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The estimation of commuting flows at different spatial scales is a fundamental problem for different areas of
study. Many current methods rely on parameters requiring calibration from empirical trip volumes. Their
values are often not generalizable to cases without calibration data. To solve this problem we develop a
statistical expression to calculate commuting trips with a quantitative functional form to estimate the model
parameter when empirical trip data is not available. We calculate commuting trip volumes at scales from
within a city to an entire country, introducing a scaling parameter a to the recently proposed parameter free
radiation model. The model requires only widely available population and facility density distributions. The
parameter can be interpreted as the influence of the region scale and the degree of heterogeneity in the
facility distribution. We explore in detail the scaling limitations of this problem, namely under which
conditions the proposed model can be applied without trip data for calibration. On the other hand, when
empirical trip data is available, we show that the proposed model’s estimation accuracy is as good as other
existing models. We validated the model in different regions in the U.S., then successfully applied it in three
different countries.

G
ood estimates of how many people frequently travel between two places is related to several areas of study.
It is not only a key ingredient in modeling the spreading of infectious diseases1–4, but also a fundamental
problem in geo-spatial economics of facility distribution and transportation planning. Clues on the

statistics of human movements and their changes at different scales are thus fundamental. Here we explore
statistical expressions to calculate the number of commuting trips within areas of sizes ranging from a few
kilometers (one city or town) to over one thousand kilometers (one country). We focus on commuting trips
because they are stable in time and account for the largest fraction of the total flows in a population.

In order to describe the commuting flow patterns of people, various aggregated trip distribution models have
been proposed5–10. Among all these efforts, the gravity model, which assumes that the number of movements
between an origin-destination pair decays with their distance, is the most widely used one6,11,12. The gravity model
can be further divided into the unconstrained gravity model5, the singly constrained gravity model (such as the
B.P.R model13,14, or the Voorhees gravity model11) and the doubly constrained gravity model15. More constraints
generally leads to better model performance. The doubly constrained gravity model fits parameters in an iterative
way to best reconstruct the empirical OD matrix. But the iterative fitting complicates the calibration of the
distance decaying function, which is essential for the gravity model. However, the most important limitation
of the doubly constrained gravity model is the calibrated parameters from the empirical trip data in one area lack
meaningful interpretation and thus are not transferable to other regions. As a consequence, in current epidemi-
ology studies the more generalizable but less accurate unconstrained gravity model is often used1.

From another perspective, the recently proposed radiation model16,17 has an analytical formulation that
estimates trip volumes without parameters; using as input the distribution of population only. It takes inspiration
from the intervening opportunity model, which assumes that the trip volume is more related to the number of
opportunities between the origin and the destination instead of just to their distance8,18. As is recently shown by
Simini et al.17, the radiation model represents a general framework that includes the intervening opportunity
model as a degenerated case and it is linked with the the gravity model through the spatial distribution of
opportunities. The model was originally developed to predict inter-county flows, which not necessarily account
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for daily trips. Some recent works19–21 have shown that the para-
meter-free radiation model16 does not work well at predicting
intra-city trips. Two of these works19,20 introduced models with a
calibrating parameter as a cost function of the distance to reproduce
intra city trips. In the gravity model based approach19 a scaling para-
meter depending on region size is introduced; while in intervening
opportunity model based approaches introducing such an interpret-
able parameter that can be estimated without trip data remains an
open question.

The present work seeks to answer two questions: How the value of
the parameter that imposes the scale dependency can be interpreted
and estimated without trip data? Under which conditions the pre-
diction of models not calibrated with empirical trip data would work?
The extended radiation model that we present in this study is distinct
from previous formulations, in that it is a stochastic model that
depends on the distributions of opportunities and population only.
The one scaling parameter a depends on the region size and the
heterogeneity of opportunity distribution, which makes it interpret-
able and estimable in many cases even without trip data. The
extended radiation model is derived by relating the trip production
and attraction process to survival analysis. We propose an analogy
between survival time t and the number of opportunities a a com-
muter has considered. Another important ingredient for modelling
trips within small scales (intra urban trips) is the separation between
population density and trip attraction rates. Most models on intra-
city trips use the density of population20,21 as a proxy for both trip
generation and trip attraction rates. While this approximation is
reasonable at large scales, at inner city scale trip attraction is better
represented by the density of point of interests (POIs), defined as
geolocated non residential establishments presented on a digital map.

The proposed model combines the closed analytical form of the
original radiation model and the flexibility of gravity-like models.
While it can be calibrated when empirical trip data is available, it also
provides an analytical parameter estimation when there is no trip
data for calibration. The model is validated in the U.S. by the census
commuting data and in three other countries (Portugal, Dominican
Republic, and Rwanda) by cell phone records.

Results
Evaluation of the gravity model and the radiation model. The
simplest form of the gravity model is1–4:

Tij~c
nn

i nb
j

C rij
� � ð1Þ

where Tij is the flow between zone i and j. ni and nj are the population
of the two zones. rij is the distance between them and C is a distance
decaying function. g and b are parameters to be fitted from data. c is
an adjustment parameter controlling the sum of the flows. This is
usually called the unconstrained gravity model because it does not
guarantee the attainment of the desired generation and attraction
marginal volumes in each zone.

In transportation planning, the gravity model usually takes the
form11,15,22:

Tij~
gibjOiDj

C rij
� � ð2Þ

where Oi and Dj are the total trip production and attraction volumes
of zones i and j respectively. For a study region with N zones, there are
2N parameters of gi and bj. These parameters are calculated by itera-

tively applying: gi~1
.X

jbjDjC rij
� �

and bj~1
.X

igiOiC rij
� �

.

This is called the doubly constrained gravity model because it ensures
consistent values of the trip production

X
jTij~Oi, and trip attrac-

tion
X

iTij~Dj per zone. In order to calibrate the gi and bj para-

meters, the model requires accurate input of the total trip production
and attraction volumes Oi and Dj.

An alternative model that does not require calibration is the
recently proposed radiation model, in which Tij takes the form:

Tij~Oi
ninj

nizsij
� �

niznjzsij
� � ð3Þ

where sij is the population within the circle of radius rij centered at
zone i (not including the population in zones i and j) and the rest of
the notations are the same as in the gravity model.

We explore the suitability of the doubly constrained gravity model
and the radiation model on predicting commuting flows at three
different scales: the Western U.S., the entire San Francisco Bay area,
and the city of San Francisco (see Methods).

We apply the doubly constrained gravity model with power dis-
tance decay function C(r) 5 rk (which is better than the exponential
decay function in the example regions) and compare it with the
radiation model. Fig. 1(a) shows the commuting distance distri-
bution P(r) of different models at the three scales of study. When
we compare inter-county trips in the Western U.S. both the para-
meter-free radiation model and the calibrated gravity model with 2N
1 1 parameters perform similarly. Adjusting the gi, bj and the para-
meter k in the distance decaying function can not fit the model well
for both short distance trips and long distance trips. This confirms
the results reported in16.

However, when trying to predict the commuting flows among
zones within the Bay area or San Francisco, without parameters for
calibration the situation is much harder because the density of popu-
lation is more homogeneously distributed and commuters tend to go
to various business districts across the area (see Fig. 2). Such scale of
daily trips is where the calibration parameters start playing an
important role and the calibrated gravity model performs better than
the parameter-free radiation model. In order to inspect further this
situation, the distribution of the total number of opportunities a
between trip origin and destination is calculated. Fig. 1(b) shows that
at the Bay area scale (zone size l < 10 km), there is a region a , aavg

where there is not a clear functional form on the enclosing number of
opportunities a between the origin and the destination (aavg is the
average number of opportunities in a zone). While for a . aavg the
probability of finding a trip start monotonically decaying. This effect
of clear decaying behavior for a . aavg is not observed in commuting
trips within San Francisco. Based on these observations we look for a
way to introduce the effects of scale on the radiation model.

Extension of the radiation model. We introduce a scaling parameter
a by combining the derivation of the original radiation model with
survival analysis. Survival analysis uses statistical methods to deal
with the analysis of time to events, such as life time distribution of
living organisms or machine components27. The two objects of
primary interest are the survival function and the hazard function.
The survival function, S(t), represents the life time distribution of an
entity:

S tð Þ~Pr Twtð Þ ð4Þ

S(t) is the cumulative probability of having survived after time t. The
hazard function, h(t), represents the conditional death rate at time t:

h tð Þ~ lim
dt?0

Pr tƒTvtzdtjT§tð Þ
dt

ð5Þ

Different forms of hazard function h(t) will lead to different survival
function S(t). The two most generally used hazard functional forms
are h(t) 5 l and h(t) 5 lata21. h(t) 5 l leads to the exponential
survival function S(t) 5 e2lt, while h(t) 5 lata21 leads to the Weibull
survival function S tð Þ~e{lta

. For a R 0 the hazard function does
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not depend on time t, this is the effect that we would like to replicate
for smaller zones: job selection has low dependence on the number of
opportunities between home and the selected work location.

The intervening opportunity model can be derived under the sur-
vival analysis framework if we think of the departure from origin as
‘birth’ and the arrival at the destination as ‘death’ while the lifetime is
measured as the number of opportunities, a, between the origin and
the destination. The survival function S(a) represents the cumulative
probability of not finding a workplace within a opportunities. S(a) 5

e2la and S að Þ~e{laa

are exactly the two most commonly used inter-
vening opportunity models8,18. Note here that a controls the slope of
the decay of S(a).

We show here the radiation model can also be derived under the
survival analysis framework. If P.(a) represents the probability of
not accepting the closest a opportunities, it has the same meaning of
the survival function S(t) in the survival analysis. A person commut-
ing from a region of ni opportunities to a region of nj opportunities
with s opportunities in between, can be expressed as the conditional
probability of accepting one of the nj opportunities between a and a
1 nj, given that the closest ni opportunities are not chosen. Note that
a ; ni 1 s for Eq. 3. This probability can be written as:

P 1jni,nj,a
� �

~
Pw að Þ{Pw aznj

� �
Pw nið Þ

ð6Þ

Then the core question becomes how to get the expression of P.(a).
Different individuals should have different hazard rates (or job
expectations in this case)28,29, we can assign different parameter li

value to different individuals i. So the survival function of the entire
population from a given origin becomes:

Pw að Þ~E e{lia
� �

~

ðz?

0
e{lap lð Þdl ð7Þ

If we define p(l) 5 e2l and l g (0, 1‘) R e2l g (0, 1):

Pw að Þ~
ðz?

0
e{lap lð Þdl~

ðz?

0
e{lae{ldl~

1
1za

ð8Þ

which gives the radiation model expression introduced in Eq.6 (we
are using the same notation as in17). One reason of choosing p(l) to
be an exponential distribution is it connects the survival analysis with
the derivation of the original radiation model17. We further elaborate
the influence of the form of the p(l) distribution in the SI Appendix.
If we extend the analysis to the Weibull survival function, we get:

Pw að Þ~
ðz?

0
e{laa

p lð Þdl~
1

1zaa
ð9Þ

Eq. 6 becomes:

P 1jni,nj,aij
� �

~
aijznj
� �a

{aa
ij

h i
na

i z1
� �

aa
ijz1

� �
aijznj
� �a

z1
� � ð10Þ

In order to calculate the flows between two zones i and j, two nor-
malization constants are needed:

Tij~cmi
P 1jni,nj,aij
� �P

kP 1jni,nk,aikð Þ , ð11Þ

since not all people are commuting and also the commuting within
each zone is not counted, c is the percentage of population that is

Figure 1 | Comparison of the census data, the calibrated doubly constrained gravity model, the parameter-free radiation model, and the calibrated
extended radiation model. (a) The three columns represent San Francisco, the Bay area, and the Western U.S. respectively. The three rows are the results

of the three different models compared with the census data. The radiation model gives relatively good prediction only at the Western U.S. scale. At the

two smaller scales the radiation model under-estimates long distance trips. The doubly constrained gravity model gives close predictions to the census

data at the three scales. The extended radiation model, with one parameter a, achieves the same prediction quality. The dashed line is a guide to the eye

with the distance decaying function P(r) 5 100(r 1 10)22.7. (b) The P(a) distribution, is the probability of measuring a commuting trip with a

opportunities between the origin and the destination. Because the radiation model is not suitable for the two smaller scales, here only the extended

radiation model and the doubly constrained gravity model are compared with the census data. The flat distribution of P(a) in the Census data within San

Francisco differs from the other two scales, showing that the distribution of intra-city flows is influenced less by the number of opportunities between the

origin and destination.

www.nature.com/scientificreports
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commuting between different zones in the study area. mi is the
population at the origin. If the empirical trip data or cell phone
records (as will be shown in the sections below) are available, c can
be calculated from the total number of observed trips. If neither data
source is available, the flow distribution can still be calculated
because c doesn’t influence the relative ratio of flows between differ-
ent OD pairs. The denominator in the equation is a normalization
constant for finite sized area. The influence of the border effect and
how this formulation can solve some of the limitations in previous
models is detailed in the SI Appendix.

The extended radiation model is calibrated to the three regions
examined in the previous section. The obtained a values are 0.003,
0.05 and 1.5 respectively. We use the common part of commuters
(CPC), based on the Sørensen index30, to quantitatively measure the
goodness of flow estimation.

C PC T,eT� �
~

2NCC T,eT� �
NC Tð ÞzNC eT� � ð12Þ

NCC T,eT� �
~
Xn

i~1

Xn

j~1
min Tij,fTij

� �
, NC Tð Þ~

Xn

i~1

Xn

j~1
Tij.

This index shows which part of the commuting flow is correctly
estimated, 0 means no agreement found and 1 means perfect estima-
tion. Table 1 shows that the extended radiation model gives estima-
tions with similar performance to the doubly constrained gravity
model at the three regions while the original radiation model’s
estimation power decays with the region granularity. The goodness
of fit of the extended radiation model is close to other recently pro-
posed models19. The difference is that the study in19 uses actual
commuting flow generation and attraction volumes as input, while
in the current model we use more easily acquired population and POI
density as proxies, but achieved the same level of accuracy.

Absence of data to calibrate a. The P.(a) distribution plays an
important role in the formulation and a parameter calibration,

thus worths further scrutiny. When the space is infinite and the

opportunities are continuous Pw að Þ~ 1
1zaa

is a monotonically

decreasing function with slope given by the a value. But if we are
considering trips only within a finite sized region, this implies a finite
numbers of opportunities possible, up to atot. Thus P.(atot) 5 0.
Also, we divide a study region into a finite number of zones ncells,
so a can only take a set of discrete values. We define aavg ; atot/ncells.
amin is the smallest number of opportunities in all the zones. Since
within zone trips are not considered, P.(a) should start to decrease
after amin. This value is not known a priory but may be approximated
by aavg in the absence of data on trips. We correct the expression in
Eq. 9 to account for these effects as:

Pw að Þh i~
1

1zaa { 1
1zaa

tot

1
1zaa

avg
{ 1

1zaa
tot

,atot§a§aavg ð13Þ

Now, we explore how Eq. 13 can reproduce the P.(a) measured from
data. The top panel of Fig. 3(a) shows the results of P.(a) calculated
from the census commuting data in San Francisco, the Bay area and
the Western U.S. The solid lines show Eq. 13 with different a values,
note that the two limiting values of aavg , a , atot determine the
range of the equation. By comparing Eq. 13 with the data as seen in
Fig. 1(b) and Fig. 3(a), we see that in the intra-city scale the P.(a)
distribution does not decay beyond aavg, so we can’t use Eq. 13 to
estimate the radiation model parameter. For the Bay area and the
Western U.S. scale, amin , aavg, Eq. 13 works well and the value of a

Figure 2 | Trip production and attraction at different scales. (a) A map showing the three selected regions of study representing: the Western U.S., the Bay

area, and San Francisco. The color bar represents population density. (b–e) Commuting trip generation rate, trip attraction rate, the population density

and the POI density in (#/km2) in San Francisco. While the population density has high correlation with the commuting trip generation rate, the

POI density has high correlation with the commuting trip attraction rate. In contrast, at the scale of the Western U.S., the population density correlates with

both the trip generation rate and the attraction rate, as shown in Table 2. The maps are generated from ARCGIS using TIGER/Line Shapefiles.

Table 1 | CPC values for different models at different regions

Western U.S. Bay area San Francisco

Ext. Radiation 0.51 0.67 0.65
Gravity 0.5 0.64 0.66
Radiation 0.43 0.4 0.23

www.nature.com/scientificreports
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(0.1 # a # 2) should increase with the scale l. For a fixed scale l, if the
heterogeneity of opportunity distribution increases, then amin further
differs from aavg. In those cases a . 2 and it is not possible to estimate
a without data calibration (as shown for Las-Vegas-Seattle in
Fig. 3(a)). The detailed explanation is in the rest of this section.

We further explore how the parameter a systematically changes as
the size l of the commuting zones changes. We evaluate the com-
muting within regions divided into ncells 5 100 zones of size l ranging
from a few kilometers to over 100 kilometers (See Fig. 3 and Fig. 4).
We randomly chose 200 study regions for each scale with total popu-
lation of at least 5, 000 3 l in order to avoid unpopulated regions such
as national parks. The census commuting OD data is used to calibrate
the a value in each region using Eq. 11. Fig. 3(b) shows how a is close
to zero for l , 10 km and starts to increase as a power function
beyond that value. The functional relationship as a solid line is:

a~
l

36 km½ �

� 	1:33

ð14Þ

The error bars show the 20th and 80th percentile of the a value at
each scale. The three cases calibrated before: San Francisco, the Bay
area, and the Western U.S. are marked in red squares. They are all
close to the expected values calculated from Eq. 14. For trips within a

city and up to metropolitan urban areas the a value is close to 0 and
the error bar is narrow. In this limit (a R 0) we have:

P 1jni,nj,aij
� �

~ lim
a?0

aijznj
� �a

{aa
ij

h i
na

i z1
� �

aa
ijz1

� �
aijznj

� �a
z1

� �

~ lim
a?0

aijznj
� �a

{aa
ij

2

ð15Þ

The ratio between aijznj
� �a

{aa
ij and aa

ij is:

lim
a?0

aijznj
� �a

{aa
ij

aa
ij

~ lim
a?0

a
nj

aij
ð16Þ

The a will cancel out when substituting the expression back to Eq. 11.
The detailed derivation is in the SI Appendix. This implies that the

predicted flow is proportional to
nj

aij
, while in the parameter-free

radiation model, the flow is proportional to
nj

a2
ij

. We have mentioned

that within such short distances Eq. 13 is not suitable for the exact

Figure 3 | Interpretation of the parameter a. (a) Effects of the scale on the P.(a) distribution, showing as symbols the results from census data of San

Francisco, the Bay area and the Western U.S. The black solid lines are evaluations of Eq. 13 for different values of a, and the dashed line is the expected a

value using Eq. 14. The analytical predictions work for the Bay area and Western U.S. From top to bottom we see the P.(a) distribution for three regions

with similar sizes. Given a fixed scale, the a value is influenced by the heterogeneity of the distribution of opportunities. The more heterogeneous the

region is, the larger the difference between aavg and amin, as is shown in Las Vegas-L.A. region. In these cases the prediction of a (Eq. 13) will not resemble

their calibrated values and thus calibration is needed. (b) For each zone scale l, 200 regions with random centers are selected within west U.S. In each case

the corresponding a value is calibrated with census trip data. The functional relationship between a and l is a~
l

36

� 	1:33

. The error bar shows the 20 and

80 percentile a value for each scale. The inset shows the same plot in logarithmic scale. Marked as solid blue circles is the scale range that a values can be

predicted without data calibration. The calibrated results with trip data for U.S. regions are marked as red squares, while the examples from other

countries are marked as green triangles. They all follow the functional approximation.

www.nature.com/scientificreports
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estimation of a. But given that at such scale 0 , a , 0.1, and the
model is not sensitive to the parameter value when a R 0, in zones
that l , 10 km Eq. 13 is able to generate a reasonable approximated a
value for trip volume estimation.

In the range l , 10…65 km, 0.1 # a # 2 most commonly accounts
for inter city trips, the model without data calibration is expected to
predict trips well because of the narrow error bar. For larger scale
regions enclosing trips between two or more combined statistical
areas such as the ones shown in Fig. 4, a . 2 and has a wide range.
We notice that the main driving factor influencing the a value for the
same scale is the differences in the homogeneity of facility density;
which are highly correlated to population density at these large
scales.

In Fig. 4, the two marked regions have the same scale: l 5 60 km.
The population distribution of the southern region has two sharp
centers, Los Angeles and Las Vegas, while the rest has low population
density. In the northern region, the population is more homoge-
neously distributed. One example OD pair is shown for each region
on the right part of Fig. 4: From Los Angeles to Lake Havasu City for
the southern region and from Seattle to Wenatchee for the northern
region. They have similar mi, ni, nj and sij values. According to the
original radiation model, they should have similar flow volumes. But
in the census there are only 26 people commuting from Los Angeles
to Lake Havasu City while there are 167 commuting from Seattle to
Wenatchee. The reason is quite clear on the map: the distance from
Seattle to Wenatchee is only 150 km while the distance from Los
Angeles to Lake Havasu City is much longer because of the low
population/opportunity density between the origin and the destina-
tion. To put it in another way, people have to travel further to be able
to explore the same amount of opportunities. This causes the cali-
brated a value of the southern region to be 5, much larger than the
northern one, which is 1.6. As is shown in Fig. 3(a), the more het-

erogeneous the distribution of population is; the larger the difference
in amin and aavg is and the larger the a value becomes. In those cases
the P.(a) from empirical trip data differs more from Eq. 13 and
empirical trip data is needed for parameter calibration. More quant-
itative ways to measure the influence of the degree of heterogeneity as
a cost function depending on the distance between the origin and the
destination remains an open question for further studies.

People’s location choices are not influenced by the choice of study
region sizes. What the parameter a captures for the scale dependency
is the granularity of aggregation. Ideally the location choice should be
modeled to the smallest spatial granularity, then aggregated to the
desired granularity level. But in practice such fine grained input data
are usually not available, in such cases the a parameter helps the
model estimation at the desired granularity directly, without requir-
ing finer grained data.

In summary, even without empirical trip OD data, if the commut-
ing zones are in the range l , 1…65 km, it can be expected for the
extended radiation formula to give good commuting flow prediction.
In these cases Eq. 14 gives us: 0 # a # 2. For zones with large sizes, if
the opportunity distribution do not have strong heterogeneity (amin

, aavg), the monotonic increase of a with scale l is usually captured
by Eq. 13. In other situations the model needs to be calibrated with
empirical OD data.

Multi-regional study and the role of cell phone data. Not many
countries in the world have detailed census data for commuting flow
prediction and model calibration. Those countries with data scarcity
are often developing countries that need this kind of modeling the
most. For these countries finding an alternative data source to
provide guidance for their urban growth, economic planning and
epidemics controlling is a pressing need. In this section we show
how the extended radiation and the gravity model can be

Figure 4 | The influence of the opportunity homogeneity on the parameter a value. The two grey rectangles are of the same scale: 600 km. The

population distribution of the southern region has only two sharp peaks: Los Angeles and Las Vegas, while the population in the northern region is more

homogeneously distributed. The right section of the figure shows one example OD pair in each region with similar mi, ni, nj and sij values. But the distance

between Los Angeles and Lake Havasu City is much longer than the distance between Seattle and Wenetchee, which makes its commuting flow volume

much smaller. This effect of distance is taken into consideration by the difference in the a value. For the southern region a 5 5 while for the northern one

a 5 1.6. The grey regions are combined statistical areas which usually include one or more populated metropolitan areas.

www.nature.com/scientificreports
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calibrated given estimated commuting trips measured from cell
phone data. More importantly we can compare the phone data
calibrated parameter a with the one predicted from Eq. 14 to
explore the generality of that expression.

Cell phone records are increasingly showing the potential to
become a data source of valuable information31–33 since most popu-
lated areas have cell phone service coverage and the value of cell
phone data in modeling human mobility has recently been high-
lighted in various studies1,34–36. For instance, in Rwanda there is no
detailed commuting census data available. Even if there were, the
high migration rate of people would make the census outdated
quickly. However, the country has 215, 030, 420 cell phone records
from one cell phone service provider in just three months. In this
section cell phone records are used to extract a seed commuting OD
matrix, which is expanded using iterative proportional fitting to
estimate the full commuting OD matrix for the whole population
under study.

We use the Bay area as an example to validate the method.
Fig. 5(a–c) shows the comparison of the results of the distribution
of commuting distance, the distribution of the number of commuters
between O-D pairs, and the comparison of the census commuting
flow Tij with the expanded cell phone user commuting flow T ’ij. The
close fitting in all the three figures shows that we can recover the
commuting patterns of the whole population from the seed matrix
provided by cell phone records. For countries that do not have popu-
lation density census statistics for the IPF expansion, we can use the
Landscan37 population density estimation which is available world-
wide at 1 km2 resolution.

We then extended our study to three different countries: Portugal,
Dominican Republic and Rwanda. We selected the capitals in the
three countries: Lisbon, Santo Domingo (including the greater met-
ropolitan area), and Kigali; and also did the analysis for the entire
Rwanda and Portugal (we do not have the cell phone information
available for the entire Dominican Republic). We calibrated the grav-
ity model and the extended radiation model to test how much can
they recover these regions’ commuting patterns. The results are
shown in Fig. 5(d–h). The difference in the commuting distance
distribution in these regions are captured by both models. The values
of l and a for the extended radiation model of these regions are
marked as triangles in Fig. 3(b). All of them conform to the func-
tional form of a observed from the U.S. regions. This shows that the
relationship between a and the scale l is generalizable, in this case we
could have used the extended radiation formula in these countries to
estimate trips, in the absence of trip data to calibrate the model.

Discussion
In summary, we propose an extension to the radiation model that can
be calibrated with one scale parameter to predict commuting flows at
different spatial scales. The scale parameter a modulates the influ-
ence of the opportunity distribution heterogeneity and the spatial
scale l of the commuting zones.

Our results are then compared with the benchmark model cali-
brated with trip data, known as the doubly constrained gravity
model. A multi-scale study shows that both the extended radiation
model and the doubly constrained gravity model give close estima-
tions to the census commuting flows.

Figure 5 | Validation of the IPF expression method and commuting patterns in different regions. (a–c) The comparison of the distribution of

commuting distance, the distribution of the number of commuters between O-D pairs, and the comparison of the census commuting flow Tij with the

expanded cell phone users’ commuting flow T ’ij. The close fitting in all three figures shows that we can recover the commuting patterns of the whole

population from the seed matrix provided by the cell phone records. (d–h) Comparison of the distributions of commuting distance for Lisbon, Santo

Domingo, Kigali, Portugal, and Rwanda. The extended radiation model can be successfully applied to all these cases and the corresponding a versus l

relationship is marked in Fig. 3.
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The main advantage of the proposed modelling framework is that
it still can be applied to predict number of commuting trips when
lacking data for calibration. The a parameter depends on the scale of
the study region and the homogeneity of the population distribution.
We show that for Eqs. 10 and 11 to give good results, the size of the
ncells commuting zones is in the range l , 1…65 km, representing
0 # a # 2. These values of a imply mild heterogeneity in the distri-
bution of opportunities among zones; which here means that the
minimum number of opportunities amin enclosing trips is close to
aavg (the average number of opportunities for all the zones, aavg ;
atot/ncells). Other quantitative ways to measure the degree of hetero-
geneity remains an open question for further studies. For larger
regions (l . 65 km) the a value range is wide because the heterogen-
eity of population distribution is highly variable at this scale. In these
cases the model is better used with empirical data for parameter
calibration rather than estimating a from Eq. 14 directly.

The presented study provides the first building blocks for a multi-
scale generator of human mobility expressed as a functional form of
the distributions of population and job facilities. We tested it in
different scales at different countries and discussed its range of
applicability. We share the sample of the U.S. county level commut-
ing flow prediction on our web-page to help in this direction38.

Methods
Input data preparation. The three regions, San Francisco, San Francisco Bay Area,
and the Western U.S., are shown in Fig. 2(a). The Western U.S. is divided into 183
counties while the two smaller regions are divided into ncells 5 100 zones to calculate
the ODs. Each zone is a cluster of blocks determined by applying k-means clustering
method on the 7, 348 census blocks in San Francisco and 117, 219 blocks in the Bay
area. Note that the unconstrained gravity model is not compared here because when
there is empirical OD for parameter calibration, the doubly constrained gravity model
performs much better. Detailed comparisons between the two gravity models are in
the SI Appendix.

We first test the usual assumption in both models: the population density could
represent both the commuting trip generation and attraction rates at different scales.
We use the 2010 census LEHD Origin-Destination Employment Statistics
(LODES)23, which provides home and employment locations for the entire U.S.
population at block level. The first column in Table 2 shows the correlations between
densities (#/km2) of commuting flow generation, attraction and population in the
Western U.S. Both of them have high correlations, so at this scale the assumption
holds. Fig. 2(b, c) shows the commuting trip generation and attraction rates in San
Francisco. Their distributions are less similar. Thus, we need to find a better proxy for
commuting trip attraction rates at smaller scales.

Digital traces of facilities are available on-line, they provide good estimates of
commuting trip attractions24–26. In this study we use the density of point of interests
(in #/km2) of each zone to represent the commuting trip attraction rate(#/km2). The
three study regions contain 1, 774, 154; 319, 170 and 85, 230 POIs extracted from
Google Places respectively. According to Table 2, at all the scales POI density has high
correlation with the commuting trip attraction rate. A more detailed multi-scale
correlation analysis is in the SI Appendix.

Seed cell phone OD matrix expansion. Each cell phone record has a time stamp and
a corresponding cell phone tower. For each user, the most frequently used tower
between 6PM and 6AM is assigned as the home location and the most frequently used
tower during day is assigned as the work location. Using the 2010 census home and
employment location data as a benchmark, we chose the Bay area as an example to
validate that the cell phone data could provide accurate predictions to commuting
flow patterns. The sample includes 189, 621 cell phone users. We mapped the 892 cell
phone towers in the Bay area to the previously defined 100 block clusters to get the
commuting OD matrix for the cell phone users. The iterative proportional fitting
(IPF) method is performed to expand the cell phone user OD matrix to the OD matrix
for the entire population39. The basic procedure is first getting the distribution of
population and POIs to represent the marginal distributions of commuting trip

generation and attraction rates for each block cluster. Then iteratively adjusting the
elements of the seed matrix to let them match the desired margins.
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