
On the (Im)possibility of Obfuscating Programs

Citation
Barak, Boaz, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and
Ke Yang. 2012. On the (Im)possibility of Obfuscating Programs. Journal of the ACM 59, no. 2: 1–
48.

Published Version
doi:10.1145/2160158.2160159

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12644697

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:12644697
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=On%20the%20(Im)possibility%20of%20Obfuscating%20Programs&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=9bbe94e2d09dfcc231898927a5c65d55&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

A

On the (Im)possibility of Obfuscating Programs1

Boaz Barak, Microsoft Research New England, Camrbidge, MA 02142. E-mail: b@boazbarak.org
and Oded Goldreich, Department of Computer Science, Weizmann Institute of Science, Rehovot,
ISRAEL. E-mail: oded.goldreich@weizmann.ac.il
and Russell Impagliazzo, Department of Computer Science and Engineering, University of California,
San Diego, La Jolla, CA 92093-0114. E-mail: russell@cs.ucsd.edu
and Steven Rudich, Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave.
Pittsburgh, PA 15213. E-mail: rudich@cs.cmu.edu
and Amit Sahai, Department of Computer Science, UCLA, Los Angeles, CA 90095. Email:
sahai@cs.ucla.edu

and Salil Vadhan, School of Engineering and Applied Sciences and Center for Research on Computation
and Society, Harvard University, 33 Oxford Street, Cambridge, MA 02138. E-mail:
salil@seas.harvard.edu

and Ke Yang, Google Inc., Moutain View, CA 94043. E-mail: yangke@gmail.com

Informally, an obfuscator O is an (efficient, probabilistic) “compiler” that takes as input a pro-
gram (or circuit) P and produces a new program O(P) that has the same functionality as P yet
is “unintelligible” in some sense. Obfuscators, if they exist, would have a wide variety of crypto-
graphic and complexity-theoretic applications, ranging from software protection to homomorphic
encryption to complexity-theoretic analogues of Rice’s theorem. Most of these applications are
based on an interpretation of the “unintelligibility” condition in obfuscation as meaning that
O(P) is a “virtual black box,” in the sense that anything one can efficiently compute given O(P),
one could also efficiently compute given oracle access to P .

In this work, we initiate a theoretical investigation of obfuscation. Our main result is that,
even under very weak formalizations of the above intuition, obfuscation is impossible. We prove
this by constructing a family of efficient programs P that are unobfuscatable in the sense that (a)
given any efficient program P ′ that computes the same function as a program P ∈ P, the “source
code” P can be efficiently reconstructed, yet (b) given oracle access to a (randomly selected)
program P ∈ P, no efficient algorithm can reconstruct P (or even distinguish a certain bit in the
code from random) except with negligible probability.

We extend our impossibility result in a number of ways, including even obfuscators that (a)
are not necessarily computable in polynomial time, (b) only approximately preserve the func-
tionality, and (c) only need to work for very restricted models of computation (TC0). We also
rule out several potential applications of obfuscators, by constructing “unobfuscatable” signa-
ture schemes, encryption schemes, and pseudorandom function families.
Categories and Subject Descriptors: F.1.3 [Theory of Computation]: Complexity Measures and Classes;
D.4.6 [Software]: Security and Protection—Cryptographic Controls

General Terms: Theory

Additional Key Words and Phrases: complexity theory, cryptography, homomorphic encryption, pseudoran-
dom functions, Rice’s Theorem, software protection, software watermarking, statistical zero knowledge

1A preliminary version of this paper appeared in CRYPTO’01 [BGI+].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

1. INTRODUCTION
Past theoretical research in cryptography had amazing success in putting most of
the classical cryptographic problems — encryption, authentication, protocols — on
complexity-theoretic foundations. However, there still remain several important prob-
lems in cryptography about which theory has had little or nothing to say. One such
problem is that of program obfuscation. Roughly speaking, the goal of (program) ob-
fuscation is to make a program “unintelligible” while preserving its functionality. Ide-
ally, an obfuscated program should be a “virtual black box,” in the sense that anything
one can compute from it one could also compute from the input-output behavior of the
program.

The hope that some form of obfuscation is possible arises from the fact that analyz-
ing programs expressed in rich enough formalisms is hard. Indeed, any programmer
knows that total unintelligibility is the natural state of computer programs (and one
must work hard in order to keep a program from deteriorating into this state). Theo-
retically, results such as Rice’s Theorem and the hardness of the HALTING PROBLEM
and SATISFIABILITY all seem to imply that the only useful thing that one can do with a
program or circuit is to run it (on inputs of one’s choice). However, this informal state-
ment is, of course, highly speculative, and the existence of obfuscators requires its own
investigation.

To be a bit more clear (though still informal), an obfuscator O is an (efficient, prob-
abilistic) “compiler” that takes as input a program (or circuit) P and produces a new
program O(P) satisfying the following two conditions:

— (functionality) O(P) computes the same function as P .
— (“virtual black box” property) “Anything that can be efficiently computed from O(P)

can be efficiently computed given oracle access to P .”

While there are heuristic approaches to obfuscation in practice (cf., Figure 1 and [CT]),
there has been little theoretical work on this problem. This is unfortunate, since obfus-
cation, if it were possible, would have a wide variety of cryptographic and complexity-
theoretic applications.

#include<stdio.h> #include<string.h>
main(){char*O,l[999]="’‘acgo\177~|xp .
-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";
while(O=fgets(l+45,954,stdin)){*l=O[
strlen(O)[O-1]=0,strspn(O,l+11)];
while(*O)switch((*l&&isalnum(*O))-!*l)
{case-1:{char*I=(O+=strspn(O,l+12)
+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+
*I---’-’)<80);putchar(O&93?*I
&8||!(I=memchr(l , O , 44)) ?’?’:
I-l+47:32); break; case 1: ;}*l=
(*O&31)[l-15+(*O>61)*32];while(putchar
(45+*l%2),(*l=*l+32>>1)>35); case 0:
putchar((++O ,32));}putchar(10);}}

Fig. 1. The winning entry of the 1998 International Obfuscated C Code Contest, an ASCII/Morse code trans-
lator by Frans van Dorsselaer [vD] (adapted for this paper).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

In this work, we initiate a theoretical investigation of obfuscation. We examine vari-
ous formalizations of the notion, in an attempt to understand what we can and cannot
hope to achieve. Our main result is a negative one, showing that obfuscation (as it is
typically understood) is impossible. Before describing this result and others in more
detail, we outline some of the potential applications of obfuscators, both for motivation
and to clarify the notion.

1.1. Some Applications of Obfuscators
Software Protection.. The most direct applications of obfuscators are for various

forms of software protection. By definition, obfuscating a program protects it against
reverse engineering. For example, if one party, Alice, discovers a more efficient algo-
rithm for factoring integers, she may wish to sell another party, Bob, a program for
apparently weaker tasks (such as breaking the RSA cryptosystem) that use the factor-
ing algorithm as a subroutine without actually giving Bob a factoring algorithm. Alice
could hope to achieve this by obfuscating the program she gives to Bob.

Intuitively, obfuscators would also be useful in watermarking software (cf., [CT;
NSS]). A software vendor could modify a program’s behavior in a way that uniquely
identifies the person to whom it is sold, and then obfuscate the program to guarantee
that this “watermark” is difficult to remove.

Removing Random Oracles.. The Random Oracle Model [BR] is an idealized cryp-
tographic setting in which all parties have access to a truly random function. It is
(heuristically) hoped that protocols designed in this model will remain secure when
implemented using an efficient, publicly computable cryptographic hash function in
place of the random function. While it is known that this is not true in general [CGH],
it is unknown whether there exist efficiently computable functions with strong enough
properties to be securely used in place of the random function in various specific pro-
tocols2. One might hope to obtain such functions by obfuscating a family of pseudoran-
dom functions [GGM], whose input-output behavior is by definition indistinguishable
from that of a truly random function.

Transforming Private-Key Encryption into Public-Key Encryption.. Obfuscation can
also be used to create new public-key encryption schemes by obfuscating a private-
key encryption scheme. Given a secret key K of a private-key encryption scheme, one
can publish an obfuscation of the encryption algorithm EncK . This allows everyone to
encrypt, yet only one possessing the secret key K should be able to decrypt.

Interestingly, in the original paper of Diffie and Hellman [DH], the above was the
reason given to believe that public-key cryptosystems might exist even though there
were no candidates known yet. That is, they suggested that it might be possible to
obfuscate a private-key encryption scheme.3

2We note that the results of [CGH] can also be seen as ruling out a very strong “virtual black box” definition
of obfuscators. This is because their result implies that no obfuscator applied to any pseudorandom function
family could work for all protocols, while a very strong virtual black box definition would guarantee this. We
note, however, that our main results rule out a seemingly much weaker definition of obfuscation. Also, we
note that ruling out strong virtual black box definitions is almost immediate: For example, one thing that can
be efficiently computed from O(P) is the program O(P) itself. However, for any program P corresponding
to a function that is hard to learn from queries, it would be infeasible to produce any program equivalent to
P in functionality given only oracle access to P .
3From [DH]: “A more practical approach to finding a pair of easily computed inverse algorithms E and D;
such thatD is hard to infer from E, makes use of the difficulty of analyzing programs in low level languages.
Anyone who has tried to determine what operation is accomplished by someone else’s machine language
program knows that E itself (i.e., what E does) can be hard to infer from an algorithm for E. If the program
were to be made purposefully confusing through the addition of unneeded variables and statements, then

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

Homomorphic Encryption.. A long-standing open problem in cryptography is
whether homomorphic encryption schemes exist (cf., [RAD; FM; DDN; BL; SYY]). That
is, we seek a secure public-key cryptosystem for which, given encryptions of two bits
(and the public key), one can compute an encryption of any binary Boolean operation
of those bits. Obfuscators would allow one to convert any public-key cryptosystem into
a homomorphic one, by using ideas as in the previous paragraph. Specifically, use the
secret key to construct an algorithm that performs the required computations (by de-
crypting, applying the Boolean operation, and encrypting the result), and publish an
obfuscation of this algorithm along with the public key.

1.2. Our Main Results
The Basic Impossibility Result.. Most of the above applications rely on the intuition

that an obfuscated program is a “virtual black box.” That is, anything one can effi-
ciently compute from the obfuscated program, one should be able to efficiently compute
given just oracle access to the program. Our main result shows that it is impossible
to achieve this notion of obfuscation. We prove this by constructing (from any one-
way function) a family P of efficient programs (in the form of Boolean circuits) that is
unobfuscatable in the sense that

— Given any efficient program P ′ that computes the same function as a program P ∈ P,
the “source code” P can be reconstructed very efficiently (in time roughly quadratic
in the running time of P ′).

— Yet, given oracle access to a (randomly selected) program P ∈ P, no efficient algo-
rithm can reconstruct P (or even distinguish a certain bit in the code from random)
except with negligible probability.

Thus, there is no way of obfuscating the programs that compute these functions, even
if (a) the obfuscator itself has unbounded computation time, and (b) the obfuscation
is meant to hide only one bit of information about the function. We also note that the
family P is a family of circuits, which means they take inputs of a specific bounded size
and produce outputs of a specific bounded size, which could be known to a potential
obfuscator, making the job of obfuscation seemingly easier.

We believe that the existence of such functions shows that the “virtual black box”
paradigm for general-purpose obfuscators is inherently flawed. Any hope for positive
results about obfuscator-like objects must abandon this viewpoint, or at least be rec-
onciled with the existence of functions as above.

Approximate Obfuscators.. The basic impossibility result as described above applies
to obfuscators O for which we require that the obfuscated program O(P) computes
exactly the same function as the original program P . However, for some applications
it may suffice that, for every input x, the programs O(P) and P agree on x with high
probability (over the coin tosses of O). Using some additional ideas, our impossibility
result extends to such approximate obfuscators.

Impossibility of Applications.. To give further evidence that our impossibility result
is not an artifact of definitional choices, but rather is inherent in the “virtual black box”

determining an inverse algorithm could be made very difficult. Of course, E must be complicated enough to
prevent its identification from input-output pairs.

Essentially what is required is a one-way compiler: one that takes an easily understood program written
in a high level language and translates it into an incomprehensible program in some machine language. The
compiler is one-way because it must be feasible to do the compilation, but infeasible to reverse the process.
Since efficiency in size of program and run time are not crucial in this application, such compilers may be
possible if the structure of the machine language can be optimized to assist in the confusion.”

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

idea, we also demonstrate that several of the applications of obfuscators are impossi-
ble. We do this by constructing unobfuscatable signature schemes, encryption schemes,
and pseudorandom functions. These are objects satisfying the standard definitions of
security, but for which one can efficiently compute the secret key K from any program
that signs (or encrypts or evaluates the pseudorandom function, resp.) relative to K.
Hence handing out “obfuscated forms” of these keyed-algorithms is highly insecure.

In particular, we complement Canetti et. al.’s critique of the Random Oracle Method-
ology [CGH]. They show that there exist (contrived) protocols that are secure in the
idealized Random Oracle Model (of [BR]), but are insecure when the random oracle is
replaced with any (efficiently computable) function. Our results imply that for even
for natural protocols that are secure in the random oracle model, (e.g., Fiat-Shamir
type schemes [FS]), there exist (contrived) pseudorandom functions, such that these
protocols are insecure when the random oracle is replaced with any program that
computes the (contrived) pseudorandom function. We mention that, subsequent to our
work, Barak [Bar1] constructed arguably natural protocols that are secure in the ran-
dom oracle model (e.g. those obtained by applying the Fiat–Shamir heuristic [FS] to
his public-coin zero-knowledge arguments) but are insecure when the random oracle
is replaced by any efficiently computable function.

Obfuscating restricted complexity classes.. Even though obfuscation of general pro-
grams/circuits is impossible, one may hope that it is possible to obfuscate more re-
stricted classes of computations. However, using the pseudorandom functions of [NR]
in our construction, we can show that the impossibility result holds even when the
input program P is a constant-depth threshold circuit (i.e., is in TC0), under widely
believed complexity assumptions (e.g., the hardness of factoring).

Obfuscating Sampling Algorithms.. Another way in which the notion of obfuscators
can be weakened is by changing the functionality requirement. Up to now, we have
considered programs in terms of the functions they compute, but sometimes one is in-
terested in other kinds of behavior. For example, one sometimes considers sampling
algorithms — probabilistic programs that, when fed a uniformly random string (of
some length) as input, produce an output according to some desired distribution. We
consider two natural definitions of obfuscators for sampling algorithms, and prove that
the stronger definition is impossible to meet. We also observe that the weaker defini-
tion implies the nontriviality of statistical zero knowledge.

Software Watermarking.. As mentioned earlier, there appears to be some connection
between the problems of software watermarking and code obfuscation. We consider a
couple of formalizations of the watermarking problem and explore their relationship
to our results on obfuscation.

1.3. Discussion
Our work rules out the standard, “virtual black box” notion of obfuscators as impos-
sible, along with several of its applications. However, it does not mean that there is
no method of making programs “unintelligible” in some meaningful and precise sense.
Such a method could still prove useful for software protection.

Thus, we consider it to be both important and interesting to understand whether
there are alternative senses (or models) in which some form of obfuscation is possible.
Toward this end, we suggest two weaker definitions of obfuscators that avoid the “vir-
tual black box” paradigm (and hence are not ruled out by our impossibility results).
These definitions could be the subject of future investigations, but we hope that other
alternatives will also be proposed and examined.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

As is usually the case with impossibility results and lower bounds, we show that
obfuscators (in the “virtual black box” sense) do not exist by presenting a somewhat
contrived counterexample of a function ensemble that cannot be obfuscated. It is in-
teresting whether obfuscation is possible for a restricted class of algorithms, which
nonetheless contains some “useful” algorithms. This restriction should not be confined
to the computational complexity of the algorithms: If we try to restrict the algorithms
by their computational complexity, then there’s not much hope for obfuscation. Indeed,
as mentioned above, we show that (under widely believed complexity assumptions)
our counterexample can be placed in TC0. In general, the complexity of our counterex-
ample is essentially the same as the complexity of pseudorandom functions, and so a
complexity class that does not contain our example will also not contain many crypto-
graphically useful algorithms.

For further (nontechnical) discussion and interpretation of our results, the inter-
ested reader is referred to [Bar2].

1.4. Related Work
A fair number of heuristic approaches to obfuscation and software watermarking have
been proposed in the past, as described in the survey of Collberg and Thomborson [CT].
A theoretical study of software protection, based on some tamper-proof hardware, was
previously conducted by Goldreich and Ostrovsky [GO].

Hada [Had] gave some definitions for code obfuscators that are stronger than the
definitions we consider in this paper, and showed some implications of the existence of
such obfuscators. (Our result rules out also the existence of obfuscators according to
the definitions of [Had].)

Canetti, Goldreich and Halevi [CGH] showed another setting in cryptography where
getting a function’s description is provably more powerful than black-box access. As
mentioned above, they showed that there exist protocols that are secure when executed
with black-box access to a random function, but insecure when instead the parties are
given a description of any explicit function.

Related work that was done subsequent to the original publication [BGI+] of our
results is reviewed in Section 9.

1.5. Organization of the Paper
In Section 2, we give some basic definitions along with (very weak) definitions of obfus-
cators (within the virtual black box paradigm). In Section 3, we prove the impossibility
of obfuscators by constructing an unobfuscatable family of programs. In Section 4, we
give a number of extensions of our impossibility result, including impossibility results
for obfuscators that only need to approximately preserve functionality, for obfuscators
computable in low circuit classes, and for some of the applications of obfuscators. (We
also show that our main impossibility result does not relativize.) This completes the
main part of our paper.

Various ramifications are pursued in the rest of the paper. In Section 5, we discuss
some conjectural complexity-theoretic analogues of Rice’s Theorem, and use our tech-
niques to show that one of these is false. In Section 6, we examine notions of obfusca-
tors for sampling algorithms. In Section 7, we propose weaker notions of obfuscation
that are not ruled out by our impossibility results. In Section 8, we discuss the prob-
lem of software watermarking and its relation to obfuscation. Finally, in Section 9, we
mention some directions for further work in this area, as well as progress subsequent
to the original versions of our paper [BGI+].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

2. DEFINITIONS
2.1. Preliminaries
In addition to the notation mentioned below, we refer to numerous standard concepts
from cryptography and complexity theory. These can be found in [Gol1; Gol2] and [Sip],
respectively.

Standard computational notation.. We use the shorthand TM for Turing machine,
and the shorthand PPT for probabilistic polynomial-time Turing machine. By circuit
we refer to a standard Boolean circuit with AND,OR and NOT gates. If C is a circuit
with n inputs and m outputs, and x ∈ {0, 1}n, then by C(x) we denote the result of
applying C on input x. We say that C computes a function f : {0, 1}n → {0, 1}m if for
any x ∈ {0, 1}n, it holds that C(x) = f(x). If A is a probabilistic Turing machine, then
by A(x; r) we refer to the result of running A on input x and random tape r, and by
A(x) we refer to the distribution induced by choosing r uniformly and running A(x; r).
By a randomized circuit, we mean a circuit that may additionally make use of special
gates called randomness gates. Each randomness gate in a randomized circuit takes
no input, and outputs a uniformly and independently chosen bit. If C is a randomized
circuit, then C(x) will refer to the distribution obtained by evaluating the randomized
circuit C on input x. We will sometimes abuse notation and also use C(x) to refer to
a value y sampled from the distribution C(x). We will identify Turing machines and
circuits with their canonical representations as strings in {0, 1}∗.

For a circuit C, we denote by [C] the function computed by C. Similarly if M is a TM,
then we denote by [M] the (possibly partial) function computed by M .

Non-standard notation regarding computation with oracles.. We need to deviate
from the standard conventions regarding using subroutines (or oracles), because a user
having access to a code can run the code on a selected input for a number of steps of
her choice.4 Thus, black-box access to a program should mean access to the function
that returns the result of running the program on a given input for a given number of
steps. Thus, for a TM M , we denote by 〈M〉 the function defined as

〈M〉(1t, x)
def
=
{
y if M(x) halts with output y after at most t steps
⊥ otherwise.

This convention is unnecessary when dealing with circuits, since the “running time”
of a circuit on each adequate input equals the predetermined size of the circuit. For
simplicity, in both cases, we denote by AP (x) the output of algorithm A when executed
on input x and oracle access to P . If P is a TM, then AP (x) is actually a shorthand for
the standard notation A〈P 〉(x), which represents the output of algorithm A when exe-
cuted on input x and oracle access to the function 〈P 〉. If P is a circuit, then AP (x) is a
shorthand for the standard notation A[P](x), which represents the output of algorithm
A when executed on input x and oracle access to the function [P] (i.e., the function
computed by P).

Probabilistic notation.. If D is a distribution, then by x
R← D we mean that x is a

random variable distributed according to D. If S is a set, then by x
R← S we mean

that x is a random variable that is distributed uniformly over the elements of S. The
support of distribution D, i.e., the set of points that have nonzero probability under D,

4The point is that the actual running-time of a TM on a particular input may be smaller than the TM’s a
priori known time-bound. In this case, it is conceivable that a user having access to the code can learn the
actual running-time of the TM on inputs of its choice, and we need to reflect this ability in the oracle-aided
computation.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

is denoted Supp(D). (Thus, x R←D and x R←Supp(D) are the same only if D is distributed
uniformly over its support.)

A function µ : N → N is called negligible if it grows slower than the inverse of any
polynomial. That is, for any positive polynomial p(·) there exists N ∈ N such that
µ(n) < 1/p(n) for any n > N . We will sometimes use neg(·) to denote an unspecified
negligible function.

2.2. Obfuscators
In this section, we aim to formalize the notion of obfuscators based on the “virtual black
box” property as described in the introduction. Recall that this property requires that
“anything that an adversary can compute from an obfuscation O(P) of a program P ,
it could also compute given just oracle access to P .” We shall define what it means for
the adversary to successfully compute something in this setting, and there are several
choices for this (in decreasing order of generality):

— (computational indistinguishability) The most general choice is not to restrict the na-
ture of what the adversary is trying to compute, and merely require that it is possible,
given just oracle access to P , to produce an output distribution that is computation-
ally indistinguishable from what the adversary computes when given O(P).

— (satisfying a relation) A weaker alternative is to consider the adversary as trying to
produce an output that satisfies a predetermined (possibly polynomial-time) relation
with the original program P , and require that it is possible, given just oracle access
to P , to succeed with roughly the same probability as the adversary does when given
O(P).

— (computing a function) An even weaker requirement is to restrict the previous re-
quirement to relations that are functions; that is, the adversary is trying to compute
some predetermined function of the original program.

— (computing a predicate) The weakest alternative is obtained by restricting the previ-
ous requirement to {0, 1}-valued functions; that is, the adversary is trying to decide
some predetermined property of the original program.
An equivalent5 formulation is obtained by following the first alternative, with the cru-
cial difference of allowing only one-bit outputs. That is, we require that it is possible,
given just oracle access to P , to produce an output distribution that is statistically
close to the single-bit distribution that the adversary produces when given O(P).

The first two requirements are easily seen to be impossible to meet, in general. Con-
sider a relation (or a distinguisher) R such that R(P, P ′) accepts if programs P ′ and
P agree on many randomly chosen inputs (say from {0, 1}k, where k is the security
parameter). An adversary given an obfuscation O(P) can easily satisfy this relation
by outputting P ′ = O(P). But it is infeasible to satisfy the relation given oracle access
to P , if P is a program that is hard to learn from queries (even approximately, with
respect to the uniform distribution on {0, 1}k); for example, if P comes from a family of
pseudorandom functions.

Since we will be proving impossibility results, our results are strongest when we
adopt the weakest requirement (i.e., the last one). This yields two definitions for ob-
fuscators, one for programs defined by Turing machines and one for programs defined
by circuits.

Definition 2.1 (TM obfuscator). A probabilistic algorithm O is a TM obfuscator for
the collection F of Turing machines if the following three conditions hold:

5See Footnote 7.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

— (functionality) For every TM M ∈ F, the string O(M) describes a TM that computes
the same function as M .

— (polynomial slowdown) The description length and running time of O(M) are at most
polynomially larger than that of M . That is, there is a polynomial p such that for
every TM M ∈ F, |O(M)| ≤ p(|M |), and if M halts in t steps on some input x, then
O(M) halts within p(t) steps on x.

— (“virtual black box” property) For any PPT A, there is a PPT S and a negligible func-
tion α such that for all TMs M ∈ F, it holds that∣∣∣Pr [A(O(M)) = 1]− Pr

[
S〈M〉(1|M |) = 1

]∣∣∣ ≤ α(|M |).

We say that O is efficient if it runs in polynomial time. If we omit specifying the collec-
tion F, then it is assumed to be the collection of all Turing machines.

We stress that Turing machines merely provide a formalization of “programs” (and
that we could have alternatively considered programs defined by some generalized
C-like programming language). In our context, the size of the program is the size of
the Turing machine. Thus, unlike many other contexts in cryptography or complexity
theory, for us the sizes of the Turing machines to be obfuscated are not meant to be
thought of as “constants” (which would have made the notion of obfuscation trivial).6

Definition 2.2 (circuit obfuscator). A probabilistic algorithm O is a (circuit) obfus-
cator for the collection F of circuits if the following three conditions hold:

— (functionality) For every circuit C ∈ F, the string O(C) describes a circuit that com-
putes the same function as C.

— (polynomial slowdown) There is a polynomial p such that for every circuit C ∈ F, we
have that |O(C)| ≤ p(|C|).

— (“virtual black box” property) For any PPT A, there is a PPT S and a negligible func-
tion α such that for all circuits C ∈ F, it holds that∣∣∣Pr [A(O(C)) = 1]− Pr

[
SC(1|C|) = 1

]∣∣∣ ≤ α(|C|).

We say that O is efficient if it runs in polynomial time. If we omit specifying the collec-
tion F, then it is assumed to be the collection of all circuits.

We call the first two requirements (functionality and polynomial slowdown) the syn-
tactic requirements of obfuscation, as they do not address the issue of security at all.

There are a couple of other natural formulations of the “virtual black box” property.
The first, which was mentioned in the foregoing informal discussion, requires that, for
every predicate π, the probability that A(O(C)) = π(C) is at most the probability that
SC(1|C|) = π(C) plus a negligible term. Clearly, the simulation of any single-bit output
distribution implies the ability to match the probability of guessing the value of any
predicate, and the converse holds by considering a predicate that is undetermined on
every set of functionally equivalent programs.7

Another formulation refers to the distinguishability between obfus-
cations of two TMs/circuits: Specifically, for every C1 and C2, it holds

6This is similar to the way in which Turing machine sizes are treated when studying forms of the Bounded
Halting problem (e.g. given a Turing machine M and a time bound t, does M accept the empty string within
t steps?), which are often trivialized if the Turing machine is restricted to be of constant size. In general, one
should not view program sizes as constant when the programs themselves are inputs (as in obfuscation and
in the Bounded Halting problem).
7Needless to say, a rigorous proof requires a rigorous definition of the alternative condition, which we
avoided in the main text. Loosely speaking, such a formulation may require that for every predicate π
and every PPT A, there is a PPT S and a negligible function α such that for any distribution on programs

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

that |Pr [A(O(C1)) = 1] − Pr [A(O(C2)) = 1] | is approximately equal to
|Pr

[
SC1(1|C1|, 1|C2|) = 1

]
− Pr

[
SC2(1|C1|, 1|C2) = 1

]
|. This definition appears to be

slightly weaker than the ones above, but our impossibility proof also rules it out.
Note that in both definitions, we have chosen to simplify the definition by using

the size of the TM/circuit to be obfuscated as a security parameter. One can always
increase this length by padding to obtain higher security.

The main difference between the circuit and TM obfuscators is that a circuit com-
putes a function with finite domain (all the inputs of a particular length) while a TM
computes a function with infinite domain. Note that if we had not restricted the size
of the obfuscated circuit O(C), then the (exponential size) list of all the values of the
circuit would be a valid obfuscation (provided we allow S running time poly(|O(C)|)
rather than poly(|C|)). For Turing machines, it is not clear how to construct such an
obfuscation, even if we are allowed an exponential slowdown. Hence obfuscating TMs
is intuitively harder. Indeed, it is quite easy to prove:8

PROPOSITION 2.3. If a TM obfuscator exists, then a circuit obfuscator exists.

Thus, when we prove our impossibility result for circuit obfuscators, the impossibility
of TM obfuscators will follow. However, considering TM obfuscators will be useful as
motivation for the proof.

We note that, from the perspective of applications, Definitions 2.1 and 2.2 are already
too weak to have the wide applicability discussed in the introduction, cf. [HMS; HRSV].
The point is that they are nevertheless impossible to satisfy (as we will prove).9

We also note that the definitions are restricted to obfuscating deterministic algo-
rithms; this restriction only makes our negative results stronger (since any obfuscator
for probabilistic algorithms should also work for deterministic algorithms). Neverthe-
less, in Section 6 we discuss possible definitions of obfuscation for a special type of
probabilistic algorithms (i.e., sampling algorithms, which get no “real” input).

3. THE MAIN IMPOSSIBILITY RESULT
To state our main result we introduce the notion of an unobfuscatable circuit ensem-
ble.10

Definition 3.1. An unobfuscatable circuit ensemble is an ensemble {Hk}k∈N of dis-
tributions Hk on circuits (from, say, {0, 1}lin(k) to {0, 1}lout(k)) satisfying:

— (efficient computability) Every circuit C ∈ Supp(Hk) is of size poly(k). Moreover, C R←
Hk can be sampled uniformly in poly(k)-time.

C, it holds that

Pr [A(O(C)) = π(C)] ≤ Pr
[
SC(1|C|) = π(C)

]
+ α(|C|).

Note that it suffices to consider all (“degenerate”) distributions C that have support size 1. Now, it is clear
that the simulation of the distribution A(O(C)) allows to match, for every predicate π, the probability that
A(O(C)) = π(C). On the other hand, consider a predicate π such that for every program C there exist
functionally equivalent programs C0, C1 such that |C0| = |C1| = |C| and π(Cσ) = σ. Then, the ability
to simulate A(O(C)) follows from the hypothesis that there exists an S such that for every C and every
σ ∈ {0, 1} it holds that Pr [A(O(Cσ)) = π(Cσ)] is upper-bounded by Pr

[
SCσ (1|Cσ|) = π(Cσ)

]
+ α(|Cσ |),

since SC(1|C|) = SCσ (1|Cσ|) for both σ.
8Given a circuit (on n-bit inputs) to be obfuscated, construct a Turing machine that emulates it, apply the
TM-obfuscator to this TM, and output a circuit that emulates the latter (on inputs of length n).
9These definitions or even weaker ones, may still be useful when considering obfuscation as an end in itself,
with the goal of protecting software against reverse-engineering, cf. [GR].
10In the preliminary version of our paper [BGI+], this is referred to as a totally unobfuscatable function
ensemble.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

— (unlearnability)11

There exists a polynomial-time computable function π :
⋃
k∈N Supp(Hk) → {0, 1}∗

such that π(C) is pseudorandom given black-box access to C R←Hk. That is, for every
PPT S ∣∣∣∣∣ Pr

C
R←Hk

[SC(π(C)) = 1]− Pr
C

R←Hk,z
R←{0,1}|π(C)|

[SC(z) = 1]

∣∣∣∣∣ ≤ neg(k)

— (reverse-engineerability)12 C is easy to reconstruct given any equivalent circuit:
There exists a polynomial-time algorithm A such that for every C ∈

⋃
k Supp(Hk)

and every circuit C ′ that computes the same function as C it holds that A(C ′) = C.

The reverse-engineerability condition says that the source code C can be completely
reverse-engineered given any program computing the same function. On the other
hand the unlearnability condition implies that it is infeasible to reverse-engineer the
source code given only black-box access to C. We note that for the purpose of the main
impossibility result, it would have sufficed for the function π to have a single bit output.
(We will make use of the longer pseudorandom output of π in later results.) Putting the
two items together, it follows that, when given only black-box access to C, it is hard to
find any circuit computing the same function as C. In the language of learning theory
(see [KV]), this says that an unobfuscatable circuit ensemble constitutes a concept
class that is hard to exactly learn with queries. On the other hand, any concept class
that can be exactly learned with queries is trivially obfuscatable (according even to
the strongest definitions of obfuscation), because we can use the output of the learning
algorithm when given oracle access to a function C in the class as an obfuscation of C.

We prove in Theorem 3.10 that, assuming one-way functions exist, there exists an
unobfuscatable circuit ensemble. This implies that, under the same assumption, there
is no obfuscator that satisfies Definition 2.2 (actually we prove the latter fact directly
in Theorem 3.7). Since the existence of an efficient obfuscator implies the existence
of one-way functions (Lemma 3.8), we conclude that efficient obfuscators do not exist
(unconditionally).

However, the existence of unobfuscatable circuit ensemble has even stronger impli-
cations. As mentioned in the introduction, these programs cannot be obfuscated even
if we allow the following relaxations to the obfuscator:

(1) The obfuscator does not have to run in polynomial time — it can be any random
process.

(2) The obfuscator only has to work for programs in Supp(Hk) and only for a nonnegli-
gible fraction of these programs under the distributions Hk.

(3) The obfuscator only has to hide an a priori fixed property (e.g. the first bit of π(C))
from an a priori fixed adversary A.

Structure of the proof of the main impossibility result.. We shall prove our result by
first defining obfuscators that are secure also when applied to several (e.g., two) al-
gorithms, and proving that such obfuscators do not exist. Next, we shall modify the

11The term “learnable” is used here in an intuitive sense that is somewhat different from its meaning in
computational learning theory (see [KV]). On the one hand, we only require the learner to distinguish π(C)
from random. On the other hand, the definition allows π(C) to be a function of the source code C rather
than its functionality. However, in our construction π(C) will in fact depend only on the functionality of C,
making the task more akin to learning.
12We assume that any circuit has size that is greater than the number of its inputs. Thus, the length of the
description of C′ is at least lin(k), which in our construction will be polynomially related to the length of the
description of C (so A has at least enough time to write C).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

construction in this proof to prove that TM obfuscators in the sense of Definition 2.1 do
not exist. Then, using an additional construction (which requires one-way functions),
we will prove that a circuit obfuscator as defined in Definition 2.2 does not exist if
one-way functions exist. We will then observe that our proof actually yields an unob-
fuscatable circuit ensemble (Theorem 3.10).

3.1. Obfuscating two TMs/circuits
Obfuscators as defined in the previous section provide a “virtual black box” property
when a single program is obfuscated, but the definitions do not say anything about
what happens when the adversary can inspect more than one obfuscated program. In
this section, we will consider extensions of those definitions to obfuscating two pro-
grams, and prove that they are impossible to meet. The proofs will provide useful
motivation for the impossibility of the original one-program definitions.

Definition 3.2 (2-TM obfuscator). A 2-TM obfuscator is defined in the same way
as a TM obfuscator, except that the “virtual black box” property is strengthened as
follows:

— (“virtual black box” property) For any PPT A, there is a PPT S and a negligible
function α such that for all TMs M and N , it holds that∣∣∣Pr [A(O(M),O(N)) = 1]− Pr

[
S〈M〉,〈N〉(1|M |+|N |) = 1

]∣∣∣ ≤ α(min{|M |, |N |})

Definition 3.3 (2-circuit obfuscator). A 2-circuit obfuscator is defined in the same
way as a circuit obfuscator, except that the “virtual black box” property is replaced
with the following:

— (“virtual black box” property) For any PPT A, there is a PPT S and a negligible
function α such that for all circuits C and D, it holds that∣∣∣Pr [A(O(C),O(D)) = 1]− Pr

[
SC,D(1|C|+|D|) = 1

]∣∣∣ ≤ α(min{|C|, |D|})

PROPOSITION 3.4. Neither 2-TM nor 2-circuit obfuscators exist.

PROOF. We begin by showing that 2-TM obfuscators do not exist. Suppose, for sake
of contradiction, that there exists a 2-TM obfuscator O. The essence of this proof, and
in fact of all the impossibility proofs in this paper, is that there is a fundamental dif-
ference between getting black-box access to a function and getting a program that
computes it, no matter how obfuscated: A program is a succinct description of the func-
tion, on which one can perform computations (or run other programs). Of course, if the
function is (exactly) learnable via oracle queries (i.e., one can acquire a program that
computes the function by querying it at a few locations), then this difference disap-
pears. Hence, to get our counterexample, we will use a function that cannot be exactly
learned with oracle queries. A very simple example of such an unlearnable function
follows. For strings α, β ∈ {0, 1}k, define the Turing machine

Cα,β(x)
def
=
{
β if x = α
0k otherwise.

We assume that on input x, machine Cα,β runs in 10 · |x| steps (the constant 10 is arbi-
trary). Now we will define a TM Dα,β that, given the code of a TM C, can distinguish
between the case that C computes the same function as Cα,β from the case that C
computes the same function as Cα′,β′ for any (α′, β′) 6= (α, β).

Dα,β(C)
def
=
{

1 f C(α) = β
0 otherwise.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Actually, this function is uncomputable. However, as we shall see below, we can use a
modified version ofDα,β that only considers the execution of C(α) for poly(k) steps, and
outputs 0 if C does not halt within that many steps, for some fixed polynomial poly(·).
We will ignore this issue for now, and elaborate on it later.

Note that Cα,β and Dα,β have description size Θ(k). Consider an adversary A, that,
given two (obfuscated) TMs as input, simply runs the second TM on the first one. That
is, A(C,D) = D(C). (Actually, like we modified Dα,β above, we also will modify A to
only run D on C for poly(|C|, |D|) steps, and output 0 if D does not halt in that time.)
Thus, for every α, β ∈ {0, 1}k, it holds that

Pr [A(O(Cα,β),O(Dα,β))=1] = 1. (1)

Observe that any poly(k)-time algorithm S that has oracle access to Cα,β and Dα,β

has only exponentially small probability (for a random α and β) of querying either
oracle at a point where its value is nonzero. Hence, if we let Zk be a Turing machine
that always outputs 0k, then for every PPT S, it holds that∣∣Pr

[
SCα,β ,Dα,β (1k) = 1

]
− Pr

[
SZk,Dα,β (1k) = 1

]∣∣ ≤ 2−Ω(k), (2)

where the probabilities are taken over α and β selected uniformly in {0, 1}k and the
coin tosses of S. On the other hand, by the definition of A we have:

Pr [A(O(Zk),O(Dα,β)) = 1] = 2−k, (3)

since Dα,β(Zk) = 1 if and only if β = 0k. The combination of Equations (1), (2), and (3)
contradict the hypothesis that O is a 2-TM obfuscator.

In the foregoing proof, we ignored the fact that we had to truncate the running times
of A and Dα,β . When doing so, we must make sure that Equations (1) and (3) still
hold. Equation (1) involves executing (a) A(O(Dα,β),O(Cα,β)), which in turn amounts
to executing (b) O(Dα,β)(O(Cα,β)). By the functionality requirement of the obfuscator,
(b) has the same functionality as Dα,β(O(Cα,β)), which in turn involves executing (c)
O(Cα,β)(α). Yet the functionality requirement assures us that (c) has the same func-
tionality as Cα,β(α). By the polynomial slowdown property of obfuscators, execution (c)
only takes poly(10 · k) = poly(k) steps, which means that Dα,β(O(Cα,β)) need only run
for poly(k) steps. Thus, again applying the polynomial slowdown property, execution
(b) takes poly(k) steps, which finally implies that A need only run for poly(k) steps.
The same reasoning holds for Equation (3), using Zk instead of Cα,β .13 Note that all
the polynomials involved are fixed once we fix the polynomial p(·) of the polynomial
slowdown property.

The proof for the 2-circuit case is very similar to the 2-TM case, with a related,
but slightly different subtlety. Suppose, for sake of contradiction, that O is a 2-circuit
obfuscator. For k ∈ N and α, β ∈ {0, 1}k, define Zk, Cα,β and Dα,β in the same way
as above but as circuits rather than TMs, and define (as before) an adversary A by
A(C,D) = D(C). (Note that the issues of A and Dα,β ’s running times disappears in
this setting, since circuits can always be evaluated in time polynomial in their size.)
The new subtlety here is that the definition of A as A(C,D) = D(C) only makes sense
when the input length of D is at least as large as the size of C (note that one can
always pad the description of C to a longer length). Thus, for the analogues of Equa-
tions (1) and (3) to hold, the input length of Dα,β must be at least as large as the sizes
of the obfuscations of Cα,β and Zk. However, by the polynomial slowdown property of

13Another, even more minor subtlety that we ignored is that, strictly speaking, A only has running time
polynomial in the description of the obfuscations of Cα,β , Dα,β , and Zk, which could conceivably be shorter
than the original TM descriptions. But a counting argument shows that for all but an exponentially small
fraction of pairs (α, β) ∈ {0, 1}k × {0, 1}k, O(Cα,β) and O(Dα,β) must have description size Ω(k).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

obfuscators, it suffices to let Dα,β have input length poly(k) and the proof works as
before.

3.2. Obfuscating one TM/circuit
Our approach to extending the two-program obfuscation impossibility results to the
one-program definitions is to combine the two programs constructed above into one.
This will work in a quite straightforward manner for TM obfuscators, but will require
new ideas for circuit obfuscators.

Combining functions and programs.. For functions, TMs, or circuits f0, f1 : X → Y ,
define their combination f0#f1 : {0, 1} ×X → Y by (f0#f1)(b, x)

def
= fb(x). Conversely,

if we are given a TM (resp., circuit) C : {0, 1}×X → Y , we can efficiently decompose C
into C0#C1 by setting Cb(x)

def
= C(b, x); note that C0 and C1 have size and running time

essentially the same as that of C. Observe that having oracle access to a combined
function f0#f1 is equivalent to having oracle access to f0 and f1 individually.

THEOREM 3.5. TM obfuscators do not exist.

Proof Sketch: Suppose, for sake of contradiction, that there exists a TM obfuscator
O. For α, β ∈ {0, 1}k, let Cα,β , Dα,β , and Zk be the TMs defined in the proof of Proposi-
tion 3.4. Combining these, we get the TMs Fα,β = Cα,β#Dα,β and Gα,β = Zk#Dα,β .

We consider an adversary A analogous to the one in the proof of Proposition 3.4, aug-
mented to first decompose the program it is fed. That is, on input a TM F , algorithm
A first decomposes F into F0#F1 and then outputs F1(F0). (As in the proof of Propo-
sition 3.4, A actually should be modified to run in poly(|F |)-time.) Let S be the PPT
simulator for A guaranteed by Definition 2.1. Just as in the proof of Proposition 3.4,
we have:

Pr [A(O(Fα,β)) = 1]− Pr [A(O(Gα,β)) = 1] = 1− 2−k∣∣Pr
[
SFα,β (1k) = 1

]
− Pr

[
SGα,β (1k) = 1

]∣∣ ≤ 2−Ω(k),

where the probabilities are taken over uniformly selected α, β ∈ {0, 1}k, and the coin
tosses of A, S, and O. This contradicts Definition 2.1. 2

The difficulty in the circuit setting.. There is a difficulty in trying to carry out the
above argument in the circuit setting. (This difficulty is related to (but more serious
than) the same subtlety regarding the circuit setting discussed at the end of the proof
of Proposition 3.4.) In the proof of Theorem 3.5, the adversary A, on input O(Fα,β),
attempts to evaluate F1(F0), where F0#F1 = O(Fα,β) = O(Cα,β#Dα,β). In order for
this to make sense in the circuit setting, the size of the circuit F0 must be at most
the input length of F1 (which is the same as the input length of Dα,β). But, since the
output F0#F1 of the obfuscator can be polynomially larger than its input Cα,β#Dα,β ,
we have no such guarantee. Furthermore, note that if we compute F0 and F1 in the
way we described above (i.e., Fb(x)

def
= O(Fα,β)(b, x)), then we shall have |F0| = |F1|, and

so F0 will necessarily be larger than F1’s input length.
To get around this, we modify Dα,β in a way that will allow A, when given Dα,β and a

circuit C, to test whether C(α) = β even when C is larger than the input length ofDα,β .
Of course, oracle access to the modified Dα,β should not reveal α and β, because we do
not want the simulator S to be able to test whether C(α) = β when given just oracle
access to C and Dα,β . We will construct such functions Dα,β based on pseudorandom
functions [GGM]. The construction, captured in the following lemma, is the technical
core of our main results.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

LEMMA 3.6. If one-way functions exist, then for every k ∈ N and α, β ∈ {0, 1}k, there
exists a distribution Dα,β on circuits such that the following conditions hold.

(1) Every D ∈ Supp(Dα,β) is a circuit of size poly(k). Furthermore, there exists a prob-
abilistic polynomial-time algorithm that, for every k ∈ N, on input α, β ∈ {0, 1}k,
samples the distribution Dα,β .

(2) There is a polynomial-time algorithm A such that for every k ∈ N, α, β ∈ {0, 1}k and
D ∈ Supp(Dα,β), and for every circuit C, if C(α) = β, then AD(C, 1k) = α.

(3) For any PPT S, it holds that Pr
[
SD(1k) = α

]
= neg(k), where the probability is

taken over α, β R←{0, 1}k, D R←Dα,β , and the coin tosses of S.

The crucial aspect about this lemma is that Item 2 refers also to circuits C that are
larger than the length of the input to D. Note that Item 2 is seemingly stronger than
required for our applications. For starters, the algorithms considered in our applica-
tions will get the code of D, whereas the algorithm A asserted in Item 2 only uses D
as a black-box (i.e., A is given oracle access to D). Second, the algorithm A in Item 2
is able to obtain α whenever C(α) = β, whereas for proving the impossibility of circuit
obfuscators (as per Definition 2.2) it suffices to be able to distinguish Cα,β from Zk
(which is easy to do, provided that β 6= 0k, by invoking C on A’s output).14 We note that
the stronger version of Item 2 will be used to construct unobfuscatable circuits (as per
Definition 3.1).

PROOF. Basically, the construction implements a private-key “homomorphic en-
cryption” scheme. More precisely, the functions in Dα,β will consist of three parts. The
first part gives out an encryption of the bits of α (under some private-key encryption
scheme). The second part provides the ability to perform binary Boolean operations on
encrypted bits, and the third part tests whether a sequence of encryptions consists of
encryptions of the bits of β (and gives out α if this is the case). These operations will
enable efficiently testing whether a given circuit C satisfies C(α) = β, while keeping α
and β hidden from parties that are only provided with oracle access to C and Dα,β .

We shall use an arbitrary (probabilistic) private-key encryption scheme (Enc,Dec)
that encrypts a single bit in a way that is secure under chosen plaintext and nonadap-
tive chosen ciphertext attacks. Informally, this means that an encryption of 0 should
be indistinguishable from an encryption of 1 even for adversaries that have access
to encryption and decryption oracles prior to receiving the challenge ciphertext, and
access to just an encryption oracle after receiving the challenge ciphertext. We call
such schemes CCA1-secure, and refer the reader to formal definition provided in [KY;
Gol2]. We note that CCA1-secure private-key encryptions schemes exist if (and only
if) one-way functions exist; indeed, the “standard” (PRF-based) encryption scheme
EncK(b) = (r, fK(r) ⊕ b), where r R← {0, 1}|K| and fK : {0, 1}|K| → {0, 1} is a pseudo-
random function, is CCA1-secure.

Now we consider a “homomorphic encryption” oracle HomK , which depends on a
private-key K, and note that such an oracle can be implemented by a polynomial-size
circuit (which depends on K). When queried on two ciphertexts c and d (w.r.t this key
K) and a binary Boolean operation � (specified by its 2 × 2 truth table), the oracle
returns an encryption of DecK(c)�DecK(d) under the key K. That is, we define

HomK(c, d,�)
def
= EncK(DecK(c)�DecK(d)). (4)

14Indeed, if C(α) = β (e.g., if C = Cα,β), then C(AD(C, 1k)) = C(α) = β, whereas Zk(AD(Zk, 1
k)) = 0k.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

It can be shown that any CCA1-secure encryption scheme is secure in a setting in
which the adversary is given access to the corresponding Hom oracle.15 This is formal-
ized in the following claim:

CLAIM 3.6.1. Let (Enc,Dec) be a CCA1-secure private-key encryption scheme and
let HomK be as in Equation (4). Then, for every PPT A, it holds that∣∣Pr

[
AHomK ,EncK (EncK(0)) = 1

]
− Pr

[
AHomK ,EncK (EncK(1)) = 1

]∣∣ ≤ neg(k),

where K R←{0, 1}k.

Proof of claim: Suppose there were a PPT A violating the claim. First, we
argue that we can replace the responses to all of A’s HomK-oracle queries
with encryptions of 0 with only a negligible effect on A’s distinguishing
gap. This follows by a hybrid argument, which relies on the CCA1-security
of (Enc,Dec). For each σ ∈ {0, 1}, consider a computation of A on input
EncK(σ), when given oracle access to both HomK and EncK . Consider hy-
brids such that, in the ith hybrid, the first i oracle queries are answered
according to HomK , and the rest are answered with encryptions of 0. Then,
any gap between the output distributions in the ith and i+ 1st hybrids must
be due to the way the i + 1st query is answered, where in the ith hybrid the
answer is always an encryption of 0 and in the i+1st hybrid (by the existence
of a gap) the answer is an encryption of 1. Thus, we derive a contradiction to
CCA1-security as follows. Prior to even receiving the challenge ciphertext,
we invoke A on input EncK(σ), and answer the first i queries to HomK by
emulating its operation via DecK and EncK queries (which are made before
we get the challenge ciphertext). Next, we obtain the challenge ciphertext
(which is either EncK(0) or EncK(1)) and use it as our answer to the i + 1st

query of A (to HomK), and finally we answer all subsequent queries to HomK

by querying EncK for encryptions of 0. Thus, a gap between the ith and i+1st

hybrids translates to a gap that violates the CCA1-security of Enc.
Once we have replaced the HomK-oracle responses with encryptions of 0,

we have an adversary that can distinguish an encryption of 0 from an en-
cryption of 1 when given access to just an encryption oracle. This contradicts
indistinguishability under chosen plaintext attack, which in particular con-
tradicts the CCA1-security of Enc. 2

We now return to the construction of our circuit family Dα,β . For a key K, let EK,α be
an algorithm that, on input i outputs EncK(αi), where αi is the i’th bit of α. Let BK,α,β
be an algorithm that when fed a k-tuple of ciphertexts (c1, . . . , ck) outputs α if for every
i it holds that DecK(ci) = βi, where β1, . . . , βk are the bits of β. A random circuit from
Dα,β will essentially be the algorithm

DK,α,β
def
= EK,α#HomK#BK,α,β (5)

(for a uniformly selected key K). One minor complication is that DK,α,β is actu-
ally a probabilistic algorithm, since EK,α and HomK employ probabilistic encryption,
whereas the lemma requires deterministic functions. This can be solved in a standard
way, by using pseudorandom functions. Let q = q(k) be the input length of DK,α,β and
m = m(k) the maximum number of random bits used by DK,α,β on any input. We can

15Note that the Hom oracle can be used to implement an encryption oracle (by feeding it with a constant
operation), but for sake of clarity we use a redundant phrasing in the following claim.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

select a pseudorandom function fK′ : {0, 1}q → {0, 1}m, and let D′K,α,β,K′ be the (de-
terministic) algorithm that on input x ∈ {0, 1}q evaluates DK,α,β(x) using randomness
fK′(x).

Define the distribution Dα,β to be D′K,α,β,K′ , over uniformly selected keys K and K ′.
We argue that this distribution has the properties stated in the lemma. By construc-
tion, each D′K,α,β,K′ is computable by a circuit of size poly(k), and sampling Dα,β is
easy, so Property 1 is satisfied.

For Property 2, consider an algorithm A that on input a circuit C and oracle access
to D′K,α,β,K′ (which provides access to (deterministic versions of) the three separate
oracles EK,α, HomK , and BK,α,β), proceeds as follows: First, with k oracle queries to
the EK,α oracle, A obtains encryptions of each of the bits of α. Next, A uses the HomK

oracle to do a gate-by-gate emulation of the computation of C(α), in which A obtains
encryptions of the values at each gate of C. In particular, A obtains encryptions of the
values at each output gate of C (when C is evaluated on input α). Finally, A feeds
these output encryptions to BK,α,β , and outputs the response to this oracle query. By
construction, A outputs α if C(α) = β, since in this case A feeds BK,α,β with a sequence
that decrypts to β.

Last, we verify Property 3. Let S be any PPT algorithm. We must show that S has
only a negligible probability of outputting α when given oracle access to D′K,α,β,K′ (over
the choice of K, α, β, K ′, and the coin tosses of S). By the pseudorandomness of fK′ ,
we can replace oracle access to the function D′K,α,β,K′ with oracle access to the proba-
bilistic algorithm DK,α,β with only a negligible effect on S’s success probability. Oracle
access to DK,α,β is equivalent to oracle access to EK,α, HomK , and BK,α,β . Since β is
independent of α and K (whereas only BK,α,β depends on β), the probability that S
queries BK,α,β at a point where its value is nonzero (i.e., at a sequence of encryptions
of the bits of β) is exponentially small, so we can remove S’s queries to BK,α,β with only
a negligible effect on the success probability. Oracle access to EK,α is equivalent to giv-
ing S polynomially many encryptions of each of the bits of α. Thus, we must argue that
S cannot compute α with nonnegligible probability from these encryptions and oracle
access to HomK . This follows from the fact that the encryption scheme remains secure
in the presence of a HomK oracle (Claim 3.6.1), by a hybrid argument: Specifically, us-
ing Claim 3.6.1, a hybrid argument shows that access to the oracles EK,α and HomK

can be replaced with access to the oracles EK,0k and HomK , while causing only a neg-
ligible difference in the success probability of S. (The hybrids range over each bit of α
and each of the polynomially many queries S can make to the EK,α oracle.) Once this
replacement is done, S has no information regarding α, which was chosen uniformly
at random from {0, 1}k. Thus, the probability that S outputs α is negligible.

On the impossibility of circuit obfuscators.. Using Lemma 3.6, we obtain our main
impossibility result.

THEOREM 3.7. If one-way functions exist, then circuit obfuscators do not exist.

PROOF. Suppose, for sake of contradiction, that there exists a circuit obfuscator O.
For k ∈ N and α, β ∈ {0, 1}k, let Zk and Cα,β be the circuits defined in the proof of
Proposition 3.4, and let Dα,β be the distribution on circuits given by Lemma 3.6. For
each k ∈ N, consider the following two distributions on circuits of size poly(k):

Fk:. Choose α and β uniformly in {0, 1}k, D R←Dα,β . Output Cα,β#D.
Gk:. Choose α and β uniformly in {0, 1}k, D R←Dα,β . Output Zk#D.

Let A be the PPT algorithm guaranteed by Property 2 in Lemma 3.6, and con-
sider a PPT A′ that, on input a circuit F , decomposes F = F0#F1 and outputs 1 if

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

F0(AF1(F0, 1
k)) 6= 0k, where k is the input length of F0. Thus, when fed a circuit from

O(Fk) (resp., O(Gk)), A′ is evaluating C(AD(C, 1k)) where D computes the same func-
tion as some circuit from Dα,β and C computes the same function as Cα,β (resp., Zk).
Therefore, by Property 2 in Lemma 3.6, and accounting for the probability that β = 0k,
we have that:

Pr [A′(O(Fk)) = 1] = 1− 2−k, and
Pr [A′(O(Gk)) = 1] = 0.

We now argue that for any PPT algorithm S, it holds that∣∣Pr
[
SFk(1k) = 1

]
− Pr

[
SGk(1k) = 1

]∣∣ = neg(k),

which will contradict the definition of circuit obfuscators. This claim holds since having
oracle access to a circuit from Fk (respectively, Gk) is equivalent to having oracle access
to Cα,β (resp., Zk) and D

R← Dα,β , where α, β are selected uniformly in {0, 1}k. Now,
Property 3 of Lemma 3.6 implies that the probability that S queries the first oracle at
α is negligible, and hence S cannot distinguish the case that this oracle is Cα,β from it
being Zk.

Avoiding the assumption.. When wishing to prove the impossibility of efficient circuit
obfuscators, we can avoid the assumption that one-way functions exist. This is the case,
since the existence of the former implies the existence of the latter.

LEMMA 3.8. If efficient circuit obfuscators exist, then one-way functions exist.

Proof Sketch: Suppose that O is an efficient obfuscator as per Definition 2.2. For
α ∈ {0, 1}k and b ∈ {0, 1}, let Cα,b : {0, 1}k → {0, 1} be the circuit defined by

Cα,b(x)
def
=
{
b if x = α
0 otherwise.

Now define fk(α, b, r)
def
= O(Cα,b; r), i.e., the obfuscation of Cα,b using coin tosses r. We

will show that f =
⋃
k∈N fk is a one-way function. Since O is efficient, it follows that

fk can be evaluated in poly(k)-time. Next note that the functionality property of O
implies that the bit b is (information-theoretically) determined by fk(α, b, r), which in
turn implies that if b is a hardcore bit of fk, then fk must be (strongly) hard to invert
(since any fk-preimage of fk(α, b, r) must have the form (·, b, ·)). To prove that b is a
hardcore bit, we first observe that for any PPT S, it holds that

Pr
α,b

[
SCα,b(1k) = b

]
≤ 1

2
+ neg(k).

By the virtual black box property of O, it follows that for any PPT A, it holds that

Pr
α,b,r

[A(f(α, b, r)) = b] = Pr
α,b

[A(O(Cα,b)) = b] ≤ 1

2
+ neg(k).

The lemma follows. 2

COROLLARY 3.9. Efficient circuit obfuscators do not exist (unconditionally).

PROOF. Assuming, towards the contradiction, that such obfuscators exist, we infer
(by Lemma 3.8) that one-way functions exist, reaching a contradiction to Theorem 3.7.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

On the existence of unobfuscatable circuit ensembles.. We now strengthen our result
to not only rule out circuit obfuscators, but actually yield unobfuscatable programs.

THEOREM 3.10 (UNOBFUSCATABLE PROGRAMS). If one-way functions exist, then
there exists an unobfuscatable circuit ensemble.

PROOF. Again, for k ∈ N and α, β ∈ {0, 1}k, let Cα,β be the circuits defined in
the proof of Proposition 3.4, and let Dα,β be the distribution on circuits given by
Lemma 3.6. Our unobfuscatable circuit ensemble Hk is defined as follows.

Hk:. Choose α, β, γ uniformly in {0, 1}k, and letD R←Dα,β . OutputCα,β#D#Cα,(D,γ).

(Indeed, Cα,(D,γ) is the circuit that on input α outputs (D, γ), and on all other inputs
outputs 0|(D,γ)|.)16

Efficiency is clearly satisfied. For unlearnability, we define π(Cα,β#D#Cα,(D,γ)) = γ.
Let’s verify that γ is pseudorandom when given oracle access to Cα,β#D#Cα,(D,γ).
That is, for every PPT S, we prove that∣∣∣∣∣ Pr

C
R←Hk

[SC(π(C)) = 1]− Pr
C

R←Hk,z
R←{0,1}k

[SC(z) = 1]

∣∣∣∣∣ ≤ neg(k).

Having oracle access to a circuit from Hk is equivalent to having oracle access to Cα,β ,
D, and Cα,(D,γ), where D

R← Dα,β and α, β, and γ are selected uniformly in {0, 1}k.
Property 3 of Lemma 3.6 implies that the probability that any PPT S queries either of
the two Cα,·-oracles at α and thus gets a nonzero response is negligible. Note that this
holds even if the PPT S is given γ as input, because the probabilities in Lemma 3.6 are
taken over only α, β, and D R←Dα,β , so we can view S as choosing γ on its own. Thus,

Pr
f

R←Hk
[Sf (π(f)) = 1] = Pr

α,β,γ
R←{0,1}k,D R←Dα,β

[SCα,β#D#Cα,(D,γ)(γ) = 1]

= Pr
α,β,γ,γ′

R←{0,1}k,D R←Dα,β
[SCα,β#D#Cα,(D,γ′)(γ) = 1]± neg(k)

= Pr
f

R←Hk,z
R←{0,1}k

[Sf (z) = 1]± neg(k).

Finally, let’s show that given any circuit C ′ computing the same function as
Cα,β#D#Cα,(D,γ), we can reconstruct the latter circuit. First, we can decompose
C ′ = C1#D′#C2. Since D′ computes the same function as D and C1(α) = β, we have
AD

′
(C1) = α, where A is the algorithm from Property 2 of Lemma 3.6. Given α, we can

obtain β = C1(α) and (D, γ) = C2(α), which allows us to reconstruct Cα,β#D#Cα,(D,γ).

4. EXTENSIONS
4.1. Approximate Obfuscators
One of the most reasonable ways to weaken the definition of obfuscators, is to relax
the condition that the obfuscated circuit must compute exactly the same function as
the original circuit. Rather, we can allow the obfuscated circuit to only approximate
the original circuit.

16Indeed, we could have used Cα,(β,D,γ)#D instead of the two C-oracles, but the chosen alternative is more
convenient in the rest of the proof.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

We must be careful in defining “approximation”. We do not want to lose the notion
of an obfuscator as a general purpose scrambling algorithm and therefore we want a
definition of approximation that will be strong enough to guarantee that the obfuscated
circuit can still be used in the place of the original circuit in any application. Consider
the case of a signature verification algorithm VK . A polynomial-time algorithm cannot
find an input on which VK does not output 0 (without knowing the signature key).
However, we clearly do not want this to mean that the constant zero function is an
approximation of VK .

4.1.1. Definition and Impossibility Result. In order to avoid the above pitfalls we choose a
definition of approximation that allows the obfuscated circuit to deviate on a particular
input from the original circuit only with negligible probability and allows this event
to depend only on the coin tosses of the obfuscating algorithm (rather than over the
choice of a randomly chosen input).

Definition 4.1. For any function f : {0, 1}n → {0, 1}k, ε > 0, the random variable D
is called an ε-approximate implementation of f if the following holds:

(1) D ranges over circuits from {0, 1}n to {0, 1}k
(2) For any x ∈ {0, 1}n, it holds that PrD[D(x) = f(x)] ≥ 1− ε

We then define a strongly unobfuscatable circuit ensemble to be an unobfuscatable
circuit ensemble where the original circuit C can be reconstructed not only from any
circuit that computes the same function as C but also from any approximate imple-
mentation of C.

Definition 4.2. A strongly unobfuscatable circuit ensemble {Hk}k∈N is defined in
the same way as an unobfuscatable condition ensemble, except that the “reverse-
engineerability” condition is strengthened as follows:

— (strong reverse-engineerability) C is easy to reconstruct given an approximate im-
plementation: There exists a PPT A and a polynomial p(·) such that for every
C ∈

⋃
k∈N Supp(Hk) and for every random variable C ′ that is an ε-approximate im-

plementation of the function computed by C, we have

Pr[A(C ′) = C] ≥ 1− ε · p(k)

Our main theorem in this section is the following:

THEOREM 4.3. If one-way functions exist, then there exists a strongly unobfuscat-
able circuit ensemble.

Similarly to the way that Theorem 3.10 implies Theorem 3.7, Theorem 4.3 implies
that, assuming the existence of one-way functions, an even weaker definition of circuit
obfuscators (one that allows the obfuscated circuit to only approximate the original
circuit) is impossible to meet. We note that in some (but not all) applications of obfus-
cators, a weaker notion of approximation might suffice. Specifically, in some cases it
suffices for the obfuscator to only approximately preserve functionality with respect
to a particular distribution on inputs, such as the uniform distribution. (This is im-
plied by, but apparently weaker than, the requirement of Definition 4.1 — if C is an
ε-approximate implementation of f , then for any fixed distribution D on inputs, C and
f agree on a 1 −

√
ε fraction of D with probability at least 1 −

√
ε.) We do not know

whether approximate obfuscators with respect to this weaker notion exist, and leave
it as an open problem.

The natural strategy towards proving Theorem 3.10 is to generalize the proof of
Theorem 3.10. We shall first see why the proof of Theorem 3.10 does not apply directly
to the case of approximate implementations. Then, we shall define a construct called

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

invoker-randomizable pseudorandom functions, which will help us modify the original
proof to hold in this case.

4.1.2. Generalizing the Proof of Theorem 3.10 to the Approximate Case. The first question is
whether the proof of Theorem 3.10 already shows that the ensemble {Hk}k∈N defined
there is actually a strongly unobfuscatable circuit ensemble. As we explain below, the
answer is no.

To see why, let us recall the definition of the ensemble {Hk}k∈N given in the proof of
Theorem 3.10. The distributionHk was defined by choosing α, β, γ R←{0, 1}k and a func-
tion D R←Dα,β , and outputting Cα,β#D#Cα,(D,γ). The proof gave an algorithm, denoted
A′, that reconstructs C ∈ H given any circuit that computes exactly the same function
as C. Let us see why A′ might fail when given only an approximate implementation
of C. On input a circuit F , algorithm A′ works as follows: It decomposes F into three
circuits F = F1#F2#F3. Then F2 and F3 are used only in a black-box manner, but the
queries A′ makes to F2 depend on the gate structure of the circuit F1.

The problem is that a vicious approximate implementation for a function
Cα,β#D#Cα,(D,γ) ∈ Supp(Hk) may work in the following way: Choose a random cir-
cuit F1 out of some set C of exponentially many circuits that compute Cα,β , take F2

that computes D, and F3 that computes Cα,(D,γ). Then see at which points A′ queries
F2 when given F1#F2#F3 as input.17 Since these places depend on F1, it is possible
that for each F1 ∈ C, there exists a string x(F1) such that A′ will query F2 at x(F1), but
x(F1) 6= x(F ′1) for any F ′1 ∈ C \ {F1}. If the approximate implementation changes the
value of F2 at x(F1), then A′’s computation on F1#F2#F3 is corrupted.

One way to solve this problem would be to make the queries that A′ makes to F2

independent of the structure of F1. (This already holds for F3, which is only queried
at α in a correct computation.) If A′ had this property, then given an ε-approximate
implementation of Cα,β#D#Cα,(D,γ), each query of A′ would have only an ε chance to
get an incorrect answer and overall A′ would succeed with probability 1 − ε · p(k) for
some polynomial p(·). (Note that the probability that F1(α) changes is at most ε.)

We will not be able to achieve this, but something slightly weaker that still suf-
fices. Let’s look more closely at the structure of Dα,β that is defined in the proof of
Lemma 3.6. We defined there the algorithm

DK,α,β
def
= EK,α#HomK#BK,α,β

and turned it into a deterministic function by using a pseudorandom function f ′K and
defining D′K,α,β,K′ to be the deterministic algorithm that on input x ∈ {0, 1}q eval-
uates DK,α,β(x) using randomness fK′(x). We then defined Dα,β to be D′K,α,β,K′ =

E′K,α,K′#Hom′K,K′#BK,α,β for uniformly selected private key K and seed K ′.
Now our algorithm A′ (that uses the algorithm A defined in Lemma 3.6) treats

F2 as three oracles, denoted E, H, and B, such that if F2 computes D =
E′K,α,K′#Hom′K,K′#BK,α,β , then E is the oracle to E′K,α,K′ , H is the oracle to Hom′K,K′
and B is the oracle to BK,α,β . The queries to E are at the places 1, . . . , k and so are
independent of the structure of F1. The queries that A makes to the H oracle, however,
do depend on the structure of F1.

Recall that any query that A′ makes to the H oracle is of the form (c, d,�) where c
and d are ciphertexts of some bits, and � is a 4-bit description of a binary Boolean func-
tion. Just for motivation, suppose that A′ has the following ability: Given an encryp-
tion c, algorithm A′ can generate a random encryption of the same bit (i.e., distributed

17Recall thatA′ is not an arbitrary algorithm (which we must treat as a black-box), but rather a very specific
algorithm (postulated in Theorem 3.10, and presented in its proof).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

according to EncK(DecK(c), r) for uniformly selected r). For instance, this would be
true if the encryption scheme were rerandomizable (or in other words, “random self-
reducible”). Suppose now that, before querying the H oracle with (c, d,�), A′ generates
c′, d′ that are random encryptions of the same bits as c, d and query the oracle with
(c′, d′,�) instead. We claim that if F2 is an ε-approximate implementation of D, then
for any such query, there is at most a 64ε probability for the answer to be wrong even
if (c, d,�) depends on the circuit F . The reason is that the distribution of the modi-
fied query (c′, d′,�) depends only on (DecK(c),DecK(d),�) ∈ {0, 1} × {0, 1} × {0, 1}2·2,
and there are only 64 possibilities for the latter. For each of the 64 possibilities,
the probability of an incorrect answer (over the choice of F) is at most ε. Choosing
(DecK(c),DecK(d),�) after F to maximize the probability of an incorrect answer mul-
tiplies this probability by at most 64.

We shall now use this motivation to fix the function D such that A′ will essentially
have this desired ability of rerandomizing any encryption to a random encryption of
the same bit. Recall that Hom′K,K′(c, d,�) = EncK(DecK(c) � DecK(d); fK′(c, d,�)).
Now, a naive approach to ensure that any query returns a random encryption
of DecK(c) � DecK(d) would be to change the definition of Hom′ to the following:
Hom′K,K′(c, d,�, r) = EncK(DecK(c) � DecK(d); r). Then we change A′ to an algorithm
A′′ that chooses a uniform r ∈ {0, 1}n and thereby ensures that the result is a random
encryption of DecK(c)�DecK(d). The problem is that this construction would no longer
satisfy Property 3 of Lemma 3.6 (security against a simulator with oracle access). This
is because the simulator could now control the random coins of the encryption scheme
and use this to break it. Our solution will be to redefine Hom′ in the following way:

Hom′K,K′(c, d,�, r) = EncK(DecK(c)�DecK(d); fK′(c, d,�, r)) (6)

but require an additional special property from the pseudorandom function fK′ .

4.1.3. Invoker-Randomizable Pseudorandom Functions. The property we would like the
pseudorandom function fK′ to possess is one that makes fK′(x, r) random when only r
is random.

Definition 4.4. A function ensemble {fK′}K′∈{0,1}∗ such that fK′ : {0, 1}q+n →
{0, 1}n, where n and q are polynomially related to |K ′|, is called an invoker-
randomizable pseudorandom function ensemble if the following holds:

(1) {fK′}K′∈{0,1}∗ is a pseudorandom function ensemble
(2) For every K ′ and x ∈ {0, 1}q, the mapping r 7→ fK′(x, r) is a permutation over
{0, 1}n.

Property 2 implies that, for every fixed K ′ and x ∈ {0, 1}q, if r is chosen uniformly in
{0, 1}n, then the value fK′(x, r) is distributed uniformly in {0, 1}n (and in particular is
independent of x).

LEMMA 4.5. If pseudorandom functions exist, then there exist invoker-randomizable
pseudorandom functions.

Proof Sketch: Let {gK′ : {0, 1}q → {0, 1}|K′|}K′∈{0,1}∗ be a pseudorandom function
ensemble and {pS : {0, 1}n → {0, 1}n}S∈{0,1}∗ be a pseudorandom function ensemble
such that, for any S ∈ {0, 1}|K′|, the function pS is a permutation over {0, 1}n. (The
existence of the latter ensembles is implied by the existence of ordinary pseudoran-
dom function ensembles [LR].) We define the function ensemble {fK′ : {0, 1}q+n →
{0, 1}n}K′∈{0,1}∗ in the following way:

fK′(x, r)
def
= pgK′ (x)(r).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

It is clear that this ensemble satisfies Property 2 of Definition 4.4. What needs to be
shown is that it is a pseudorandom function ensemble. This is done by using a hybrid
argument, in which we consider the following intermediate hybrids.

(1) The function ensemble {f ′G : {0, 1}q+n → {0, 1}n}G such that f ′G(x, r)
def
= pG(x)(r),

where G : {0, 1}q → {0, 1}|K′| is a random function.
(2) The function ensemble {f ′′

G,F
: {0, 1}q+n → {0, 1}n}G,F such that f ′′

G,F
(x, r)

def
=

FG(x)(r), where F = (F0|K′| , ..., F1|K′|) such that the FS ’s are random functions from
{0, 1}n to {0, 1}n.

The indistinguishability of our main function ensemble (i.e., {fK′}) and {f ′G} follows
from the pseudorandomness of the ensemble {gK′}. The indistinguishability of {f ′G}
and {f ′′

G,F
} follows from the pseudorandomness of the ensemble {pS}. Finally, note

that {f ′′
G,F
} is identical to a random function from {0, 1}q+n to {0, 1}n. 2

4.1.4. Finishing the Proof of Theorem 4.3. Now, suppose we use a pseudorandom function
fK′ that is invoker-randomizable, and modify the algorithm A′ so that all its queries
(c, d,�) to the H oracle are augmented to be of the form (c, d,�, r), where r is chosen
uniformly and independently for each query. Recall that H is an ε-approximate imple-
mentation of Hom′K,K′ as defined in Equation (6), whereas Hom′K,K′ answers such a
(randomized) query with a random encryption of DecK(c) � DecK(d). Therefore, with
probability at least 1 − p(k) · ε (for some polynomial p(·)), algorithm A′ gets correct
answers for all its queries to F2 = E#H#B. This holds because of the following con-
siderations.

(1) The queries made to E are fixed, and therefore independent of the gate structure
of F1. Thus, each such query is answered correctly with probability at least 1− ε.

(2) Assuming all answers received so far are correct, we consider each query made to
the H oracle. Such a query is of the form (c, d,�, r), where c and d are uniformly
distributed and independent encryptions of some bits a and b, and r is uniformly
distributed. Only (a, b,�) depend on the gate structure of F1, and there are only 64
possibilities for them. Therefore, with probability at least 1 − 64ε, this query will
be answered correctly by an ε-approximator of Hom′K,K′ , even if it knows (a, b,�).

(3) Assuming A′ never gets an incorrect answer from the E and H oracles, its last
query (i.e., its query to the B oracle) will be a uniformly distributed encryption
of β1, . . . , βk, which is independent of the structure of F1, and so has only an ε
probability to be incorrect.

The claim follows, and this completes the proof of Theorem 4.3.
One point to note is that we have converted our deterministic algorithm A′ of Theo-

rem 3.10 into a probabilistic algorithm.

4.2. Impossibility of the Applications
So far, we have proved impossibility of some natural and arguably minimalistic defini-
tions for obfuscation. Yet it might seem that there’s still hope for a different definition
of obfuscation, one that will not be impossible to meet but would still be useful for
some intended applications. We will show now that this is not the case for some of the
applications we described in the introduction. Rather, any definition of obfuscator that
would be strong enough to provide them will be impossible to meet.

Note that we do not prove that the applications themselves are impossible to meet,
but rather that there does not exist an obfuscator (i.e., an algorithm satisfying the
syntactic requirements of Definition 2.2) that can be used to achieve them in the ways

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

that are described in Section 1.1. Our results in this section also extend to approximate
obfuscators.

Consider, for example, the application to transforming private-key encryption
schemes into public-key ones. Recall that the transformation consists of obfuscating
the private-key encryption algorithm EK , and releasing its obfuscation ẼK as a public
key. This approach will fail for a private-key encryption scheme (G,E,D) that is unob-
fuscatable in the sense that there exists a polynomial-time algorithm A such that for
every keyK ∈ Supp(G(1k)) and every circuit ẼK that computes the encryption function
EK it holds that A(ẼK) = K.

The foregoing text refers implicitly to deterministic encryption algorithms, whereas
such schemes cannot offer a robust notion of security (i.e., semantic security under
chosen-plaintext attack). Indeed, as noted in [GM], a robust notion of security requires
the encryption algorithm to be probabilistic. Thus, our definition of unobfuscatable
encryption schemes should apply to probabilistic encryption, and refer to the distribu-
tion18 generated by the original encryption process EK and ditto its potential obfusca-
tion, denoted ẼK .

Definition 4.6. A probabilistic private-key encryption scheme (G,E,D) is called
unobfuscatable if there exists a polynomial-time algorithm A such that, for every key
K ∈ Supp(G(1k)) and for every randomized circuit ẼK such that ẼK(m) and EK(m)

are identically distributed for each message m, it holds that A(ẼK) = K.

The requirement that ẼK(m) and EK(m) be identically distributed can be relaxed to
only require that they are statistically close (and our result can be extended to these
cases).19 We mention that related definitions of obfuscators for probabilistic circuits
are discussed in Section 6.

In Theorem 4.10 below, we prove that if secure private-key encryption schemes exist,
then so do unobfuscatable encryption schemes that satisfy the same security require-
ments. This means that any definition of an obfuscator that will be strong enough
to allow the conversion of an arbitrary secure private-key encryption scheme into a
secure public-key encryption scheme will be impossible to meet (because there exist
unobfuscatable encryption schemes). Of course, this does not mean that public-key
encryption schemes do not exist, nor that there do not exist private-key encryption
schemes where one can give the adversary a circuit that computes the encryption al-
gorithm without loss of security (indeed, any public-key encryption scheme is in par-
ticular such a private-key encryption). What this means is that there exists no generic
way to transform a private-key encryption scheme into a public-key encryption scheme
by obfuscating the encryption algorithm.

We present analogous definitions for unobfuscatable signature schemes, MACs, and
pseudorandom functions. (For these, the restriction to deterministic schemes is in-
significant, since any probabilistic signature/MAC scheme can be converted into a de-
terministic one; see [Gol2, Sec. 6.1.5.2].)

18An alternative approach could consider EK as a deterministic function of its message m and coin tosses r,
and require ẼK to compute the same deterministic function. But then unobfuscatable encryption schemes
would exist for trivial and uninteresting reasons: Observe that if E′

K is a secure private-key encryption
scheme, then so is EK(m; r1, r2) = (E′

K(m; r1), r2 ⊕ K), but we can recover K from any circuit (or even
oracle) that computes the function (m, r1, r2) 7→ EK(m; r1, r2). Indeed, this case provides a good demon-
stration of the difference between obfuscating a distribution and obfuscating the function underlying the
distribution’s generation process. This topic is further pursued in Section 6.
19Furthermore, our results would also extend if the requirement were relaxed to only require that
(m,K, ẼK(m)) and (m,K,EK(m)) be computationally indistinguishable.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

Definition 4.7. A deterministic signature scheme (G,S, V) is called unobfuscatable
if there exists a polynomial-time algorithm A such that for every key (SK ,VK) ∈
Supp(G(1k)) and every circuit S̃SK that computes the signature function with signing
key SK , it holds that A(S̃SK) = SK .

Definition 4.8. A deterministic message authentication scheme (G,S, V) is called
unobfuscatable if there exists a polynomial-time algorithm A such that for every key
K ∈ Supp(G(1k)) and every circuit S̃K that computes the tagging function with tagging
key K, it holds that A(S̃K) = K.

Definition 4.9. A pseudorandom function ensemble {hK}K∈{0,1}∗ is called unob-
fuscatable if there exists a polynomial-time algorithm A such that for every key
K ∈ {0, 1}∗ and every circuit h̃K that computes hK , it holds that A(h̃K) = K.

THEOREM 4.10 (IMPOSSIBILITY OF SOME BASIC APPLICATIONS).

(1) If there exist secure probabilistic private-key encryption schemes, then there exist
ones that are unobfuscatable.

(2) If there exist secure deterministic signature schemes, then there exist ones that are
unobfuscatable.

(3) If there exist secure deterministic message authentication schemes, then there exist
ones that are unobfuscatable.

(4) If there exist secure pseudorandom function ensembles, then there exist ones that
are unobfuscatable.

Proof Sketch: First note that the existence of any one of these primitives implies
the existence of one-way functions [IL]. Therefore, Theorem 3.10 gives us a totally
unobfuscatable circuit ensemble H = {Hk}.

Now, we begin with the construction of the unobfuscatable signature schemes. Take
an existing signature scheme (G,S, V), where G is the key generation algorithm, S the
signing algorithm, and V the verification algorithm. Define the new scheme (G′, S′, V ′)
as follows:

The generator G′ on input 1k uses the generator G to generate signing and verifying
keys (SK ,VK)

R← G(1k). It then samples a circuit C R←H`, where ` = |SK |. The new
signing key SK ′ is (SK , C) while the verification key VK ′ is the same as VK .

We can now define

S′SK ,C(m)
def
= (SSK (m), C(m),SK ⊕ π(C)),

where π is the function from the unlearnability condition in Definition 3.1.

V ′VK (m, (τ, x, y))
def
= VVK (m, τ)

We claim that (G′, S′, V ′) is an unobfuscatable, yet secure, signature scheme. To see
that (G′, S′, V ′) is unobfuscatable, observe that given any circuit that computes S′SK ,f ,
one can obtain the string SK⊕π(C) as well as a circuit that computes the same function
as C. By the reverse-engineering condition of H`, possession of the latter enables the
reconstruction of the original circuit C itself, from which π(C) and then SK can be
computed.

To see that scheme (G′, S′, V ′) retains the security of the scheme (G,S, V), observe
that given oracle access to S′SK ,C is equivalent to being given oracle access to SSK and
C along with the string π(C)⊕SK itself. Using the facts that π(C) is indistinguishable
from random, when given oracle access to C, and that C is chosen independently of

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

SK , it can be shown that the presence of C and π(C)⊕ SK does not help an adversary
break the signature scheme.

We now turn to construct unobfuscatable pseudorandom functions and MACs. The
key observation here is that the proof of Theorem 3.10 can be modified to give an un-
obfuscatable circuit ensemble that is also a family of pseudorandom functions (and
hence also a secure message authentication code). Recall that Hk = Cα,β#D#Cα,(D,γ),
where α, β, γ

R← {0, 1}k and D
R← Dα,β , and that D is a deterministic version of

EK,α#HomK#BK,α,β , whereK R←{0, 1}k (and the derandomization is obtained by using
an auxiliary pseudorandom function). We first observe that we may assume that the
encryption scheme in use (i.e., in EK,α and HomK) has pseudorandom ciphertexts. In-
deed, this is the case in the scheme (cited for demonstration) in the proof of Lemma 3.6.
Thus, the outputs of EK,α and HomK are pseudorandom. As for the outputs of the other
parts of the circuit, in the original proof they were set to produce zero on almost all
inputs, and it was shown that a PPT machine having oracle access to them can hit an
exceptional input (which was assigned a non-zero value) only with negligible probabil-
ity. Thus, our modification will consist of using another pseudorandom function, and
defining the value of most inputs (i.e., those set to zero before) to equal the value of
that pseudorandom function (on the corresponding input). Clearly, the argument used
in the proof of Theorem 3.10 remain valid, and so it follows that the modified ensemble
is both unobfuscatable and pseudorandom.

Last, we turn to construct an unobfuscatable private-key encryption scheme. To this
end, we will modify (a simplified version of) the construction from the proof of Theo-
rem 3.10. Recall that in that construction (or actually in the proof of Lemma 3.6), the
algorithm DK,α,β was converted from a probabilistic algorithm into a deterministic one
because the goal there was to rule out obfuscation for ordinary (deterministic) circuits.
Since we are now considering randomized circuits, we consider a simplified version
where DK,α,β is implemented by a randomized circuit where the randomness required
for the encryptions are provided by randomness gates in the circuit, instead of using
pseudorandom functions applied to the input.20 Let Tα,β,γ,K denote the randomized
circuit Cα,β#DK,α,β#Cα,(DK,α,β ,γ) that is the final result of the construction.

Now let (G,E,D) be a semantically secure private-key encryption scheme, and define
a new scheme (G′, E′, D′) as follows: A key for the new scheme is generated (by G′) by
obtaining a secret key SK from G, and selecting uniformly α, β, γ,K ∈ {0, 1}k, where
k = |SK|. Encryption, based on the key (SK,α, β, γ,K), is defined by

E′SK,α,β,γ,K(m) = (ESK(m), Tα,β,γ,K(m), γ ⊕ SK).

The decryption procedure D′ simply runs D on the first component of the ciphertext.
The semantic security of (G′, E′, D′) follows from the semantic security of the

private-key encryption used in the construction, and from the fact that for almost
all inputs, the output of the randomized circuit Cα,β#DK,α,β#Cα,(DK,α,β ,γ) computa-
tionally hides all information about the input. The only inputs for which this is not
necessarily true are a negligibly small fraction of inputs that depend on the values α,
β, and K. Since these values are part of the secret key of the scheme, this does not
affect semantic security. 2

20A minor issue that arises refers to the reverse-engineering condition, which utilizes an algorithm that is
given the obfuscated circuit. This algorithm is supposed to emulate the computation of the circuit in order to
recover the string α; see description at the end of the proof of Theorem 3.10. The issue is that in the current
case the circuit has randomness gates, but we assert a deterministic recovering algorithm. This is possible
because the recovering algorithm has perfect correctness, so it can treat all of the random bits of the circuit
as zero.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

Implication for applying obfuscation as a means to implement the Random Oracle
Methodology.. A natural application of obfuscation would be to “implement” a random
oracle by obfuscating a function chosen randomly from a pseudo-random function en-
semble. Our construction of unobfuscatable pseudorandom function ensembles can be
used to show that this approach would fail in the following sense: For many natural
protocols that are secure in the random oracle model, there exists a (contrived) pseudo-
random function ensemble such that if the random oracle is replaced with any public
circuit that computes any function in that ensemble then the resulting protocol is inse-
cure. One such example is provided by the Fiat–Shamir signature scheme [FS], which
is obtained by removing interaction from a 3-round (public-coin) identification protocol,
which in turn is derived from a honest-verifier zero-knowledge (hvZK) proof of knowl-
edge of some secret that refers to a public record associated with the legitimate signer.
Recall that the interaction is removed (in the Random Oracle Model) by applying the
random function to the first message (and that the Random Oracle Methodology calls
for replacing this random function by a public function).

PROPOSITION 4.11 (FAILURE OF A GENERIC VERSION OF THE FIAT–SHAMIR SIGNATURE).
Let (P, V) be an arbitrary 3-round public-coin hvZK protocol, and consider the signa-

ture scheme in which message m is signed by sending the transcript that corresponds
to an interaction of (P, V)(ρ), where ρ is the signer’s public record/key and the verifier
message in the interaction is replaced by the application of the Random Oracle to the
pair (m, a) such that a is the first message sent by P . Suppose that one-way functions
exists.21 Then, there exists a pseudorandom function ensemble {hK}K∈{0,1}∗ such
that replacing the random oracle in the foregoing scheme by any public circuit that
computes any hK , yields an insecure scheme, in the strong sense that an attacker can
forge a valid signature given only the signer’s public record/key.

Proof Sketch: Starting with an arbitrary pseudorandom function ensemble, denoted
{fs}, we consider the function ensemble {f ′s,m0,r0} defined (for polynomially related |s|,
|m0|, and |r0|) by

f ′s,m0,r0(x ◦ y, z) def
=

{
S(y, r0)2 if x = m0 and S(y, r0)1 = z
fs(x ◦ y, z) otherwise

where S(y, r0)i is the ith element in the transcript produced by the (honest-verifier)
simulator on input y and using randomness r0. Note that the resulting ensemble pre-
serves the pseudorandomness of the original one, since the modified inputs are ex-
tremely rare (and the adversary lacks any information regarding their identity). On
the other hand, given the seed of a function (i.e., s,m0, r0), it is easy to forge a signature
for the message m0 ◦ ρ in the resulting signature proof (by letting (a, b, c) ← S(ρ, r0),
where ρ is the prover/signer’s public record/key).22 Now we apply the construction out-
lined in the proof of Theorem 4.10, while using the pseudorandom ensemble {f ′s,m0,r0}
in order to assign pseudorandom values to the inputs that were set to zero in the proof
of Theorem 3.10. The resulting unobfuscatable pseudorandom ensemble {hK} still al-
lows the foregoing forging, since with high probability (over m0) hK will agree with
f ′s,m0,r0 on the input z = (m0 ◦ ρ, S(ρ, r0)). Indeed, by choosing m0 a bit more carefully
that this occurs with probability 1 (by making sure that all inputs with prefix m0 lead
to appying Cα,β on an input different than α). 2

21Recall that if no one-way functions exist, then there exist no signature schemes anyhow.
22Note that in this case b = f ′s,m0,r0

(m0 ◦ ρ, a), since S(ρ, r0)1 = a. Thus, (a, f ′s,m0,r0
(m0 ◦ ρ, a), c) is an

accepting transcript of (P, V)(ρ), which means that it constitutes a valid signature to m0 (relative to the
signer’s record/key ρ).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

We comment that the foregoing proof only relies on a very weak notion of simulation
that only requires that on input y the simulator always outputs an accepting tran-
script. Furthermore, the proof extends to any public-coin protocol (with the foregoing
weak simulation condition), implying that, although it may be infeasible to generate
accepting transcripts of the execution in the Random Oracle model, it is feasible to gen-
erate accepting transcripts of an execution that refers to replacing the random oracle
by any public circuit computing any function in {hK}.23 In Appendix C, we show that
a similar, but weaker, attack applies when considering the Fiat–Shamir transforma-
tion applied to arbitrary public-coin identification protocols (including ones that do not
admit the weak simulation property needed for the attack above).

4.3. Obfuscating Restricted Circuit Classes
Given our impossibility results for obfuscating general circuits, one may ask whether
it is easier to obfuscate computationally restricted classes of circuits. Here we argue
that this is unlikely for all but very weak models of computation.

THEOREM 4.12. If “factoring Blum integers is hard”,24 then there is a family Hk of
unobfuscatable circuits such that every C R←Hk is a constant-depth threshold circuit of
size poly(k).

Below, we shall say that a circuit ensemble {Hk} is in TC0 if there exists a constant c
such that, for every k, every C ∈ Supp(Hk) is a threshold circuit of size at most c · kc
and depth at most c.

Proof Sketch: Naor and Reingold [NR] showed that under the stated assumption,
there exists a family of pseudorandom functions computable in TC0. Thus, we sim-
ply need to check that we can build our unobfuscatable circuits from such a family
without a substantial increase in depth. Recall that the unobfuscatable circuit en-
semble Hk constructed in the proof of Theorem 3.10 consists of functions of the form
Cα,β#D#Cα,(D,γ), where D is from the family Dα,β of Lemma 3.6. It is easy to see that
Cα,β and Cα,(D,γ) are in TC0, so we only need to check that Dα,β consists of circuits
in TC0. The computational complexity of circuits in the family Dα,β is dominated by
performing encryptions and decryptions in a private-key encryption scheme (Enc,Dec)
and evaluating a pseudorandom function fK′ that is used to derandomize the proba-
bilistic circuit DK,α,β . If we use the Naor–Reingold pseudorandom functions both for
fK′ and to construct the encryption scheme (as detailed in the proof of Lemma 3.6),25

then the resulting circuit is in TC0. 2

4.4. Relativization
In this section, we address the question of whether or not our results relativize. To do
this, we must clarify the definition of an obfuscator relative to an oracle F : {0, 1}∗ →
{0, 1}∗. What we mean is that all algorithms in the definition, including the programs
being obfuscated and produced, and including the adversary, have oracle access to F .

23In the proof of Proposition 4.11, we referred to a protocol in which the random oracle is applied to strings
of the form (m ◦ ρ, ·), where ρ was the input to the protocol and m was an auxiliary input (representing
an external message). In the general setting, we may refer to inputs of the form x ◦ y and to the task of
generating an accepting transcript of (P, V)(x ◦ y), where y is fixed and the choice of x is at the adversary’s
discretion. We also mention that the argument extends to any public-coin protocol that satisfies the weak
simulation condition, regardless of the number of rounds.
24We refer to the standard formulation of this assumption (see, e.g., [NR]). As shown in [NR], this assump-
tion allows to construct pseudorandom functions in TC0. An alternative assumption that was shown in [NR]
to suffice refers to the Decisional Diffie–Hellman problem.
25Recall that the basic scheme is EncK(b) = (r, fK(r)⊕ b), where r is uniformly chosen in {0, 1}|K|.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

For a circuit, this means that the circuit can have gates for evaluating F . We fix an
encoding of (oracle) circuits as binary strings such that a circuit described by a string
of length s can only make oracle queries of total length at most s.

By inspection, our initial impossibility results (i.e., Proposition 3.4 and Theorem 3.5)
hold relative to any oracle, since they involve only simulation and diagonalization-like
arguments.

PROPOSITION 4.13. Proposition 3.4 (impossibility of 2-circuit obfuscators) and The-
orem 3.5 (impossibility of TM obfuscators) hold relative to any oracle.

Interestingly, our main impossibility results (i.e., Theorem 3.7, Theorem 3.10, and
Corollary 3.9) do not relativize.

PROPOSITION 4.14. There is an oracle relative to which efficient circuit obfuscators
do exist. Thus, Theorems 3.7 and 3.10 and Corollary 3.9 do not relativize.

This proposition can be viewed both as evidence that the foregoing results are nontriv-
ial, and as (further) evidence that relativization is not a good indication of what we
can prove.

Proof Sketch: The oracle F =
⋃
k Fk will consist of two parts Fk = Ok#Ek, where

Ok : {0, 1}k × {0, 1}k → {0, 1}6k is a random (injective) function and Ek : {0, 1}6k ×
{0, 1}k → {0, 1}k is defined as follows: If there exists a (C, r) such that Ok(C, r) = x,
then Ek(x, y) = CF (y), where C is viewed as the description of a circuit. Otherwise,
Ek(x, y) = ⊥. Note that this definition of Fk is not circular, because C can only make
oracle queries of size at most |C| = k, and hence can only query Fk′ for k′ ≤ k/2.

Now, we can view x = Ok(C, r) as an obfuscation of C using coin tosses r. This
satisfies the syntactic requirements of obfuscation, since |x| = O(|C|) and the function
Ek offers efficient evaluation of C on y, when given x and y. Formally, we should define
the obfuscation of C to be a circuit that has x = Ok(C, r) hardwired in it, and makes an
oracle query to Ek; that is, on input y, the circuit issues the query (x, y) to the Ek-part
of F , and returns the answer received.

So it remains to prove the virtual black-box property. By a union bound over
polynomial-time adversaries A of description size smaller than k/2 and circuits C of
size k, it suffices to prove the following claim.26

CLAIM 4.14.1. For every PPT A there exists a PPT S such that for every circuit C
of size k, the following holds with probability at least 1 − 2−2k, over the choice of F , it
holds that ∣∣∣∣∣ Pr

r
R←{0,1}k

[
AF (Ok(C, r)) = 1

]
− Pr

[
SF,C

F

(1k) = 1
]∣∣∣∣∣ ≤ 2−Ω(k).

The rest of the proof is devoted to prove Claim 4.14.1. Fixing any PPT A, we define
the simulator S such that, on input 1k, it chooses x R←{0, 1}6k and simulates AF (x). In
this simulation, S uses its own F -oracle to answer A’s oracle queries, except that A’s
queries to Ek′ , for k′ ≥ k, are answered as follows. The query (x′, y′) to Ek′ , where k′ ≥ k,
is answered with z such that:

(1) If x′ = x, then z = CF (y′), where this value is computed using oracle access to CF .

26Note that we are only proving the virtual black-box property against adversaries of “bounded nonunifor-
mity,” which in particular includes all uniform PPT adversaries. Presumably it can also be proven against
nonuniform adversaries, but we stick to uniform adversaries for simplicity.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

(2) Else, if x′ = Ok′(C ′, r′) for some previous query (C ′, r′) to the Ok′ -oracle, then z =
(C ′)F (y′), where (C ′)F (y′) is computed recursively by emulating the computation
of C ′ while using these very rules.

(3) Else, z = ⊥.

Note that the queries generated in the handling of Case 2 have a total length that is
smaller than the size of C ′. It follows that the recursive evaluation of (C ′)F (y′) only
incurs a polynomial overhead in running time.27 Also note that S never queries the Ek′
oracle for k′ ≥ k.

Let us denote the execution of the above simulation for a particular x by SF,C(x).
Notice that when x = Ok(C, r) for some r, then SF,C(x) and AF (x) have exactly the
same behavior unless the above simulation produces some query (x′, y′) such that
x′ ∈ Image(Ok′), x′ 6= x, and x′ was not obtained by a previous query to Ok′ . Since
O is a random length-tripling function, it follows that the latter happens with prob-
ability at most poly(k) · 22k/26k, taken over the choice of F and a random r (recall
that x = Ok(C, r)).28 Thus, with probability at least 1 − 2−3k over the choice of F ,
SF,C(Ok(C, r)) = AF (Ok(C, r)) for all but a 2−Ω(k) fraction of r’s.

Thus, proving Claim 4.14.1 reduces to showing that:∣∣∣∣∣ Pr
r

R←{0,1}k

[
SF,C(Ok(C, r)) = 1

]
− Pr
x

R←{0,1}6k

[
SF,C(x) = 1

]∣∣∣∣∣ ≤ 2−Ω(k)

with high probability (say, 1− 23k) over the choice of F .
In other words, we need to show that the function G(r)

def
=Ok(C, r) is a pseudorandom

generator against S. Since G is a random function from {0, 1}k → {0, 1}6k, this would
be obvious were it not for the fact that S has oracle access to F (which is correlated
with G). Recall, however, that we made sure that S does not query the Ek′ -oracle for
any k′ ≥ k. This enables us to use the following claim, proven in Appendix B.

CLAIM 4.14.2. There is a constant δ > 0 such that the following holds for all suffi-
ciently large K and any L ≥ K2. Let D be an algorithm that makes at most Kδ oracle
queries and let G be a random injective function G : [K] → [L]. Then with probability
at least 1− 2−K

δ

over G,∣∣∣∣ Pr
x∈[K]

[
DG(G(x)) = 1

]
− Pr
y∈[L]

[
DG(y) = 1

]∣∣∣∣ ≤ 1

Kδ
.

Let us see how Claim 4.14.2 implies what we want. Let K = 2k and associate [K]
with {0, 1}k. We fix all values of Ok′ for all k′ 6= k and Ek′ for all k′ < k. We also fix
the values of Ok(C ′, r) for all C ′ 6= C, and view G(r)

def
= Ok(C, r) as a random injective

function from [K] to the remaining L = K6 − (K − 1) · K elements of {0, 1}6k. The
only oracle queries of S that vary with the choice of G are queries to Ok at points of
the form (C, r), which is equivalent to queries to G. Thus, Claim 4.14.2 implies that
the output of G is indistinguishable from the uniform distribution on some subset
of {0, 1}6k of size L. Since the latter has statistical difference (K6 − L)/K6 < 1/K4

from the uniform distribution on {0, 1}6k, we conclude that G is ε-pseudorandom (for
ε = 1/Kδ + 1/K4 = 2−Ω(k)) against S with probability at least 1− 2−K

δ

> 1− 2−3k, as
desired. 2

27The complexity of evaluating C′, which is charge to the query (C′, r′), is poly(|C′|) plus the complexity
of evaluating queries of total length smaller than |C′|. Thus, each level at the tree of recursion calls, which
has depth at most |C′|, incurs a cost that is upper bounded by poly(|C′|).
28Technically, this probability (and later ones in the proof) should also be taken over the coin tosses of A/S.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

Bounded relativization.. While our main impossibility results do not relativize in
the usual sense (see Proposition 4.14), their proofs can be modified to work for a
slightly different form of relativization, which we refer to as bounded relativization.29

In bounded relativization, an oracle is a finite function with fixed input length ` (which
is polynomially related to the security parameter k), and all algorithms/circuits in the
context being discussed can have running time larger than ` (but still polynomial in k).
In particular, in the context of obfuscation, this means that the circuit to be obfuscated
can have size larger than ` (but still polynomial in in it).

PROPOSITION 4.15. Theorems 3.10 and 3.7 (one-way functions imply unobfuscat-
able circuits and impossibility of circuit obfuscators), and Corollary 3.9 (unconditional
impossibility of efficient circuit obfuscators) hold under bounded relativization (for any
oracle).

Proof Sketch: The only modification needed in the construction is to deal with oracle
gates in the Hom algorithm in the proof of Lemma 3.6. Suppose that the oracle F
has input length ` and output length 1 (without loss of generality). We augment the
HomK algorithm to also take inputs of the form (c1, . . . , c`, oracle), where (c1, . . . , c`)
are ciphertexts, on which it outputs EncK(F (DecK(c1),DecK(c2), . . . ,DecK(c`))). The
rest of the proof proceeds essentially unchanged. 2

5. ON A COMPLEXITY ANALOGUE OF RICE’S THEOREM
Rice’s Theorem asserts that the only properties of partial recursive functions that can
be decided from their representations as Turing machines are trivial. To state this
precisely, we denote by [M] the (possibly partial) function that the Turing Machine M
computes. Similarly, [C] denotes the function computed by a circuit C.

Rice’s Theorem Let L ⊆ {0, 1}∗ be any language such that, for every two functionally
equivalent machines M and M ′ (i.e., [M] ≡ [M ′]), it holds that M ∈ L if and only if
M ′ ∈ L. Then, if L is decidable, then it is trivial (i.e., either L = {0, 1}∗ or L = ∅).

The difficulty of problems such as SAT suggest that perhaps Rice’s theorem can be
“scaled-down” and that deciding properties of finite functions from their descriptions
as circuits is intractable. As Borchert and Stephan [BS] observe, simply replacing the
word “Turing machine” with “circuit” and “decidable” with “polynomial time” does not
work. One counterexample is the non-trivial language L = {C ∈ {0, 1}∗ : C(0) = 0}
that can be decided in polynomial time, although whenever [C] ≡ [C ′] holds it holds
that C ∈ L iff C ′ ∈ L. Yet, there is a sense in which L is “somewhat trivial” in the sense
that deciding whether or not C ∈ L is feasible without using C itself; having oracle
access to C suffices. This motivates the following conjecture:

CONJECTURE 5.1 (SCALED-DOWN RICE S THEOREM). Let L ⊆ {0, 1}∗ be any lan-
guage such that, for every two functionally equivalent circuits C and C ′ (i.e., [C] ≡ [C ′]),
it holds that C ∈ L if and only if C ′ ∈ L. If L ∈ BPP, then there exists a PPT S such
that

C ∈ L ⇒ Pr[S[C](1|C|) = 1] >
2

3

C 6∈ L ⇒ Pr[S[C](1|C|) = 0] >
2

3

Put differently, the conjecture states that any semantic property of circuits that is in-
feasible to decide when only given oracle access to the circuit is also infeasible to decide

29Bounded relativization reflects the way that the Random Oracle Model is sometimes interpreted in cryp-
tography.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

when given the circuit. We mention that Borchert and Stephan [BS] take a different
approach to finding a complexity analogue of Rice’s theorem: Instead of restricting the
scope to properties that are infeasible to decide given oracle access, they restrict it
to properties that only depend on the number of satisfying assignments of the circuit
(and some variants of this idea). They show that any such property is UP-hard, and
thus is unlikely to be tractable. Improved lower bounds are given in [HR; HT].

Not being able to settle Conjecture 5.1, we consider a generalization of it to promise
problems [ESY], i.e., decision problems restricted to some subset of strings. Formally,
a promise problem Π is a pair Π = (ΠY ,ΠN) of disjoint sets of strings, corresponding to
YES and NO instances, respectively. The generalization of Conjecture 5.1 that comes to
mind is the following one, where we extend the definition of BPP to promise problems
in the natural way.

CONJECTURE 5.2. Let Π = (ΠY ,ΠN) be any promise problem such that, for every
two functionally equivalent circuits C and C ′ (i.e., [C] ≡ [C ′]), it holds that C ∈ ΠY if
and only if C ′ ∈ ΠY , and similarly C ∈ ΠN if and only if C ′ ∈ ΠN . If Π ∈ BPP, then
there exists a PPT S such that

C ∈ ΠY ⇒ Pr[S[C](1|C|) = 1] >
2

3

C ∈ ΠN ⇒ Pr[S[C](1|C|) = 0] >
2

3

Our construction of unobfuscatable circuits implies that the last conjecture is false.

THEOREM 5.3. If one-way functions exist, then Conjecture 5.2 is false.

Proof Sketch: Let H = {Hk}k∈N be the unobfuscatable circuit ensemble given
by Theorem 3.10, and let π′ :

⋃
k Supp(Hk) → {0, 1} be the first bit of the function

guaranteed by the unlearnability condition. Consider the following promise problem
Π = (ΠY ,ΠN):

ΠY =

{
C ′ : ∃C ∈

⋃
k

Supp(Hk) s.t. [C] ≡ [C ′] and π′(C) = 1

}

ΠN =

{
C ′ : ∃C ∈

⋃
k

Supp(Hk) s.t. [C] ≡ [C ′] and π′(C) = 0

}
By the reverse-engineering condition, C can be recovered from the code of any func-
tionally equivalent circuit C ′, and π is easy to evaluate. Thus, Π ∈ BPP. But since
π(C) is pseudorandom with black-box access to C, no S satisfying Conjecture 5.2 can
exist. 2

Discussion.. It is an interesting problem to weaken or even remove (from Theo-
rem 5.3) the hypothesis that one-way functions exist. Reasons to believe that this may
be possible are: (1) The fact that conjectures refers only to worst-case complexity (and
not average case), and (2) the fact that the conjectures imply some sort of computa-
tional difficulty. For instance, if NP ⊆ BPP, then both conjectures are false, since
CIRCUIT SATISFIABILITY is not decidable using black-box access (e.g., using black-box
access, one cannot distinguish a circuit that is satisfied on exactly one randomly cho-
sen input from an unsatisfiable circuit). Thus, if we could weaken the hypothesis of
Theorem 5.3 to NP 6⊆ BPP, then Conjecture 5.2 would be false unconditionally.

We have shown that in the context of complexity, the generalization of Scaled-down
Rice’s Theorem (Conjecture 5.1) to promise problems (i.e., Conjecture 5.2) fails. When
trying to find out what this implies about Conjecture 5.1 itself, one might try to get

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

intuition from what happens in the context of computability. This direction is pursued
in Appendix A. It turns out that the results in this context are somewhat inconclusive.
We explore three ways to generalize Rice’s Theorem to promise problems. The first,
naive approach fails, and there are two non-naive generalizations, of which one suc-
ceeds and one fails. We mention that the generalization that succeeds (i.e., is valid)
is closest in spirit to Conjecture 5.2, indicating that the failure of the latter is more
surprising.

6. OBFUSCATING SAMPLING ALGORITHMS
In our investigation of obfuscators thus far, we have interpreted the “functionality” of
a program as being the function it computes. However, sometimes one is interested
in other aspects of a program’s behavior, and in such cases a corresponding change
should be made to the definition of obfuscators. One such case is the case of sampling
algorithms, considered in this section. That is, we consider probabilistic algorithms
that when fed a uniformly random string (of some length) as input, produce an out-
put according to some desired distribution. We stress that we are interested in the
distribution that is defined by such algorithms, and not in the strict effect of these
algorithms as functions (from random inputs to samples in the distribution). (At the
end of the section, we also discuss definitions of obfuscation for general probabilistic
algorithms.)

For simplicity, we only work with sampling algorithms described by circuits: A circuit
C with m input gates and n output gates can be viewed as a sampling algorithm for the
distribution 〈〈C〉〉 on {0, 1}n obtained by evaluating C on m uniform and independent
random bits. If A is an algorithm and C is a circuit, we write A〈〈C〉〉 to indicate that
A has sampling access to C. That is, A can obtain, upon request, independent and
uniform random samples from the distribution defined by C. The natural analogue of
the definition of circuit obfuscators to sampling algorithms follows.

Definition 6.1 (sampling obfuscator). A probabilistic algorithm O is a sampling ob-
fuscator (for a class of circuits) if the following three conditions hold:

— (functionality) For every circuit C, the string O(C) describes a circuit that samples
the same distribution as C.

— (polynomial slowdown) There is a polynomial p such that for every circuit C, it holds
that |O(C)| ≤ p(|C|).

— (“virtual black box” property) For any PPT A, there is a PPT S and a negligible
function α such that for all circuits C it holds that∣∣∣Pr [A(O(C)) = 1]− Pr

[
S〈〈C〉〉(1|C|) = 1

]∣∣∣ ≤ α(|C|).

We say that O is efficient if it runs in polynomial time.

Note that Definition 6.1 differs from Definition 2.2 firstly in the functionality condition
and secondly in the type of oracle considered in the virtual black-box condition.

We do not know whether Definition 6.1 can be met, but we can rule out the follow-
ing (seemingly) stronger definition, which essentially allows the adversary to output
arbitrarily long strings, instead of just one bit as in the definition above.

Definition 6.2 (strong sampling obfuscator). A strong sampling obfuscator is de-
fined in the same way as a sampling obfuscator, expect that the “virtual black box”
property is replaced with the following.

— (“virtual black box” property) For any PPT A, there is a PPT S such that the ensem-
bles {A(O(C))}C and {S〈〈C〉〉(1|C|)}C are computationally indistinguishable. That is,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

for every PPT D, there is a negligible function α such that∣∣∣Pr [D(C,A(O(C))) = 1]− Pr
[
D(C, S〈〈C〉〉(1|C|)) = 1

]∣∣∣ ≤ α(|C|).

Note that this definition is analogous to the strongest definition considered at the be-
ginning of Section 2.2. However, at the current context, this type of definition seems
harder to rule out.

PROPOSITION 6.3. If one-way functions exist, then strong sampling obfuscators do
not exist. In particular, there exist no efficient strong sampling obfuscators, uncondi-
tionally.

Proof Sketch: If one-way functions exist, then there exist message authentication
codes (MACs) that are existentially unforgeable under chosen message attack. Let
TagK denote the tagging (i.e., signing) algorithm for such a MAC with key K, and de-
fine a circuit CK(x) = (x,TagK(x)). That is, the distribution sampled by CK is simply
a random message together with its tag. Now suppose there exists a strong sampling
obfuscator O, and consider the PPT adversary A defined by A(C) = C. By the defini-
tion of a strong sampling obfuscator, there exists a PPT simulator S that, when giv-
ing sampling access to 〈〈CK〉〉, produces an output computationally indistinguishable
from A(O(CK)) = O(CK). That is, after receiving the tags of polynomially many ran-
dom messages, S produces a circuit that is indistinguishable from one that generates
random messages with their tags. This will contradict the security of the MAC.

Let q = q(|K|) be a polynomial bound on the number of samples received from 〈〈CK〉〉
obtained by S, and consider a distinguisherD that does the following on input (CK , C

′):
Recover the key K from CK . Obtain q+1 random samples (x1, y1), . . . , (xq+1, yq+1) from
C ′. Output 1 if the xi’s are all distinct and yi = TagK(xi) for all i.

Clearly, D outputs 1 with high probability on input (CK , A(O(CK))). (The only rea-
son it might fail to output 1 is that the xi’s might not all be distinct, which happens
with exponentially small probability.) On the other hand, the security of the MAC im-
plies that D outputs 1 with negligible probability on input (CK , S

〈〈CK〉〉(1|K|)) (over
the choice of K and the coin tosses of all algorithms). The reason is that, whenever D
outputs 1, the circuit output by S has generated a valid message-tag pair not received
from the 〈〈CK〉〉-oracle.

The claim regarding the nonexistence of efficient (strong sampling) obfuscators fol-
lows by showing that their existence implies the existence of one-way functions. A
stronger claim, which refers to (efficient) non-strong sampling obfuscators, is proved
in the following proof of Proposition 6.4. 2

Turning back to the sampling obfuscators in the sense of Definition 6.1, we can show
that they imply the nontriviality of SZK (i.e., the class of promise problems possessing
statistical zero-knowledge proofs).

PROPOSITION 6.4. If efficient sampling obfuscators exist, then SZK is not con-
tained in BPP.

PROOF. It is known that the following promise problem Π = (ΠY ,ΠN) is in
SZK [SV] (and in fact has a noninteractive perfect zero-knowledge proof sys-
tem [DDPY; GSV]):

ΠY = {C : 〈〈C〉〉 = Un}
ΠN = {C : |Supp(C)| ≤ 2n/2},

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

where n denotes the output length of the circuit C and Un is the uniform distribution
on {0, 1}n. Assuming, towards the contradiction, that efficient sampling obfuscators
exist, we will show that Π is not in BPP.

Suppose that an efficient sampling obfuscator O exists. Analogous to Lemma 3.8,
such obfuscators imply the existence of one-way functions (we can obtain a one-way
function f by defining f(α, r) = O(Cα, r) where Cα is a circuit that outputs α with prob-
ability 1/2n and 0 otherwise). Thus, there also exists a length-doubling pseudorandom
generator G [HILL]. Let Gn : {0, 1}n/2 → {0, 1}n denote the circuit that evaluates G on
inputs of length n/2.

Now consider any PPT algorithm A. By the definition of a sampling obfuscator,
there exists a PPT machine S such that Pr[A(O(Gn)) = 1] is negligibly close to
Pr[S〈〈Gn〉〉(1|Gn|) = 1], and Pr[A(O(Un)) = 1] is negligibly close to Pr[S〈〈Un〉〉(1|Gn|) = 1],
where here Un means the trivial padded circuit that samples uniformly from Un but
has the same size as Gn. But by the definition of pseudorandom generators and a hy-
brid argument (over each sampling access), it follows that Pr[S〈〈Gn〉〉(1|Gn|) = 1] and
Pr[S〈〈Un〉〉(1|Gn|) = 1] are also negligibly close. Thus, for any PPT algorithm A, it holds
that |Pr[A(O(Gn)) = 1] − Pr[A(O(Un)) = 1]| is negligible (and, in particular, smaller
than 1/3).

However, by functionality, O(Un) is always a YES instance of Π and O(Gn) is always
a NO instance. It follows that Π /∈ BPP.

Remark 6.5. Assuming the existence of one-way functions, we can extend the result
of Proposition 6.4 to the natural notion of approximate sampling obfuscators, in which
O(C) only needs to sample a distribution of small statistical difference from that of
C. This is done by using STATISTICAL DIFFERENCE, the complete problem for SZK
from [SV], in place of the promise problem Π. (We assume the existence of one-way
functions, because we do not know whether approximate sampling obfuscators imply
their existence.)

Definition of obfuscation for general probabilistic algorithms.. We note that combin-
ing Definitions 2.2 and 6.1 yields a natural definition of obfuscator for general prob-
abilistic algorithms in the form of randomized circuits C that take an input x, and
produce an output according to some desired distribution that depends on x. (Con-
sider, for example, your favorite randomized primality tester, or a probabilistic encryp-
tion scheme.) For the functionality requirement, we can require that O(C) outputs a
randomized circuit C ′ such that, for every input x, it holds that C ′(x) is identically dis-
tributed (or statistically close) to C(x). For the virtual black-box property, we can give
the simulator S access to a probabilistic oracle, that on every query x, gives an answer
distributed according to C(x). Of course, any obfuscator meeting this definition also
meets Definition 2.2 (as a special case), and hence the negative result of Theorem 3.7
applies. The point of the current section was to study restricted types of obfuscators
(i.e., ones that are supposed to be applied only to randomized algorithm that have no
“real” inputs).

7. WEAKER NOTIONS OF OBFUSCATION
Our impossibility results rule out the standard, “virtual black box” notion of obfusca-
tors as impossible, along with several of its applications. However, it does not mean
that there is no method of making programs “unintelligible” in some meaningful and
precise sense. Such a method could still prove useful for software protection. In this
section, we suggest two weaker definitions of obfuscators that avoid the “virtual black
box” paradigm (and hence are not ruled out by our impossibility results).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

The weaker definition asks that if two circuits compute the same function, then their
obfuscations should be indistinguishable. For simplicity, we only consider the circuit
version here.

Definition 7.1 (indistinguishability obfuscator). An indistinguishability obfuscator
is defined in the same way as a circuit obfuscator, except that the “virtual black box”
property is replaced with the following:

— (indistinguishability) For any PPT A, there is a negligible function α such that, for
any two circuits C1 and C2 that compute the same function and are of the same size
k, it holds that

|Pr [A(O(C1))]− Pr [A(O(C2))]| ≤ α(k).

It is instructive to contrast the notion of unobfuscatable circuit ensemble (i.e., Defi-
nition 3.1) with the notion of indistinguishability obfuscator. The unobfuscatability of
the former (as well as the non-existence of general circuit obfuscators) is not due to
the method used for converting the original circuit into a possibly obfuscated one, but
is rather due to the fact that the code of any functionally equivalent circuit allows for
reverse-engineering of the original circuit! In contrast, Definition 7.1 does not consider
something that can be extracted from the code of any functionally equivalent circuit (of
a certain size) as breach of the obfuscation condition. Only distinguishing between (the
obfuscated forms of) functionally equivalent circuits (of a certain size) is considered a
breach of the obfuscation condition. This contrast is demonstrated in the following
observation.

PROPOSITION 7.2. (Inefficient) indistinguishability obfuscators exist.

PROOF. Let O(C) be the lexicographically first circuit of size |C| that computes the
same function as C.

While it would be very interesting to construct even indistinguishability obfusca-
tors, their usefulness is limited by the fact that they provide no a priori guarantees
about obfuscations of circuits C1 and C2 that compute different functions. However,
it turns out that, if O is efficient, then it is “competitive” with respect to any pair of
circuits. That is, we will show that no O′ (even an inefficient one) makes C1 and C2

much more indistinguishable than O does. Intuitively, this will say that an indistin-
guishability obfuscator is “as good” as any other obfuscator that exists. For example, it
will imply that if “differing-input obfuscators” (as we will define later) exist, then any
indistinguishability obfuscator is essentially also a differing-input obfuscator.

To state this precisely, for a circuit C of size at most k, we define Padk(C) to be
a trivial padding of C to size k. Feeding Padk(C) instead of C to an obfuscator can
be thought of as increasing the “security parameter” from |C| to k. (We chose not to
explicitly introduce a security parameter into the definition of obfuscators to avoid
the extra notation.) For the proof, we also need to impose a technical, but natural,
constraint that the size of O′(C) only depends on the size of C.

PROPOSITION 7.3 (“COMPETITIVENESS”). SupposeO is an efficient indistinguisha-
bility obfuscator. Let O′ be any (possibly inefficient) algorithm that satisfies the syntac-
tic requirements of obfuscation as well as the condition that |O′(C)| = q(|C|) for some
fixed polynomial q. Then, for every PPT A, there exists a PPT A′ and a negligible func-
tion α such that for all circuits C1, C2 of size k, it holds that∣∣Pr

[
A(O(Padq(k)(C1)) = 1

]
− Pr

[
A(O(Padq(k)(C2)) = 1

]∣∣
≤ |Pr [A′(O′(C1)) = 1]− Pr [A′(O′(C2)) = 1]|+ α(k).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:37

PROOF. Define A′(C)
def
= A(O(C)). Then, for any circuit Ci of size k, we have∣∣Pr

[
A(O(Padq(k)(Ci))) = 1

]
− Pr [A′(O′(Ci)) = 1]

∣∣
=
∣∣Pr
[
A(O(Padq(k)(Ci))) = 1

]
− Pr [A(O(O′(Ci))) = 1]

∣∣
≤ neg(q(k)) = neg(k),

where the inequality holds because Padq(k)(Ci) and O′(Ci) are two circuits of size q(k)
that compute the same function whereas O is an indistinguishability obfuscator. Thus,∣∣Pr

[
A(O(Padq(k)(C1)) = 1

]
− Pr

[
A(O(Padq(k)(C2))) = 1

]∣∣
≤
∣∣Pr
[
A(O(Padq(k)(C1)) = 1

]
− Pr [A′(O′(C1)) = 1]

∣∣
+ |Pr [A′(O′(C1)) = 1]− Pr [A′(O′(C2)) = 1]|
+
∣∣Pr [A′(O′(C2)) = 1]− Pr

[
A(O(Padq(k)(C2))) = 1

]∣∣
≤ neg(k) + |Pr [A′(O′(C1)) = 1]− Pr [A′(O′(C2)) = 1]|+ neg(k),

The proposition follows.

Even with this competitiveness property, it still seems important to have explicit
guarantees on the behavior of an obfuscator on circuits that compute different func-
tions. We now give a definition that provides such a guarantee, while still avoiding
the “virtual black box” paradigm. Roughly speaking, it says that if it is possible to dis-
tinguish the obfuscations of a pair of circuits, then one can find inputs on which they
differ given any pair of circuits that compute the corresponding functions.

Definition 7.4 (differing-inputs obfuscator). A differing-inputs obfuscator is de-
fined in the same way as an indistinguishability obfuscator, except that the “indis-
tinguishability” property is replaced with the following:

— (differing-inputs property) For any PPT A, there is a probabilistic algorithm A′ and
a negligible function α such that the following holds. Suppose C1 and C2 are circuits
of size k such that

ε
def
= |Pr [A(O(C1)) = 1]− Pr [A(O(C2)) = 1]| > α(k).

Then, for any C ′1, C
′
2 of size k such that C ′i computes the same function as Ci for

i = 1, 2, A′(C ′1, C ′2) outputs an input on which C1 and C2 differ in time poly(k, 1/(ε−
α(k))).

Indeed, this definition implies that of indistinguishability obfuscators, because if C1

and C2 compute the same function, then A′ can never find an input on which they
differ and hence ε must be negligible.

8. WATERMARKING AND OBFUSCATION
Generally speaking, (fragile) watermarking is the problem of embedding a message
in an object such that the message is difficult to remove without “ruining” the object.
Most of the work on watermarking has focused on watermarking perceptual objects,
e.g., images or audio files. (See the surveys [MMS+; PAK].) Here we concentrate on
watermarking programs, as in [CT; NSS]. A watermarking scheme should consist of a
marking algorithm that embeds a message m into a given program, and an extraction
algorithm that extracts the message from a marked program. Intuitively, the following
properties should be satisfied:

— (functionality) The marked program computes the same function as the original
program.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

— (meaningfulness) Most programs are unmarked.
— (fragility) It is infeasible to remove the mark from the program without (substan-

tially) changing its behavior.

There are various heuristic methods for software watermarking in the literature (cf.,
[CT]), but as with obfuscation, there has been little theoretical work on this problem
in general. Here we do not attempt to provide a thorough definitional treatment of
software watermarking, but rather consider a couple of weak formalizations which we
relate to our results on obfuscation. The difficulty in formalizing watermarking arises,
of course, from the need to properly capture the fragility property. Note that it is easy
to remove a watermark from programs for functions that are exactly learnable with
queries (by using the learning algorithm to generate a new program (for the function)
that is independent of the marking). A natural question is whether learnable functions
are the only ones that cause problems. That is, can the following definition be satisfied?

Definition 8.1 (software watermarking). A (software) watermarking scheme is a
pair of (keyed) probabilistic algorithms (Mark,Extract) satisfying the following proper-
ties:

— (functionality) For every circuit C, key K, and message m, the string MarkK(C,m)
describes a circuit that computes the same function as C.

— (polynomial slowdown) There is a polynomial p such that for every circuit C, it holds
that |MarkK(C,m)| ≤ p(|C|+ |m|+ |K|).

— (extraction) For every circuit C, key K, and message m, it holds that
ExtractK(MarkK(C,m)) = m.

— (meaningfulness) For every circuit C, it holds that PrK [ExtractK(C) 6= ⊥] =
neg(|C|).

— (fragility) For every PPT A, there is a PPT S such that for every C and m, it holds
that

Pr
K

[A(MarkK(C,m)) = C ′ s.t. C ′ ≡ C and ExtractK(C ′) 6= m]

≤ Pr
[
SC(1|C|) = C ′ s.t. C ′ ≡ C

]
+ neg(|C|),

where K is uniformly selected in {0, 1}max(|C|,|m|), and C ′ ≡ C means that C ′ and C
compute the same function.

We say that the scheme is efficient if Mark and Extract run in polynomial time.

Actually, a stronger fragility property than the foregoing one is probably desirable; the
foregoing definition does not exclude the possibility that the adversary can remove the
watermark by changing the value the function at a single location. However, as shown
next, even the former minimal definition is impossible to meet.

THEOREM 8.2. If one-way functions exist, then no watermarking scheme in the
sense of Definition 8.1 exists.

Proof Sketch: Consider the unobfuscatable circuit ensemble guaranteed by Theo-
rem 3.10. No matter how we try to produce a marked circuit from C

R←H, the algorithm
guaranteed by the reverse-engineerability condition in Definition 3.1 can reconstruct
the source code C, which (by the meaningfulness property) is unmarked with high
probability. On the other hand, any potential simulator, given just oracle access to C,
will be unable to produce any circuit computing the same function (since if it could,
then it could compute π(C), which is pseudorandom). 2

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:39

COROLLARY 8.3. Efficient watermarking schemes in the sense of Definition 8.1 do
not exist (unconditionally).

Proof Sketch: As usual, it suffices to show that the existence of an efficient water-
marking scheme implies the existence of one-way function. Consider, for example, the
mapping of K,α ∈ {0, 1}n to MarkK(Cα, 0

n), where Cα(x) = 1 iff x = α. Observe that no
simulator S, which is given oracle access to Cα, can find a circuit that is computation-
ally equivalent to Cα, but inverting this map enables the recovery of α, which in turn
allows to construct an unmarked circuit that is computationally equivalent to Cα. 2

Given these impossibility results, we are led to seek the weakest possible formula-
tion of the fragility condition, requiring that any adversary occasionally fails to remove
the mark (i.e., there exists a circuit and a message such that the adversary fails to re-
move the corresponding marking with noticeable probability).

Definition 8.4 (occasional watermarking). An occasional software watermarking
scheme is defined in the same way as Definition 8.1, except that the fragility condi-
tion is replaced with the following:

— For every PPT A, there exists a circuit C and a message m such that

Pr
K

[A(MarkK(C,m)) = C ′ s.t. C ′ ≡ C and ExtractK(C ′) 6= m] ≤ 1− 1/poly(|C|),

where K is uniformly selected in {0, 1}max(|C|,|m|).

Interestingly, in contrast to the connection suggested by the proof of Theorem 8.2, this
weak notion of watermarking is inconsistent with obfuscation (even the weakest notion
we proposed in Section 7).

PROPOSITION 8.5. Occasional software watermarking schemes and efficient indis-
tinguishability obfuscators (as in Definition 7.1) cannot both exist. Actually, here we
require the watermarking scheme to satisfy the additional natural condition that
|MarkK(C,m)| = q(|C|) for some fixed polynomial q and all |C| = |m| = |K|.

PROOF. We view the obfuscator O as a “watermark remover.” By functionality
of watermarking and obfuscation, for every circuit C and key K, it holds that
O(MarkK(C, 1|C|)) is a circuit computing the same function as C. Let C ′ be a padding
of C to the same length as MarkK(C, 1|C|). By fragility, ExtractK(O(MarkK(C, 1))) = 1
with nonnegligible probability. By meaningfulness, ExtractK(O(C ′)) = 1 with negli-
gible probability. Thus, ExtractK distinguishes between O(C ′) and O(MarkK(C, 1|C|)),
contradicting the indistinguishability property of O.

Note that this proposition fails if we allow MarkK(C,m) to instead be an approximate
implementation of C in the sense of Definition 4.1. Indeed, in such a case it seems that
obfuscators would be useful in constructing watermarking schemes, because a water-
mark could be embedded by changing the value of the function at a random input, after
which an obfuscator is used to “hide” this change. Note that approximation may also
be relevant in (possible strengthening of) the fragility condition, because it is desirable
to prevent adversaries from producing unmarked approximate implementations of the
marked program.

As with obfuscation, positive theoretical results about watermarking would be very
welcome. One approach, taken by Naccache, Shamir, and Stern [NSS], is to find water-
marking schemes for specific useful families of functions.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40

9. RESEARCH DIRECTIONS AND SUBSEQUENT WORK
We have shown that obfuscation, as it is typically understood (i.e., satisfying a vir-
tual black-box property), is impossible. However, we view it as an important research
direction to explore whether there are alternative senses in which programs can be
made “unintelligible.” These include (but are not limited to) the following notions of
obfuscation, which are not ruled out by our impossibility results:

— Indistinguishability (or differing-input) obfuscators, as in Definition 7.1 (or Defini-
tion 7.4, respectively).

— Sampling obfuscators, as in Definition 6.1.
— Obfuscators that only have to approximately preserve functionality with respect to a

specified distribution on inputs, such as the uniform distribution. (In Section 4.1, we
have ruled out a obfuscators with approximately preserve functionality in a stronger
sense; see discussion after Theorem 4.3.)

— Obfuscators for a restricted, yet still nontrivial, class of functions. By Theorem 4.12,
any such class of functions should not contain TC0. That leaves only very weak
complexity classes (e.g., AC0, read-once branching programs), but the class of func-
tions need not be restricted only by “computational” power; syntactic or functional
restrictions may offer a more fruitful avenue. We mention that the constructions of
[Can; CMR] can be viewed as some form of obfuscators for “point functions” (i.e.,
functions f : {0, 1}n → {0, 1} that take on the value 1 at exactly one point in {0, 1}n.)

In addition to obfuscation, related problems such as homomorphic encryption and soft-
ware watermarking are also little understood. For software watermarking, even find-
ing a reasonable formalization of the problem (which, unlike Definition 8.1, is not ruled
out by our constructions) seems to be challenging, whereas for homomorphic encryp-
tion, the definitions are (more) straightforward, but the question of existence seems
very challenging.

Finally, our investigation of complexity-theoretic analogues of Rice’s theorem has
left open questions, such as whether Conjecture 5.1 holds.

Subsequent Work.. Subsequent to the original version of this paper [BGI+], a num-
ber of other works have continued to develop our theoretical understanding of the
possibility and limitations of obfuscation. The paper [GK] provides negative results
for obfuscating natural and cryptographically useful functionalities (as opposed to our
contrived functionalities), with respect to a stronger definition of security. The papers
[LPS; Wee; DS; NS1; NS2] explore the possibility of obfuscating simple but useful func-
tionalities such as “point functions” and generalizations, a line of work begun in the
work of [Can; CMR], which preceded our work. The papers [HMS; HRSV] propose def-
initions of obfuscation that are suitable for cryptographic applications (strengthening
Definition 2.2 in some respects and weakening it in others), and [HRSV] shows how
to obfuscate a specific “re-encryption” functionality with respect to one of these defini-
tions. The paper [GR] proposes and explores a definition of obfuscation that does not
fall within the scope of our impossibility result (and is closely related to our notion of
indistinguishability obfuscators from Definition 7.1).

A. GENERALIZING RICE’S THEOREM TO PROMISE PROBLEMS
We say that an algorithm A decides the promise problem Π = (ΠY ,ΠN) if

x ∈ ΠY ⇒ A(x) = 1

x ∈ ΠN ⇒ A(x) = 0

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:41

In such a case, we say that Π is decidable. We say that Π is closed under [·] if, for all
pairs (M,M ′) such that [M] ≡ [M ′], it holds that M ∈ ΠY iff M ′ ∈ ΠY , and similarly
M ∈ ΠN iffM ′ ∈ ΠN . The straightforward way to generalize Rice’s Theorem to promise
problems is the following:

CONJECTURE A.1 (RICE’S THEOREM — NAIVE GENERALIZATION). Let
Π = (ΠY ,ΠN) be any promise problem closed under [·]. If Π is decidable, then Π
is trivial in the sense that either ΠY = ∅ or ΠN = ∅.
This generalization is really too naive. Consider the following promise problem
(ΠY ,ΠN)

ΠY = {M : M always halts and M(0) = 1}
ΠN = {M : M always halts and M(0) = 0}

It is obviously decidable, non-trivial, and closed under [·].
Our next attempt at generalizing Rice’s Theorem to promise problems is based on

the idea of a simulator, which we use to formalize the interpretation of Rice’s Theorem
as saying that “the only useful thing you can do with a machine is run it.” Recall that
for a Turing machine M , the function 〈M〉(1t, x) is defined to be y if M(x) halts within
t steps with output y, and ⊥ otherwise.

THEOREM A.2 (RICE’S THEOREM — SECOND GENERALIZATION). Let Π =
(ΠY ,ΠN) be any promise problem closed under [·]. If Π is decidable, then there exists a
Turing machine S such that

M ∈ ΠY ⇒ S〈M〉(1|M |) = 1

M ∈ ΠN ⇒ S〈M〉(1|M |) = 0

Note the similarity to Conjecture 5.2.

PROOF. Suppose that Π = (ΠY ,ΠN) is decided by the Turing machine T . We will
build a machine S that will satisfy the conclusion of the theorem.

We say that a machine N is n-compatible with a machine M if 〈N〉(1t, x) = 〈M〉(1t, x)
for all |x|, t ≤ n. Note that:

(1) n-compatibility with M can be decided using oracle access to 〈M〉.
(2) M is n-compatible with itself for all n.
(3) If [M] 6≡ [N] then there exists a number n′ such that N is not n-compatible with M

for all n > n′.
(4) It may be the case than [M] ≡ [N] but N is not n-compatible with M for some n.

With oracle 〈M〉 and input 1|M |, S does the following for n = 0, 1, 2, . . .:

(1) Compute the set Sn that consists of all the machines of size |M | that are n-
compatible with M (this can be done in finite time as there are only finitely many
machines of size |M |).

(2) Run T on all the machines in Sn for n steps. If T halts on all these machines and
returns the same answer σ, then halt and return σ. Otherwise, continue.

It is clear that if S halts then it returns the same answer as T (M). This is because
M is n-compatible with itself for all n and so M ∈ Sn for all n.

We claim that S always halts. For any machine N of size |M | such that [N] 6≡ [M]
, there’s a number n′ such that N is not in Sn for all n > n′. Since there are only
finitely many such machines, there’s a number n′′ such that all the machines N ∈ Sn
for n > n′′ satisfy [N] ≡ [M]. For any such machine N with [N] ≡ [M] , T halts after
a finite number of steps and outputs the same answer as T (M). Again, since there

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42

are only finitely many of them , there’s a number n > n′′ such that T halts on all the
machines of Sn in n steps and returns the same answer as T (M).

Our previous proof relied heavily on the fact that the simulator was given an upper
bound on the size of the machine M . While in the context of complexity we gave this
length to the simulator to allow it enough running time, one may wonder whether it
is justifiable to give this bound to the simulator in the computability context. In other
words, it is natural to consider also the following way to generalize Rice’s Theorem:

CONJECTURE A.3 (RICE’S THEOREM — THIRD GENERALIZATION). Let
Π = (ΠY ,ΠN) be any promise problem closed under [·]. If Π is decidable, then
there exists a Turing machine S such that

M ∈ ΠY ⇒ S〈M〉() = 1

M ∈ ΠN ⇒ S〈M〉() = 0

It turns out that this small change makes a difference.

THEOREM A.4. Conjecture A.3 is false.

PROOF. Consider the following promise problem Π = (ΠY ,ΠN):

ΠY = {M : M always halts and ∃x < KC([M]) s.t. [M](x) = 1}
ΠN = {M : M always halts and ∀x M(x) = 0}

where KC(f) denotes the description length of the smallest Turing machine that com-
putes the partial recursive function f . It is obvious that Π is closed under [·].

We claim that Π is decidable. Indeed, consider the following Turing machine T : On
input M , T invokes M(x) for all x < |M | and returns 1 iff it gets a non-zero answer.
Since any machine in ΠY ∪ΠN always halts, T halts in finite time. If T returns 1 then
certainly M is not in ΠN . If M ∈ ΠY then M(x) = 1 for some x < KC([M]) ≤ |M | and
so T returns 1.

We claim that Π is not trivial in the sense of Conjecture A.3. Indeed, suppose for
contradiction that there exists a simulator S such that

M ∈ ΠY ⇒ S〈M〉() = 1

M ∈ ΠN ⇒ S〈M〉() = 0

Consider the machine Z that reads its input and then returns 0. We have that

〈Z〉(1t, x) =
{⊥ t < |x|

0 otherwise

As Z ∈ ΠN , we know that S〈Z〉() will halt after a finite time and return 0. Let n be an
upper bound on |x| and t over all oracle queries (1t, x) of S〈Z〉().

Let r be a string of Kolmogorov complexity 2n. Consider the machine Nn,r that com-
putes the following function,

Nn,r(x) =

{
0 |x| ≤ n
1 |x| = n+ 1
r |x| ≥ n+ 2

and runs in time |x| on inputs x such that |x| ≤ n.
For any t, |x| ≤ n, 〈Z〉(1t, x) = 〈Nn,r〉(1t, x). Therefore S〈Nn,r〉() = S〈Z〉() = 0. But

Nn,r ∈ ΠY sinceNn,r(n+1) = 1 and KC([Nn,r]) > n+1. This contradicts the assumption
that S decides Π.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:43

B. PSEUDORANDOM ORACLES
In this section, we sketch a proof of the following lemma, which states that a random
function is a pseudorandom generator relative to itself with high probability.

LEMMA B.1 (CLAIM 4.14.2, RESTATED). There is a constant δ > 0 such that the
following holds for all sufficiently large K and any L ≥ K2. Let D be an algorithm that
makes at most Kδ oracle queries and let G be a random injective function G : [K]→ [L].
Then with probability at least 1− 2−K

δ

over G,∣∣∣∣ Pr
x∈[K]

[
DG(G(x)) = 1

]
− Pr
y∈[L]

[
DG(y) = 1

]∣∣∣∣ ≤ 1

Kδ
. (7)

We prove the lemma via a counting argument in the style of Gennaro and Trevisan’s
proof that a random permutation is one-way against nonuniform adversaries [GT].
Specifically, we will show that “most” G for which Inequality (7) fails have a “short”
description given D, and hence there cannot be too many of them.

Let G be the collection of G’s for which Inequality (7) fails (for a sufficiently small δ,
whose value is implicit in the proof below). We begin by arguing that, for every G ∈ G,
there is a large set SG ⊂ [K] of inputs on which D’s behavior is “independent,” in the
sense that for x ∈ SG, none of the oracle queries made in the execution of DG(G(x)) are
at points in SG, yet D still has nonnegligible advantage in distinguishing G(x) from
random. Actually, we will not be able to afford specifying SG when we “describe” G, so
we actually show that there is a fixed set S (independent of G) such that for most G,
the desired set SG can be obtained by just throwing out a small number of elements
from S.

CLAIM B.1.1. There is a set S ⊂ [K] with |S| = K1−5δ, and G′ ⊂ G with |G′| = |G|/2
such that for all G ∈ G′, there is a set SG ⊂ S with the following properties:

(1) |SG| = (1− γ)|S|, where γ = K−3δ.
(2) If x ∈ SG, then DG(G(x)) never queries its oracle at an element of SG.
(3) ∣∣∣∣ Pr

x∈SG

[
DG(G(x)) = 1

]
− Pr
y∈LG

[
DG(y) = 1

]∣∣∣∣ > 1

2Kδ
,

where LG
def
= [L] \G([K] \ SG). (Note that LG contains more than a 1−K/L fraction

of L.)

PROOF. First consider choosing both a random G
R←G and a random S (among sub-

sets of [K] of size K1−5δ). We will show that with probability at least 1/2, there is a
good subset SG ⊂ S satisfying Properties 1–3. By averaging, this implies that there is
a fixed set S for which a good subset exists for at least half the G ∈ G, as desired. Let’s
begin with Property 2. For a random G, S, and a random x ∈ S, note that DG(G(x))
initially has no information about S, which is a random set of density K−5δ. Since D
makes at most Kδ queries, the probability that it queries its oracle at some element
of S is at most Kδ · K−5δ = K−4δ. Thus, with probability at least 3/4 over G and S,
DG(G(x)) queries its oracle at an element of S for at most a 4/K−4δ < γ fraction of
x ∈ S. Throwing out this γ fraction of elements of S gives a set SG satisfying Proper-
ties 1 and 2.

Now let’s turn to Property 3. By a Chernoff-like bound, with probability at least
1− exp(Ω(K1−5δ · (K−δ)2)) > 3/4 over the choice of S,∣∣∣∣ Pr

x∈S

[
DG(G(x)) = 1

]
− Pr
x∈[K]

[
DG(G(x)) = 1

]∣∣∣∣ ≤ 1

4Kδ
.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44

Then we have: ∣∣∣∣ Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr
y∈LG

[
DG(y) = 1

]∣∣∣∣
≥
∣∣∣∣ Pr
x∈[K]

[
DG(G(x)) = 1

]
− Pr
y∈[L]

[
DG(y) = 1

]∣∣∣∣
−
∣∣∣∣ Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr
x∈[S]

[
DG(G(x)) = 1

]∣∣∣∣
−
∣∣∣∣ Pr
x∈S

[
DG(G(x)) = 1

]
− Pr
x∈[K]

[
DG(G(x)) = 1

]∣∣∣∣
−
∣∣∣∣ Pr
y∈[L]

[
DG(y) = 1

]
− Pr
y∈LG

[
DG(y) = 1

]∣∣∣∣
> 1/Kδ − γ − 1/4Kδ −K/L
> 1/2Kδ

Now we show how the above claim implies that every G ∈ G′ has a “small” descrip-
tion.

CLAIM B.1.2. Every G ∈ G′ can be uniquely described by (logB) − Ω(K1−7δ) bits
given D, where B is the number of injective functions from [K] to [L].

PROOF. For starters, the description of G will contains the set SG and the values of
G(x) for all x /∈ SG. Now we’d like to argue that this information is enough to determine
DG(y) for all y. This won’t exactly be the case, but rather we’ll show how to compute
MG(y) for some M that is “as good” as D. From Property 3 in Claim B.1.1, we have

Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr
y∈LG

[
DG(y) = 1

]
>

1

2Kδ
.

(We’ve dropped the absolute values. The other case is handled analogously, and the
only cost is one bit to describe which case holds.) We will describe an algorithm M for
which the same inequality holds, yetM will only use the information in our description
of G instead of making oracle queries to G. Specifically, on input y, M simulates D(y),
except that it handles each oracle query z as follows:

(1) If z /∈ SG, then M responds with G(z) (This information is included in our descrip-
tion of G).

(2) If z ∈ SG, then M halts and outputs 0. (By Property 2 of Claim B.1.1, this cannot
happen if y ∈ G(SG), hence outputting 0 only improves M ’s distinguishing gap.)

Thus, given SG and G|[K]\SG , we have a function M satisfying

Pr
x∈SG

[M(G(x)) = 1]− Pr
y∈LG

[M(y) = 1] >
1

2Kδ
(8)

To complete the description of G, we must specify G|SG , which we can think of as first
specifying the image T = G(SG) ⊂ LG and then the bijection G : SG → T . However, we
can save in our description because T is constrained by Inequality (8), which can be
rewritten as:

Pr
y∈T

[M(y) = 1]− Pr
y∈LG

[M(y) = 1] >
1

2Kδ
(9)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:45

Chernoff Bounds say that most large subsets are good approximators of the aver-
age of a Boolean function. Specifically, at most a exp(−Ω((1 − γ)K1−5δ · (K−δ)2)) =
exp(−Ω(K1−7δ)) fraction of sets T ⊂ LG of size (1− γ)K1−5δ satisfy Equation 9.

Thus, using M , we have “saved” Ω(K1−7δ) bits in describing G(SG) (over the stan-
dard “truth-table” representation of a function G). However, we had to describe the
set SG itself, which would have been unnecessary in the truth-table representa-
tion. Fortunately, we only need to describe SG as a subset of S, and this only costs
log
(

K1−5δ

(1−γ)K1−5δ

)
= O(H2(γ)K1−5δ) < O(K1−8δ logK) bits (where H2(γ) = O(γ log(1/γ))

denotes the binary entropy function). So we have a net savings of Ω(K1−7δ) −
O(K1−8δ logK) = Ω(K1−7δ) bits.

From Claim B.1.2, G′ can consist of at most an exp(−Ω(K1−7δ)) < K−δ/2 fraction of
injective functions [K]→ [L], and thus G has density smaller than K−δ, as desired.

C. OBFUSCATION AND THE FIAT–SHAMIR TRANSFORMATION
In this section, we briefly revisit the question considered in Proposition 4.11: Namely,
whether the random oracle used for the Fiat–Shamir transformation can be “instan-
tiated” by obfuscating a function chosen randomly from a pseudo-random function
ensemble. In Proposition 4.11, we showed that for any (3-round) public-coin honest-
verifier zero-knowledge identification protocol, there exists a contrived pseudorandom
function ensemble such that if the random oracle is replaced with any public circuit
that computes any function in that ensemble, then the signature scheme obtained by
applying the Fiat–Shamir transformation is insecure. In fact, we showed that the re-
sulting signature scheme is insecure in the strong sense that an adversary can forge a
signature given only the public record of the signer.

Here, we show that a similar but weaker attack applies when applying the Fiat–
Shamir transformation to any public-coin identification scheme. The attack is weaker
in that the adversary must first obtain a valid signature on a fixed message, and only
then it is able to produce a forged signature on another message.30 At a high level, the
attack proceeds similarly to our previous attack but instead of “implanting” a hidden
simulation into the pseudorandom function ensemble, it implants a known collision
into the pseudorandom function ensemble.

PROPOSITION C.1. Let (P, V) be an arbitrary 3-round public-coin identification
protocol, and consider the signature scheme in which message m is signed by send-
ing the transcript that corresponds to an interaction of (P, V)(ρ), where ρ is the signer’s
public record/key and the verifier message in the interaction is replaced by the appli-
cation of the Random Oracle to the pair (m, a) such that a is the first message sent by
P . Suppose that one-way functions exists.Then, there exists a pseudorandom function
ensemble {hK}K∈{0,1}∗ such that replacing the random oracle in the foregoing scheme
by any public circuit that computes any hK , yields an insecure scheme, in the sense that
an attacker can forge a valid signature given only the signer’s public record/key and a
single signature on a fixed message.

Proof Sketch: Starting with an arbitrary pseudorandom function ensemble, denoted
{fs}, we consider the function ensemble {f ′s,m0

} defined (for polynomially related |s|
and |m0|) by

f ′s,m0
(x ◦ y, z) def

=

{
fs(0

|m0| ◦ y, z) if x = m0

fs(x ◦ y, z) otherwise

30While this attack is weaker than the one obtained in Proposition 4.11, we note that nevertheless the
current attack shows that the resulting signature scheme is not even a one-time signature scheme.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46

Note that the resulting ensemble preserves the pseudorandomness of the original one,
since the modified inputs are extremely rare (and the adversary lacks any information
regarding their identity). On the other hand, given the seed of a function (i.e., s,m0),
note that any valid signature (a, b, c) on the message 0|m0| is itself a forged signature
for the message m0 ◦ρ since b = f ′s,m0

(0|m0| ◦ρ, a) = f ′s,m0
(m0 ◦ρ, a) by construction. The

remainder of the proof is identical to the proof of Proposition 4.11. 2

Remark C.2. We first note that the foregoing argument extends to any multi-round
public-coin identification protocols. Secondly we note that, while (in contrast to Propo-
sition 4.11) the foregoing attack applies to any public-coin identification scheme, this
wider applicability comes with some inherent limitations. To see this, let (G,S, V) be
a secure signature scheme and consider the following simple public-coin identification
protocol. The signer uses G to generate a signing key SK and a verification key V K.
The public record of the identification record is ρ = V K. The identification protocol
starts by having the signer send V K to the verifier. The verifier responds with a long
random string r. The final message of the protocol is a signature on r using the signing
key SK. Clearly, this protocol is a secure identification protocol. We make two obser-
vations:

(1) The foregoing identification protocol is not zero-knowledge in a strong sense: Given
only the public record V K, it is not possible to generate an accepting transcript of
the protocol (as this would contradict the security of the signature scheme). This
shows that if one applied the Fiat–Shamir transformation to this protocol with
any function replacing the random oracle, the resulting signature scheme would
not allow for forgeries given only the public record. This is in strong contrast to the
situation in Proposition 4.11, where we show that forgery is possible given only the
public record.

(2) On the other hand, the foregoing identification protocol (unsurprisingly) yields a
completely secure signature scheme when the Fiat–Shamir transformation is ap-
plied with the random oracle replaced with a randomly chosen hash function from
any collision-resistant hash function ensemble. As such, the foregoing attack can
also be seen as ruling out the generic use of obfuscation to transform a pseudoran-
dom function ensemble into a collision-resistant hash function ensemble. Again,
however, this is in contrast to the case of applying Fiat–Shamir to general public-
coin honest-verifier zero-knowledge protocols, where no general secure method of
instantiating the random oracle is known (see [DNRS] for further discussion).

ACKNOWLEDGMENT

We are grateful to Luca Trevisan for collaboration at an early stage of this research. We also thank Dan
Boneh, Ran Canetti, Manoj Prabhakaran, Michael Rabin, Emanuele Viola, Yacov Yacobi, and the anonymous
reviewers of CRYPTO’01 and JACM for helpful discussions and comments.

Most of this work was done when Boaz Barak was a graduate student in Weizmann Institute of Science,
Amit Sahai was a graduate student at MIT (supported by an DOD/NDSEG Graduate Fellowship), Salil
Vadhan was a graduate student and a postdoctoral fellow at MIT (supported by a DOD/NDSEG Graduate
Fellowship and an NSF Mathematical Sciences Postdoctoral Research Fellowship), and Ke Yang was a grad-
uate student at CMU. Further support for this work was provided to Boaz Barak by NSF grants 0627526 and
0426582, US-Israel BSF grant 2004288 and Packard and Sloan fellowships, to Oded Goldreich by the Min-
erva Foundation (Germany) and the Israel Science Foundation (grant No. 460/05), to Amit Sahai by a Sloan
Research Fellowship, an Okawa Research Award, and NSF grants 0205594, 0312809, 0456717, 0627781,
0716389, 0830803, 0916574, 1065276, 1118096, and 1136174, and to Salil Vadhan by NSF grants 0430336
and 0831289, a Guggenheim Fellowship, and the Miller Institute for Basic Research in Science.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:47

REFERENCES
B. Barak. How to go beyond the black-box simulation barrier. In 42nd IEEE Symposium on Foundations of

Computer Science (Las Vegas, NV, 2001), pages 106–115. IEEE Computer Soc., Los Alamitos, CA, 2001.
B. Barak. Can We Obfuscate Programs? Essay, 2002. http://www.cs.princeton.edu/~boaz/Papers/obf_

informal.html.
B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the (Im)possibility

of Obfuscating Programs. In J. Kilian, editor, Advances in Cryptology—CRYPTO ‘01, volume 2139 of
Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, 19–23 August 2001. Preliminary full
versions appeared in the ECCC and eprint archives.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
Proceedings of the First Annual Conference on Computer and Communications Security. ACM, Novem-
ber 1993.

D. Boneh and R. Lipton. Algorithms for Black-Box Fields and their Applications to Cryptography. In
M. Wiener, editor, Advances in Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pages 283–297. Springer-Verlag, Aug. 1996.

B. Borchert and F. Stephan. Looking for an analogue of Rice’s theorem in circuit complexity theory. Mathe-
matical Logic Quarterly, 46(4):489–504, 2000.

R. Canetti. Towards Realizing Random Oracles: Hash Functions That Hide All Partial Information. In
B. S. K. Jr., editor, CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages 455–469.
Springer, 1997.

R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, pages 209–218, Dallas, 23–26 May 1998.

R. Canetti, D. Micciancio, and O. Reingold. Perfectly One-Way Probabilistic Hash Functions. In Proceedings
of the Thirtieth Annual ACM Symposium on Theory of Computing, pages 131–140, Dallas, 23–26 May
1998.

C. Collberg and C. Thomborson. Watermarking, Tamper-Proofing, and Obfuscation – Tools for Software
Protection. Technical Report TR00-03, The Department of Computer Science, University of Arizona,
Feb. 2000.

A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. Image Density is Complete for Non-interactive-
SZK. In Automata, Languages and Programming, 25th International Colloquium, Lecture Notes in
Computer Science, pages 784–795, Aalborg, Denmark, 13–17 July 1998. Springer-Verlag. See also pre-
liminary draft of full version, May 1999.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
IT-22(6):644–654, 1976.

Y. Dodis and A. Smith. Correcting errors without leaking partial information. In H. N. Gabow and R. Fagin,
editors, STOC, pages 654–663. ACM, 2005.

D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391–437
(electronic), 2000.

C. Dwork, M. Naor, O. Reingold, L. J. Stockmeyer. Magic Functions. J. ACM 50(6): 852-921 (2003)
S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise problems with applications to public-key

cryptography. Information and Control, 61(2):159–173, 1984.
J. Feigenbaum and M. Merritt, editors. Distributed computing and cryptography, Providence, RI, 1991.

American Mathematical Society.
A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems. In

Advances in cryptology—CRYPTO ’86 (Santa Barbara, Calif., 1986), pages 186–194. Springer, Berlin,
1987.

H. N. Gabow and R. Fagin, editors. Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005. ACM, 2005.

R. Gennaro and L. Trevisan. Lower Bounds on the Efficiency of Generic Cryptographic Constructions. In
41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, 17–19 Oct. 2000.
IEEE.

O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge, 2001.
O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press, Cambridge,

2004.
O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the Association

for Computing Machinery, 33(4):792–807, 1986.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48

O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal of the ACM,
43(3):431–473, 1996.

O. Goldreich, A. Sahai, and S. Vadhan. Can Statistical Zero-Knowledge be Made Non-Interactive?, or On the
Relationship of SZK and NISZK. In Advances in Cryptology—CRYPTO ’99, Lecture Notes in Computer
Science. Springer-Verlag, 1999, 15–19 Aug. 1999. To appear.

S. Goldwasser and Y. T. Kalai. On the Impossibility of Obfuscation with Auxiliary Input. In FOCS, pages
553–562. IEEE Computer Society, 2005.

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences, 28(2):270–
299, Apr. 1984.

S. Goldwasser and G. N. Rothblum. On Best-Possible Obfuscation. In TCC, pages 194–213, 2007.
S. Hada. Zero-Knowledge and Code Obfuscation. In T. Okamoto, editor, Advances in Cryptology – ASIA-

CRYPT ’ 2000, Lecture Notes in Computer Science, pages 443–457, Kyoto, Japan, 2000. International
Association for Cryptologic Research, Springer-Verlag, Berlin Germany.

J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function.
SIAM Journal on Computing, 28(4):1364–1396 (electronic), 1999.

L. A. Hemaspaandra and J. Rothe. A second step towards complexity-theoretic analogs of Rice’s Theorem.
Theoretical Compututer Science, 244(1–2):205–217, 2000.

L. A. Hemaspaandra and M. Thakur. Lower bounds and the hardness of counting properties. Theoretical
Computer Science, 326(1-3):1–28, 2004.

D. Hofheinz, J. Malone-Lee, and M. Stam. Obfuscation for Cryptographic Purposes. In TCC, pages 214–232,
2007.

S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan. Securely Obfuscating Re-encryption. In
TCC, pages 233–252, 2007.

R. Impagliazzo and M. Luby. One-way Functions are Essential for Complexity Based Cryptography (Ex-
tended Abstract). In 30th Annual Symposium on Foundations of Computer Science, pages 230–235,
Research Triangle Park, North Carolina, 30 Oct.–1 Nov. 1989. IEEE.

J. Katz and M. Yung. Complete Characterization of Security Notions for Private-Key Encryption. In Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 245–254, Portland, OR,
May 2000. ACM.

M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. MIT Press, Cambridge,
MA, 1994.

M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM
Journal on Computing, 17(2):373–386, 1988. Special issue on cryptography.

B. Lynn, M. Prabhakaran, and A. Sahai. Positive Results and Techniques for Obfuscation. In C. Cachin and
J. Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages 20–39.
Springer, 2004.

L. R. Matheson, S. G. Mitchell, T. G. Shamoon, R. E. Tarjan, and F. Zane. Robustness and Security of Digital
Watermarks. In H. Imai and Y. Zheng, editors, Financial Cryptography—FC ’98, volume 1465 of Lecture
Notes in Computer Science, pages 227–240. Springer, Feb. 1998.

D. Naccache, A. Shamir, and J. P. Stern. How to Copyright a Function? In H. Imai and Y. Zheng, editors,
Public Key Cryptography—PKC ’99, volume 1560 of Lecture Notes in Computer Science, pages 188–196.
Springer-Verlag, Mar. 1999.

M. Naor and O. Reingold. Number-theoretic Constructions of Efficient Pseudo-random Functions. In 38th
Annual Symposium on Foundations of Computer Science, pages 458–467, Miami Beach, Florida, 20–22
Oct. 1997. IEEE.

A. Narayanan and V. Shmatikov. Obfuscated databases and group privacy. In V. Atluri, C. Meadows, and
A. Juels, editors, ACM Conference on Computer and Communications Security, pages 102–111. ACM,
2005.

A. Narayanan and V. Shmatikov. On the Limits of Point Function Obfuscation. Cryptology ePrint Archive,
Report 2006/182, 2006. http://eprint.iacr.org/.

F. A. P. Petitcolas, R. J. Anderson, and M. J. Kuhn. Information Hiding — A Survey. Proceedings of the IEEE,
87(7):1062–1078, 1999.

R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomorphisms. In Foundations
of secure computation (Workshop, Georgia Inst. Tech., Atlanta, Ga., 1977), pages 169–179. Academic,
New York, 1978.

A. Sahai and S. Vadhan. A complete problem for statistical zero knowledge. Journal of the ACM, 50(2):196–
249, March 2003.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:49

T. Sander, A. Young, and M. Yung. Non-interactive Cryptocomputing for NC1. In 40th Annual Symposium
on Foundations of Computer Science, pages 554–566, New York, NY, 17–19 Oct. 1999. IEEE.

M. Sipser. Introduction to the Theory of Computation. Course Technology, 2nd edition, 2005.
F. van Dorsselaer. Obsolescent Feature. Winning entry for the 1998 International Obfuscated C Code Contest,

1998. http://www.ioccc.org/.
H. Wee. On obfuscating point functions. In H. N. Gabow and R. Fagin, editors, STOC, pages 523–532. ACM,

2005.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

