segments 10 and 11.

In the posterior region of the body the nephridia are much enlarged, the nephridial bladders are curved and J-shaped with curved section 1/3 of total length. (Figure 5).

An important characteristic is the presence of dense white glands on top of the dorsal vessel initially around segment 20 and externally visible as a whitish line extending to the end of the body. (Figure 6).

Distribution. Known only from its type locality.

Etymology. The species is dedicated to Prof. Gerardo Moreno from Centro Universitario de Plasencia, Universidad de Extremadura, Spain. He is the PI for the Bio-Bio program in Spain and collected the specimens described in this paper.
Molecular characters. Sequences of the used genes have been deposited in GenBank (see Table 1). According to Drs. Pérez Losada and Domínguez (pers. comm.), the 16S and 28S sequences of *E. gerardoi* clustered with the two species classified as *Eiseniona*, *E. albolineata* and *E. oliveirae*.

The phylogenetic tree presented here, based on the COI gene and including some of the available species in GenBank (Figure 7), shows that *E. gerardoi* specimens form a highly supported group (1.00 posterior probability, 0.99 bootstrap) with *E. albolineata*. The two species share the presence of whitish glands on top of the dorsal vessel. COI genetic divergence (uncorrected p-distances) between *E. albolineata* and *E. gerardoi* is 14.09%, and the intraspecific variability of the latter is 2.81% showing a very close relationship.

Habitat and ecological characters. All the soils from sampling sites have been developed on slates and are sandy-loams. Precipitation corresponds to the typical values of intermediate semi-humid Spain. The associated species *A. molleri* is always present and this species is bound to terrains that are flooded during several months per year. Additionally, the presence of plants typical from wetlands, such as *Eleocharis palustris*, *Pulicaria paludosa* or *Juncus bufonius* indicates that in these sites there is enough humidity during most of the year, which supports hygrophile communities. Nevertheless they could be desiccated in the summer, which would force the earthworms to
undergo aestivation in order to survive to these dry periods, resuming activity when humidity is restored. All these details are compatible with the diagnosis of the genus by Omodeo (1956) as he highlighted the semiaquatic characteristics of Eiseniona.

Discussion

Eiseniona genus was created by Omodeo (1956) for the inclusion of five earthworm species presenting small to medium sizes, number of segments inferior to 170, closely paired chaetae, Morren’s glands with lateral bags in segment 10 and red or light pink subepidermic pigment (absent in some instances). Their clitella start between segments 23 and 27 and tubercula pubertatis appear as continuous bands. Male pores lack the glandular atrium (but show a small atrium in some instances) and papillae are present in segments near the spermathecae and male pores. They show three or four pairs of seminal vesicles, the last reaching to segments 13 or 14. Their habitat is semiaquatic. Omodeo and Rota (2004) subsequently added or specified other characters such as: “body central and posterior parts with trapezoidal cross section, with the pairs of chaetae at the four corners, nephridial bladders as an inverted J with the ental limb oriented backward, typhlosole cylindrical “en accordéon” spermathecae large, intracoelomic with openings in 9/10 and 10/11, three pairs of seminal vesicles in IX, X, XI the latter being very large, protruding in XIII”.

The species originally included in this genus were E. handlirschi (Rosa, 1897) [the designated type, now placed in Aporrectodea according to Blakemore (2008) and Csu-zdi (2012)], E. oliveirae (Rosa, 1893), E. intermedia (Michaelsen, 1901), E. paradoxa (Cognetti, 1904) and E. sineporis (Omodeo, 1952). Two new species from Spain were included afterwards, E. carpetana Álvarez, 1970 and E. albolineata Díaz Cosín et al. 1989, Qiu and Bouché (1998a, d) accept the genus Eiseniona in which they include 17 species or subspecies, most of them distributed in the Balkans. However, they place albolineata and carpetana within the genus Iberoscolex; gavarnica and paradoxa within Orodrilus and oliveirae within Koinodrilus Qiu and Bouché (1998b, c). The diagnosis of Eiseniona by these authors is slightly different from the one by Omodeo and Rota (2004), mainly regarding details such as pigment absence, pinnate typhlosole or the presence of four pairs of seminal vesicles in 9, 10, 11 and 12.

Blakemore (2008) did not accept the genus Eiseniona and considered it as a synonym of Aporrectodea. This author highlighted that it was neither accepted by Bouché (1972), who included hemiandric forms such as paradoxa and gavarnica within the genus Orodrilus and the remainder within Allolobophora. Neither was it accepted by Zicsi (1981, 1982b) nor Mrsic (1991), who note that “the diagnosis of this genus is deficient (the species are hard to distinguish from those of the genus Aporrectodea), so I ignore it.” It is evident that the validity of Eiseniona is controversial and in this sense Blakemore (2008) stresses that “These issues need to be thoroughly resolved, with reference to types, before we can consider restoration of either Eiseniona or Koinodrilus”.
Phylogenies recovered by molecular methods can aid to solve this problem by providing key information to support systematics and therefore approaching a natural system (Novo et al. 2011). On this topic Blakemore (2012a) states the need of basing the molecular analyses on the types of the genera. A molecular comparison with the type species *E. handlirschi* could not be carried out in this study due to lack of material. However, in the phylogenetic trees we present here, *E. gerardoi* clustered together with *E. albolineata* and it is clearly differentiated from the other genera. The assignment of this new species to the genus *Eiseniona* is further supported by the fact that analyses with 16S and 28S regions place it near *E. albolineata* and *E. oliveirae* within an unpublished phylogeny of lumbricids that includes most of their genera (Pérez Losada and Domínguez pers. comm.). Hence, the new species can be located within an explicit phylogenetic context, near *albolineata* and *oliveirae* regardless of their generic assignment.

Some of the features of our specimens, such as the lack of papillae or the presence of porophores in segment 15, are different from the ones described for most *Eiseniona*. However male porophores of *E. gerardoi* are relatively small and Omodeo’s (1956) indicates in its diagnosis that in some instances small porophores might be present in the genus. Apart from that, most of the traits of *E. gerardoi* are compatible with those originally diagnosed as the generic features of *Eiseniona*. Moreover *E. gerardoi* shares with *E. albolineata* the white tissue developed on the dorsal vessel.

Considering all this data, we opt to include this new species, at least provisionally, within *Eiseniona* because it is the less troublesome position within the current genera system for Lumbricidae. This is suggested not only by morphological and ecological considerations but also by the molecular data placing it near *E. albolineata* and *E. oliveirae*.

The phylogeny of species historically included within *Iberoscolex*, *Koinodrilus* and *Eiseniona* will need to be thoroughly revised in the future, in order to clarify whether they represent good genera and to find a robust grouping of the species within genera, which does not seem possible exclusively with morphological tools. It is also noteworthy that within *Eiseniona* there is a group of species from Southern France and Iberian Peninsula and another one from Italy, Greece and Central and Eastern Europe. Future studies will unravel whether these two groups constitute independent phylogenetic units susceptible to be taxonomically divided.

A considerable effort is still necessary to establish a robust genera system based on phylogeny within lumbricids. This system should integrate the study of mitochondrial and nuclear markers with morphological characters and include representatives from all the proposed genera and type species. Until the moment when such big picture is available controversy on lumbricids’ genera system will continue and different authors will apply subjective criteria.

Differences with other species of the genus

The most similar species to *E. gerardoi* regarding clitellum position and tubercula pubertatis is *E. intermedia*, but the last has a much greater size, its tubercula pubertatis start in
A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n...

Table 3. Comparison of species living in the western part of the geographic range of Eiseniona. The type species E. handlirschi is included and the hemiandric E. paradoxa and E. gavarnica are excluded.

<table>
<thead>
<tr>
<th></th>
<th>E. albolineata</th>
<th>E. carpetana</th>
<th>E. oliveirae</th>
<th>E. gerardoi</th>
<th>E. handlirschi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>78–122 matures</td>
<td>52–74</td>
<td>85–110 *</td>
<td>21–40</td>
<td>50–60*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30–86**</td>
<td></td>
<td>50–170**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45***</td>
<td></td>
<td>50–95***</td>
</tr>
<tr>
<td>Segments</td>
<td>138–172</td>
<td>129–150</td>
<td>167 *</td>
<td>89–124</td>
<td>120–130*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(77) 100–131**</td>
<td>115–163**</td>
<td>78–119***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>Grey, posterior white line</td>
<td>Rose violet</td>
<td>Light flesh tone*</td>
<td>Red-brownish “in vivo”, posterior white line</td>
<td>Colourless*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown or violet “in vivo”, greyish when fixed**</td>
<td></td>
<td>Colourless**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown, red***</td>
<td></td>
<td>Pale reddish***</td>
</tr>
<tr>
<td>Chetae</td>
<td>Separate 2.5 - 1.2 - 2.2 - 1 - 5</td>
<td>Separate</td>
<td>Closely paired*</td>
<td>Paired</td>
<td>Closely paired 8 – 1.15 – 6 – 1 – 20***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.7 – 1.3 – 6.2 – 1 – 11.8**</td>
<td>16 - 1.4 - 7 - 1 - 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closely paired 9 – 1.5 – 7.5 – 1 – 18***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First dorsal pore</td>
<td>(4/5) 5/6</td>
<td>4/5</td>
<td>4/5</td>
<td>(3/4) 4/5</td>
<td>From 4/5 , usually 19/20** 17/18 to 23/24***</td>
</tr>
<tr>
<td>Spermathecae</td>
<td>10, 11, pores 9/10, 10/11 near d</td>
<td>10, 11, pores 9/10, 10/11 c</td>
<td>24–30*</td>
<td>22,23–29,30</td>
<td>26–33*</td>
</tr>
<tr>
<td></td>
<td>10, 11, large, iridescent, pores 9/10, 10/11 cd</td>
<td></td>
<td>24–30,30</td>
<td>26–33*</td>
<td>26(25,26)–32(33)**</td>
</tr>
<tr>
<td></td>
<td>24–29,30</td>
<td>26(25,26)–32(33)**</td>
<td>24–30,30</td>
<td>26–33*</td>
<td>25,26(27)-32(33)**</td>
</tr>
<tr>
<td></td>
<td>9, 10, pores in 10/11</td>
<td>9, 10, pores in 10/11</td>
<td>4–29,30</td>
<td>26–33*</td>
<td>25,26(27)-32(33)**</td>
</tr>
<tr>
<td></td>
<td>22,23–29,30</td>
<td>26(25,26)–32(33)**</td>
<td>26–33*</td>
<td>26(25,26)–32(33)**</td>
<td>26–33*</td>
</tr>
<tr>
<td>Clitellum</td>
<td>(24)25 – 30(31)</td>
<td>Annular in (1/2</td>
<td>24–30*</td>
<td>22,23–29,30</td>
<td>26–33*</td>
</tr>
<tr>
<td></td>
<td>(24)25/-1/2 31(31)</td>
<td>24–30*</td>
<td>24–30,30</td>
<td>26–33*</td>
<td>(25,26)27–32(33)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(23)24–29(30)**</td>
<td>24–29,30</td>
<td>26–33*</td>
<td>25,26(27)-32(33)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24–29,30**</td>
<td>24–29,30</td>
<td>26–33*</td>
<td>25,26(27)-32(33)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2 25–28***</td>
<td>24–29,30</td>
<td>26–33*</td>
<td>25,26(27)-32(33)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23-(27)28,29</td>
<td></td>
<td></td>
<td>26–33*</td>
</tr>
<tr>
<td>T. pubertatis</td>
<td>1/n 26 – 28(1/2 29)</td>
<td>25–30</td>
<td>24–30*</td>
<td>26–33*</td>
<td>29–32*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24–29,30**</td>
<td>24–29,30</td>
<td>26–33*</td>
<td>(1/2 27,28)29–30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2 25–28***</td>
<td>24–29,30</td>
<td>26–33*</td>
<td>(1/2 27,28)29–30</td>
</tr>
<tr>
<td>Gld. Morren</td>
<td>10–12, diverticula in 10</td>
<td>11–12, no diverticula</td>
<td>10–13 diverticula in 10/14</td>
<td>10,11,12 small diverticula in 10</td>
<td>1/n 26–31,32***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10–13 diverticula in 10/14</td>
<td>10,11,12 small diverticula in 10</td>
<td>29–32*</td>
<td>1/n 26–31,32***</td>
</tr>
<tr>
<td>Nephridial vesicle</td>
<td>S - shaped</td>
<td>?</td>
<td>Curved, reclined***</td>
<td>Inverted J***</td>
<td>Circular, transversally pleated***</td>
</tr>
<tr>
<td>Typhlosole</td>
<td>Bifid initially , later simple</td>
<td>?</td>
<td>Simple</td>
<td>Simple, pleated</td>
<td>Circular, transversally pleated***</td>
</tr>
<tr>
<td>Seminval vesicles</td>
<td>9,10,11,12</td>
<td>9,10,11,12</td>
<td>9,11,12*</td>
<td>9, 11,12*</td>
<td>9,11,12*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9, 10,11,12**</td>
<td>9,11,12**</td>
<td>9,10,11,12**</td>
<td>9,11,12***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,11,12***</td>
<td>9,11,12***</td>
<td>9,11,12***</td>
<td>9,11,12***</td>
</tr>
<tr>
<td>Others</td>
<td>White tissue on top of the dorsal vessel.</td>
</tr>
</tbody>
</table>

a more posterior segment and presents four pairs of seminal vesicles. In addition, it was only found in Bashkiria (Bashkortostan, Russia) (data from Omodeo 1956). The differences of E. gerardoi with the remaining species included within Eiseniona by Omodeo
(1956) and Qiu and Bouché (1998a, d) are clear in terms of the beginning of clitellum in segments 22, 23 and the tubercula pubertatis in segment 23. A comparison of some characters of the species living in the western part of the geographic range of *Eiseniona* is shown in Table 3, excluding the hemiandric *E. paradoxa* and *E. gavarnica*.

Genetic divergence between *E. gerardoi* and *E. albolineata* (COI, uncorrected distances) is 14.09%, which is within the interval of uncertainty proposed by Chang and James (2011), but still near the 15% that these authors consider as indicative for different species in earthworms. Nevertheless there are enough morphological characters that permit the separation of the two species.

References

Mrsic N (1991) Monograph on earthworms (Lumbricidae) of the Balkans I, II. Slovenska
akademija znanosti in umetnosti, Ljubljana 1881, 757 pp.
earthworms (Annelida, Oligochaeta) in the central Iberian Peninsula: evolutionary
and demographic implications. Zoologica Scripta 38: 537–552. doi: 10.1111/j.1463-
6409.2009.00389.x
hormogastrid earthworms revealed by mitochondrial and nuclear data. Molecular Phylo-
biogeography of a group of earthworms in the Mediterranean basin—The phylogenetic
puzzle of Hormogastridae (Clitellata: Oligochaeta). Molecular Phylogenetics and Evolu-
lation of morphological and molecular data, a necessity for taxonomy: The case of Hor-
mogaster abbatissae sp. n. (Annelida, Clitellata, Hormogastridae). Zookeys 242: 1–16. doi:
10.3897/zookeys.242.3996
1956, 41: 129–212.
Omodeo P, Rota E (2004) Taxonomic Remarks on the earthworms inhabiting the Western
Alps. In: Moreno AG, Borges S (Eds) Advances in Earthworm Taxonomy. Editorial Com-
plutense, Madrid, Spain, 220–259.
Qiu JP, Bouché MB (1998a) Révision des taxons supraspécifiques de Lumbricoidea. Docu-
ments Pédozoologiques et Intégrologiques 3: 179–216.
Qiu JP, Bouché MB (1998b) Contribution à la taxonomie des Avelonini trib. nov. (Oligo-
chaeta: Lumbricidae). Avelona gen. nov., Koinodrilus gen.nov et Nicodrilus cuendeti sp.nov.
Documents Pédozoologiques et Intégrologiques 4: 109–116
Qiu JP, Bouché MB (1998c) Contribution à la taxonomie des Dendrobaenini trib. Nov. (Oligo-
chaeta: Lumbricidae). Iberoscolex gen. nov. et nouveaux taxons de Dendrobaena Eisen, 1874
Qiu JP, Bouché MB (1998d) Liste classe des taxons valides de lombriciens (Oligochaeta, Lum-
bricoidae), après l’étude des trois cinquièmes d’entre eux. Documents Pédozoologiques et
Rodríguez T, Trigo D, Díaz Cosín DJ (1997) Biogeographical zonation of the western Iberian
peninsula on the basis of the distribution of earthworm species. Journal of Biogeography
24: 893–901. doi: 10.1046/j.1365-2699.1997.00112.x
Rosa D (1894) Allolobophora ganglbaueri ed A. oliveirae nuove specie di lumbricidi europei.
Bollettino dei Musei di Zoologia ed Anatomia comparata della R. Università di Torino 9,
170: 1–3.
Rosa D (1897) Nuovi lombrichi dell’Europa orientale. Bollettino dei Musei di Zoologia ed
A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n...

