Inclusive fitness theory and eusociality

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1038/nature09831</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:12712839</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Inclusive fitness theory and eusociality

Nowak et al. (hereafter “NTW”) argue that inclusive fitness (IF) theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, their arguments are based on a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We do not have space to go into all their specific errors, and so we will focus upon three general issues.

First, is there a sharp distinction between IF theory and “standard natural selection theory”? No. Natural selection explains the appearance of design in the living world, and IF theory explains what this design is for. Specifically, natural selection leads organisms to become adapted as if to maximize their IF$^{1-3}$. IF theory is based on population genetics, and is used to make falsifiable predictions about how natural selection shapes phenotypes, and so it is not surprising that it generates identical predictions to those obtained using other methods$^{1,4-6}$.

Second, does IF require a number of “stringent assumptions” such as pairwise interactions, weak selection, linearity, additivity and special population structures? No. Hamilton’s original formulations did not make all these assumptions, and generalisations have shown that none of them are required2,4,5,7. IF is as general as the genetical theory of natural selection itself. It is simply a partition of natural selection into its direct and indirect components.

NTW’s error is to have confused the completely general theory of IF with models of specific cases. Yes, researchers often make limiting assumptions for reasons of analytical tractability when considering specific scenarios4,6, as with any modelling approach. For example, NTW assume a specific form of genetic control, where dispersal and helping are determined by the same single locus, that mating is monogamous, and so on. However, the general IF approach has facilitated, not hindered, empirical testing of IF theory$^{8-10}$. Indeed, an advantage of IF theory is that it readily generates testable predictions in situations where the precise genetic architecture of a phenotypic trait is unknown.

Third, NTW claim that IF theory “does not provide any additional biological insight”. They argue that it has delivered only “hypothetical explanations”, leading only to “routine” measurements and “correlative studies”, and that the theory has “evolved into an abstract enterprise on its own”, with a “failure to consider multiple competing hypotheses”. We cannot explain these puzzling claims, which completely neglect the extensive empirical literature that has accumulated over the past 40 years in the fields of behavioural and evolutionary ecology$^{8-10}$ (Table 1). Of course, studies must consider the direct consequences of behaviours, as well as consequences for relatives, but no one claims otherwise, and this does not change the fact that relatedness (and a load of other variables) has been shown to be important in all the above areas.

We do not have space to detail all the advances that have been made in the areas described in Table 1. However, the falseness of NTW’s claims is easily demonstrated with a single example, that of sex allocation (the ratio of investment into males versus females). We choose sex allocation because: (a) NTW argue that IF theory has provided only “hypothetical explanations” in this field; and (b) it is an easily
quantified social trait, which IF theory predicts can be influenced by interactions between relatives; (3) the study of sex allocation has been central to evolutionary work on the eusocial insects. In undeniable contrast to NTW’s claims, recent reviews of sex allocation show that the theory has provided strong explanation for why sex allocation varies with variables such as female density, inbreeding rate, dispersal rate, brood size, order of oviposition, sibmating, asymmetrical larval competition, mortality rate, the presence of helpers, resource availability and nest density in organisms such as protozoan parasites, worms, insects, spiders, mites, reptiles, birds, mammals and plants4,11,12.

The quantitative success of this research can be summarized in one statistic: the percentage of the variance explained in the data. IF theory has explained up to 96% of the sex ratio variance in across-species studies and 66% in within-species studies12. The average for evolutionary and ecological studies is 5.4%. In addition, as well as explaining adaptive variation in behaviour, IF theory has even elucidated when and why individuals make mistakes (maladaptation), in response to factors such as mechanistic constraints12. It is not clear how NTW can characterize such quantifiable ringing success as “meagre”. Their conclusions are based upon a selection of just three papers (by authors who all strongly disagree with NTW’s interpretations), out of an empirical literature of thousands of research articles. This betrays a failure to seriously engage with the body of work that they would have us abandon.

The same points can be made with regard to the evolution of the eusocial insects, which NTW suggest cannot be explained by IF theory. Haplodiploidy itself may have only a relatively minor bearing on the origin of eusociality, but by impugning the value of IF theory as well, Nowak et al. discard the baby with the bathwater. IF theory has explained why eusociality has evolved only in monogamous lineages, and why it is correlated with certain ecological conditions, such as extended parental care and defence of a shared resource13,14. Furthermore, IF theory has made very successful predictions about behaviour in eusocial insects, explaining a wide range of phenomena (Table 2).

Ultimately, any body of biological theory must be judged on its ability to make novel predictions and explain biological phenomena. The most striking fact about NTW’s offering is that it does neither. The only prediction made by their model (offspring are favoured to help their monogamously-mated mother if this provides a sufficient benefit), merely confirms, in a less general way, Hamilton’s original and immensely important point: if the fitness benefits are great enough, then altruism can be favoured between relatives.

Author contributions: All authors contributed to the planning, writing and/or revising of this paper. Several others who contributed significantly are not in the author list, because individuals are only allowed to be an author on one reply.

Author information: The authors declare no competing interests. Correspondence should be addressed to SAW (Stuart.West@zoo.ox.ac.uk).
<table>
<thead>
<tr>
<th>Research Area</th>
<th>Correlational studies?</th>
<th>Experimental studies?</th>
<th>Interplay between theory and data?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex allocation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Policing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Conflict resolution</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cooperation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Altruism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spite</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kin discrimination</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Parasite virulence</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Parent-offspring conflict</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sibling conflict</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Selfish genetic elements</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cannibalism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dispersal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alarm calls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Eusociality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Genomic imprinting</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1. Some example areas (non-exhaustive) in which IF theory has been vitally important in understanding a range of behavioural phenomena\(^8\text{-}^\text{10}\). We are not suggesting that IF is the only way to model evolution, just that it has already proven an immensely productive and useful approach for studying eusociality and other social behaviours.
<table>
<thead>
<tr>
<th>Trait examined</th>
<th>Explanatory variables</th>
<th>Correlational studies?</th>
<th>Experimental studies?</th>
<th>Interplay between theory and data?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altruistic helping</td>
<td>Haploidiploidy vs diploidy</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Worker egg laying</td>
<td>Worker policing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Policing</td>
<td>Relatedness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Level of cooperation</td>
<td>Costs, benefits and relatedness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Intensity of work</td>
<td>Need for work and probability of becoming queen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sex allocation</td>
<td>Relatedness asymmetries due to variation in queen survival, queen number, and mating frequency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sex allocation</td>
<td>Resource availability</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sex allocation</td>
<td>Competition for mates between related males</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Number of individuals trying to become reproductive</td>
<td>Presence of old queens</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Workers killing queens</td>
<td>Presence of workers, reproductives or other queens</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion of non-kin</td>
<td>Colony membership</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 2. Example areas (non-exhaustive) in which IF theory has made very successful predictions about behaviour in eusocial insects11-15.

PA
Vanderbilt University
Nashville, TN 37235 USA

JA
Laboratory of Applied Entomology
Faculty of Agriculture
Shizuoka University
Sizuoka 422-8529
Japan

JA
Arizona State University [retired]

SA + YM
UMR CNRS-IRD 2724, Genetics and Evolution of Infectious Diseases
IRD, 911 Avenue Agropolis, B.P. 64501
34394 Montpellier Cedex 5, France

JACA, JB, SB, AB, MB-C, PH, NJ, AK, LS, CEM, AG, SAW
Department of Zoology
University of Oxford
South Parks Road
Oxford, OX1 3PS, UK

MA
Department of Zoology
University of Gothenburg
SE 405 30 Gothenburg, Sweden

MvB
Ecole Normale Supérieure, UMR 7625
« Ecologie et Evolution », Paris, F-75005, France; Université
Pierre et Marie Curie, UMR 7625
« Ecologie et Evolution », Paris, F-75005, France; CNRS, UMR
7625 « Ecologie et Evolution », Paris, F-75005, France. Bâtiment A
7ème Etage CC237, 7 quai St.-Bernard, F-75252
Paris cedex 05, France.

FB
MRC Centre for Outbreak Analysis and Modelling,
Department of Infectious Disease Epidemiology,
Faculty of Medicine,
Imperial College,
St Mary’s Campus,
Norfolk Place,
London W2 1PG,
United Kingdom

SB
Department of Psychology, Neuroscience & Behaviour
McMaster University
1280 Main St. West
Hamilton, ON L8S 4K1 Canada

NB
IST Austria
Am Campus 1
Klosterneuburg 3400

RB+LL
Faculté des sciences
Rue Emile-Argand 11,
Case postale 158
2000 Neuchâtel , Switzerland
Australia

LB
Evolutionary Genetics
Centre for Ecological and Evolutionary Studies
TD+PT
Dept Math&Stats
Queen's University
Kingston ON K7L 3N6

JLD
The Cornell Lab of Ornithology
Cornell University - The Johnson Center
159 Sapsucker Woods Road
Ithaca, NY 14850

LAD
Department of Biology
University of Louisville
Louisville, KY, 40292 USA

HKR + PWS + JSS + SE
Seeley G. Mudd Hall
Department of Neurobiology and Behavior
Cornell University
Ithaca, New York 14853 USA

JE
USDA-ARS Bee Research Lab
BARC-E Bldg 476
Beltsville, MD 20705 USA

RF
Laboratoire Ecologie & Evolution, CNRS UMR 7625, Ecole Normale Superieure, 46 rue d'Ulm, 75005 Paris, France and
2. Department of Ecology & Evolutionary Biology, University of Arizona, Tucson AZ 85721, USA.

JF
School of Life Sciences
John Maynard Smith Building
University of Sussex
Brighton BN1 9QG,
UK

SF
Department Biologie II Behavioral Ecology (Verhaltensökologie)
Ludwig-Maximilians-Universität
München Großhaderner Str. 2 D - 82152 Planegg / Martinsried Germany

KRF
Center for Systems Biology
Harvard University
Cambridge, MA 02138
CF
Department of Entomology
University of Kentucky
Lexington, KY 40546-0091 USA

JG
School of Life Sciences
Arizona State University
PO Box 874501
Tempe, AZ, 85287-4501 USA

MS + MGG
School of Biological Sciences,
Flinders University,
GPO Box 2100,
Adelaide, SA 5001,
Australia

SG
CEFE - UMR 5175
1919 route de Mende
F-34293 Montpellier cedex 5
France

TG
Kellogg Biological Station & Department of Zoology
Michigan State University
Hickory Corners, MI 49060 USA

MADG
School of Biology and Petit Institute for Bioengineering and Bioscience
Georgia Institute of Technology
310 Ferst Drive
Atlanta, GA 30332-0230
USA

RG
Department of Evolution & Ecology
College of Biological Sciences
1 Shields Avenue
UC Davis
Davis, CA 95616
USA

CMG
Center for Pollinator Research
Huck Institutes of the Life Sciences
Pennsylvania State University
Chemical Ecology Lab 4A
University Park, PA 16802 USA

P-HG
Muséum National d'Histoire Naturelle, CP39, 12 rue Buffon 75005 Paris France

DG
Biology Department
University of Toronto
3359 Mississauga Road
Mississauga ON L5L 1C6 Canada

BH
Department of Animal & Plant Sciences
University of Sheffield
Western Bank
Sheffield S10 2TN
UK

HH+LS
University of Helsinki
Department of Biosciences POB 65, FI-00014
University of Helsinki, Finland

JH
Biologie I
Universität Regensburg
D-93040 Regensburg, Germany

KH
Department of Biology
University of Vermont
Burlington, VT 05405, USA

KH
School of Human Evolution and Social Change
Arizona State University
Tempe, Arizona 85287-2402 USA

ETK
Department of Animal Ecology, Institute of Ecological Science
Faculty of Earth and Life Sciences, Vrije Universiteit
De Boelelaan 1085
NL-1081 HV Amsterdam
The Netherlands

HK
Evolution, Ecology and Genetics, Research School of Biology (Banks Building 44), Australian National University, Canberra, ACT 0200, Australia
JK
Animal Ecology Group, Centre for Evolutionary and Ecological Studies
University of Groningen, PO Box 14
9750 AA Haren
The Netherlands.

JK
University of Osnabrueck
Barbarastr.11
D-49076 Osnabrueck
Germany

DK
Harvard University
Museum of Comparative Zoology
26 Oxford St
Cambridge, MA 02138
USA

RK
Environmental Microbiology
Swiss Federal Institute of Aquatic Research and Technology
Überlandstrasse 133
CH-8600 Dübendorf
Switzerland

SL
School of Biological Sciences
Royal Holloway, University of London
Egham TW20 0EX, UK

BL
Department of Ecology and Evolutionary Biology
University of California
Santa Cruz, CA 95064, USA

JARM
Department of Computer Science
University of Sheffield
Sheffield UK

RMc
Department of Anthropology and Center for Population Biology
UC Davis, Davis CA 95616 USA

REM
Dept. Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721

DM
Dept. of Zoology
PO Box 14, 9750 AA Haren, The Netherlands

JP + TL
Centre for Social Evolution
Department of Biology
University of Copenhagen
Universitetsparken 15
DK-2100 Copenhagen
Denmark

DP
Department of Biology
CB#3280, Coker Hall
University of North Carolina
Chapel Hill, NC 27599-3280 USA

DQ
Department of Ecology and Evolutionary Biology
Rice University
Houston TX, USA

DJR
Department of Biochemistry
University of Zurich
Building Y27, Office J-46
Winterthurstrasse 190
CH-8057 Zurich, Switzerland
Swiss Institute of Bioinformatics, Quartier Sorge Bâtiment Génopode, CH- 1015 Lausanne, Switzerland)

GR
Centre for Behaviour & Evolution, Institute of Neuroscience
Faculty of Medical Sciences, Newcastle University
Henry Wellcome Building, Framlington Place
Newcastle upon Tyne, NE2 4HH

SKAR
School of Marine & Tropical Biology
James Cook University QLD 4811
Australia

DR
Station Biologique de Roscoff, CNRS-UPMC UMR 7144, 29680 Roscoff, France

FR
Institut des Sciences de l'Evolution
University of Montpellier 2
Montpellier, France

MR
Research Department of Genetics, Evolution and Environment
Faculty of Life Sciences
University College London
4 Stephenson Way
London NW1 2HE, UK

OR
Department of Biology
Univ. North Carolina at Greensboro
312 Eberhart Bldg.
Greensboro, NC 27403, USA

JS
Department of Biology
3314 Spieth Hall
University of California - Riverside
Riverside, CA 92521

PS-H
ETH Zurich
Institute of Integrative Biology (IBZ)
Universitätstrasse 16
CH.8092 Zürich
Switzerland

TS-P
School of Philosophy, Psychology and Language Sciences
University of Edinburgh
3 Charles Street
Edinburgh
EH8 9AD

DMS
School of Biology
University of St Andrews
Harold Mitchell Building
St Andrews
Fife KY16 9TH
UK

JCS
Assistant Professor of Biology
William Paterson University of New Jersey
300 Pompton Rd., Wayne NJ 07470

BS
Department of Anthropology
101 West Hall
University of Michigan
Ann Arbor Michigan 48109
AS
Department of Entomology and Department of Animal Biology
University of Illinois, Urbana, IL 61801

MT
Behavioural Ecology
Institute of Ecology and Evolution
University of Bern
Wohlenstrasse 50a
CH-3032 Hinterkappelen
Switzerland

GT
Department of Biology
University of Western Ontario
1151 Richmond Street North
London, Ontario N6A 5B7
Canada

JT
Department of Anthropology
University of California
Santa Barbara CA 93106-3210 USA

NDT
Department of Environmental Science, Policy and Management
130 Mulford Hall, #3114
University of California Berkeley
Berkeley CA, US

KT
Faculty of Agriculture
University of the Ryukyus
Okinawa 903-0213, Japan

ST
Dipartimento di Biologia Evoluzionistica
Università degli Studi di Firenze,
via Romana 17, 50125 Firenze, Italy

FU
Department of Ecology and Evolutionary Biology
University of Tennessee Knoxville
Knoxville, TN 37902, USA

BV
Institute for Theoretical Biology
Humboldt University zu Berlin
Invalidenstr. 43, D-10115 Germanya
ELV
Department of Entomology
Box 7613
North Carolina State University
Raleigh, NC 27695-7613, U.S.A.

MJW-E
Smithsonian Tropical Research Institute
Apartado 0843-03092
Balboa, Panamá

TW
Dept. of Biology, Zoological Institute, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium

DW
Department of Biology
101 Morgan Building
University of Kentucky
Lexington, KY 40506-0225 USA

RW
Department of Human Evolutionary Biology
Harvard University
Cambridge MA, USA

DZ + JZ
Department of Biology & Program in Ecology Evolution & Conservation Biology
University of Nevada
Reno, NV 89557 USA

AZ
Department of Biology
San Francisco State University
San Francisco, CA 94132

(Authors in alphabetical order)