M. tuberculosis enhances its virulence during replication in blood from HIV patients

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1186/1471-2334-14-S3-012</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:12717467</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
M. tuberculosis enhances its virulence during replication in blood from HIV patients

Michelle B Ryndak¹, Krishna K Singh¹, Zhengyu Peng², Hualin Li³, Lu Meng², Suman Laal¹,4*

From 2nd International Science Symposium on HIV and Infectious Diseases (HIV SCIENCE 2014)
Chennai, India. 30 January - 1 February 2014

Background
Mycobacterium tuberculosis and HIV act synergistically to enhance and accelerate the development of tuberculosis and progression of HIV infection to AIDS. Hematogenous dissemination of M. tuberculosis leading to extrapulmonary TB, disseminated TB and miliary TB is greatly increased in HIV+ TB patients. We have compared the transcriptome of M. tuberculosis replicating in whole blood from immunocompetent and immunodeficient individuals to understand how M. tuberculosis adapts to the blood environment during hematogenous dissemination.

Methodology
Whole genome microarray analysis was performed on RNA from M. tuberculosis replicating in whole blood from PPD negative HIV- healthy donors and HIV+ donors. Genes with a fold change of ≥ 2, at a false discovery rate of < 2%, were considered significantly differentially expressed.

Results
M. tuberculosis survives and replicates in blood, and enhances its virulence/pathogenic potential during adaptation to the hematogenous environment. The blood specific transcriptome reflects suppression of dormancy, induction of cell-wall remodeling, alteration in mode of iron acquisition, evasion of immune surveillance and enhanced expression of important virulence factors that drive active infection and dissemination. Compared to replication in HIV blood, these changes are accentuated during replication in blood from HIV patients. The expression of ESAT-6, known to play an important role in dissemination of M. tuberculosis from the lungs, is upregulated in M. tuberculosis growing in blood, and especially dramatically during growth in HIV+ blood.

Conclusion
M. tuberculosis modulates its aggressive progression to disseminated forms of TB by modifying its transcriptome to acquire a phenotype with enhanced virulence that favors active infection and dissemination.

Authors’ details
¹Veterans Affairs Medical Center, New York Harbor Health Care System, New York, NY, USA. ²Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. ³Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. ⁴New York University Langone Medical Center, Departments of Pathology and Microbiology, New York, NY, USA.

Published: 27 May 2014

doi:10.1186/1471-2334-14-S3-O12
Cite this article as: Ryndak et al. M. tuberculosis enhances its virulence during replication in blood from HIV patients. BMC Infectious Diseases 2014 14(Suppl 3):O12.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

© 2014 Ryndak et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.