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Remarks on time-dependent [current]-density
functional theory for open quantum systems

Joel Yuen-Zhou*ab and Alán Aspuru-Guzik*ab

Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a

formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems.

Here, we review and clarify some formal aspects of these theories that have been recently questioned

in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary

to what we and others had stated before, within the master equation framework, there is in fact a

one-to-one mapping between vector potentials and current densities for fixed initial state, particle–

particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested

Kohn–Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in

particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation

maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the

dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from

stochastic vector potential to stochastic current density for individual trajectories has not been proven so

far, except in the case where the vector potential is the same for every member of the ensemble, in which

case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired

properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to

study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions

support our previous work as formally rigorous, offer new insights into it, and provide a common ground

to discuss related theories.

Time-dependent density functional theory (TDDFT) is a rigorous
reformulation of time-dependent quantum mechanics whose
central object of study is the particle density rather than the
many-body wavefunction.1–4 Two important theorems lie at the
core of its theoretical foundations. The first one, by Runge and
Gross (RG),5 establishes a one-to-one mapping from scalar
potentials to particle densities. The second one is the V-repre-
sentability theorem due to Van Leeuwen,6 which guarantees
that the particle density of an interacting system can be
reproduced by a non-interacting surrogate system, called
Kohn–Sham (KS) system7 due to historical reasons in analogy
to (time-independent) density functional theory. These two
results justify the common practice of TDDFT: first, to use a
KS system to compute the particle density evolution and,
second, to express the desired observable of the original system
(e.g., the dipole moment) as a functional of the particle density.

There is also an analogous theory due to Vignale,8 named time-
dependent current-density functional theory (TDCDFT), which
establishes a one-to-one correspondence between vector potentials
and current densities, and guarantees the existence of a non-
interacting KS system which, evolving under a fictitious KS
vector potential, reproduces the current density of the original
system. Since the particle density is related to the current
density via the continuity equation, the original particle density
is also reproduced in such KS system.

The performance of TDDFT depends on the energy func-
tionals one employs and the ability to express the desirable
observables in terms of the particle density. However, its role as
a practical method to obtain dynamical properties of many-
body systems is so far unrivaled by other ab initio methods
due to the accuracy it provides with the currently available
functionals versus the computational cost it entails. General
prescriptions to compute excited state energies and their
oscillator strengths via TDDFT have been reported,9–15 and
have been successfully used to study a wide variety of phenomena,
such as chemical16–21 and nonlinear optical22–24 properties
in nanomaterials, resonant energy transfer,25,26 and many-body
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effects in solid state systems,27–29 and lifetimes of atomic
resonance states,30,31 among many others. Whereas most of
the studies so far have relied on the local density approxi-
mation,1,32–34 a big effort has also been taken on the direction
of capturing memory effects.33–38 Furthermore, there has been
considerable interest in the extension of TDDFT to study
situations where there is an interplay between electronic and
nuclear degrees of freedom and both are explicitly included in
the simulation.39–45 An alternative approach to this problem
relies on Open Quantum Systems (OQS) theory, where the
electronic degrees of freedom are evolved as a quantum master
equation (ME), with the bath of phonons affecting the electrons
via fluctuations and dissipation.46–55 We hereby restrict the
definition of OQS to the domain of systems that exchange
energy—but not particles, with an environment. Scenarios
where there is an actual exchange of particles between the
system and the environment are beyond the scope of this
article, but we refer the reader to previous investigations along
these lines of thought.56–59

The description of OQS is essential in a wide variety of fields,
ranging from quantum optics to chemical dynamics in con-
densed media.60–63 In our work on OQS-TDDFT, we have
established precise conditions for

-

V and
-

A representability for
the evolution of general ME.51,53,93 An interesting outcome of
our investigation is that particle and current densities of OQS
can be reproduced in closed driven systems (CDS) evolving
unitarily. Recently, in an unrefereed posting in the arXiV e-Print
server64 and its sequel,65 D’Agosta and Di Ventra (DADV) have
casted doubts on several of our results, potentially generating
awareness but also confusion among the practitioners of the
field, since it is not clear whether they or we are correct. We
regard this occasion as a good opportunity to present what we
believe to be an objective account of the subject. The goal of
this article is to clarify our work51,53,93 in comparison with
theirs48,49,66 in the broad context of OQS in TDDFT. The paper
is structured as follows: in Section 1, we establish the notation
which will be used throughout the paper, and in Section 2, we
address a series of formal issues of TDDFT for OQS which have
been a potential source of confusion in the literature. This work
paves the theoretical foundations for further development of
practical methods to simulate dynamics of many-body OQS.

I Notation

Consider the general evolution of the density matrix in the form
of a ME:

drðtÞ
dt
¼ �i ĤSðtÞ; rðtÞ

� �
þ
Z t

0

dt 0Kðt; t 0Þrðt 0Þ þ T ðtÞ: (1)

Here r(t) is the density matrix describing the quantum state of
the system of interest, Kðt; t 0Þ is a memory kernel which
describes how the state at times 0 r t0 r t affect the dynamics
at time t. If Kðt; t 0Þ / dðt� t 0Þ, the ME is Markovian; otherwise,
it is non-Markovian. T ðtÞ is an inhomogeneous term that
encodes initial system-bath correlations. The discussion of this
article does not pertain T ðtÞ, so hereafter we shall set it to zero

for simplicity. The many-body Hamiltonian of the system is
given by:

ĤSðtÞ ¼
X
i

~̂pi þ e~Að~ri; tÞ
� �2

2m
þ
X
io j

U ~̂ri;~̂rj

� �
: (2)

where we are working in the gauge where the scalar potential

vanishes. ~̂ri and ~̂pi are the position and momentum of the i-th

particle in the system,
-

A is the external potential, U is the
interparticle interaction, e and m are the charge and mass of the
particles. We shall be interested in the particle and current density

operators, n̂ð~r Þ ¼
P

i d ~r� ~̂ri
� �

, ~̂jð~r; tÞ ¼ 1

2

P
i d ~r� r̂ið Þ; ~̂vi ~ri; tð Þ
n o

,

respectively. The canonical velocity operators ~̂við~r; tÞ are not just

proportional to ~̂pi, but equal to ~̂við~ri; tÞ ¼
1

m
p̂i þ e~A ~̂ri; t

� �� �
. An

arbitrary property O(-r, t) depending on the state of the system r(t)
will be computed as usual; if it represents an observable, it is
calculated as hÔ(-r, t)it = Tr(Ô(-r, t)r(t)), where hit indicates a trace
with respect to r(t). We emphasize the fact that the time depen-
dence of hÔ(-r, t)it will stem both from the explicit time dependence
of the operator Ô(-r, t) and from the evolution of r(t) due to the ME
(1). The property of interest can also be a non-observable arbitrary
functional of r(t), such as the purity O(-r, t) = Pt = Tr(r(t)2).

Let us define some functions under fixed initial density
matrix r(0), interparticle potential U(-ri,

-rj), and memory kernel
Kðt; t 0Þ (see Fig. 1):

1. F:
-

A(-r, t) - r(t) maps vector potentials to density matrices
via the ME of eqn (1), with fixed r(0), U(-ri,

-
rj), and Kðt; t 0Þ.

2. IO: r(t) - O(-r, t)[r(t)] maps density matrices to properties
that are functionals of density matrices, such as observables.

We are in particular interested in the mappings Ij : rðtÞ !

~̂jð~r; tÞ
D E

and In;j : rðtÞ ! n̂ð~rÞh it; ~̂jð~r; tÞ
D E

t

� �
.

3. G : ~Að~r; tÞ ! n̂ð~rÞh it; ~̂jð~r; tÞ
D E

t

� �
maps vector potentials to

particle and current densities.
4. ~G : ~Að~r; tÞ ! ~̂jð~r; tÞ

D E
t

maps vector potentials to current
densities.

Note that G = In,jF, G̃ = IjF. In one of our articles (Yuen-Zhou,
Rodrı́guez-Rosario, and Aspuru-Guzik,51 hereafter denoted as
YRA), we already defined the first three functions and showed
in its Theorem 1 an analog of the RG and Vignale theorems,
namely, that G is a one-to-one map. This statement is still
correct, despite the challenges to it by ref. 64. An important
consequence of this injection is that there exists the
inverse map G�1, whose domain is equal to the image set of

G, which yields rðtÞ ¼ FG�1 n̂ð~rÞh it; ~̂jð~r; tÞ
D E

t

� �
and

Oð~r; tÞ ¼ IOFG
�1 n̂ð~rÞh it; ~̂jð~r; tÞ

D E
t

� �
. Importantly, we have

emphasized that does not imply that every pair

n̂ð~rÞh it; ~̂jð~r; tÞ
D E

t

� �
can be inverted via G�1, for it might not be

in the image set of G (the claim is that G is injective,51 not that

it is bijective). Therefore, in principle, if both ~̂jð~r; tÞ
D E

t
and

hn̂(-r)it are sufficiently accurately reproduced via an alternative
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way other than through the costly computation involved in F,
then the mapping I0FG�1 could be used to calculate any

observables of the OQS as functionals of ~̂jð~r; tÞ
D E

t
and hn̂(-r)it.

In practice, this would be achieved through a non-interacting
KS system aimed at reproducing these two observables.†

II Remarks and discussions
A. G̃ is injective (one-to-one) too

We proceed to answer the following question: is G̃ also injective?
If so, analogous conclusions to the ones above associated with G

would hold too. In YRA, we made an incorrect claim, implying
that the answer is ‘‘no.’’ Here, we correct our original statement.

THEOREM. G̃ is a one-to-one map.
PROOF. The proof is similar to the one for Theorem 1

presented in YRA, provided some subtleties are addressed.
Consider two systems: the original one, associated to r(t), which
evolves according to eqn (1). The auxiliary one, associated with
r0(t), which evolves under the primed equation of motion,

dr0ðtÞ
dt
¼ �i Ĥ

0
SðtÞ; r0ðt 0Þ

h i
þ
Z t

0

dt 0K0ðt; t 0Þr0ðt 0Þ; (3)

and yield the same current density as the original system:

~̂j
0
ð~r; tÞ

� �0
t

¼ ~̂jð~r; tÞ
D E

t
: (4)

Here, the ‘‘primed’’ Hamiltonian Ĥ
0
SðtÞ is the same as eqn (2)

except for the substitution A - A0. Assume throughout this
proof that r(0) = r0(0), U = U0, and Kðt; t 0Þ ¼ K0ðt; t 0Þ for all
t � t0 Z 0. Suppose that for all -

r A R3 and t Z 0, the current
densities are the same in both systems. We ask the question:

under these circumstances, can ~Aa~A0 for some value of -
r and

t? The answer will be ‘‘no’’, hence proving the theorem.
The equations of motion for the particle and current densities

of the original system are:8,48,51

@ n̂ð~r Þh it
@t

¼ �~r� ~̂jð~r; tÞ
D E

t
þlð~r; tÞ (5)

@ ~̂jð~r; tÞ
D E

t

@t
¼ e n̂ð~r Þh it

m

@~Að~r; tÞ
@t

�
e ~̂jð~r; tÞ
D E

t

m
� ð~r� ~Að~r; tÞÞ

þ ~Dð~r; tÞ þ
~Fð~r; tÞ
m
þ~Gð~r; tÞ: (6)

Here, lð~r; tÞ ¼ Tr n̂ð~rÞ
R t
0 dt

0Kðt; t 0Þrðt 0Þ
� 	
 �

is the leakage term
that restores the continuity equation for OQS.51 Whereas a
closed system always satisfies the continuity equation, an OQS
may not satisfy the continuity equation in general when the
leakage term is nonzero. This can be regarded as a computa-
tional artifact of coarse-graining, and in fact, the current
detected in an OQS experiment might not be the same as

~̂jð~r; tÞ
D E

t
, depending on the time resolution of the measurement

apparatus.67–69 Nevertheless, for purposes of this article, we shall

operationally keep referring to ~̂jð~r; tÞ
D E

t
as the current density.

The rest of the terms are given by ~Dð~r; tÞ ¼

�1
4

P
a;b b̂

@

@a
P

i ~̂via; ~̂vib; d ~r� ~̂ri
� �n on oD E

for a, b = x, y, z,

~Fð~r; tÞ ¼ �
P

i dð~r� ~̂riÞ
P

jai
~r~riUð~ri �~rjÞ

D E
, and ~Gð~r; tÞ ¼

Tr ~̂jð~r; tÞ
R t
0 dt

0Kðt; t 0Þrðt 0Þ
� 	n o

. Explanations of these terms can

be found in YRA. Analogous primed relations hold for the
auxiliary system.

Let us Taylor expand eqn (5) about t = 0 as Oð~r; tÞ ¼P1
k¼0 Okð~rÞtk with Okð~rÞ �

1

k!

@kOð~r; tÞ
@tk

����
t¼0

. Equating powers of

t, we obtain,

lnlð~r Þ ¼ �~r�~jl�1ð~r Þ þ ll�1ð~r Þ; (7)

after collecting tl�1 terms. Note that eqn (4) can also be
written as:

~jkð~rÞ ¼~j 0kð~r Þ; (8)

for all 0 r k o N.

Fig. 1 Relevant mappings for TDCDFT. Given a fixed initial state r(0), inter-
particle potential U(~ri, ~rj), and memory kernel Kðt; t 0Þ, F maps vector potentials
~A(~r, t) to density matrices r(t) via the evolution of the ME. Once r(t) is calculated,
any properties of the system can be calculated from it, yielding the maps IO from
density matrices to arbitrary properties Ô(~r, t), and in particular, In,j to the particle

and current density pair n̂ð~rÞh it; ~̂jð~r; tÞ
D E

t

� �
, and Ij to the current density ~̂jð~r; tÞ

D E
t

only. G = In,jF, G̃ = IjF are the composition maps from ~A(~r, t) directly to

n̂ð~rÞh it; ~̂jð~r; tÞ
D E

t

� �
and ~̂jð~r; tÞ

D E
t
, respectively. In YRA, we have shown that G is

one-to-one, yielding a well-defined inverse G�1 whose domain is the image set of
G. In the current article, we show that G̃ is also one-to-one, and that the inverse
G˜
�1 exists, with its domain being the image set of G̃.

† A conservation of the computational complexity is hidden in the practical
construction of the composition map I0FG�1, that is, the construction of
observables as functionals of the current density.
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If Kðt; t 0Þ is a smooth function of the time arguments, lk

depends at most on
@k�1Kðt; t 0Þ

@tk�1

����
t 0¼t

and
@k�1r
@tk�1

(see YRA).
-

A

couples directly to the system and indirectly to the bath
through the system. If there are any memory effects at time t

associated with
-

A, they must be due to
-

A(-r, t0) for t0 strictly

smaller than t. In other words,
-

A couples to the system, the
system couples to the bath, and only afterwards, in a second
order process in the system-bath interaction can this informa-
tion return to the system as memory through Kðt; t 0Þ. By these

considerations,
@k�1Kðt; t 0Þ

@tk�1

����
t¼t 0

can depend at most on
-

Ak�2(-r ).

@k�1r
@tk�1

also depends at most on
-

Ak�2(-r ) through the Hamiltonian

in eqn (2). Therefore, in the case ofKðt; t 0Þ smooth as a function

of t and t0, lk(-r ) depends at most on
-

Ak�2(-r ). A proof using
formal arguments derived from projector operator methods
yield the same conclusion.70,71 For the important Markovian
limit where Kðt; t 0Þ is not a smooth function and Kðt; t 0Þ ¼
LðtÞdðt� t 0Þ for some superoperator L. By the same arguments

as above,
@kL
@tk

should depend at most on
-

Ak�1(-r ) (the most

common situation is when L is constant in time). lk can also

depend on
@kr
@tk

, which depends at most on ~Ak�1ð~r Þ. Therefore,

the summary is that in either case, lk depends at most on
-

Ak�1(-r ).
The next step in the proof is an induction. Consider the

strong inductive hypothesis:

~Akð~r Þ ¼ ~A0kð~r Þ; (9)

for all 0 r k o l where l Z 1. Two statements follow:
(a) Eqn (8) together with the arguments in the previous

paragraph imply that:‡

nlð~r Þ ¼ n0lð~r Þ; (10)

which means that at each step, we prove that the particle
densities in both systems must be the same.

(b) Let us Taylor expand eqn (6) and its primed version, and
use eqn (8) and (10) to collect terms associated with tl:

eðl þ 1Þn0ð~r ÞD~Alþ1ð~r Þ ¼ � e
Xl�1
k¼0
ðkþ 1Þnl�kð~r ÞD~Akþ1ð~r Þ

þ e
Xl
k¼0

~jl�kð~r Þ � ~r� D~Akð~r Þ
� �

þ m~Dlð~r Þ þ ~F lð~r Þ þm~Glð~r Þ
� �

� m~D0lð~r Þ þ ~F0lð~r Þ þm~G0lð~r Þ
� �

;

(11)

where DA = A0 � A. Eqn (11) is the same as eqn (10) in YRA. The
same immediate consequence of that investigation is obtained,
namely, that the right hand of the equation contains D

-

Al as its
highest order derivative (we refer the reader to YRA for a
detailed derivation of this conclusion). Hence, due to the
hypothesis in eqn (9), the right hand side vanishes identically
to zero.

We now prove eqn (9) for the basis case for the induction,
l = 1. Since the initial states in both systems are the same,
n0ð~r Þ ¼ n00ð~r Þ ¼ hn̂ð~r Þi0. Eqn (8) holds for any k, in particular
for k = 0. This yields:

D~A0ð~r Þ ¼
Tr ðrð0Þ � r0ð0ÞÞ

P
i

f~pi; d ~r�~rið Þg
 � �

2ehn̂ð~r Þi0
¼ 0: (12)

Eqn (11) also holds for l = 0, and gives D~A1ð~r Þ ¼ 0, proving

the basis case. By induction, D
-

Ak(-
r ) = 0 for all 0 r k o N, so

-

A(-r, t) =
-

A0(-r, t) for all t in the domain of convergence of all the
Taylor expansions. The proof can be repeated Taylor expanding
about different times until they cover the entire t Z 0 domain.

In passing, note that eqn (4) together with the rest of the

hypotheses imply eqn (10), which means hn̂ð~r Þit ¼ hn̂ð~r Þi
0

t once
the induction proof is over. In YRA, we had regarded the latter
as an additional hypothesis, but here we realize that such
assumption is a consequence of the other hypotheses of the
current theorem.

Discussion. Theorem 1 in YRA and the Theorem in this
article altogether claim that both G and G̃ are injective maps.

Hence, it is only necessary to reproduce ~̂jð~r; tÞ
D E

t
in the KS

system because then, the properties of the original system can

be expressed as Oð~r; tÞ ¼ IOF ~G�1 ~̂jð~r; tÞ
D E

t

� �
. In YRA, we had

criticized the KS scheme presented in ref. 48 and 49 based on
the fact that, in general, it is not possible to reproduce hn̂(-r )it
and ~̂jð~r; tÞ

D E
t

simultaneously using a KS system which is

restricted to dissipate with the same bath operators as the
original system. The latter is indeed the case for microscopi-
cally derived MEs of the Lindblad form in the weak system-bath
coupling regime, where the dissipation operators are in general
non-local, yielding finite leakage terms l(-r, t) (see eqn (5)).51,67–69

However, this fact is immaterial for the establishment of a KS

scheme, as only ~̂jð~r; tÞ
D E

t
needs to be the same in both original

and KS system, irrespective of hn̂(-r )it. This subtlety was not
appreciated by YRA or by others, such as in ref. 49, where the
authors state ‘‘. . . these are the only two physical quantities that
the KS system needs to reproduce’’ (first paragraph, page 7 in

ref. 49), referring to hn̂(-r )it and ~̂jð~r; tÞ
D E

t
. A correction to this

statement by the same authors is later reported in ref. 64 and 65.
It is important, however, to stress that none of the KS

schemes we suggest in YRA, which are intended to reproduce

both hn̂(-r )it and ~̂jð~r; tÞ
D E

t
via alternative methods, are affected

by the theorem in the present article, and remain valid as KS

‡ In fact, to guarantee this first statement, we only need ~Akð~r Þ ¼ ~A0kð~r Þ for all 0 r
k r l � 2, because eqn (7) depends on ll�1(~r) which, as we have just concluded,
depends at most on ~Al�2(~r ).

Paper PCCP

Pu
bl

is
he

d 
on

 0
7 

Ju
ne

 2
01

3.
 D

ow
nl

oa
de

d 
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
15

/0
1/

20
14

 1
7:

21
:4

7.
 

View Article Online

http://dx.doi.org/10.1039/c3cp51127h


12630 Phys. Chem. Chem. Phys., 2013, 15, 12626--12636 This journal is c the Owner Societies 2013

schemes for TDCDFT for OQS, as the reproduction of both

hn̂(-r )it and ~̂jð~r; tÞ
D E

t
in the KS system implies at least the

reproduction of ~̂jð~r; tÞ
D E

t
. In other words, our YRA scheme

was redundant, but correct. In particular, our central result
(Theorem 3 in YRA) of using a CDS as a KS scheme holds, and
its variant in the context of TDDFT53 has been correctly
proposed, together with a practical Markovian bath functional.
The TDDFT quantum Drude approach for dissipation due to
Neuhauser50 can also be regarded as a mapping from an
original OQS to a CDS KS scheme.

Also, restating the ideas from last section, let us illustrate
how G is injective, but not necessarily bijective. Simply, take a

h
-

j(-r, t)it given by some r(t), which in turn, is produced by an
-

A(-r, t), and consider all the pairs hn̂ð~rÞit; ~̂jð~r; tÞ
D E

t

� �
for which

hn̂(-r )it does not satisfy eqn (5). These pairs are not in the image set

of G and hence cannot be inverted by G�1: no
-

A produces them via
eqn (1) for fixed r(0), U(-ri,

-
rj), and Kðt; t 0Þ. Hence, the domain of

G�1 is restricted to the image set of G, as explained before and in
ref. 51. Contrary to previous criticism,64 this restriction allows for
the well-defined inversion of observables as functionals of

hn̂ð~rÞit; ~̂jð~r; tÞ
D E

t

� �
via Oð~r; tÞ ¼ IOFG�1 hn̂ð~rÞit; ~̂jð~r; tÞ

D E
t

� �
.

B. No inconsistency in the mapping from the original open
quantum system to the Kohn–Sham closed driven system

To aid in the following arguments, we reproduce Theorem 3
from YRA:

‘‘Theorem 3. (A,C Kohn Sham scheme) There exists an
auxiliary closed KS system which starting in the state rKS(0)
evolves unitarily under a KS Hamiltonian ĤKS(t):

ĤKSðtÞ ¼
X
i

~̂pi þ e ~AKS ~ri; tð Þ þ ~C ~ri; tð Þ
� �� �2

2m
þ
X
io j

U ~ri;~rj
� 	

(13)

producing particle and filtered current densities that are
related to the particle and current densities of the original
many body interacting OQS governed by (1) by:

hn̂ð~r ÞiKS;t ¼ hn̂ð~r Þit

~̂jfiltð~r; tÞ
D E

KS;t
¼ ~̂jð~r; tÞ
D E

t

(14)

where we have defined the filtered current operator as

~̂jfiltð~r; tÞ ¼
P

i

1

2
~̂vi;filtð~r; tÞ; d ~r� ~̂ri

� �n o
with the filtered velocity

operator given by ~̂vi;filt ~ri; tð Þ ¼
~̂pi þ e~AKS ~̂ri; t

� �
m

. Additionally, we

denote the expectation values in the KS system in the usual

form hÔ(-r, t)iKS,t = Tr(Ô(-r, t)rKS(t)). We shall call
-

AKS(-r, t) the KS

vector potential, and
-

C(-r, t) the leakage potential.’’
Discussion. Theorem 3 in YRA establishes the possibility to

reproduce both hn̂(-r )it and ~̂jð~r; tÞ
D E

t
as expectation values of

appropriately defined operators using a CDS ðKðt; t 0Þ ¼ 0Þ.
Clearly, due to the leakage term l(-r, t) which restores continuity
in eqn (5), it is in general impossible to reproduce both hn̂(-r )it and

~̂jð~r; tÞ
D E

t
of an OQS with a CDS. Therefore, we show that by

appropriately defining a filtered current operator, its expectation

value on the CDS can reproduce ~̂jð~r; tÞ
D E

t
of the original OQS. The

particle density operator is defined in the usual way in both
original and KS DCS systems. Contrary to criticisms,64 we are not
trying to reproduce the full many-body dynamics of the original
OQS with the closed system, but only trying to reproduce hn̂(-r )it
and ~̂jð~r; tÞ

D E
t

via a well-defined procedure. The reproduction of

these two observables and not the full dynamics is what most TD-
(C)DFT schemes are about. Since the OQS under consideration
exchange energy with an environment, but do not lose particles as
time evolves, it is quite conceivable that there exists a CDS which
mimics the particle and current density profiles of the OQS by
pumping energy in and out of the system via the time-dependent
external potentials. Obviously, there will be properties which differ
in both systems, such as the purity, Pt = Tr(r(t)2) a Tr(rKS(t)2) =
Pt,KS. Whereas Pt changes in time as it becomes entangled with the
bath, Pt,KS stays constant throughout the unitary evolution. Never-
theless, there is no flaw in the logic of the formalism we have
presented: even Pt could in principle be calculated as a functional
of the current density, which is obtained through the KS system,

Pt ¼ IOF ~G�1 ~̂jð~r; tÞ
D E

t

� �
, where O = Pt. This functional, however,

might not be trivial to find in practice.
Note that

-

AKS and
-

C are not unique (in fact, they do not need
to be for Theorem 3 in YRA to be true). As explained in the proof
in YRA, the continuity equation of the unitary evolution of the
KS system is given by:

@hn̂ð~r ÞiKS;t

@t
¼ �~r� ~̂jfiltð~r; tÞ

D E
KS;t
�~r�

e~C ~̂r; t
� �
m

hn̂ð~r ÞiKS;t

0
@

1
A:

(15)

Let us define the variable ~Gð~r; tÞ � �
e~C ~̂r; t
� �
m

hn̂ð~r ÞiKS;t. By virtue

of the Helmholtz decomposition, it is always possible to write
-

G =
-

G> +
-

GJ, where > and J denote the transverse and
longitudinal components of the vector field, defined by the

relations ~r�
-

G> = 0 and ~r �
-

GJ = 0. The divergenceless

condition of
-

G> implies that it may be expressed as the curl

of a vector field
-
g(-r, t),

-

G>(-r, t) = ~r� -
g(-r, t). Similarly, the curl-

less condition of
-

GJ means that there is a scalar field h(-r, t) such

that
-

GJ(
-r, t) = ~rh(-r, t). Imposing the constraint due to eqn (15),

one can see that whereas
-
g can be an arbitrary field,

-

h must
satisfy the Poisson equation,

r2h ¼
@hn̂ð~r ÞiKS;t

@t
þ ~r� ~̂jfiltð~r; tÞ

D E
KS;t

(16)

which is uniquely determined given the boundary condition at
some surface, for instance, at |-r| - N. Clearly, the
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arbitrariness of
-

G>(-r, t) via
-
g(-r, t) as well as that of

-

GJ(
-
r, t) via

the (arbitrary) boundary condition of h in turn gives quite a

bit of freedom in the determination of
-

C(-r, t), as DADV

correctly note;
-

C(-r, t) is not uniquely defined. For instance, a

possible
-

C(-r, t) is,

~Cð~r; tÞ ¼ �x̂ m

ehn̂ð~r Þit

Z x

0

dx0
@hn̂ð~r 0Þit

@t
þ ~r� ~̂jð~r 0; tÞ

D E
t

 �
; (17)

but this is not unique. Here, the vector field points in the x̂
direction, -

r = (x, y, z), and the lower limit of the integral is at

(0, y, z). The arbitrariness of
-

C(-r, t), however, is immaterial: so
long as it satisfies eqn (15), it will subtract the correct amount
of leakage current from the total KS current, so that the second
constraint in eqn (14) is fullfilled.

The proof for the theorem in discussion (see YRA) explains

how to construct
-

AKS from
-

C. Furthermore, we can construct
~A00KS from another

-

C00 which also guarantees eqn (14). In

general, ~C þ ~AKSa~C00 þ ~A00KS. Hence, the ‘‘total’’ KS vector

potential
-

C +
-

AKS is not unique, and two different total KS
vector potentials yield the same particle and filtered current

densities, hn̂(-r)iKS,t and ~̂jð~r; tÞ
D E

KS;t
, respectively. As opposed to

what is claimed in ref. 64, this fact is not in contradiction with

Theorem 1. In general, the total current densities ~̂jð~r; tÞ
D E

KS;t

due to
-

C +
-

AKS and ~C00 þ ~A00KS will be different, in consistency
with Theorem 1, which reduces to Vignale’s theorem as the KS

system is taken to be closed.8 Yet, ~̂jð~r; tÞ
D E

KS;t
can be regarded

simply as computational means to obtain the particle and

filtered current densities, hn̂(-r)iKS,t and ~̂jfiltð~r; tÞ
D E

KS;t
, which

are by construction, the same using either KS vector potential,
and supposed to correspond to the actual OQS observables, as
the constraint in eqn (14) indicates.

We reiterate that the KS scheme conceived here is in no
contradiction with the theorem in the current article, since the

former intends to extract both hn̂(-r )it and ~̂jð~r; tÞ
D E

t
of the

original OQS, whereas the latter requires that only the extrac-

tion of ~̂jð~r; tÞ
D E

t
is necessary. The correct extraction of hn̂(-r)it is,

as argued here, redundant, but by no means incorrect.

C. Positivity of the Kossakowski–Lindblad master
equation irrespective of time-dependence of Hamiltonian
and dissipation operators

A quantum ME is the generic denomination of an equation
of motion for the density matrix of an OQS. A systematic
approach to derive a ME from a microscopic model is given
by the Nakajima–Zwanzig projection operator method.71–74

Alternatively, phenomenological approaches are also often
advocated.

A popular form of Markovian ME which is often used in the
literature is the generalized Kossakowski–Lindblad (KL)

equation:75–77

@r
@t
¼ LðrÞ � �i Ĥ; r

� �
þ
XN
i¼1

�1
2
L̂
y
i L̂ir�

1

2
rL̂
y
i L̂i þ L̂irL̂

y
i

 �
;

(18)

where both Ĥ and L̂i can be time-dependent. This ME is known
to preserve the positivity and trace of the density matrix under
its evolution, irrespective of the time-dependence of Ĥ and L̂i. To
verify this, we expand r(t + Dt) for small Dt:

rðtþ DtÞ ¼ rðtÞ þ @r
@t

DtþO Dt2
� 	

�
XN
i¼0

MiðDtÞrðtÞMiðDtÞy:
(19)

Using eqn (18), we can derive the so-called Kraus operators
Mi(Dt), which are:

MiðDtÞ ¼ L̂i

ffiffiffiffiffi
Dt
p

; (20)

for i > 0, and

M0ðDtÞ ¼ I þ �iĤ � 1

2

XN
i¼1

L̂
y
i L̂i

 !
Dt: (21)

An important property of the Kraus operators is that they
satisfy:

XN
i¼0

MiðDtÞyMiðDtÞ ¼ I ; (22)

as can be easily checked from eqn (20) and (21). Notice that, in
general, Mi(Dt) are time dependent if L̂i are too.

Let us write rðtÞ ¼
P

i pj xjðtÞ
�� �

xjðtÞ
� ��, where {|xi(t)i} is the basis

that diagonalizes r(t) with pj Z 0 for all j. Notice that up to O(Dt2):

rðtþ DtÞ ¼
X
j

XN
i¼0

pj MiðDtÞ xjðtÞ
�� �� 	

xjðtÞ
� ��MiðDtÞy
� �

(23)

which evidences that r(t + Dt) is positive semidefinite if r(t) is. The
preservation of the trace can also be readily shown using eqn (22)
and the cyclic invariance of the trace:

Trðrðtþ DtÞÞ ¼ Tr
XN
i¼0

MiðDtÞrðtÞMiðDtÞy
 !

¼ TrðrðtÞÞ:

(24)

The proofs above are a ‘‘backwards’’ adaptation of the
standard textbook derivation of the KL equation as the gen-
erator of a completely positive map. See, for instance, the
textbook.78

For completeness, we now introduce the concept of a
semigroup. Consider the integrated form of the equation of
motion for r(t) in the form of a dynamical map, r(t) = Ft,0r(0),
where Ft,0 is a dynamical map that propagates the density
matrix from 0 to the final time t. The semigroup property can be
expressed as the following identity for the composition map:71

Fs,0Ft,0 = Fs+t,0. (25)
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Discussion. On the one hand, as it is stated in ref. 49, the
semigroup property will in general not be satisfied in general
for time dependent Ĥ or L̂i. For instance, these operators at
times belonging to the interval [t, t + s] can differ significantly
from their values at [0, s]. On the other hand, for the case where
both types of operators are time-independent, it has been
shown76 that L is the most general form of the generator of a
quantum dynamical semigroup, with the dynamical map being

the exponential map: Fs;0 ¼ eLs. However, contrary to what49

and DADV claim, neither positivity nor trace-preservation
depend on the time-dependence of Ĥ or L̂i, as we have explicitly
shown here.

D. No proof yet for the Runge–Gross theorem analog for
individual trajectories in the stochastic Schrödinger equation

It is well known that if Ĥ does not depend on the state of the
system, eqn (18) can be ‘‘unraveled’’ as the evolution of an
ensemble of Stochastic Schrödinger Equations (SSE) which
reconstructs the density matrix upon appropriate manipulation
of the calculated trajectories.60,79 Hence, for this situation, the
SSE yields the same density matrix dynamics as the KL–ME in
eqn (18). There are, however, several interesting features of the
SSE that make it attractive compared to the ME, such as its
lower numerical cost80 as well as the novel conceptual insights
it provides based on measurement theory.81 In any case, the
theorems in the work by Burke and coworkers46,47 and by us in
YRA and,53 all of which are derived from the ME approach, can
be implemented in the SSE KS scheme. An important point is
that the KS vector or scalar potential would need to be calculated

as a functional of the ensemble-averaged ~̂jð~r; tÞ
D E

or hn̂(-r, t)i,
respectively. Hence, one could devise a parallel algorithm where
all the trajectories in the ensemble are propagated simulta-

neously, and at each time-step, the ensemble-averaged ~̂jð~r; tÞ
D E

or hn̂(-r, t)i computed, from which the KS potentials would be
calculated as functionals. However, this is not what49 propose.
Instead, they suggest the evolution of ensembles of wavefunc-
tions evolving under different stochastic KS potentials which
depend on each individual trajectory (see ref. 48, 49 and 64 for
their general discussion, and ref. 66 for their TDDFT implemen-
tation). Unfortunately, the one-to-one mapping from single
trajectory stochastic external potentials to the corresponding
stochastic particle and current densities has not been proven.
Hence, insofar this proof does not exist, the KS scheme in ref. 48
and 49 lacks theoretical foundation.

Discussion. The authors of ref. 48 and 49 claim that no
closed equation of motion for the density matrix can be derived
in this last situation (see paragraph before Section C in ref. 49).
We agree with them on this point. As an illustration, consider

the term h-A(-r, t)n̂i. If
-

A(-r, t) is constant throughout the ensemble

of trajectories, then we can write, h
-

A(-r, t)n̂(-r )i =
-

A(-r, t)hn̂(-r )i and

@ ~̂jð~r; tÞ
D E

t

@t
¼ ehn̂ð~r Þit

m

@~Að~r; tÞ
@t

þ � � �, just as in eqn (6), which was

derived from the ME. However, if
-

A(-r, t) depends on each

stochastic trajectory, h
-

A(-r, t)n̂(-r)i a h
-

A(-r, t)ihn̂(-r)i in general,
and a closed equation of motion for the current density cannot
be derived. Hence, the equations of motion for the current
displayed in ref. 48 and 49 do not hold for this case. They hold
for the case where the same

-

A(-r, t) acts on each member of the
ensemble, which coincides with the domain where the SSE is
equivalent to the ME. Another verification is that our equation
of motion for the current51,53 reduces to theirs in the limit
where the memory kernel is of the KL form. A proof relying
on these equations of motion cannot be a proof for the
Runge–Gross analog for individual trajectories in the Stochastic
Schrödinger Equation. At this point, we are not in the position
to claim that there is no such Runge–Gross analog, but so far, if
such proof exists, it has not been published.

It seems that authors in ref. 48 and 49 are aware of this issue
but they still advocate their method. According to them, having
a single

-

AKS for the entire ensemble ‘‘requires that the
exchange–correlation vector potential included also the statis-
tical correlations of the direct Coulomb interaction at different
points in space’’ (see discussion around eqn (43) in ref. 49). It is
difficult for us to understand what this statement precisely
means, and why the problem would be solved with the method
they suggest. Also in the cited page, the authors worry about
lack of positivity of the density matrix by using only one time-
dependent

-

AKS potential for all the trajectories. As shown in the
previous section, this preoccupation is unfounded.

Having pointed out these subtleties, it might be the case that
even if the KS scheme of ref. 48 and 49 is not rigorous, it is a
pragmatic and useful approximate computational tool. How-
ever, it would be interesting to obtain further justification of
the preference for their method as opposed to the more
rigorous one described above.

We emphasize that at this point we are not claiming there is
no Runge–Gross analogue theorem for the correspondence
between stochastic densities and stochastic potentials for each
trajectory. There simply has not been a published proof for it
yet. Clearly, regardless of whether this proof appears, our ME
approaches remain valid.

E. Deficiencies of arbitrary master equation approaches

A ME can be systematically derived from a microscopic model
under the Nakajima–Zwanzing projector operator method.71,74

This approach is by far the most general one for OQS, and
applies both to Markovian and non-Markovian dynamics, but
might suffer from some problems due to the approximations
involved in their derivations, such as the lack of positivity. In
particular, it has been shown that this deficiency has a physical
origin, as most of the MEs are only compatible with certain
class of initial states, or are only applicable in some parameter
range.82–84 An alternative approach is the restriction of the
equations of motion to satisfy some minimal requirements
such as positivity and trace preservation. The KL equation is an
example of the latter approach,85,86 but non-Markovian analo-
gues also exist.87 Even in these cases, it is difficult to construct
MEs which satisfy all the desirable requirements of an OQS
evolution. For instance, Kohen and Tannor have shown that no
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Markovian ME simultaneously satisfies the desired triad of
positivity, translational invariance, and asymptotic approach
to thermal equilibrium.88

Discussion. DADV criticize our study of generalized ME
because they might not maintain positivity in general. As
implied above, we are not aware of a ME which fullfills all
the desirable physical requirements of an OQS evolution. This
is true even in the context of the KL equation, which although
does not violate positivity, is not translationally invariant,
yielding different dissipative dynamics under translation of
the coordinate system, a phenomenon which is not physical.88

Another example is the class of non-secular Redfield equations,
which violate positivity under certain regimes, but which have
been extensively used in the chemical physics community
because they can be transparently derived from a microscopic
model.89–92

Even if ME suffer from unavoidable deficiencies, they are
one of the most promising ways to study OQS coupled to large
environments. Hence, they are an invaluable theoretical tool
and their connection with TDDFT should pave the way for the
description of a wide variety of interesting OQS.

III Conclusions

In this article, we have addressed several formal issues con-
cerning our previous work51,53 and that of others48,49,66 in the
topic TDDFT for OQS. In summary, we have found an incorrect
speculation we had previously advocated in ref. 51, namely, that
the map G̃ from vector potentials to current densities is not
injective, when in reality it is, as the theorem in this article
establishes. Fortunately, the theorem in this article does not
render any of the theorems in YRA as invalid, and therefore, all
the suggested KS schemes proposed in our investigation
remain rigorously applicable. In particular, we have clarified
that using a KS CDS to compute the particle and current
densities of the original OQS is well founded. The intuition
behind this result is that the OQS under consideration
exchange energy with an environment, but not particles.
Time-dependent potentials driving closed systems also pump
energy in and out of the system. Since only simple variables of
the OQS such as particle and current densities profiles are
supposed to be mimicked by the KS system, it is not surprising
that we can achieve this with a CDS. Obviously, there are many
properties that will not be the same in both systems, but that is
expected from the TD(C)DFT theorems, as they only claim that
those properties may be calculated as the functionals of particle
and current densities, which in principle, are extracted cor-
rectly from the KS system. We also argued that uniqueness of
several KS potentials is irrelevant in our scheme.

Contrary some recent views in the literature, we have shown
that the KL equation maintains positivity even in the case of
time-dependent Hamiltonians or dissipation operators. We
also carefully compared the ME approach against the SSE
formalism advocated by ref. 48, 49 and 66. If the potential does
not depend on the stochastic wavefunction itself, then the SSE
is equivalent to the KL–ME. However, the cited works place an

important emphasis to the case where the potential depends on
the stochastic wavefunction, yielding an ensemble of different
potentials that govern each of the stochastic trajectories. Under
such circumstances, just as those authors claim, no closed
equation of motion for the observables can be derived. Yet,
since their TDDFT proof in ref. 48 depends on such equations
of motion, they must limit the practice of their theory to the
same realm as the one of the MEs, unless there is a pragmatic
reason to skip the rigor they have provided themselves. An
alternative is to attempt to prove a Runge–Gross analog for
stochastic trajectories, which to our knowledge, has not been
published so far. MEs may violate certain desirable physical
properties, but they are still very important constructs for the
study of OQS. As far as our work is concerned, our mappings of
TD(C)DFT based on MEs provide a rigorous framework to
develop computational tools for the study of OQS. The devel-
opment of dissipative functionals is at its infancy,50,53,55 but we
foresee interesting work on this realm.

In summary, in this article, we have attempted to clarify
several formal aspects of TDDFT for OQS, emphasizing on
certain mappings and KS schemes which have caused some
confusion in the recent literature. We have also compared the
different schemes based on ME and SSE. We hope that the
results and arguments presented here will aid the further
development of the field.
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