Chromosomal Instability, Aneuploidy, and Cancer

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.3389/fonc.2014.00161</td>
</tr>
<tr>
<td>Accessed</td>
<td>April 6, 2018 9:52:12 PM EDT</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:12717573</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

(Article begins on next page)
Chromosomal instability, aneuploidy, and cancer

Samuel F. Bakhoum1,2* and Charles Swanton3,4*

1 Department of Internal Medicine, Mount Auburn Hospital, Cambridge, MA, USA
2 Harvard Medical School, Boston, MA, USA
3 Cancer Research UK London Research Institute, London, UK
4 University College London Cancer Institute, London, UK

*Correspondence: samuel.f.bakhoum.dm@dartmouth.edu; charles.swanton@cancer.org.uk

Edited by:
Paolo Pinton, University of Ferrara, Italy

Reviewed by:
Frank Kruyt, University Medical Center Groningen, Netherlands

Keywords: chromosomal instability, aneuploidy, anaphase, chromatin, mitosis, spindle, microtubules, centrosomes

The link between aneuploidy and cancer has been recognized over a century ago (1). Abnormalities in chromosome copy numbers arise from persistent errors in chromosome segregation during cell division, a process known as chromosomal instability (CIN) (2). CIN is a principal contributor to genetic heterogeneity in cancer (3) and is an important determinant of clinical prognosis and therapeutic resistance (4, 5). Over the past two decades, our understanding of the mechanisms that lead to CIN as well as our appreciation of its consequences on cellular viability and tumor evolution have grown considerably (4, 6). So has our recognition of the multitude of questions that remain unanswered.

The papers in this Research Topic broadly address recent advances in our understanding of CIN in cancer. They also illustrate the diverse experimental approaches and model organisms used in studying genomic instability. This topic is divided into two major categories: the first five papers address the genesis of CIN in cancer by summarizing the cell biological mechanisms that underlie chromosome missegregation. They also venture into the poorly understood area of the genetic basis of CIN, while developing an experimental model system amenable to high-throughput genetic analysis. The remaining papers address the consequences of imbalance in chromosome number on the cellular fitness and adaptation.

Multiple mechanisms have been shown to lead to CIN – in its numerical and structural forms. They include defects in the spindle assembly checkpoint (7), sister chromatid cohesion (8), the regulation of microtubule attachments to chromosomes at kinetochores (9, 10), centrosome duplication (11, 12), telomere maintenance (13), and pre-mitotic replication stress (14). Herein, German Pihan (15) reviews the regulation of the centrosome duplication cycle and how it is intricately synchronized with the cell division cycle. The complexity of this regulatory network might explain pervasiveness of centrosome dysfunction in human tumors, but it also provides multiple attractive pharmacological targets that have the potential to induce mitotic catastrophe. Yokoyama and Gruss (16) further discuss how chromosomes take on part of the responsibility to ensure the fidelity of their own segregation. Chromatin-associated factors – beyond the Ran GTPase – have now been shown necessary for a properly functioning mitotic spindle. Interestingly, many of these factors localize to the Nuclear Pore Complex (NPC), highlighting an incipient spatiotemporal relationship between the interphase nuclear structure and the mitotic spindle (17). Thus the process of faithful chromosome segregation starts well before the onset of mitosis.

While many of the cellular events that underlie CIN have now been uncovered, the genetic basis of chromosome missegregation and aneuploidy remains elusive. A growing number of genetic perturbations have been shown capable of inducing CIN in otherwise normal mammalian cell lines (6). Yet, it remains unknown whether these experimental conditions mimic naturally occurring genetic events that lead to CIN during tumor progression. Further complicating this matter is the self-propagating nature of CIN (18), which can mask initial instigating genetic triggers. Herein, Rao and Yamada (19) review the linear progression model of colon carcinogenesis from adenoma to carcinoma. They discuss how many of the sequential genetic events that occur during carcinogenesis have the potential to compromise the fidelity of chromosome segregation. More generally, Orr and Compton (20) discuss the intimate relationship governing CIN and known oncogenic pathways. Given what we now know, they argue that almost every major oncogenic pathway can be implicated in some manner in the genesis of CIN. Yet this relationship is almost certainly bidirectional as chromosome missegregation has been shown to generate downstream structural chromosomal damage, which can in turn independently activate oncogenic pathways (21–23). This complex relationship highlights the need for appropriate genetic models to better understand CIN. To this end, Salemi et al. (24) develop a chromosome segregation error correction assay, using the Drosophila melanogaster (Dm) S2 cells, that is amenable to high-throughput genetic screening. They substitute the Dm kinesin-5 protein, Klp61F, with its human ortholog, Eg5, thus acquiring the ability to purposely induce errors in microtubule attachments to chromosomes and subsequent chromosome missegregation through transient exposure to a small molecule inhibitor of Eg5 (25). These attachment errors occur in both normal and tumor cells alike (26), although cancer cells have been shown less efficient at correcting these errors (9). In this system, it would be feasible to screen for genes whose functions are...
to modulate the correction of microtubule attachment to chromo-
somes with the caveat that microtubule-associated proteins, particularly the kinesin family, may at times exhibit convergent evolu-
tion (27, 28) thus limiting direct comparative genetic analysis be-
tween Dm and humans.

The second part of this Research Topic addresses the conse-
quences of CIN on cellular fitness in the context of tumor evo-
uletion. Roschke and Rozenblum (29) explore how CIN is tightly
interconnected to other aspects of tumorigenesis such as DNA
damage, loss of tumor suppressor genes, and gain of oncogenes.
Importantly, they attempt to consolidate an apparent paradox in
the field whereby the widespread prevalence of CIN in cancer
stands in contrast to evidence showing that aneuploidy induces a
proteotoxic stress response and reduces cellular fitness (30). They
discuss the various pathways, which tumor cells utilize to cope
with the cellular stresses involved with chromosome missegrega-
tion and they propose that tumor cells may balance the ability to rapidly
proliferate with the need to generate sufficient diversity required
for adaptation. One of the important adaptation mechanisms is
the loss of the p53 tumor suppressor pathway that normally lim-
its the proliferation of aneuploid and tetraploid cells (18, 31).
Although in this issue, Ohshima and Seyama (32) devise a method
Frontiers in Oncology
the loss of the
p53
for adaptation. One of the important adaptation mechanisms is
the loss of the p53 tumor suppressor pathway that normally lim-
its the proliferation of aneuploid and tetraploid cells (18, 31).

REFERENCES

1. Boveri T. Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Stuber
(1903).
3. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and conse-
doi:10.1038/nature12625
4. Bakhoum SF, Compton DA. Chromosomal instability and cancer: a com-
doi:10.1172/JCI59954
71:1858–78. doi:10.1158/0008-5472.CAN-10-3604
6. Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal insta-
doi:10.1038/25292
Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci
10. Bakhoum SF, Thompson SL, Manning AL, Compton DA. Genome stability is
ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell
11. Ganev NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to
12. Silk AD, Zasadin LM, Holland AJ, Viri B, Cleveland DW, Weaver BA. Chro-
mosome missegregation rate predicts whether aneuploidy will promote or sup-
1317042110
13. Davoli T, Denchi EL, de Lange T. Persistent telomere damage induces
01.031
Replication stress links structural and numerical cancer chromosomal instabil-
15. Pihan GA. Centrosome dysfunction contributes to chromosome instability,
chromoanagenesis, and genome reprogramming in cancer. Front Oncol (2013)
16. Yokoyama H, Gruss OJ. New mitotic regulators released from chromatin. Front
17. Rodriguez-Bravo V, Maciejewski J, Corona J, Buch HK, Collin P, Kanemaki MT,
et al. Nuclear pores protect genome integrity by assembling a premitotic and
2014.01.010
18. Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited
200905057
19. Rao CV, Yamada HY. Genomic instability and colon carcinogenesis from the
20. Orr B, Compton DA. A double-edged sword: how oncogenes and tumor sup-
pressor genes can contribute to chromosomal instability. Front Oncol (2013)
genomic rearrangement acquired in a single catastrophic event during cancer
22. Crasta KK, Ganem NJ, Dagher RR, Lantermann ABA, Ivanova EVE, Pan YY,
et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature
13:795–806. doi:10.1038/nrg3313
24. Salemi JD, McGilvray PT, Maresca TJ. Development of a Drosophila cell-based
25. Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM. Correcting improper
6:232–7. doi:10.1038/ncl1102
26. Cimini DD, Moree B, Canman JC, Salmon ED. Merotelic kinetochore orientation
occurs frequently during early mitosis in mammalian tissue cells and error cor-
doi:10.1242/jcs.00716
27. Wickstead B, Gull K. A “holistic” kisinology phylogeny reveals new kinesis
10.1091/mbc.E05-11-1090
28. Manning AL, Ganev NJ, Bakhoum SF, Wagenbach M, Wordeman L, Com-
ton DA. The kinesin-13 proteins Kiθ2a, Kiθ2b, and Kiθ2c/MC AK have dis-
doi:10.1091/mbc.E07-02-0110
29. Rosche SV, Rozenblum E. Multi-layered cancer chromosomal instability phe-
30. Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman
DE, et al. Aneuploidy affects proliferation and spontaneous immortalization in
31. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. Cytokinesis
failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature
32. Ohshima S, Seyama A. Establishment of proliferative tetraploid cells from
33. Nicholson JM, Cimini D. Cancer karyotypes: survival of the fittest. Front Oncol
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 May 2014; accepted: 06 June 2014; published online: 19 June 2014.
Citation: Bakhoum SF and Swanton C (2014) Chromosomal instability, aneuploidy, and cancer. Front. Oncol. 4:161. doi: 10.3389/fonc.2014.00161

www.frontiersin.org