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Assessment of high-throughput—omics data initially focuses on relative or raw levels of
a particular feature, such as an expression value for a transcript, protein, or metabolite.
At a second level, analyses of annotations including known or predicted functions and
associations of each individual feature, attempt to distill biological context. Most currently
available comparative- and meta-analyses methods are dependent on the availability
of identical features across data sets, and concentrate on determining features that
are differentially expressed across experiments, some of which may be considered
“biomarkers.” The heterogeneity of measurement platforms and inherent variability
of biological systems confounds the search for robust biomarkers indicative of a
particular condition. In many instances, however, multiple data sets show involvement
of common biological processes or signaling pathways, even though individual features
are not commonly measured or differentially expressed between them. We developed
a methodology, CATEGORYCOMPARE, for cross-platform and cross-sample comparison of
high-throughput data at the annotation level. We assessed the utility of the approach
using hypothetical data, as well as determining similarities and differences in the set of
processes in two instances: (1) denervated skin vs. denervated muscle, and (2) colon
from Crohn’s disease vs. colon from ulcerative colitis (UC). The hypothetical data showed
that in many cases comparing annotations gave superior results to comparing only at
the gene level. Improved analytical results depended as well on the number of genes
included in the annotation term, the amount of noise in relation to the number of genes
expressing in unenriched annotation categories, and the specific method in which samples
are combined. In the skin vs. muscle denervation comparison, the tissues demonstrated
markedly different responses. The Crohn’s vs. UC comparison showed gross similarities
in inflammatory response in the two diseases, with particular processes specific to each
disease.

Keywords: meta-analysis, comparative analysis, transcriptomics, metabolomics, proteomics

INTRODUCTION
With the plethora of publicly-available high-throughput molecu-
lar biology data sets including DNA microarray studies (Barrett
et al., 2011; Parkinson et al., 2011), next-generation sequencing
(Sayers et al., 2011), metabolomics (Fiehn et al., 2005; Scholz
and Fiehn, 2007) and proteomics (Vizcaino et al., 2009), individ-
ual research groups have the potential to supplement their own
experimental data with additional data sets on similar or related
measurement paradigms (meta-analysis), or compare their data
set with others (comparative-analysis).

Although a comparative-analysis is a type of meta-analysis, the
end goals of the analyses are often different, and the summary
statistics are frequently used in diverse ways. A true meta-analysis

combines multiple data sets that measure the same or similar
end-points to increase the accuracy of “effect size” estimates and
reduce the incidence of false positives, thereby increasing the
likelihood of finding robust true positives. In a comparative-
analysis, the important features (e.g., differentially expressed
genes) in each data set would be determined and then compared.
Most meta- and comparative-analysis methods require either
that the features (probes/probesets, genes, proteins, metabo-
lites) across experiments are identical (i.e., the same or similar
measurement platform is used, such as a specific Affymetrix®
GeneChip™), or can be mapped directly to the same biological
entity (e.g., map Affymetrix® and Agilent® probes to the same
Entrez gene). In both cases, only those features commonly found
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across experiments will be used for subsequent analysis. Even if
the same underlying biological process or pathway is impacted in
multiple experiments, the above limitations may make the eluci-
dation of common and different biological processes across data
sets challenging.

Methods commonly used to summarize and infer relation-
ships from high-throughput experiments include the set-based
threshold-based (SBTB) and rank-based threshold-free (RBTF)
methods. SBTB methods define a “set” of features using a “thresh-
old.” A typical set might be differentially expressed genes with
a particular p-value or log-fold change. The goal is then to find
over-represented feature annotations (e.g., GO terms) in the set
compared to all of the measured features (e.g., all genes mea-
sured). In contrast, RBTF methods do not set a threshold but
rather the features are “ranked” according to an appropriate
statistic, and feature annotations are tested to determine if they
are significantly enriched at either extreme of the ranked list.

Commonly used feature annotations include Gene Ontology
(GO) (Ashburner et al., 2000), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Kanehisa and Goto, 2000), chro-
mosomal positions, transcription factor binding sites, microRNA
targets, and medical subject heading (MeSH) terms. Although
most feature annotation schemas annotate only one kind of
feature (e.g., genes in GO), some annotate multiple feature
types (e.g., genes and metabolites in KEGG). Many differ-
ent tools exist to perform these types of enrichment analy-
ses, the most widely used tools for SBTB and RBTF being
GO::TERMFINDER (Boyle et al., 2004) and Gene Set Enrichment
Analysis (GSEA) (Subramanian et al., 2005), respectively. Other
tools, such as DAVID (Huang et al., 2009), provide methods to
further summarize and group annotations via semantic similar-
ity. CONCEPTGEN (Sartor et al., 2010), in addition to considering
feature annotations, also provides a comparison to determine
how experimental data sets are related by comparing feature
(gene) lists. This allows data sets to be defined by their list of
differentially expressed genes, which are then checked against a
compiled set of experimental gene lists to determine whether
an association to the gene list being analyzed exists. However,
in general it is not easy to compare the annotations from two
or more experiments, let alone combine results from experi-
ments that examine different types of features, such as genes
and metabolites, and draw meaningful and statistically-valid
conclusions.

To overcome the limitation of performing comparative anal-
yses by considering only significant features across experiments,
we sought to develop a tool which would elucidate more infor-
mation about the similarities and differences between multiple
high-throughput experiments by comparing the enriched feature
annotations from each feature list. Here we describe a general
methodology and framework for the use of enriched annotations
to compare and contrast the results of high-throughput molecular
biology experiments. The merits of the approach for both SBTB
and RBTF types of analyses are examined using hypothetical data.
The utility of the approach is demonstrated by examining the
responses of skin and muscle to denervation, as well as differences
between colon tissue samples in Crohn’s disease and ulcerative
colitis.

MATERIALS AND METHODS
CATEGORYCOMPARE ALGORITHM
Given feature lists (such as genes) (F1, F2, . . . , Fn) resulting from
multiple high-throughput experiments and their annotations
(such as GO terms), p-values for all the annotations in each
feature list are calculated. Significant annotations for each list
are filtered using a pre-specified p-value and a minimum num-
ber of annotated features, resulting in a series of annotation
lists (A1, A2, . . . , An), each corresponding to a feature list. From
the set of enriched annotation lists, a “list membership” can be
determined using any or all of the 2n-1 non-empty subsets of
annotation lists. For example, if four feature lists (F1, F2, F3, and
F4) are supplied, four corresponding enriched annotation lists
are determined (A1, A2, A3, and A4). In this example, there are
24 − 1 = 15 possible non-empty subsets of annotation lists for
determining “list-membership” including: {A1}, {A2}, {A3}, {A4},
{A1,A2}, {A1,A3}, {A1,A4}, {A2,A3}, {A2,A4}, {A3,A4}, {A1,A2,A3},
{A1,A2,A4}, {A1,A3,A4}, {A2,A3,A4}, and {A1,A2,A3,A4}. The final
lists of enriched annotations, along with the statistics from each
feature-list are supplied in a table for examination.

ANNOTATION GRAPHS
As a means of working with both the large number of possibly
redundant annotations and highly similar annotations that may
have different list-memberships, the annotations are also reported
as a graph relation similar to that implemented in ENRICHMENT

MAP (Merico et al., 2010). In this representation, each node
in the graph is an annotation, and edges between annotations
are weighted by the degree of feature overlap between anno-
tations. Feature overlap is calculated using either the Jaccard
(general annotations), overlap (gene ontology), or combined
(user defined) coefficient (Merico et al., 2010). Information about
the annotations (ID, description, list membership, p-values, etc.)
is stored as meta-data for each node. In contrast to a long
table of annotations, the graph structure facilitates determina-
tion and visualization of clusters of highly related and possibly
redundant annotations with various list-memberships. The anno-
tation graphs can then be combined with a graph visualization
framework (such as CYTOSCAPE), nodes can be colored by their
“list-membership,” or represented by a pie-chart, wherein each
slice represents a separate sample list, with significance in the list
denoted by assigned color, and non-significance by de-saturated
color.

Alternatively, for GO term annotations, the annotation list-
membership may also be determined based on the induced ances-
tor graph generated from the significantly enriched GO terms
from each feature-list. This allows exploration of the results in the
GO-directed acyclic graph, while maintaining information about
the location of the terms in the GO hierarchy.

IMPLEMENTATION
CATEGORYCOMPARE has been implemented using the R statis-
tical language (Ihaka and Gentleman, 1996) as a Bioconductor
(Gentleman et al., 2004) package (http://bioconductor.org/
packages/release/bioc/html/categoryCompare.html), allowing
users to easily integrate it into high-throughput data analysis
workflows, and facilitating the use of the many different gene
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annotation packages available in Bioconductor. The package
supports the direct calculation of enriched GO and KEGG
annotations on gene lists. Interactive visualization of the anno-
tation graphs is facilitated using the RCYTOSCAPE (Shannon,
2011) Bioconductor package to display the graph in Cytoscape
(Shannon et al., 2003).

MUSCLE vs. SKIN DENERVATION
SKIN DENERVATION
All procedures were approved by the Institutional Animal Care
and Use Committees of the University of Louisville and SUNY
Stony Brook and were in accord with the guidelines set forth
by the NIH (Institute of Laboratory Animal Resources et al.,
1996) and the American Veterinary Medicine Association (Packer
et al., 2001). Adult female Sprague-Dawley rats (160–200 g;
Taconic, Hudson, NY) were used. Control animals (naïve) were
not treated. Those animals that underwent skin denervation
surgery were anesthetized with 60 mg/kg pentobarbital adminis-
tered intraperitoneally. Body temperature was monitored with a
rectal thermistor and was maintained at 35–37 degrees C with a
heated water pad. EKG leads were also placed to monitor heart
rate. Incision of the dorsal skin from T4 to L5 on the contralat-
eral (right) side was performed to allow reflection of the skin over
to the ipsilateral (left) side to expose dorsal and lateral cutaneous
nerves (D/LCNs). This surgical approach prevented damaging the
left-side skin. Two areas of denervated skin were produced by
transection of the T9/10 and T12/13 DCNs.

All proximal nerve stumps were then sealed off with ligatures
close to the body wall to prevent their regeneration. The T11
D/LCNs were left intact producing an island of intact innervation.
These intact axons provided collateral sprouts which projected
from their home dermatome into the surrounding denervated
skin (e.g., Diamond et al., 1992). Incisions were then sutured and
stapled and the denervated areas mapped acutely, using perma-
nent marker on the skin to define the border between innervated
and denervated areas, by determining the ability of pinch applied
to the skin to drive the cutaneous trunci muscle (CTM) reflex as
previously described (Theriault and Diamond, 1988; Diamond
et al., 1992; Petruska et al., 2014). Maps were maintained with
regular re-application of border marks.

After 7 or 14 days (corresponding to the initiation and main-
tenance phases, respectively, of axonal collateral sprouting), ani-
mals were euthanized with an overdose of pentobarbital and the
rostral-most skin samples corresponding to the acutely mapped
zones (i.e., those regions denervated by transection of the T9
and T10 cutaneous nerves) were removed and then trimmed to
approximately 100 mg before RNA extraction using 1.5 ml Trizol
reagent (Invitrogen, Carlsbad, CA) by homogenizing using a
Polytron-style rotor-stator and then centrifuging at 12,000 g for
10 min at 4◦C. RNA was then extracted from the supernatant
as per the manufacturer’s protocol. RNA pellets were dissolved
in 50 ul nuclease-free water before purity assessment using UV
spectrometry (A260 nm/A280 nm > 1.9, A260/A230 > 2.0).

RNA quality was assessed by formamide-gel electrophoresis.
Biotin-labeled fragmented cRNA probes were then synthe-
sized and hybridized to Affymetrix® rat gene expression
Rat Genome 230 2.0 GeneChip™ microarrays as per

manufacturers protocols. This data is available from GEO as series
GSE54356.

MUSCLE DENERVATION
The mouse muscle denervation normalized microarray data was
obtained directly from the NCBI GEO databank (GEO GSE4411).
See Wang et al. (2005) for a description of the generation of tissue
samples.

CROHN’S AND ULCERATIVE COLITIS
The Crohn’s and ulcerative colitis (CUC) data was obtained
directly from the NCBI GEO databank (GEO GSE36807). See
Montero-Melendez et al. (2013) for a description of the samples.

MICROARRAY DATA PROCESSING
The skin denervation data set consisted of arrays from naïve
(innervated) rats (n = 6) and arrays from rats 7 days (n = 5)
and 14 days (n = 5) after denervation. These times correspond
roughly to the initiation and maintenance phases of the axonal
collateral sprouting (CS) process, respectively (e.g., Diamond
et al., 1992), and are times at which denervation-induced epider-
mal thinning is evident (Nurse et al., 1984; Hsieh et al., 1997).
The muscle denervation data set had three samples from control
(innervated) mice and three from mice 3 days following dener-
vation of the tibialis anterior muscle by transection of the sciatic
nerve (GEO GSE4411, Wang et al., 2005). The skin microarray
data were normalized using robust multi-array averaging (RMA).
The muscle microarray data was obtained from GEO already nor-
malized and log-transformed. For both, control probesets were
removed, and log fold-changes and p-values of differential expres-
sion at each day (7 and 14 for skin, 3 for muscle) compared
to naïve calculated using LIMMA (Smyth, 2005). Probesets were
mapped to Entrez IDs using version 2.10.1 of the “org.Rn.eg.db”
and “org.Mm.eg.db” packages from Bioconductor (v 2.13). See
the “Skin vs. Muscle” vignette in the CCPAPER package (https://
github.com/rmflight/ccPaper) for further details.

The Crohn’s and ulcerative colitis (UC) dataset consists of
intestinal biopsy samples from healthy (n = 7), Crohn’s (n = 13),
and ulcerative colitis (n = 15) individuals (Montero-Melendez
et al., 2013). The data were obtained already normalized and
log-transformed. Log fold-changes and p-values of differential
expression of both Crohn’s and UC compared to normal samples
were calculated using LIMMA. Probesets were mapped to human
Entrez IDs using version 2.10.1 of the “hgu133plus2.db” pack-
age from BIOCONDUCTOR. See the “UC vs. Crohn’s” vignette in
the CCPAPER package (https://github.com/rmflight/ccPaper) for
further details.

For those Entrez genes with multiple probesets, the probeset
expression levels were collapsed to a single value by taking the
median intensity of all probesets for a gene. Any probesets that
did not map to genes or mapped to multiple genes were removed
from further consideration.

ANNOTATION ENRICHMENT
Enriched annotations were calculated using LIMMA’s ROMER

method with 10,000 rotations and GO biological process
(GO::BP) defining the gene sets. A p-value cutoff of 0.01 was
used to determine significant GO::BP terms in both the “Up”
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and “Down” results from ROMER for each experiment. Major GO
term groups were determined by visualizing and inspecting the
GO terms and their connections in CYTOSCAPE. Inspection of
each group by the authors determines an overall naming for the
group of terms. For visualization in CYTOSCAPE, edges with an
overlap score less than 0.8 were removed from the annotation
graph. The reported “name” for each group of enriched anno-
tations was reported by the authors’ in an attempt to summarize
commonalities among the GO terms in a specific group. The full
list of GO terms for each gene list is available in the supplemental
materials, as well as the GO terms in each group.

HYPOTHETICAL DATA SETS
A full description of the hypothetical data generation and anal-
ysis is available in the vignette “hypothetical example” of the
CCPAPER R package (https://github.com/rmflight/ccPaper). A
summary of both the set-based threshold-based and rank-based
threshold-free hypothetical datasets follows.

SET-BASED THRESHOLD-BASED (SBTB)
All gene-ontology terms within the biological process (GO::BP)
category for Homo sapiens and the annotated genes were con-
sidered. One-hundred GO::BP terms from the resulting set were
selected to define the biological processes present in hypothetical
samples; 50 with 10–100 genes annotated, 30 with 250–500 genes
annotated, and 20 with 500–1500 genes annotated (these values
were chosen according to the distribution of annotated genes to
GO terms shown in Figure 2A). Based on this set of 100 GO::BP
terms, hypothetical samples of 1000 human genes annotated to
the 100 GO terms was generated using a distribution-based sam-
pling routine. The sampling was performed as follows: for a given
GO::BP term, the number of genes sampled from that term was
randomly determined based on a random number from an expo-
nentially decaying function multiplied by the total number of
genes annotated to that term, without considering those genes
already sampled. The chosen genes are then removed from con-
sideration for all GO::BP terms in which they are annotated. Each
GO::BP term is considered in turn until the limit of 1000 genes
is reached. For all further experiments, two independently gener-
ated samples of 1000 genes based on identical sets of GO terms
were used to represent significantly differentially expressed genes
from two independently performed experiments on the same
biological system.

Hypergeometric p-values were calculated for the 100 GO::BP
terms for each sample independently as well as a combined sam-
ple consisting of the intersection of the sample lists. For each
GO::BP term, the p-value was transformed by taking −1∗log
of the p-value, and the difference between the minimum trans-
formed p-value from each sample and the combined list was
reported.

The dependence of the p-value and difference on gene sam-
ples was estimated by repeating the calculation using 100 different
gene samples. Dependence on the GO::BP term set used was
estimated using 100 different GO::BP term samples.

The effect of adding noise genes (genes not annotated to the
100 GO::BP terms selected) was assessed by adding variable num-
bers of noise genes (10–1000, in increments of 10), and in each

case varying the fraction of noise genes that were shared between
two samples with the same number of noise genes (0 to 1, in
increments of 0.01).

To verify that the distribution of genes to GO::BP terms from
the hypothetical SBTB significant gene list was reasonable, two
data sets were considered: the acute lymphocytic leukemia (ALL)
data set (Li, 2009) available as a BIOCONDUCTOR package, and
a paired case-control lung cancer dataset from GEO (LUNG –
GSE18842) (Sanchez-Palencia et al., 2011). In both cases, LIMMA
was used to calculate significantly differentially expressed genes.
For ALL, comparisons were made between B and T cell ALL.
For LUNG, a cancer to control sample comparison was made.
The resulting distributions for both of these sets show a reason-
able match to the proposed hypothetical distribution (results not
shown).

RANK-BASED THRESHOLD-FREE (RBTF)
The directed acyclic graph relationship of GO:BP terms makes
simulating RBTF samples using GO::BP as the gene sets chal-
lenging. Therefore, a hypothetical set of independent terms was
created. Independent terms were identified by the number of
genes annotated to the term, defined using a uniform distribution
over a specified range, using three groups of ranges with similar
limits as in the SBTB case, namely 20–250 (50 terms, low), 250–
500 (30 terms, med) and 500–1000 (20 terms, hi). Each term used
the same uniform distribution of 10,000 values prior to assign-
ment of gene indices. P-values were on the interval [0, 1], whereas
t-statistics were on the interval [−6, 6]. Different proportions of
genes in the top 50% of entries were defined using a uniform dis-
tribution on the range of [0.3, 1]. For each term, a random set of
indices in the rank list were determined, and then for each sam-
ple a random set (defined by the proportion in the top 50% for
that term) of those indices were assigned values from the upper
50% of ranked statistics, and the rest from the bottom 50%. This
results in an independent set of statistics for each sample for each
term. LIMMA’s GENESETTEST was used to calculate probabilities
of the chance of the gene set being at the “lower” extreme of the
ranked list by chance by comparing the average value of statistic
of the set against 10,000 random samples the same size from the
same ranked list of statistics. Prior to use with GENESETTEST, a
linear transformation was performed so that p-values were in the
range of [−1, 1] to enable testing in GENESETTEST of annotations
being at the “end” of the ranked list. A combined sample was gen-
erated by combining the gene-level statistics by one of: averaging
t-statistics; Fisher’s method for p-values; the maximum p-value
between samples.

Differences between sample-based and combined annotation
term p-values were calculated as the difference of the minimum
of the −1∗log(P) for sample and −1∗log(P) for combined.

RESULTS
Traditional methods for comparing high-throughput data sets
depend on having shared features between the data sets for com-
parison. A simple first level analysis is to compare the expression
levels of shared features (shown as a heatmap of genes in two
data sets in Figure 1). This may be followed by some form of
enrichment analysis on the overlapping feature sets to determine
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FIGURE 1 | Flow diagram of comparative-analysis approaches. F,
feature list; A, annotation list; FA, feature to annotation relationship
data; 1,2, data set origination. “Start” denotes initial data availability, in
this case from two different data sets, F1, and F2. The “Traditional
Analysis” considers feature intersection and set-differences, possibly

combined with direct comparison of the features (shown as a
heatmap); whereas CATEGORYCOMPARE uses the enriched annotations of
the feature list from each data set derived independently, combined
with the feature-annotation relationships. See Results and Methods for
more details.

biological themes among the shared features (and possibly on the
unique feature lists as well, see “Traditional Analysis” in Figure 1).
However, there are many different scenarios that complicate this
analysis, including cases when different features are measured
(e.g., two studies using different microarray platforms), or com-
paring studies that examine different types of features with the
same annotations (transcriptomics vs. metabolomics for exam-
ple). In addition, experimental and biological variability may
result in differences in final measurements among experiments,
even though the same biological process or pathway may be
involved. In these situations, it may be more effective to compare
and contrast feature sets based on their enriched annotations,
rather than the features directly.

Figure 1 illustrates this contrast. As a simple example, consider
two feature lists from two different data sets (“Start,” middle box
of Figure 1). In the “Traditional Analysis,” the intersection and
set-difference of the features are determined, and feature level
comparisons made. Biological summaries of the intersection and
set differences are provided by annotation enrichment of each
of the resulting lists. In CATEGORYCOMPARE, enriched annota-
tions are calculated for each independent feature list (A), and
“list-membership” assigned based on which feature list produced
which annotation (in this case, x denotes an annotation or feature
was found exclusively from a particular list).

HYPOTHETICAL DATA
In an effort to determine how results using CATEGORYCOMPARE

differ from the “traditional analysis,” hypothetical datasets for
both SBTB and RBTF analysis situations were generated (see
Methods for the details of the generation of data sets and calcula-
tion of enriched annotations or terms).

For the SBTB analysis, two hypothetical samples of 1000 genes
were sampled from 100 GO terms to represent differentially
expressed genes (the set) from two different experiments where

the same fundamental biological processes were responsible.
Figure 2B shows how the transformed p-value calculated
from the combination of the samples (differentially expressed
gene list is the intersection of the two samples) compares
to the minimum transformed p-value for that GO term
from the two samples. In many cases, the sample wise p-
values are much better than those from the combined sam-
ple; however, this appears to be dependent both on how
many genes are annotated to the term and the propor-
tion of genes annotated to the term in the differentially
expressed set.

The reproducibility of these results are shown in Figures 2C,D,
where the calculations were repeated using the same GO terms
but different gene samples 100 times (Figure 2C), and using 100
different samplings of GO terms (Figure 2D). For gene samples,
the results are relatively stable. In contrast the GO sampling shows
much wider variability, but the trend remains stable across the
different GO::BP samples.

The effect of noise genes (genes not annotated to any of the GO
terms under consideration) was assessed by varying both the total
number of noise genes (10–1000 incremented by 10) and the frac-
tion of noise genes that are shared between the two samples (0–1
incremented by 0.01). Figure 2E shows the median difference
between the minimum transformed sample p-value and com-
bined p-value as a function of the number of noise genes added,
colored by the fraction of shared noise genes. As can be observed,
in general the sample wise p-values do better when there are more
noise genes shared between the samples; however, the difference
can be large depending on the number of genes annotated to the
GO term (denoted by the size class of the terms as either low,
med, or hi).

Given the challenges involved in generating appropriate
ranks for the RBTF method for annotations with a directed
acyclic graph structure such as GO, independent theoretical
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FIGURE 2 | Results of SBTB hypothetical data analysis. (A) Distribution
of number of genes annotated to GO::BP terms in human. (B) Difference
in transformed p-values comparing maximum p-value from sample
calculations and p-value from combined sample as a function of the
fraction of genes in the sample annotated to the GO term. Plot is divided
by the size classification of the GO term. (C) Average and standard

deviations of performing the same calculations as in (B) using 100
independent sample generations. (D) Contour plot after using 100 different
GO::BP sets to perform the same calculations as in (B). (E) Median
p-value differences (taking the median using size as the grouping) as a
function of the number noise genes added, colored by the fraction of
noise genes shared between two samples.

terms and ranked statistics for two hypothetical samples in
each term were generated (see Methods). Generating combined
samples was achieved by averaging t-statistics, using Fisher’s
method to combine p-values, and taking the maximum p-
value across samples. Figure 3A shows the difference in term
enrichment p-values between the minimum transformed p-
value from the samples and the transformed p-value from the
combined sample where the sample was combined using an

average of t-statistics. As the proportion of genes in the top
50% of ranks varies, the combined sample gives at least as
good or better p-values, until a threshold proportion is reached.
Combining samples using Fisher’s method generated similar
results (results not shown). Combining samples using the maxi-
mum p-value across samples demonstrated completely opposite
behavior, with the combined sample yielding worse p-values
(Figure 3B).
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FIGURE 3 | Results of RBTF hypothetical data analysis. (A) Difference of
transformed p-values comparing the maximum term p-value from sample
calculations and p-value from a combined sample where samples were

combined using averages of t-statistics, as a function of the proportion of
genes in the top 50% of entries by rank. (B) As in (A), but the maximum
p-value was used to combine samples gene-wise.

SKIN vs. MUSCLE DENERVATION
The CATEGORYCOMPARE approach was used to compare gene
expression following denervation of skin and muscle. The
denervated skin data set consisted of DNA microarray measure-
ments from rats, comparing the transcript expression in the naïve
skin, and skin at 7 and 14 days following denervation. The muscle
data set consisted of DNA microarray samples of control mus-
cle and muscle 3 days post-denervation from mice (Wang et al.,
2005).

For each of the comparisons (Skin.T7, Skin.T14, Muscle) those
annotations with a reported p-value less than 0.01 for either
changes up or down were used for subsequent analysis, result-
ing in six different annotation lists. The number of significant
annotations in each list is reported in Table 1.

Analysis of the 79 significantly enriched annotation groups
shows that the majority of these (59) respond to a single con-
dition, including 10 in Skin.T7.Down (such as negative reg-
ulation of astrocyte differentiation, and collateral sprouting);
fifteen in Skin.T7.Up; eight in Skin.T14.Down; nineteen in
Skin.T14.Up (including synapse assembly and nervous system
development, axon extension, and glia guided migration); five
in Muscle.Down (including response to VEGF); and three in
Muscle.Up. There are two annotations down-regulated in all three
data sets (ATP biosynthesis and muscle adaptation and contrac-
tion); one annotation down-regulated in skin and up-regulated
in muscle (mitotic cell cycle checkpoint); one down-regulated
in Skin.T7 and upregulated in Skin.T14 and Muscle (pH and
lysosome regulation); four down-regulated at Skin.T7 which are
up-regulated at Skin.T14 (neurotransmitter secretion and trans-
port, endocrine regulation of blood pressure, fluid transport,
and epithelial tube branching); one down-regulated in Skin.T7
and Muscle (response to glucose synthesis); one up-regulated
in Skin.T7 and down-regulated in Skin.T14 (microtubule orga-
nization); two up-regulated in both skin datasets (blood vessel
endothelial cell differentiation and negative regulation of pro-
tein export); and three down-regulated in Skin.T14 and Muscle
(cellular respiration, acetyl CoA biosynthesis and response to
muscle activity). A complete list of the membership for each of
the significantly enriched annotations is provided in Table 2.

Table 1 | Number of significantly enriched annotations in each list

following denervation.

Skin.T7. Skin.T7. Skin.T14. Skin.T14. Muscle. Muscle.

Down Up Down Up Down Up

263 343 247 259 151 130

CROHNS vs. UC
CATEGORYCOMPARE was employed to compare the gene expres-
sion from Crohn’s disease and ulcerative colitis (UC) intestinal
samples when each was compared to normal samples. GO::BP
annotation enrichment was used. Table 3 lists the number of sig-
nificant GO::BP terms for each comparison using a p-value cutoff
of 0.01.

As listed in Table 3, UC up-regulated compared to normal
(UC.Up) had by far the largest number of significant GO::BP
terms, and this is reflected in the overall results as there are large
groups of highly related GO terms listed as being significant solely
or primarily in UC.Up. These include “response to lipopolysac-
charide and bacterial,” “regulation of inflammatory response,”
“regulation of cell cycle and DNA damage response,” “regula-
tion of ubiquitination and ligase activity,” and “vesicle targeting.”
The CROHNS.Up group had much fewer significant GO::BP
terms overall, and few that were found only in CROHNS.Up.
These included “NAD biosynthesis,” “hormone metabolism,”
“response to growth hormone,” “melanin metabolism,” and “pro-
tein dephosphorylation.” Common to UC.Up and CROHNS.Up
are “amine metabolism,” “extrinsic signal transduction,” “reg-
ulation of nitric-oxide synthase,” “fatty-acyl-CoA biosynthesis,”
“chemokine and cytokine production,” and “hydrogen peroxide
metabolism.” Specific to UC.Down are “glandular cell differ-
entiation,” “membrane biogenesis and assembly,” and “activin
receptor signaling.” Common to UC.Down and CROHNS.Down
include “oligodendrocyte differentiation” and “cellular pattern
specification.” All of the GO::BP groups are listed in Table 4 by
list-membership, and the individual GO terms in each group are
provided in the supplemental materials.
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Table 2 | Significant term annotation groups and the gene-list they appeared significant in for the Skin vs. Muscle comparison.

Description Skin.T7. Skin.T7. Skin.T14. Skin.T14. Muscle. Muscle.

Down Up Down Up Down Up

ATP biosynthesis X X X

Muscle contraction and development X X X

Mitotic cell cycle checkpoint X X X

pH and lysosome regulation X X X

Neurotransmitter secretion and transport X X

Epithelial tube branching X X

Endocrine regulation of blood pressure X X

Fluid transport X X

Tube development X X

Response to glucose X X

Steriod biosynthesis X

Lung cell differentiation X

Neg regulation of astrocyte diff. X

Fear response X

Dopamine transport X

Collateral sprouting X

Response to osmotic stress X

Positive regulation of epidermal growth factor signaling X

Response to leptin X

Catecholamin biosynthesis X

Microtubule organization X X

Blood vessel endothelial cell differentiation X X

Negative regulation of protein transport X X

Negative regulation of response to granulocyte/myeloid cell diff. X X

Type II hypersensitivity X

Entry into host and movement X

Response to virus X

Mitotic spindle assembly X

N acetylglucosamine metabolism X

Proteoglycan biosynthesis X

Negative regulation of cell junction assembly X

Endocardial cell differentiation X

Sequestering of actin monomers X

Beta amyloid formation X

Response to platelet derived growth factor stimulus X

Lipopolysaccharide biosynthesis X

Aminoglycan metabolism X

Epithelial to mesenchymal transition, endocardial cushion formation X

Pulmonary valve dev. and morphogenesis X

Cellular respiration X X

acetyl CoA biosynthesis X X

Response to muscle activity X X

Protein localization in mitochondrion X

Cation channel activity X

Interferon gamma response X

Calcineurin NFAT signaling cascade X

Histone demethylation X

Negative regulation of Ras signal transduction X

Positive regulation of metalloenzyme activity X

Glucocorticoid receptor signaling pathway X

Atrioventricular valve dev. and morphogenesis X X

Vitamin metabolism X X

(Continued)
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Table 2 | Continued

Description Skin.T7. Skin.T7. Skin.T14. Skin.T14. Muscle. Muscle.

Down Up Down Up Down Up

Digestion X

Synapse assembly and nervous system development X

Folic acid compound metabolism X

Retinoic acid biosynthesis X

Urea cycle X

Response to prostaglandin X

Keratinocyte migration X

Amino acid transport X

Mesenchymal cell diff in kidney/Renal system dev. X

Axon extension X

Lung lobe dev. and morphogenesis X

Embryonic digestive tract dev. and morphogenesis X

Phosphate ion transport X

Fluid secretion X

Interleukin 13 production X

Glia guided migration X

Central nervous system maturation X

Bile acid transport X

Positive regulation of muscle cell apoptosis X

Purine metabolism X

Regulation of phospholipase C X

Response to VEGF X

Membrane repolarization X

Carbohydrate catabolism X

rRNA processing X

Response to indole 3 methanol X

DNA break repair X

Table 3 | Number of significant annotations for each comparison for

Crohn’s compared to UC using ROMER and p-value cutoff of 0.01.

UC.Up UC.Down CROHNS.Up CROHNS.Down

434 169 264 110

ANNOTATION GRAPHS
For both the CROHNS vs. UC and Skin vs. Muscle datasets, the
enriched annotations are reported as “themes” of groups of highly
similar annotations, where similarity is defined by the shared
number of genes between annotations (see Methods). Figure 4
shows small examples of the visualization used to interactively
determine the themes of highly related groups of annotations
(only edges with a similarity ≥ 0.8 are shown). Figure 4A shows
three different annotation groups from the CROHNS vs. UC anal-
ysis (from left to right): “regulation of ubiquitination and ligase
activity,” “nucleoside and nucleotide metabolism,” and “amine
metabolism” with the associated legend in Figure 4B. Figure 4C
shows the annotation group from SKIN vs. MUSCLE “mus-
cle fiber development,” with the associated legend in Figure 4D.
Both instances demonstrate that not all of the annotations in a
group necessarily have an identical “list-membership,” but rather
the total “list-memberships” of the annotations are considered

together to assign the “lists” that annotation group is from.
For example, the middle group in Figure 4A, “nucleoside and
nucleotide metabolism” has only two GO terms that were both
from UC.Up and CROHNS.Up, but all the other highly related
GO terms are from UC.Up or CROHNS.Up. Similarly, in the Skin
vs. Muscle example, many terms are found in only one or the
other of Skin.T7.Down or Skin.T14.Down, but they are all highly
related to one another by the genes annotated to each term.

Although not part of the CATEGORYCOMPARE algorithm per
se, returning the annotations as a graph where each node is
an annotation and edges are weighted by their similarity (see
Methods) enhances the biological interpretation by providing the
ability to determine sets of highly related annotations that is
not easily accomplished in list form. For example, of the nine
annotations in the middle group of Figure 4A (“nucleoside and
nucleotide metabolism”), only three have a “list-membership” of
UC.Up, CROHNS.Up. If the full list of significant annotations
(288) are ranked by: UC.Up p-value; CROHNS.Up p-value; and
then by their list-memberships; they are scattered throughout the
table, being located in rows 40, 123, 136, 149, 155, 167, 191,
206, and 215. Deriving the theme of “nucleoside and nucleotide
metabolism” from the items in the list would be more difficult.
It should be noted that all of the tabular data is available in
CYTOSCAPE when the user selects a node, and multiple nodes may
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Table 4 | Significant term annotation groups and the gene-list they appeared significant in for the CROHNS vs. UC comparison.

Description UC.Down UC.Up CROHNS.Down CROHNS.Up

Hydrogen peroxide metabolism X X

Nucleotide and nucleoside metabolism X X

Amine metabolism X X

Extrinsic signal transduction X X

Regulation of nitric-oxide synthase X X

Fatty-acyl-CoA biosynthesis X X

Chemokine and cytokine production X X

ER unfolded protein response X X

Antigen processing and presentation X X

Response to lipopolysaccharide and bacterial X

Regulation of inflammatory response X

Regulation of cell cycle and DNA damage response X

Regulation of ubiquitination and ligase activity X

nik/nk-kappab cascade X

Regulation of ras/rac/rho gtpase activity X

COPII vesicle coating and targeting X

Negative regulation of peptidase activity X

Response to type 1 interferon X

Protein N-linked glycosylation X

Glandular cell differentiation X

Membrane biogenesis and assembly X

Activin receptor signaling X

Oligodendrocyte differentiation X X

Cellular pattern specification X X

NAD biosynthesis X

Hormone metabolism X

Response to growth hormone X

Melanin metabolism X

Protein dephosphorylation X

be selected simultaneously, thus providing all the tabular output
for a particular group of nodes.

DISCUSSION
CROHN’S vs. UC DATA
While the original CROHN’S vs. UC study focused on deter-
mining predictor genes as clinical biomarkers for classifying
Inflammatory Bowel Disease, we employed CATEGORYCOMPARE

to determine the similarities and differences between these two
conditions at a higher annotation-based level, which is high-
lighted in the visualization of the GO results (Figure 4). The
results suggest that both conditions are enriched for processes
involved with immune response (antigen processing and presen-
tation) as well as chronic inflammation (chemokine and cytokine
production). Additionally, both datasets show an upregulated
enrichment of amine, nucleotide, and nucleoside metabolism
which has previously been associated with the vascular surface of
inflammatory diseases (Eltzschig et al., 2004).

Differences in the enriched annotations indicate that UC has
a significant up-regulated enrichment in cell-derived mediators
of inflammation, including nik/nk-kappab cascade, regulation of
inflammatory response, and response to type I interferon. The
significant increase in the regulation of ubiquitination and ligase

activity specific to UC is consistent with GWAS studies implicat-
ing loci coding for proteins with domains associated with protein
ubiquitination (McGovern et al., 2010). The results from CATE-
GORYCOMPARE agree with this association, since these loci were
not found to be associated with Crohn’s Disease patients.

The significant increase in hormone metabolism in CROHNS
may point to the difference in bone mineral density (Ardizzone
et al., 2000) while the increased response in growth hormone in
CROHNS may be directly related to growth hormone therapies
specific to the treatment of Crohn’s Disease (Slonim et al., 2000;
Heyman et al., 2008).

SKIN vs. MUSCLE DENERVATION DATA
Our interests lie with the role of denervated tissue in recruiting
the non-injured axons innervating adjacent tissue to send new
branches through the tissue into the denervated territory (often
called collateral sprouting or collateral reinnervation).

Overall the annotation groups which emerged for denervated
skin and denervated muscle are largely different. This is likely
due in part to the intrinsic difference in tissues, one being a bar-
rier tissue with rapid cellular turnover that is highly sensitive to
innervation status (Hsieh et al., 1997). Similarities reside in the
emergence of annotations suggesting reduced energy production
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FIGURE 4 | Examples of annotations groups and associated legends.

(A) From left to right, visualization of annotation groups “regulation of
ubiquitination and ligase activity,” “nucleoside and nucleotide metabolism,”

and “amine metabolism,” with associated legend in (B). (C) Pie chart
visualization of annotation group “muscle fiber development,” with
legend in (D).

in both tissues as well as a concomitant increase in stress-response
and stimulus-response processes in both denervated tissues.

HYPOTHETICAL DATA
The hypothetical SBTB and RBTF results echo previous results
from Shen and Tseng (2010). Their results showed that depend-
ing on the degree of overlap and how large the gene signal was,
meta-analysis at the feature level or annotation level have different
advantages. For SBTB type analyses, whether feature level combi-
nation or annotation level combination is better depends on the

overall number of genes annotated to the term, as well as what
fraction of genes are present in the individual samples.

For small numbers of genes annotated to a term, the likeli-
hood of getting the same genes in both samples is likely random,
thus explaining the seemingly random distribution of change in
p-value for the small set of GO terms in the single sample, and for
multiple sets of gene samples. However, when viewed over 100
sets of GO samples, the overall trend is that CATEGORYCOMPARE

gives better p-values over using the sample intersection. However,
as the amount of noise increases and the fraction of shared noise
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decreases, the intersection of genes between the two experiments
becomes much more specific, leading to the intersection of lists
giving much better p-values overall.

In contrast, with an RBTF type analyses such as GSEA, the
degree of improvement using CATEGORYCOMPARE is dependent
on how the samples are combined, in addition to the fraction of
genes that are highly ranked in the samples. The dependence on
the fraction is not surprising, as the odds that the set will be highly
ranked as a whole becomes more likely as the overall fraction
increases, with no difference at higher fractions. In addition, how
the samples are combined is important in that the most conserva-
tive method, taking the maximum p-value (the method originally
used by Shen and Tseng), should result in the lowest fraction of
genes being highly ranked in the combined sample.

Both of these results suggest that CATEGORYCOMPARE has
advantages in particular situations, but is still limited, especially
with respect to a direct meta-analysis. It is likely that these same
limitations are present in a comparative-analysis, and where fea-
tures are present in both data sets a feature level comparison
should also be performed in conjunction with an annotation level
comparison.

CONCLUDING REMARKS
Analysis of both the data sets comparing denervation of skin with
muscle and Crohn’s with ulcerative colitis highlighted several bio-
logical processes shared across conditions as well as several that
appear to be specific to each condition. These annotations provide
a starting point for hypothesis generation and testing either by
subsequent high-throughput experiments (or querying of anal-
ogous data sets) or directed experiments using potential targets
derived from this analysis.

The hypothetical data analysis demonstrates that CATEGO-
RYCOMPARE is able to illuminate processes highly relevant to
the fundamental underlying biology that may be missed using a
more traditional feature level analysis. This ability is dependent
on the method of annotation enrichment employed (SBTF vs.
RBTF), and the degree of noise. Although this analysis considered
only data with identical classes of features, the annotation-level
approach could enable meta-analyses of experiments with differ-
ent types of features but shared annotations, such as genes and
metabolites.

CATEGORYCOMPARE provides an easily extensible, general
framework and interface for performing high-throughput data
meta-analysis at the annotation level, in a commonly used pro-
gramming environment with large amounts of available feature
annotation data. Future work includes providing easy access to
other types of feature annotations, calculating annotation enrich-
ment for user provided annotations, and visual exploration of the
feature—annotation relationships.

SOFTWARE AVAILABILITY
The current version of the CATEGORYCOMPARE package is avail-
able from http://bioconductor.org/packages/release/bioc/html/
categoryCompare.html, while a development version is hosted
on GitHub at https://github.com/rmflight/categoryCompare. It
should be noted that the ccPaper branch of the version hosted
on GitHub was used for all of this work. Many features from

that branch will be available in the development version of the
software package.

AVAILABILITY OF SUPPORTING DATA
The data supporting the results reported are available in the
CCPAPER R package available from https://github.com/rmflight/
ccPaper. The original raw data used (from denervated skin) is
available from GEO as series GSE54356.
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