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Abstract 

 

Physicians have long puzzled over a well-known phenomenon: different patients 
respond differently to the same treatment.  Although many explanations exist, 
pharmacogenetics has now captured the medical imagination.  While this might 
seem part of the broader interest in all things genetic, the early history of 
pharmacogenetics reveals the specific factors that contributed to the emergence of 
genetics within pharmacology.  This paper examines the work of one pioneering 
pharmacologist, Werner Kalow, to trace the evolving intellectual formations of 
pharmacogenetics and, in particular, the focus on race.  Working in the 1950s and 
1960s, Kalow made three arguments to demonstrate the relevance of genetics to 
pharmacology, based on laboratory techniques, analogies to differences between 
other animal species, and appeals to the logic of natural selection.  After 
contributing to the emergence of the field, Kalow maintained his advocacy for 
pharmacogenetics for four decades, collecting more evidence for its relevance, 
navigating controversies about race and science, and balancing genetics against 
other possible explanations of patient variability.  Kalow’s work demonstrates the 
deep roots of the genetic and racial preoccupations in pharmacology.  
Understanding this history can restore attention to other explanations of 
individuality in medical practice, something of increasing importance given the 
current interest in personalized medicine. 
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  In 1962 Toronto pharmacologist Werner Kalow published 

Pharmacogenetics, the first full length treatment given to a new science that 

explored how genetic traits influenced the safety and effectiveness of medications.1  

When he presented his work at the New York Academy of Sciences that October, 

the New York Times ran both an article and an editorial about his findings.2  

Kalow’s book drew interest at the time because it offered an explanation for 

something that increasingly vexed physicians.  Physicians had known and expected 

for millennia that different people responded differently to their ministrations.  

Skilled physicians tailored both diagnosis and therapy to each patient.  With the 

rise of laboratory medicine in the late nineteenth century, however, standardized 

diagnosis and treatment increasingly became the goal of medical thought and 

practice.  Patients’ bodies did not cooperate: idiosyncratic reactions often 

accompanied the introduction of new drugs.3  Even as physicians achieved 

unprecedented pharmacological capabilities in the decades after World War II, 

their actual experience with treatment outcomes forced them to re-engage with the 

puzzle of patient variability.  How could it be explained?  How could these 

explanations be used to optimize the safety and efficacy of medicine? 

 In the fifty years since Kalow published his book, genetics has come to 

dominate the answers to these questions.  For instance, when Francis Collins and 

Margaret Hamburg, the heads of the National Institutes of Health and the Food and 

Drug Administration, described their vision for “personalized medicine,” their 
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concerns were exclusively genetic.4  It is tempting to see pharmacogenetics simply 

as one of many examples of the current popularity of all things genetic.5  Its actual 

emergence, however, was the result of deliberate strategies to demonstrate the 

existence and relevance of genetic determinants of drug response.  When 

physicians and researchers began to focus on the puzzle of individual variation in 

drug response in the late 1940s, they had recognized three basic modes of 

explanation: heredity, environment, and behavior. Kalow’s work demonstrates how 

one influential researcher made the case that one of these factors -- genetics -- 

deserved special attention. 

 Kalow did not rely on traditional techniques of genetic analysis that traced 

traits across families in order to demonstrate their inheritance.  Instead, he 

developed three different kinds of arguments.  First, he used new techniques of 

pharmacology and enzyme biochemistry, especially spectrophotometry, to quantify 

pharmacological individuality in ways that made difference legible, and eventually 

genetic.  Second, he drew analogies between drug reactions in humans and other 

animal species: pharmacologists’ use of a menagerie of animal models provided an 

influential precedent for thinking about differences between individuals and 

between species.  Third, he appealed to the logic of natural selection and wove 

pharmacologists’ findings into evolutionary narratives that justified the existence 

and relevance of individual difference.  These last two arguments, in turn, 

introduced race into pharmacogenetics and forced pharmacologists to engage with 
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the politics of race and science, a move with consequences that remain relevant 

today. 

 Kalow was not the only person responsible for the emergence of 

pharmacogenetics in the 1950s, nor was he the only person to make these sorts of 

arguments.  He did, however, play a central role in the consolidation of 

pharmacogenetics as a specific field.6  Despite this, he has received no serious 

attention from historians of medicine or science.7  Anthropologists and sociologists, 

who have studied pharmacogenomics,8 have focused on developments since the 

1990s.9  This paper offers a partial solution to this gap.  By recovering Kalow’s 

history, it offers insight into the interests and strategies that influenced the 

emergence of pharmacogenetics.  And since his career spanned six decades, from 

its origins in post-war Berlin until his death in 2008, it also reveals important 

aspects of the subsequent development of the field.  Two issues are especially 

relevant. 

 First, Kalow’s work over his long career shows how race emerged as a 

central concern at the origins of the field and has remained an irresistible attraction 

for pharmacologists.  This persistent presence offers a warning to current 

researchers who dismiss concerns about race and medicine by arguing that race-

based prescribing is simply a passing phase on the road to a fully personalized 

medicine.  Second, the current preeminence of pharmacogenetics was not 

foreordained.  Although Kalow and the New York Times had been impressed with 

pharmacogenetics in 1962, the field made slow progress and remained on the 
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margins of medical science into the 1990s.  Other researchers looked to other 

determinants of drug response, especially the impact of food and environmental 

toxins, and increasingly the problem of non-compliance.  The choices that 

researchers made about which explanations to emphasize shed light on how their 

values and interests shaped the contingent development of a scientific field.10  An 

appreciation of the complexity of this history offers models for physicians and 

scholars today interested in recovering other ways to personalize medicine. 

 

An Accidental Pharmacogeneticist 

 In 1947, amid the chaos of post-war Berlin, two patients died after receiving 

routine doses of procaine [Novocain], a topical anesthetic.  Hans Herken, a 

professor of pharmacology at the University of Berlin, suspected that endemic 

malnutrition in the devastated city had left the patients with a deficiency of a 

crucial metabolic enzyme.  But he had no proof.  He assigned the problem to a 

young pharmacologist, Werner Kalow.11 

 Kalow had never intended to become a pharmacologist.  As a medical 

student in Germany and Austria in the late 1930s, he had dabbled in research -- for 

instance, conducting bird surveys on the Baltic coast in the summer of 1937.  

Drafted into the German Navy in 1938, he was allowed to complete his medical 

studies.  He submitted his thesis, on the effects of adrenal extracts on blood 

pressure, in 1941.  While interning at a naval hospital in South Holland in 1942, he 

inadvertently insulted a visiting German admiral.  The admiral promptly assigned 
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him to be the ship surgeon on a blockade runner, a degrading and dangerous 

assignment.  After several nearly catastrophic attacks by allied bombers, the ship 

escaped European waters and delivered its cargo, a hydroelectric generator, to 

Japan.12 

 The return trip did not go as well.  The Allied blockade of Europe stranded 

the crew in the Japanese Empire until 1944.  Then a United States destroyer sunk 

the ship off the coast of Brazil and took the crew as prisoners of war.  Kalow ended 

up at a large POW camp, Papago Park, near Phoenix, Arizona.  This proved to be a 

blessing.  Since the war had left stateside hospitals short-staffed, the Army recruited 

Kalow to work as an intern, allowing him to complete his medical training while a 

POW.  When he returned to Germany in 1946, he tried his hand at clinical work.  

He quickly decided to seek a career in research instead.  His choice of specialty 

was a political one.  Most of the University of Berlin, including the Pathology 

Department, had ended up in the Russian sector.  The Pharmacology Department, 

however, had been bombed during the war and was rebuilt in the American sector.  

Kalow chose to stick with the Americans and become a pharmacologist.  He began 

his work in January 1947.13 

 Kalow’s initial work took up a basic question in pharmacology: what 

happens to a drug when it enters the body.  He completed a study of one poison, 

phenylethanolamine.14  When the two patients mentioned above died after a 

typical dose of procaine, Herken asked Kalow to figure out what had happened.  

Researchers in the United States, led by Bernard Brodie, had recently identified a 
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specific enzyme, procaine esterase, that metabolized this drug.  Had malnutrition 

somehow altered its function?  Kalow performed studies on human serum to find 

out.15 

 The work was difficult.  Kalow had no way to measure directly the level of 

an enzyme in serum.  He could, however, measure drug levels with a 

spectrophotometer.16  With this device, he could shine a light on a sample and 

analyze the absorption spectrum.  As an enzyme metabolized the drug, the 

concentration fell and the absorption spectrum changed.  The rate of change of 

concentration correlated with the level of enzyme activity.  However, to do this 

Kalow needed a roomful of equipment, including a photomultiplier tube donated 

by the U.S. Army, and a physicist to generate the needed wavelengths of ultraviolet 

radiation.17  Kalow persevered with the device and his work caught the attention of 

a delegation of visiting American scientists.  One offered him a fellowship at the 

University of Pennsylvania, where he joined a team working on cardiac 

physiology.18 

 On arriving in Philadelphia in late 1949, Kalow found a new device, a 

Beckman DU Quartz Spectrophotometer.19  This desktop box could do on its own 

what had required a roomful of equipment and a physicist in Berlin.  Able to work 

more quickly, Kalow showed that one enzyme, serum cholinesterase, metabolized 

many local anesthetics, including procaine and dibucaine, as well as 

acetylcholine.20  Tutored in enzyme biochemistry by Britton Chance, Kalow 

conducted sophisticated studies of enzyme competition and inhibition.  Reaction 
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rates depended on how tightly enzymes bound their substrates.  This, in turn, 

depended on enzyme structure.21 

 Offered a faculty position in the Department of Pharmacology at the 

University of Toronto in 1951, and eager to avoid being drafted a second time-- 

this time into the United States Army for the Korean War -- Kalow moved once 

more.  He worked on a variety of projects at first.  One project, conducted with the 

Toronto police, used a Harger Drunkometer to quantify alcohol levels in 

intoxicated drivers after accidents.22  He also continued his more traditional work 

in pharmacology and used a spectrophotometer to study curare and procaine.23 

 Kalow soon returned to his true passion, cholinesterase.  During the war, a 

Toronto team had used a cumbersome but precise gasometric technique to study 

enzyme activity.  When Kalow demonstrated his spectrophotometer, they were 

impressed by its speed and simplicity.  But they wondered whether it would also 

work on the rare patients that they had found with low cholinesterase activity.24  

This had become a problem of growing clinical interest.  Donald Gunn, a 

psychiatrist at the Ontario Hospital in New Toronto, had recently begun using 

succinylcholine as a paralyzing agent for electroconvulsive therapy.  The drug’s 

fleeting action was well suited for the quick procedure.  Since Gunn’s patients 

received multiple treatments over weeks or months, it was easy to study their 

reactions to varied doses of the drug (Figure 1).  Gunn had already found two 

patients who experienced prolonged apnea.  One poor man remained paralyzed, 

while awake, for 45 minutes.  Gunn and Kalow began collaborative studies, taking 
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118 patients through ECT treatments with doses of succinylcholine ranging from 30 

to 1000 mg.25  Results showed that the problem was not low enzyme 

concentration, but low enzyme affinity for its substrates.  Since affinity depended 

on enzyme structure, and enzyme structure depended on amino acid sequence, the 

difference must have been genetic.  When he presented his findings at the 

Canadian Physiological Society in October 1954, it made front-page news.26 

 Kalow and Gunn expanded their studies to include 443 students, 346 

laborers, 1228 people tested for syphilis, and 2442 psychiatric patients.  In one 

extreme case, a psychiatric patient experienced 157 minutes of complete paralysis 

from a dose that generally produced just five to ten minutes of paralysis; it took a 

full eight hours for the patient to recover respiratory function.27  Kalow pursued 

large scale testing so that he could be confident in his results before publishing.  

The delay cost him dearly: he got scooped.  In July 1956 a London group published 

in Lancet a report on a family with low cholinesterase activity.28  Kalow felt the 

sting: “Such little incidents can be damaging to a scientist who thereby loses 

priority in public view -- even if not in his or her own mind.  Lesson to a scientist: 

always publish as fast as you can.”29  Kalow drafted a brief account of his own 

work and published it as a letter in Lancet that September.30  He worked quickly 

and published detailed accounts of many aspects of his work.  While the London 

group had looked only at phenotype, distinguishing normal from atypical activity, 

Kalow’s quantitative analyses using enzyme inhibitors revealed an intermediate 
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level of activity.31  Studies of seven families in Ontario, Quebec, New York, and 

Michigan confirmed a Mendelian pattern of inheritance. 

 It was not just these specific experimental results that fueled Kalow’s interest 

in genetics.  The social-scientific contexts of his work made genetics a promising 

result for an aspiring young scientist.  When Kalow arrived in Toronto in 1951, 

genetics remained on the periphery of medical science.  This changed over the 

next decade, prompted by rapid discoveries in the emerging field of molecular 

biology.32  Recognizing the opportunity, Kalow realized that he needed to learn 

more about the new science.  He apprenticed himself to the local professor of 

genetics, Norma Ford-Walker.  He participated in a 1959 Ciba Foundation 

Symposium on the Biochemistry of Human Genetics where he joined notables 

including Luca Cavalli-Sforza, Salvador Luria, Joshua Lederberg, Macfarlane 

Burnet, and James Neel.33 

 Kalow read widely and learned much that seemed relevant to 

pharmacology.34  Genes controlled antibiotic resistance in bacteria, chemotherapy 

resistance in tumors, and pesticide resistance in insects.  One family of dogs, like 

his first patients in Berlin, had died from routine doses of procaine.  He read about 

two recently described pharmacologic variants in humans.  Some patients 

developed hemolytic anemia after primaquine prophylaxis for malaria.  Others 

suffered hepatitis or peripheral neuritis after tuberculosis treatment with isoniazid. 

 Kalow also found inspiration in the old insights of Archibald Garrod about 

human metabolic variation.35  Garrod, who studied cases of familial alkaptonuria, 
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wrote in 1902 that metabolic variations between humans should be no more 

surprising than the familiar anatomic variations.36  Scientists working for the League 

of Nations grappled directly with this problem as they worked to standardize 

measures of the potency of hormones and realized that drug response varied from 

person to person.37  The existence of genetic influences on drug response seemed 

obvious, appropriate, and relevant. 

 Kalow compiled his research and literature review into his 1962 

Pharmacogenetics.  His readers could find everything from a primer about the 

genetics of bacteria, insects, and mammals, to discussions of abnormal drug 

reactions caused by metabolic variations, his own work on serum cholinesterase, 

and why asparagus altered the aroma of urine in some people but not others.  

Although he knew that these were obscure topics, he saw much promise in the 

field: “One may ask whether the field of investigation here called 

pharmacogenetics is the end of a road or the beginning of a new one.  There are 

many signs which suggest that the number of established instances of a hereditary 

control of pharmacologic responsiveness will considerably increase in the near 

future.”38 

 Thoroughness again cost him priority.  As he worked on this long project, 

American geneticist Arno Motulsky published a 1957 article in the Journal of the 

American Medical Association that described the intersection of pharmacology and 

genetics, suggesting that adverse drug reactions could arise from “otherwise 

innocuous genetic traits or enzyme deficiencies.”39  German pharmacologist 
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Friedrich Vogel coined the term “pharmacogenetics” in 1959.  Despite this, 

Kalow’s book still generated considerable interest.41  When he presented his work 

at the New York Academy of Sciences in October 1962, it was picked up by the 

New York Times.  As described in an editorial, “differences in genetic make-up 

between individuals make for radically different degrees of risk in taking drugs.”42  

With the thalidomide scandals in 1961 and the Kefauver hearings from 1959 to 

1962, there was great interest in anything that might improve drug safety. 

 

The Technology of a Genetic Argument 

 It is worth looking closely at how Kalow made his case that individual 

variation in drug response was under genetic control, and how his strategies related 

to broader developments in the history of genetics and molecular biology.  Kalow 

developed three arguments in parallel, based on the technology of biochemical 

enzymology, on an analogy to animal models, and on an appeal to the intuitive 

logic of natural selection. 

 The first argument depended on his laboratory practice.  Kalow collected a 

blood sample and spun it down to isolate the serum.  He diluted the serum and 

added a substrate, benzoylcholine.  Using a spectrophotometer, he shined a light 

across the sample and recorded the absorption spectrum in order to measure 

substrate concentration.  The rate of change of concentration over time measured 

enzyme activity.  This was one of many ways that pharmacologists employed 

spectrophotometers in their research in the 1950s.43  Kalow, however, developed a 
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special trick.  He took a second sample and added both the substrate and an 

inhibitor -- dibucaine.  By repeating the measurements, he could measure inhibited 

enzyme activity.  He called the degree of inhibition caused by dibucaine, 

expressed as a percentage, the “Dibucaine Number” (DN).  Calculated in this 

manner, the DN did not depend on the concentration of the enzyme in the serum.  

Instead, it depended on something more fundamental, the affinity of the enzyme’s 

binding sites for different substrates.  Binding affinity, in turn, depended on the 

physical structure of the enzyme.  Since enzyme structure depended on its amino 

acid sequence, the structure and the resulting affinity and enzyme function had to 

be under genetic control.  The DN was, as Kalow concluded, “genetically 

determined.”44 

 Kalow’s experimental method made an occult process legible and reduced it 

to a single number for each patient and to a graph of DN distribution in the 

population of patients studied.45  This facilitated comparisons between individuals 

and between groups and enabled the construction of arguments about difference.  

Kalow’s methods produced a very different argument for genetic causation than the 

traditional method of tracing a trait through a family tree.  Genetic research, from 

Mendel’s peas to Davenport’s eugenic family histories or Morgan’s fruit flies, had 

relied on intuitive notions of heritability.46  If a trait bred true from one generation 

to the next, it must be heritable which meant, by the mid-twentieth century, that it 

was carried by a gene.47  Such studies of human genetics depended on careful 

reconstruction of family lineages.  Kalow’s method, in contrast, allowed arguments 
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to be made about genetics based only on only on the study of living, unrelated 

individuals. 48 

 The technique, however, did allow Kalow to make more familiar kinds of 

genetic arguments.  For instance, when Kalow plotted the DN of research subjects 

and their families, he found a trimodal distribution (Figure 2).  Most people had a 

DN between 70 and 90.  Others ranged between 40 and 70.  A very few 

individuals had DN’s of less than twenty.49  Kalow read this distribution as 

evidence of two basic levels of activity, high and low, caused by two different 

enzyme forms, active or not, generated in turn by two different genetic alleles.  He 

interpreted intermediate activity as evidence of heterozygosity: individuals with 

one active and one inactive allele.  DN, the product of a complex analysis of 

spectrophotometry and enzyme biochemistry, appeared to be a conventional 

Mendelian trait.  This kind of argument about intermediate forms as evidence of 

Mendelian inheritance had been recently and famously made by both Linus 

Pauling and James Neel for the inheritance of sickle cell anemia.50 

 The parallels between Kalow’s work and that of Neel and Pauling raises 

important questions the place of pharmacogenetics in the development of 

molecular biology.  Historians of molecular biology have focused on several 

stories: how researchers studied the relations of nucleic acids and proteins to the 

flow of genetic information, and how they deciphered the structure of proteins and 

nucleic acids in order to understand their function.51  This research depended 

significantly on the import of new laboratory technologies from the physical 
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sciences into the life sciences, especially electron microscopes, x-ray 

crystallography, ultra-centrifuges, radioisotope probes, and spectrophotometry.52  

But there were other important topics for which researchers attempted to unlock 

the molecular secrets of life.  The Rockefeller Foundation, for instance, funded 

research on photosynthesis and bioenergetics, as well as on enzyme biochemistry 

more broadly.  Much of this work relied on spectrophotometry.53  The researchers 

themselves saw the field broadly.  G. Montalenti, in the opening remarks of the 

Ciba Foundation’s 1959 symposium described valuable work on both structural 

analysis of genes and chemical analysis of gene expression.54  The latter is where 

Kalow’s work fit in. 

 Kalow was not interested in the specific structure of cholinesterases or in the 

genes responsible for them.  Instead, he focused simply on describing their function 

and variations.  While this might seem peripheral compared to the work on the 

double helix that has received so much attention, molecular biologists in the 1950s 

were quite interested in his work.  Kalow, for instance, presented his work on 

cholinesterase variants at the 1959 symposium.  Other speakers emphasized the 

importance of work on drug metabolism.  L.S. Penrose, who directed the Galton 

Laboratory at the University of London, described the value -- to geneticists -- of 

the identification of drug metabolizing variants: “Any gene may be abnormal in a 

particular environment.  In this connexion, it is noteworthy that entirely 

unsuspected genetical sensitivities to artificial new environments produced by 

synthetic drugs have been brought to light.”55  Luca Cavalli-Sforza similarly 
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described the interest of “genetical analysis” of drug response variants.56  Kalow 

had a particular approach to genetics, one grounded in the concerns and 

techniques of medical pharmacology.  His methods, however, allowed him to 

make powerful arguments about the genetic determinants of drug metabolism and 

engage the burgeoning community of molecular biology. 

 

Animal Pharmacology and the Argument by Analogy 

 Even as Kalow explored the details of enzyme function and its genetic 

determinants, he also looked to the level of organisms and species in order to make 

claims about the relevance of genetics.  When Kalow began his work in 

pharmacology in 1947, he quickly learned that different species responded 

differently to drugs and poisons.  His initial study of the poison 

phenylethanolamine found markedly different effects in different animal species.57  

When he moved on to procaine, he learned that it too had species-specific effects.  

Long used as a local anesthetic in humans, procaine had recently generated 

attention as a doping agent in horse racing: in horses, it acted as a central nervous 

system stimulant.58  His work revealed a possible basis for this effect: human and 

equine procaine esterases had different affinities for different substrates.  Humans, 

for instance, metabolized procaine 16-times faster than horses did.59  This interest 

in species differences followed Kalow to North America.  When he studied cardiac 

physiology in Philadelphia, his results differed from those reported by another 

team.  He suspected that inter-species variation explained the discrepancy: “We 
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have no explanation for the divergence of our findings (vasodilatation) from those 

of MacDowall (vasoconstriction) other than a species difference since his 

experiments were made on cats and ours on dogs.”60  When he moved to Toronto 

and began studies on curare, he found that its potency varied significantly between 

frogs and mammals.61  During his initial years there, he had to earn extra money by 

testing horses at a local racetrack for morphine.  Like procaine, it had stimulant 

effects in horses and had been banned as a doping agent.62 

 Intrigued by these results, he surveyed the literature in search of other 

examples of differences in drug response between animals.  He found many.  The 

story began with rabbits.  In 1852 a Viennese scientist noted that a population of 

rabbits survived on a diet of belladonna leaves.  This was notable because 

belladonna, also known as deadly nightshade, contained atropine, an alkaloid that 

would be lethal to most mammals.  Follow up studies in 1910 found that certain 

rabbits, but not all of them, possessed an atropine esterase that rendered 

belladonna harmless.  Most scientists dismissed these findings.  Kalow later 

speculated that “the time was not ripe for an acceptance of the idea that there are 

pharmacogenetic differences between various stocks of rabbits.”63  Subsequent 

study, however, confirmed the existence of the atropine esterase that allowed 

rabbits to thrive in fields of belladonna that would have left other animals wide-

eyed or dead.  A 1943 study, for instance, found that roughly half of 181 rabbits 

tested possessed the enzyme.  The prevalence varied between rabbit populations.  

While “a New Zealand White race” lacked the esterase completely, other strains 
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had it in many individuals, and still others, including “a pure chincilla race,” 

produced both enzyme-possessing and non-enzyme-possessing bunnies.  This 

pattern “suggests the existence of racial differences,” at least among rabbits.64 

 Kalow found many other relevant examples.  Horses, humans, rabbits, and 

monkeys all had different levels of esterase activity; goats and cows had none.65  

Dogs were poor acetlyators.  Sheep lacked glucose-6-dehydrogenase.  Morphine 

response differed radically: “Some people always react to morphine like cats--with 

excitement; most people react like dogs and become sedated.”66  Species 

differences were most obvious with insecticides.  The goal was to find chemicals 

that killed insects with minimal toxicity to humans and other mammals.  Evidence 

of inter-species differences in drug metabolism posed a challenge for scientists who 

wanted to extrapolate from animal research to human use.  As Kalow warned, “the 

fate of the drug may vary substantially from species to species, and conclusions 

reached by studying the fate of the drug in other species are not directly applicable 

to man.”67 

 Kalow also found evidence of variation at a finer level, between strains of 

the same species.  Only certain rabbit races had atropine esterase.  Harvard rats 

could tolerate a 44-mg dose of thiourea, but Hopkins rats could only tolerate 4 mg.  

This was not a function of Harvard stalwartness: some wild-type Norway rats could 

survive 1340 mg.68  When a laboratory catastrophe in Bar Harbor exposed 

countless mice to chloroform, mortality rates ranged between zero and 74% across 

different strains.  Susceptibility to alcoholism varied as well.  While many rats 
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strains avoided alcohol, “one strain easily became drunkards when given a 

vitamin-deficient diet.”69  As Kalow later wrote, “The more precisely one measures 

the effects of a drug in laboratory animals, the more likely one is to find differences 

between strains.”70  To the extent that differences between (and within) animal 

species reflected genetic differences, then such species-specific differences in drug 

metabolism, especially among laboratory animals raised in controlled 

environmental conditions, must have reflected genetic differences. 

 Kalow was not alone in his interest in the precedent offer by species and 

subspecies variation in drug response.  When Motulsky published his initial 

discussion of genetics and drug reactions in 1957, he admitted that no one had yet 

made a convincing case that genetic differences in drug metabolism existed in 

humans.  However, he too knew about the story of rabbits and atropine esterase, 

and about strains of mice that were resistant to insulin.  He described how 

“Qualitative differences between species also exist,” with morphine, for instance, 

causing hyperexcitability in horses and cats, but not in humans.71  Brodie had 

similar interests.  In his introduction to the First International Pharmacological 

Meeting, held in Stockholm in 1961, Brodie noted that “Much work on the 

problem of species and strain differences remains to be done … Is it possible that 

enzymes which appear to be the same in two species are actually different?”  Like 

Kalow, he had been struck in his own work by marked differences in drug toxicity 

between species: “I well remember our surprise when Dr. Axelrod and I found that 

phenacetin, an unusually non-toxic drug in man, was quite toxic in dog due to the 
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accumulation of the methemoglobin-forming free amine in this species.”72  

Although all were aware of species-level variation, it was Kalow who took the step 

of compiling an exhaustive review of existing knowledge of the differences in drug 

metabolism between species of bacteria, insects, and mammals, as well as between 

subspecies and strains of mammals.  To the extent that metabolism, like anatomy, 

was under genetic control, the pervasiveness of metabolic variation demonstrated 

the relevance of pharmacogenetics. 

 

Natural Selection and an Argument Based on Intuition 

 The ubiquity of drug metabolizing variants across the animal kingdom raised 

an obvious question: why was that the case?  As Kalow recognized the prevalence 

of atypical esterases in 1954 and thereafter, he began to wonder about the meaning 

of the finding.  Cholinesterase initially had no known function other than its impact 

on drug metabolism.  Since it seemed impossible that drug metabolizing enzymes 

had evolved eons ago simply to be on hand once doctors developed 

pharmaceuticals, Kalow pondered what their physiological role had been in a 

world before procaine and succinylcholine.  When his initial research suggested a 

higher incidence of atypical activity in psychiatric patients, Kalow suggested that 

cholinesterase played a role in neurophysiology and the pathophysiology of mental 

illness.73  Subsequent research, however, did not bear this out.74  His next 

hypothesis was more prosaic.  Perhaps cholinesterase variants mediated response 
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to potential environmental toxins, specifically some found in potatoes and 

asparagus.75 

 Kalow’s argument here paralleled one that was being made with increasing 

frequency in the 1950s and 1960s: that genetic variations existed because of 

evolutionary selective pressures on human and other animas.  A.C. Allison had 

famously made the case in 1954 that sickle cell trait persisted in tropical 

populations because it provided selective advantage in settings of endemic 

malaria.76  Kalow’s examples, though less dramatic, followed the same logic.  The 

enzymes that metabolized drugs must have evolved to manage various 

environmental toxins, especially those from food.  Since different animals evolved 

in different environments, they evolved different toxin metabolizing repertoires.  

When animals lived in the same environment, especially in controlled laboratory 

conditions, these differences became latent, only to be unmasked when exposed to 

drugs and other chemicals. 

 Some researchers were cautious when making these arguments.  Montalenti 

had been puzzled by the way in which medical treatments had revealed 

unsuspected human variations: “it is noteworthy that entirely unsuspected genetical 

sensitivities to artificial new environments produced by synthetic drugs have been 

brought to light.”77  While he was not exactly sure what had maintained those 

alleles in the population, he suspected that the answer lay in natural selection: “it is 

reasonable to assume that any gene found persistently in human populations is 

likely to be in a fairly stable state with respect to selective forces.”78  Motulsky, 
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citing the example of sickle cell and malaria, also suspected that “some selective 

advantage” maintained drug metabolizing variants in populations.79 

 Others were more assertive.  Brodie, whose work identified the liver 

enzymes responsible for drug metabolism, was more confident in his speculation: 

“One cannot help asking whether the latent capacity of these enzymes developed 

in the course of evolution to enable the organism to respond to the sustained 

presence of large amounts of foreign organic compounds ingested in food.”80  

Drugs were simply examples “of a class of compounds to which the organism has 

been exposed over the ages.”81  Differential exposure over evolution had led to 

differential genetic capacity.  Kalow’s thought closely paralleled Brodie’s.  As 

Kalow later wrote: “Since drugs are part of the human environment, it is natural to 

encounter hereditary factors that affect the responsiveness of the human organism 

to drugs, and one should find these factors in all forms of life which are 

appropriately studied.”82 

 Kalow’s interest in the evolutionary argument persisted throughout his 

career.  For instance, in June 1997 evolutionary theorist Stephen Jay Gould 

published an extensive critique “ultra-Darwinian fundamentalists” who believed 

that natural selection was responsible for every complex trait.83  Gould argued for a 

more pluralistic vision, in which natural selection was the most important of 

several mechanisms that generated new traits.  This triggered an angry exchange 

with psychologist Steven Pinker about the merits of evolutionary psychology.84  

Kalow and a colleague entered the fray, offering pharmacogenetics as an example 
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of the non-adaptationist mechanisms that Gould favored.  A pharmacogenetic trait 

could emerge and persist, not because it conferred current selective advantage to 

an individual, but because it provided potential advantage to the species should the 

environment change: “they constitute a sort of biological insurance policy for the 

species, rather than for the individual.  Like Professor Gould’s ‘spandrels,’ they 

have no particular use when they arise, but may acquire a use later on.”85  Gould 

replied by tweaking their interpretation and suggesting that natural selection might 

favor “more variable species” (i.e., ones with more variable drug metabolism 

enzymes), a distinct mechanism from the usual focus on natural selection of 

individuals.86 

 

The Racialization of Pharmacogenetics 

 The analogy to species differences and the appeal to evolutionary logic both 

served to naturalize and justify genetic difference.  They also naturalized racial 

difference: to the extent that different races had experienced different foods and 

environmental toxins, they too should have developed differently tuned drug 

metabolizing enzymes.  This turn to race, at the very origins of pharmacogenetics, 

can be seen clearly in Kalow’s work. 

 Kalow’s interest in species and subspecies differences extended to studies of 

humans.  As he surveyed the literature in the late 1950s, he found many reports 

about human racial differences in drug response.87  H.A. Paskind, working in 

Chicago in the 1920s, showed that whites and blacks had different hemodynamic 
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responses to atropine.88  K.K. Chen and Edgar Poth, working at Hopkins, found that 

whites, blacks, and Asians had different mydriatic responses to cocaine, 

euphthalmine, and ephedrine.89  Meanwhile, British and German researchers, 

working in Africa and Asia in the 1920s, observed that some Asians and Africans 

experienced hemolytic anemia after primaquine treatment for malaria; Europeans 

did not.90  During World War II, US Army physicians recognized a similar risk of 

hemolytic anemia among African American soldiers.  In 1954 researchers traced 

this risk to low activity of a specific red blood cell enzyme, glucose-6-

dehydrogenase.91  Continuing work found high rates among Negroes, Orientals, 

Sardinians, and Greeks, but low rates in Europeans, Ashkenazi, and Peruvian 

Indians.92  The side effects of isoniazid also had a racial distribution.  As 

tuberculosis treatment campaigns took isoniazid worldwide, clinicians observed 

two sorts of side effects, depending on patient’s acetylation capacity.  Slow 

acetylation carried a risk of peripheral neuritis, while fast acetylation led to 

hepatitis.  Chinese, Japanese, and Eskimos were likely to be fast acetylators, 

Sudanese slow, and Caucasians and African-Americans mixed.93  Kalow heard 

rumors that operative mortality varied between populations, with dark skinned 

patients in the United States, Jamaica, or Fiji at highest risk.94  Racial differences in 

the ability to taste specific substances also existed, with high rates of non-tasters of 

phenylthiourea among Europeans and Asians, but low rates in Africans and 

American Indians.95  
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 Motulsky was similarly aware of how drug metabolizing traits varied across 

ethnic groups.  He began his 1957 discussion with the unusual prevalence of 

primaquine-induced hemolytic anemia in African Americans.  He suspected that 

many of these ethnic differences reflected underlying genetic differences: “any drug 

reaction that is more frequently observed in a given racial group, when other 

environmental variables are equal, will usually have a genetic basis.”96  Even after 

the 1950 UNESCO statement on “The Race Question,” that condemned the many 

myths and misuses of race, race remained an appealing analytic category for 

medical researchers.97 

 Although Kalow knew about these varied examples, he had limited personal 

experience with racial variation.  While stranded in the Japanese Empire during the 

war, he had encountered the “exotic” orient.  His travel throughout Japan, China, 

Vietnam, and Korea, was “a truly broadening experience”: “To us as newcomers, 

the first overwhelming impression was the strangeness of the country: the exotic 

faces, the traditional dress, the houses, the streets.  It was all so different from 

home.”98  Toronto in the mid-1950s offered a more limited sample of research 

subjects.  He tested people from Canada, Great Britain, Poland, Ukraine, 

Yugoslavia, Russia, France, Italy, Austria, Germany, Hungary, and “31 other 

countries (mostly European).”99  When he found no differences between groups, he 

blamed the homogeneity of his research population: “The great majority of all 

investigated persons were of European extraction.  There was no evidence for a 

different incidence of atypical esterase among Europeans, or between Europeans 
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and North Americans, or between religious groups.”100  Even these limited studies, 

however, did occasionally yield a tantalizing lead: “We had an opportunity to 

observe atypical esterase in one Arabian family and one Persian.”101  Kalow’s 

concern that the limited geographic diversity of his research subjects would limit 

their pharmacogenetic diversity reflects what was then a significant assumption 

about the distribution of human genetic diversity. 

 In his writings about these sorts of group differences, Kalow did not 

distinguish between species, subspecies, and races as categories of different 

ontological status.  This was a question that scientists had debated since the 

eighteenth century.  Beginning in the 1960s, biologists increasingly tried to enforce 

a distinction: species are a fundamental unit of biology, while subspecies and races 

are arbitrarily defined.102  In this strict definition, the existence of species-level 

differences ought not provide a compelling analogy for the existence of subspecies-

level differences.  Kalow, however, lumped the categories together, for instance 

offering explanations for “the different responses of breeds, strains, races, 

species.”103  Subspecies variations, such as those between white and chincilla 

rabbits or between Harvard and Hopkins rats provided a more credible precedent.  

However, it remained unclear to what extent differences between inbred laboratory 

strains might parallel the natural variations between human populations. 

 Another point becomes relevant here.  Scholars have described how model 

organisms -- fruit flies, mice, viruses, and others -- standardized biological research 

and facilitated the development of modern genetics.104  Kalow’s work demonstrates 
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something different: the importance of lack of standardization.  He and the 

researchers whom he read did not rely on one or a few animal models.  Instead, 

they worked with a menagerie of different ones -- mice, rats, cats, dogs, horses, and 

various strains of each.  This diversity became relevant for Kalow’s analyses.  

Seeing heritable pharmacogenetic differences across so many different subspecies 

and species, Kalow expected that comparable racial and ethnic differences existed 

in humans. 

 Researchers’ interest in race and pharmacology had real consequences.  At 

the First International Pharmacological Meeting in 1961, where Kalow played an 

active role, Brodie posed the basic challenge: “An ever-recurring question is which 

species is closest to man in metabolizing drugs?  One might indeed ask ‘What 

man?’, since individuals of homo sapiens metabolize a given drug at vastly different 

rates.  In fact this biochemical variability is a major difficulty in evaluating drugs in 

man.”105  Kalow worried about this same problem: “gene frequencies vary between 

populations.  This means that a drug that has been shown to be safe in one 

population is not necessarily that safe in another racial group.”106  Pharmacologists 

could not extrapolate between human populations, let alone between mammalian 

species, in their studies of drug safety and efficacy.  When the New York Times 

covered Kalow’s 1962 presentation at the New York Academy of Sciences, both 

the article and the accompanying editorial highlighted the problem of the 

differential susceptibility of human populations to adverse consequences of 

drugs.107 
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Expanding the Evidence Base 

 Kalow’s research, literature reviews, and rhetorical strategies all contributed 

to the consolidation of pharmacogenetics in the late 1950s and early 1960s.  His 

work, however, did not stop there.  Instead, over the next forty-five years he 

continued to make the case for pharmacogenetics.  As he did this, he remained 

engaged with two central problems: the politics of race in science, and the 

challenge of assessing the relative importance of genetics and other factors. 

 Kalow’s advocacy of the relevance of genetics to pharmacology and 

medical therapeutics faced some daunting challenges.  When Kalow published 

Pharmacogenetics in 1962, scientists knew of six human drugs metabolizing 

enzymes with significant polymorphisms.  Most of these did not influence drugs 

used widely in North America.  Over the next seventeen years researchers 

identified only two additional variants.108  Given these constraints, Kalow worked 

on three fronts to make the case for the relevance of genetics to pharmacology and 

therapeutics. 

 First, he remained on the lookout for any evidence of significant 

pharmacogenetic variants.  Collaborating with anesthesiologist Beverly Britt he 

helped characterized one of the most terrifying ones: malignant hyperthermia.  In 

the 1960s anesthesiologists described a new syndrome in which patients developed 

fatal hyperthermia (with fevers over 110°) and muscle rigidity during routine 

anesthesia with halothane and succinylcholine.  Clinical studies quickly revealed 
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that susceptibility ran in families, suggesting a genetic basis.109  Because this was a 

catastrophic reaction to a widely used drug, Kalow called on all physicians to 

search family histories for anesthetic complications before taking patients to 

surgery.  Racial and species variations again seemed relevant.  Studies in fourteen 

families at the Hospital for Sick Children in Toronto found a frequency of 1:14,000, 

“All three major racial groups -- Oriental, Negro, and Caucasian -- were 

involved.”110  Research in rabbits, rats, dogs, chickens, and pigs revealed a similar 

syndrome in pigs, but with a different underlying pathophysiology.111 

 Second, Kalow continued to publish review articles that emphasized the 

relevance of pharmacogenetics.112  Improvements in screening technologies 

facilitated this work.  During the 1960s, researchers led by Harry Harris at the 

Galton Laboratory in London learned how to use electrophoresis to screen for 

enzyme variants.  They found person-to-person differences in one-third to one-half 

of all enzymes.  Kalow recognized the implications of this: “If his figures are 

representative, well over half of the human enzymes could be genetically variable.  

This should have an impact on concepts of human variation in response to 

drugs.”113  Parallel work by Elliott Vesell at the National Institutes of Health used 

twin studies to reveal the impact of genetic variation of the metabolism of widely 

used drugs, with heritability ranging between 87% and 99%.114 

 Third, Kalow continued his own research on esterases.  Spectrophotometers 

gave way to inhibitor-impregnated filter paper that allowed Kalow’s team to screen 

200 samples overnight.  The new technology enabled broader population studies.  
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An initial study of 6500 Brazilians found intermediate cholinesterase activity in 

2.8% of the sample.115  Kalow could compare this to findings by other researchers 

from other populations.  He found low rates of atypical forms in Australian 

Aborigines (1%) and Brazilians (2.8%), and higher rates in Canadians (3.8%), 

Berbers (4.0%), Jews (6.3%), and Czechoslovakians (8.5%) (Figure 3).  His initial 

interpretation emphasized homogeneity: the Brazilian result added “one more 

piece of evidence confirming the remarkable similarity of the frequencies of the 

E1u and E1a alleles among populations in the world.”116  However, as research 

accumulated in the 1970s, populations seemingly diverged, with atypical 

cholinesterase found in 1:3000 Caucasians, 1:100,000 Negroes, and 1:400,000 

Orientals.117 

 The accumulating evidence of pharmacogenetic variants garnered attention 

from health authorities.  In 1964 the World Health Organization had established a 

study group on drug efficacy and safety.  This group was interested from the outset 

in the racial variations in responses to primaquine and isoniazid.118  In 1970 the 

WHO Advisory Committee for Medical Research convened a scientific group on 

the role of genetic factors and appointed Kalow as chair.  He argued that the 

existence of racial variations in drug metabolism created a potential public health 

problem: “Since most drugs are at present initially tested on limited populations, 

interethnic variability could be of practical importance as well as academic interest 

when the drugs are later used on a world-wide scale.”119  With its existing drug 

monitoring program, which had documented 80,000 adverse reactions in fifteen 
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countries over four years, Kalow felt that the WHO was well positioned to conduct 

population-based studies for “elucidating ethnic variability in the metabolism of, 

and in responses to, drugs.”120 

 

Rhetoric and Politics of Genetics and Race 

 As racial variations attracted increased attention, social and political 

tensions became evident in Kalow’s work.  He knew from some initial work on 

pharmacogenetics and psychopharmacology that certain kinds of genetic 

arguments could be controversial.  As he wrote in 1975, “Any suggestion that the 

mind can be subject to the same variations as are height, eye colour, etc., will be 

understood by some people and yet provoke a great outcry in the general 

populace.”  Mention of a genetic basis for behavior “creates many emotional 

problems.”  The situation was especially acute for genetics and race: “the whole 

genetic area has been politicized by the concept of race.  While most geneticists 

would see ‘races’ merely as statistical entities representing higher than usual 

concentrations or of high proportion of certain configurations of genetic 

information, (Montagu, 1969) the general public does not share this view.” 121  It is 

remarkable that Kalow continued to make the case for race in pharmacogenetics 

despite his awareness of Ashley Montagu’s critique of race. 

 These tensions appear in the careful rhetoric and inconsistencies seen in 

Kalow’s accounts of race in the 1970s into the 1980s.  During this time, Kalow 

shifted his focus from measuring the prevalence of atypical forms to deciphering 
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specific biochemical pathways.  For instance, by studying the concentration of 

different metabolites in the urine of his research subjects, his team identified two 

distinct metabolic pathways for the barbiturate amobarbital and then, using twin 

studies, demonstrated a genetic basis.122  In one typical study, Kalow recruited 144 

first-year medical students to ingest a fixed dose of amobarbital; 129 of them 

submitted urine samples at 36 hours.123  The researchers studied metabolite levels 

to determine relative activity of two specific metabolic pathways, C-hydroxylation 

and N-glucosidation.  Most students exhibited twice as much hydroxylation as 

glucosidation (Figure 4).  Fourteen, however, had the opposite pattern.  These 

atypical students caught Kalow’s eye: “When preparing for the repeat investigations 

of students whose data seemed to be of particular interest, we were alerted by 

noting immediately and in succession some Chinese names among those with high 

N-glu excretion.”124  Four of the fourteen students with atypical activity were 

Chinese, as compared to only six among the 115 others, a difference that was 

statistically significant. 

 Kalow interpreted this finding with an odd caution.  Even though he knew 

that “substantial racial or ethnic differences have been observed for the frequencies 

of all genes,” he professed uncertainty about whether the racial variation in 

amobarbital metabolism was “unique or whether it represents a more or less 

common phenomenon.”125  Follow up studies confirmed the pattern.  While 10 of 

20 oriental students had this unusual pattern, only 1 of 20 Caucasian students did.  

Kalow strengthened his conclusion: “Thus, there is no doubt about a racial 
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difference in the mix of amobarbital metabolites.”126  As they continued to explore 

this question, Kalow’s team used a specific graphing technique, a probit plot 

(Figure 5), to transform overlapping Gaussian distributions (i.e., two overlapping 

bell curves) into distinct parallel lines.127  This technique provided a starker visual 

argument for difference between groups.  But once again he remained cautious: 

“The racial differences in the appearance of amobarbital metabolites represent an 

observation at the descriptive level without any definite assignment of causes.  

While data collected among Caucasian twins and families suggested strongly that 

amobarbital elimination is under genetic control, such an observation made within 

one race does not prove a difference between races to be genetic.  It therefore, 

should be emphasized that we cannot distinguish with certainty between 

environmental and genetic causes for the observations reported here.  It 

nevertheless would be improper to dismiss the possibility of genetic 

interpretations.”128 

 While working on amobarbital, Kalow also used other drugs as metabolic 

probes.  One, the antihypertensive debrisoquine, had been used by other 

researchers to reveal differences in a specific hydroxylation pathway between 

Britons and Kenyans.129  He performed his own study of debrisoquine metabolism.  

He studied 51 students, of whom 13 were “Oriental (Chinese) origin” and found 

that the pattern of metabolites was “influenced by the ethnic origin of the 

subjects.”130  This finding made sense: “ethnic differences definable by gene 

frequency occur in the cytochrome P-450 system as they do in all other, genetically 
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controlled, drug-metabolizing enzyme systems.”131  Yet despite his growing 

confidence reporting in racial differences, Kalow remained defensive: “The data 

described here were not originally collected for the purpose of studying ethnic 

differences.”132  The ethnic difference “was discovered incidentally.”  Though wary 

about his small sample size, he reported the result because “the difference was 

statistically significant.” 133 

 A third study, however, broke this pattern of racial findings.  Other 

researchers had found differences in antipyrine metabolism between white Britons 

living in London and Indians living in India.  Kalow recruited a sample of 48 

Caucasian and 19 Oriental students and measured antipyrine urine metabolites at 

48 hours.  This time he found no differences between the groups: “The 

fundamental similarity in antipyrine metabolism in the two populations is 

remarkable, because metabolite patterns of antipyrine differed significantly 

between subjects, and because the same two populations are known to differ much 

in their capacity for other drug oxidations.”134  A parallel study, looking at 

antipyrine metabolism in rats, provided another surprise: “It must be noted that the 

metabolite profiles are remarkably similar in man and rat.”135 

 Kalow’s writings in the late 1970s and early 1980s present a puzzle.  He 

described surprise when he found racial variations in amobarbital metabolism, and 

surprise when he did not find them for antipyrine (and even more surprise with the 

lack of human-rat differences).  When he reported his debrisoquine findings, he 

essentially apologized for doing so.  These narratives of surprise and apology 
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suggest that Kalow experienced discomfort about his pursuit of a palpably 

politicized science.136  As he had first done in the 1950s and 1960s, he emphasized 

specific narratives that served to naturalize the findings of difference. 

 First, he worked with other researchers as they mapped ethnic and racial 

difference in drug metabolism on a global scale.  They continued to find 

measurable differences whether they looked at the various cytochrome P-450 

systems or at cholinesterase, paraoxonase, or acetylation.137  Second, he fit these 

data into the old evolutionary stories: “It should not surprise us to discover that the 

optimal structure of our biochemical defence systems is somewhat different in 

people of different regions of the world.  There are regional characteristics of flora 

and fauna, and hence there must be regional differences in naturally occurring 

toxic components of food or other environmental products.”138  Third, he preserved 

the slippage in his work between species and races.  Commenting on the unusual 

extent of variation within human populations, Kalow noted that “Only a 

cosmopolitan species of brown bat seems to be genetically as diverse as are people 

within a given race.”139 

 Kalow officially retired in 1982 but remained active in the field.  In 1985 he 

organized a major conference on racial and ethnic variations in drug metabolism 

that produced an influential collection of papers on the subject.140  When the New 

England Journal of Medicine published a report on racial differences in propranolol 

metabolism, it recruited Kalow to write the accompanying editorial.  He took the 

opportunity to reiterate his old argument: “For the physician, the lesson of the Zhou 
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study should be the importance of increased awareness of the possibility of 

differences in drug response and in dose requirements among patients from various 

ethnic and racial groups.”141  He encouraged the World Health Organization and 

pharmaceutical companies to rise to this challenge: “The best scientific course for 

further action is to encourage systematic research to determine the factors, 

enzymes, and responses that tend to differ among the major races, and those that 

tend to be alike.”  As Kalow’s work slowed, others took the lead and published 

ever more studies of racial differences in drug metabolism,142 and then reviews 

based on these new findings.143  Researchers continued to slip easily between 

studies on specific populations, such as Swedes and Han Chinese, to conclusions 

about races, whether Caucasian or Oriental.144 

 Controversies about race even reached Kalow late in his career.  By 2002 he 

had ceded lectures in the pharmacology course at the University of Toronto to his 

junior colleagues.  Each year the course included a routine lecture on 

pharmacogenetics that covered ethnic differences in drug effects between Africans, 

Asians, and Europeans.  In 2002, however, the students were outraged.  As Kalow 

wrote, “The professor was shocked to experience ugly protests by some students 

who called him ‘racist.’”145  Kalow submitted an editorial to the local student 

newspaper, the Varsity, defending his colleague and the discussion of race: race 

was not a political issue, but simply a scientific one.  He also tried to make the case 

more widely.  Responding to a 2001 New England Journal of Medicine about the 

contested nature of race, he made his own case for why physicians ought to 



 37  

consider their patients’ racial and ethnic backgrounds.  The New England Journal 

rejected it without review.146  He did succeed, however, in publishing a shortened 

defense of race in a specialty journal.147 

 

Genetics and Other Possibilities 

 Even though genetics in general, and race in particular, have received 

increasing attention as popular explanations for inter-individual variation in drug 

response, they have existed in parallel with other explanations.  Recall that when 

Kalow was first assigned to the two cases of lethal reactions to procaine, his 

mentor, Hans Herken, had suggested that the problem was malnutrition.  As Kalow 

pursued genetics, other researchers focused on nutrition and other environmental 

influences.  In the early 1950s work on chemical carcinogenesis showed that 

specific drugs could influence the metabolism of other drugs, up- or down-

regulating drug metabolizing enzymes.148  When the writings of Rachel Carson 

focused attention on environmental toxins, pharmacologists demonstrated how 

insecticides, including DDT, could induce the metabolism of drugs in humans.  By 

the early 1970s many inducers of drug metabolism had been found, including 

insecticides, herbicides, oils, aromatic hydrocarbons, dyes, nicotine, preservatives, 

plant alkaloids, xanthines, flavones, ozone, and carbon monoxide.149 

 It was this work, grounded in biochemical pharmacology, that identified 

liver microsomal enzymes, especially the cytochrome P450 system, as an 

important site for drug metabolism.150  A New York group even demonstrated that 
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food, whether charcoaled steaks, cabbage, Brussels sprouts, or the Atkins diet 

could accelerate the metabolism of widely used drugs.151  These studies found high 

rates of intra-individual variability: as research subjects changed their diet, smoking 

habits, or other environmental exposures over weeks or months, their drug 

metabolism shifted as well.152  Drug metabolizing capacity was not a fixed 

characteristics of individuals.  Instead, it responded to individuals’ chemical 

environments.  Other studies found that apparent racial and ethnic differences, for 

instance between Londoners and Gambian or Sudanese villagers, also disappeared 

when diet and other environmental exposures were taken into consideration.153 

 Kalow interacted with this environmental tradition throughout his career.  In 

the 1960s he participated in conferences with Brodie, Alan Conney, and many of 

the others who led the research on environmental factors that shaped drug 

metabolism.  As he wrote at the start of his 1962 Pharmacogenetics, “If this book 

stresses the existence of hereditary influences on pharmacologic response, this 

should not be taken as an attempt to minimize the importance of the effects of 

internal and external environment.  One may consider the total variation in the 

response to drugs as being caused by both hereditary and nonhereditary forces.”154  

Later, during his work on amobarbital metabolism, he worried that the diverse food 

exposures of the increasingly diverse Toronto population might confound his 

findings: “If one looks at the Restaurant Guide in the yellow pages of the Toronto 

Telephone Directory, one finds captions indicating type of cuisine, stating 

alphabetically with American, Arabian, Armenian, Austrian, Chinese, Croatian, 
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Cuban, Czechoslovakian, Danish, and so on, finishing with Vietnamese … It seems 

justified to assume that different people are routinely exposed to different enzyme 

inducers or toxic substances contained in their food and drinks.  Thus, we explicitly 

recognize that different people are exposed to different environments, and that life 

in the same city does not indicate exposure to the same environment.”155 It 

made perfect sense to Kalow that the genetic and environmental traditions of drug 

metabolism research would co-exist.  They were, after all, linked by the familiar 

evolutionary narrative.  As animals evolved, they developed metabolic systems that 

could protect them from environmental chemicals and toxins.  Natural selection 

favored metabolic diversity that allowed organisms to adapt to changing 

environmental conditions.156  Kalow knew that the genetic and adaptive 

components could be difficult to sort out: “Many studies with probe drugs 

comparing different populations have given results that are equivocal in terms of 

the nature-nurture interplay.”157  He did not see this as a problem.  Instead, it was 

simply an appropriately complex reflection of a complex system: “All these 

observations provide a cautionary note against simplistic genetic or non-genetic 

interpretations of ethnic differences in metabolism data.”158 

 From the 1950s into the 1990s, the research on the genetic and 

environmental determinants of drug response developed in parallel, often in 

synergy.  A third discourse also emerged, one that that emphasized the importance 

of non-compliance.159  With estimates that a typical American patient takes only 

half of prescribed medications, non-compliance has a huge impact on serum drug 
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levels.  This likely dwarfs most genetic and environmental factors and may be the 

most significant determinant of drug response and therapeutic effectiveness.  By the 

early 1990s, individual variability in treatment response was over-determined, with 

more explanations available than were usually needed to explain any particular 

unusual patient outcome.  The field may even have existed in a state of equipoise.  

Thinking back to my own years in medical school in the mid-1990s, I have clear 

memories of debates about the pejorative meanings of “non-compliant.”  The 

finding that grapefruit juice could interfere with commonly used antihypertensives 

received widespread attention.160  I have no recollection of pharmacogenetics 

being discussed at all. 

 Then something changed.  As personalized medicine rose to prominence 

after 1999, physicians and entrepreneurs focused on genetic determinants of drug 

response.  By 2010, leading health officials essentially declared the equivalence of 

personalized medicine and genetic medicine.161  Race-based medicine has 

followed closely on the heels of pharmacogenetics.162  A 2001 review described 

racial variations in the response to many important medications, include ACE 

inhibitors, antipsychotics, ß-blockers, calcium channel blockers, chemotherapy 

agents, diuretics, insulin, interferon, morphine, steroids, vasodilators, and 

warfarin.163  The potential of commercial innovation based on such differences is 

best demonstrated by the emergence of BiDil, a combination of two generic 

medications that were repackaged and approved for treatment of heart failure only 

in patients who self identify as black.164  Critics have argued that the advent of BiDil 
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simultaneously represents both a cynical exploitation of loopholes in patent law 

and FDA policy,165 and our “durable preoccupation” with race.166  Despite the 

drug’s commercial failure, there has been a “dramatic rise” since 2000 in 

biotechnology patents based on race and ethnicity.167  Some products have already 

come to market.  Companies now sell race-specific vitamins, cosmetics, ancestry 

tests, and even walking shoes based on the putative unusual thickness of American 

Indian feet.168  The shift in balance towards genetic and racial explanations poses a 

fundamental question: what determines the relative importance given to possible 

explanations of biomedical phenomena? 

 It is not hard to explain the factors that favored the emergence of 

pharmacogenetics in the 1990s.  Some operated at the broadest levels, with 

pharmacogenetics being but one example of the growing cultural fascination with 

all things genetic.169  Others were more specific.  Sociologists have argued that the 

excited claims about expected future value have trumped concerns about cost and 

utility, such that researchers, regulators, investors, and patients all became 

enthusiastic despite lingering skepticism among clinicians.170  The status of genetics 

in therapeutics parallels its status in disease theories, where it also receives ever 

greater emphasis despite general awareness of both the limited yields of genetic 

analysis to date and the importance of other factors to disease susceptibility.171  

Pharmacogenetics, like genetic medicine more broadly, remains very much a 

promissory science.172  More pragmatic factors have also played a role.  Genetic 

explanations are biologically justifiable and convenient.  The genetic sequence is 
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seen as an invariant marker: measured once, it can guide treatment decisions 

throughout a patient’s life.  Genetic tests and technologies offer financial incentives 

not seen with interventions based on environmental exposures or non-compliance.  

Scientists seek funding, prestige, and marketable products through genetics.  

Regulators, investors, and patients encourage their pursuits. 

 Racial therapeutics have similarly strong appeals.  Even as genetics has 

offered new modes of affinity, they have often become aligned with pre-existing 

ideas about race and ethnicity.173  Race-based practice is even more convenient 

than genetic practice: doctors need simply to look at a patient and profile 

accordingly.174  The resurgence of racial medicine has triggered understandable 

concern.  Troy Duster, for instance, has warned that enthusiasm for genetics has 

led to the “molecular reinscription of race.”175  Duana Fullwiley has described this 

in detail.  When the National Institutes of Health established its Pharmacogenetics 

Research Network in 2000, its stated goal was individualized medicine.  This soon 

gave way to a pragmatic and value-laden acceptance of race as a proxy for 

individual genetic variation.176  In response to the concerns, many advocates of 

pharmacogenetics and other forms of racial medicine reassure themselves by 

arguing that the use of race will be just a passing phase on the road to fully 

individualized treatment.177  However, the long presence of race in 

pharmacogenetics and the enduring popularity of race as a concept in science and 

society more generally suggest that its appeals will not fade quickly.  The continued 
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presence of race in medical practice will require on-going scrutiny from medical 

and social scientists.178 

 Even amid these many factors that facilitated the emergence of a racialized 

pharmacogenetics in the 1990s and 2000s, an appreciation of the longer history of 

the field deepens our understanding.  Kalow’s work began at a time when genetics 

did not preoccupy our worldview, before entrepreneurs had begun to funnel 

venture capital into the field, and before claims of the general relevance of 

pharmacogenetic alleles could even be attempted.  Despite that, he had access to 

many strategies.  Pharmacologic technology, from dibucaine numbers to the 

rhetorical power of probit plots, allowed him to craft simple but powerful 

arguments about the reality of difference and its genetic correlates.  Analogies to 

differences between species and subspecies provided precedents for the 

expectation that human racial differences would exist.  Appeals to the logic of 

natural selection explained why drug-metabolizing variants might have found their 

way into our genomes.  A few cases, such as the distribution of isoniazid side 

effects seen in global tuberculosis campaigns or the terror of malignant 

hyperthermia, demonstrated the potential relevance of pharmacogenetics for health 

care and health policy.  Once the claims were made by Kalow and others that 

pharmacogenetics was real and relevant, they had consequences: pharmacologists 

came to expect that genetic and racial variations would exist and they searched for 

them in what became a self-fulfilling prophecy.179  Kalow’s work, along with that of 

Motulsky, Vesell, and others opened up the niche for pharmacogenetics and, 
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within that, for race.  This established a foundation of expectations on which later 

advocates could build their pharmacogenetic promises. 

 An appreciation of this history also alerts us to ways to broaden the 

discourse about personalized medicine.  Seen in the longest perspective, the 

standardization of medical practice enabled by the model of specific etiology and 

specific therapy relied on an over-simplification (i.e., that all patients with a given 

disease could be treated in the same fashion), but one that brought vast gains in 

efficiency and increased the access of the world’s populations to powerful 

treatments.  The move is now away from standardization back towards 

individualization.  But pharmacogenetics is another over-simplification.  Focus on 

genetics leads to the neglect of other variables that influence drug response.  In 

contrast to the dramatic scientific and commercial interest in pharmacogenetics, 

there is no similar energy for other ways of personalizing medicine.  Where are the 

reviews or products that would help doctors assess diet and other environmental 

determinants of drug response?  Where are the calls to understand patients’ lives in 

a way that might allow physicians to prescribe feasible treatment plans?  The rare 

exceptions that do exist demonstrate the potential power of social approaches to 

improve treatment outcome.180 

 Some observers have recently begun to suggest that the genetic moment has 

passed.181  Motulsky himself admitted in a New York Times profile that “the 

promise of pharmacogenetics is sometimes overhyped. There are people who think 

we’ll be able to solve almost everything with an individualized prescription. We 
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need more research, which will be expensive.”182 Excitement has moved from 

genetics and genomics to epigenetics, proteomics, metabolonomics, and even 

microbiomics.  It should also be possible to expand discussions of personalized 

medicine to include environment and behavior.  Past experience suggests that 

genetics and race will both endure in medical practice, entrenched as they are in 

science, governance, and social relations. The promises and hopes that continue to 

circulate, however, deserve to be tempered by the many insights that can be 

gleaned from the history of pharmacogenetics. 
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