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INTRODUCTION

Leukotrienes are lipid mediators generated from arachidonic 
acid through the 5-lipoxygenase (5-LO) pathway. They are 
named for their cells of origin (leukocytes) and the presence of 
three positionally conserved double bonds (trienes). The 2 
classes of leukotrienes, cysteinyl leukotrienes (cys-LTs) and leu-
kotriene B4 (LTB4), have broad array of bioactivities and cellular 
targets. Both 5-LO inhibitors and cys-LT receptor antagonists 
are useful for the treatment of asthma and rhinitis.1-3 Recently 
studies using molecular approaches have demonstrated that 
cys-LTs possess multiple cell targets and immunologic func-
tions, and act through a receptor system far more complex than 
previously anticipated. This review highlights these recent stud-
ies, and will consider their potential pathobiologic and thera-
peutic implications.

Regulation of leukotriene synthesis
Leukotriene synthesis is initiated during the activation of leu-

kocytes, when arachidonic acid is liberated from the mem-
brane phospholipids by a cytosolic phospholipase A2.4 5-LO ac-
tivating protein presents arachidonic acid to 5-LO, which cata-
lyzes the formation of 5-hydroperoxyeicosatetraenoic acid and 
then the unstable epoxide LTA4.5 In mast cells, macrophages, 
eosinophils, and basophils, LTC4 synthase (LTC4S) conjugates 
LTA4 to reduced glutathione, forming LTC4, the parent of the 
cys-LTs.6 Once formed, LTC4 is transported to extracellular 
space via the ATP-binding cassette (ABC) transporters-1 and-4 
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and then metabolized to LTD4 and LTE4 by γ-glutamyl trans-
peptidases and dipeptidases, respectively. The rapid extracellu-
lar metabolism of LTC4 and LTD4 results in short biologic half-
lives relative to the stable mediator LTE4, which is abundant 
and readily detected in biologic fluids. In neutrophils, LTA4 is 
hydrolyzed by a cytosolic LTA4 hydrolase enzyme to form LTB4, 
a dihydroxy leukotriene that is a potent chemoattractant for 
neutrophils and monocytes.7 

5-LO activity is substantially upregulated when granulocytes 
are exposed ex vivo to hematopoietic cytokines such as GM-
CSF or (in the case of eosinophils) IL-5.8-11 In cord blood-derived 
human mast cells, IL-3 and IL-5 enhance the function of 5-LO 
by inducing its import from the cytosol to the nucleoplasm, 
whereas IL-4 potently induces expression and function of 
LTC4S.12 LTC4S enzymatic function can be inhibited by protein 
kinase C (PKC)-dependent phosphorylation, which can limit 
the generation of cys-LTs ex vivo.13 5-LO activity is suppressed 
by stimuli that induce cyclic adenosine monophosphate 
(cAMP) accumulation, leading to serine phosphorylation of 
5-LO by cAMP-dependent protein kinase A (PKA).11 These in 
vitro studies suggest that LT production is tightly regulated by 
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the microenvironment and intracellular phosphorylation 
events, with mechanisms that can respectively enhance and 
limit the expression and function of the critical metabolic en-
zymes dependent on context. 

Cysteinyl leukotriene receptors 
Early pharmacologic profiling studies predicted the existence 

of at least 2 cys-LT receptors in mammalian tissues.14 The mo-
lecular characterization of the classical G protein-coupled re-
ceptors (GPCRs) partially reconciled this pharmacology. The 
type 1 cys-LT receptor, CysLT1R, is a high-affinity receptor for 
LTD4 and the target of antagonists (Montelukast, Zafirlukast, 
and Pranlukast) that are used for the management of asthma. 
The cloned human CysLT1R gene encodes a GPCR of 339 ami-
no acids.15 Human CysLT1R mRNA is expressed in bronchial 
smooth muscle and substantially in myeloid cells, such as mac-
rophages and mast cells. The human CysLT2R is 38% identical 
to CysLT1R in amino acid sequence.16 CysLT2R binds LTC4 and 
LTD4 with equal affinity, and binds LTD4 with affinity one-log 
less than CysLT1R. CysLT2R is resistant to Montelukast, and is 
expressed both on cells that also express CysLT1R (e.g., myeloid 
cells, smooth muscle), as well as endothelial cells, cardiac Pur-
kinje cells, adrenal medulla, and brain.16 The incompletely 
overlapping distribution of the 2 classical receptors for cys-LTs 
suggests that they have both complementary and distinct func-
tions. 

In contrast to their affinities for LTC4 and LTD4, the cloned 
CysLT1R and CysLT2R receptors display trivial binding affinity 
for the stable metabolite LTE4. Nonetheless, studies of human 
tracheal explants and guinea pig tracheal rings had predicted 
the existence of a third cys-LT receptor with a preference for 
LTE4.14,17 LTE4 also was equipotent to its precursors for inducing 
wheal and flare responses when injected intradermally into hu-
mans.18 Recently GPR99, previously reported as an oxyglutarate 
receptor,19 was identified as a potential LTE4 receptor.20 LTE4 

binds and activates GPR99 at low nM range concentrations in 
transfected cells, and resists blockade by MK571, a prototype 
CysLT1R antagonist. The ability of LTE4 to induce cutaneous 
vascular permeability in mice depends largely on the presence 
of GPR99. GPR99 mRNA is expressed strongly by kidney and 
smooth muscle. Precise definition of its cellular distribution 
awaits the development of suitable antibody reagents, and its 
role in allergic inflammation is to be determined. 

Regulation of cysteinyl leukotriene receptor function 
As is the case for the cys-LT synthesis, cellular responsiveness 

to cys-LTs can be modulated both by exogenous stimuli and in-
tracellular phosphorylation events. IL-4 and IL-13 upregulate 
the expression and function of CysLT1R by human peripheral 
blood monocytes and monocyte-derived macrophages.21 IL-
13, but not IL-4, upregulates CysLT2R expression as well in hu-
man monocytes.22 IL-13 and transforming growth factor beta 

induce CysLT1R expression by human bronchial smooth mus-
cle cells.23 CysLT1R can be inducibly expressed by mouse T cells 
stimulated through the T cell receptor.24 CysLT1R signaling is 
also controlled by PKA25 - or PKC26 -dependent phosphoryla-
tion and desensitization. PKC mediates ligand-induced inter-
nalization of CysLT1R following stimulation with LTD4.27 PKC 
activation by members of the purinergic (P2Y) family of GPCRs, 
which are homologous to the cys-LT receptors, can induce het-
erologous, PKC-dependent phosphorylation and desensitiza-
tion of CysLT1R without causing its internalization.26 Since nu-
cleotides, the natural ligands for P2Y receptors, are released in 
large quantities during acute inflammatory responses,28 signal-
ing through the cognate P2Y receptors may limit potentially 
deleterious effects of CysLT1R signaling in cells that express 
both classes of receptors (Figure). Moreover, the overlap in the 
cytokines (IL-4) and protein kinases (PKA, PKC) that respec-
tively enhance and suppress the functions of the synthetic and 
receptor systems suggest that cys-LT production may be regu-
lated in parallel with end-organ responsiveness.

CysLT1R functions can also be regulated by direct physical in-
teractions with other GPCRs. CysLT1R and CysLT2R heterodi-
merize in cultured human mast cells.29 The presence of CysL-
T2R limits the levels of membrane expression of CysLT1R, and 
dampens the capacity of CysLT1R to induce phosphorylation of 
extracellular signal regulated kinase and proliferation in this 
cell type. GPR17, a GPCR homologous to CysLT1R and CysL-
T2R,30 was originally “deorphanized” as a dual-specific receptor 
for cys-LTs and uracil nucleotides.31 However, we and others 
could not reproduce GPR17 activation by either ligand type in 
various assay systems.30,32,33 Instead, GPR17 functions as a nega-
tive regulator of LTD4-mediated CysLT1R activation, and mark-
edly reduces binding of LTD4 when the two receptors are co-ex-
pressed in cell lines.30 Accordingly, mice lacking GPR17 (Gpr17 
–/– mice) showed markedly enhanced CysLT1R-dependent tis-

Cross-regulation of cys-LT receptors
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Figure. Cross-regulation of the cysteinyl leukotriene receptors. CysLT1R func-
tion is inhibited both by direct physical interactions with CysLT2R or GPR17, and 
by heterologous, PKC-dependent phosphorylation by P2Y receptors. The lack of 
both CysLT1R and CysLT2R amplifies cutaneous responses to LTE4, suggesting 
that both classical receptors cross-regulate GPR99. The requirement for P2Y12 

receptors for the ability of LTE4 to amplify pulmonary eosinophilia could reflect 
an interaction with GPR99.
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sue edema induced by IgE-dependent passive cutaneous ana-
phylaxis.30 Thus, at least two GPCRs (CysLT2R and GPR17) 
dampen CysLT1R function by direct physical interactions. The 
fact that both direct and indirect mechanisms can limit signal-
ing through CysLT1R (Figure) implies that such limitation is crit-
ical for homeostasis of immune and inflammatory responses.

Cys-LTs in human allergic disease
Asthma and rhinitis

Based on their potencies as airway smooth muscle spasmo-
gens and inducers of vascular leak, cys-LTs were considered 
potential pathogenetic mediators of asthma and rhinitis de-
cades before the cloning of the cys-LT receptors. When admin-
istered by inhalation to asthmatic and nonasthmatic human 
subjects, both LTC4 and LTD4 induced bronchoconstriction at 
doses several log-fold lower than histamine.34-36 LTE4 was a 
weaker bronchoconstrictor than LTC4 and LTD4, but was ~1-log-
fold more potent in inducing bronchoconstriction in asthmatic 
subjects relative to nonasthmatic controls.37 Additionally, when 
delivered by inhalation, LTE4 caused the accumulation of eo-
sinophils and basophils in the bronchial submucosa of mild 
asthmatic subjects, whereas LTD4 did not.38 In retrospect, these 
findings not only implied that end-organ reactivity to LTE4 is 
specifically enhanced in asthma, but also suggested the exis-
tence of distinct receptors with a preference for binding and ac-
tivation by LTE4. 

Cys-LT production increases substantially in association with 
allergic inflammation and asthma, likely reflecting the activa-
tion of mast cells and eosinophils in the lesional tissues.39 Un-
fractionated leukocytes from subjects with asthma generate 
several fold higher levels of both LTB4 and LTC4 than do leuko-
cytes from the blood of nonasthmatic controls in response to 
stimulation with calcium ionophore.40 Urinary levels of LTE4 in-
crease during spontaneous asthma exacerbations,41 and corre-
late with decline in FEV1.42 Treatments with either zileuton, a 
5-LO inhibitor,43 or with antagonists of CysLT1R44 each reduce 
the frequency of asthma exacerbations. Intravenous Montelu-
kast increases peak expiratory flow rates in adult asthmatic sub-
jects presenting to the emergency department with airflow ob-
struction compared with placebo.45 These findings suggest that 
cys-LTs contribute substantially to exacerbations of asthma. 
CysLT1R antagonists also attenuate the magnitude of decline in 
FEV1 in response to allergen challenge.46 Cys-LT-generating en-
zymes are expressed by eosinophils, monocytes, and mast cells 
in nasal biopsies from subjects with allergic rhinitis,39 and CysL-
T1R and CysLT2R localize to both hematopoietic and non-he-
matopoietic cell types in the nasal tissue.39,47 Additionally, CysL-
T1R is expressed by human Th2 cells in peripheral blood from 
atopic subjects.48 Montelukast, alone or in combination with an 
H1 histamine receptor antagonist, is superior to placebo for re-
ducing nasal congestion in the treatment of seasonal allergic 
rhinitis.3 The effects of CysLT1R antagonists on rhinitis may re-

flect the actions of the cys-LTs on the vasculature as well as resi-
dent inflammatory cells.

AERD
AERD is characterized by adult onset asthma, severe rhinosi-

nusitis with nasal polyps, and idiosyncratic respiratory reac-
tions to aspirin and other nonselective inhibitors of cyclooxy-
genase (COX).49 Baseline levels of urinary LTE4 in subjects with 
AERD exceed the levels seen in aspirin tolerant asthmatic con-
trols by several fold, and increase further and markedly in re-
sponse to provocative challenge with aspirin.50 The administra-
tion of either Zileuton or CysLT1R antagonists attenuates the se-
verity of aspirin-induced bronchoconstriction in AERD.51 Both 
classes of drugs were also superior to placebo for improving si-
nonasal function.2,52 Thus, cys-LTs are involved in both the up-
per and lower respiratory tract pathology typical of AERD. 

Eosinophils are the most abundant effector cell in bronchial 
and nasal biopsies from patients with AERD, and show over-ex-
pression of LTC4S protein relative to eosinophils in biopsies 
from aspirin tolerant controls.53,54 Platelets, which lack 5-LO, 
also express LTC4S and can convert granulocyte-derived LTA4 
to LTC4 through a transcellular mechanism.55 In the blood and 
nasal polyps from patients with AERD, eosinophils, monocytes, 
and neutrophils display markedly increased numbers of adher-
ent platelets compared to samples from aspirin tolerant con-
trols.56 These adherent platelets contribute as much as 60% of 
the LTC4S activity associated with peripheral blood granulo-
cytes obtained from subjects with AERD, and the percentages 
of blood granulocytes that are platelet-adherent correlated 
strongly with the levels of urinary LTE4.56 Mast cell activation ac-
companies the responses to aspirin challenge in AERD,57 and 
the administration of mast cell stabilizing cromone drugs 
blocks the rise in urinary LTE4 that accompanies reactions.58 
Collectively, these studies suggest that the dysregulation of cys-
LT production in AERD reflects several cell types. Recently de-
veloped models of AERD in mice (see below) may more pre-
cisely define the cellular and molecular mechanisms responsi-
ble for dysregulated cys-LT production in AERD.

In addition to dysregulated cys-LT generation, subjects with 
AERD show enhanced end-organ reactivity to cys-LTs. Com-
pared with aspirin tolerant asthmatic controls, individuals with 
AERD demonstrate bronchoconstriction in response to inhaled 
LTE4

59 and LTD4
60 at significantly lower doses. The numbers and 

percentages of CysLT1R-positive mast cells, eosinophils, and 
monocytes in nasal biopsies from patients with AERD exceed 
those observed in the tissues of aspirin-tolerant asthmatic con-
trols.47,61 CysLT1R expression on hematopoietic cells decreases 
following desensitization to aspirin,61 a procedure that attenu-
ates bronchial reactivity to LTE4.62 The numbers and distribu-
tions of CysLT2R-positive cells do not differ between aspirin tol-
erant asthmatics and subjects with AERD. Interestingly, bron-
chial reactivity to inhaled LTD4 in AERD or aspirin tolerant 
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asthma does not correlate with the numbers of CysLT1R- or 
CysLT2R- expressing cells in bronchial biopsies.60 It is tempting 
to speculate that non-classical receptors, such as GPR99, may 
account for a component of the end organ responsiveness to 
cys-LTs (particularly to LTE4) observed in AERD.  

Understanding functions of the cys-LTs and their receptors in 
mice

The development of mice lacking LTC4S (Ltc4s–/–), CysLT1R 
(Cysltr1–/–), CysLT2R (Cysltr2–/–), and both receptors (Cysltr1/
Cysltr2–/–) has permitted in-depth studies of the role of cys-LTs 
in immune and inflammatory responses. These studies have 
revealed complex and, in some instances, unanticipated func-
tions for cys-LTs and their receptors in a variety of biologic re-
sponses detailed below.

Vascular leak
In a mast cell and IgE-dependent model of passive cutaneous 

anaphylaxis, Ltc4s–/– mice displayed reductions in ear skin swell-
ing of ~50% compared to wild-type (WT) mice .63 Intraperitoneal 
injections of zymosan, a yeast cell wall glycan that elicits LTC4 gen-
eration from macrophages, induced vascular leak that was re-
duced in both the Ltc4s–/– and Cysltr1–/– strains by ~50% com-
pared with WT controls.63,64 The responses of Cysltr2–/– mice were 
equivalent to those of WT controls. Thus, CysLT1R plays a key role 
in mediating vascular leak in models where cys-LTs are generated 
in response to antigen- or pathogen-dependent stimuli. 

To determine whether additional cys-LT receptors participat-
ed in vascular leak, we subjected Cysltr1/Cysltr2–/– mice to di-
rect intracutaneous challenges with cys-LTs. Surprisingly, LTC4 

and LTD4 induced tissue edema in Cysltr1/Cysltr2–/– mice that 
was comparable to WT mice, and LTE4 induced marked tissue 
edema in this strain, with 64-fold enhanced sensitivity to LTE4 

over the WT controls. This enhanced response to LTE4 was in-
hibited by pretreatment of the mice with pertussis toxin and a 
Rho kinase inhibitor, suggesting that it was mediated by a pre-
viously unrecognized G protein-coupled cys-LT receptor with a 
preference to LTE4.65 Given that GPR99 bound LTE4 in transfect-
ed cells, we generated Gpr99–/– and Gpr99/Cysltr1/Cysltr2–/– 
mice for comparison with WT and Cysltr1/Cysltr2–/– mice. 
GPR99 deletion from the Cysltr1/Cysltr2–/– mice eliminated 
the vascular leak in response to the cys-LT ligands, indicating 
that GPR99 is likely to be a true cys-LT receptor. Furthermore, 
the Gpr99–/– mice showed a dose-dependent loss of LTE4-me-
diated vascular permeability, but not to LTC4 or LTD4, suggest-
ing a preference of GPR99 for LTE4.20 

Th2 Immunity
Lung Th2 immunity to the house dust mite Dermatophagoi-

des farinae (Df) requires stimulation of the myeloid C-type lec-
tin receptor, Dectin-2.66,67 Based on a protocol of sensitization of 
naive WT mice by means of adoptive transfer of Df-pulsed den-

dritic cells (DCs), Th2 responses to Df require the expressions 
of LTC4S and CysLT1R by DCs. Interestingly, both Cysltr2–/– 
mice and Gpr17–/– mice showed markedly augmented eosino-
philic pulmonary inflammation, serum IgE, and Th2 cytokine 
generation in response to Df sensitization and challenge com-
pared to WT controls.18 Df-pulsed DCs derived from Cysltr2–/– 
mice and Gpr17–/– mice induce an enhanced pulmonary eo-
sinophilic and Th2 immune response in WT mice when com-
pared with WT DCs. The enhanced response induced by 
Gpr17–/– DCs was eliminated by introduction of the Cysltr1–/– 
allele,68 whereas the introduction of the Ltc4s–/– allele eliminat-
ed the potentiation of Th2 immunity induced by transfer of 
Cysltr2–/– DCs.69 Thus, constitutive downregulation of CysLT1R 
function by GPR17 and CysLT2R may be critical to maintain ho-
meostasis during the induction of Th2 immunity, at least to al-
lergens (and potentially microbes) that bear ligands for Dec-
tin-2. 

Activation of innate lymphoid cells
Type 2 innate lymphoid cells (ILC2) are innate lymphocytes 

that release large quantities of IL-5 and IL-13 when activated by 
cytokines, such as IL-33, IL-25, or thymic stromal lymphopoi-
etin (TSLP), derived from epithelial cells.70 A recent study impli-
cated the cys-LTs in the activation of ILC2 cells. Intrapulmonary 
challenge of mice with an extract from the mold Alternaria al-
ternata strongly induced the generation of cys-LTs in the lung, 
and the recruitment and activation of ILC2.71 ILC2 expressed 
CysLT1R, and responded to stimulation in vitro and in vivo with 
LTD4 by proliferating and releasing cytokines. Interestingly, 
while both LTD4 and IL-33 caused lung ILC2 to generate IL-5 
and IL-13, only LTD4 caused them to generate IL-4. Ex vivo 
stimulation of lung ILC2 with either LTD4 or LTE4 caused the 
production of IL-5. While the IL-5 production in response to 
LTD4 could be blocked by Montelukast, LTE4-induced IL-5 pro-
duction was resistant to Montelukast. This study suggests that 
cys-LTs can contribute to Th2 immunity through direct actions 
at ILC2. These effects reflect cys-LT actions both classical and 
nonclassical receptors that can induce effector cytokine pro-
duction.    

Platelet-dependent pulmonary eosinophilia
Platelets are essential for the development of pulmonary eo-

sinophilia and airway remodeling in mouse models of ovalbu-
min (OVA) sensitization and challenge.72,73 Activated platelets 
express P-selectin, which permits their adherence to leukocytes 
and primes leukocytes for directed migration via integrins. 
Mouse and human platelets express both CysLT1R and CysL-
T2R,74,75 as well as the P2Y12 receptor, a homologue of the cys-LT 
receptors that binds ADP. Stimulation of mouse platelets with 
LTC4 strongly induces their expression of P-selectin in an en-
tirely CysLT2R-dependent manner, while LTD4 or LTE4 are inac-
tive. Intratracheal administration of LTC4, but not LTD4, mark-
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edly amplifies the recruitment of eosinophils to the airways of 
sensitized mice challenged with low-dose OVA. This amplifica-
tion requires platelets, and is attenuated in Cysltr2–/– mice, 
suggesting a direct stimulatory effect of LTC4 on platelet-associ-
ated CysLT2R in the lung vasculature. 

Although LTE4 fails to directly activate mouse or human plate-
lets in vitro,75,76 intratracheal administration of LTE4, like that of 
LTC4, potentiates OVA-induced eosinophilia in a platelet-de-
pendent manner in WT mice.76 In this model, LTE4 is fully ac-
tive in Cysltr1/Cysltr2–/– mice, suggesting that it acts at a non-
classical cys-LT receptor. Both the effects of LTE4 (in vivo) and 
of LTC4 (in vivo and in vitro) depend exquisitely on the P2Y12 re-
ceptor.75,76 A computer modeling study predicted that P2Y12 re-
ceptors might recognize LTE4 as a surrogate ligand,77 and LTE4 
elicits calcium flux77 and phosphorylation of extracellular signal 
regulated kinase76 in transfected cells over-expressing human 
P2Y12 receptors. Nonetheless, radiolabeled LTE4 does not di-
rectly bind to microsomal membranes from P2Y12 receptor-ex-
pressing transfectants. It is presently unknown whether the in-
volvement of P2Y12 in LTE4-dependent signaling responses and 
airway inflammation reflects a direct interaction between P2Y12 
receptors and a bona fide LTE4 receptor, such as GPR99. The 
therapeutic potential of drugs that block P2Y12 receptors in 
asthma or AERD is unexplored. 

AERD-like models 
Although several cellular abnormalities in eicosanoid synthe-

sis and receptor function have been described in AERD,49 the 
lack of a valid model of the disease has restrained progress in 
defining the key pathogenetic steps. Hirata et al. generated a 
transgenic mouse strain over expressing LTC4S and examined 
the phenotype in OVA-induced pulmonary inflammation with 
or without treatment with a COX inhibitor, sulpyrine.78 OVA-
challenged LTC4S-transgenic mice, but not similarly treated WT 
mice, demonstrated a significant increase in airway resistance 
by sulpyrine treatment. This is associated with increases in LTC4 
and LTB4 in bronchoalveolar lavage (BAL) fluid in sulpyrine-
treated OVA-challenged transgenic mice. Importantly, the in-
crease in airway resistance was inhibited by Pranlukast, a CysL-
T1R antagonist. This study demonstrates that the pathogno-
monic feature of aspirin-induced bronchoconstriction can be 
reproduced in a mouse model, and suggests that the overex-
pression of LTC4S described in tissues from patients with 
AERD53 has a potentially causal role. 

Prostaglandin E2 (PGE2) controls cys-LT generation by activat-
ing PKA and inducing phosphorylation of 5-LO.79 Tissue in-
flammation is typically associated with increased PGE2 produc-
tion, reflecting the co-expression of 2 inducible enzymes; COX-
2 (a largely aspirin-resistant enzyme) and microsomal PGE2 
synthase-1 (mPGES-1), which isomerizes COX-2-derived PGH2 
to PGE2.80 Nasal polyps from subjects with AERD contain less 
PGE2 than nasal polyps from aspirin tolerant controls,81 possi-

bly relating to epigenetic modifications of COX-282 and/or mP-
GES-1 expression.83 Mice lacking mPGES-1 (Ptges–/–) cannot 
upregulate PGE2 production with inflammation, and display a 
remarkably AERD-like phenotype when subjected to a model 
of Df-induced pulmonary disease. Compared with WT con-
trols, Ptges–/– mice show increased eosinophilic inflammation 
and levels of cys-LTs in the BAL fluid. Challenge with inhaled 
lysine aspirin causes marked increases in airway resistance, ro-
bust release of cys-LTs, and pulmonary mast cell activation in 
the Ptges–/– strain, but not in WT controls.84 Aspirin challenge 
profoundly depletes lung PGE2 in the Ptges–/– mice, but not in 
the WT controls, suggesting that the mPGES-1 is needed to 
maintain PGE2 levels when COX-1 is inhibited. Ptges–/– mice 
also show increased numbers of platelet-adherent granulocytes 
in both the peripheral blood and lungs compared with WT 
controls. Importantly, cys-LT production, mast cell activation, 
and the changes in airway resistance were blocked by depletion 
of platelets or blockade of the TP receptor for thromboxane A2. 
This model may be useful in defining the potential pathogenet-
ic role of GPR99, CysLT2R, and P2Y12 receptors in AERD, as well 
as unraveling the complex interplay between cys-LTs, platelets, 
and mast cells that lead to the physiologic response to aspirin 
challenges.  

CONCLUSIONS

While the drugs capable of inhibiting cys-LT formation and 
blocking CysLT1R are useful, it is clear that the cys-LT system is 
far more complex than initially appreciated. The involvement 
of the cys-LTs in the induction of Th2 immunity and the effec-
tor phase of the immune response suggests additional potential 
applications for currently available pharmacologic agents. 
However, the recognition that cys-LTs act through at least three 
receptors and the resistance of 2 of these (CysLT2R and GPR99) 
to the blockade by currently available drugs presents both chal-
lenges and opportunities for further therapeutic development. 
The availability of a broad array of valid animal models should 
facilitate progress in this area, while continuing to reveal unan-
ticipated biological functions for the cys-LTs and their recep-
tors. 
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