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Abstract

Many computer systems have a functional requirement to release information. Such requirements are an important part of

a system’s information security requirements. Current information-flow control techniques are able to reason about permitted

information flows, but not required information flows.

In this paper, we introduce and explore the specification and enforcement of required information release in a language-

based setting. We define semantic security conditions that express both what information a program is required to release, and

how an observer is able to learn this information. We also consider the relationship between permitted and required information

release, and define bounded release, which provides upper- and lower-bounds on the information a program releases. We show

that both required information release and bounded release can be enforced using a security-type system.
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1 Introduction

Information-flow control holds the promise of strong, end-to-end, application-specific information security [38]. To date,

most research on information-flow control has focused on what flows are permitted or prohibited in a system. For example,

noninterference [19] prohibits confidential inputs flowing to public outputs.

Many computer systems release (or declassify) confidential information as part of their intended functionality, and as such,

violate noninterference. Much work in recent years has considered weakening noninterference to permit some flow of confi-

dential inputs to public outputs (e.g., [26, 12, 13, 40, 43, 42, 6]).

This article is an extended version of the paper “Required Information Release,” by Stephen Chong, which appears in the Proceedings of the 23rd IEEE
Computer Security Foundations Symposium, IEEE Computer Society, 2010.
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However, many systems have more than just permission to release information; they have an obligation to release infor-

mation. In this work, we introduce and explore the specification and enforcement of required information release, or simply,

required release.

Examples abound of systems with an obligation to release information. The Sarbanes-Oxley Act of 2002 is a United States

federal law that was enacted after a series of corporate accounting scandals, and requires publicly held companies to report

details of their finances to a government agency. Thus, financial systems of such companies are required to release sensitive

financial information to the government agency. Pharmaceutical companies in many countries are required to report all results of

clinical trials of new drugs to a government agency (such as the Food and Drug Administration) to receive approval. Computer

systems that support the conduct of clinical trials must release all trial results, and not withhold negative results. In general,

transparency of organizations and processes requires the release of sensitive information. Other systems that are required to

release information include the following.

• Sealed bid auctions: at the end of the auction, the winning bid (and, depending on the auction, the winner’s identity) is

required to be released.

• Information purchase: once a customer has paid for information (such as electronic media), the information is required

to be available for download.

• Games: legal game-play often requires release of a player’s secret information, such as the cards in a player’s hand, or

the location of battleships on a player’s board.

• Course management system: when a professor indicates that exam results are available, the system is required to allow

students view their grades.

• Credit card sales: the receipt for a credit card purchase is required to show the final four digits of the customer’s credit

card number.

In the examples above, the required release of information is an important aspect of each system’s information security. To

gain assurance in the systems’ correct implementation, it is necessary both to specify the required release (and other information

security requirements) and to verify that the implementation satisfies the specification.

However, the specification of required release is subtle. What does it mean for a program to satisfy the required release

of information? How do we know if a program is successfully and correctly releasing information? It does not suffice for the

output of a program to simply depend upon, or be influenced by, the information required for release. Surprisingly, even if the

output contains the information required for release, the program may not satisfy the required release of information. We use

epistemic logic, and algorithmic knowledge [20] in particular, to guide our definition of required information release. Required

information release must specify not just what information is to be released, but also how that information is to be learned by

its intended recipient.

Required release is a functional requirement on a system: program output must allow an observer to learn certain informa-

tion. Noninterference and most other information flow security conditions are not functional requirements. However, required
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release is an information flow security condition; it describes a mandatory flow of information to an observer. By contrast,

most existing work in information flow considers permitted flows of information. In terms of dependence, permitted informa-

tion flow conditions restrict how the output is permitted to depend on the inputs. For example, noninterference requires that

public outputs do not depend on private inputs—if a private input changes, the public output should not change. Required

information release mandates that outputs must depend on inputs in a way that allows an observer to learn certain information.

Required release interacts with permitted information flows in more interesting ways than other functional requirements: if

a system is required to release information, then the system must also be permitted to release it. Indeed, required information

release and permitted information release can be combined to specify both upper and lower bounds on the information that

a system releases. We do so by defining bounded release, a security condition that combines required release and delimited

release [39], and thus specifies both what information a program is required to release, and what information it is allowed to

release.

For some systems, bounds on information release should be tight. For example, a company producing reports in accordance

with the Sarbanes-Oxley Act typically wishes to release no more information than is required by law; thus, the information that

their financial system is permitted to release should be identical to the information it is required to release. In other systems,

the bounds are not tight, such as in a poker game where some players are permitted, but not required, to reveal their cards at the

end of a hand.

The remainder of the paper is structured as follows. Section 2 uses the example of a simple credit card sales system

to examine what it means for a system to satisfy required information release. Section 3 presents an interactive imperative

language that we use in Section 4 to formally define required release. We also define bounded release, a security condition

that specifies what information a program is required and permitted to release. We show in Section 5 that required release and

bounded release can be soundly enforced in an interactive language by a type system. Section 6 discusses related work, and

Section 7 concludes. Appendices A and B contain proofs of the key theorems.

2 What is required release?

Consider, as a running example, a (grossly simplified) credit card sales system that takes a credit card number as input from

high confidentiality channel H , and is required to release the last four digits to low confidentiality channel L (representing, for

example, the printer, or an audit log). What does it mean for this system to satisfy the required release of the last four digits?

Noninterference is a strong information security condition that requires that public outputs reveal no information about con-

fidential inputs. Any system that releases confidential information violates noninterference; the credit card sales system, which

must release the last four digits of the confidential credit card number to a publicly observable printer, violates noninterference.

However, just because a system violates noninterference does not mean it satisfies the required information release.

Consider the following attempt to implement the credit card sales system.
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P1 : input cc from H;

if (ccmod 10, 000) < 5, 000 then

output 0 to L

else

output 1 to L

The program inputs the credit card number from channelH , and then outputs either 0 or 1 to channel L. The output observed on

channel L is influenced by the last four digits of the confidential input, and thus the program does not satisfy noninterference.

However, the program fails to satisfy the required information release, as an observer of channel L does not learn the credit

card number’s last four digits.

Even if a system outputs the information required for release, it may fail to satisfy the required information release. This is

demonstrated in the following program, which is another attempt to implement the credit card sales system.

P2 : input cc from H;

i := 0;

while i < (ccmod 10, 000) do

output i to L;

i := i+ 1;

output (ccmod 10, 000) to L;

i := i+ 1;

while i < 10, 000 do

output i to L;

i := i+ 1

The command output (ccmod 10, 000) to L in program P2 above explicitly outputs the credit card’s last four digits. However,

every execution of the program outputs all integers from 0 to 9,999 in order. An observer of channel L always sees the

same output, regardless of the credit card’s last four digits, and so the observer learns nothing. (Indeed, program P2 satisfies

noninterference: the observer cannot learn anything about the credit card number.)

These examples show that it is insufficient for observable output to be merely correlated with the information required for

release, or even for the output to contain that information. The key insight is that to satisfy required release, the output must

allow an observer to know what information was required for release.

In models of knowledge based on possible world semantics [22, 17], an agent has implicit knowledge (or, simply, knowledge)

of fact φ if in all possible worlds consistent with the agent’s observations, φ is satisfied. In the credit card system, an observer

of channel L knows the last four digits of the credit card if all credit cards that could have produced the observed output end in

the same four digits. Programs P1 and P2 do not allow an observer of channel L to know the last four digits.

Standard logical approaches to knowledge suffer from the problem of logical omniscience: an agent knows all logical

consequences of its knowledge. The following attempt to implement the credit card system demonstrates this problem. The

4



program chooses two large primes, outputs their product, and the result of XOR-ing the smaller prime with the last four digits

of the credit card number (padded with random bits to be the same length as the prime).

P3 : input cc from H;

p := generateLargePrime();

q := generateLargePrime();

output p× q to L;

if p < q then t := p else t := q;

output t xor pad(ccmod 10, 000) to L

A logically omniscient observer of the program’s output knows what the last four digits of the credit card number are. However,

determining this requires factoring a large number, which is beyond the abilities of humans and current computer systems to

perform in reasonable time.

Algorithmic knowledge [20] was introduced to address the problem of logical omniscience, and we can use algorithmic

knowledge to reason whether a system satisfies required release.

An agent has algorithmic knowledge, or explicit knowledge, of fact φ if the agent has an algorithm that responds “Yes”

when given input φ and the agent’s observations. The agent’s knowledge algorithm is sound if whenever it responds “Yes” then

the agent has implicit knowledge of φ, and whenever it responds “No” then the agent does not have implicit knowledge of φ.

The knowledge algorithm may also respond “?” when it cannot determine whether the agent does or does not have implicit

knowledge. A knowledge algorithm is complete if it always answers “Yes” or “No” and never answers “?”.

Rich classes of knowledge algorithms have been studied that can conservatively overestimate the computational ability of

agents without giving the agents logical omniscience (e.g., [37, 36]). However, we are interested in simple algorithms. Such

algorithms may be described in user manuals, specified by a government agency or auditor, or may be inferred from self-

explanatory output. In all cases, the aim is to make it easy for an observer to learn the released information. In this setting,

the observer is not the adversary, and it is acceptable (even desirable) to underestimate the observer’s computational abilities,

much as an instruction manual aims to be usable by as wide an audience as possible. For some programs (such as P3), there

may be sound knowledge algorithms that are beyond the ability of any observer to execute in reasonable time; such programs

do not allow the observer to easily learn the released information, and are thus of no interest to us. For required release, we are

concerned with the existence of sufficiently simple sound knowledge algorithms.

The following program does release the last four digits of the credit card number to channel L.

P4 : input cc from H;

output “Last 4 credit card digits: ” to L;

output (ccmod 10, 000) to L

Moreover, there is a simple sound knowledge algorithm to provide explicit knowledge for an observer of channel L: given

fact φ ≡ (ccmod 10, 000) = n, respond “Yes” if and only if the second output is n. Because there is a simple sound algorithm,

an observer can gain explicit (and implicit) knowledge of the last four credit card digits, and so the program satisfies the required
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information release.

To specify required release, we must specify not only what information is to be released, but also how that information is to

be learned. We formalize this intuition by defining required information release in terms of a simple interactive programming

language.

3 Language

In this section we present a simple interactive imperative programming language due to O’Neill et al. [33]. We use an interactive

language as it is more general than the batch model traditionally used to reason about language-based information flow, and

it can more accurately model real world programs that interact with their external environment, such as server processes, and

programs with user interfaces.

We assume set L of security levels, ordered by a reflexive transitive relation v that indicates the relative restrictiveness of

the levels. In this paper, our examples use the two element set L = {L,H} where L v H . Security level L represents low

confidentiality, and security levelH represents high confidentiality. More expressive security levels are possible (e.g., [31, 10]).

Metavariable ` ranges over security levels.

3.1 Users, channels, and strategies

Users interact with executing programs. We assume that security levels characterize users: the security level of a user indicates

the most restrictive level of information the user is permitted to read. We assume that users with the same security level can

freely collaborate, and so, without loss of generality, assume only a single user at each level.

Users communicate with executing programs via channels. We assume input on channels is blocking, and output is non-

blocking. We assume that there is a single channel for each user, which, given the assumption of a single user for each

security level, implies a single channel for each security level. We thus identify channels with security levels. An event is the

transmission of an input or output on a channel. Event in(`, v) denotes the input of value v on channel `, and event out(`, v)

denotes the output of value v on channel `. For simplicity we restrict values to integers.

We use Evin and Evout to denote, respectively, the set of all input and output events. We use Ev(`) to denote the set of all

events that could occur on channel `, and Ev to denote the set of all events.

Evin ,
⋃

`∈L,v∈Z{in(`, v)}

Evout ,
⋃

`∈L,v∈Z{out(`, v)}

Ev(`) ,
⋃

v∈Z{in(`, v), out(`, v)}

Ev ,
⋃

`∈L Ev(`)

Given E ⊆ Ev, an event trace on E is a finite or infinite sequence t = 〈α0, α1, . . .〉 such that αi ∈ E for all i such that

0 ≤ i < |t|, where |t| is the length of t. For infinite traces t, we define |t| = ∞. The ith element of event trace t is denoted
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t(i), for i such that 0 ≤ i < |t|. The empty trace is denoted 〈〉. We write tˆt′ for the concatenation of finite trace t and trace t′.

For traces t and t′, we say that t extends t′, written t � t′, when t′ is a prefix of t. Note that if t is an infinite trace, then t is the

only trace that extends it. The set of all traces on E is denoted Tr(E).

The restriction of trace t to E, written t �E, is the trace obtained by removing from t all events not contained in E. We

write t�` as shorthand for t�Ev(`).

User strategies express the behavior of users by describing how users interact with a program. Given trace t, a user of a

channel with security level ` observes the event trace t�Ev(`); a user’s observations may influence their subsequent interaction

with the program. Formally, a user strategy for a channel with security level ` is a function of type Tr(Ev(`)) → Z, and

expresses what input a user will provide given their previous observations.

Let UserStrat be the set of all user strategies. A joint strategy is a collection of user strategies, one for each channel.

Formally, a joint strategy ω is a function of type L → UserStrat, that is, a function from security levels to user strategies.

User strategies are sensitive information. In general, we want to ensure that lower security users do not learn about strategies

employed by higher security users: user ` should not learn anything about the strategy of user `′, where `′ 6v `. However,

information release will violate this, revealing some information about the strategies of higher security users. In Section 4 we

will discuss security requirements, and formally define semantic security conditions.

3.2 Syntax and semantics

We use a simple imperative language, extended with input, output, and declassification commands. The syntax of this language

is:

(expressions) e ::= n | x | e0 ⊕ e1

(commands) c ::= skip | x := e | c0; c1 |

if e then c0 else c1 |

while e do c |

input x from ` |

output e to ` |

x := declassify(e to `)

Metavariable x ranges over Var, the set of all program variables. Variables take integer values, and literal values n also range

over integers. Metavariable ⊕ ranges over total binary operations on the integers. A state σ maps variables to values, and so

is a function of type Var → Z. A configuration is a 4-tuple (c, σ, t, ω) representing a system about to execute c with state σ

and joint strategy ω. Finite trace t is the history of events produced by the system so far. Terminal configurations have the form

(skip, σ, t, ω). Metavariable m ranges over configurations.

We define a small-step operational semantics for our language, using the relation−→ over configurations. If (c, σ, t, ω) −→

(c′, σ′, t′, ω) then execution of command c can take a single step to command c′, while updating the state from σ to σ′. Trace t′

extends t with any events that were produced during the step. Joint strategy ω is unchanged when a configuration takes a step,
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and is included in configurations to simplify notation and presentation.

Fig. 1 presents inference rules for the operational semantics. We use σ(e) to denote the evaluation of expression e where

each variable x is replaced with the integer σ(x). Input command input x from ` takes the next input value v as defined by

the user strategy for `, assigns it to variable x, and updates the trace with input event in(`, v). Similarly, output command

output e to ` evaluates e to v, and updates the trace with output event out(`, v). Declassification x := declassify(e to `)

is semantically equivalent to assignment x := e; the declassify annotation and security level ` are used in the type system,

described in Section 5.

We use −→∗ to denote the reflexive transitive closure of −→. For finite trace t, we say configuration m emits t, written

m  t, if there is some configuration (c, σ, t, ω) such that m −→∗ (c, σ, t, ω). For infinite trace t, m emits t if m emits all

finite prefixes of t. Note that emitted events may include both input and output events.

4 Security definitions

In this section we define the security conditions weak required release and strong required release, which formally express

what it means for a program to satisfy the required release of information. We also present the security conditions noninterfer-

ence (e.g., [19, 38, 2]) and delimited release [39]. Noninterference requires that a program does not release any confidential

information. Delimited release weakens noninterference by specifying what confidential information a program is allowed to

release. We combine delimited release and required release to define bounds on what a program is permitted and required to

release.

4.1 Required release

To formally define required release, we must be able to express what information is to be released, and how that information is

to be learned by an observer. We introduce input expressions and output expressions to express each of these respectively. Input

expressions are expressions over input values supplied on channels; output expressions are expressions over values output on a

single channel.

The syntax for input and output expressions is:

(input expressions) f ::= n | f0 ⊕ f1 | in`[i]

(output expressions) g ::= n | g0 ⊕ g1 | out[i]

Input expression in`[i] refers to the ith input event on channel `, for i ∈ N. Input expressions may also contain integer

constants and binary operations. Input expressions are evaluated against a trace. The judgment t �in f ⇓ v means that with

trace t, input expression f evaluates to value v. Evaluation rules for input expressions are given in Fig. 2. If t does not have an

ith input event on channel `, then in`[i] evaluates to ⊥, that is, t �in in`[i] ⇓ ⊥. We assume that any binary operator ⊕ defined

is total over Z⊥ and strict, meaning that for all m,n ∈ Z⊥, m⊕ n is defined, and if m or n is ⊥, then m⊕ n = ⊥.
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Output expressions are also evaluated against a trace. The judgment t �`out g ⇓ v means that output expression g evaluates

to value v using trace t restricted to channel ` events. Output expression out[i] refers to the ith output event on channel `, for

i ∈ N. Fig. 2 also presents the evaluation rules for output expressions. Similar to input expressions, if there is no ith output

event on channel `, then out[i] evaluates to ⊥.

Note that output expressions out[i] do not have a subscript indicating which channel ` the output occurs on. This is because

output expressions are intended to be evaluated by a single user `, using only the output events on that user’s channel.

Intuitively, user ` learns input expression f from command c using output expression g, if in every execution that g evaluates

to an integer value (using the output provided to `), then f evaluates to the same integer. Thus, input expression f indicates

what information the user is to learn, and output expression g indicates how the user learns it—g provides a sound knowledge

algorithm. This leads us to our first definition of required release.

Command c satisfies weak required release of input expression f to user ` using output expression g if for any trace t that

can be emitted by executing c, if t provides enough output to ` to evaluate g, then f and g evaluate to the same value.

Definition 1 (Weak required release). Command c satisfies weak required release of input expression f to user ` using output

expression g exactly when:

For all configurations m = (c, σ, 〈〉, ω)

and for all traces t such that m t,

if t �`out g ⇓ v and v 6= ⊥ then t �in f ⇓ v.

Program P4 satisfies weak required release of inH [0] mod 10, 000 to L using out[1]: the second output to L is the last four

digits of the first H input (the credit card number). By contrast, programs P1 and P2 do not satisfy weak required release of

inH [0] mod 10, 000 to L for any output expression.

Weak required release is “weak” in that there is no requirement that command c provide sufficient output to ` for g to

evaluate to an integer value. For example, the program skip satisfies weak required release of any input expression to L using

output expression out[0], since no output is ever given to L, and output expression out[0] never evaluates to an integer value.

We can strengthen weak required release to ensure that command c always eventually provides sufficient output to ` for

g to evaluate to an integer value. Command c satisfies strong required release of input expression f to user ` using output

expression g if for any trace t that can be emitted by executing c, there is a trace t′ that extends t, can be emitted by executing

c, and provides sufficient output to ` to evaluate g, and f and g evaluate to the same value.1

Definition 2 (Strong required release). Command c satisfies strong required release of input expression f to user ` using output

expression g exactly when:

For all configurations m = (c, σ, 〈〉, ω)

and for all traces t such that m t,

there exists trace t′ such that t′ � t, m t′, and

t′ �`out g ⇓ v and t′ �in f ⇓ v for some v 6= ⊥.

1Since the language is deterministic, this definition suffices to ensure that enough output is always eventually produced; the definition would need to be
modified for non-deterministic and probabilistic languages.
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Provided that input expression f depends nontrivially on every subexpression of the form in`[i], strong required release is

implies weak required release: if command c satisfies strong required release of f to ` using g, then it satisfies weak required

release of f to ` using g.

More formally, we say that input expression f depends nontrivially on subexpression in`[i] if given any two traces t and t′

that are identical except for the value of the ith input event on channel `, and t �in f ⇓ v and t′ �in f ⇓ v′ for some v 6= ⊥

and v′ 6= ⊥, then v 6= v′.

For the remainder of the article, we restrict our attention to input expressions that depend nontrivially on every subexpression

of the form in`[i].

Theorem 1. If command c satisfies strong required release of input expression f to user ` using output expression g, and f

depends nontrivially on every subexpression of the form in`′ [i], then it satisfies weak required release of input expression f to

user ` using output expression g.

A proof of Theorem 2 appears in Appendix A.

The following program satisfies weak required release, but not strong required release of inH [0] mod 10, 000 to L using

out[1], because in some cases it will never produce sufficient output to L. (For presentation purposes, we assume that constant

strings, such as “Last 4 credit card digits: ” can be converted to appropriate constant integer values, and output to channels.)

P5 : input cc from H;

output “Last 4 credit card digits: ” to L;

if ccmod 10 = 0 then (while 1 do skip) else skip;

output (ccmod 10, 000) to L

Program P4 satisfies strong required release of inH [0] mod 10, 000 to L using out[1], because it always produces appropriate

output to channel L.

Connection to explicit knowledge If a program satisfies (weak or strong) required release of input expression f to user `

using output expression g, then output expression g provides a sound knowledge algorithm for ` to learn the value of f . The

knowledge algorithm takes as input a formula φ and the sequence of events that ` has observed. The knowledge algorithm is

straightforward:

If φ ≡ f = n and t �`out g ⇓ n then respond “Yes”.

Otherwise, respond “?”.

Note that the algorithm never responds “No”, and if the algorithm responds “Yes”, then, because the program satisfies

required release of f to ` using g, t �`out g ⇓ n implies f = n. Thus, the knowledge algorithm is sound.

Strong and weak required release are both parameterized by output expression g. As discussed in Section 2, the output

expression g may be specified by the consumer of the output (such as an auditor or government agency), an instruction manual,

or may be described by the program’s output (as in Program P4, where the text “Last 4 credit card digits” is output just before

the last four credit card digits). In practice, there may be additional requirements on the form of the output function, such as a
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limit on the number of steps required to evaluate it (analogous to requiring that the instructions for a task be no more than two

pages).

Confidentiality, integrity, availability, and properties Required information release is primarily concerned with the confi-

dentiality of information: it is phrased in terms of what an observer must be able to learn about confidential inputs to the system.

However, required information release is also related to the integrity and availability of information. Weak information release

is an integrity requirement: if the output expression evaluates to an integer value, it must equal the evaluation of the input ex-

pression. Strong information release contains an availability requirement: the output expression must eventually evaluate to an

integer value. Information security requirements are not always easily separable into confidentiality, integrity, and availability

requirements.

Weak and strong required release can be defined as properties: predicates over single execution traces. Weak required

release is a safety property, and strong required release is neither safety nor liveness [1]. Recent work by Clarkson and Schneider

[14] expresses some information-flow conditions as hyperproperties: predicates of sets of traces. They note that all information-

flow conditions they considered were hyperproperties and not properties. Although weak and strong required release are

properties, they clearly constitute part of a system’s information flow requirements, so some information-flow conditions of

interest are properties. Indeed, in Section 4.3 below, we discuss the relationship between required release and delimited release,

an information flow security condition for permitted information release that is a hyperproperty and not a property.

4.2 Noninterference

Noninterference is a well-known semantic security condition that requires that public observations reveal no secrets. While

there are many definitions of noninterference (e.g., [19, 38]), the most relevant for our purposes are termination- and progress-

insensitive definitions for interactive models (e.g., [33, 5, 4]). Applied to the interactive setting used here, noninterference

ensures that user ` does not gain any knowledge about the strategy employed by any user `′ such that `′ 6v `. That is, the

strategy of any such user `′ does not interfere with the trace observed by user `.

More precisely, a program satisfies noninterference if, for all security levels `, and all configurations m and m′ that agree

on the user strategies of all users `′ such that `′ v `, the traces emitted by m and m′ are indistinguishable to user `. Two traces

t and t′ are indistinguishable to user `, written t ≈` t
′ if t�` extends t′ �`, or vice-versa.

Definition 3 (Noninterference). A command c satisfies noninterference exactly when for all levels ` ∈ L:

For all m = (c, σ, 〈〉, ω) and m′ = (c, σ, 〈〉, ω′)

such that ω(`′) = ω′(`′) for all `′ v `,

and for all traces t, t′ such that m t and m′  t′,

we have t ≈` t
′.

This definition of noninterference generalizes that of O’Neill et al. [33] for arbitrary sets of security levels L, and weakens

it to be both termination insensitive and progress insensitive. The definition of trace indistinguishability used here is suitable
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given the observational model, which does not allow a user to directly distinguish a terminated program from a program in a

non-terminating loop (termination insensitivity), or from a program that may eventually produce additional output (progress

insensitivity).

Note that strong required release of f to ` violates noninterference if the input expression f contains an input expression

in`′ [i] such that `′ 6v ` (and the evaluation of f depends nontrivially on in`′ [i]). For example, any program that satisfies strong

required release of inH [0] mod 10, 000 to L (such as program P4) must violate noninterference, since H 6v L, and L learns

something about the strategy of H , to wit, the last four digits of the credit card number that H entered.

Weak required release of f to ` does not necessarily violate noninterference if the input expression f contains an input

expression in`′ [i] such that `′ 6v `. However, if a program satisfies both noninterference and weak required release for such an

input expression, then the program never produces sufficient output to evaluate the output expression.

4.3 Delimited and bounded release

Noninterference is a very restrictive security condition. Many real-world programs must violate noninterference in order to

satisfy functional requirements that require or allow the release of information.

The security condition delimited release [39] weakens noninterference by specifying what information a program is permit-

ted to release.

An escape hatch is a pair (f, `) of input expression f , and security level `. Intuitively, given escape hatch (f, `), a program

is permitted to release information f to security level `.2 Thus, given escape hatches (f0, `0), . . . , (fk, `k), user ` is permitted

to learn the evaluation of fi for any escape hatch (fi, `i) such that `i v `, in addition to the user strategies of any user `′ such

that `′ v `.

A program satisfies delimited release by escape hatches (f0, `0), . . . , (fk, `k) if, for any security level ` and configurations

m and m′ that have the same user strategy for any user `′ such that `′ v `, if m and m′ respectively emit traces t and t′ that

agree on the evaluation of all escape hatches that may release information to level `, then the traces emitted by m and m′ are

indistinguishable to user `. Formally, we say that traces t and t′ agree up to ` on escape hatches (f0, `0), . . . , (fk, `k) if for all

i ∈ 0..k such that `i v `, we have t �in fi ⇓ vi and t′ �in fi ⇓ vi for some vi 6= ⊥.

Definition 4 (Delimited release). Command c satisfies delimited release by escape hatches (f0, `0), . . . , (fk, `k) exactly when

for all levels ` ∈ L:

For all m = (c, σ, 〈〉, ω) and m′ = (c, σ, 〈〉, ω′)

such that ω(`′) = ω′(`′) for all `′ v `,

and for all traces t, t′ such that m t and m′  t′,

if t and t′ agree up to ` on

escape hatches (f0, `0), . . . , (fk, `k),

then t ≈` t
′.

2Sabelfeld and Myers [39] specify escape hatches as declassification expressions declassify(e to `), and expressions in escape hatches refer to initial values
of variables.
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Delimited release generalizes noninterference: if command c satisfies delimited release by an empty set of escape hatches,

then c satisfies noninterference.

Both delimited release and required release are concerned with information flow, and with the knowledge an observer

acquires. Required release specifies what information, at a minimum, a program must release. It specifies what an observer

must be able to (explicitly) know, and can be viewed as specifying “lower bounds” on what information a program releases. By

contrast, delimited release specifies what an observer is permitted to (implicitly) know, and can be seen as specifying “upper

bounds”, the maximum information a program is permitted to release. We can combine the security conditions of delimited

release and required release to obtain both upper and lower bounds on a program’s information release.

By analogy with escape hatches (which are openings in the roof of a building, and specify the upper bounds on information

release), we use escape chutes (passages through which objects move by means of gravity) to define the lower bounds of

information release. An escape chute is a tuple (f, `, g) of input expression f , security level `, and output expression g. We

define bounded release by combining delimited release by escape hatches, and required release by escape chutes.

Definition 5 (Bounded release). Command c satisfies weak (strong) bounded release by escape chutes

(f0, `0, g0), . . . , (fk, `k, gk)

and escape hatches

(f ′0, `
′
0), . . . , (f ′n, `

′
n)

exactly when

1. for all i ∈ 0..k, c satisfies weak (strong) required release of fi to `i using gi; and

2. c satisfies delimited release by escape hatches (f ′0, `
′
0), . . . , (f ′n, `

′
n)

ProgramP4 satisfies strong bounded release by escape chute (inH [0]mod10, 000, L, out[1]) and escape hatch (inH [0]mod10, 000,

L). Thus, bounded release tells us not only that P4 releases the input expression inH [0] mod 10, 000, but also that this is the

only information released by P4.

The following program has different upper and lower bounds. It satisfies strong bounded release by escape chute (inH [0]mod10, 000,

L, out[1]) and escape hatches (inH [0] mod 10, 000, L) and (inH [0] div 1015, L). It always releases the last four digits of the

credit card number (via output expression out[1]) and it may in addition release information about the first digit of the (16 digit)

credit card number.
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P6 : input cc from H;

x := declassify(ccmod 10, 000 to L);

output “Last 4 credit card digits: ” to L;

output x to L;

y := declassify(cc div 1015 to L);

if y = 4 then output “Visa” to L else skip

There is a consistency property between the escape hatches and escape chutes. Since escape chutes are the “lower bounds”

of information release, they must contain no more information than the escape hatches, the “upper bounds” of information

release. More precisely, if t and t′ are traces that can be produced by a command satisfying bounded release, and t and t′ agree

on all input and output events on all channels up to some level `, and agree on the value of all escape hatches that declassify

to ` or below, then for each escape chute at level ` or below, either t and t′ agree on the value of the escape chute, or t and t′

do not have sufficient input events to evaluate the escape chute. We say that traces t and t′ agree on escape chute (fi, `i, gi) if

t �in fi ⇓ vi and t′ �in fi ⇓ vi for some vi 6= ⊥.

Property 1 (Consistency). If command c satisfies (weak or strong) bounded release by escape chutes (f0, `0, g0), . . . , (fk, `k, gk)

and escape hatches (f ′0, `
′
0), . . . , (f ′n, `

′
n) then

for all ` ∈ L, and for all configurations m = (c, σ, 〈〉, ω)

and m′ = (c, σ, 〈〉, ω′), and for all traces t, t′ such that

m t and m′  t′,

if t and t′ agree up to ` on

escape hatches (f ′0, `
′
0), . . . , (f ′n, `

′
n), and

for all `′ v ` we have t�`′ = t′ �`′

then for all i ∈ 0..k such that `i v `,

either t �in fi ⇓ ⊥, or t′ �in fi ⇓ ⊥, or

t and t′ agree on escape chute (fi, `i, gi).

Proof. (Sketch) Given m = (c, σ, 〈〉, ω), m′ = (c, σ, 〈〉, ω′), ` and t and t′ such that t and t′ agree up to ` on escape hatches

(f ′0, `
′
0), . . . , (f ′n, `

′
n), and t � `′ = t′ � `′ for all `′ v `, then we can construct joint user strategies ω0 and ω′0 such that

m0 = (c, σ, 〈〉, ω0), m′0 = (c, σ, 〈〉, ω′0), and m0  t and m′0  t′, and ω0(`′) = ω′0(`′) for all `′ v `.

For any escape chute (fi, `i, gi) such that `i v `, suppose t �`iout gi ⇓ vi and t′ �`iout gi ⇓ v′i for some vi, v′i 6= ⊥. By

delimited release, t ≈`i t
′, and so, t and t′ agree on the values of all output expressions required to evaluate gi to an integer

value. Therefore, vi = v′i. By bounded release, the evaluation of fi in t and t′ also equal vi, and so and t and t′ agree on escape

chute (fi, `i, gi). ut
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5 Enforcement

In this section we show that weak bounded release can be soundly enforced with a security type system. Weak bounded release

is the conjunction of weak required release, and delimited release. Since weak required release is a safety property, clearly

other enforcement mechanisms could also be used to enforce it, including dynamic mechanisms such as execution monitors.

However, due to the similarity of escape chutes and escape hatches, a type system that enforces delimited release can easily be

adapted to enforce weak bounded release as well.

Our type system conservatively tracks both the security level of information as it flows through a program, and what input

expressions have been output and declassified. This allows us to ensure that (i) confidential information is never output to

non-confidential channels; (ii) only appropriate escape hatches are declassified; and (iii) appropriate escape chutes are output

to the correct channel in the correct order.

For command c, type judgments have the form

pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′

where entities to the left of the turnstile (`) indicate the context before the execution of c, and primed versions on the right hand

side of the judgment indicate how the contexts change as a result of the execution of c.

Security level typing context Γ maps variables to security levels, and indicates an upper bound on the information stored in

each variable. Program counter level pc is an upper bound on the information that may cause command c to be executed, and

is used to track implicit information flows [15]. Typing context Γ and program counter level pc are standard in security type

systems. Our type system is flow-sensitive, as it allows command c to modify Γ, and is based on the flow-sensitive security

type system of Hunt and Sands [23].

The remaining entities in the context (C, ∆, E, and H) are used to track what input expressions have been output and

declassified. Specifically, we conservatively track how many input and output events have been produced on each channel,

what input expression (if any) is stored in each variable, what input expressions (if any) have been output, and what input

expressions have been declassified.

• C : L → Z⊥ × Z⊥ counts the input and output events that have occurred on each channel. If C(`) = (i, j), then

the program has received i input events from channel `, and produced j output events to channel `. If i = ⊥, then an

unknown number of input events have been received on channel `, and similarly, if j = ⊥, an unknown number of output

events have been produced.

• ∆ : Var→ InputExp⊥ indicates what input expression is stored in each variable. For any variable x, if ∆(x) = f then

the value stored in x is equivalent to input expression f . If ∆(x) = ⊥ then nothing is known about the value stored in x.

• E : L × Z → InputExp⊥ indicates which input expressions have been output to channels. If E(`, i) = f then the ith

value output on channel ` was equal to the evaluation of input expression f . If E(`, i) = ⊥ then either the ith output to

15



channel ` has not yet been produced, or nothing is known about the ith output to channel `.

• H : ℘(InputExp× L) is a set of escape hatches that may have been declassified.

Fig. 3 presents inference rules for the typing judgment. Given a function h, we write h[a 7→ b] for the function that evaluates

to b on input a, and otherwise behaves like h. We use Γ(e) to denote an upper bound of all levels Γ(x) for variables x occurring

in e; if L is a join semi-lattice, then this is the join of all Γ(x) for x in e. We extend function ∆ to a homomorphism on program

expressions, and write ∆(e) for the result of applying the homomorphism to expression e.

In the typing rules, security level context Γ and program counter level pc do not interact with other parts of the context, and

by themselves form a standard flow-sensitive information-flow security-type system, similar to that of Hunt and Sands [23]. In

the following discussion of the typing rules, we focus on the type system’s novel aspects.

For assignment x := e, T-ASSIGN updates input expression context ∆ for x to ∆(e), which is either ⊥ or an input

expression equal to e at this program point. The typing rule T-DECLASSIFY for declassification x := declassify(e to `) is

similar to assignment, but escape hatch (∆(e), `) is added to declassification effect H . Note that the rule implicitly requires

∆(e) 6= ⊥ since H must contain escape hatches. Rule T-SEQ simply threads the context through a sequence of commands. A

skip command has no effect on the context, shown in rule T-SKIP.

Command input x from ` assigns the next input from channel ` to variable x. Rule T-IN updates input expression context

∆ using helper function recordInput(∆, x, C, `), which updates ∆(x) either to ⊥ if the number of input events on channel ` is

not known, or to input expression in`[i], where i is the number of input events received on channel `. If known, the number of

input events on channel ` is incremented using the helper function incin(C, `).

Command output e to ` outputs expression e to channel `. Using helper function recordOutput(E, C, `, f), rule T-OUT

records that the jth output on channel ` is equal to input expression ∆(e), where j is the number of output events produced on

channel `, and increments the number of output events produced on channel ` with helper function incout(C, `). If the number

of output events produced on channel ` is unknown (i.e., j = ⊥), then no update to E or C is made.

The subsumption rule T-SUB allows the context to be weakened, or made less precise. It uses the flat ordering �: for any

lifted set S⊥, and for any a, b ∈ S⊥, a � b iff a = b or b = ⊥. We extend the � relation in the obvious way to pairs, and to a

pointwise relation over functions. For example, ∆0 � ∆1 iff for all x ∈ Var, ∆0(x) � ∆1(x). Similarly, we extend the binary

relation v over L to a pointwise relation over functions with codomain L.

The rules for if and while commands (T-IF and T-WHILE respectively) type check their sub-commands with a program

counter level bounded below by pc and Γ(e), since e controls the execution of the sub-commands. Rule T-WHILE requires that

context is unchanged by the execution of the while command; for any channel `, this means either that the loop body performs

no input or output on `, or that the context cannot precisely track the number on inputs or outputs received on channel `, i.e.,

C(`) = (i, j) and ⊥ ∈ {i, j}. Similarly for an if command, the context will lose track of the number on inputs or outputs

received on channel ` unless both branches always perform the same number of inputs and outputs on `.

The type system can easily be converted into an algorithmic type system, using the same technique as Hunt and Sands

[23]. If the security levels L and binary relation v form a join-semi lattice, then type checking and type inference with the
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algorithmic type system is decidable in time polynomial in the size of the program.

If command c is well-typed, then it satisfies both weak required release, and delimited release. Theorem 2 below states this

claim formally. To state Theorem 2 concisely, we first introduce a helper function and additional notation.

Helper function substOutExp(E, `, g) takes output context E, security level `, and output expression g, and substitutes any

occurrence of out[i] with input expression E(`, i), that is, the input expression that E claims was the ith output on channel `.

For example, if E((L, 2)) = inH [1], then substOutExp(E, L, 42 + out[2]) = 42 + inH [1]. Rules for substOutExp(E, `, g) are

given in Fig. 4.

We assume there is a notion of equivalence between input expressions, denoted by ≡. We require that if f0 ≡ f1, then

for all traces t and v ∈ Z⊥, t �in f0 ⇓ v iff t �in f1 ⇓ v. The equivalence relation could be syntactic identity, or syntactic

identity up to commutativity and associativity of operators, or, (depending on the operators in the language) a deeper semantic

equivalence.

Finally, for any set S and v ∈ S, we use v as shorthand for a constant function that always returns v. For example, (0, 0) is

a function that always returns the pair (0, 0).

Theorem 2. If pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H for some Γ0 and pc, then

1. c satisfies weak required release of input expression f to user ` using output expression g if substOutExp(E, `, g) ≡ f .

2. c satisfies delimited release by escape hatches (f0, `0), . . . , (fk, `k) if for all (f, `) ∈ H there exists i ∈ 0..k such that

f ≡ fi and `i v `.

A proof of Theorem 2 appears in Appendix B.

If command c is well-typed, then because it satisfies both weak required release, and delimited release, it satisfies weak

bounded release.

Corollary 1. Command c satisfies weak bounded release by escape chutes (f0, `0, g0), . . . , (fk, `k, gk) and escape hatches

(f ′0, `
′
0), . . . , (f ′n, `

′
n) if

pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H

for some Γ0 and pc, and substOutExp(E, `, gi) ≡ fi for all i ∈ 0..k and for all (f, `) ∈ H there exists i ∈ 0..n such that

f ≡ f ′i and `′i v `.

Proof. Immediate from Theorem 2. ut

Although program P4 satisfies bounded release, it does not type-check: it attempts to release information from H to L but

does not have any declassify annotations. Program P6 does type-check. The judgment

L,L; (0, 0),⊥,⊥, ∅ ` P6 . Γ;C,∆,E, H

holds for
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Γ = L[cc 7→ H,x 7→ L, y 7→ L]

C = (0, 0)[H 7→ (1, 0), L 7→ (0,⊥)]

∆ = ⊥[cc 7→ inH [0], x 7→ inH [0] mod 10, 000,

y 7→ inH [0] div 1015]

E = ⊥[(L, 0) 7→ “...”, (L, 1) 7→ inH [0] mod 10, 000]

H = {(inH [0] mod 10, 000, L), (inH [0] div 1015, L)}.

Thus, by Corollary 1, P6 satisfies weak bounded release by escape chute (inH [0]mod10, 000, L, out[1]) and escape hatches

(inH [0] mod 10, 000, L) and (inH [0] div 1015, L).

We have used a single type system to enforce weak bounded release, which consists of both delimited release and weak

bounded release. It is worth noting which elements of the type system are used to enforce each of the two semantic security

conditions. Enforcement of weak delimited release relies on C (count of input and output events), ∆ (which input expression is

stored in each variable), and E (which input expressions have been output to channels). By contrast, enforcement of delimited

release relies on Γ (security level of each variable), pc (the program counter level, used to track implicit information flows), H

(which escape hatches have been declassified), C, and ∆.

There is considerable overlap in the enforcement mechanisms for the two semantic security conditions. The only ele-

ment needed to enforce weak required release that is not needed to enforce delimited release is E, which records which input

expressions have been output to channels.

A more sophisticated static analysis (or a more restrictive language) could enforce strong required release, by reasoning

about the termination of loops, and the eventual production of outputs.

6 Related work

Permitted information release Much recent work has considered information release, but focuses on the specification and

enforcement of permitted information release. To the best of our knowledge, this work is the first to address required information

release.

Sabelfeld and Sands [40] present a survey of work on (permitted) information release, and introduce four dimensions

of declassification that provide a categorization of semantic security conditions for information release: what information is

released, who releases the information, when does the release happen, and where in the program (and where in the ordering of

security levels) does the release occur.

These dimensions are also relevant to required information release. This work is primarily concerned with what information

is required for release, expressed using input expressions. Strong required release relates to the when aspect: it mandates that

information is eventually released, whereas weak required release places no requirements on when (if ever) information is

released. Further connections between various dimensions of information release and required information release are waiting
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to be explored. For example, required information release could be strengthened by placing stronger requirements on when

a system must release information. Previous work on specifying the conditions under which information is permitted to be

released (e.g., [12, 6]) may also be applicable to specifying when information is required to be released.

The most closely related work on permitted information release is the work on delimited release [39], which was presented

in Section 4 and forms a key component of bounded release security condition. Delimited release was extended to localized

delimited release [3] by restricting not only what information may be released, but where it may be released (at an appropriate

declassify command). The type system used by Sabelfeld and Myers [39] to enforce delimited release also enforces localized

delimited release, so we speculate that the type system used in this paper to enforce bounded release would also enforce an

appropriately defined localized bounded release, where the delimited release component of bounded release is restricted to

localized delimited release.

Lux and Mantel [29] generalize delimited release through the addition of explicit reference points to escape hatches. Escape

hatches, as originally presented by Sabelfeld and Myers [39], allow the declassification of escape hatch’s valuation only at the

initial memory. Lux and Mantel allow declassification of valuations at arbitrary but explicit program points. This increases the

expressiveness of escape hatches. In an interactive setting, it would permit, for example, the controlled release of an input that

occurs in the body of a loop. Similarly, the expressiveness of escape chutes could be increased, permitting the expression of

required release of inputs that occur in loop bodies.

Broberg and Sands present flow locks [7, 8, 9], a foundational mechanism for describing and controlling information flow.

A flow lock controls information flow between security levels, potentially at fine granularity. A program may explicitly open

or close a flow lock, enabling or disabling information flow. Flow locks are intended to form a core calculus of information

flow, and many information flow semantic security conditions and enforcement mechanisms can be encoded using flow locks.

However, flow locks are concerned with permitted information flow, and it is unclear what modifications to flow locks would

be required to reason about required information flow.

Swamy and Hicks [42] specify information release policies as security automata [41], and enforce that programs adhere

to the policies using a sophisticated type system. The release policies focus on specifying appropriate obligations that must

be satisfied before information is released. We believe that with relatively minor extensions, the information release policies

could be extended to specify when information must be released. Indeed, weak required release is a safety condition, and is

enforceable by edit automata [27], which are a more general class of security automata than the information release polices of

Swamy and Hicks.

Sabelfeld and Sands [40] also introduce several prudent principles of declassification. Semantic consistency requires that

the security of a program depends only on extensional properties of the program, not intensional properties. This principle is

directly applicable to required release, and is satisfied by weak and strong required release, and bounded release: semantically

equivalent programs satisfy the same security conditions. The other principles (conservativity, monotonicity of release, non-

occlusion, and trailing attacks) are not directly applicable to required release. Lux and Mantel [28] present additional prudent

principles of declassification, which are also not directly applicable to required release.
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Knowledge-based semantic security conditions The definition of required information release was inspired by algorithmic

knowledge [20]. Other semantic security conditions have also recently been defined in terms of attacker knowledge. Askarov

and Sabelfeld [2] use knowledge to define gradual release: an attacker’s knowledge of secrets may become more precise only at

specified declassification events. Gradual release restricts permitted information release, and as such it suffices to use implicit

knowledge; since we are concerned with required release, we use algorithmic knowledge to ensure that knowledge can be

obtained with reasonable resources. The use of algorithmic knowledge leads us to specify how an observer learns released

information, in addition to what information they learn.

O’Neill [32] presents many information flow conditions in an epistemic framework, but doesn’t consider algorithmic knowl-

edge or required information release.

Enforcement techniques Since weak required release is a safety property, it could be enforced using dynamic techniques,

such as execution monitors [41]. Section 5 demonstrated that a security-type system for delimited release could be easily

extended to enforce weak bounded release, and we anticipate that information-flow monitors (e.g., [25, 4]) could similarly be

extended to enforce weak required release.

Askarov and Sabelfeld [4] present semantic security conditions that generalize localized delimited release and gradual

release, and enforce these conditions a combination of static and dynamic techniques in an interactive language. Their semantic

security condition in essence indexes inputs and outputs from the most recent event. By contrast, the version of delimited

release (and required release) presented here indexes input and output absolutely, from the beginning of program execution.

The languages for input and output expressions could be adapted to use most-recent indexing. This would enable a more

permissive type system: currently, when an input or output occurs in the body of a loop, the type system is unable to count

accurately, and precision is lost. Most-recent indexing would allow the type system to regain precision after a loop body in

which input or output occurs.

Obligations An obligation is a requirement on a system’s or subject’s future behavior. Obligations often arise when a subject

is granted access to data, for example, if a subject is allowed to check data out of a repository, she is obliged to eventually check

the data back in, possibly within some fixed time constraint. Previous work has studied both the specification (e.g., [34]) and

analysis (e.g., [11, 21, 18, 16]) of obligations. Although obligations have been considered with respect to privacy (e.g., [30]),

we believe this is the first work to consider obligatory information flow.

Required release can be viewed as an obligation on the system to release information in an appropriate form. Weak required

release is a form of integrity: if appropriate output is produced, it must correctly represent the information to be released.

Strong required release is an obligation that must eventually be satisfied: the system must always be able to eventually produce

sufficient output. In many practical settings, it may be desirable to strengthen required release, and bound the time until

sufficient output is produced. There are many possible ways of expressing time bounds, including elapsed wall-clock or system

time from the beginning of execution, or from some event (e.g., arrival of sufficient input), or requiring the obligation is satisfied

before some other event occurs. Instead of considering these stronger notions of required release, we have focused here on the
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interaction between required and permitted information release. We expect that strengthening required release with time bounds

will not change the relationship between required and permitted release, as, for example, expressed in Property 1.

Irwin et al. [24] define accountability for violation of an obligation. As currently expressed, it is the system that is re-

sponsible for required release of information (and, as such, Irwin et al. do not regard it as an obligation, which are, by their

definition, unenforceable by the system). If the who dimension of information release [40] were incorporated into required

release, it may become the responsibility of some security principal to ensure the release of information, fitting into the model

of accountability.

7 Conclusion

As part of their correct functionality, many systems are required (not just permitted) to release information. This paper in-

troduces the problem of required information release: specifying, reasoning about, and enforcing, the information security of

systems that must release information.

We have defined semantic conditions for required information release. Inspired by work on algorithmic knowledge, the

semantic conditions must specify both what information is to be released, and how that information is to be learned by an

observer. Input expressions specify what information is to be released, and output expressions specify how an observer learns

the information. A program satisfies weak required release of input expression f to user ` using output expression g if whenever

user ` is able to evaluate g, then f evaluates to the same value. A program satisfies strong required release if it satisfies weak

required release, and eventually produces sufficient output for user ` to evaluate g.

We investigated the relationship between a system’s required and permitted information release, and defined bounded re-

lease, which combines required release with delimited release. Bounded release specifies upper and lower bounds on the

information a system releases. For many systems, these bounds should be tight: the system should release all and only in-

formation it is required to release. We have shown that (weak) bounded release can be conservatively enforced by a type

system.

Both weak and strong required release are properties: predicates over single execution traces. Noninterference, delimited

release, and many other information security requirements, are hyperproperties, but not properties. One may thus be concerned

whether required information release is an information security requirement. We believe that required information release, while

a property, is clearly concerned with the flow of information in a system: it requires that, at a minimum, certain information

flows to an observer. We have shown a connection between required information release and delimited release: whereas

required information release specifies the minimum information flow from high security inputs to low security outputs that a

system must satisfy, delimited release specifies maximum information flow. Thus, we believe that required information release

is part of a system’s information security requirements.

There is still much left to understand with respect to required information release. There are systems with information

release requirements that cannot be expressed using the policies presented in this paper. For example, financial reports of a

company should be released to all shareholders, not a subset; if Alice and Bob are the shareholders, the system must release
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reports to Alice if and only if it releases that information to Bob. In terms of enforcing required information release, it may

be impractical to explicitly specify the knowledge algorithm by which an observer may learn the released information; static

analyses may allow the automatic discovery of the knowledge algorithm, thus reducing the burden of proving a system satisfies

required information release.

To build trustworthy computer systems, it is important to understand and provably enforce a system’s information security

requirements. By introducing the concept of required information release, and providing mechanisms to specify and enforce

these requirements, this work brings us closer to the goal of strong, end-to-end, application-specific information security.
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A Proof of Theorem 1

In this appendix we prove Theorem 1.

We first prove a lemma that states that if a program satisfies strong required release of input expression f using output

expression g and the program has produced enough output for g to evaluate to a value, then the trace must also have read

enough input for f to evaluate to a value.

Lemma 1. Let command c satisfy strong required release of input expression f to user ` using output expression g. Let f

depend nontrivially on every subexpression of the form in`[i]. Let m = (c, σ, 〈〉, ω) and for some trace t such that m  t, we

have t �`out g ⇓ v such that v 6= ⊥. Then t �in f ⇓ v.

Proof. Suppose that t �`out g ⇓ v such that v 6= ⊥, but t �in f ⇓ v′ for v′ 6= v. If v′ 6= ⊥, then the command cannot satisfy

strong required release. So it must be the case that v′ = ⊥. Since by assumptions all binary operators are total and strict, it

must be because the trace has not received sufficient input to evaluate some input expression in`[i]. By strong required release,

we can extend t to a trace t′ such that t′ �in f ⇓ v.

But we can construct a new joint strategy ω0 that is identical to ω except that the user strategy for channel ` returns a

different value for the ith input than would be returned by ω. Consider m0 = (c, σ, 〈〉, ω0). Clearly m0  t, since ω0 behaves

identically to ω except for the ith input on channel ` which has not yet occurred. By strong required release, we can extend to

a trace t′′ such that t′′ �in f ⇓ v. But this violates the assumption that f depends nontrivially in`[i]. ut
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To prove Theorem 1, let c satisfy strong required release of input expression f to user ` using output expression g, and for

configuration m = (c, σ, 〈〉, ω) assume that m  t and t �`out g ⇓ v such that v 6= ⊥. We need to show t �in f ⇓ v. This

follows immediately from Lemma 1.

B Proof of Theorem 2

In this appendix we prove Theorem 2. Section B.1 shows that a well-typed program satisfies required release, and Section B.2

shows that a well-typed program satisfies delimited release. We first introduce and prove some useful lemmas and theorems

about the type system.

We say that a configuration (c, σ, t, ω) satisfies context C,∆,E if the context C,∆,E accurately reflects the configuration.

That is, the entity C records how many input and output events have been received and sent on each channel, and must agree

with trace t. Similarly, ∆ records input expressions that are equivalent to values stored in the state, and the state σ and trace t

must agree on these values. Finally, E records input expressions that are equivalent to output values, and t must satisfy these

relationships.

Definition 6. We say that configuration (c, σ, t, ω) satisfies contextC,∆,E, writtenC,∆,E,� (c, σ, t, ω) if all of the following

conditions hold.

1. For all ` ∈ L, let C(`) = (i, j).

(a) Either i = ⊥ or |t�(Evin ∩ Ev(`))| = i; and

(b) Either j = ⊥ or |t�(Evout ∩ Ev(`))| = j.

2. For all x ∈ Var, either ∆(x) = ⊥ or t �in ∆(x) ⇓ σ(x).

3. For all ` ∈ L and i ∈ N, either E(`, i) = ⊥ or t �in E(`, i) ⇓ v where (t�(Ev(`) ∩ Evout))(i) = out(`, v).

The operational semantics preserve typings.

Lemma 2 (Type preservation). If

C,∆,E,� (c, σ, t, ω)

and

pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′

and

(c, σ, t, ω) −→ (c′, σ′, t′, ω),

then there exists C ′′, ∆′′, E′′, H ′′, Γ′′ and pc′′ such that

pc′′,Γ′′;C ′′,∆′′,E′′, H ′′ ` c′ . Γ′;C ′,∆′,E′, H ′
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and

C ′′,∆′′,E′′,� (c′, σ′, t′, ω).

Proof. By induction on the typing judgment pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′. ut

The type system ensures that the count of input and output events on each channel can only increase, or lose precision.

Lemma 3. Given pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′ and ` ∈ L, let C(`) = (i, j) and C ′(`) = (i′, j′). Either i 6= ⊥

and i′ 6= ⊥ and i ≤ i′ or i′ = ⊥. Also, either j 6= ⊥ and j′ 6= ⊥ and j ≤ j′ or j′ = ⊥.

Proof. Proof by induction on pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′. ut

Similarly, the type system ensures that for typing context E (which records input expressions that are equivalent to output

values), the post-context may be less precise than the pre-context, but otherwise agrees with it. That is, once the type system

has recorded that a given input expression is equivalent to a given output value, the type system can not change it to a different

input expression.

Lemma 4. Given pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′ and ` ∈ L, let C(`) = (i, j). If j = ⊥ then for all k ∈ N, we

have E(`, k) � E′(`, k). If j ∈ N then for all 0 ≤ k < j, we have E(`, k) � E′(`, k).

Proof. By induction on the typing judgment pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′, using Lemma 3 for the case for

sequence. ut

The substitution function substOutExp(E, `, g) is correct, in that if output expression g evaluates to a value v, then replacing

all out[i] subexpressions with appropriate input expressions stored in E will result in an input expression that also evaluates to

v.

Lemma 5. If C,∆,E,� (c, σ, t, ω) and t �`out g ⇓ v and E(`, i) 6= ⊥ for all i such that out[i] appears in g (that may affect

the evaluation of g), then t �in substOutExp(E, `, g) ⇓ v

Proof. By induction on substOutExp(E, `, g). The only interesting case is g = out[i] (where out[i] may affect the evaluation of

the whole output expression). In that case, substOutExp(E, `, g) = E(`, i) 6= ⊥. We have (t�(Evout ∩Ev(`)))[i] = out(`, v),

and so, since C,∆,E,� (c, σ, t, ω), we have t �in E(`, i) ⇓ v. ut

B.1 Required release

Having shown several useful lemmas, we are now ready to prove that well-typed programs satisfy required release.

Lemma 6. If

pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H

for some Γ0 and pc, and substOutExp(E, `, g) ≡ f , then c satisfies weak required release of input expression f to user ` using

output expression g.
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Proof. Assume pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H for some Γ0 and pc, and substOutExp(E, `, g) ≡ f . Let m =

(c, σ, 〈〉, ω) for some σ and ω. Suppose that m −→∗ (c′, σ′, t, ω) and t �`out g ⇓ v for some v 6= ⊥. We need to show that

t �in f ⇓ v.

By repeated application of Lemma 2, there exists C ′, ∆′, E′, H ′, Γ′ and pc′ such that pc′,Γ′;C ′,∆′,E′, H ′ ` c′ .

Γ;C,∆,E, H and C ′,∆′,E′,� (c′, σ′, t, ω). Since t �`out g ⇓ v for v 6= ⊥, there have been sufficient output events to channel

` to evaluate g to a non-⊥ value. Since C ′,∆′,E′,� (c′, σ′, t, ω), we have C ′(`) = (i, j) and either j = ⊥ or j = |t�(Evout ∩

Ev(`))|. Either way, by Lemma 4, we have substOutExp(E′, `, g) = substOutExp(E, `, g). Since substOutExp(E′, `, g) ≡

f , then E′(`, i) 6= ⊥ for all i such that out(`, i) appears in g (that may affect the evaluation of g). By Lemma 5, t �in

substOutExp(E′, `, g) ⇓ v. From the definition of ≡, we have t �in f ⇓ v as required. ut

B.2 Delimited release

We prove that the type system enforces delimited release user a proof technique based on the technique of Pottier and Simonet

[35] for showing noninterference in the ML programming language. We define a new language, IMPI2, that can represent two

executions of a program. We show that type preservation in IMPI2 implies that the program satisfies delimited release. (For

convenience, we use IMPI to refer to the interactive imperative language presented in Section 3.)

B.2.1 Syntax and semantics

The language IMPI2 extends the interactive language with pair constructs for commands L c1 | c2 M, integers L v1 | v2 M, and events

Lα1 |α2 M. The pair constructs represent different commands, integers, and events that may arise in two different executions

of a program. A command pair cannot be nested inside another command pair, but can otherwise appear nested at arbitrary

depth. Integer pairs are used to represent different input values that may be provided by different user strategies, and to track

how states differ in different executions of a program: user strategies in IMPI2 are functions from (IMPI) traces to integers and

integer pairs, and stores in IMPI2 are functions from variables to integers and integer pairs. We introduce the special event void,

and allow elements of event pairs to range over events and void. The constant void is used to indicate that an event occurred in

only one of the two executions. We also allow input and output values to range over integer pairs and integers.

(expressions) e ::= . . . | L v1 | v2 M

(commands) c ::= . . . | L c1 | c2 M

For an extended command c, let the projections bcc1 and bcc2 represent the two commands that c encodes. The projection

functions satisfy bL c1 | c2 Mci = ci, and are homomorphisms on other commands. Similarly for integer pairs, bL v1 | v2 Mci = vi.

The projection functions are extended to states, so that

bσci(x) =


v if σ(x) = n

vi if σ(x) = L v1 | v2 M
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The evaluation of expressions are also extended, so that binary operations ⊕ are homomorphic on integer pairs. Thus, σ(e), the

evaluation of expression e using state σ, may be either an integer n or an integer pair L v1 | v2 M.

We extend projection to event pairs (bLα1 |α2 Mci = αi) and define projection homomorphically on events. We define

projection on traces inductively, as follows.

b〈〉ci = 〈〉

b〈α0, α1, . . .〉ci =


b〈α1, . . .〉ci if bα0ci = void

〈bα0ci〉ˆb〈α1, . . .〉ci otherwise

Finally, we extend projection to joint strategies, so that for any ` and t, bωci(`)(t) = bω(`)(t)ci.

We indicate IMPI2 configurations with a bullet (•) subscript: (c, σ, t, ω)•. A IMPI2 configuration represents a pair of IMPI

configurations.

The complete operational semantics of IMPI2 are given in Fig. 5. Note that rules OS2-ASSIGN, OS2-SEQ-1, OS2-SEQ-

2, OS2-IN, OS2-OUT, OS2-IF-1, OS2-IF-2, OS2-DECLASSIFY, and OS2-WHILE are similar to their counterparts in the

language IMPI. Rules OS2-IF-1 and OS2-DECLASSIFY have been modified to be restricted to apply only to integer results of

evaluating expression e.

The rule OS2-PAIR-LIFT evaluates one of the two subcommands of a pair command L c1 | c2 M. The memory and trace are

update to indicate that only one of the two executions represented by the configuration made progress. Thus, bσcj = bσ′cj and

btcj = bt′cj , where j ∈ {1, 2} is the execution that did not make progress. Note that the small step relation used in the premise

is small step relation of language IMPI.

The rule OS2-PAIR-SKIP applies when the two commands represented by a command pair have both finished executing.

This rule removes the command pair.

The rule OS2-PAIR-IF applies when the evaluation of a conditional expression differs in the two executions represented by

the IMPI2 configuration. This rule introduces a command pair, representing the different branches that may be taken by the two

executions. This is the only rule that introduces command pairs.

The rule OS2-PAIR-DECLASSIFY applies when an expression is declassified in both executions represented by the execu-

tion, and the evaluation of the expression is the same in both executions.

B.2.2 Adequacy

The language IMPI2 is adequate to express the execution of two IMPI programs. We show that the execution of a IMPI2 program

is sound (a step taken by a IMPI2 program corresponds to one or zero steps taken by its projections) and complete (given two

IMPI executions, there is a IMPI2 execution whose projection agrees with at least one of them). We write−→= for the reflexive

closure of −→.

Lemma 7 (Soundness). If (c, σ, t, ω)• −→ (c′, σ′, t′, ω)•, then (bcci, bσci, btci, bωci) −→= (bc′ci, bσ′ci, bt′ci, bωci) for

29



i ∈ {1, 2}.

Proof. By induction on the derivation (c, σ, t, ω)• −→ (c′, σ′, t′, ω)•. The interesting cases are the new rules introduced for

IMPI2: OS2-PAIR-LIFT, OS2-PAIR-SKIP, OS2-PAIR-IF, and OS2-PAIR-DECLASSIFY. For a reduction using OS2-PAIR-

LIFT, clearly one of the two projections takes a step, while the other projection remains unchanged. For OS2-PAIR-SKIP, both

projections remain unchanged. For both OS2-PAIR-IF, and OS2-PAIR-DECLASSIFY, both projections take a step. ut

If an IMPI2 configuration is stuck, it is because one of the two projections is stuck.

Lemma 8 (Stuck configurations). If (c, σ, t, ω)• is stuck (i.e., cannot be reduced and c 6= skip), then (bcci, bσci, btci, bωci) is

stuck for some i ∈ {1, 2}.

Proof. By structural induction on command c. ut

Given two IMPI evaluations, there is an IMPI2 evaluation that represents the same IMPI evaluation for at least one of the

two evaluation.

Lemma 9 (Completeness). If (bcci, bσci, btci, bωci) −→∗ (c′i, σ
′
i, t
′
i, bωci) for i ∈ {1, 2}, then there exists a IMPI2 con-

figuration (c′, σ′, t′, ω)• such that (c, σ, t, ω)• −→∗ (c′, σ′, t′, ω)• and (bc′ci, bσ′ci, bt′ci, bωci) = (c′i, σ
′
i, t
′
i, bωci) for some

i ∈ {1, 2}.

Proof. Let τi = (bcci, bσci, btci, bωci) . . . (c′i, σ′i, t′i, bωci) be the sequence of configurations that witnesses (bcci, bσci, btci, bωci) −→∗

(c′i, σ
′
i, t
′
i, bωci).

Let ni be the length of τi. For a sequence IMPI2 configurations τ = (c, σ, t, ω)• . . . (c
′, σ′, t′, ω)• that witnesses (c, σ, t, ω)• −→∗

(c′, σ′, t′, ω)•, let fi(τ) be ni minus the number of reduction steps in τ that reduce the ith projection. Note that fi(τ) is non-

negative. Consider g(τ) = min(f1(τ), f2(τ)). If g(τ) = 0, then τ is a sequence that satisfies the conditions.

Suppose g(τ) > 0. Consider the function

h(τ) = (g(τ), |f1(τ)− f2(τ)|, numPairs(τ [|τ | − 1]))

where τ [|τ | − 1] refers to the last configuration in the sequence τ , and numPairs((c, σ, t, ω)•) returns the number of pair

commands in c. Note that all elements of the triple returned by h(τ) are non-negative. If we can extend τ by one step to a

sequence τ ′ such that h(τ ′) < h(τ) under lexicographic ordering, then, by repeated applications, eventually we will produce a

sequence τ ′′ such that g(τ ′′) = 0.

We now show how to extend sequence τ to a sequence τ ′ such that h(τ ′) < h(τ). By assumption, g(τ) > 0, so neither last

configuration of τ1 or τ2 is stuck. By Lemma 8, we can extend τ by one more step, producing trace τ ′. By Lemma 7, either

fi(τ
′) = fi(τ)− 1 for some i ∈ {1, 2}, or fi(τ ′) = fi(τ) for all i ∈ {1, 2}. If the former, then h(τ ′) < h(τ). If the latter, then

the rule OS2-PAIR-SKIP was used in the reduction, and the last configuration of τ ′ has one fewer pair commands than the last

configuration of τ , and so h(τ ′) < h(τ). ut
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B.2.3 Type preservation

We extend the type system to IMPI2 commands and configurations. Typing judgments are now of the form

pc,Γ;C,∆,E, H `` c . Γ′;C ′,∆′,E′, H ′

where ` ∈ L. Intuitively, if IMPI2 command c is well-typed with typing parameter `, then c represents the two IMPI commands

that are indistinguishable from the point of view of any user `′ such that `′ v `.

Because our type system is flow-dependent, we need to extend the typing context entities Γ, ∆, and E so that they range

over pairs. This allows the expression of different typing contexts for the two IMPI commands represented by a single IMPI2

command. Thus, Γ ranges over security levels L and pairs of security levels (written L `1 | `2 M. Similarly, ∆ and E range over

elements of InputExp⊥ and pairs of elements of InputExp⊥. We also extend the entity C so that its range is (Z⊥ ∪ (Z⊥ ×

Z⊥)) × (Z⊥ ∪ (Z⊥ × Z⊥)). That is, for any ` ∈ L, we have C(`)(i, j), where i is either an integer (indicating the number

of inputs received on channel `), ⊥ (indicating an unknown number of inputs received on channel `), or a pair (i1, i2), where

i1 indicates inputs received on channel ` in the first execution, and i2 indicates inputs received on channel ` in the second

execution. Similarly, j describes the outputs sent on channel ` in both executions. We define projection operations b·c1 and

b·c2 for all the extended entities. We extend relations v and � such that

` v L `1 | `2 M ⇐⇒ ` v `1 and ` v `2

L `1 | `2 M v ` ⇐⇒ `1 v ` and `2 v `

L `1 | `2 M v L `′1 | `′2 M ⇐⇒ `1 v `′1 and `2 v `′2

v � L v1 | v2 M ⇐⇒ v � v1 and v � v2

L v1 | v2 M � v ⇐⇒ v1 � v and v2 � v

L v1 | v2 M � L v′1 | v′2 M ⇐⇒ v1 � v′1 and v2 � v′2

Typing rules for IMPI (given in Fig. 3) are made into typing rules for IMPI2 by adding the typing parameter ` to every rule.

In addition, we severely restrict when the typing context entities may differ for the two different IMPI commands represented

by a single IMPI2 command. We require for judgment pc,Γ;C,∆,E, H `` c . Γ′;C ′,∆′,E′, H ′ that (a) the images of C ′,

∆′, E′ and Γ′ do not contain any pairs (i.e., they are suitable IMPI entities); and (b) if c does not contain a command pair, then

C, ∆, E and Γ do not contain any pairs. We use the predicate noPairs(Γ, C,∆,E) to indicate that the images of C, ∆, E and

Γ do not contain any pairs.

All typing rules for IMPI2 are presented in Fig. 6. The typing rule for the new pair command, T2-PAIR, requires that

both projections type check using IMPI typing rules, for a program counter level pc′ that is at least as restrictive as typing

parameter `. Intuitively, this will ensure that any side-effects of a command pair will not be observable at level ` or below.

Note that the premise of T2-PAIR uses the typing judgment for IMPI, i.e., without the typing parameter `. This is because
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well-formed commands do not have nested command pairs. All typing rules other than T2-PAIR correspond closely to their

IMPI counterpart.

We define a notion of satisfaction for IMPI2 configurations. Intuitively, an IMPI2 configuration satisfies context C,∆,E,Γ

for ` if the two IMPI configurations represented by the IMPI2 configuration are identical at all levels `′ such that `′ v `, and each

IMPI configuration satisfies the appropriate IMPI context. We also require that no command pair appears as a subcommand of

an if or while command.

Definition 7. We say that configuration (c, σ, t, ω)• satisfies context C,∆,E,Γ for `, written Γ, C,∆,E �` (c, σ, t, ω)• if all

of the following conditions hold.

1. For all x ∈ Var, if σ(x) is a pair value then Γ(x) 6v `.

2. For all i such that 0 ≤ i < |t|, if value(t(i)) is a pair value, then level(t(i)) 6v `, where

value(Lα1 |α2 M) = L 0 | 0 M

value(in(`, v)) = v

value(out(`, v)) = v

level(L void |α M) = level(α)

level(Lα | void M) = level(α)

level(in(`, v)) = `

level(out(`, v)) = `

3. For all `′, t′, if ω(`′)(t′) is a pair value, then `′ 6v `.

4. bCci, b∆ci, bEci,� (bcci, bσci, btci, bωci) for i ∈ {1, 2}.

5. No command pair appears as a subcommand of an if or while command of c.

The execution of a IMPI2 program preserves typings. The following type-preservation theorem is key to showing that

well-typed IMPI programs satisfy delimited release.

Theorem 3 (Type preservation). Let c be an IMPI2 command such that

pc,Γ;C,∆,E, H `` c . Γ′;C ′,∆′,E′, H ′,

and let (c, σ, t, ω)• be an IMPI2 configuration such that

Γ, C,∆,E �` (c, σ, t, ω)•
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If

(c, σ, t, ω)• −→ (c′, σ′, t′, ω)•

and bt′c1 and bt′c2 agree up to ` on escape hatches H ′ then there exists C ′′, ∆′′, E′′, H ′′, Γ′′, and pc′′ such that

pc′′,Γ′′;C ′′,∆′′,E′′, H ′′ `` c′ . Γ′;C ′,∆′,E′, H ′

and

Γ′′, C ′′,∆′′,E′′ �` (c′, σ′, t′, ω)•.

Proof. By induction on the typing judgment pc,Γ;C,∆,E, H `` c . Γ′;C ′,∆′,E′, H ′.

ut

Before proving that the IMPI type system enforces delimited release, we first prove some useful lemmas about the IMPI2

type system.

The judgment Γ′, C ′,∆′,E′ �` (c′, σ′, t, ω)• ensures that the two traces represented by IMPI2 trace t are identical to user

`. More precisely, all input and output on any channel bounded above by typing parameter ` is the same in both executions.

Lemma 10. If Γ′, C ′,∆′,E′ �` (c′, σ′, t, ω)• then btc1 �`′ = btc2 �`′ for any `′ ∈ L such that `′ v `.

Proof. By induction on the length of t. The base case, t = 〈〉, is trivial. Consider αˆt, and assume that btc1 � `′ = btc2 � `′.

If level(α) 6= `′, then bαˆtci � `′ = btci � `′ for i ∈ {1, 2}, and the result holds. If level(α) v `′ then by Γ′, C ′,∆′,E′ �`

(c′, σ′, t, ω)• we have value(α) is not a pair value. Thus, bαc1 = bαc2, and bαˆtc1 �`′ = bαˆtc2 �`′ as required. ut

If an IMPI command is well-typed in the IMPI type system, then it is well-typed in the IMPI2 type system.

Lemma 11. If c is an IMPI command (i.e., does not contain any command pairs), and

pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′

then for all ` we have

pc,Γ;C,∆,E, H `` c . Γ′;C ′,∆′,E′, H ′.

Proof. Every IMPI typing rule is made into an IMPI2 typing rule by adding the typing parameter `. ut

B.2.4 Proof of delimited release

Using the type preservation of IMPI2, and the lemmas above, we can now show that a well-typed IMPI program satisfies

delimited release.

Lemma 12. If

pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H
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for some Γ0 and pc, and for all (f, `) ∈ H there exists i ∈ 0..k such that f ≡ fi and `i v `, then c satisfies delimited release

by escape hatches (f0, `0), . . . , (fk, `k).

Proof. Assume pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H for some Γ0 and pc. Let escape hatches (f0, `0), . . . , (fk, `k) be

fixed, and assume that for all (f, `) ∈ H there exists i ∈ 0..k such that f ≡ fi and `i v `.

Let ` ∈ L. Let ω1 and ω2 be joint strategies such that ω1(`′) = ω2(`′) for all `′ v `. Let σ be an initial state, and t1 and t2 be

traces such that t1 and t2 agree up to ` on escape hatches (f0, `0), . . . , (fk, `k), and (c, σ, 〈〉, ω1) t1 and (c, σ, 〈〉, ω2) t2.

By Lemma 11, pc,Γ0; (0, 0),⊥,⊥, ∅ `` c . Γ;C,∆,E, H . Since for all (f, `′) ∈ H there exists i ∈ 0..k such that f ≡ fi

and `i v `′, and so traces t1 and t2 agree up to ` on escape hatches H .

Let σ be a state that contains no pair values. Let ω be a IMPI2 joint strategy such that bωci = ωi, and for any `′ and t′, if

`′ v ` then ω(`′)(t′) is not a pair value. Note that ⊥,Γ0, (0, 0),⊥ �` (c, σ, 〈〉, ω)•.

Suppose that both t1 and t2 are finite traces. Then by Lemma 9 and Lemma 7, there is an IMPI2 configuration (c′, σ′, t, ω)•

such that (c, σ, 〈〉, ω)• −→∗ (c′, σ′, t, ω)• and btci = ti and tj � btcj for some i and j such that {i, j} = {1, 2}. By repeated

applications of Theorem 3, we have Γ′, C ′,∆′,E′ �` (c′, σ′, t, ω)• for some C ′, ∆′, E′, and Γ′. Thus, by Lemma 10, we have

btci �` = btcj �`, and so tj �` � ti �` and thus t1 ≈` t2 as required.

Let one or both of t1 or t2 be an infinite trace. Suppose that it is not the case that either t1 � ` � t2 � ` or t2 � ` � t1 � `.

Therefore there is some index n such that (t1 � `)(n) 6= (t2 � `)(n). Consider finite traces t′1 and t′2 such that t1 � t′1 and

t2 � t′2, and |t′1 � `| = |t′2 � `| = n + 1. Note that (c, σ, 〈〉, ω1)  t′1 and (c, σ, 〈〉, ω2)  t′2. By a similar argument above,

we derive that t′1 ≈` t
′
2. But this implies that (t′1 � `)(n) = (t′2 � `)(n), a contradiction! Therefore, either t1 � ` � t2 � ` or

t2 �` � t1 �`, and so t1 ≈` t2 as required. ut

B.3 Bounded release

The proof of Theorem 2 follows immediately from Lemmas 6 and 12.
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OS-ASSIGN

(x := e, σ, t, ω) −→ (skip, σ[x 7→ σ(e)], t, ω)

OS-SEQ-1

(skip; c, σ, t, ω) −→ (c, σ, t, ω)

OS-SEQ-2
(c0, σ, t, ω) −→ (c′0, σ

′, t′, ω)

(c0; c1, σ, t, ω) −→ (c′0; c1, σ
′, t′, ω)

OS-IN

ω(`)(t�`) = v

(input x from `, σ, t, ω) −→ (skip, σ[x 7→ v], tˆ〈in(`, v)〉, ω)

OS-OUT

σ(e) = v

(output e to `, σ, t, ω) −→ (skip, σ, tˆ〈out(`, v)〉, ω)

OS-IF-1
σ(e) 6= 0

(if e then c0 else c1, σ, t, ω) −→ (c0, σ, t, ω)

OS-IF-2
σ(e) = 0

(if e then c0 else c1, σ, t, ω) −→ (c1, σ, t, ω)

OS-WHILE

(while e do c, σ, t, ω) −→ (if e then (c;while e do c) else skip, σ, t, ω)

OS-DECLASSIFY

(x := declassify(e to `), σ, t, ω) −→ (skip, σ[x 7→ σ(e)], t, ω)

Figure 1: Operational semantics
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t �in n ⇓ n

t �in f0 ⇓ v0
t �in f1 ⇓ v1

t �in f0 ⊕ f1 ⇓ v
v = v0 ⊕ v1

t′ = t�(Ev(`) ∩ Evin)

t′(i) = in(`, v)

t �in in`[i] ⇓ v

t′ = t�(Ev(`) ∩ Evin)

¬(0 ≤ i < |t′|)
t �in in`[i] ⇓ ⊥

t �`out n ⇓ n

t �`out g0 ⇓ v0
t �`out g1 ⇓ v1

t �`out g0 ⊕ g1 ⇓ v
v = v0 ⊕ v1

t′ = t�(Ev(`) ∩ Evout)
t′(i) = out(`, v)

t �`out out[i] ⇓ v

t′ = t�(Ev(`) ∩ Evout)

¬(0 ≤ i < |t′|)
t �`out out[i] ⇓ ⊥

Figure 2: Evaluation rules for input and output expressions
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T-ASSIGN
pc v ` Γ(e) v `

Γ′ = Γ[x 7→ `] ∆′ = ∆[x 7→ ∆(e)]

pc,Γ;C,∆,E, H ` x := e . Γ′;C,∆′,E, H

T-SEQ
pc,Γ;C,∆,E, H ` c0 . Γ′;C ′,∆′,E′, H ′

pc,Γ′;C ′,∆′,E′, H ′ ` c1 . Γ′′;C ′′,∆′′,E′′, H ′′

pc,Γ;C,∆,E, H ` c0; c1 . Γ′′;C ′′,∆′′,E′′, H ′′

T-IN
pc v ` Γ′ = Γ[x 7→ `]

C ′ = incin(C, `) ∆′ = recordInput(∆, x, C, `)

pc,Γ;C,∆,E, H ` input x from ` . Γ′;C ′,∆′,E, H

T-OUT
pc v ` Γ(e) v ` C ′ = incout(C, `)

E′ = recordOutput(E, C, `,∆(e))

pc,Γ;C,∆,E, H ` output e to ` . Γ;C ′,∆,E′, H

T-IF
pc v pc′ Γ(e) v pc′ i = 0, 1

pc′,Γ;C,∆,E, H ` ci . Γ′;C ′,∆′,E′, H ′

pc,Γ;C,∆,E, H ` if e then c0 else c1 . Γ′;C ′,∆′,E′, H ′

T-WHILE
pc v pc′ Γ(e) v pc′

pc′,Γ;C,∆,E, H ` c . Γ;C,∆,E, H

pc,Γ;C,∆,E, H ` while e do c . Γ;C,∆,E, H

T-DECLASSIFY
pc v `′ ` v `′ Γ′ = Γ[x 7→ `′]

∆′ = ∆[x 7→ ∆(e)] H ′ = H ∪ {(∆(e), `)}
pc,Γ;C,∆,E, H ` x := declassify(e to `) . Γ′;C,∆′,E, H ′

T-SKIP

pc,Γ;C,∆,E, H ` skip . Γ;C,∆,E, H

T-SUB
Γ0 v Γ1 Γ′1 v Γ′0 pc0 v pc1

C0 � C1 C ′1 � C ′0 ∆0 � ∆1 ∆′1 � ∆′0
E0 � E1 E′1 � E′0 H0 ⊆ H1 H ′1 ⊆ H ′0

pc1,Γ1;C1,∆1,E1, H1 ` c . Γ′1;C ′1,∆
′
1,E
′
1, H

′
1

pc0,Γ0;C0,∆0,E0, H0 ` c . Γ′0;C ′0,∆
′
0,E
′
0, H

′
0

recordInput(∆, x, C, `) =

{
∆[x 7→ ⊥] if C(`) = (⊥, j)
∆[x 7→ in`[i]] if C(`) = (i, j), i 6= ⊥

recordOutput(E, C, `, f) =

{
E if C(`) = (i,⊥)

E[(`, j) 7→ f ] if C(`) = (i, j), j 6= ⊥

incin(C, `) =

{
C if C(`) = (⊥, j)
C[` 7→ (i+ 1, j)] if C(`) = (i, j), i 6= ⊥

incout(C, `) =

{
C if C(`) = (i,⊥)

C[` 7→ (i, j + 1)] if C(`) = (i, j), j 6= ⊥

Figure 3: Typing rules
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substOutExp(E, `, n) = n
substOutExp(E, `, g0 ⊕ g1) = substOutExp(E, `, g0) ⊕

substOutExp(E, `, g1)
substOutExp(E, `, out[i]) = E(`, i)

Figure 4: substOutExp(E, `, g)

38



OS2-ASSIGN

(x := e, σ, t, ω)• −→ (skip, σ[x 7→ σ(e)], t, ω)•

OS2-SEQ-1

(skip; c, σ, t, ω)• −→ (c, σ, t, ω)•

OS2-SEQ-2
(c0, σ, t, ω)• −→ (c′0, σ

′, t′, ω)•

(c0; c1, σ, t, ω)• −→ (c′0; c1, σ
′, t′, ω)•

OS2-IN

ω(`)(t�`) = v

(input x from `, σ, t, ω)• −→ (skip, σ[x 7→ v], tˆ〈in(`, v)〉, ω)•

OS2-OUT

σ(e) = v

(output e to `, σ, t, ω)• −→ (skip, σ, tˆ〈out(`, v)〉, ω)•

OS2-IF-1
σ(e) 6= 0 σ(e) ∈ Z

(if e then c0 else c1, σ, t, ω)• −→ (c0, σ, t, ω)•

OS2-IF-2
σ(e) = 0

(if e then c0 else c1, σ, t, ω)• −→ (c1, σ, t, ω)•

OS2-PAIR-SKIP

(L skip | skip M, σ, t, ω)• −→ (skip, σ, t, ω)•

OS2-DECLASSIFY

σ(e) 6= L v | v M
(x := declassify(e to `), σ, t, ω)• −→ (skip, σ[x 7→ σ(e)], t, ω)•

OS2-WHILE

(while e do c, σ, t, ω)• −→ (if e then (c;while e do c) else skip, σ, t, ω)•

OS2-PAIR-LIFT
{i, j} = {1, 2} (ci, bσci, btci, bωci) −→ (c′i, σ

′
i, t
′
i, bωci) c′j = cj

σ′ = λx.

{
Lσ′1(x) |σ′2(x) M if bσci(x) 6= σ′i(x)

σ(x) otherwise

t′ =

{
t if btci = t′i
tˆ〈Lα0 |α1 M〉 if btci 6= t′i

αi = t′i(|t′i| − 1) αj = void

(L c1 | c2 M, σ, t, ω)• −→ (L c′1 | c′2 M, σ′, t′, ω)•

OS2-PAIR-IF

σ(e) = L v1 | v2 M c′i =

{
c0 if vi 6= 0

c1 if vi = 0

(if e then c0 else c1, σ, t, ω)• −→ (L c′1 | c′2 M, σ, t, ω)•

OS2-PAIR-DECLASSIFY

σ(e) = L v | v M
(x := declassify(e to `), σ, t, ω)• −→ (skip, σ[x 7→ v], t, ω)•

Figure 5: Operational semantics of IMPI2
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T2-ASSIGN
pc v `′ Γ(e) v `′ noPairs(Γ, C,∆,E)

Γ′ = Γ[x 7→ `′] ∆′ = ∆[x 7→ ∆(e)]

pc,Γ;C,∆,E, H `` x := e . Γ′;C,∆′,E, H

T2-SKIP

noPairs(Γ, C,∆,E)

pc,Γ;C,∆,E, H `` skip . Γ;C,∆,E, H

T2-SEQ
pc,Γ;C,∆,E, H `` c0 . Γ′;C ′,∆′,E′, H ′

pc,Γ′;C ′,∆′,E′, H ′ `` c1 . Γ′′;C ′′,∆′′,E′′, H ′′

noPairs(Γ′, C ′,∆′,E′) noPairs(Γ′′, C ′′,∆′′,E′′)

if c0 does not contain any command pairs then noPairs(Γ, C,∆,E)

pc,Γ;C,∆,E, H `` c0; c1 . Γ′′;C ′′,∆′′,E′′, H ′′

T2-IN
pc v `′ Γ′ = Γ[x 7→ `′]
noPairs(Γ, C,∆,E)
C ′ = incin(C, `′)

∆′ = recordInput(∆, x, C, `′)

pc,Γ;C,∆,E, H `` input x from `′ . Γ′;C ′,∆′,E, H

T2-OUT
pc v `′ Γ(e) v `′
noPairs(Γ, C,∆,E)
C ′ = incout(C, `

′)

E′ = recordOutput(E, C, `′,∆(e))

pc,Γ;C,∆,E, H `` output e to `′ . Γ;C ′,∆,E′, H

T2-IF
pc v pc′ Γ(e) v pc′ i = 0, 1 noPairs(Γ′, C ′,∆′,E′)

pc′,Γ;C,∆,E, H `` ci . Γ′;C ′,∆′,E′, H ′

if ci does not contain command pairs then noPairs(Γ, C,∆,E)

pc,Γ;C,∆,E, H `` if e then c0 else c1 . Γ′;C ′,∆′,E′, H ′

T2-WHILE

pc v pc′ Γ(e) v pc′ noPairs(Γ, C,∆,E)

pc′,Γ;C,∆,E, H `` c . Γ;C,∆,E, H

pc,Γ;C,∆,E, H `` while e do c . Γ;C,∆,E, H

T2-DECLASSIFY
pc v `′′ `′ v `′′ Γ′ = Γ[x 7→ `′′] noPairs(Γ, C,∆,E)

∆′ = ∆[x 7→ ∆(e)] H ′ = H ∪ {(∆(e), `′)}
pc,Γ;C,∆,E, H `` x := declassify(e to `′) . Γ′;C,∆′,E, H ′

T2-SUB
Γ0 v Γ1 Γ′1 v Γ′0 pc0 v pc1 noPairs(Γ′0, C

′
0,∆

′
0,E
′
0)

C0 � C1 C ′1 � C ′0 ∆0 � ∆1 ∆′1 � ∆′0
E0 � E1 E′1 � E′0 H0 ⊆ H1 H ′1 ⊆ H ′0

pc1,Γ1;C1,∆1,E1, H1 `` c . Γ′1;C ′1,∆
′
1,E
′
1, H

′
1

if c does not contain any command pairs then noPairs(Γ0, C0,∆0,E0)

pc0,Γ0;C0,∆0,E0, H0 `` c . Γ′0;C ′0,∆
′
0,E
′
0, H

′
0

T2-PAIR
pc v pc′ pc′ 6v ` noPairs(Γ′, C ′,∆′,E′) i = 1, 2

pc′, bΓci; bCci, b∆ci, bEci, H ` ci . Γ′;C ′,∆′,E′, H ′

pc,Γ;C,∆,E, H `` L c1 | c2 M . Γ′;C ′,∆′,E′, H ′

Figure 6: Typing rules
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